WO2014194086A1 - A parallel method for agglomerative clustering of non-stationary data - Google Patents
A parallel method for agglomerative clustering of non-stationary data Download PDFInfo
- Publication number
- WO2014194086A1 WO2014194086A1 PCT/US2014/040018 US2014040018W WO2014194086A1 WO 2014194086 A1 WO2014194086 A1 WO 2014194086A1 US 2014040018 W US2014040018 W US 2014040018W WO 2014194086 A1 WO2014194086 A1 WO 2014194086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data points
- threads
- processors
- stream
- clusters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/466—Transaction processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogram communication
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/043—Distributed expert systems; Blackboards
Definitions
- the LAN transceiver 206 comprise another type of local area network, personal area network, (e.g., Bluetooth). Additionally, any other type of wireless networking technologies may be used, for example, Ultra Wide Band, ZigBee, wireless USB etc.
- wireless access point may be used to refer to LAN- WAPs and/or WAN- WAPs.
- WAP wireless access point
- embodiments may include a UE 200 that can exploit signals from a plurality of LAN- WAPs, a plurality of WAN-WAPs, or any combination of the two.
- the specific type of WAP being utilized by the UE 200 may depend upon the environment of operation.
- the UE 200 may dynamically select between the various types of WAPs in order to arrive at an accurate position solution.
- the modules shown in FIG. 2 are illustrated in the example as being contained in the memory 214, it is recognized that in certain implementations such procedures may be provided for or otherwise operatively arranged using other or additional mechanisms.
- all or part of the wireless-based positioning module 216 and/or the application module 218 may be provided in firmware.
- the wireless-based positioning module 216 and the application module 218 are illustrated as being separate features, it is recognized, for example, that such procedures may be combined together as one procedure or perhaps with other procedures, or otherwise further divided into a plurality of sub-procedures.
- the logic configured to process information 310 can include logic configured to receive a stream of data points, logic configured to determine a plurality of cluster centroids, logic configured to divide the plurality of cluster centroids among a plurality of threads and/or processors, logic configured to assign a portion of the stream of data points to each of the plurality of threads and/or processors, and logic configured to combine a plurality of clusters generated by the plurality of threads and/or processors to generate a global universe of clusters.
- the communication device 300 further optionally includes logic configured to receive local user input 325.
- the logic configured to receive local user input 325 can include at least a user input device and associated hardware.
- the user input device can include buttons, a touchscreen display, a keyboard, a camera, an audio input device (e.g., a microphone or a port that can carry audio information such as a microphone jack, etc.), and/or any other device by which information can be received from a user or operator of the communication device 300.
- the logic configured to receive local user input 325 can include the microphone 252, the keypad 254, the display 256, etc.
- FIG. 4 illustrates an exemplary listing of representative computer program instructions implementing a k-means algorithm, as illustrated in U.S. Patent No. 6,269,376.
- the k-means algorithm comprises essentially four steps:
- the UE can drop data points or reduce the sampling rate (where, for example, the data points are being generated by one or more sensors). Further, if several UEs are coupled over a high-speed data link, whether wired or wireless, the parallel processing can be distributed over the multiple UEs. The UE generating the sensor data can assign it to the other devices and receive the clustering results.
- FIG. 6 illustrates an exemplary flow for clustering a stream of data points that may be performed by a UE, such as UE 200.
- the UE receives the stream of data points.
- the UE may receive the stream of data points from one or more sensors, such as an accelerometer, a gyroscope, a magnetometer, a microphone, and/or the like. If the stream of data points contains too many data points to efficiently process, even with the plurality of threads and/or processors, the UE may drop data points to reduce the number of data points it will have to process, as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephone Function (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016516818A JP2016530591A (ja) | 2013-05-30 | 2014-05-29 | 非定常データの凝集クラスタリングのための並列化方法 |
| EP14737357.5A EP3005115A1 (en) | 2013-05-30 | 2014-05-29 | A parallel method for agglomerative clustering of non-stationary data |
| KR1020157034660A KR101793014B1 (ko) | 2013-05-30 | 2014-05-29 | 비정상 데이터의 병합식 클러스터링을 위한 병렬 방법 |
| CN201480030706.0A CN105247487B (zh) | 2013-05-30 | 2014-05-29 | 用于非平稳数据的凝聚群集的并行方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/906,169 US9411632B2 (en) | 2013-05-30 | 2013-05-30 | Parallel method for agglomerative clustering of non-stationary data |
| US13/906,169 | 2013-05-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014194086A1 true WO2014194086A1 (en) | 2014-12-04 |
Family
ID=51168340
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/040018 Ceased WO2014194086A1 (en) | 2013-05-30 | 2014-05-29 | A parallel method for agglomerative clustering of non-stationary data |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9411632B2 (enExample) |
| EP (1) | EP3005115A1 (enExample) |
| JP (1) | JP2016530591A (enExample) |
| KR (1) | KR101793014B1 (enExample) |
| CN (1) | CN105247487B (enExample) |
| WO (1) | WO2014194086A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025086955A1 (zh) * | 2023-10-17 | 2025-05-01 | 杭州阿里云飞天信息技术有限公司 | 流量处理方法、网关设备、电子设备以及存储介质 |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9780997B2 (en) | 2015-01-30 | 2017-10-03 | Alcatel Lucent | Method and system for controlling an operation of an application by classifying an application type using data bearer characteristics |
| US20180236352A1 (en) * | 2015-12-04 | 2018-08-23 | Uti Limited Partnership | Wearable inertial electronic device |
| US10558466B2 (en) * | 2016-06-23 | 2020-02-11 | Advanced Micro Devices, Inc. | System and method for parallelization of data processing in a processor |
| US10416958B2 (en) * | 2016-08-01 | 2019-09-17 | Bank Of America Corporation | Hierarchical clustering |
| US9974043B1 (en) * | 2017-05-31 | 2018-05-15 | Aruba Networks, Inc. | Assigning a subset of access points in a wireless network to a high priority |
| KR102031411B1 (ko) * | 2017-08-01 | 2019-10-11 | 순천향대학교 산학협력단 | K 평균 클러스터링 알고리즘을 구현하기 위한 네트워크 온 칩 기반의 다중 프로세서 아키텍처 |
| US11461360B2 (en) * | 2018-03-30 | 2022-10-04 | AVAST Software s.r.o. | Efficiently initializing distributed clustering on large data sets |
| US11238308B2 (en) * | 2018-06-26 | 2022-02-01 | Intel Corporation | Entropic clustering of objects |
| JP7228031B2 (ja) | 2018-10-15 | 2023-02-22 | ベンタナ メディカル システムズ, インコーポレイテッド | 細胞の分類のためのシステムおよび方法 |
| US11853877B2 (en) | 2019-04-02 | 2023-12-26 | International Business Machines Corporation | Training transfer-focused models for deep learning |
| CN110717517A (zh) * | 2019-09-06 | 2020-01-21 | 中国平安财产保险股份有限公司 | 智能化多线程聚类方法、装置及计算机可读存储介质 |
| US20210272025A1 (en) * | 2019-12-27 | 2021-09-02 | Stmicroelectronics, Inc. | Method and system for updating machine learning based classifiers for reconfigurable sensors |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6269376B1 (en) | 1998-10-26 | 2001-07-31 | International Business Machines Corporation | Method and system for clustering data in parallel in a distributed-memory multiprocessor system |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA2012938A1 (en) * | 1989-04-19 | 1990-10-19 | Patrick F. Castelaz | Clustering and association processor |
| US5787420A (en) * | 1995-12-14 | 1998-07-28 | Xerox Corporation | Method of ordering document clusters without requiring knowledge of user interests |
| US6466946B1 (en) * | 2000-06-07 | 2002-10-15 | Hewlett-Packard Company | Computer implemented scalable, incremental and parallel clustering based on divide and conquer |
| US7631107B2 (en) | 2002-06-11 | 2009-12-08 | Pandya Ashish A | Runtime adaptable protocol processor |
| US7353218B2 (en) | 2003-08-14 | 2008-04-01 | International Business Machines Corporation | Methods and apparatus for clustering evolving data streams through online and offline components |
| US7289985B2 (en) * | 2004-04-15 | 2007-10-30 | Microsoft Corporation | Enhanced document retrieval |
| US20060031628A1 (en) | 2004-06-03 | 2006-02-09 | Suman Sharma | Buffer management in a network device without SRAM |
| US8325748B2 (en) * | 2005-09-16 | 2012-12-04 | Oracle International Corporation | Fast vector quantization with topology learning |
| US7962607B1 (en) * | 2006-09-08 | 2011-06-14 | Network General Technology | Generating an operational definition of baseline for monitoring network traffic data |
| US8024193B2 (en) * | 2006-10-10 | 2011-09-20 | Apple Inc. | Methods and apparatus related to pruning for concatenative text-to-speech synthesis |
| US7730036B2 (en) * | 2007-05-18 | 2010-06-01 | Eastman Kodak Company | Event-based digital content record organization |
| US7996390B2 (en) * | 2008-02-15 | 2011-08-09 | The University Of Utah Research Foundation | Method and system for clustering identified forms |
| US7979426B2 (en) * | 2008-06-05 | 2011-07-12 | Samsung Electronics Co., Ltd. | Clustering-based interest computation |
| US8300951B1 (en) * | 2008-09-19 | 2012-10-30 | Adobe Systems Incorporated | Recognizing symmetries along paths in vector art |
| US8170966B1 (en) * | 2008-11-04 | 2012-05-01 | Bitdefender IPR Management Ltd. | Dynamic streaming message clustering for rapid spam-wave detection |
| US8761465B2 (en) * | 2009-03-18 | 2014-06-24 | Microsoft Corporation | Centroid processing |
| US20100293206A1 (en) | 2009-05-12 | 2010-11-18 | Tatu Ylonen Oy Ltd | Clustering related objects during garbage collection |
| US20110246123A1 (en) * | 2010-03-30 | 2011-10-06 | Welch Allyn, Inc. | Personal status monitoring |
| JP5535742B2 (ja) | 2010-04-19 | 2014-07-02 | 三菱重工業株式会社 | 熱媒体加熱装置およびそれを用いた車両用空調装置 |
| US8751588B2 (en) | 2010-12-15 | 2014-06-10 | Apple Inc. | Message thread clustering |
| WO2012104943A1 (ja) * | 2011-02-02 | 2012-08-09 | 日本電気株式会社 | 結合処理装置、データ管理装置及び文字列類似結合システム |
| CN102855259B (zh) * | 2011-06-30 | 2015-05-13 | Sap欧洲公司 | 大规模数据聚类分析的并行化 |
| US8560647B2 (en) * | 2011-07-19 | 2013-10-15 | Telefonaktiebolaget L M Ericsson (Publ) | Controller placement for split architecture networks |
| US9432805B2 (en) * | 2011-09-28 | 2016-08-30 | Qualcomm Incorporated | Discovering and automatically sizing a place of relevance |
| US9454528B2 (en) * | 2011-10-17 | 2016-09-27 | Xerox Corporation | Method and system for creating ordered reading lists from unstructured document sets |
| CN108388632B (zh) * | 2011-11-15 | 2021-11-19 | 起元科技有限公司 | 数据分群、分段、以及并行化 |
| US8880525B2 (en) * | 2012-04-02 | 2014-11-04 | Xerox Corporation | Full and semi-batch clustering |
| US20130263151A1 (en) * | 2012-04-03 | 2013-10-03 | Microsoft Corporation | Consistent Hashing Table for Workload Distribution |
| US9136918B2 (en) * | 2012-04-09 | 2015-09-15 | Telefonaktiebolaget L M Ericsson (Publ) | Dynamic clustering for coordinated transmission in wireless communication systems |
| US8930422B2 (en) * | 2012-06-04 | 2015-01-06 | Northrop Grumman Systems Corporation | Pipelined incremental clustering algorithm |
| US9208777B2 (en) * | 2013-01-25 | 2015-12-08 | Microsoft Technology Licensing, Llc | Feature space transformation for personalization using generalized i-vector clustering |
| US9119055B2 (en) * | 2013-02-06 | 2015-08-25 | Facebook, Inc. | Grouping ambient-location updates |
| US9667671B2 (en) * | 2013-05-13 | 2017-05-30 | Xerox Corporation | Method and system for facilitating communication between message consumers and message producers |
-
2013
- 2013-05-30 US US13/906,169 patent/US9411632B2/en not_active Expired - Fee Related
-
2014
- 2014-05-29 CN CN201480030706.0A patent/CN105247487B/zh not_active Expired - Fee Related
- 2014-05-29 KR KR1020157034660A patent/KR101793014B1/ko active Active
- 2014-05-29 JP JP2016516818A patent/JP2016530591A/ja active Pending
- 2014-05-29 WO PCT/US2014/040018 patent/WO2014194086A1/en not_active Ceased
- 2014-05-29 EP EP14737357.5A patent/EP3005115A1/en not_active Withdrawn
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6269376B1 (en) | 1998-10-26 | 2001-07-31 | International Business Machines Corporation | Method and system for clustering data in parallel in a distributed-memory multiprocessor system |
Non-Patent Citations (3)
| Title |
|---|
| CHE S ET AL: "A performance study of general-purpose applications on graphics processors using CUDA", 1 October 2008, JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, ELSEVIER, AMSTERDAM, NL, PAGE(S) 1370 - 1380, ISSN: 0743-7315, XP025435143 * |
| MARIO ZECHNER ET AL: "Accelerating K-Means on the Graphics Processor via CUDA", 20 April 2009, INTENSIVE APPLICATIONS AND SERVICES, 2009. INTENSIVE '09. FIRST INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, PAGE(S) 7 - 15, ISBN: 978-1-4244-3683-5, XP031461068 * |
| YOU LI ET AL: "Speeding up K-Means Algorithm by GPUs", 29 June 2010, COMPUTER AND INFORMATION TECHNOLOGY (CIT), 2010 IEEE 10TH INTERNATIONAL CONFERENCE ON, IEEE, PISCATAWAY, NJ, USA, PAGE(S) 115 - 122, ISBN: 978-1-4244-7547-6, XP031758033 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025086955A1 (zh) * | 2023-10-17 | 2025-05-01 | 杭州阿里云飞天信息技术有限公司 | 流量处理方法、网关设备、电子设备以及存储介质 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101793014B1 (ko) | 2017-11-02 |
| CN105247487A (zh) | 2016-01-13 |
| US20140359626A1 (en) | 2014-12-04 |
| JP2016530591A (ja) | 2016-09-29 |
| KR20160016842A (ko) | 2016-02-15 |
| EP3005115A1 (en) | 2016-04-13 |
| US9411632B2 (en) | 2016-08-09 |
| CN105247487B (zh) | 2018-12-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9411632B2 (en) | Parallel method for agglomerative clustering of non-stationary data | |
| US11032665B1 (en) | User equipment geolocation | |
| US10671925B2 (en) | Cloud-assisted perceptual computing analytics | |
| US11537493B2 (en) | System and method for low latency edge computing | |
| US20150347562A1 (en) | Deriving user characteristics from users' log files | |
| US10931536B2 (en) | Mapping network topology for latency sensitive applications in a mobile network | |
| WO2018102240A1 (en) | Joint language understanding and dialogue management | |
| US11341650B2 (en) | Method for accelerating three-dimensional object segmentation with point cloud simplifications | |
| US20210117418A1 (en) | Time-aware general-purpose input output for industrial control systems | |
| US20240036631A1 (en) | Protocol state aware power management | |
| KR20240088787A (ko) | 기계 학습 기반 포지셔닝 | |
| TWI698141B (zh) | 決定無線裝置的軌跡路徑 | |
| WO2014134178A1 (en) | Dynamic power management of context aware services | |
| US20250008480A1 (en) | User equipment geolocation using a history of network information | |
| US11493354B2 (en) | Policy based navigation control | |
| US11029328B2 (en) | Smartphone motion classifier | |
| CN116599871B (zh) | 一种网络时延的确定方法和相关装置 | |
| CN116235427A (zh) | 通过无线终端的空间和时间测量结果辅助的天线波束管理 | |
| US20250294401A1 (en) | Method and apparatus for a software defined virtual platform for a communication device | |
| US12363185B2 (en) | Latency reduction in remote rendering with adaptive phase shifting | |
| US11620251B2 (en) | Partitioned UFP for displayport repeater |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14737357 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2014737357 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2016516818 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20157034660 Country of ref document: KR Kind code of ref document: A |