WO2014193105A1 - Organic light emitting diode device having dummy electrode - Google Patents

Organic light emitting diode device having dummy electrode Download PDF

Info

Publication number
WO2014193105A1
WO2014193105A1 PCT/KR2014/004319 KR2014004319W WO2014193105A1 WO 2014193105 A1 WO2014193105 A1 WO 2014193105A1 KR 2014004319 W KR2014004319 W KR 2014004319W WO 2014193105 A1 WO2014193105 A1 WO 2014193105A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
organic light
substrate
dummy electrode
Prior art date
Application number
PCT/KR2014/004319
Other languages
French (fr)
Korean (ko)
Inventor
김원기
Original Assignee
네오뷰코오롱 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네오뷰코오롱 주식회사 filed Critical 네오뷰코오롱 주식회사
Publication of WO2014193105A1 publication Critical patent/WO2014193105A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic electroluminescent device (hereinafter sometimes referred to simply as "OLED"), and more particularly to an organic electroluminescent device having a dummy electrode for improving visibility.
  • OLED organic electroluminescent device
  • the OLED has a structure in which an organic light emitting layer containing an organic compound is inserted between a pair of electrodes formed of a cathode and a cathode formed on a transparent substrate such as glass, and holes are formed in the organic light emitting layer from the pair of electrodes. And an electron to inject and recombine to generate excitons, and to emit light when the activity of the excitons is lost.
  • OLEDs are classified into top mission type, bottom mission type and double mission type (transparent mission type, also called transparent OLED) according to the emission direction of light.
  • the electrode is made of a transparent electrode made of, for example, indium tin oxide (ITO) or the like.
  • FIG. 1 is a perspective view illustrating a schematic structure of a conventional bottom emission type OLED display device
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1.
  • the conventional OLED 10 includes a first electrode 12 made of a transparent electrode such as ITO formed on a transparent substrate 11 such as a glass substrate, and a first electrode 12.
  • An organic light emitting layer 13 formed on the organic light emitting layer 13 and a second electrode 14 stacked on the organic light emitting layer 13.
  • FIG. 1 and 2 show the structure of a display device formed by four light emitting elements for convenience of explanation, and the individual OLEDs 10 are separated by an element isolation layer 15.
  • the width of the ITO electrode, which is the first electrode 12 is smaller than the width of the organic light emitting layer 13. Therefore, since the area of the surface of the first electrode 12 corresponding to the surface of the organic light emitting layer 13 that is the light emitting surface is small, a part of the light emitted from the organic light emitting layer 13 and emitted to the substrate 11 side is removed. Since the first electrode 12 penetrates and is emitted to the outside of the substrate 11, and the remaining part is emitted directly to the outside of the substrate 11 without penetrating the first electrode 12, there is a nonuniformity in the transmittance of light drawn out. Occurs.
  • FIG. 3 is a graph showing the results of simulating the optical characteristics of the conventional OLED, wherein the X axis represents the wavelength, the Y axis represents the transmittance and the reflectance, and the black solid line represents the substrate 11 without the ITO electrode (first electrode).
  • the 1st electrode 12 which consists of ITO is formed in the OLED of the structure of FIGS.
  • the red solid line shows the light transmittance characteristic of light
  • substrate 11 Shows the transmittance characteristics of the light that is transmitted to the outside and drawn to the outside
  • the black dotted line shows the reflectance characteristics of the light in the substrate 11 when there is only the substrate 11 without the ITO electrode (first electrode)
  • the red dotted line shows FIG.
  • the reflectance of the light in the substrate 11 is approximately 10% uniformly in all wavelength regions, so that the light generated in the organic light emitting layer 13 About 90% of the light penetrates the substrate 11 and is released to the outside.
  • the first electrode 12, which is an ITO electrode is formed only in a part of the region on the substrate 11 as shown in Figs. 1 and 2, the absorption of light increases in the wavelength region around 400 nm, and thus the wavelength around 400 nm.
  • the transmittance of light transmitted through the substrate 11 in the region and emitted to the outside is significantly reduced.
  • the present invention is to improve the above problem that the light extraction efficiency is lower than that of other wavelength regions in the non-uniformity of the extraction efficiency of light emitted to the outside of the OLED in the conventional OLED structure, especially in the blue region having a wavelength of 400 to 500mm. It is an object of the present invention to improve the light extraction efficiency in the blue region having a wavelength of 400 to 500 mm by improving the arrangement and structure of the ITO electrode of the conventional OLED to improve the visibility of the OLED.
  • An organic electroluminescent device of the present invention for solving the above problems includes a substrate, a dummy electrode formed on the substrate, an insulating layer laminated on the dummy electrode, a first electrode formed on the insulating layer, An organic light emitting layer laminated on the first electrode, and a second electrode laminated on the organic light emitting layer, wherein an area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer, and the dummy electrode Is formed on the entire surface of the substrate.
  • an organic light emitting display device in another embodiment, includes a substrate, a dummy electrode formed on the substrate, an insulating layer laminated on the dummy electrode, a first electrode formed on the insulating layer, and the And an organic light emitting layer laminated on the first electrode, and a second electrode stacked on the organic light emitting layer, wherein an area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer, It is formed only in a region other than the region corresponding to the first electrode on the substrate.
  • the organic light emitting device of the present invention since the dummy electrode is formed in at least a region corresponding to the entire region of the organic light emitting layer, the light drawn out to the outside of the organic light emitting device is extracted from the region where the first electrode is formed and the non-formed region.
  • the nonuniformity of efficiency can be eliminated, and the nonuniformity of light extraction efficiency can be eliminated especially in a blue region. Therefore, the visibility of the organic light emitting device can be improved.
  • FIG. 1 is a perspective view showing a schematic structure of a conventional bottom emission type OLED display device
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG. 1;
  • FIG. 3 is a graph showing a result of simulating optical characteristics of a conventional OLED
  • FIG. 4 is a perspective view showing a schematic structure of a bottom emission type OLED display device of Embodiment 1 of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line A-A of FIG. 4;
  • FIG. 7 is a cross-sectional view of a bottom emission type OLED display device of Embodiment 2 of the present invention.
  • FIG. 9 is a cross-sectional view of a bottom emission type OLED display device of Embodiment 3 of the present invention.
  • FIG. 10 is a graph simulating the optical characteristics of the OLED of Embodiment 3.
  • FIG. 10 is a graph simulating the optical characteristics of the OLED of Embodiment 3.
  • FIG. 4 is a perspective view illustrating a schematic structure of a bottom emission type OLED display device according to Embodiment 1 of the present invention
  • FIG. 5 is a cross-sectional view taken along line A-A of FIG. 4.
  • the bottom emission type OLED of the present embodiment is basically the same as the conventional bottom emission type OLED, and differs in that it has more dummy electrodes than the conventional OLED.
  • the OLED 20 of the first embodiment has a dummy electrode 22 laminated on the entire surface of the substrate 21 on a substrate 21 made of a material such as glass having insulation and light transmittance. And an insulating layer 23 laminated on the entire surface of the upper part of the dummy electrode 22, a first electrode 24 formed of a transparent material such as ITO, laminated on the insulating layer 23, and a first electrode. And an organic light emitting layer 25 formed on the organic light emitting layer 25 and a second electrode 26 formed on the organic light emitting layer 25.
  • the dummy electrode 22 formed over the entire surface on the substrate 21 has a smaller area of the surface of the first electrode 24 corresponding to that of the surface of the surface of the light emitting surface of the organic light emitting layer 25, so that the first electrode
  • This is a layer for compensating for the problem that the transmittance of light emitted to the outside of the OLED 20 is lowered due to a difference in absorption, annihilation, and scattering of light in the portion where the 24 is formed and the portion where the first electrode 24 is not formed.
  • the dummy electrode 22 may be made of the same material as that of the first electrode 24, for example, using a material having low light absorption and extinction and high transmittance, such as indium tin oxide (ITO). That is, when the first electrode 24 is ITO, the dummy electrode 22 may also use ITO, and when the first electrode 24 is indium zinc oxide (IZO), the dummy electrode 22 may also use IZO. .
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the present invention is not limited thereto, and the materials of the dummy electrode 22 and the first electrode 24 may be different from each other as long as the material has low absorption and disappearance and high transmittance.
  • the dummy electrode 22 is formed on the substrate 21 by, for example, a physical vapor deposition (PVD) method such as vacuum deposition, sputtering, or other known methods. Since it is not used as an actual electrode for supplying operating power to the OLED 20, it is not necessary to connect with an external driving circuit.
  • PVD physical vapor deposition
  • the thickness of the dummy electrode 22 is in the range of 150 to 250 nm, and when the thickness of the dummy electrode 22 is 150 nm or less, it is too thin to be easily applied in an actual process. The absorption of the light at the dummy electrode 22 increases, which is not appropriate.
  • the insulating layer 23 functions to isolate the dummy electrode 22 and the first electrode 24, and compensates for the difference in optical characteristics between the dummy electrode 22 and the first electrode 24.
  • the layer is formed by a known vapor deposition method such as vacuum deposition using a material such as SiO 2 , which is a material having low light absorption and annihilation and high transmittance.
  • the thickness of the insulating layer 23 was 180 nm.
  • the first electrode 24 functions as an electrode of either the positive electrode or the negative electrode, and is formed using a material usable as a transparent electrode similarly to the dummy electrode 22.
  • the first electrode 24 is not formed on the entire surface of the substrate 21 like the dummy electrode 22, but is formed in an area smaller than the area of the organic light emitting layer 25 like the conventional OLED 10. do. Therefore, the first electrode 24 is formed on the substrate 21 by, for example, a PVD method such as a vacuum deposition method, a sputtering method, or other known method, and then, a predetermined size and It can be formed by patterning in a shape. A part of the first electrode 24 as an electrode for supplying electric power for operation of the OLED 20 is drawn out to the end of the substrate 21 and connected to a driving circuit (not shown).
  • a driving circuit not shown.
  • the thickness of the 1st electrode 24 was 150-250 nm.
  • An organic light emitting layer 25 is formed on the first electrode 24, and the organic light emitting layer 25 has a hole injection layer (HIL), a hole transport layer (HTL), and an organic layer on the first electrode 24.
  • HIL hole injection layer
  • HTL hole transport layer
  • EML electron transport layer
  • ETL electron transport layer
  • the organic light emitting layer 25 is not limited to the lamination structure, and the organic light emitting layer alone, or in the order of the hole injection layer / organic light emitting layer, or in the order of the organic light emitting layer / electron injection layer, or the hole injection layer / organic light emitting layer
  • a lamination structure may be in order of electron injection layer, or hole injection layer, hole transport layer, organic light emitting layer, electron injection layer, or hole injection layer, hole transport layer, organic light emitting layer, electron transport layer, electron injection layer. .
  • the organic light emitting layer 25 is formed of a known conventional material, and may be formed by a known method such as spin coating, thermal vapor deposition, spin casting, sputtering, electron beam deposition, or chemical vapor deposition (CVD).
  • the second electrode 26 is formed on the organic light emitting layer 25, and the second electrode 26 functions as one of an anode and a cathode, for example, the first electrode 24 is an anode. In this case, the second electrode 26 becomes a cathode, and conversely, when the first electrode 24 becomes a cathode, the second electrode 26 becomes an anode.
  • the material of the second electrode 26 is not limited to aluminum, and according to the light extraction method of the OLED 20, for example, in the double-sided light emitting OLED, the second electrode 26 also has the first electrode 24. Similarly, it is formed of a transparent electrode material.
  • the upper part of the first electrode 24 and the upper part of the insulating layer 23 on which the first electrode 24 is not formed are absorbed, for example, light such as polyimide over the entire surface.
  • a protective layer made of a material having low extinction and high transmittance, and the thickness of the protective layer can be formed in the range of approximately 1000 to 1500 nm.
  • the outer circumferential portion of the substrate 21 is sealed by a sealing member.
  • FIG. 6 is a graph simulating optical characteristics of the OLED 20 of Embodiment 1, wherein (a) is a thickness of the dummy electrode 22 and the first electrode 24 of 150 nm, and the thickness of the insulating layer 23. As a result of simulating the optical characteristics in the case of 180 nm, (b) shows the case where the thickness of the dummy electrode 22 and the first electrode 24 is 250 nm, and the thickness of the insulating layer 23 is 180 nm. The result of having simulated the optical characteristic is shown, respectively.
  • the horizontal axis represents the wavelength of light (nm) and the vertical axis represents the light transmittance (%), respectively.
  • the horizontal axis represents the wavelength of light (nm) and the vertical axis represents the light transmittance (%), respectively.
  • the black solid line only the dummy electrode 22 is formed in FIGS.
  • the first electrode 24 represents the transmittance of light in the unformed region (region A in FIG. 5), and the solid red line represents the region in which both the dummy electrode 22 and the first electrode 24 are formed (region B in FIG. 5).
  • permeability of light is shown, respectively.
  • the conventional electrode having no dummy electrode 22 of FIG. As shown in (a) and (b) of FIG. 6, in the OLED 20 of the present embodiment, which further includes the dummy electrode 22 and the insulating layer 23, the conventional electrode having no dummy electrode 22 of FIG. It can be seen that the transmittance of light in the wavelength region of 400 to 500 nm, which is a blue region, is improved compared to the OLED 10.
  • the difference in the light transmittance according to the difference in thickness is not large within the range of the thickness of the dummy electrode 22 and the first electrode 24 in the range of 150 to 250 nm. Able to know.
  • FIG. 7 is a cross-sectional view of the bottom emission type OLED 30 of Embodiment 2 of the present invention.
  • a display device including four OLED elements is shown. However, FIG. Only shows.
  • the OLED 30 of Embodiment 2 is different from the formation position and shape of a dummy electrode with OLED 20 of Embodiment 1, and the other part is the same as that of Embodiment 1. As shown in FIG.
  • the OLED 30 of Embodiment 2 is a region in which the first electrode 34 is not formed among the regions on the substrate 31 corresponding to the region of the organic light emitting layer 36 (the region of FIG. 7).
  • the dummy electrode 32 made of a transparent electrode material is formed only on C), and the insulating layer 33 made of an insulating material such as SiO 2 is formed in the entire region of the substrate including the upper part of the dummy electrode 32.
  • the first electrode 34 made of a transparent electrode material is formed in a portion (region D of FIG. 7) corresponding to the organic light emitting layer 36 on the insulating layer 33.
  • the formation position and size of the first electrode 34 are the same as those in the first embodiment.
  • a protective layer 35 made of polyimide or the like is formed in a region other than the position where the first electrode 34 is formed in the upper region of the insulating layer 33, and the protective layer 35 and the first electrode (
  • the organic light emitting layer 36 and the second electrode 37 are sequentially formed on the upper portion of the 34, and the position, the size, the material, the forming method, and the like of the organic light emitting layer 36 and the second electrode 37 are the first embodiment. Is the same as
  • the dummy electrode 32 and the first electrode 34 are formed of a conductive material having transparency such as ITO.
  • the dummy electrode material such as ITO may be formed by a PVD method such as vacuum deposition or sputtering or other known methods. After depositing on the substrate 31, it is patterned into a predetermined shape by etching with a photoresist.
  • a part of the first electrode 34 of the present embodiment is drawn out to the end of the substrate 31 and connected to a driving circuit (not shown), but the dummy electrode 32 is the same as that of the dummy electrode 22 of the first embodiment. Since it is not used as an actual electrode, it is not connected to an external driving circuit.
  • the thickness of the dummy electrode 32 is 145 nm
  • the thickness of the insulating layer 33 is the portion corresponding to the first electrode 34 (region D in FIG. 7) is 155 nm
  • the protective layer 35 is not an essential configuration and may be omitted.
  • FIG. 8 is a graph simulating the optical characteristics of the OLED 30 of Embodiment 2, (a) shows the result of simulating optical characteristics when the protective layer 35 is not included, and (b) shows a protective layer ( The results of simulation of the optical characteristics in the case of including 35) are shown.
  • the horizontal axis represents the wavelength of light (nm) and the vertical axis represents the light transmittance (%), respectively.
  • the black solid line of FIG. 8 (a) represents the dummy electrode 32.
  • the light transmittance of the formed region (region C of FIG. 7) and the red dotted line represent the transmittance of light of the region (region D of FIG. 7) on which the first electrode 34 is formed.
  • the black solid line in FIG. 8B including the protective layer 35 shows the light transmittance of the region (region C in FIG. 7) in which the dummy electrode 32 is formed, and the red solid line shows the first electrode 34.
  • region (region D of FIG. 7) is shown, respectively.
  • the wavelength region of 400 to 500 nm which is a blue region, and especially around 450 nm, in comparison with the conventional OLED of FIG. 3 without the dummy electrode, according to this embodiment.
  • the improvement in the transmittance at the wavelength of is shown, and the light transmittances of the regions C and D do not differ substantially.
  • FIG. 9 is a cross-sectional view of the bottom-emitting OLED 40 of Embodiment 3 of the present invention, and shows only the OLED single element as in FIG.
  • the arrangement positions of the OLED 30 and the dummy electrode and the first electrode of Embodiment 2 are basically the same, but with the change of the arrangement position of the first electrode, the insulating layer, the dummy electrode, There is a difference in changing the thickness of one electrode and the protective layer.
  • the OLED 40 of Embodiment 3 includes a dummy electrode 42 made of a transparent electrode material formed in a region corresponding to a region in which an organic light emitting layer 46 is formed on the substrate 41 and the dummy.
  • An insulating layer 43 made of a material such as SiO 2 is formed on the substrate 41 including the upper part of the electrode 42.
  • the insulating layer 43 of this embodiment is a recessed part in which the area
  • a first electrode 44 is formed in the recessed portion of the upper portion, and a protective layer 45 made of, for example, polyimide over the entire surface of the first electrode 44 and the insulating layer 43. Is formed.
  • the thickness of the dummy electrode 42 and the first electrode 44 was 150 nm
  • the thickness of the insulating layer 43 was also 150 nm
  • the thickness of the protective layer 45 was 1000 nm.
  • the edge portion of the first electrode 44 and the edge portion of the dummy electrode 42 do not coincide with each other, but this is the dummy electrode 42 and the first electrode in the actual manufacturing process. This is a difference that occurs during the patterning process of (44) and does not have a special meaning.
  • the organic light emitting layer 46 and the second electrode 47 are formed on the passivation layer 45.
  • FIG. 10 is a graph simulating optical characteristics of the OLED 40 of Embodiment 3, (a) shows the results of simulating optical characteristics of the dummy electrode 42 formation region (region E in FIG. 9), (b) Indicates the results of simulating the optical characteristics of the region where the first electrode 44 is formed (region F in FIG. 9), and in FIGS. 10A and 10B, the horizontal axis represents wavelength of light (nm) and the vertical axis represents The transmittance
  • the present embodiment also shows an improvement in transmittance in the wavelength region of 400 to 500 nm, which is a blue region, compared to the conventional OLED of FIG. 3 having no dummy electrode. It is understood that the light transmittances of the regions E and F are virtually no difference.
  • the material of the first electrodes 24, 34, 44 is described using ITO as an example, but the material of the first electrodes 24, 34, 44 is not limited to ITO, and absorption and disappearance of light Any material may be used as long as it is a transparent electrode material having a small and high transmittance.
  • ITO indium gallium oxide
  • ZnO, AlOx, or the like may be used.
  • the material of the dummy electrodes 22, 32, and 42 has been described using ITO as an example.
  • the material of the dummy electrodes 22, 32, and 42 is not limited to ITO. Any material may be used as long as it is a transparent electrode material having a small and high transmittance.
  • NA 3 AlF 6 , MgF 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO Etc. may be used.
  • the material of the insulating layers 23, 33, 43 has been described using SiO 2 as an example, the material of the insulating layers 23, 33, 43 is not limited to SiO 2 , and light absorption and annihilation are low and transmittance is small. Any material may be used as long as this high transparent material is used. For example, NA 3 AlF 6 , MgF 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO Also good.
  • the material of the protective layer has been described using polyimide (PI) as an example, but the material of the protective layer is not limited to polyimide. good.
  • PI polyimide
  • a top emission type OLED has been described as an example, but the present invention is not limited thereto, and the present invention can also be applied to a bottom emission type or a double-sided emission type (transparent) OLED.
  • the first electrode side made of a transparent electrode material may be a cathode, and in a double emission type (transparent) OLED, both the first electrode and the second electrode may be formed of a transparent electrode material.
  • the dummy electrode, the insulating layer and the protective layer may be further formed on the second electrode side, and the dummy electrode, the insulating layer and the protective layer may be omitted on the second electrode side.
  • each said embodiment is only the illustration of preferable embodiment of this invention to the last, and various changes or a deformation
  • transformation are possible within the scope of this invention.
  • each embodiment may be implemented independently, or may be implemented in combination with each other.

Abstract

The purpose of the present invention is to compensate for non-uniform transmissivity of an organic light emitting diode device and comprises a dummy electrode (22), an insulating layer (23), a first electrode (24), an organic emission layer (25) and a second electrode (26), which are sequentially formed on a substrate (21), wherein the area of the surface of the first electrode is smaller than the area of the surface of the organic emission layer, and the dummy electrode is formed on the entire surface of the substrate.

Description

더미 전극을 갖는 유기전계 발광소자Organic light emitting device having a dummy electrode
본 발명은 유기전계 발광소자(이하, 간단히 「OLED」라고 하는 경우도 있다)에 관한 것으로, 특히 시인성 개선을 위한 더미 전극을 갖는 유기전계 발광소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescent device (hereinafter sometimes referred to simply as "OLED"), and more particularly to an organic electroluminescent device having a dummy electrode for improving visibility.
OLED는 유리 등의 투명한 기판상에 형성된 양극과 음극으로 이루어지는 한 쌍의 전극 사이에 유기화합물을 포함하는 유기발광 층을 삽입 형성한 구조를 가지며, 상기 한 쌍의 전극으로부터 유기발광 층에 정공(hole) 및 전자(electron)를 주입하여 재결합시킴으로써 여기자(exciton)를 생성시켜서, 이 여기자의 활성이 상실될 때의 광의 방출을 이용하여 표시 등을 하는 발광소자이다.The OLED has a structure in which an organic light emitting layer containing an organic compound is inserted between a pair of electrodes formed of a cathode and a cathode formed on a transparent substrate such as glass, and holes are formed in the organic light emitting layer from the pair of electrodes. And an electron to inject and recombine to generate excitons, and to emit light when the activity of the excitons is lost.
OLED는 광의 방출방향에 따라서 전면 발광형(Top mission type), 배면 발광형(bottom mission type) 및 양면 발광형(Transparent mission type, 투명 OLED라고도 함)으로 구분되며, 이들은 모두 광이 방출되는 방향의 전극을 예를 들어 ITO(indium tin oxide) 등으로 이루어지는 투명전극으로 하고 있다.OLEDs are classified into top mission type, bottom mission type and double mission type (transparent mission type, also called transparent OLED) according to the emission direction of light. The electrode is made of a transparent electrode made of, for example, indium tin oxide (ITO) or the like.
도 1은 종래의 배면 발광형 OLED 표시소자의 개략적인 구조를 나타내는 사시도, 도 2는 도 1의 A-A선 방향에서 절단한 단면도이다.1 is a perspective view illustrating a schematic structure of a conventional bottom emission type OLED display device, and FIG. 2 is a cross-sectional view taken along line A-A of FIG. 1.
도 1, 2에서 보는 것과 같이 종래의 OLED(10)는 유리기판 등의 투명 기판(11) 상에 적층 형성된 ITO 등의 투명전극으로 이루어지는 제 1 전극(12)과, 제 1 전극(12) 상에 적층 형성된 유기발광 층(13)과, 유기발광 층(13) 상에 적층 형성된 제 2 전극(14)을 포함한다.As shown in FIGS. 1 and 2, the conventional OLED 10 includes a first electrode 12 made of a transparent electrode such as ITO formed on a transparent substrate 11 such as a glass substrate, and a first electrode 12. An organic light emitting layer 13 formed on the organic light emitting layer 13 and a second electrode 14 stacked on the organic light emitting layer 13.
도 1, 2에서는 설명의 편의상 4개의 발광소자에 의해 형성된 표시장치의 구성을 나타내고 있고, 개개의 OLED(10)는 소자분리 층(15)에 의해 분리되어 있다.1 and 2 show the structure of a display device formed by four light emitting elements for convenience of explanation, and the individual OLEDs 10 are separated by an element isolation layer 15.
도 1, 2에서 보는 것과 같이 종래의 OLED에서는 유기발광 층(13)의 폭에 비해 제 1 전극(12)인 ITO 전극의 폭이 좁다. 따라서 발광 면인 유기발광 층(13) 표면의 면적에 비해 이에 대응하는 제 1 전극(12)의 표면의 면적이 작으므로 유기발광 층(13)에서 발생하여 기판(11) 측으로 방출되는 광의 일부는 제 1 전극(12)을 투과하여 기판(11)의 외부로 방출되고, 나머지 일부는 제 1 전극(12)을 투과하지 않고 직접 기판(11)의 외부로 방출되므로 외부로 인출되는 광의 투과율에 불균일이 발생한다.As shown in FIGS. 1 and 2, in the conventional OLED, the width of the ITO electrode, which is the first electrode 12, is smaller than the width of the organic light emitting layer 13. Therefore, since the area of the surface of the first electrode 12 corresponding to the surface of the organic light emitting layer 13 that is the light emitting surface is small, a part of the light emitted from the organic light emitting layer 13 and emitted to the substrate 11 side is removed. Since the first electrode 12 penetrates and is emitted to the outside of the substrate 11, and the remaining part is emitted directly to the outside of the substrate 11 without penetrating the first electrode 12, there is a nonuniformity in the transmittance of light drawn out. Occurs.
도 3은 종래의 OLED의 광학적 특성을 시뮬레이션한 결과를 나타내는 그래프로, X축은 파장을, Y축은 투과율 및 반사율을 나타내며, 흑색 실선은 ITO 전극(제 1 전극) 없이 기판(11)만 있는 경우의 광의 투과율 특성을 나타내고, 적색 실선은 도 1, 2의 구조의 OLED, 즉 유리로 이루어지는 기판(11)에 ITO로 이루어지는 제 1 전극(12)이 형성된 경우, 제 1 전극(12)과 기판(11)을 투과하여 외부로 인출되는 광의 투과율 특성을 나타내며, 흑색 점선은 ITO 전극(제 1 전극) 없이 기판(11)만 있는 경우의 기판(11)에서의 광의 반사율 특성을 나타내고, 적색 점선은 도 1, 2의 구조의 OLED, 즉 유리로 이루어지는 기판(11)상에 ITO로 이루어지는 제 1 전극(12)이 형성된 경우의 기판(11)에서의 광의 반사율 특성을 나타낸다.3 is a graph showing the results of simulating the optical characteristics of the conventional OLED, wherein the X axis represents the wavelength, the Y axis represents the transmittance and the reflectance, and the black solid line represents the substrate 11 without the ITO electrode (first electrode). When the 1st electrode 12 which consists of ITO is formed in the OLED of the structure of FIGS. 1 and 2, ie, the board | substrate 11 which consists of glass, the red solid line shows the light transmittance characteristic of light, The 1st electrode 12 and the board | substrate 11 ) Shows the transmittance characteristics of the light that is transmitted to the outside and drawn to the outside, the black dotted line shows the reflectance characteristics of the light in the substrate 11 when there is only the substrate 11 without the ITO electrode (first electrode), the red dotted line shows FIG. And reflectance characteristics of light in the substrate 11 in the case where the first electrode 12 made of ITO is formed on the OLED having the structure of 2, that is, the glass 11.
도 3에서 보는 것과 같이, ITO 전극으로 이루어지는 제 1 전극(12)이 없는 경우에는 기판(11)에서의 광의 반사율은 모든 파장영역에서 균일하게 대략 10% 정도로, 유기발광 층(13)에서 발생한 광 중 약 90% 정도는 기판(11)을 투과하여 외부로 방출된다. 그러나 ITO 전극인 제 1 전극(12)이 도 1, 2와 같이 기판(11) 상의 일부 영역에만 형성되어 있는 경우에는 400㎚ 전후의 파장영역에서 광의 흡수율이 증가하며, 이에 따라 400㎚ 전후의 파장영역에서 기판(11)을 투과하여 외부로 방출되는 광의 투과율은 현저하게 감소한다.As shown in FIG. 3, in the absence of the first electrode 12 made of the ITO electrode, the reflectance of the light in the substrate 11 is approximately 10% uniformly in all wavelength regions, so that the light generated in the organic light emitting layer 13 About 90% of the light penetrates the substrate 11 and is released to the outside. However, when the first electrode 12, which is an ITO electrode, is formed only in a part of the region on the substrate 11 as shown in Figs. 1 and 2, the absorption of light increases in the wavelength region around 400 nm, and thus the wavelength around 400 nm. The transmittance of light transmitted through the substrate 11 in the region and emitted to the outside is significantly reduced.
파장이 400㎚ 대역의 광은 청색 광이므로 400㎚ 전후의 파장영역에서 광의 투과율이 저하한다는 것은 달리 표현하면 도 1, 2의 구조를 갖는 종래의 OLED를 표시장치로 이용하는 경우에는 RGB 3색 중 특히 청색영역의 광 인출효율이 다른 색에 비해 현저하게 저하한다는 의미가 된다.Since light having a wavelength of 400 nm is blue light, the transmittance of light is decreased in the wavelength region around 400 nm. In other words, when using a conventional OLED having the structure of FIGS. This means that the light extraction efficiency of the blue region is significantly lower than other colors.
본 발명은 종래의 OLED 구조에서 OLED의 외부로 방출되는 광의 인출효율의 불균일, 특히 파장 400 내지 500㎜의 청색영역에서 광 인출효율이 다른 파장영역에 비해 저하한다는 상기 문제를 개선하기 위한 것으로. 종래의 OLED의 ITO 전극의 배치형태 및 구조를 개선함으로써 파장 400 내지 500㎜의 청색영역에서의 광 인출효율을 향상시켜서 OLED의 시인성을 개선하는 것을 목적으로 한다.The present invention is to improve the above problem that the light extraction efficiency is lower than that of other wavelength regions in the non-uniformity of the extraction efficiency of light emitted to the outside of the OLED in the conventional OLED structure, especially in the blue region having a wavelength of 400 to 500mm. It is an object of the present invention to improve the light extraction efficiency in the blue region having a wavelength of 400 to 500 mm by improving the arrangement and structure of the ITO electrode of the conventional OLED to improve the visibility of the OLED.
상기 과제를 해결하기 위한 본 발명의 유기전계 발광소자는, 기판과, 상기 기판상에 적층 형성된 더미 전극과, 상기 더미 전극 상에 적층 형성된 절연 층과, 상기 절연 층상에 적층 형성된 제 1 전극과, 상기 제 1 전극 상에 적층 형성된 유기발광 층과, 상기 유기발광 층상에 적층 형성된 제 2 전극을 포함하며, 상기 제 1 전극의 표면의 면적은 상기 유기발광 층의 표면의 면적보다 작고, 상기 더미 전극은 상기 기판의 전체 면에 형성된다.An organic electroluminescent device of the present invention for solving the above problems includes a substrate, a dummy electrode formed on the substrate, an insulating layer laminated on the dummy electrode, a first electrode formed on the insulating layer, An organic light emitting layer laminated on the first electrode, and a second electrode laminated on the organic light emitting layer, wherein an area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer, and the dummy electrode Is formed on the entire surface of the substrate.
또, 본 발명의 다른 형태의 유기전계 발광소자는, 기판과, 상기 기판상에 적층 형성된 더미 전극과, 상기 더미 전극 상에 적층 형성된 절연 층과, 상기 절연 층상에 적층 형성된 제 1 전극과, 상기 제 1 전극 상에 적층 형성된 유기발광 층과, 상기 유기발광 층상에 적층 형성된 제 2 전극을 포함하며, 상기 제 1 전극의 표면의 면적은 상기 유기발광 층의 표면의 면적보다 작고, 상기 더미 전극은 상기 기판상의 상기 제 1 전극과 대응하는 영역 이외의 영역에만 형성된다.In another embodiment, an organic light emitting display device includes a substrate, a dummy electrode formed on the substrate, an insulating layer laminated on the dummy electrode, a first electrode formed on the insulating layer, and the And an organic light emitting layer laminated on the first electrode, and a second electrode stacked on the organic light emitting layer, wherein an area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer, It is formed only in a region other than the region corresponding to the first electrode on the substrate.
본 발명의 유기전계 발광소자에 의하면 적어도 유기발광 층의 전체 영역에 대응하는 영역에 더미 전극이 형성되어 있으므로 제 1 전극이 형성된 영역과 형성되지 않은 영역에서 유기전계 발광소자의 외부로 인출되는 광의 인출효율의 불균일을 해소할 수 있고, 특히 청색영역에서의 광 인출효율의 불균일을 해소할 수 있다. 따라서 유기전계 발광소자의 시인성을 향상시킬 수 있다.According to the organic light emitting device of the present invention, since the dummy electrode is formed in at least a region corresponding to the entire region of the organic light emitting layer, the light drawn out to the outside of the organic light emitting device is extracted from the region where the first electrode is formed and the non-formed region. The nonuniformity of efficiency can be eliminated, and the nonuniformity of light extraction efficiency can be eliminated especially in a blue region. Therefore, the visibility of the organic light emitting device can be improved.
도 1은 종래의 배면 발광형 OLED 표시소자의 개략적인 구조를 나타내는 사시도,1 is a perspective view showing a schematic structure of a conventional bottom emission type OLED display device;
도 2는 도 1의 A-A선 방향에서 절단한 단면도,2 is a cross-sectional view taken along the line A-A of FIG. 1;
도 3은 종래의 OLED의 광학적 특성을 시뮬레이션한 결과를 나타내는 그래프,3 is a graph showing a result of simulating optical characteristics of a conventional OLED;
도 4는 본 발명의 실시형태 1의 배면 발광형 OLED 표시소자의 개략적인 구조를 나타내는 사시도,4 is a perspective view showing a schematic structure of a bottom emission type OLED display device of Embodiment 1 of the present invention;
도 5는 도 4의 A-A선 방향에서 절단한 단면도,5 is a cross-sectional view taken along the line A-A of FIG. 4;
도 6은 실시형태 1의 OLED의 광학적 특성을 시뮬레이션한 그래프,6 is a graph simulating the optical characteristics of the OLED of Embodiment 1,
도 7은 본 발명의 실시형태 2의 배면 발광형 OLED 표시소자의 단면도,7 is a cross-sectional view of a bottom emission type OLED display device of Embodiment 2 of the present invention;
도 8은 실시형태 2의 OLED의 광학적 특성을 시뮬레이션한 그래프,8 is a graph simulating the optical characteristics of the OLED of Embodiment 2,
도 9는 본 발명의 실시형태 3의 배면 발광형 OLED 표시소자의 단면도,9 is a cross-sectional view of a bottom emission type OLED display device of Embodiment 3 of the present invention;
도 10은 실시형태 3의 OLED의 광학적 특성을 시뮬레이션한 그래프이다.10 is a graph simulating the optical characteristics of the OLED of Embodiment 3. FIG.
이하, 본 발명의 바람직한 실시형태에 대해서 도면을 참조하면서 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, preferred embodiment of this invention is described in detail, referring drawings.
<실시형태 1><Embodiment 1>
도 4는 본 발명의 실시형태 1의 배면 발광형 OLED 표시소자의 개략적인 구조를 나타내는 사시도, 도 5는 도 4의 A-A선 방향에서 절단한 단면도이다.4 is a perspective view illustrating a schematic structure of a bottom emission type OLED display device according to Embodiment 1 of the present invention, and FIG. 5 is a cross-sectional view taken along line A-A of FIG. 4.
도 4, 5에 도시하는 것과 같이, 본 실시형태의 배면 발광형 OLED는 기본적으로는 종래의 배면 발광형 OLED와 같으며, 종래의 OLED에 비해 더미 전극을 더 갖는다는 점에서 차이가 있다.4 and 5, the bottom emission type OLED of the present embodiment is basically the same as the conventional bottom emission type OLED, and differs in that it has more dummy electrodes than the conventional OLED.
도 4, 5와 같이 본 실시형태 1의 OLED(20)는 절연성 및 광 투과성을 갖는 유리 등의 재질로 이루어지는 기판(21) 상에 기판(21)의 전체 면에 걸쳐서 적층 형성된 더미 전극(22)과, 더미 전극(22) 상부의 전체 면에 걸쳐서 적층 형성된 절연 층(23)과, 절연 층(23) 상에 적층 형성되며 ITO 등의 투명한 재질로 이루어지는 제 1 전극(24)과, 제 1 전극(24) 상에 적층 형성된 유기발광 층(25)과, 유기발광 층(25) 상에 적층 형성된 제 2 전극(26)을 포함한다.As shown in Figs. 4 and 5, the OLED 20 of the first embodiment has a dummy electrode 22 laminated on the entire surface of the substrate 21 on a substrate 21 made of a material such as glass having insulation and light transmittance. And an insulating layer 23 laminated on the entire surface of the upper part of the dummy electrode 22, a first electrode 24 formed of a transparent material such as ITO, laminated on the insulating layer 23, and a first electrode. And an organic light emitting layer 25 formed on the organic light emitting layer 25 and a second electrode 26 formed on the organic light emitting layer 25.
기판(21)상의 전체 면에 걸쳐서 형성되는 더미 전극(22)은 유기발광 층(25)의 발광 면 표면의 면적에 비해 이에 대응하는 제 1 전극(24)의 표면의 면적이 작아서, 제 1 전극(24)이 형성된 부분과 제 1 전극(24) 미형성부분에서 광의 흡수, 소멸 및 산란작용의 차이가 발생함으로써 OLED(20)의 외부로 방출되는 광의 투과율이 저하하는 문제를 보상하기 위한 층이다.The dummy electrode 22 formed over the entire surface on the substrate 21 has a smaller area of the surface of the first electrode 24 corresponding to that of the surface of the surface of the light emitting surface of the organic light emitting layer 25, so that the first electrode This is a layer for compensating for the problem that the transmittance of light emitted to the outside of the OLED 20 is lowered due to a difference in absorption, annihilation, and scattering of light in the portion where the 24 is formed and the portion where the first electrode 24 is not formed. .
더미 전극(22)은 예를 들어 ITO(indium tin oxide) 등과 같이 광의 흡수 및 소멸이 적고 투과율이 높은 재료를 사용하며, 제 1 전극(24)과 동일한 재질로 이루어질 수 있다. 즉 제 1 전극(24)이 ITO인 경우에는 더미 전극(22)도 ITO를 사용하고, 제 1 전극(24)이 IZO(Indium Zinc Oxide)인 경우에는 더미 전극(22)도 IZO를 사용할 수 있다. 그러나 이에 한정되는 것은 아니며, 흡수 및 소멸이 적고 투과율이 높은 재료이면 더미 전극(22)과 제 1 전극(24)의 재질은 서로 달라도 좋다.The dummy electrode 22 may be made of the same material as that of the first electrode 24, for example, using a material having low light absorption and extinction and high transmittance, such as indium tin oxide (ITO). That is, when the first electrode 24 is ITO, the dummy electrode 22 may also use ITO, and when the first electrode 24 is indium zinc oxide (IZO), the dummy electrode 22 may also use IZO. . However, the present invention is not limited thereto, and the materials of the dummy electrode 22 and the first electrode 24 may be different from each other as long as the material has low absorption and disappearance and high transmittance.
더미 전극(22)은 예를 들어 진공증착법, 스퍼터법 등의 PVD(Physical Vapor Deposition)법이나 그 밖의 공지의 방법에 의해 기판(21) 상에 형성하며, 여기서 중요한 점은 더미 전극(22)은 OLED(20)에 동작용 전력을 공급하는 실제 전극으로는 사용되지 않으므로 외부의 구동회로와 연결할 필요는 없다.The dummy electrode 22 is formed on the substrate 21 by, for example, a physical vapor deposition (PVD) method such as vacuum deposition, sputtering, or other known methods. Since it is not used as an actual electrode for supplying operating power to the OLED 20, it is not necessary to connect with an external driving circuit.
본 실시형태에서는 더미 전극(22)의 두께는 150 내지 250㎚ 범위로 하였으며, 더미 전극(22)의 두께를 150㎚ 이하로 하면 너무 얇아서 실제 공정에서의 적용이 용이하지 않고, 250㎚ 이상으로 하면 더미 전극(22)에서의 광의 흡수가 많아져서 적절하지 않다.In the present embodiment, the thickness of the dummy electrode 22 is in the range of 150 to 250 nm, and when the thickness of the dummy electrode 22 is 150 nm or less, it is too thin to be easily applied in an actual process. The absorption of the light at the dummy electrode 22 increases, which is not appropriate.
다음에, 절연 층(23)은 상기 더미 전극(22)과 제 1 전극(24)을 격리시키는 기능을 하며, 더미 전극(22)과 제 1 전극(24) 간의 광학적 특성의 차이를 보상해 주기 위한 층으로, 광의 흡수 및 소멸이 적고 투과율이 높은 재료인 예를 들어 SiO2 등의 재료를 이용하여 진공증착 등의 공지의 증착법으로 형성한다.Next, the insulating layer 23 functions to isolate the dummy electrode 22 and the first electrode 24, and compensates for the difference in optical characteristics between the dummy electrode 22 and the first electrode 24. The layer is formed by a known vapor deposition method such as vacuum deposition using a material such as SiO 2 , which is a material having low light absorption and annihilation and high transmittance.
본 실시형태에서는 절연 층(23)의 두께는 180㎚로 하였다.In this embodiment, the thickness of the insulating layer 23 was 180 nm.
다음에, 제 1 전극(24)은 양극 또는 음극 중 어느 하나의 전극으로서의 기능을 하며, 더미 전극(22)과 마찬가지로 투명전극으로서 사용 가능한 물질을 이용하여 형성한다.Next, the first electrode 24 functions as an electrode of either the positive electrode or the negative electrode, and is formed using a material usable as a transparent electrode similarly to the dummy electrode 22.
여기서, 제 1 전극(24)은 더미 전극(22)과 같이 기판(21)의 전체 면에 형성하는 것이 아니라, 종래의 OLED(10)와 마찬가지로 유기발광 층(25)의 면적보다 작은 면적으로 형성된다. 따라서 제 1 전극(24)을 예를 들어 진공증착법, 스퍼터법 등의 PVD법이나 그 밖의 공지의 방법에 의해 기판(21) 상에 형성하고, 그 후 포토레지스트에 의한 에칭에 의해 소정의 사이즈 및 형상으로 패턴화하여 형성할 수 있다. OLED(20)의 동작용 전력을 공급하기 위한 전극으로서의 제 1 전극(24)의 일부는 기판(21)의 단부까지 인출되어서 미 도시의 구동회로와 접속된다.Here, the first electrode 24 is not formed on the entire surface of the substrate 21 like the dummy electrode 22, but is formed in an area smaller than the area of the organic light emitting layer 25 like the conventional OLED 10. do. Therefore, the first electrode 24 is formed on the substrate 21 by, for example, a PVD method such as a vacuum deposition method, a sputtering method, or other known method, and then, a predetermined size and It can be formed by patterning in a shape. A part of the first electrode 24 as an electrode for supplying electric power for operation of the OLED 20 is drawn out to the end of the substrate 21 and connected to a driving circuit (not shown).
본 실시형태에서는 제 1 전극(24)의 두께는 150 내지 250㎚로 하였다.In this embodiment, the thickness of the 1st electrode 24 was 150-250 nm.
제 1 전극(24)의 상부에는 유기발광 층(25)이 형성되며, 유기발광 층(25)은 제 1 전극(24)의 상부에 정공 주입 층(HIL), 정공 수송 층(HTL), 유기발광 층(EML), 전자수송 층(ETL) 순으로 적층 형성된다. 그러나 유기발광 층(25)은 상기 적층구조에 한정되는 것은 아니며, 유기발광 층 단독, 또는 정공 주입 층/유기발광 층 순, 또는 유기발광 층/전자주입 층 순, 또는 정공 주입 층/유기발광 층/전자주입 층 순, 또는 정공 주입 층/정공 수송 층/유기발광 층/전자주입 층 순, 또는 정공 주입 층/정공 수송 층/유기발광 층/전자수송 층/전자주입 층 순의 적층 구조라도 좋다.An organic light emitting layer 25 is formed on the first electrode 24, and the organic light emitting layer 25 has a hole injection layer (HIL), a hole transport layer (HTL), and an organic layer on the first electrode 24. The light emitting layer (EML), the electron transport layer (ETL) is formed in a stack in order. However, the organic light emitting layer 25 is not limited to the lamination structure, and the organic light emitting layer alone, or in the order of the hole injection layer / organic light emitting layer, or in the order of the organic light emitting layer / electron injection layer, or the hole injection layer / organic light emitting layer A lamination structure may be in order of electron injection layer, or hole injection layer, hole transport layer, organic light emitting layer, electron injection layer, or hole injection layer, hole transport layer, organic light emitting layer, electron transport layer, electron injection layer. .
유기발광 층(25)은 공지된 통상의 재료에 의해 형성하며, 스핀코팅, 열 증착, 스핀 캐스팅, 스퍼터법, 전자빔 증착, CVD(Chemical Vapor Deposition)법 등 공지의 방법으로 형성할 수 있다.The organic light emitting layer 25 is formed of a known conventional material, and may be formed by a known method such as spin coating, thermal vapor deposition, spin casting, sputtering, electron beam deposition, or chemical vapor deposition (CVD).
유기발광 층(25)의 상부에는 제 2 전극(26)이 형성되며, 제 2 전극(26)은 양극 또는 음극 중 어느 하나의 전극으로서의 기능을 하며, 예를 들어 제 1 전극(24)이 양극이 되면 제 2 전극(26)은 음극이 되고, 역으로 제 1 전극(24)이 음극이 되면 제 2 전극(26)은 양극이 된다.The second electrode 26 is formed on the organic light emitting layer 25, and the second electrode 26 functions as one of an anode and a cathode, for example, the first electrode 24 is an anode. In this case, the second electrode 26 becomes a cathode, and conversely, when the first electrode 24 becomes a cathode, the second electrode 26 becomes an anode.
여기서, 제 2 전극(26)은 예를 들어 알루미늄(Al)을 이용하여 진공증착법 또는 스퍼터법 등의 통상의 박막형성법을 이용해서 형성하며, 전극으로서의 제 2 전극(26)의 일부는 기판(21)의 단부까지 인출되어서 미 도시의 구동회로와 접속된다.Here, the second electrode 26 is formed using, for example, aluminum (Al) using a conventional thin film forming method such as vacuum deposition or sputtering, and a part of the second electrode 26 as an electrode is formed of a substrate 21. Is drawn out to the end of &lt; RTI ID = 0.0 &gt;), &lt; / RTI &gt;
그러나 제 2 전극(26)의 재료는 알루미늄으로 한정되는 것은 아니며, OLED(20)의 광 인출방식에 따라서, 예를 들어 양면 발광형 OLED에서는 제 2 전극(26)도 제 1 전극(24)과 마찬가지로 투명한 전극재료로 형성한다.However, the material of the second electrode 26 is not limited to aluminum, and according to the light extraction method of the OLED 20, for example, in the double-sided light emitting OLED, the second electrode 26 also has the first electrode 24. Similarly, it is formed of a transparent electrode material.
도 4, 5에는 도시하고 있지 않으나, 제 1 전극(24)의 상부와 제 1 전극(24)이 형성되지 않은 절연 층(23)의 상부에는 전체 면에 걸쳐서 예를 들어 폴리이미드 등의 광의 흡수 및 소멸이 적고 투과율이 높은 재료로 이루어지는 보호층이 더 형성될 수 있고, 이 보호층의 두께는 대략 1000 내지 1500㎚ 범위에서 형성할 수 있다.Although not shown in Figs. 4 and 5, the upper part of the first electrode 24 and the upper part of the insulating layer 23 on which the first electrode 24 is not formed are absorbed, for example, light such as polyimide over the entire surface. And a protective layer made of a material having low extinction and high transmittance, and the thickness of the protective layer can be formed in the range of approximately 1000 to 1500 nm.
상기 기판(21)의 외주부분은 밀봉 부재에 의해 밀봉된다.The outer circumferential portion of the substrate 21 is sealed by a sealing member.
도 6은 실시형태 1의 OLED(20)의 광학적 특성을 시뮬레이션한 그래프이며, (a)는 더미 전극(22) 및 제 1 전극(24)의 두께를 150㎚, 절연 층(23)의 두께를 180㎚로 한 경우의 광학적 특성을 시뮬레이션한 결과를, (b)는 더미 전극(22) 및 제 1 전극(24)의 두께를 250㎚, 절연 층(23)의 두께를 180㎚로 한 경우의 광학적 특성을 시뮬레이션한 결과를 각각 나타내고 있다.FIG. 6 is a graph simulating optical characteristics of the OLED 20 of Embodiment 1, wherein (a) is a thickness of the dummy electrode 22 and the first electrode 24 of 150 nm, and the thickness of the insulating layer 23. As a result of simulating the optical characteristics in the case of 180 nm, (b) shows the case where the thickness of the dummy electrode 22 and the first electrode 24 is 250 nm, and the thickness of the insulating layer 23 is 180 nm. The result of having simulated the optical characteristic is shown, respectively.
또, 도 6의 (a), (b)에서 가로 축은 광의 파장(㎚)을, 세로 축은 광의 투과율(%)을 각각 나타내고 있고, 흑색 실선은 도 4, 5에서 더미 전극(22)만 형성되고 제 1 전극(24)은 형성되지 않은 영역(도 5의 영역 A)의 광의 투과율을, 적색 실선은 더미 전극(22) 및 제 1 전극(24)이 모두 형성된 영역(도 5의 영역 B)의 광의 투과율을 각각 나타내고 있다.6 (a) and 6 (b), the horizontal axis represents the wavelength of light (nm) and the vertical axis represents the light transmittance (%), respectively. In the black solid line, only the dummy electrode 22 is formed in FIGS. The first electrode 24 represents the transmittance of light in the unformed region (region A in FIG. 5), and the solid red line represents the region in which both the dummy electrode 22 and the first electrode 24 are formed (region B in FIG. 5). The transmittance | permeability of light is shown, respectively.
도 6의 (a), (b)에서 보는 것과 같이, 더미 전극(22) 및 절연 층(23)을 더 갖는 본 실시형태의 OLED(20)에서는 도 3의 더미 전극(22)을 갖지 않는 종래의 OLED(10)에 비해 청색영역인 400 내지 500㎚의 파장영역에서의 광의 투과율이 향상된 것을 알 수 있다.As shown in (a) and (b) of FIG. 6, in the OLED 20 of the present embodiment, which further includes the dummy electrode 22 and the insulating layer 23, the conventional electrode having no dummy electrode 22 of FIG. It can be seen that the transmittance of light in the wavelength region of 400 to 500 nm, which is a blue region, is improved compared to the OLED 10.
또, 도 6의 (a), (b)로부터 더미 전극(22)과 제 1 전극(24)의 두께가 150 내지 250㎚의 범위 내에서는 그 두께의 차이에 따른 광 투과율의 차이는 크지 않음을 알 수 있다.6A and 6B, the difference in the light transmittance according to the difference in thickness is not large within the range of the thickness of the dummy electrode 22 and the first electrode 24 in the range of 150 to 250 nm. Able to know.
<실시형태 2><Embodiment 2>
다음에, 본 발명의 다른 실시형태인 실시형태 2에 대해 설명한다. 도 7은 본 발명의 실시형태 2의 배면 발광형 OLED(30)의 단면도이며, 도 4, 5에서는 4개의 OLED 소자로 이루어지는 표시장치를 나타내고 있으나, 도 7은 도 4, 5와는 달리 OLED 단일 소자만을 나타내고 있다.Next, Embodiment 2 which is another embodiment of this invention is demonstrated. FIG. 7 is a cross-sectional view of the bottom emission type OLED 30 of Embodiment 2 of the present invention. In FIGS. 4 and 5, a display device including four OLED elements is shown. However, FIG. Only shows.
실시형태 2의 OLED(30)는 실시형태 1의 OLED(20)와는 더미 전극의 형성위치 및 형상이 다르며, 그 이외의 부분은 실시형태 1과 동일하다.The OLED 30 of Embodiment 2 is different from the formation position and shape of a dummy electrode with OLED 20 of Embodiment 1, and the other part is the same as that of Embodiment 1. As shown in FIG.
도 7에서 보는 것과 같이, 실시형태 2의 OLED(30)는 유기발광 층(36) 형성영역에 대응하는 기판(31) 상의 영역 중 제 1 전극(34)이 형성되지 않은 영역(도 7의 영역 C)에만 투명전극 재료로 이루어지는 더미 전극(32)이 적층 형성되고, 상기 더미 전극(32)의 상부를 포함하는 기판의 전체 영역에 예를 들어 SiO2 등의 절연성 재료로 이루어지는 절연 층(33)을 형성하며, 상기 절연 층(33)의 상부의 유기발광 층(36)에 대응하는 영역의 일부(도 7의 영역 D)에는 투명전극재료로 이루어지는 제 1 전극(34)이 형성된다.As shown in FIG. 7, the OLED 30 of Embodiment 2 is a region in which the first electrode 34 is not formed among the regions on the substrate 31 corresponding to the region of the organic light emitting layer 36 (the region of FIG. 7). The dummy electrode 32 made of a transparent electrode material is formed only on C), and the insulating layer 33 made of an insulating material such as SiO 2 is formed in the entire region of the substrate including the upper part of the dummy electrode 32. The first electrode 34 made of a transparent electrode material is formed in a portion (region D of FIG. 7) corresponding to the organic light emitting layer 36 on the insulating layer 33.
제 1 전극(34)의 형성위치 및 사이즈는 실시형태 1과 동일하다.The formation position and size of the first electrode 34 are the same as those in the first embodiment.
또, 절연 층(33)의 상부영역 중 상기 제 1 전극(34)이 형성되는 위치 이외의 영역에는 폴리이미드 등으로 이루어지는 보호층(35)이 형성되고, 보호층(35) 및 제 1 전극(34)의 상부에는 유기발광 층(36) 및 제 2 전극(37)이 순차 형성되며, 유기발광 층(36) 및 제 2 전극(37)의 위치 및 사이즈, 재료 및 형성방법 등은 실시형태 1과 동일하다.In addition, a protective layer 35 made of polyimide or the like is formed in a region other than the position where the first electrode 34 is formed in the upper region of the insulating layer 33, and the protective layer 35 and the first electrode ( The organic light emitting layer 36 and the second electrode 37 are sequentially formed on the upper portion of the 34, and the position, the size, the material, the forming method, and the like of the organic light emitting layer 36 and the second electrode 37 are the first embodiment. Is the same as
더미 전극(32) 및 제 1 전극(34)은 ITO 등의 투명성을 갖는 도전재료로 형성하며, 예를 들어 진공증착이나 스퍼터 등의 PVD법 또는 그 외의 공지의 방법에 ITO 등의 더미 전극 재료를 기판(31) 상에 증착한 후 포토레지스트에 의한 에칭에 의해 소정의 형상으로 패턴화한다.The dummy electrode 32 and the first electrode 34 are formed of a conductive material having transparency such as ITO. For example, the dummy electrode material such as ITO may be formed by a PVD method such as vacuum deposition or sputtering or other known methods. After depositing on the substrate 31, it is patterned into a predetermined shape by etching with a photoresist.
본 실시형태의 제 1 전극(34)의 일부는 기판(31)의 단부까지 인출되어서 미 도시의 구동회로와 연결되나, 더미 전극(32)은 실시형태 1의 더미 전극(22)과 마찬가지로 OLED의 실제 전극으로 이용되지는 않으므로 외부의 구동회로와는 접속되지는 않는다.A part of the first electrode 34 of the present embodiment is drawn out to the end of the substrate 31 and connected to a driving circuit (not shown), but the dummy electrode 32 is the same as that of the dummy electrode 22 of the first embodiment. Since it is not used as an actual electrode, it is not connected to an external driving circuit.
본 실시형태에서 더미 전극(32)의 두께는 145㎚, 절연 층(33)의 두께는 제 1 전극(34)에 대응하는 부분(도 7의 영역 D)은 155㎚, 더미 전극(32)의 상부영역(도 7의 영역 C)은 10㎚로 하였다.In the present embodiment, the thickness of the dummy electrode 32 is 145 nm, the thickness of the insulating layer 33 is the portion corresponding to the first electrode 34 (region D in FIG. 7) is 155 nm, and the dummy electrode 32 The upper region (region C in FIG. 7) was 10 nm.
또, 실시형태 1에서와 마찬가지로 보호층(35)은 필수의 구성은 아니며, 생략해도 좋다.In addition, like the first embodiment, the protective layer 35 is not an essential configuration and may be omitted.
도 8은 실시형태 2의 OLED(30)의 광학적 특성을 시뮬레이션한 그래프이며, (a)는 보호층(35)을 포함하지 않는 경우의 광학적 특성을 시뮬레이션한 결과를, (b)는 보호층(35)을 포함하는 경우의 광학적 특성을 시뮬레이션한 결과를 각각 나타내고 있다.8 is a graph simulating the optical characteristics of the OLED 30 of Embodiment 2, (a) shows the result of simulating optical characteristics when the protective layer 35 is not included, and (b) shows a protective layer ( The results of simulation of the optical characteristics in the case of including 35) are shown.
또, 도 8의 (a), (b)에서 가로 축은 광의 파장(㎚)을, 세로 축은 광의 투과율(%)을 각각 나타내고 있고, 또, 도 8 (a)의 흑색 실선은 더미 전극(32)이 형성된 영역(도 7의 영역 C)의 광 투과율을, 적색 점선은 제 1 전극(34)이 형성된 영역(도 7의 영역 D)의 광의 투과율을 각각 나타내고 있다. 또, 보호층(35)을 포함하는 도 8 (b)의 흑색 실선은 더미 전극(32)이 형성된 영역(도 7의 영역 C)의 광 투과율을, 적색 실선은 제 1 전극(34)이 형성된 영역(도 7의 영역 D)의 광의 투과율을 각각 나타내고 있다.In FIGS. 8A and 8B, the horizontal axis represents the wavelength of light (nm) and the vertical axis represents the light transmittance (%), respectively. In addition, the black solid line of FIG. 8 (a) represents the dummy electrode 32. The light transmittance of the formed region (region C of FIG. 7) and the red dotted line represent the transmittance of light of the region (region D of FIG. 7) on which the first electrode 34 is formed. In addition, the black solid line in FIG. 8B including the protective layer 35 shows the light transmittance of the region (region C in FIG. 7) in which the dummy electrode 32 is formed, and the red solid line shows the first electrode 34. The transmittance | permeability of the light of area | region (region D of FIG. 7) is shown, respectively.
도 8의 (a), (b)에서 보는 것과 같이, 본 실시형태에 의해서도 더미 전극을 갖지 않는 도 3의 종래의 OLED에 비해 청색영역인 400 내지 500㎚의 파장영역, 그 중에서도 특히 450㎚ 전후의 파장에서의 투과율의 향상을 보이고 있고, 영역 C 및 영역 D의 광 투과율은 사실상 차이가 없음을 알 수 있다.As shown in (a) and (b) of FIG. 8, the wavelength region of 400 to 500 nm, which is a blue region, and especially around 450 nm, in comparison with the conventional OLED of FIG. 3 without the dummy electrode, according to this embodiment. The improvement in the transmittance at the wavelength of is shown, and the light transmittances of the regions C and D do not differ substantially.
또, 도 8의 (a)와 (b)를 비교하면 보호층(35)을 갖지 않는 (a)에 비해 보호층(35)을 더 갖는 (b)가 광의 투과율 상승이 더 크다는 것을 알 수 있다.In addition, comparing (a) and (b) of FIG. 8, it can be seen that (b) having the protective layer 35 further increases the light transmittance in comparison with (a) having no protective layer 35. .
<실시형태 3><Embodiment 3>
이어서, 실시형태 3에 대해서 설명한다. 도 9는 본 발명의 실시형태 3의 배면 발광형 OLED(40)의 단면도이며, 도 7과 마찬가지로 OLED 단일 소자만을 나타내고 있다.Next, Embodiment 3 is described. 9 is a cross-sectional view of the bottom-emitting OLED 40 of Embodiment 3 of the present invention, and shows only the OLED single element as in FIG.
실시형태 3의 OLED(40)는 실시형태 2의 OLED(30)와 더미 전극 및 제 1 전극의 배치위치는 기본적으로 동일하나, 제 1 전극의 배치위치의 변화와 함께 절연 층, 더미 전극, 제 1 전극 및 보호층의 두께를 변경한 점에서 차이가 있다.In the OLED 40 of Embodiment 3, the arrangement positions of the OLED 30 and the dummy electrode and the first electrode of Embodiment 2 are basically the same, but with the change of the arrangement position of the first electrode, the insulating layer, the dummy electrode, There is a difference in changing the thickness of one electrode and the protective layer.
도 9에 도시하는 것과 같이 실시형태 3의 OLED(40)는 기판(41) 상부의 유기발광 층(46) 형성영역에 대응하는 영역에 형성된 투명전극 재료로 이루어지는 더미 전극(42)과, 상기 더미 전극(42)의 상부를 포함하는 기판(41)의 상부에 형성된 예를 들어 SiO2 등의 재료로 이루어지는 절연 층(43)을 포함한다.As shown in FIG. 9, the OLED 40 of Embodiment 3 includes a dummy electrode 42 made of a transparent electrode material formed in a region corresponding to a region in which an organic light emitting layer 46 is formed on the substrate 41 and the dummy. An insulating layer 43 made of a material such as SiO 2 is formed on the substrate 41 including the upper part of the electrode 42.
본 실시형태의 절연 층(43)은 실시형태 2에서의 절연 층(33)과는 달리 후술하는 제 1 전극(44)이 형성되는 영역이 에칭 등에 의해 일부 제거된 오목부로 되어 있고, 절연 층(43) 상부의 상기 오목부 내에 제 1 전극(44)이 형성되며, 제 1 전극(44) 및 절연 층(43)의 상부에는 전체 면에 걸쳐서 예를 들어 폴리이미드 등으로 이루어지는 보호층(45)이 형성된다.Unlike the insulating layer 33 of Embodiment 2, the insulating layer 43 of this embodiment is a recessed part in which the area | region in which the 1st electrode 44 mentioned later is formed was removed by etching etc., and the insulating layer ( 43) A first electrode 44 is formed in the recessed portion of the upper portion, and a protective layer 45 made of, for example, polyimide over the entire surface of the first electrode 44 and the insulating layer 43. Is formed.
본 실시형태에서는 더미 전극(42) 및 제 1 전극(44)의 두께는 각각 150㎚, 절연 층(43)의 두께도 150㎚로 하고, 보호층(45)의 두께는 1000㎚로 하였다.In this embodiment, the thickness of the dummy electrode 42 and the first electrode 44 was 150 nm, the thickness of the insulating layer 43 was also 150 nm, and the thickness of the protective layer 45 was 1000 nm.
실시형태 2의 도 7과 달리 도 9에서는 제 1 전극(44)의 가장자리 부분과 더미 전극(42)의 가장자리 부분이 서로 일치하지 않으나, 이는 실제 제조공정에서의 더미 전극(42) 및 제 1 전극(44)의 패턴화과정에서 발생하는 차이이며, 특별한 의미를 갖는 것은 아니다.In contrast to FIG. 7 of Embodiment 2, in FIG. 9, the edge portion of the first electrode 44 and the edge portion of the dummy electrode 42 do not coincide with each other, but this is the dummy electrode 42 and the first electrode in the actual manufacturing process. This is a difference that occurs during the patterning process of (44) and does not have a special meaning.
상기 보호층(45) 상부에는 유기발광 층(46) 및 제 2 전극(47)이 형성된다.The organic light emitting layer 46 and the second electrode 47 are formed on the passivation layer 45.
도 10은 실시형태 3의 OLED(40)의 광학적 특성을 시뮬레이션한 그래프이며, (a)는 더미 전극(42) 형성영역(도 9의 영역 E)의 광학적 특성을 시뮬레이션한 결과를, (b)는 제 1 전극(44) 형성영역(도 9의 영역 F)의 광학적 특성을 시뮬레이션한 결과를 각각 나타내고 있고, 도 10의 (a), (b)에서 가로 축은 광의 파장(㎚)을, 세로 축은 광의 투과율(%)을 각각 나타내고 있다.FIG. 10 is a graph simulating optical characteristics of the OLED 40 of Embodiment 3, (a) shows the results of simulating optical characteristics of the dummy electrode 42 formation region (region E in FIG. 9), (b) Indicates the results of simulating the optical characteristics of the region where the first electrode 44 is formed (region F in FIG. 9), and in FIGS. 10A and 10B, the horizontal axis represents wavelength of light (nm) and the vertical axis represents The transmittance | permeability (%) of light is shown, respectively.
도 10의 (a), (b)에서 보는 것과 같이, 본 실시형태에 의해서도 더미 전극을 갖지 않는 도 3의 종래의 OLED에 비해 청색영역인 400 내지 500㎚의 파장영역에서의 투과율의 향상을 보이고 있고, 영역 E 및 영역 F의 광 투과율은 사실상 차이가 없음을 알 수 있다.As shown in (a) and (b) of FIG. 10, the present embodiment also shows an improvement in transmittance in the wavelength region of 400 to 500 nm, which is a blue region, compared to the conventional OLED of FIG. 3 having no dummy electrode. It is understood that the light transmittances of the regions E and F are virtually no difference.
<보충><Supplement>
이상의 각 실시형태에서는 제 1 전극(24, 34, 44)의 재료는 ITO를 예로 들어 설명하였으나, 제 1 전극(24, 34, 44)의 재료는 ITO에 한정되는 것은 아니며, 광의 흡수 및 소멸이 적고 투과율이 높은 투명전극용 재료라면 어떤 재료라도 좋다. 예를 들어 ZnO, AlOx 등을 이용해도 좋다.In each of the above embodiments, the material of the first electrodes 24, 34, 44 is described using ITO as an example, but the material of the first electrodes 24, 34, 44 is not limited to ITO, and absorption and disappearance of light Any material may be used as long as it is a transparent electrode material having a small and high transmittance. For example, ZnO, AlOx, or the like may be used.
또, 상기 각 실시형태에서는 더미 전극(22, 32, 42)의 재료는 ITO를 예로 들어서 설명하였으나, 더미 전극(22, 32, 42)의 재료는 ITO에 한정되는 것은 아니며, 광의 흡수 및 소멸이 적고 투과율이 높은 투명전극용 재료라면 어떤 재료라도 좋다. 예를 들어 NA3AlF6, MgF2, SiO2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, PI, IZO, Si3N4, MgO 등을 이용해도 좋다.In each of the above embodiments, the material of the dummy electrodes 22, 32, and 42 has been described using ITO as an example. However, the material of the dummy electrodes 22, 32, and 42 is not limited to ITO. Any material may be used as long as it is a transparent electrode material having a small and high transmittance. For example, NA 3 AlF 6 , MgF 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO Etc. may be used.
또, 절연 층(23, 33, 43)의 재료로는 SiO2를 예로 들어서 설명하였으나, 절연 층(23, 33, 43)의 재료는 SiO2에 한정되는 것은 아니며, 광의 흡수 및 소멸이 적고 투과율이 높은 투명재료라면 어떤 재료라도 좋다. 예를 들어 NA3AlF6, MgF2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, PI, IZO, Si3N4, MgO 등을 이용해도 좋다.In addition, although the material of the insulating layers 23, 33, 43 has been described using SiO 2 as an example, the material of the insulating layers 23, 33, 43 is not limited to SiO 2 , and light absorption and annihilation are low and transmittance is small. Any material may be used as long as this high transparent material is used. For example, NA 3 AlF 6 , MgF 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO Also good.
또, 상기 보호층의 재료로는 폴리이미드(PI)를 예로 들어서 설명하였으나, 보호층의 재료는 폴리이미드에 한정되는 것은 아니며, 광의 흡수 및 소멸이 적고 투과율이 높은 투명전극용 재료라면 어떤 재료라도 좋다. 예를 들어 NA3AlF6, MgF2, SiO2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, IZO, Si3N4, MgO 등을 이용해도 좋다.In addition, the material of the protective layer has been described using polyimide (PI) as an example, but the material of the protective layer is not limited to polyimide. good. For example, NA 3 AlF 6 , MgF 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, IZO, Si 3 N 4 , MgO, etc. You may use it.
또, 상기 각 실시형태에서는 전면 발광형 OLED를 예로 들어 설명하였으나, 이에 한정되는 것은 아니며, 배면 발광형 또는 양면 발광형(투명) OLED에도 적용할 수 있다.In each of the above embodiments, a top emission type OLED has been described as an example, but the present invention is not limited thereto, and the present invention can also be applied to a bottom emission type or a double-sided emission type (transparent) OLED.
예를 들어 배면 발광형 OLED의 경우에는 투명전극재료로 이루어지는 제 1 전극 측을 음극으로 하면 되고, 양면 발광형(투명) OLED에서는 제 1 전극 및 제 2 전극을 모두 투명전극용 재료로 형성하면 된다. 또, 양면 발광형의 경우에는 제 2 전극 측에도 더미 전극, 절연 층 및 보호층을 더 형성하는 것으로 해도 좋고, 제 2 전극 측에는 더미 전극, 절연 층 및 보호층을 생략해도 좋다.For example, in the case of a bottom emission type OLED, the first electrode side made of a transparent electrode material may be a cathode, and in a double emission type (transparent) OLED, both the first electrode and the second electrode may be formed of a transparent electrode material. . In the case of the double-sided light emission type, the dummy electrode, the insulating layer and the protective layer may be further formed on the second electrode side, and the dummy electrode, the insulating layer and the protective layer may be omitted on the second electrode side.
또, 상기 각 실시형태는 어디까지나 본 발명의 바람직한 실시형태의 예시에 불과하며, 본 발명의 범위 내에서 다양한 변경 또는 변형이 가능하다. 또, 각 실시형태는 단독으로 실시해도 좋고 서로 조합하여 실시해도 좋다.In addition, each said embodiment is only the illustration of preferable embodiment of this invention to the last, and various changes or a deformation | transformation are possible within the scope of this invention. In addition, each embodiment may be implemented independently, or may be implemented in combination with each other.
<부호의 설명><Description of the code>
20, 30, 40 유기전계 발광소자20, 30, 40 organic light emitting device
21, 31, 41 기판21, 31, 41 boards
22, 32, 42 더미 전극22, 32, 42 dummy electrode
23, 33, 43 절연 층23, 33, 43 insulation layer
24, 34, 44 제 1 전극24, 34, 44 first electrode
25, 36, 46 유기발광 층25, 36, 46 organic light emitting layers
26, 37, 47 제 2 전극26, 37, 47 second electrode
35 보호층35 protective layer

Claims (9)

  1. 기판과,Substrate,
    상기 기판상에 적층 형성된 더미 전극과,A dummy electrode stacked on the substrate;
    상기 더미 전극 상에 적층 형성된 절연 층과,An insulating layer laminated on the dummy electrode;
    상기 절연 층상에 적층 형성된 제 1 전극과,A first electrode laminated on the insulating layer;
    상기 제 1 전극 상에 적층 형성된 유기발광 층과,An organic light emitting layer laminated on the first electrode;
    상기 유기발광 층상에 적층 형성된 제 2 전극을 포함하며,A second electrode laminated on the organic light emitting layer,
    상기 제 1 전극의 표면의 면적은 상기 유기발광 층의 표면의 면적보다 작고,An area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer,
    상기 더미 전극은 상기 기판의 전체 면에 형성되는 유기전계 발광소자.The dummy electrode is formed on the entire surface of the substrate.
  2. 기판과,Substrate,
    상기 기판상에 적층 형성된 더미 전극과,A dummy electrode stacked on the substrate;
    상기 더미 전극 상에 적층 형성된 절연 층과,An insulating layer laminated on the dummy electrode;
    상기 절연 층상에 적층 형성된 제 1 전극과,A first electrode laminated on the insulating layer;
    상기 제 1 전극 상에 적층 형성된 유기발광 층과,An organic light emitting layer laminated on the first electrode;
    상기 유기발광 층상에 적층 형성된 제 2 전극을 포함하며,A second electrode laminated on the organic light emitting layer,
    상기 제 1 전극의 표면의 면적은 상기 유기발광 층의 표면의 면적보다 작고,An area of the surface of the first electrode is smaller than an area of the surface of the organic light emitting layer,
    상기 더미 전극은 상기 기판상의 상기 제 1 전극과 대응하는 영역 이외의 영역에만 형성되는 유기전계 발광소자.The dummy electrode is formed only in a region other than a region corresponding to the first electrode on the substrate.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 절연 층 상부의 상기 유기발광 층에 대응하는 영역에는 오목부가 형성되고,A recess is formed in a region corresponding to the organic light emitting layer on the insulating layer.
    상기 제 1 전극은 상기 오목부 내에 형성되는 유기전계 발광소자.And the first electrode is formed in the recess.
  4. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 더미 전극은 ITO, NA3AlF6, MgF2, SiO2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, PI, IZO, Si3N4, MgO 중 어느 하나로 이루어지는 유기전계 발광소자.The dummy electrode includes ITO, NA 3 AlF 6 , MgF 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO, an organic light emitting device comprising any one.
  5. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 절연 층은 NA3AlF6, MgF2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, PI, IZO, Si3N4, MgO 중 어느 하나로 이루어지는 유기전계 발광소자.The insulating layer is any one of NA 3 AlF 6 , MgF 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, PI, IZO, Si 3 N 4 , MgO Organic electroluminescent device consisting of one.
  6. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 더미 전극의 두께는 150 내지 250㎚인 유기전계 발광소자.The dummy electrode has an organic light emitting device having a thickness of 150 to 250nm.
  7. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 더미 전극 및 상기 제 1 전극의 두께는 150㎚인 유기전계 발광소자.The thickness of the dummy electrode and the first electrode is 150nm organic light emitting device.
  8. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 제 1 전극과 상기 절연 층의 상부에 형성되는 보호층을 더 포함하는 유기전계 발광소자.The organic light emitting device further comprises a protective layer formed on the first electrode and the insulating layer.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 보호층은 PI, NA3AlF6, MgF2, SiO2, Al2O3, Y2O3, HfO2, ZrO2, Ta2O5, TiO2, ZnO, IZO, Si3N4, MgO 중 어느 하나로 이루어지는 유기전계 발광소자.The protective layer is PI, NA 3 AlF 6 , MgF 2 , SiO 2 , Al 2 O 3 , Y 2 O 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , TiO 2 , ZnO, IZO, Si 3 N 4 , An organic light emitting device comprising any one of MgO.
PCT/KR2014/004319 2013-05-27 2014-05-14 Organic light emitting diode device having dummy electrode WO2014193105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0059759 2013-05-27
KR1020130059759A KR20140139285A (en) 2013-05-27 2013-05-27 Organic light emitting device with dummy electrode

Publications (1)

Publication Number Publication Date
WO2014193105A1 true WO2014193105A1 (en) 2014-12-04

Family

ID=51989078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004319 WO2014193105A1 (en) 2013-05-27 2014-05-14 Organic light emitting diode device having dummy electrode

Country Status (2)

Country Link
KR (1) KR20140139285A (en)
WO (1) WO2014193105A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815765B1 (en) * 2007-05-15 2008-03-20 삼성에스디아이 주식회사 Light emitting display device and fabrication method for the same
US7867051B2 (en) * 2004-12-13 2011-01-11 Samsung Mobile Display Co., Ltd. Method of fabricating an organic light emitting display device
KR20120043624A (en) * 2010-10-26 2012-05-04 삼성모바일디스플레이주식회사 Organic light emitting display device and manufacturing method thereof
KR20120062280A (en) * 2010-12-06 2012-06-14 삼성모바일디스플레이주식회사 Thin film transistor and organic light emitting display device
KR20130003559A (en) * 2011-06-30 2013-01-09 주식회사 에스에프에이 Apparatus for inspecting gravure roll

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7867051B2 (en) * 2004-12-13 2011-01-11 Samsung Mobile Display Co., Ltd. Method of fabricating an organic light emitting display device
KR100815765B1 (en) * 2007-05-15 2008-03-20 삼성에스디아이 주식회사 Light emitting display device and fabrication method for the same
KR20120043624A (en) * 2010-10-26 2012-05-04 삼성모바일디스플레이주식회사 Organic light emitting display device and manufacturing method thereof
KR20120062280A (en) * 2010-12-06 2012-06-14 삼성모바일디스플레이주식회사 Thin film transistor and organic light emitting display device
KR20130003559A (en) * 2011-06-30 2013-01-09 주식회사 에스에프에이 Apparatus for inspecting gravure roll

Also Published As

Publication number Publication date
KR20140139285A (en) 2014-12-05

Similar Documents

Publication Publication Date Title
WO2020004730A1 (en) Display device
WO2014107007A1 (en) Oled micro-cavity structure and method of making
US7615790B2 (en) Organic light-emitting display device and method of manufacturing the same
WO2010131853A2 (en) Organic light-emitting diode and method for manufacturing same
TW201631756A (en) Organic light emitting display device
WO2018196124A1 (en) Top-emission oled device, preparation method and display panel
KR20160053356A (en) Organic light-emitting display apparatus
WO2012005526A2 (en) Organic light-emitting device comprising an encapsulation structure
JP2006005328A (en) Organic elecroluminescent element and manufacturing method of the same
WO2016032160A1 (en) Display panel and method for manufacturing same
US7719181B2 (en) Organic EL device, method for producing organic EL device, and electronic apparatus
KR20110039061A (en) Organic light emitting diode display and method of manufacturing the same
WO2019075815A1 (en) Display device and oled display panel
WO2012005540A2 (en) Organic light-emitting device and method for manufacturing same
US7948166B2 (en) Organic light emitting display apparatus
WO2019218471A1 (en) Display panel, manufacturing method therefor and display device
WO2012090771A1 (en) Method for forming vapor deposition film, and method for producing display device
WO2020085592A1 (en) Display device
WO2020013389A1 (en) Display device
JP6837410B2 (en) Display device including light emitting area
WO2016036150A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
WO2018035894A1 (en) Pixel structure and manufacturing method
WO2017073915A1 (en) Pn junction element and electronic device using same
CN104466022A (en) Organic light-emitting diode display device and manufacturing method thereof
WO2020138665A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804905

Country of ref document: EP

Kind code of ref document: A1