WO2014193031A1 - Antimicrobial agent having moringa oleifera extract captured in porous zinc oxide and preparation method therefor - Google Patents

Antimicrobial agent having moringa oleifera extract captured in porous zinc oxide and preparation method therefor Download PDF

Info

Publication number
WO2014193031A1
WO2014193031A1 PCT/KR2013/006695 KR2013006695W WO2014193031A1 WO 2014193031 A1 WO2014193031 A1 WO 2014193031A1 KR 2013006695 W KR2013006695 W KR 2013006695W WO 2014193031 A1 WO2014193031 A1 WO 2014193031A1
Authority
WO
WIPO (PCT)
Prior art keywords
moringa oleifera
extract
zinc oxide
antimicrobial agent
antimicrobial
Prior art date
Application number
PCT/KR2013/006695
Other languages
French (fr)
Korean (ko)
Inventor
이근하
권순상
공혜진
박청
황재성
신동하
Original Assignee
(주)모아캠
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)모아캠, 경희대학교 산학협력단 filed Critical (주)모아캠
Publication of WO2014193031A1 publication Critical patent/WO2014193031A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/30Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/04Amoebicides

Definitions

  • the present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material, and more particularly, to an antimicrobial agent prepared by collecting Moringa oleifera extract in a zinc oxide, which is a porous material.
  • Cosmetics are contaminated with various pathogens due to repeated contact with hands. To prevent this, a strong antibacterial substance is added to the cosmetics.
  • Antimicrobial agents are roughly classified into organic antimicrobial agents and inorganic antimicrobial agents.
  • Organic antimicrobial agents include surfactants, biguanides, and alcohols
  • inorganic antimicrobial agents include zeolite, silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, BACKGROUND ART
  • Antibacterial agents in which inorganic powders such as titanium oxide, zinc oxide, silicon dioxide and alumina are supported on an antimicrobial metal such as silver (Ag), copper (Cu) and zinc (Zn) are known.
  • Inorganic antimicrobial agents have the advantage of having good antimicrobial properties for a long time and excellent heat resistance since there is no volatilization or decomposition compared to organic antimicrobial agents.
  • chemical antibacterial ingredients such as copper, zinc or metals such as parabens are used.
  • Antibacterial metals such as copper or zinc can be harmful to the human body, and their use is regulated, particularly for inorganic zinc.
  • Korean Laid-Open Patent Publication No. 10-2009-0096799 discloses a method for preparing a fungicide using silver.
  • an inorganic antimicrobial agent has a disadvantage in that antimicrobial activity is less effective than organic antimicrobial agents, and a large amount of antimicrobial agent is required to obtain antimicrobial anticipation, which is expensive compared to organic antimicrobial agents.
  • Korean Patent Publication No. 10-1221735 discloses the antimicrobial effect of Syzygium aromaticum (clove), Cinnamomum japonicum sieb ( Cinnamomum japonicum sieb) It is known about the antimicrobial effect of extracts from wild grapes, but only natural plant extracts have a problem that the antimicrobial effect against microorganisms such as Escherichia coli is not excellent (Han Jung-hoon, Master's degree in forestry engineering, Chonbuk National University) Antimicrobial and antibacterial effects, 2011).
  • Japanese Patent Laid-Open No. 2000-229804 discloses an antimicrobial agent containing Moringa oleifera extract as an active ingredient, but the present invention is different in that the porous material in which the Moringa oleifera extract is collected is used as an antimicrobial agent.
  • the present inventors have made diligent efforts to solve the above problems, confirming that the antimicrobial agent in which Moringa oleifera seed extract is collected in the porous material has an excellent antimicrobial effect while harmless to the human body as an organic-inorganic compound, and the present invention To complete.
  • the present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material, and more particularly, to an antimicrobial agent prepared by collecting Moringa oleifera extract in a zinc oxide, which is a porous material.
  • An object of the present invention is to provide an antimicrobial agent harmless to the human body based on the porous material and Moringa oleifera seed extract.
  • the present invention provides an antimicrobial agent and a method for preparing the moringa oleifera extract is collected in a zinc oxide (ZnO) is a porous material.
  • Figure 1 shows the XRD analysis of the porous zinc oxide particles by the sol-gel method.
  • Figure 2 shows the SEM analysis of the porous zinc oxide particles.
  • Figure 3 shows the results of TEM analysis of porous zinc oxide particles.
  • Figure 4 shows the chemical structure of Niazimicin.
  • Figure 5 shows the chemical structure of 4- ( ⁇ -L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI).
  • Figure 6 shows the antimicrobial effect test results by the circular filter method
  • A is the experimental results of Niazimicin
  • B is the experimental results of 4- ( ⁇ -L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI).
  • the antimicrobial effect was confirmed by preparing an antimicrobial agent to collect the Moringa oleifera extract extract in zinc oxide (ZnO), a porous material. As a result, it was confirmed that there is an antimicrobial effect against microorganisms such as Staphylococcus aureus and Escherichia coli.
  • ZnO zinc oxide
  • antimicrobial agent in the present invention means a substance that inhibits the production and activity of microorganisms or bacteria or kills microorganisms and bacteria, but is not limited thereto.
  • Moringa oleifera extract of the present invention may be prepared according to a method for producing a variety of plant extracts known in the art, for example, may be by heat extraction, reflux extraction or heat extraction, but is not limited thereto.
  • the Moringa oleifera extract may be an extract extracted with water or an organic solvent, ethanol, hexane, chloroform, ethyl acetate, methanol, propanol, low cost alcohol having 1 to 4 carbon atoms, etc. may be used as the organic solvent, but is not limited thereto. It is not.
  • the present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material.
  • the porous material may be characterized in that the zinc oxide (ZnO), the Moringa oleifera extract may be characterized in that the Moringa oleifera seed extract.
  • the Moringa oleifera seed extract is preferably using Moringa oleifera seed ethanol extract or Moringa oleifera seed ethyl acetate extract.
  • the present invention relates to a method for producing an antimicrobial agent, which comprises collecting Moringa oleifera extract in a porous material.
  • an initial wet method may be used as a method for collecting the Moringa oleifera extract in the porous material, but is not limited thereto.
  • Porous zinc oxide was synthesized using a precipitation method in a polyol solvent.
  • sodium hydroxide was added.
  • the reaction mixture was mixed under reflux conditions of 443 K. After the reaction was completed, the precipitate was rinsed with ethanol and centrifuged at 10,000 rpm to recover the porous ZnO particles.
  • the surface area and pore size of the zinc oxide particles prepared in 1-1 were measured by the Brunaure-Emmett-Teller (BET) instrument (Tristar, Micrometrics, USA) and the BJH (Barrett-Joyner-Halenda) method.
  • BET Brunaure-Emmett-Teller
  • BJH Barrett-Joyner-Halenda
  • the pore characteristics, including the specific surface area, pore volume, pore size distribution and average pore diameter of the BET of the zinc oxide particles, are represented by N 2 absorption / separation isotherms.
  • the structure of the prepared zinc oxide particles was found to be a Type IV curve of H4 type hysteresis curve.
  • the range of P / P 0 consistent with the hysteresis was 0.4-0.7 and 0.9 or greater. This means that the initial particles have a mid-range pore size and the second particles with aggregated particles have a void space between the particles resulting from the aggregation of the initial particles.
  • the BET surface area of the porous zinc oxide particles was 55 m 2 / g. In the N 2 absorption / isolation isotherm analysis, the pore sizes were 3 nm and 15-30 nm and the pore volume was 0.169 cc / g.
  • the morphology of the zinc oxide particles was evaluated using a field emission scanning electron microscope (SEM, JSM-7401F, JEOL, Japan) and a trans emission microscope (TEM, 300Kv, JEM2100F, JEOL, Japan).
  • the mixture was mixed with 50% (w / v) organic material and rubbed to infiltrate the solution into the pores of the porous zinc oxide particles.
  • the extract was selected from Moringa oleifera seed as a guest material in porous zinc oxide, and the collection efficiency in porous zinc oxide was applied to Moringa oleifera seed extract. 10% (w / w). The procedure was repeated three times to capture the Moringa oleifera extract in the porous zinc oxide channel.
  • the evaluation of the antimicrobial properties was made by measuring the paper disc method and the minimum inhibition concentration method (MIC).
  • Characterization of the antimicrobial agent by the paper disc method was performed by precipitating the circular filtrate to 1 to 10 mg / disc test sample and placing it in the center of the culture medium, and for 12 hours for bacteria in the incubator. In the case of a mold) was measured by incubation for 48 hours.
  • MIC Minimum Inhibition Concentration Method
  • Gram-positive Staphylococcus aureus (ATCC 6538P), Gram-negative Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Candida albicans (ATCC 10231), and Aspergillus niger as filamentous fungi for the study of cosmetic antibacterial effects. (ATCC 22343) was used. Microbial growth of the strains was examined by observing at 650 nm with a microplate reader for 48 hours.
  • Moringa oleifera extract extract using ethanol and ethyl acetate was Staphylococcus aureus (ATCC 6538P), Gram-negative Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Candida albicans (ATCC) 10231) and filamentous fungi showed significant antibacterial effects against Aspergillus niger (ATCC 22343).
  • two bioactive substances Niazimicin (FIG. 4) and 4- ( ⁇ -L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) (FIG. 5), could be detected.
  • the structure of the compound was measured by spectroscopic analysis by mass spectrophotometer, Infra red, 1D and 2D NMR.
  • RBI is known as Staphylococcus aureus (0.005%, w / v), Escherichia coli (0.1%, w / v), Pseudomonas aeruginosa (0.5%, w / v), Candida albicans (0.5%, w / v), Aspergillus It was shown to have strong antimicrobial activity against loose niger (0.5%, w / v) (Table 4). However, Niazimicin showed no antimicrobial activity except Staphylococcus aureus (0.1%, w / v).
  • the antimicrobial activity of RBI and Niazimicin was measured by the above-mentioned circular filtration method. Both RBI and Niazimicin showed antimicrobial activity when the test solution concentration was 5 mg / disc, but the growth inhibition region of RBI (indicating diameters of 23 mm and 28 mm, respectively) was wider than that of Niazimicin (FIG. 6).
  • the antimicrobial effect of the two compounds is assumed to be a molecular structure characteristic due to the molecular structure ethyl group.
  • the structure of Niazimicin is not easy to penetrate into the microbial cell membrane because there is only one ethyl group in addition to glycoside, whereas the structure of RBI does not exist in the microbial cell membrane. It is shown that the growth inhibition mechanism can more easily penetrate the surface of the microbial cell membrane, while reducing the function of the cell membrane.
  • the antimicrobial effect of porous zinc oxide was evaluated to examine the correlation between the properties of the porous material and the antimicrobial activity (Table 5). As a result, the antibacterial effect of the porous zinc oxide did not have antibacterial effect except Staphylococcus aureus and Escherichia coli.
  • Moringa oleifera extract and RBI (Table 8) using porous zinc oxide, an inorganic antimicrobial agent, as a support and ethanol (Table 6) and ethyl acetate (Table 7) were collected on the support to provide antimicrobial effects against various microorganisms. Evaluated. As a result, it was confirmed that the antimicrobial effect of Moringa oleifera seed extract and RBI was improved compared to the evaluation of the antimicrobial effect without a porous zinc oxide support. Since 10% of each natural substance was supported by zinc oxide, it can be seen that the antimicrobial effect was increased by about 10 to 50 times or more depending on the type of microorganism compared to before loading.
  • the antimicrobial agent according to the present invention has excellent antimicrobial effect against microorganisms such as Staphylococcus aureus and Escherichia coli, and is excellent in safety, it is useful in cosmetics and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to an antimicrobial agent having a Moringa oleifera extract captured in a porous material and a preparation method therefor and, more particularly, to an antimicrobial agent prepared by capturing a Moringa oleifera seed extract in zinc oxide which is a porous material. The purpose of the present invention is to provide the antimicrobial agent which is harmless to the human body, on the basis of the porous material and the Moringa oleifera seed extract. In order to achieve the purpose, the present invention provides the antimicrobial agent having the Moringa oleifera seed extract captured in the zinc oxide (ZnO) which is a porous material, and the preparation method therefor.

Description

다공성 산화아연에 모링가 올레이페라 추출물이 포집되어 있는 항균제 및 이의 제조방법Antibacterial agent containing Moringa oleifera extract in porous zinc oxide and its preparation method
본 발명은 다공성 물질에 모링가 올레이페라 추출물이 포집되어 있는 항균제 및 그 제조방법에 관한 것으로, 더 구체적으로는 다공성 물질인 산화아연에 모링가 올레이페라 시드 추출물을 포집하여 제조한 항균제에 관한 것이다.The present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material, and more particularly, to an antimicrobial agent prepared by collecting Moringa oleifera extract in a zinc oxide, which is a porous material.
화장품은 반복적인 손과의 접촉으로 인해 다양한 병원균에 오염이 된다. 이를 방지하기 위해, 화장품에 강력한 항균물질을 첨가시키게 된다. Cosmetics are contaminated with various pathogens due to repeated contact with hands. To prevent this, a strong antibacterial substance is added to the cosmetics.
항균제는 크게 유기계 항균제와 무기계 항균제로 대별되며, 유기계 항균제로는 계면활성제 계, 비구아니드 계, 알코올 계 등이 있고, 무기계 항균제로서는, 제올라이트, 실리카겔, 유리, 인산칼슘, 인산 지르코늄, 규산 칼슘, 산화티탄, 산화아연, 이산화규소, 알루미나 등의 무기질 분말에 은(Ag), 구리(Cu), 아연(Zn)등의 항균성 금속을 담지시킨 항균제가 알려져 있다.Antimicrobial agents are roughly classified into organic antimicrobial agents and inorganic antimicrobial agents. Organic antimicrobial agents include surfactants, biguanides, and alcohols, and inorganic antimicrobial agents include zeolite, silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, BACKGROUND ART Antibacterial agents in which inorganic powders such as titanium oxide, zinc oxide, silicon dioxide and alumina are supported on an antimicrobial metal such as silver (Ag), copper (Cu) and zinc (Zn) are known.
무기계 항균제는, 유기계 항균제와 비교하면 휘발이나 분해가 없기 때문에 장기간에 걸쳐서 양호한 항균성이 지속 되며, 내열성도 뛰어나다는 장점이 있다. Inorganic antimicrobial agents have the advantage of having good antimicrobial properties for a long time and excellent heat resistance since there is no volatilization or decomposition compared to organic antimicrobial agents.
일반적으로, 화장품 항균성분으로 주로 구리, 아연 등의 금속 또는 파라벤 등과 같은 화학물질이 이용된다. 구리 또는 아연과 같은 항균금속의 경우, 인체에 유해할 수 있어, 특히 무기 아연의 경우 그 사용이 규제되고 있다.In general, chemical antibacterial ingredients such as copper, zinc or metals such as parabens are used. Antibacterial metals such as copper or zinc can be harmful to the human body, and their use is regulated, particularly for inorganic zinc.
이러한 문제점을 극복하기 위하여, 대한민국 공개특허공보 제10-2009-0096799호는 은을 이용하여 살균제를 제조하는 방법에 대해 개시하고 있다. 그러나, 이러한 무기계 항균제는, 유기계 항균제에 비해 항균성이 효과적으로 발현하기 어렵고, 기대하는 항균성을 얻기 위해서는 다량 사용이 필요하며, 유기계 항균제와 비교해 고가인 단점이 있다.In order to overcome this problem, Korean Laid-Open Patent Publication No. 10-2009-0096799 discloses a method for preparing a fungicide using silver. However, such an inorganic antimicrobial agent has a disadvantage in that antimicrobial activity is less effective than organic antimicrobial agents, and a large amount of antimicrobial agent is required to obtain antimicrobial anticipation, which is expensive compared to organic antimicrobial agents.
또한 천연식물 추출물의 항균효과와 관련하여, 대한민국 등록특허공보 제10-1221735호에 시지기움 아로마티쿰(Syzygium aromaticum; 정향)의 항균효과에 대해 개시되어 있고, 시나모뮴 자포니쿰 시엡(Cinnamomum japonicum sieb; 생달나무) 추출물의 항균효과에 대해 알려져 있으나, 천연식물 추출물만으로는 대장균 등 미생물에 대한 항균효과가 우수하지 않은 문제점이 있었다(한정훈, 전북대학교 임산공학 학위논문(석사), 주요 난대수종 천연 추출물의 항균?항충효과, 2011).In addition, with respect to the antimicrobial effect of natural plant extracts, Korean Patent Publication No. 10-1221735 discloses the antimicrobial effect of Syzygium aromaticum (clove), Cinnamomum japonicum sieb ( Cinnamomum japonicum sieb) It is known about the antimicrobial effect of extracts from wild grapes, but only natural plant extracts have a problem that the antimicrobial effect against microorganisms such as Escherichia coli is not excellent (Han Jung-hoon, Master's degree in forestry engineering, Chonbuk National University) Antimicrobial and antibacterial effects, 2011).
한편, 일본 공개특허 제 2000-229804호에서는 모링가 올레이페라 추출물을 유효성분으로 함유하는 항균제에 대해 개시하고 있지만 본 발명에서는 모링가 올레이페라 추출물이 포집된 다공성물질을 항균제로 이용한다는 점이 상이하다. On the other hand, Japanese Patent Laid-Open No. 2000-229804 discloses an antimicrobial agent containing Moringa oleifera extract as an active ingredient, but the present invention is different in that the porous material in which the Moringa oleifera extract is collected is used as an antimicrobial agent.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 다공성 물질에 모링가 올레이페라 시드 추출물이 포집되어 있는 항균제가 유기-무기 합성물로서 인체에 무해하면서도 뛰어난 항균효과를 가지는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made diligent efforts to solve the above problems, confirming that the antimicrobial agent in which Moringa oleifera seed extract is collected in the porous material has an excellent antimicrobial effect while harmless to the human body as an organic-inorganic compound, and the present invention To complete.
발명의 요약Summary of the Invention
본 발명은 다공성 물질에 모링가 올레이페라 추출물이 포집되어 있는 항균제 및 이의 제조방법에 관한 것으로, 더 구체적으로는 다공성 물질인 산화아연에 모링가 올레이페라 시드 추출물을 포집하여 제조한 항균제에 관한 것이다.The present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material, and more particularly, to an antimicrobial agent prepared by collecting Moringa oleifera extract in a zinc oxide, which is a porous material.
본 발명의 목적은 다공성 물질과 모링가 올레이페라 시드 추출물을 기반으로 한 인체에 무해한 항균제를 제공하는데 있다. 상기 목적을 달성하기 위하여, 본 발명은 다공성 물질인 산화아연(ZnO)에 모링가 올레이페라 시드 추출물이 포집되어 있는 항균제 및 이의 제조방법을 제공한다.An object of the present invention is to provide an antimicrobial agent harmless to the human body based on the porous material and Moringa oleifera seed extract. In order to achieve the above object, the present invention provides an antimicrobial agent and a method for preparing the moringa oleifera extract is collected in a zinc oxide (ZnO) is a porous material.
도 1은 졸-겔법에 의한 다공성 산화아연입자의 XRD 분석 결과를 나타낸 것이다.Figure 1 shows the XRD analysis of the porous zinc oxide particles by the sol-gel method.
도 2는 다공성 산화아연입자의 SEM 분석 결과를 나타낸 것이다.Figure 2 shows the SEM analysis of the porous zinc oxide particles.
도 3은 다공성 산화아연입자의 TEM 분석 결과를 나타낸 것이다.Figure 3 shows the results of TEM analysis of porous zinc oxide particles.
도 4는 Niazimicin의 화학구조를 나타낸 것이다.Figure 4 shows the chemical structure of Niazimicin.
도 5는 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)의 화학구조를 나타낸 것이다.Figure 5 shows the chemical structure of 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI).
도 6은 원형여과지방법에 의한 항균 효과 실험결과를 나타낸 것으로, A는 Niazimicin의 실험결과이고, B는 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)의 실험결과이다.Figure 6 shows the antimicrobial effect test results by the circular filter method, A is the experimental results of Niazimicin, B is the experimental results of 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI).
발명의 상세한 설명 및 구체적인 구현예Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 일 실시예에서는 다공성 물질인 산화아연(ZnO)에 모링가 올레이페라 시드 추출물을 포집시킨 항균제를 제조하여 항균효과를 확인하였다. 그 결과 황색포도상구균 및 대장균 등의 미생물에 대해 항균효과가 있음을 확인하였다.In one embodiment of the present invention, the antimicrobial effect was confirmed by preparing an antimicrobial agent to collect the Moringa oleifera extract extract in zinc oxide (ZnO), a porous material. As a result, it was confirmed that there is an antimicrobial effect against microorganisms such as Staphylococcus aureus and Escherichia coli.
본발명에서 "항균제"라는 용어는 미생물이나 세균의 생성 및 활동을 억제하거나 미생물 및 세균을 사멸시키는 물질을 의미하며, 이에 한정되는 것은 아니다.The term "antimicrobial agent" in the present invention means a substance that inhibits the production and activity of microorganisms or bacteria or kills microorganisms and bacteria, but is not limited thereto.
본 발명의 모링가 올레이페라 추출물은 당업계에 공지된 다양한 식물 추출물의 제조방법에 따라 제조된 것일 수 있으며, 일례로 열추출법, 환류추출법 또는 온침추출법 등에 의할 수 있으나 이에 한정되는 것은 아니다. Moringa oleifera extract of the present invention may be prepared according to a method for producing a variety of plant extracts known in the art, for example, may be by heat extraction, reflux extraction or heat extraction, but is not limited thereto.
상기 모링가 올레이페라 추출물은 물 또는 유기용매로 추출한 추출물일 수 있는데, 유기용매로 에탄올, 헥산, 클로로포름, 에틸 아세테이트, 메탄올, 프로판올, 탄소수 1 내지 4인 저가 알콜 등을 이용할 수 있으나, 이에 한정되는 것은 아니다.The Moringa oleifera extract may be an extract extracted with water or an organic solvent, ethanol, hexane, chloroform, ethyl acetate, methanol, propanol, low cost alcohol having 1 to 4 carbon atoms, etc. may be used as the organic solvent, but is not limited thereto. It is not.
따라서 본 발명은 일 관점에서, 다공성 물질에 모링가 올레이페라 추출물이 포집되어있는 항균제에 관한 것이다.Therefore, the present invention relates to an antimicrobial agent in which Moringa oleifera extract is collected in a porous material.
본 발명에 있어서, 상기 다공성 물질은 산화아연(ZnO)인 것을 특징으로 할 수 있고, 상기 모링가 올레이페라 추출물은 모링가 올레이페라 시드 추출물인 것을 특징으로 할 수 있다. 상기 모링가 올레이페라 시드 추출물은 바람직하게는 모링가 올레이페라 시드 에탄올 추출물 또는 모링가 올레이페라 시드 에틸 아세테이트 추출물을 이용하는 것이다.In the present invention, the porous material may be characterized in that the zinc oxide (ZnO), the Moringa oleifera extract may be characterized in that the Moringa oleifera seed extract. The Moringa oleifera seed extract is preferably using Moringa oleifera seed ethanol extract or Moringa oleifera seed ethyl acetate extract.
본 발명은 다른 관점에서, 다공성 물질에 모링가 올레이페라 추출물을 포집시키는 것을 특징으로 하는 항균제의 제조방법에 관한 것이다.In another aspect, the present invention relates to a method for producing an antimicrobial agent, which comprises collecting Moringa oleifera extract in a porous material.
본 발명에서 다공성 물질에 모링가 올레이페라 추출물을 포집시키기 위한 방법으로 초기 습식 방법(Incipient wetness method)을 이용할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, an initial wet method may be used as a method for collecting the Moringa oleifera extract in the porous material, but is not limited thereto.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
실시예 1: 항균제의 제조Example 1 Preparation of Antimicrobial Agents
1-1: 다공성 산화아연(ZnO) 입자의 제조1-1: Preparation of Porous Zinc Oxide (ZnO) Particles
폴리올 용매에서 침전방법을 사용하여 다공성 산화아연을 합성하였다. 입자 크기를 쉽게 조절하기 위하여, 수산화나트륨을 첨가하였다. 사용된 산화아연의 전구체인 아세트산아연이수화물(Zn(CH3COO)2·2H2O, Mw=219.5, SAMJUN, 한국)과 수산화나트륨의 몰비율은 1:1이었다. 디에틸렌 글리콜(C2H10O3, Mw=106.12, SAMJUN, 한국)을 용매로 사용하였다. 반응혼합물을 443 K의 환류 조건 하에서 혼합하였다. 반응이 완료된 후, 침전물을 에탄올로 헹구어내고 10,000 rpm에서 원심분리하여 다공성 ZnO 입자를 회수하였다.Porous zinc oxide was synthesized using a precipitation method in a polyol solvent. In order to easily control the particle size, sodium hydroxide was added. The molar ratio of zinc acetate dihydrate (Zn (CH 3 COO) 2 .2H 2 O, Mw = 219.5, SAMJUN, Korea), which is a precursor of zinc oxide, to sodium hydroxide was 1: 1. Diethylene glycol (C 2 H 10 O 3 , Mw = 106.12, SAMJUN, Korea) was used as the solvent. The reaction mixture was mixed under reflux conditions of 443 K. After the reaction was completed, the precipitate was rinsed with ethanol and centrifuged at 10,000 rpm to recover the porous ZnO particles.
상기 1-1에서 제조된 산화아연입자의 XRD 패턴을 분말회절표준위원회(Joint Committee on Powder Diffraction Standards; JCPDS, 36-1451, a=3.429 Å, c=5.206Å, λ=Cu 1.54Å)의 표준테이터와 비교 해석하였다. 10개의 산화아연 입자의 특징적 피크가 나타났는데, 이는 산화아연의 (100), (002), (101), (102), (110), (103), (200), (112), (201), (004) 및 (202)의 결정 양상과 일치한다(도 1)The XRD pattern of the zinc oxide particles prepared in 1-1 was used as the standard of Joint Committee on Powder Diffraction Standards (JCPDS, 36-1451, a = 3.429 Å, c = 5.206 Å, λ = Cu 1.54 Å) Compared with data. Characteristic peaks of the ten zinc oxide particles appeared, which are (100), (002), (101), (102), (110), (103), (200), (112), (201) of zinc oxide. ), (004) and (202) is consistent with the decision aspect (Fig. 1).
BET (Brunaure-Emmett-Teller) 기구(Tristar, Micrometrics, 미국) 및 BJH (Barrett-Joyner-Halenda) 방법에 의해 상기 1-1에서 제조된 산화아연입자의 표면 적과 공극 크기를 측정하였다. The surface area and pore size of the zinc oxide particles prepared in 1-1 were measured by the Brunaure-Emmett-Teller (BET) instrument (Tristar, Micrometrics, USA) and the BJH (Barrett-Joyner-Halenda) method.
산화아연 입자의 BET의 특정 표면 면적, 공극 부피, 공극 크기 분포 및 평균 공극 직경을 포함하는 공극 특성을 N2 흡수/분리 등온선으로 나타내었다. 준비된 산화아연 입자의 구조는 H4형 이력 곡선의 타입 Ⅳ 커브임을 알 수 있었다. 이력 현상과 일치하는 P/P0의 범위는 0.4-0.7 및 0.9 이상이었다. 이는 초기 입자는 중간 범위의 공극 크기를 가지고 입자들이 응집된 두 번째 입자들은 초기 입자들이 응집됨에 따라 생긴 입자 사이 공극 공간을 가진다는 것을 의미한다. 다공성 산화아연 입자의 BET 표면 면적은 55 m2/g이었다. 그리고 N2 흡수/분리 등온선 분석에서, 공극 크기는 3nm 및 15-30nm였고 공극부피는 0.169 cc/g이었다.The pore characteristics, including the specific surface area, pore volume, pore size distribution and average pore diameter of the BET of the zinc oxide particles, are represented by N 2 absorption / separation isotherms. The structure of the prepared zinc oxide particles was found to be a Type IV curve of H4 type hysteresis curve. The range of P / P 0 consistent with the hysteresis was 0.4-0.7 and 0.9 or greater. This means that the initial particles have a mid-range pore size and the second particles with aggregated particles have a void space between the particles resulting from the aggregation of the initial particles. The BET surface area of the porous zinc oxide particles was 55 m 2 / g. In the N 2 absorption / isolation isotherm analysis, the pore sizes were 3 nm and 15-30 nm and the pore volume was 0.169 cc / g.
산화아연입자의 형태를 주사전자현미경(field emission scanning electron microscope; SEM, JSM-7401F, JEOL, 일본) 및 방출현미경(trans emission microscope; TEM, 300Kv, JEM2100F, JEOL, 일본)을 사용하여 평가하였다.The morphology of the zinc oxide particles was evaluated using a field emission scanning electron microscope (SEM, JSM-7401F, JEOL, Japan) and a trans emission microscope (TEM, 300Kv, JEM2100F, JEOL, Japan).
산화아연 입자의 SEM 이미지를 보았을 때, 합성된 입자의 모양이 구 형태이고 입자 크기가 균일하게 약 100nm라는 것을 알 수 있었다(도 2). 또한, TEM 이미지를 보았을 때, 구형의 산화아연 입자는 10nm크기의 매우 작은 나노 입자로 구성된 응집물이라는 것을 알 수 있었고, 또한 SEM이미지에서 입증되었듯이, 입자 크기가 100nm임을 TEM 이미지에서 재확인할 수 있었다(도 3).When looking at the SEM image of the zinc oxide particles, it was found that the shape of the synthesized particles was spherical and the particle size was uniformly about 100 nm (FIG. 2). In addition, when looking at the TEM image, it was found that the spherical zinc oxide particles were agglomerates composed of very small nanoparticles having a size of 10 nm, and also confirmed in the TEM image that the particle size was 100 nm as demonstrated in the SEM image. (FIG. 3).
1-2: 모링가 올레이페라 추출물의 제조1-2: Preparation of Moringa oleifera extract
건조된 모링가 올레이페라 시드 100g을 분쇄한 후 70% (v/v) 에탄올 수용액으로 3일간 교반 추출하고 1.2um 투과 사이즈를 갖는 여과지로 여과하여 여과액을 수득하였다. 수득된 여과액을 50℃ 이하에서 감압 농축 및 감압 건조로 농축하여 8.3g 의 모링가 올레이페라 시드 추출물을 얻었다.100 g of dried Moringa oleifera seed was pulverized, stirred and extracted with 70% (v / v) ethanol aqueous solution for 3 days, and filtered through a filter paper having a permeation size of 1.2 μm to obtain a filtrate. The filtrate obtained was concentrated under reduced pressure and dried under reduced pressure at 50 ° C. or lower to obtain 8.3 g of Moringa oleifera seed extract.
한편 에틸아세테이트(Ethyl acetate)를 이용한 모링가 올레이페라시드 추출물을 얻기 위하여 유기유매(헥산)을 이용하여, 오일상의 선택적인 분리 방법인 극성/비극성 분획법을 이용하여 감압된 농축 파우더로부터 오일성분을 제거하였으며, 바람직하게는 추출물 파우더에서 10배의 증류수를 분산하고, 동량의 헥산을 첨가하여 수차례 혼합하고 비극성과 극성의 두 상이 서로 분리될 때까지 정치하여 헥산층(비극성)을 물층(극성)으로부터 분리하여 버렸다.On the other hand, to obtain the Moringa oleifera seed extract using ethyl acetate (Ethyl acetate) using an organic solvent (hexane), oil components from the concentrated powder reduced pressure using a polar / non-polar fraction method, an optional separation of the oil phase 10 times distilled water was dispersed in the extract powder, and the same amount of hexane was added, mixed several times, and left until the two phases of nonpolar and polar phases were separated from each other to form a hexane layer (nonpolar). Separated from.
오일성분이 제거된 물층(극성)에 동량의 에틸아세테이트를 첨가하여 수차례 혼합하고 두 상이 서로 분리될 때까지 정치하여 에틸하세테이트 층을 얻었다. 이렇게 수득된 에틸아세테이트 층을 50℃ 이하에서 감압 농축 및 감압 건조로 농축하여 4.5g의 모링가 올레이페라 시드 추출물을 얻었다.The same amount of ethyl acetate was added to the water layer (polar) from which the oil component was removed, mixed several times, and left until the two phases were separated from each other to obtain an ethyl acetate layer. The ethyl acetate layer thus obtained was concentrated under reduced pressure and dried under reduced pressure at 50 ° C. or lower to obtain 4.5 g of Moringa oleifera extract.
상기 제조된 에틸아세테이트로부터 얻은 모링가 올레이페리시드 추출물을 prep HPLC 혹은 MPLC를 이용하여 C18 역상 컬럼에서 물:아세토나이트릴(92:8 ~ 8:92, Gradient)을 이동상으로 하여 UV파장 256nm에서 Niazimicin(도 4)과 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)(도5) 두 가지 생활성 물질을 분리하였다.Moringa oleiferid extract obtained from the ethyl acetate prepared above using a water: acetonitrile (92: 8 ~ 8:92, Gradient) in a C18 reversed phase column using prep HPLC or MPLC as a mobile phase Niazimicin at UV wavelength 256nm (FIG. 4) and 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) (FIG. 5) were separated into two bioactive materials.
1-3: 다공성 산화아연(ZnO)입자에 유기물질의 포집1-3: Collection of organic material into porous zinc oxide (ZnO) particles
다공성 산화아연입자 내 게스트(guest)물질을 포집하기 위하여, 50%(w/v)농도의 유기물질과 혼합하였고 다공성 산화아연입자의 공극으로 용액이 침투되도록 문질렀다. 특히, 무기산화아연과 유기물질 사이의 상승적 항균효과를 조사하기 위하여, 모링가 올레이페라 시드로부터 추출물을 다공성 산화아연 내 게스트물질로 선택하였고, 다공성 산화아연 내 포집효율은 모링가 올레이페라 시드 추출물에 대해 10% (w/w)였다. 다공성 산화아연 채널에 상기 모링가 올레이페라 추출물을 포집하기 위해, 상기 과정을 3번 반복하였다.In order to capture the guest material in the porous zinc oxide particles, the mixture was mixed with 50% (w / v) organic material and rubbed to infiltrate the solution into the pores of the porous zinc oxide particles. In particular, in order to investigate the synergistic antimicrobial effect between inorganic zinc oxide and organic materials, the extract was selected from Moringa oleifera seed as a guest material in porous zinc oxide, and the collection efficiency in porous zinc oxide was applied to Moringa oleifera seed extract. 10% (w / w). The procedure was repeated three times to capture the Moringa oleifera extract in the porous zinc oxide channel.
실시예 2: 제조된 항균제의 특성 평가Example 2: Evaluation of Characteristics of Prepared Antimicrobial Agents
모든 실험을 삼중으로 수행하였다. 데이터는 ± 표준편차(SD) 평균으로 나타내었다. 평균은 Student의 다중범위 t-테스트를 통해 평가하였다. 통계적으로 유의차(significant difference)는 p < 0.05 일 때이다.All experiments were performed in triplicate. Data are presented as mean ± standard deviation (SD). Means were assessed by Student's multirange t-test. Statistically, the significant difference is when p <0.05.
항균제의 특성 평가는 원형여과지법(Paper disc method)과 최소발육저지농도(MIC: Minimum Inhibition Concentration method)의 측정에 의해 이루어졌다.The evaluation of the antimicrobial properties was made by measuring the paper disc method and the minimum inhibition concentration method (MIC).
원형여과지법(Paper disc method)에 의한 항균제의 특성평가는 원형여과지를 피검액 1 내지 10mg/disc 실험 샘플에 침전시킨 후 배양 배지 중앙에 두고, 인큐베이터 안에서 박테리아(bacteria)의 경우 12시간, 곰팡이(mold)의 경우 48시간 배양시켜 측정하였다. Characterization of the antimicrobial agent by the paper disc method was performed by precipitating the circular filtrate to 1 to 10 mg / disc test sample and placing it in the center of the culture medium, and for 12 hours for bacteria in the incubator. In the case of a mold) was measured by incubation for 48 hours.
*44최소발육저지농도(MIC: Minimum Inhibition Concentration method)는 미생물 성장을 억제할 수 있는 피검액의 최소 농도로 정의된다. 영양배지 내 여러 농도로 피검액을 첨가해 회분 배양 시켜 MIC를 측정하였다. 시험샘플을 영양배지에 첨가하고, 영양배지 혼합물을 입자 응집을 막기 위하여 5분 동안 초음파 처리하였다. 그 후 각각의 혼합물을 초기 박테리아 농도를 106 - 107 CFUml-1로 유지하기 위하여, 새로 준비된 1ml의 박테리아 영양배지에 첨가하였고, 그런 다음 박테리아의 경우 2일 동안 35℃에서, 균류의 경우 5일 동안 25℃에서 셰이커 안에 배양하였다. 화장품 항균효과의 연구를 위해 일반적인 효모로써 그람양성 황색포도상구균(ATCC 6538P), 그람음성 대장균(ATCC 8739), 녹농균(ATCC 9027), 칸디다 알비칸스(ATCC 10231) 및 사상균으로써 아스페루질루스 니게르(ATCC 22343)를 사용하였다. 상기 균주들의 미생물 성장을 48시간 동안 마이크로플레이트리더에 의해 650nm에서 관찰하여 조사하였다.* 44 Minimum Inhibition Concentration Method (MIC) is defined as the minimum concentration of test fluid that can inhibit the growth of microorganisms. The test solution was added at various concentrations in the nutrient medium and batch cultured to measure MIC. Test samples were added to the nutrient medium and the nutrient mixture was sonicated for 5 minutes to prevent particle aggregation. Each mixture was then added to freshly prepared 1 ml of bacterial nutrient medium to maintain an initial bacterial concentration of 10 6-10 7 CFUml -1 , then at 35 ° C. for 2 days for bacteria and 5 for fungus. Incubated in shaker at 25 ° C. for days. Gram-positive Staphylococcus aureus (ATCC 6538P), Gram-negative Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Candida albicans (ATCC 10231), and Aspergillus niger as filamentous fungi for the study of cosmetic antibacterial effects. (ATCC 22343) was used. Microbial growth of the strains was examined by observing at 650 nm with a microplate reader for 48 hours.
표 1 및 표 2에 나타난 바와 같이, 에탄올과 에틸아세테이트를 이용한 모링가 올레이페라 시드 추출물은 황색포도상구균(ATCC 6538P), 그람음성 대장균(ATCC 8739), 녹농균(ATCC 9027), 칸디다 알비칸스(ATCC 10231) 및 사상균으로써 아스페루질루스 니게르(ATCC 22343)에 대해 상당한 항균효과를 나타냈다. 상기 추출물을 분석한 결과, Niazimicin(도 4)과 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)(도5)인 두 가지 생활성 물질을 검출할 수 있었다. 상기 화합물의 구조는 mass spectrophotometer, Infra red, 1D and 2D NMR에 의한 분광 분석(spectroscopic analysis)을 통해 측정되었다.As shown in Table 1 and Table 2, Moringa oleifera extract extract using ethanol and ethyl acetate was Staphylococcus aureus (ATCC 6538P), Gram-negative Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Candida albicans (ATCC) 10231) and filamentous fungi showed significant antibacterial effects against Aspergillus niger (ATCC 22343). As a result of analyzing the extract, two bioactive substances, Niazimicin (FIG. 4) and 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) (FIG. 5), could be detected. The structure of the compound was measured by spectroscopic analysis by mass spectrophotometer, Infra red, 1D and 2D NMR.
표 1 다양한 미생물에 대한 여러 샘플 농도에 따른 에탄올(EtOH)을 이용한 모링가 올레이페라 시드 추출물의 항균효과
미생물 샘플 농도 % (w/v)
0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
Table 1 Antimicrobial Effects of Moringa Oleifera Seed Extract Using Ethanol (EtOH) According to Different Sample Concentrations for Various Microorganisms
microbe Sample concentration% (w / v)
0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus + +
Escherichia coli + + +
Pseudomonas aeruginosa + + + +
Candida albicans + + + +
Aspergillus niger + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control; −: inhibition)
표 2 다양한 미생물에 대한 여러 샘플 농도에 따른 에틸아세테이트(Ethyl acetate)를 이용한 모링가 올레이페라 시드 추출물의 항균효과
미생물 샘플 농도 % (w/v)
0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
TABLE 2 Antimicrobial Effect of Moringa Oleifera Extract Using Ethyl Acetate According to Different Sample Concentrations for Various Microorganisms
microbe Sample concentration% (w / v)
0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus +
Escherichia coli + + +
Pseudomonas aeruginosa + + + +
Candida albicans + + + +
Aspergillus niger + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
상기 두 화합물은 5가지 미생물에 대해 항균 활성을 보였다. 특히 RBI는 황색포도상구균(0.005%, w/v), 대장균(0.1%, w/v), 녹농균(0.5%, w/v), 칸디다 알비칸스(0.5%, w/v), 아스페루질루스 니게르(0.5%, w/v)에 대해 강력한 항균 활성을 가진것으로 나타났다(표 4). 그러나 Niazimicin의 경우는 황색포도상구균(0.1%, w/v)을 제외하고는 항균 활성을 나타내지 않았다. The two compounds showed antimicrobial activity against five microorganisms. In particular, RBI is known as Staphylococcus aureus (0.005%, w / v), Escherichia coli (0.1%, w / v), Pseudomonas aeruginosa (0.5%, w / v), Candida albicans (0.5%, w / v), Aspergillus It was shown to have strong antimicrobial activity against loose niger (0.5%, w / v) (Table 4). However, Niazimicin showed no antimicrobial activity except Staphylococcus aureus (0.1%, w / v).
상기 언급한 원형여과지법에 의해 RBI와 Niazimicin의 항균 활성을 측정하였다. RBI와 Niazimicin 모두 피검액 농도 5mg/disc일 때 항균 활성을 나타냈으나, Niazimicin에 비해 RBI의 생육저해영역이(각각 23mm와 28mm의 직경을 나타냄) 더욱 넓게 나타난 것을 확인할 수 있었다(도 6).The antimicrobial activity of RBI and Niazimicin was measured by the above-mentioned circular filtration method. Both RBI and Niazimicin showed antimicrobial activity when the test solution concentration was 5 mg / disc, but the growth inhibition region of RBI (indicating diameters of 23 mm and 28 mm, respectively) was wider than that of Niazimicin (FIG. 6).
상기 두 화합물의 항균 효과는 분자구조 에틸기(ethyl group)에 기인하는 분자구조 특성 인것으로 추측된다. 즉 Niazimicin의 구조에는 글리코사이드 외에 한 개의 에틸기가 존재하기 때문에 미생물 세포막으로 침투가 용이하지 않은 반면, RBI의 구조에는 에틸기가 존재하지 않아 미생물 세포막으로 침투가 용이한 것으로 보이며, 이러한 분자구조 특성은 미생물 생장저해 메커니즘에 의해 세포막의 기능을 감소시키면서, 미생물 세포막 표면에서 좀 더 용이하게 침투할 수 있는 것으로 보여진다.The antimicrobial effect of the two compounds is assumed to be a molecular structure characteristic due to the molecular structure ethyl group. In other words, the structure of Niazimicin is not easy to penetrate into the microbial cell membrane because there is only one ethyl group in addition to glycoside, whereas the structure of RBI does not exist in the microbial cell membrane. It is shown that the growth inhibition mechanism can more easily penetrate the surface of the microbial cell membrane, while reducing the function of the cell membrane.
표 3 다양한 미생물에 대한 여러 샘플 농도에 따른 Niazimicin의 항균효과
미생물 샘플 농도% (w/v)
0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
TABLE 3 Antimicrobial Effects of Niazimicin with Different Sample Concentrations on Various Microorganisms
microbe Sample concentration% (w / v)
0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus + + +
Escherichia coli + + + + +
Pseudomonas aeruginosa + + + + +
Candida albicans + + + + +
Aspergillus niger + + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
표 4 다양한 미생물에 대한 여러 샘플 농도에 따른 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)의 항균효과
미생물 샘플 농도% (w/v)
0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
Table 4 Antimicrobial Effects of 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) with Different Sample Concentrations on Various Microorganisms
microbe Sample concentration% (w / v)
0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus
Escherichia coli + + +
Pseudomonas aeruginosa + + + +
Candida albicans + + + +
Aspergillus niger + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
다공성 물질의 특성과 항균 활성과의 상관관계를 알아보고자 다공성 산화아연의 항균 효과를 평가하였다(표 5). 그 결과 다공성 산화아연의 항균 효과는 황색포도상구균과 대장균을 제외하고 항균 효과를 가지지 않는 것으로 나타났다.The antimicrobial effect of porous zinc oxide was evaluated to examine the correlation between the properties of the porous material and the antimicrobial activity (Table 5). As a result, the antibacterial effect of the porous zinc oxide did not have antibacterial effect except Staphylococcus aureus and Escherichia coli.
표 5 다양한 미생물에 대한 여러 샘플 농도에 따른 다공성 산화아연의 항균효과
미생물 샘플 농도% (w/v)
0.004 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
Table 5 Antimicrobial Effects of Porous Zinc Oxide on Various Sample Concentrations for Various Microorganisms
microbe Sample concentration% (w / v)
0.004 0.01 0.05 0.1 0.5
Staphylococcus aureus
Escherichia coli + +
Pseudomonas aeruginosa + + + + +
Candida albicans + + + + +
Aspergillus niger + + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
무기계 항균제인 다공성 산화아연을 지지체로 이용하고 에탄올(표 6)과 에틸아세테이트(표 7)를 이용한 모링가 올레이페라 시드 추출물 및 RBI(표 8)를 상기 지지체에 포집하여 다양한 미생물에 대해 항균효과를 평가하였다. 그 결과 모링가 올레이페라 시드 추출물 및 RBI를 다공성 산화아연 지지체 없이 항균효과를 평가했을 때 대비 항균 효과가 개선된 것을 확인할 수 있었다. 산화아연에 각 천연물질이 10%담지되었으므로 담지하기 전에 비하여 미생물 종류에 따라 약 10 ~ 50배이상 항균효과가 증대되었음을 알 수 있다. 즉, 산화아연과 모링가 올레이페라 시드 추출물 사이에 상승적 항균 효과가 있음을 알 수 있었다. 이것은 앞서 언급했듯이 분자 구조적으로 에틸기가 없는 RBI가 산화아연을 미생물 세포막에 좀 더 용이하게 밀착시킴으로써, Zn+가 -SH 그룹과 반응하여 효소를 비활성화시키는 메커니즘에 의해 미생물의 성장을 효과적으로 저해했기 때문으로 보여진다.Moringa oleifera extract and RBI (Table 8) using porous zinc oxide, an inorganic antimicrobial agent, as a support and ethanol (Table 6) and ethyl acetate (Table 7) were collected on the support to provide antimicrobial effects against various microorganisms. Evaluated. As a result, it was confirmed that the antimicrobial effect of Moringa oleifera seed extract and RBI was improved compared to the evaluation of the antimicrobial effect without a porous zinc oxide support. Since 10% of each natural substance was supported by zinc oxide, it can be seen that the antimicrobial effect was increased by about 10 to 50 times or more depending on the type of microorganism compared to before loading. That is, it was found that there is a synergistic antimicrobial effect between zinc oxide and Moringa oleifera seed extract. This is because, as mentioned earlier, the molecular structure of the ethyl-free RBI adhered zinc oxide to the microbial cell membrane more easily, thereby effectively inhibiting the growth of microorganisms by the mechanism by which Zn + reacts with the -SH group to inactivate enzymes. Shown.
표 6 다양한 미생물에 대한 여러 샘플 농도에 따른 모링가 올레이페라 시드의 에탄올(EtOH) 추출물을 포집한 산화아연의 항균효과
미생물 샘플 농도% (w/v)
0.001 0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
Table 6 Antimicrobial Effect of Zinc Oxide Captured Ethanol (EtOH) Extract of Moringa oleifera Seed at Different Sample Concentrations for Various Microorganism
microbe Sample concentration% (w / v)
0.001 0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus + +
Escherichia coli + + +
Pseudomonas aeruginosa + + + + +
Candida albicans + + + +
Aspergillus niger + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
표 7 다양한 미생물에 대한 여러 샘플 농도에 따른 모링가 올레이페라 시드 에틸아세테이트(Ethyl Acetate) 추출물을 포집한 산화아연의 항균효과
미생물 샘플 농도% (w/v)
0.001 0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
TABLE 7 Antibacterial Effect of Zinc Oxide from Moringa Oleifera Seed Ethyl Acetate Extract with Different Sample Concentrations for Various Microorganisms
microbe Sample concentration% (w / v)
0.001 0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus +
Escherichia coli + +
Pseudomonas aeruginosa + + + + +
Candida albicans + + + + +
Aspergillus niger + + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
표 8 다양한 미생물에 대한 여러 샘플 농도에 따른 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI)를 포집한 산화아연의 항균효과
미생물 샘플 농도% (w/v)
0.001 0.005 0.01 0.05 0.1 0.5
황색포도상구균
대장균
녹농균
칸디다 알비칸스
아스페루질루스 니게르
Table 8 Antimicrobial Effects of Zinc Oxide Captured with 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) at Different Sample Concentrations on Various Microorganisms
microbe Sample concentration% (w / v)
0.001 0.005 0.01 0.05 0.1 0.5
Staphylococcus aureus
Escherichia coli + +
Pseudomonas aeruginosa + + + + +
Candida albicans + + + +
Aspergillus niger + + + +
(+: 성장; Δ: 대조군에 비해 억제된 성장; -: 억제)(+: Growth; Δ: growth inhibited compared to the control;-: inhibition)
본 발명에 따른 항균제는 황색포도상구균 및 대장균 등 미생물에 대해 뛰어난 항균효과를 가지면서도 안전성이 우수하므로, 화장품 분야 등에 유용하다.Since the antimicrobial agent according to the present invention has excellent antimicrobial effect against microorganisms such as Staphylococcus aureus and Escherichia coli, and is excellent in safety, it is useful in cosmetics and the like.

Claims (10)

  1. 다공성 물질에 모링가 올레이페라 추출물, 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI) 또는 Niazimicin이 포집되어 있는 항균제.An antimicrobial agent in which Moringa oleifera extract, 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) or Niazimicin is trapped in a porous material.
  2. 제1항에 있어서, 상기 다공성 물질은 산화아연(ZnO)인 것을 특징으로 하는 항균제.The antimicrobial agent of claim 1 wherein the porous material is zinc oxide (ZnO).
  3. 제1항에 있어서, 상기 모링가 올레이페라 추출물은 모링가 올레이페라 시드 추출물인 것을 특징으로 하는 항균제.The antimicrobial agent of claim 1, wherein the Moringa oleifera extract is an Moringa oleifera seed extract.
  4. 제3항에 있어서, 상기 모링가 올레이페라 시드 추출물은 모링가 올레이페라 시드 에탄올 추출물 또는 모링가 올레이페라 시드 에틸아세테이트 추출물인 것을 특징으로 하는 항균제.The antimicrobial agent of claim 3, wherein the Moringa oleifera seed extract is Moringa oleifera ethanol extract or Moringa oleifera seed ethyl acetate extract.
  5. 제1항 또는 제3항에 있어서, 상기 모링가 올레이페라 추출물은 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI) 또는 Niazimicin을 유효성분으로 함유하는 것을 특징으로 하는 항균제.The antimicrobial agent according to claim 1 or 3, wherein the Moringa oleifera extract contains 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) or Niazimicin as an active ingredient.
  6. 다공성 물질에 모링가 올레이페라 추출물, 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI) 또는 Niazimicin을 포집시키는 것을 특징으로 하는 항균제의 제조방법.Moringa oleifera extract, 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) or Niazimicin to the porous material to produce an antimicrobial agent.
  7. 제6항에 있어서, 상기 다공성 물질은 산화아연(ZnO)인 것을 특징으로 하는 항균제의 제조방법.The method of claim 6, wherein the porous material is zinc oxide (ZnO).
  8. 제6항에 있어서, 상기 모링가 올레이페라 추출물은 모링가 올레이페라 시드 추출물인 것을 특징으로 하는 항균제의 제조방법.The method of claim 6, wherein the Moringa oleifera extract is a Moringa oleifera seed extract.
  9. 제8항에 있어서, 상기 모링가 올레이페라 시드 추출물은 모링가 올레이페라 시드 에탄올 추출물 또는 모링가 올레이페라 시드 에틸아세테이트 추출물인 것을 특징으로 하는 항균제의 제조방법.The method of claim 8, wherein the Moringa oleifera seed extract is Moringa oleifera ethanol extract or Moringa oleifera seed ethyl acetate extract.
  10. 제8항 또는 제10항에 있어서, 상기 모링가 올레이페라 추출물은 4-(α-L-rhamnopyranosyloxyl)-benzyl isothiocyanate(RBI) 또는 Niazimicin을 유효성분으로 함유하는 것을 특징으로 하는 항균제의 제조방법.The method according to claim 8 or 10, wherein the Moringa oleifera extract comprises 4- (α-L-rhamnopyranosyloxyl) -benzyl isothiocyanate (RBI) or Niazimicin as an active ingredient.
PCT/KR2013/006695 2013-05-31 2013-07-26 Antimicrobial agent having moringa oleifera extract captured in porous zinc oxide and preparation method therefor WO2014193031A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0062259 2013-05-31
KR1020130062259A KR101452326B1 (en) 2013-05-31 2013-05-31 Antimicrobiol Agent Including Moringa oleifera Extracts within Mesoporous ZnO and Method for Preparing the Same

Publications (1)

Publication Number Publication Date
WO2014193031A1 true WO2014193031A1 (en) 2014-12-04

Family

ID=51989032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006695 WO2014193031A1 (en) 2013-05-31 2013-07-26 Antimicrobial agent having moringa oleifera extract captured in porous zinc oxide and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101452326B1 (en)
WO (1) WO2014193031A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104873554A (en) * 2015-05-28 2015-09-02 郑艳华 Moringa seed and novel use of moringa seed extract for medicine and health-care food capable of promoting learning memory
EP3341034A4 (en) * 2015-08-28 2019-05-08 The Regents of The University of Michigan Antimicrobial and enzyme inhibitory zinc oxide nanoparticles
CN114532332A (en) * 2022-01-26 2022-05-27 中国科学院兰州化学物理研究所 Method for constructing zinc oxide/attapulgite nano composite antibacterial material by utilizing ginkgo leaf extract

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101920392B1 (en) 2017-05-26 2018-11-20 영남대학교 산학협력단 Composition comprising extracts of Moringa oleifera supercritical fluid extraction and their unsaturated fatty acid components for inhibiting biofilm formation
KR102287391B1 (en) 2018-12-24 2021-08-06 안동대학교 산학협력단 Antimicrobial composition comprising the extract of moringa root

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147723A1 (en) * 2001-07-19 2004-07-29 Nicolas Mermod Moringa seed proteins
US20070264366A1 (en) * 2006-05-10 2007-11-15 Academia Sinica Moringa crude extracts and their derived fractions with antifungal activities
KR20100102518A (en) * 2009-03-11 2010-09-24 이태용 Organic-inorganic hybrid for coagulation and antimicrobial applications and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147723A1 (en) * 2001-07-19 2004-07-29 Nicolas Mermod Moringa seed proteins
US20070264366A1 (en) * 2006-05-10 2007-11-15 Academia Sinica Moringa crude extracts and their derived fractions with antifungal activities
KR20100102518A (en) * 2009-03-11 2010-09-24 이태용 Organic-inorganic hybrid for coagulation and antimicrobial applications and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUKAR, A. ET AL.: "Antimicrobial profile of Moringa oleifera Lam. extracts against some food-bome microorganisms.", BAYERO JOURNAL OF PURE AND APPLIED SCIENCES, vol. 3, no. 1, 1 June 2010 (2010-06-01), pages 43 - 48 *
FAHEY, J. W.: "Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1.", PHYTOCHEMISTRY, vol. 47, 1 December 2005 (2005-12-01), pages 123 - 157 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104873554A (en) * 2015-05-28 2015-09-02 郑艳华 Moringa seed and novel use of moringa seed extract for medicine and health-care food capable of promoting learning memory
EP3341034A4 (en) * 2015-08-28 2019-05-08 The Regents of The University of Michigan Antimicrobial and enzyme inhibitory zinc oxide nanoparticles
CN114532332A (en) * 2022-01-26 2022-05-27 中国科学院兰州化学物理研究所 Method for constructing zinc oxide/attapulgite nano composite antibacterial material by utilizing ginkgo leaf extract

Also Published As

Publication number Publication date
KR101452326B1 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
Pandiyan et al. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties
Hashem et al. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200
Soomro et al. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent
WO2014193031A1 (en) Antimicrobial agent having moringa oleifera extract captured in porous zinc oxide and preparation method therefor
Suriyakala et al. Green synthesis of gold nanoparticles using Jatropha integerrima Jacq. flower extract and their antibacterial activity
Kannan et al. Green synthesis of ruthenium oxide nanoparticles: Characterization and its antibacterial activity
Rajivgandhi et al. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria
Rădulescu et al. Antimicrobial coatings based on zinc oxide and orange oil for improved bioactive wound dressings and other applications
Abishad et al. Green synthesized silver nanoparticles using Lactobacillus acidophilus as an antioxidant, antimicrobial, and antibiofilm agent against multi-drug resistant enteroaggregative Escherichia coli
Pagar et al. Biomimetic synthesis of CuO nanoparticle using Capparis decidua and their antibacterial activity
Nikparast et al. Synergistic effect between phyto-syntesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains
Kalaiyan et al. Green synthesis of CuO nanostructures with bactericidal activities using Simarouba glauca leaf extract
Dhatwalia et al. R ubus ellipticus fruits extract-mediated cuprous oxide nanoparticles: in vitro antioxidant, antimicrobial, and toxicity study
Mei et al. Photo-initiated enhanced antibacterial therapy using a non-covalent functionalized graphene oxide nanoplatform
Jabeen Facile green synthesis of silver doped ZnO nanoparticles using Tridax Procumbens leaf extract and their evaluation of antibacterial activity
Shah et al. Study of Antibacterial activity of Phyllanthus emblica and its role in Green Synthesis of Silver Nanoparticles
Huang et al. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms
Durgawale et al. Biosynthesis of silver nanoparticles using latex of Syandenium grantii Hook f and its assessment of antibacterial activities
Okeleye et al. Crude ethyl acetate extract of the stem bark of Peltophorum africanum (Sond, Fabaceae) possessing in vitro inhibitory and bactericidal activity against clinical isolates of Helicobacter pylori
WO2021080357A1 (en) Antibiotic silver nanoparticles using tomato extract, and method for producing same
Krishnaraj et al. Green synthesis of Ag and Au NPs decorated rGO nanocomposite for high impedimetric electrochemical sensor as well as enhanced antimicrobial performance against foodborne pathogens
Długosz et al. Cu2O nanoparticles deposited on Y2O3 and CuO: synthesis and antimicrobial properties
KR20190027641A (en) Natural antibacterial agent and manufacturing method thereof
Yilma et al. ZnO nanoparticles synthesized using aerial extract of Ranunculus multifidus plant: antibacterial and antioxidant activity
CN111387215B (en) Application of nano-silver material mediated and synthesized by moringa seed extract in antibiosis and antioxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885816

Country of ref document: EP

Kind code of ref document: A1