WO2014193012A1 - 이미지 품질을 개선하기 위한 트랜스듀서 구조 - Google Patents

이미지 품질을 개선하기 위한 트랜스듀서 구조 Download PDF

Info

Publication number
WO2014193012A1
WO2014193012A1 PCT/KR2013/004835 KR2013004835W WO2014193012A1 WO 2014193012 A1 WO2014193012 A1 WO 2014193012A1 KR 2013004835 W KR2013004835 W KR 2013004835W WO 2014193012 A1 WO2014193012 A1 WO 2014193012A1
Authority
WO
WIPO (PCT)
Prior art keywords
transducer
hifu
ultrasound
image
matching layer
Prior art date
Application number
PCT/KR2013/004835
Other languages
English (en)
French (fr)
Inventor
손건호
강국진
김대승
김명덕
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Priority to EP13885703.2A priority Critical patent/EP3006086A4/en
Publication of WO2014193012A1 publication Critical patent/WO2014193012A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules

Definitions

  • Embodiments of the present invention relate to a transducer, and more particularly, to a transducer that improves the quality of an image acquired by an image transducer.
  • the ultrasound transducer is for receiving ultrasound ultrasound reflected from an object or radiating ultrasound to a treatment site for obtaining an ultrasound image of the object or for treating the object.
  • Ultrasonic transducers can be applied in many industries.
  • ultrasound is a device that radiates ultrasound from the body surface of the subject to the treatment area in the body, and treats the treatment area with the radiated ultrasound or non-invasive image of soft tissue tomography or blood flow using the reflected ultrasound. It can be mainly used in the field of medical devices such as devices.
  • the ultrasonic transducer uses the characteristics of the piezoelectric body to generate ultrasonic waves.
  • Piezoelectric material is a material that converts electrical energy and mechanical energy.
  • a piezoelectric body used in an ultrasonic transducer forms an electrode at the top and bottom thereof, and when a power is applied, the piezoelectric vibrates and converts electrical signals and acoustic signals.
  • Ultrasound transducers generally include an image transducer for the purpose of obtaining an image of an object, a high intensity focused ultrasound (HIFU) transducer for the purpose of treating an object, and an image transducer for simultaneously performing diagnosis and treatment. Ultrasonic transducers combined with HIFU transducers are also used.
  • HIFU high intensity focused ultrasound
  • FIG. 1 is a schematic diagram illustrating a general shape of a transducer structure in which an image transducer 120 and a HIFU transducer 110 are coupled.
  • Such a coupled transducer includes a HIFU transducer 110 that emits therapeutic ultrasound, an image transducer 120 that emits ultrasound for image acquisition, and the image transducer 120 of the HIFU transducer 110 It is installed in the center part.
  • the HIFU transducer 110 and the image transducer 120 are filled with a fluid medium 130 such as water so that ultrasonic waves radiated to the front part easily reach the object 100, and the fluid medium 130 may be filled with the HIFU transducer 110 and the image transducer 120.
  • Membrane 140 is provided to prevent leakage.
  • the HIFU transducer 110 includes a HIFU radiator 111 that radiates ultrasound, and the therapeutic ultrasound radiated by the HIFU radiator 111 is reflected from the object 100, a membrane, and the like, and the HIFU radiator 111. Ideally, you do not regress into). In addition, the ultrasound for acquiring the image emitted from the image transducer 120 is reflected from the treatment area of the object 100 is returned to the image transducer 120, it is ideal that it is reflected from the membrane or the like does not return.
  • the ultrasonic transducer since the ultrasonic transducer has its own impedance and the object 100 also has its own impedance, it is necessary to match the impedance to remove the difference of each impedance, for this purpose, the ultrasonic transducer has a matching layer to be described later.
  • the membrane of the image acquisition ultrasound emitted from the image transducer 120 may be Ultrasonic waves reflected from the 140 and the like and incident on the HIFU transducer 110 do not penetrate the matching layer of the HIFU transducer 110 and are reflected back from the surface of the ultrasonic wave and finally enter the image transducer 120.
  • the ultrasound for image acquisition which reenters the image transducer 120 without penetrating the object 100, has a problem of degrading the quality of the ultrasound image.
  • An embodiment of the present invention is to provide a structure that improves the quality of the ultrasound image obtained by the image transducer in the ultrasonic transducer combined with the HIFU transducer and the image transducer.
  • HIFU transducer having a high intensity focused ultrasound (HIFU) radiator for emitting a therapeutic ultrasound; And an image transducer installed adjacent to the HIFU transducer, the image transducer radiating ultrasound for image acquisition, wherein the HIFU radiator comprises the therapeutic ultrasound or the image acquisition ultrasound that returns to the HIFU radiator. It may be to form a plurality of depressions for extinction. In this case, the recessed portion may be formed in a cylindrical shape, one side of which is opened in the axial direction.
  • HIFU high intensity focused ultrasound
  • the recessed portions may be provided with a first piezoelectric body for generating the therapeutic ultrasonic waves, and a second piezoelectric body for generating the ultrasonic waves for image acquisition may be installed in the image transducer.
  • a filler is inserted into the outer portion of the depression, and the first piezoelectric body is inserted into the recess or part of the depression, and the acoustic impedance of the first piezoelectric body is between the first piezoelectric member and the filler.
  • a first matching layer may be disposed to match the acoustic impedance of the object to which the ultrasound arrives, and the second transducer may be formed in the image transducer to match the acoustic impedance of the second piezoelectric body to the acoustic impedance of the object.
  • the filler the material may be formed of a rubber or a polymer material.
  • the transducer of the above embodiment has the effect of extinguishing the ultrasonic waves returning to the HIFU radiator, or improving the quality of the ultrasonic image by adjusting the thickness of the matching layer.
  • FIG. 1 is a schematic diagram showing a general shape of a transducer structure in which an image transducer and a HIFU transducer are combined.
  • FIG. 2 is a schematic cross-sectional view showing a transducer according to an embodiment of the present invention.
  • Figure 3 is a front view for explaining the HIFU radiator of the transducer according to an embodiment of the present invention.
  • Figure 4 is a schematic partial cross-sectional view for explaining the HIFU transducer of the transducer structure according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • all terms used herein, including technical or scientific terms have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
  • FIG. 2 is a schematic cross-sectional view showing a transducer according to an embodiment of the present invention.
  • the HIFU transducer 210 radiates therapeutic ultrasound to the object 200 and includes a HIFU radiator 211.
  • HIFU radiator 211 may be formed in a parabolic (parabolic) shape, radiates the therapeutic ultrasonic wave forward from the inner peripheral surface of the parabolic shape, a plurality of depressions 2110 are formed on the inner peripheral surface.
  • the depression 2110 may be formed as a groove having a circular or polygonal shape, one side of which is opened in the axial direction, and includes a first piezoelectric body 2111, a first matching layer 2112, and a filler 2113.
  • the first piezoelectric material 2111 is inserted into the recessed part 2110, and receives the electric power from an external power source including a piezoelectric material to generate therapeutic ultrasound.
  • the first matching layer 2112 is interposed between the first piezoelectric material 2111 and the filler 2113, and matches the acoustic impedance of the first piezoelectric material 2111 with the acoustic impedance of the object 200 so as to match the surface of the object 200.
  • the ultrasonic wave serves to prevent reflection of the ultrasonic wave.
  • the filler 2113 serves to prevent air bubbles generated when the fluid medium 230 is exposed to the ultrasonic wave from entering the recess 2110.
  • the filler 2113 is light and is formed of a material having a high corrosion resistance to the fluid medium 230 such as water, for example, rubber or a polymer material.
  • the filler 2113 is illustrated to be separately inserted and attached to the outside of each recess 2110, but this is merely an example.
  • the parabolic plate may have a shape corresponding to the inner circumferential surface of the HIFU radiating part 211 to be attached to the entire inner circumferential surface of the HIFU radiating part 211 or to prevent the inflow of the depression 2110 of other bubbles.
  • the filler 2113 may be installed on the inner circumferential surface of the HIFU radiating part 211 in such a structure.
  • the depression 2110 is a part of the ultrasonic wave emitted from the first piezoelectric material 2111 or the second piezoelectric material 221 and then directed toward the object 200 is a fluid medium 230, membrane 240, the object 200
  • this regression ultrasonic wave is extinguished. That is, when the regression ultrasonic wave enters the depression 2110 and collides with the side surface and the bottom surface of the depression 2110, the resonant ultrasound disappears and the energy of the resonant ultrasound is converted into frictional heat.
  • the reflected ultrasound is re-reflected from the HIFU radiator 211 to be re-entered into the image transducer 220 to improve the quality of the ultrasound image.
  • the lowering can be prevented.
  • the first piezoelectric material 2111 and the first matching layer 2112 need not be provided in all of the plurality of recesses 2110.
  • the regenerated ultrasound is re-used at the media boundary surface formed by the first piezoelectric material 2111 and the first matching layer 2112, respectively. Since it may be reflected, the effect of the depression 2110 extinguishing the regression ultrasound may be reduced. Therefore, the first piezoelectric material 2111 and the first matching layer 2112 may be provided with a plurality of recesses 2110 appropriately selected and positioned.
  • the depression 2110 in which the first piezoelectric material 2111 and the first matching layer 2112 are not provided only serves to extinguish the regression ultrasound.
  • the ultrasonic wave is radiated and at the same time serves to extinguish the regenerated ultrasonic wave.
  • the filler 2113 is installed to prevent the bubbles generated from the fluid medium 230 from entering the depression 2110, and thus the filler 2113 is installed in all of the plurality of depressions 2110.
  • the image transducer 220 emits ultrasonic waves for acquiring an image of the object 200, and includes a second piezoelectric body 221 and a second matching layer 222.
  • the second piezoelectric element 221 is installed in the image transducer 220 and generates power for image acquisition by receiving power from an external power source including a piezoelectric material.
  • the second matching layer 222 is installed on the front surface of the second piezoelectric body 221 in the image transducer 220, and matches the acoustic impedance of the second piezoelectric body 221 with the acoustic impedance of the object 200 to produce the object 200. Ultrasonic waves are prevented from being reflected from the surface of the backplane.
  • the fluid medium 230 is positioned in front of the HIFU transducer 210 and the image transducer 220, and the intensity of the ultrasonic waves radiated from the first piezoelectric body 2111 and the second piezoelectric body 221 is not reduced. It serves to smoothly reach 200, and the fluid used is, for example, water.
  • Membrane 240 forms a space for accommodating the fluid, and serves to prevent leakage of the fluid medium 230.
  • Figure 3 is a front view for explaining the HIFU radiator of the transducer according to an embodiment of the present invention.
  • the HIFU radiating part 211 has a parabolic shape whose entirety forms an inner circumferential surface.
  • the depression 2110 is evenly arranged in a plurality throughout the HIFU radiator 211.
  • the arrangement of each of the plurality of recesses 2110 may include forming a plurality of virtual cylinders at a predetermined interval on the HIFU radiator 211 and arranging the recesses 2110 in a predetermined number along the circumference. .
  • the total number of depressions 2110 is considered in consideration of the number of first piezoelectric materials 2111 used in the HIFU transducer 210, the number of depressions 2110 in which the first piezoelectric materials 2111 are not installed, and the like. Choose appropriately.
  • the hollow part 310 is formed at the center of the HIFU radiating part 211, and the image transducer 220 is installed at the hollow part 310.
  • Figure 4 is a schematic partial cross-sectional view for explaining the HIFU transducer of the transducer structure according to an embodiment of the present invention.
  • the regression ultrasound wave 400 reflected and returned from the membrane 240 is reflected from the surface 2112-1 of the first matching layer and finally enters the image transducer 220, the image transducer 220 The quality of the image obtained from is degraded.
  • the regression ultrasound 400 is designed to be absorbed by the first matching layer 2112 without being reflected from the surface 2112-1 of the first matching layer, the quality of the image may be improved.
  • the thickness of 2112 By adjusting the thickness of 2112).
  • the thickness of the first matching layer 2112 that may be absorbed by the first matching layer 2112 without being reflected by the first matching layer 2112 is 4 times the wavelength of the revolving ultrasound 400. Odd multiple of one. In other words,
  • wavelength of the ultrasonic wave in the first matching layer 2112
  • the regression ultrasound 400 since the regression ultrasound 400 includes both an image acquisition ultrasound and a therapeutic ultrasound, the regression ultrasound 400 is not reflected from the surface 2112-1 of the first matching layer, but is not reflected on the first matching layer 2112. To be absorbed, the thickness DI of the first matching layer 2112 set in consideration of the frequency of the ultrasound for image acquisition and the thickness DH of the first matching layer 2112 set in consideration of the frequency of the therapeutic ultrasound are Should be the same.
  • the value is selected as the thicknesses DI and DH of the first matching layer 2112.
  • the thicknesses DI and DH of the first matching layer 2112 should satisfy the following Equations 1 to 3 below.
  • DI thickness (unit: mm) of the first matching layer 2112 set in consideration of the frequency of the ultrasound for image acquisition
  • DH thickness (unit: mm) of the first matching layer 2112 set in consideration of the frequency of the therapeutic ultrasound
  • fHc the center frequency of ultrasonic waves radiated from the HIFU transducer 210 (unit: MHz),
  • n, m positive integer.
  • the thickness of the first matching layer 2112 is determined using the center frequency.
  • fIc 3 MHz and fHc is 1 MHz
  • n 2
  • the thicknesses DI and DH of the first matching layer 2112 are (c / 4) ⁇ 1000 mm.
  • a positive real number excluding odd number is obtained by multiplying a quarter of the wavelength of the ultrasonic wave emitted from the image transducer 220 by an odd number and a quarter of the wavelength of the ultrasonic wave emitted from the HIFU transducer 210. If the multiplied values coincide with each other, the thickness of the first matching layer 2112 is selected by multiplying the first real number and the nearest odd number by the quarter of the wavelength of the ultrasonic wave emitted from the HIFU transducer 210. do. Specifically, when n is a positive integer and m is a positive real number excluding an integer, the thicknesses DI and DH of the first matching layer 2112 must satisfy the following Equations 4 to 6.
  • DI thickness (unit: mm) of the first matching layer 2112 set in consideration of the frequency of the ultrasound for image acquisition
  • DH thickness (unit: mm) of the first matching layer 2112 set in consideration of the frequency of the therapeutic ultrasound
  • fHc the center frequency of ultrasonic waves radiated from the HIFU transducer 210 (unit: MHz),
  • n is a positive integer
  • m ' positive integer rounded to m.
  • the thickness DH of the first matching layer 2112 is,
  • the first matching layer 2112 may be manufactured and used at this value.
  • the thickness of the first matching layer 2112 is determined by the method described above, and the first matching layer 2112 is compared with the case where n and m are positive integers. ), The absorption effect of the regression ultrasound 400 is reduced.
  • n and m are positive integers
  • the thickness of the first matching layer 2112 is limited. Therefore, the thickness of the first matching layer 2112 is determined by m being a positive real number rather than an integer.
  • fHc has an advantage of selecting an appropriate thickness of the first matching layer (2112).
  • the thickness of the first matching layer 2112 should be close to an odd multiple of one quarter of the wavelength of the regression ultrasound wave 400. To determine the thickness of the first matching layer 2112.
  • the transducer according to the embodiment of the present invention has the effect of extinguishing the ultrasonic waves returning to the HIFU radiator or improving the quality of the ultrasonic image by adjusting the thickness of the matching layer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Surgical Instruments (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

본 발명에 따른 트랜스듀서의 일 실시예는, 치료용 초음파를 방사하는 HIFU(high intensity focused ultrasound) 방사부를 구비하는 HIFU 트랜스듀서; 및 상기 HIFU 트랜스듀서에 인접하여 설치되고, 이미지 획득용 초음파를 방사하는 이미지 트랜스듀서를 포함하는 트랜스듀서에 있어서, 상기 HIFU 방사부는, 파라볼릭(parabolic) 형상으로 형성되고, 내주면에는 상기 HIFU 방사부로 회귀하는 상기 치료용 초음파 또는 상기 이미지 획득용 초음파를 소멸시키기 위한 함몰부가 복수개로 형성되는 것일 수 있다.

Description

이미지 품질을 개선하기 위한 트랜스듀서 구조
본 발명의 실시예는 트랜스듀서에 관한 것으로서, 더욱 상세하게는 이미지 트랜스듀서가 획득하는 이미지의 품질을 개선한 트랜스듀서에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
초음파 트랜스듀서는 대상체의 초음파 영상을 얻거나 대상체의 치료를 위하여, 초음파를 진료 부위로 방사하거나 대상체로부터 반사되어 온 에코 초음파를 수신하기 위한 것이다.
초음파 트랜스듀서는 여러 산업분야에 적용될 수 있다. 특히 대상체의 체표로부터 체내의 진료 부위를 항하여 초음파를 방사하고, 방사된 초음파로 진료부위를 치료하거나 반사된 초음파를 이용하여 연부조직의 단층이나 혈류에 관한 이미지를 무침습으로 얻는 장치인 초음파 진료장치 등 의료기기 분야에 주로 이용될 수 있다.
초음파 트랜스듀서가 초음파를 생성하는 압전체의 특성을 이용하는 것이다. 압전체란 전기적 에너지와 기계적 에너지를 상호 변환시키는 물질이다. 예를 들어 초음파 트랜스듀서에 사용되는 압전체는 그 상단 및 하단에 전극을 형성하고 전원을 인가하면 압전체가 진동하면서 전기적 신호와 음향 신호를 상호 변환시키는 역할을 한다.
초음파 트랜스듀서는 일반적으로, 대상체의 이미지 획득을 목적으로 하는 이미지 트랜스듀서, 대상체의 치료를 목적으로 하는 HIFU(high intensity focused ultrasound) 트랜스듀서 등이 있고, 진단과 치료를 동시에 수행하기 위해 이미지 트랜스듀서와, HIFU 트랜스듀서가 결합한 초음파 트랜스듀서도 사용된다.
도 1은 이미지 트랜스듀서(120)와 HIFU 트랜스듀서(110)가 결합한 트랜스듀서 구조의 일반적인 형태를 나타낸 개략도이다.
이러한 결합형 트랜스듀서는 치료용 초음파를 방사하는 HIFU 트랜스듀서(110), 이미지 획득용 초음파를 방사하는 이미지 트랜스듀서(120)를 포함하고, 이미지 트랜스듀서(120)는 HIFU 트랜스듀서(110)의 중앙부에 설치된다. HIFU 트랜스듀서(110)와 이미지 트랜스듀서(120)에는 전방부에 방사된 초음파가 대상체(100)에 용이하게 도달할 수 있도록 물 등의 유체매질(130)이 충전되고, 유체매질(130)의 누출을 방지하기 위한 멤브래인(140)이 구비된다.
HIFU 트랜스듀서(110)는 초음파를 방사하는 HIFU 방사부(111)를 구비하는데, HIFU 방사부(111)에서 방사되는 치료용 초음파는 대상체(100), 멤브래인 등에서 반사되어 HIFU 방사부(111)로 회귀하지 않는 것이 이상적이다. 또한, 이미지 트랜스듀서(120)로부터 방사되는 이미지 획득용 초음파는 대상체(100)의 진료부위에서 반사되어 이미지 트랜스듀서(120)로 회귀하고, 멤브래인 등에서 반사되어 회귀하지 않는 것이 이상적이다.
그러나, 치료용 초음파 또는 이미지 획득용 초음파는 방사된 후 유체매질(130), 멤브래인(140), 대상체(100) 표면 등의 경계면에서 반사가 일어나고, 반사된 일부 초음파는 재반사를 거듭하여 이미지 트랜스듀서(120)로 재입사하게 되고, 이러한 재입사 초음파는 초음파 이미지의 품질을 저하시키는 문제점이 있다.
한편, 초음파 트랜스듀서는 고유의 임피던스를 가지고 대상체(100)도 고유의 임피던스를 가지므로, 각 임피던스의 차이를 제거하는 임피던스 정합이 필요하고, 이를 위해 초음파 트랜스듀서는 후술하는 정합층을 구비한다.
그러나, 결합형 초음파 트랜스듀서에서는 HIFU 트랜스듀서(110)와 이미지 트랜스듀서(120) 각각의 정합층의 두께가 일치하지 않으면, 이미지 트랜스듀서(120)에서 방사된 이미지 획득용 초음파 중 멤브래인(140) 등에서 반사되어 HIFU 트랜스듀서(110)로 입사하는 초음파는 HIFU 트랜스듀서(110)의 정합층을 관통하지 않고 그 표면에서 다시 반사되어 종국적으로 이미지 트랜스듀서(120)로 입사한다. 이러한 대상체(100)를 관통하지 않고 이미지 트랜스듀서(120)로 재입사하는 이미지 획득용 초음파는, 초음파 이미지의 품질을 저하시키는 문제점이 있다.
본 발명의 실시예는, HIFU 트랜스듀서와 이미지 트랜스듀서를 결합한 초음파 트랜스듀서에서 이미지 트랜스듀서가 획득하는 초음파 이미지의 품질을 개선한 구조를 제공하는 데 목적이 있다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 트랜스듀서의 일 실시예는, 치료용 초음파를 방사하는 HIFU(high intensity focused ultrasound) 방사부를 구비하는 HIFU 트랜스듀서; 및 상기 HIFU 트랜스듀서에 인접하여 설치되고, 이미지 획득용 초음파를 방사하는 이미지 트랜스듀서를 포함하는 트랜스듀서에 있어서, 상기 HIFU 방사부는, 상기 HIFU 방사부로 회귀하는 상기 치료용 초음파 또는 상기 이미지 획득용 초음파를 소멸시키기 위한 함몰부가 복수개로 형성되는 것일 수 있다. 이때, 상기 함몰부는, 축방향으로 일측이 열린 원통형으로 형성되는 것일 수 있다.
상기 복수개의 함몰부의 일부 또는 전부에는 상기 치료용 초음파를 발생시키는 제1압전체가 설치되고, 상기 이미지 트랜스듀서에는 상기 이미지 획득용 초음파를 발생시키는 제2압전체가 설치되는 것일 수 있다. 또한, 상기 함몰부의 전부에는, 외측에 충전재가 삽입되고, 상기 함몰부의 일부 또는 전부에는, 내측에 상기 제1압전체가 삽입되고, 상기 제1압전체와 상기 충전재 사이에 상기 제1압전체의 음향 임피던스와 초음파가 도달하는 대상체의 음향 임피던스를 정합시키는 제1정합층이 개재되고, 상기 이미지 트랜스듀서에는, 상기 제2압전체의 음향 임피던스와 상기 대상체의 음향 임피던스를 정합시키는 제2정합층이 형성되는 것일 수 있다. 또한, 상기 충전재는, 재질이 고무 또는 고분자물질로 형성되는 것일 수 있다.
전술한 실시예의 트랜스듀서는, HIFU 방사부로 회귀하는 초음파를 소멸시키거나, 정합층의 두께를 조절하여 초음파 이미지의 품질을 개선하는 효과가 있다.
도 1은 이미지 트랜스듀서와 HIFU 트랜스듀서가 결합한 트랜스듀서 구조의 일반적인 형태를 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 따른 트랜스듀서를 나타낸 개략적인 단면도이다.
도 3은 본 발명의 일 실시예에 따른 트랜스듀서의 HIFU 방사부를 설명하기 위한 정면도이다.
도 4는 본 발명의 일 실시예에 따른 트랜스듀서 구조의 HIFU 트랜스듀서를 설명하기 위한 개략적인 부분단면도이다.
첨부한 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나, 개략적인 구성을 이해하기 위하여 실제보다 축소하여 도시한 것이다.
또한, 제1 및 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 한편, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 2는 본 발명의 일 실시예에 따른 트랜스듀서를 나타낸 개략적인 단면도이다.
HIFU 트랜스듀서(210)는 대상체(200)에 치료용 초음파를 방사하고, HIFU 방사부(211)를 포함한다. HIFU 방사부(211)는 파라볼릭(parabolic) 형상으로 형성될 수 있고, 파라볼릭 형상의 내주면에서 전방으로 치료용 초음파를 방사하며, 내주면 상에는 복수개의 함몰부(2110)가 형성된다.
상기 함몰부(2110)는 예를 들어, 축방향으로 일측이 열린 원형 또는 다각형 형상의 홈으로 형성될 수 있고, 제1압전체(2111), 제1정합층(2112) 및 충전재(2113)가 구비될 수 있다. 제1압전체(2111)는 함몰부(2110)의 내측에 삽입되고, 압전물질을 포함하여 외부전원으로부터 전력을 공급받아 치료용 초음파를 발생시킨다. 제1정합층(2112)은 제1압전체(2111)와 충전재(2113) 사이에 개재되고, 제1압전체(2111)의 음향 임피던스와 대상체(200)의 음향 임피던스를 정합시켜 대상체(200)의 표면에서 초음파가 반사되는 것을 방지하는 역할을 한다. 충전재(2113)는 유체매질(230)이 초음파에 노출되는 경우 발생하는 기포가 함몰부(2110)로 유입되는 것을 방지하는 역할을 한다. 충전재(2113)는 가벼우며 물 등의 유체매질(230)에 대한 내식성이 강한 재질, 예를 들어 고무 또는 고분자물질로 형성되는 것이 적절하다. 도 2에서는 충전재(2113)가 각 함몰부(2110) 외측에 개별적으로 삽입되어 부착되는 형태로 도시되었으나 이는 일 실시예에 불과하다. 다른 실시예로 HIFU 방사부(211)의 내주면에 대응하는 형상의 파라볼릭 판 형태로 제작하여 HIFU 방사부(211)의 내주면 전체에 부착하거나, 기타 기포의 함몰부(2110) 유입을 방지할 수 있는 구조로 충전재(2113)를 HIFU 방사부(211)의 내주면에 설치할 수 있다.
함몰부(2110)는 제1압전체(2111) 또는 제2압전체(221)로부터 발생한 후 대상체(200)를 향해 방사된 초음파의 일부가 유체매질(230), 멤브래인(240), 대상체(200) 표면 등의 경계면에서 반사되어 HIFU 방사부(211)로 되돌아오는 경우, 이러한 회귀 초음파를 소멸시킨다. 즉, 회귀 초음파가 함몰부(2110)로 입사하여 함몰부(2110)의 측면과 저면에 충돌하면, 회기 초음파는 소멸하고 회기 초음파가 가진 에너지는 마찰열로 변환된다. 이러한 방식으로 HIFU 방사부(211)로 되돌아오는 회기 초음파는 함몰부(2110)에서 효과적으로 소멸되므로, HIFU 방사부(211)에서 재반사되어 이미지 트랜스듀서(220)로 재입사하여 초음파 이미지의 품질을 저하시키는 것을 방지할 수 있다.
한편, 제1압전체(2111)와 제1정합층(2112)은 복수개의 함몰부(2110) 전부에 구비될 필요는 없다. 제1압전체(2111)와 제1정합층(2112)이 함몰부(2110)에 구비되는 경우, 제1압전체(2111)와 제1정합층(2112)이 각각 형성하는 매질경계면에서 회기 초음파는 재반사될 수도 있으므로, 함몰부(2110)가 회귀 초음파를 소멸시키는 효과가 저하될 수도 있다. 따라서, 제1압전체(2111)와 제1정합층(2112)은 복수개의 함몰부(2110)에 적절한 위치와 개수를 선택하여 구비시킬 수 있다. 이 경우 제1압전체(2111)와 제1정합층(2112)이 구비되지 않은 함몰부(2110)는 회귀 초음파를 소멸시키는 역할만 한다. 반면, 제1압전체(2111)와 제1정합층(2112)이 구비되는 함몰부(2110)에서는 초음파가 방사됨과 동시에, 회기 초음파를 소멸시키는 역할을 한다.
다만, 충전재(2113)는 유체매질(230)에서 발생하는 기포가 함몰부(2110)로 유입되는 것을 방지하기 위해 설치되므로 복수개의 함몰부(2110) 전부에 설치한다.
이미지 트랜스듀서(220)는 대상체(200)의 이미지 획득용 초음파를 방사하고, 제2압전체(221) 및 제2정합층(222)을 포함한다. 제2압전체(221)는 이미지 트랜스듀서(220)에 설치되고, 압전물질을 포함하여 외부전원으로부터 전력을 공급받아 이미지 획득용 초음파를 발생시킨다. 제2정합층(222)은 이미지 트랜스듀서(220)에서 제2압전체(221)의 전면에 설치되고, 제2압전체(221)의 음향 임피던스와 대상체(200)의 음향 임피던스를 정합시켜 대상체(200)의 표면에서 초음파가 반사되는 것을 방지하는 역할을 한다. 유체매질(230)은 HIFU 트랜스듀서(210)와 이미지 트랜스듀서(220)의 전방부에 위치하고, 제1압전체(2111)와 제2압전체(221)로부터 방사된 초음파의 강도가 저하되지 않고 대상체(200)에 원활하게 도달하도록 하는 역할을 하며, 사용되는 유체로는, 예를 들어, 물 등이 있다.
멤브래인(240)은 유체를 수용하는 공간을 형성하고, 유체매질(230)의 누출을 방지하는 역할을 한다.
도 3은 본 발명의 일 실시예에 따른 트랜스듀서의 HIFU 방사부를 설명하기 위한 정면도이다.
HIFU 방사부(211)는 전체가 정면이 내주면을 형성하는 파라볼릭 형상을 가진다. 함몰부(2110)는 HIFU 방사부(211) 전체에 복수로 고르게 배열된다. 복수개의 함몰부(2110) 각각의 배열방식은, HIFU 방사부(211)에 일정간격으로 가상의 원주를 다수 형성하고 그 원주를 따라 함몰부(2110)를 일정개수로 배열하는 등이 될 수 있다. 이때, 함몰부(2110)의 전체 개수는 HIFU 트랜스듀서(210)에 사용되는 제1압전체(2111)의 개수, 제1압전체(2111)가 설치되지 않는 함몰부(2110)의 개수 등을 고려하여 적절하게 선정한다. 한편, HIFU 방사부(211)의 중앙에는 중공부(310)가 형성되고, 중공부(310)에는 이미지 트랜스듀서(220)를 설치한다.
도 4는 본 발명의 일 실시예에 따른 트랜스듀서 구조의 HIFU 트랜스듀서를 설명하기 위한 개략적인 부분단면도이다.
멤브래인(240) 등에서 반사되어 회귀하는 회귀 초음파(400)가 제1정합층의 표면(2112-1)에서 반사되어 종국적으로 이미지 트랜스듀서(220)로 입사하게 되면, 이미지 트랜스듀서(220)로부터 획득되는 이미지의 품질은 저하된다. 따라서, 회귀 초음파(400)가 제1정합층의 표면(2112-1)에서 반사되지 않고 제1정합층(2112)에 흡수되도록 설계하면 이미지의 품질은 개선될 수 있고, 이는 제1정합층(2112)의 두께를 조절함으로써 가능하다.
일반적으로 회귀 초음파(400)가 제1정합층(2112)에서 반사되지 않고 제1정합층(2112)에 흡수될 수 있는 제1정합층(2112)의 두께는 회귀 초음파(400)의 파장의 4분의 1의 홀수배이다. 즉,
수학식 7
Figure PCTKR2013004835-appb-M000001
D: 제1정합층(2112)의 두께,
λ: 제1정합층(2112)에서 초음파의 파장,
k: 양의 정수
의 식이 성립한다. 이때, 초음파의 속도는 음파의 속도와 동일하므로 제1정합층(2112)에서 초음파의 파장은,
수학식 8
Figure PCTKR2013004835-appb-M000002
c: 제1정합층(2112)에서 음파의 속도,
f: 음파의 주파수
로 표시된다.
한편, 회귀 초음파(400)는 이미지 획득용 초음파와 치료용 초음파가 모두 존재하므로, 회귀 초음파(400)가 제1정합층의 표면(2112-1)에서 반사되지 않고 제1정합층(2112)에 흡수되려면, 이미지 획득용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(DI)와 치료용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(DH)가 동일해야 한다.
따라서, 이미지 트랜스듀서(220)로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값과 HIFU 트랜스듀서(210)로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값이 상호 일치하는 경우, 해당 값을 제1정합층(2112)의 두께(DI, DH)로 선정한다. 구체적으로, 제1정합층(2112)의 두께(DI, DH)는 다음의 수학식1 내지 수학식3을 만족해야 한다.
수학식 1
Figure PCTKR2013004835-appb-M000003
수학식 2
Figure PCTKR2013004835-appb-M000004
수학식 3
Figure PCTKR2013004835-appb-M000005
DI: 이미지 획득용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(단위: mm),
DH: 치료용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(단위: mm),
c: 제1정합층(2112)에서의 음파의 속도(단위: m/s),
fIc: 이미지 트랜스듀서(220)로부터 방사되는 초음파의 중심주파수(단위: MHz),
fHc: HIFU 트랜스듀서(210)로부터 방사되는 초음파의 중심주파수(단위: MHz),
n, m: 양의 정수.
전술한 식에서 초음파의 주파수는 일정한 대역폭을 가지고 변화하므로, 중심주파수를 사용하여 제1정합층(2112)의 두께를 결정한다.
예를 들어, fIc가 3MHz이고 fHc가 1MHz라면, m이 1일 경우 n은 2가 되고 제1정합층(2112)의 두께(DI, DH)는 (c/4)x1000 mm가 된다.
한편, 이미지 트랜스듀서(220)로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값과 HIFU 트랜스듀서(210)로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 제외한 양의 실수를 곱한 값이 상호 일치하는 경우, 상기 양의 실수와 가장 가까운 홀수에 HIFU 트랜스듀서(210)로부터 방사되는 초음파의 파장의 4분의 1을 곱한 값을 상기 제1정합층(2112)의 두께로 선정한다. 구체적으로, n이 양의 정수이고 m이 정수를 제외한 양의 실수인 경우, 제1정합층(2112)의 두께(DI,DH)는 다음의 수학식4 내지 수학식6을 만족해야 한다.
수학식 4
Figure PCTKR2013004835-appb-M000006
수학식 5
Figure PCTKR2013004835-appb-M000007
수학식 6
Figure PCTKR2013004835-appb-M000008
DI: 이미지 획득용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(단위: mm),
DH: 치료용 초음파의 주파수를 고려하여 설정되는 제1정합층(2112)의 두께(단위: mm),
c: 제1정합층(2112)에서의 음파의 속도(단위: m/s),
fIc: 이미지 트랜스듀서(220)로부터 방사되는 초음파의 중심주파수(단위: MHz),
fHc: HIFU 트랜스듀서(210)로부터 방사되는 초음파의 중심주파수(단위: MHz),
n: 양의 정수,
m: 정수를 제외한 양의 실수,
m': m을 반올림한 양의 정수.
예를 들면 fIc = 3.75 MHz, fHc = 1 MHz일 때,
n = 1이면 m = 0.63이고, (m' - m)/m' = 0.37이다.
n = 2이면 m = 0.9 이고, (m' - m)/m' = 0.1이다.
n = 3이면 m = 1.17이고, (m' - m)/m' = 0.17이다.
n = 1인 경우, 수학식 5를 만족하지 못하므로 제1정합층(2112)의 두께로 결정될 수 없다. 그러나 n = 2 또는 n = 3인 경우 수학식 5를 만족하므로 제1정합층(2112)의 두께로 결정될 수 있다.
이때, 예를 들어 c = 1540m/s인 경우라면, 제1정합층(2112)의 두께(DH)는,
m = 0.9이면 DH = 0.3mm이다.
m = 1.17이면 DH = 0.5mm이다.
결정된 DH는 전술한 관계식을 모두 만족하므로, 이 값으로 제1정합층(2112)을 제작하여 사용할 수 있다.
n이 양의 정수이고 m이 정수를 제외한 양의 실수인 경우, 전술한 방법으로 제1정합층(2112)의 두께를 결정하면, n과 m이 양의 정수인 경우에 비해 제1정합층(2112)에서 회귀 초음파(400)의 흡수효과가 줄어든다. 그러나, 제1정합층(2112)의 두께를 결정할 때 n과 m이 양의 정수인 경우는 제한적이므로, m이 정수가 아닌 양의 실수로 정하여 제1정합층(2112)의 두께를 결정함으로써 다양한 fIc와 fHc에서 적절한 제1정합층(2112)의 두께를 선택할 수 있는 장점이 있다. 다만, m이 정수가 아닌 양의 실수인 경우에도 제1정합층(2112)의 두께는 회귀 초음파(400)의 파장의 4분의 1의 홀수배에 근접해야 하므로, 전술한 관계식처럼 제한된 m을 사용하여 제1정합층(2112)의 두께를 결정한다.
본 발명의 실시예와 관련하여 상기와 같이 몇 가지만을 기술하였지만, 이 외에도 다양한 형태의 실시가 가능하다. 앞서 설명한 실시예들의 기술적 내용들은 서로 양립할 수 없는 기술이 아닌 이상은 다양한 형태로 조합될 수 있으며, 이를 통해 새로운 실시형태로 구현될 수도 있다.
(부호의 설명)
200: 대상체
210: HIFU 트랜스듀서
211: HIFU 방사부
2110: 함몰부
2111: 제1압전체
2112: 제1정합층
2112-1: 제1정합층의 표면
2113: 충전재
220: 이미지 트랜스듀서
221: 제2압전체
222: 제2정합층
230: 유체매질
240: 멤브래인
310: 중공부
400: 회귀 초음파
본 발명의 실시예에 따른 트랜스듀서는, HIFU 방사부로 회귀하는 초음파를 소멸시키거나, 정합층의 두께를 조절하여 초음파 이미지의 품질을 개선하는 효과가 있으므로, 산업상 이용가능성이 있다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 05월 31일 한국에 출원한 특허출원번호 제 10-2013-0062672호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (7)

  1. 치료용 초음파를 방사하는 HIFU(high intensity focused ultrasound) 방사부를 구비하는 HIFU 트랜스듀서; 및 상기 HIFU 트랜스듀서에 인접하여 설치되고, 이미지 획득용 초음파를 방사하는 이미지 트랜스듀서를 포함하는 트랜스듀서에 있어서,
    상기 HIFU 방사부는,
    상기 HIFU 방사부로 회귀하는 상기 치료용 초음파 및 상기 이미지 획득용 초음파 중 일부 또는 전부를 소멸시키기 위한 함몰부가 하나이상 형성되는 것을 특징으로 하는 트랜스듀서.
  2. 제1항에 있어서,
    상기 함몰부는,
    축방향으로 일측이 열린 원형 또는 다각형 형상의 홈으로 형성되는 것을 특징으로 하는 트랜스듀서.
  3. 제1항에 있어서,
    상기 하나이상의 함몰부들의 일부 또는 전부는 상기 치료용 초음파를 발생시키는 제1압전체를 구비하고,
    상기 이미지 트랜스듀서에는 상기 이미지 획득용 초음파를 발생시키는 제2압전체를 구비하는 것을 특징으로 하는 트랜스듀서.
  4. 제3항에 있어서,
    상기 함몰부의 외측에는, 충전재가 삽입되고,
    상기 함몰부의 내측의 일부 또는 전부에는, 상기 제1압전체가 삽입되고, 상기 제1압전체와 상기 충전재 사이에 상기 제1압전체의 음향 임피던스와 초음파가 도달하는 대상체의 음향 임피던스를 정합시키는 제1정합층이 개재되고,
    상기 이미지 트랜스듀서에는, 상기 제2압전체의 음향 임피던스와 상기 대상체의 음향 임피던스를 정합시키는 제2정합층이 형성되는 것을 특징으로 하는 트랜스듀서.
  5. 제4항에 있어서,
    상기 이미지 트랜스듀서로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값과 상기 HIFU 트랜스듀서로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값이 상호 일치하는 경우, 해당 값을 상기 제1정합층의 두께로 선정하는 것을 특징으로 하는 트랜스듀서.
  6. 제4항에 있어서,
    상기 이미지 트랜스듀서로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 곱한 값과 상기 HIFU 트랜스듀서로부터 방사되는 초음파의 파장의 4분의 1에 홀수를 제외한 양의 실수를 곱한 값이 상호 일치하는 경우, 상기 양의 실수와 가장 가까운 홀수에 상기 HIFU 트랜스듀서로부터 방사되는 초음파의 파장의 4분의 1을 곱한 값을 상기 제1정합층의 두께로 선정하는 것을 특징으로 하는 트랜스듀서.
  7. 제4항에 있어서,
    상기 충전재는,
    재질이 고무 또는 고분자물질로 형성되는 것을 특징으로 하는 트랜스듀서.
PCT/KR2013/004835 2013-05-31 2013-05-31 이미지 품질을 개선하기 위한 트랜스듀서 구조 WO2014193012A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13885703.2A EP3006086A4 (en) 2013-05-31 2013-05-31 Transducer structure for improving image quality

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0062672 2013-05-31
KR20130062672A KR101492608B1 (ko) 2013-05-31 2013-05-31 이미지 품질을 개선하기 위한 트랜스듀서 구조

Publications (1)

Publication Number Publication Date
WO2014193012A1 true WO2014193012A1 (ko) 2014-12-04

Family

ID=51989016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004835 WO2014193012A1 (ko) 2013-05-31 2013-05-31 이미지 품질을 개선하기 위한 트랜스듀서 구조

Country Status (3)

Country Link
EP (1) EP3006086A4 (ko)
KR (1) KR101492608B1 (ko)
WO (1) WO2014193012A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671426A (zh) * 2018-07-17 2018-10-19 重庆医科大学 超声换能器及超声杂质去除方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3551289A4 (en) * 2016-12-07 2020-11-11 Butterfly Network, Inc. DEVICE AND SYSTEM FOR HIGHLY INTENSIVE FOCUSED ULTRASOUND (HIFU)
KR102229544B1 (ko) 2017-08-17 2021-03-17 이일권 열 변형 완충 구조의 초음파 프로브
KR102654083B1 (ko) * 2022-01-05 2024-04-03 주식회사 제이시스메디칼 고강도 집속 초음파 발생 장치의 트랜스듀서 홀더의 진동파 출력 최대화 구조

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189973A (ja) * 1992-12-28 1994-07-12 Toshiba Corp 結石破砕装置
US20050015024A1 (en) * 2002-03-06 2005-01-20 Eilaz Babaev Ultrasonic method and device for lypolytic therapy
KR20110074326A (ko) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 고강도 집속 초음파 치료 시스템
KR20120126682A (ko) * 2011-05-12 2012-11-21 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 어플리케이터
KR20130055972A (ko) * 2011-11-21 2013-05-29 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 트랜스듀서

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2397188A1 (en) * 2010-06-15 2011-12-21 Theraclion SAS Ultrasound probe head comprising an imaging transducer with a shielding element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189973A (ja) * 1992-12-28 1994-07-12 Toshiba Corp 結石破砕装置
US20050015024A1 (en) * 2002-03-06 2005-01-20 Eilaz Babaev Ultrasonic method and device for lypolytic therapy
KR20110074326A (ko) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 고강도 집속 초음파 치료 시스템
KR20120126682A (ko) * 2011-05-12 2012-11-21 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 어플리케이터
KR20130055972A (ko) * 2011-11-21 2013-05-29 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 트랜스듀서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006086A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108671426A (zh) * 2018-07-17 2018-10-19 重庆医科大学 超声换能器及超声杂质去除方法
CN108671426B (zh) * 2018-07-17 2023-12-05 重庆医科大学 超声换能器

Also Published As

Publication number Publication date
KR20140141199A (ko) 2014-12-10
EP3006086A1 (en) 2016-04-13
EP3006086A4 (en) 2017-02-01
KR101492608B1 (ko) 2015-02-11

Similar Documents

Publication Publication Date Title
US8382673B2 (en) Ultrasonic endoscope
WO2014193012A1 (ko) 이미지 품질을 개선하기 위한 트랜스듀서 구조
US9203012B2 (en) Ultrasound probe and manufacturing method thereof
EP2216104B1 (en) Ultrasonic probe, ultrasonic imaging apparatus and fabricating method thereof
WO2013165219A1 (en) Laser-induced ultrasonic wave apparatus and method
WO2014181961A1 (ko) 분리 결합형 초음파 프로브 장치
WO2016137023A1 (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
CN109124589A (zh) 一种乳腺癌诊断的光超声波成像装置
WO2014193013A1 (ko) 냉각 기능을 가진 초음파 트랜스듀서
WO2016208872A1 (ko) 빔 집속을 위한 초음파 변환자 조립체 및 그의 제조 방법
EP3082613A1 (en) Photoacoustice probe and photoacoustic diagnostic apparatus
WO2016104820A1 (ko) 연성 인쇄회로기판의 금속층이 두꺼운 초음파 트랜스듀서 및 그 제조방법
WO2014080312A1 (en) Frameless ultrasound probes with heat dissipation
US20190117200A1 (en) Ultrasonic endoscope
WO2015194733A1 (ko) 초음파 소거 블록 및 이를 갖는 초음파 프로브
KR20150025383A (ko) 초음파 진단장치용 프로브
WO2021096082A1 (ko) 초음파 트랜스듀서의 커버 유닛
WO2010126264A2 (ko) 횡탄성파 생성 방법, 횡탄성파를 이용한 이미지 획득 방법 및 장치
WO2012153888A1 (ko) 고강도 집속 초음파용 어플리케이터
WO2015037752A1 (ko) 개선된 밀봉 특성을 갖는 고강도 집속 초음파 치료헤드
WO2014133211A1 (ko) 초음파 트랜스듀서 및 그 제작방법
WO2016117721A1 (ko) 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서
KR20140132991A (ko) 단위 초음파 프로브, 이를 갖는 초음파 프로브 모듈 및 이를 갖는 초음파 프로브 장치
EP2549273B1 (en) Ultrasonic probe using rear-side acoustic matching layer
WO2023163348A1 (ko) 프로브 교체형 고강도 집속 초음파 발생 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013885703

Country of ref document: EP