WO2014192935A1 - Photon-counting x-ray computed tomography device and photon-counting x-ray computed tomography method - Google Patents

Photon-counting x-ray computed tomography device and photon-counting x-ray computed tomography method Download PDF

Info

Publication number
WO2014192935A1
WO2014192935A1 PCT/JP2014/064490 JP2014064490W WO2014192935A1 WO 2014192935 A1 WO2014192935 A1 WO 2014192935A1 JP 2014064490 W JP2014064490 W JP 2014064490W WO 2014192935 A1 WO2014192935 A1 WO 2014192935A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
ray
combined
bins
computed tomography
Prior art date
Application number
PCT/JP2014/064490
Other languages
French (fr)
Japanese (ja)
Inventor
ユー ジョウ,
シャオラン ワン,
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/906,110 external-priority patent/US8965095B2/en
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201480026386.1A priority Critical patent/CN105246410B/en
Publication of WO2014192935A1 publication Critical patent/WO2014192935A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating

Definitions

  • Embodiments of the present invention generally relate to spectral computed tomography (CT) and relate to a particular technique of weighting to improve noise in data acquired prior to image reconstruction.
  • CT spectral computed tomography
  • the present embodiment relates to a photon counting X-ray computed tomography apparatus and a photon counting X-ray computed tomography method.
  • Dual energy X-ray CT scan data is obtained at two energy levels.
  • the X-ray tube is set to an energy level of low tube voltage and high tube voltage of 80 kilovolts and 120 kilovolts.
  • a dual X-ray source CT scanner is equipped with two X-ray sources, each operating at a different energy level to generate two data sets.
  • the sandwich detector the upper layer records low energy data while the lower layer records high energy data.
  • the projection data undergoes a preconstruction decomposition.
  • spectral information is acquired at two or more energy levels for a particular X-ray CT scanner.
  • a predetermined number N of energy thresholds is determined according to an average of the thickness of the material, or a scan for air, and the thickness of the base material is directly calculated based on the N sets associated with the measurement data.
  • all detector units and projection views share the same threshold setting. In practice, it is desirable to change the threshold level between certain views as the spectrum changes.
  • the energy band of the energy bin subject to photon counting needs to change according to the situation in order to maintain the low noise level of the obtained data.
  • it is theoretically possible to change the threshold dynamically between multiple views but it is technically challenging because the CT scan is very short. Due to the limitations of current photon counting detector technology, thresholds are not applied correctly in the short time between multiple views as used at one typical rate of 1800 views in 0.5 seconds. It may be. In general, readout electronics, like detectors, have a finite response time and dead time, so considering the currently available technology, the threshold for changing the implementation under the above requirements is limited. .
  • a universally constant threshold value is a threshold value that can result in undesirable noise balance (noise amount balance) in a huge data set. Unbalanced noise in the resulting data set can cause serious artifacts in the spectral image.
  • the number of photons in a low energy bin or a high energy bin is more balanced.
  • the prior art described above remains desirable in that it substantially improves the noise balance in images reconstructed from the obtained data with spectral information.
  • An object of the present invention is to provide a photon counting X-ray computed tomography apparatus and a photon counting X-ray computed tomography method capable of balancing noise in energy bins related to image reconstruction.
  • the photon counting X-ray computed tomography apparatus detects an X-ray tube that generates X-rays and X-ray photons generated from the X-ray tube, and according to the detected number of X-ray photons Based on an X-ray detector that generates an output signal for each of at least three energy bins, a support mechanism that rotatably supports the X-ray tube about a rotation axis, and the number of X-ray photons in each of the energy bins, A synthesis that obtains a synthesized output signal in a synthesized energy bin obtained by synthesizing the selected energy bins by selecting at least two energy bins to be synthesized and synthesizing the number of X-ray photons of the selected energy bins. And a reconstruction unit that reconstructs an image using the combined output signal.
  • FIG. 1 is a diagram showing an embodiment of a multi-slice X-ray CT device or scanner according to this embodiment having a gantry 100 and other devices or units.
  • FIG. 2A is a diagram illustrating an embodiment of a noise balancing device for improving noise balancing according to this embodiment.
  • FIG. 2B is an exemplary set of weight values used in the noise balancing process or device embodiment according to this embodiment.
  • FIG. 3 is a flowchart showing steps or operations having a noise balance improvement process in a computed tomography of a spectrum using a photon counting detector according to the present embodiment.
  • FIG. 4A is a monochrome image reconstructed from noise balance data according to an embodiment of the processing and device according to this embodiment.
  • FIG. 4B is a monochrome image reconstructed from non-noise balanced data according to the present embodiment and processing and device embodiments.
  • FIG. 4C is a diagram showing the image shown in FIG. 4A with lines.
  • FIG. 4D is a diagram showing the image shown in FIG. 4B with lines.
  • FIG. 1 illustrates one embodiment of a multi-slice X-ray CT device, or scanner, according to the current embodiment that includes a gantry 100 and other devices and units.
  • the gantry 100 is illustrated from the front, and includes an X-ray tube 101, an annular frame (support mechanism) 102, and an X-ray detector 103 of a multi-row or two-dimensional array type.
  • the X-ray tube 101 and the X-ray detector 103 are mounted on the annular frame 102 rotating around the axis RA across the subject S in the opposite direction.
  • the rotation unit 107 rotates the annular frame 102 at a high speed, such as 0.4 seconds per rotation, while the subject S moves along the axis RA toward or away from the illustrated page.
  • the support mechanism 102 supports the X-ray tube 101 so as to be rotatable around the rotation axis RA.
  • the multi-slice X-ray CT device further includes a high voltage generator 109 that supplies a tube voltage to the X-ray tube 101 so that the X-ray tube 101 generates X-rays.
  • the high voltage generator 109 is mounted on the annular frame 102.
  • the current regulator 118 adjusts the current supplied to the high voltage generator 109 under the control of the system controller 110.
  • X-rays are emitted toward the subject S, and the cross-sectional area of the subject S is indicated by a circle.
  • the X-ray detector 103 is disposed on the opposite side of the X-ray tube 101 across the subject in order to detect the emitted X-rays transmitted through the subject S.
  • the X-ray CT device or scanner further comprises a data acquisition device 111 that detects the emitted X-rays and processes the detected signals.
  • the X-ray detector 103 is implemented using a plurality of photon counting detectors for counting photons in each of a predetermined number of energy bins.
  • the X-ray detector 103 detects X-ray photons generated from the X-ray tube 101 and generates an output signal corresponding to the detected number of X-ray photons for each of at least three energy bins.
  • Each of the plurality of energy bins defines a predetermined range regarding the energy of transmitted X-rays in the X-ray detector 103.
  • the data acquisition circuit 104 After detecting the emitted X-rays with the X-ray detector 103, the data acquisition circuit 104 converts the signal output from the X-ray detector 103 into a voltage signal for each channel, amplifies it, and further converts it to digital. Convert to signal.
  • the X-ray detector 103 and the data acquisition circuit 104 are configured to process a predetermined total number of projections per rotation (Total number of projections per rotation: TPPR).
  • the data described above is sent to the preprocessing device 106 housed in the console outside the gantry 100 through the non-contact data transmitter 105.
  • the preprocessing device 106 performs specific correction such as sensitivity correction on the raw data.
  • the storage device 112 then stores result data, also called projection data, immediately before the reconstruction process.
  • the storage device 112 is connected to the system controller 110 via the data / control bus together with the reconstruction device (reconstruction unit) 114, the display device 116, the input device 115, and the scan plan support device 200.
  • the scan plan support device 200 has a function of assisting the image technician in order to create a scan plan.
  • One embodiment of the reconstruction device 114 is based on a filtered back projection (FBP) technique using noise weights, and an image from projection data stored in the storage device 112. Reconfigure.
  • the reconstruction device 114 projects based on a filtered backprojection (FBP) technique using features that emulate a specific iteration result at a predetermined number of iterations according to a predetermined sequential reconstruction algorithm. Reconstruct an image from data.
  • the reconstruction device 114 is implemented by a combination of software and hardware, and is not limited to a specific implementation.
  • the term “unit” or “device” includes hardware and / or software.
  • the concept of the reconstruction device 114 can be applied to other modalities including nuclear medicine and magnetic resonance imaging (MRI).
  • the noise balancing device (synthesizer) 117 in one embodiment, balances (balances) noise in the data obtained by making the number of photon counts substantially uniform among a given number of energy bins. Therefore, it is implemented as software, hardware, or a combination of both.
  • the noise balance device 117 assumes a predetermined number M and a predetermined number of base materials N (N is the number of base materials) in a subject to be image-displayed. Is at least 3 (M> 2) energy bins in each of the plurality of photon counting detectors in the X-ray detector 103 in the CT system, and the number M of energy bins is greater than the number N of base materials (M> N). .
  • the base material is, for example, water, bone, contrast medium or the like.
  • a coordinated pursuit also referred to as Basis pursuit
  • the noise balancing device 117 repeats the above calculation for each of the plurality of detection elements and each of the plurality of views. Finally, an image such as a monochrome image is reconstructed by the reconstruction device 114 according to the material thickness L (i) determined by the noise balancing device 117.
  • the noise balancing device 117 selects at least two energy bins to be combined based on the number of X-ray photons in each of the M energy bins.
  • the noise balancing device 117 obtains a composite output signal in N synthetic energy bins obtained by synthesizing the selected energy bins by synthesizing the number of X-ray photons of the selected energy bins.
  • the reconstruction device 114 reconstructs an image using the combined output signal.
  • the noise balancing device 117 has a small number of X-ray photons when selecting one of the two energy bins adjacent to the predetermined energy bin as the energy bin to be combined with the predetermined energy bin. One energy bin may be selected as a synthesis target.
  • the noise balancing device 117 may acquire two combined output signals respectively corresponding to the two combined energy bins by combining the numbers of X-ray photons belonging to different energy bins. At this time, the reconstruction device 114 reconstructs an image using the two combined output signals.
  • the noise balancing device 117 may select the energy bin to be synthesized in order to minimize the difference between the two X-ray photon numbers respectively corresponding to the two synthesized energy bins. Further, the noise balance device 117 synthesizes a plurality of weights corresponding to the M energy bins and the N combined energy bins by multiplying the number of X-ray photons of the selected energy bin, thereby combining the N energy bins. A combined output signal in each of the combined energy bins may be acquired.
  • the noise balancing device 117 may determine the thickness of each of a plurality of base materials equal to the number of composite energy bins (N) using the composite output signal. At this time, the reconstruction device 114 reconstructs an image using the composite output signal corresponding to the determined thickness. Note that the noise balancing device 117 may determine the thickness of each of the plurality of base materials using a predetermined conditional algorithm and the synthesized output signal. In addition, the noise balancing device 117 may determine the thickness of each of the plurality of base materials using a predetermined no-condition algorithm and the synthesized output signal.
  • the energy bin to be synthesized into the synthesized energy bin may be selected depending on the target substance that the operator pays attention to and the desired scanning condition.
  • the scan conditions are, for example, a tube voltage, a thickness of the subject, and the like.
  • the scan condition is input by the operator via the scan plan support device 200, the input device 115, and the like.
  • the scan conditions may be input by a radiology information management system (RIS) or the like via a network (not shown).
  • RIS radiology information management system
  • the input scan condition is stored in the storage device 112.
  • An attention substance is a substance which an operator pays attention among a plurality of base substances.
  • the noise balance device synthesizes the energy bins so that when the noise amounts of the combined energy bins are compared, the noise amounts of the two approach each other (so that both noise amounts approach the noise balance state).
  • the decomposition into the base material is performed based on the Latham pair.
  • the pair is spatially and temporally identical in photon counting.
  • Latham is the sum of attenuation coefficients along a ray defined by the point of the X-ray source and the detector element.
  • a Latham pair is two Lathams obtained with two different spectra (eg, high energy and low energy) along the same Latham.
  • Latham pairs are applicable to dual energy sources in one embodiment.
  • dual energy for example, a dual energy source that generates X-rays having two energies by switching between high and low tube voltages, and two X-ray tubes by applying two different tube voltages to each of the two X-ray tubes.
  • the number M of energy bins coincides with the number of laysums generated with the actual spectrum M along the same ray path.
  • a ray path represents a straight line along the passage of an X-ray beam.
  • the noise is synthesized by combining the M energy bins to N It is balanced by making it an energy bin.
  • the noise balance device 117 is configured so that the number of energy bins M is close to the noise balance state. Requires greater than the number N of base materials (M> N). That is, the processing of the noise balancing method or the embodiment of the noise balancing device 117 does not go into noise balancing in dual energy CT data because at least one extra measurement is required in one ray path.
  • FIG. 2A is a diagram illustrating that one embodiment of the present noise balancing device 117 approaches a noise balancing state.
  • FIG. 2A has a simple overview in which a set of photon counts are collected across four energy bins from 1 to 4. In other words, at least three collected energy bins are defined according to a fixed threshold for collecting photon counts for a predetermined number of views each having a population of Lathams.
  • a group of laysomes corresponds to, for example, a plurality of laysums included in a cone beam. Spectral data including photon counting sets in the four energy collected energy bins is acquired.
  • the photon counts are another predetermined two or more processed composites according to a set of weights associated with the base material and energy bins in the subject. Combined (combined) or redistributed among energy bins.
  • photon counts are combined (synthesized) into collected low energy bins and high energy bins (composite energy bins) from the collected energy bins.
  • FIG. 2B is a diagram illustrating a typical set of a plurality of weight values according to the present embodiment as an embodiment of the noise balancing process.
  • the left side of FIG. 2B lists four typical sets of weight values, each of which is the basis material and energy of the subject. Associated with a specific combination of bins (synthetic energy bins).
  • the superscript L indicates a low energy bin as a processed composite energy bin, and the subscript number indicates one of the collected energy bins.
  • the processed composite energy bin corresponds to a high energy bin.
  • the superscript H indicates a high energy bin as a processed composite energy bin, and the subscript number indicates one of the collected energy bins.
  • the multiple weight values are merely exemplary.
  • a weight value of 1 does not change the normal photon count in a specific energy bin.
  • values less than 1 change the photon count in the associated energy bin.
  • FIG. 3 is a flowchart showing an operation or stage having a process for approaching a noise equilibrium state in a computed tomography of a spectrum using the photon counting detector according to the present embodiment.
  • the process to approximate the noise balance is performed by various methods including software, hardware, and a combination of both.
  • the following steps or actions are optionally performed by the units and devices of the present embodiment, as described above with reference to FIG. 1, but for approaching noise balance in spectral computed tomography using a photon counting detector. Processing is not limited to the performance of this particular embodiment.
  • photons are detected or counted for each of a plurality of energy bins at a predetermined photon counting detector or X-ray detector 103 in step S100.
  • the photon counting detector has a predetermined number of detector elements, each detector element having a predetermined number of energy bins (M energy bins) separated by a corresponding number with respect to a fixed threshold at the energy level. .
  • the energy threshold level is predetermined and stored in the readout electronic device.
  • a first set of photon counts is obtained with at least three energy bins for each of a predetermined number of views having a collection of lathams.
  • the photon count is the photons contained in the processed composite energy bin in step S110 according to this embodiment.
  • the number N of synthetic energy bins is two or more and is equal to the number of base substances in the subject.
  • the number N of composite energy bins is smaller than a predetermined number M of energy bins (N ⁇ M) in order to bring the noise in the spectral data closer to equilibrium between the composite energy bins.
  • a predetermined set of weights is used, each of the predetermined weights uniquely being one of the corresponding principal components (or composite energy bins) and corresponding Is associated with one of the energy bins.
  • the photon count in the composite energy bin is related to the material thickness for each of the base materials in step S120.
  • the photon counts in each of the combined energy bins are now more balanced in noise than before step S110.
  • the more noise balanced photon count in each of the combined energy bins is now associated with the material thickness L (i) where i is 1 to M.
  • Non-zero L (i) is determined using a predetermined coordinated perchue technique.
  • the predetermined coordinate pursuit technique is, for example, basis pursuit, and in the case of this embodiment, the following conditional expression:
  • step S130 it is determined whether steps S100, S110, and S120 are further performed for any remaining elements relating to detector elements or photon counting detectors for every view. If, in step S130, it is determined that steps S100, S110, and S120 have not been completed for each detection element or photon counting detector for every view, the process proceeds with the plurality of steps being either detection elements or photons. Return to step S100 to be performed on the counting detector or the rest in the view. On the other hand, if it is determined in step S130 that steps S100, S110, and S120 are complete for each detector or photon counting detector for every view, the process proceeds with the material thickness of each base material. Proceed to step S140 to reconstruct the image from the noise-balanced photon count in the processed composite energy bin.
  • the number M of energy bins is greater than the number N of synthetic energy bins processed (M> N).
  • the photon counts in the collected energy bins are combined into processed composite energy bins to approximate the noise balance in the energy bins. If the collected energy bin M is equal in number to the processed composite energy bin N, the same number of energy bins will fail to approach the noise equilibrium.
  • the projection data g m measured in the energy bin m is expressed by g m (BH) as a radiation effect term, an average attenuation coefficient with respect to the base material n and the energy spectrum m.
  • the base material is indexed by n to indicate a specific base material between 1 and N.
  • energy bins are indexed by specifying specific energy bins between 1 and M energy bins.
  • the thickness L n of the base material is determined by optimizing or minimizing the following evaluation function (L).
  • ⁇ m represents the noise of the measured projection g m .
  • the noise balancing step is arbitrarily skipped and L n is determined directly by minimizing the evaluation function with additional constraints.
  • the thickness L of the base material is expressed by Equation (1) as follows:
  • the noise balance device 117 calculates the basis material from the sum of the projection data g m measured in the energy bin and the radiation hardening projection data g m (BH) (L) depending on the thickness (L) of the basis material in the energy bin.
  • the weight is determined on condition that the absolute value of the difference obtained by subtracting the sum over the product type n is smaller than the noise ⁇ m related to the projection data (formula (3)).
  • Projection data g m as represented by the formula (4), by using a radiation quality curing section depends on the thickness of the base material g (BH) (L) are updated.
  • Equation (5) the evaluation function ⁇ (L) is expressed by Equation (5) using ⁇ , which is a positive constant that determines the weight of the loss term.
  • the thickness L of the base material is
  • Equation (6) is approximated by Equation (7) as follows.
  • Equation (7) the partial differentiation of g m (BH) (L) by L n is relatively small compared to the other terms in Equation (6) and can be ignored.
  • the thickness of the base material is updated by equation (8).
  • L n in the above formula (8) (0) shows the current value in the repetition.
  • L n in the above formula (8) indicates a value updated in repetition.
  • L (0) is a vector having L n (0) as an element.
  • the second evaluation function ⁇ is defined by Equation (10), with the noise for the energy bin m as ⁇ m 2 for a given measurement projection g m . That is, the noise balancing device 117 uses the evaluation function ⁇ as the projection data g m measured in the energy bin and the line hardening hardening projection data g m (BH) (L) depending on the thickness (L) of the base material in the energy bin.
  • Mean attenuation coefficient defined by the base material thickness L, the base material type n, and the energy bin m
  • the square of the difference obtained by subtracting the sum over the product type n is defined as the sum over the energy bin m of the quotient obtained by dividing the square of the noise ⁇ m 2 for the projection data.
  • the weight value w is defined to perform noise reduction and is determined for each corresponding basis material n and energy bin m and is now normalized to a particular basis material as in equation (12) below. is defined by using the k n is a factor.
  • Normalization factor k n are defined as the following equation (13).
  • the third evaluation function is defined to be used together with the process for approaching the noise balance state in the energy bin according to the present embodiment.
  • equation (18) is assumed:
  • the measured projection data g m is measured by the energy bins m, associated with the estimation of the thickness L n.
  • the base material g m (BH) is a linear hardening term
  • the basis material is indexed by n to define a particular basis material between 1 and N basis materials.
  • energy bins are indexed to define a particular energy bin between 1 and M energy spectra.
  • Equation (14) the weighted version of the measured projection and the base material thickness as represented by equation (14) is the weight as represented by equations (15), (16) and (17). Is applicable to the relationship represented by the equation (18).
  • a variable ⁇ that is the reciprocal of is defined.
  • Expression (19) becomes Expression (21) indicating the thickness of the base material n based on Equations (20) and (15).
  • the evaluation function ⁇ as the weighted noise of the thickness of the base material is expressed by Expression (24). That is, the noise balancing device 117 calculates the evaluation function ⁇ by the inverse of the weighted average attenuation coefficient for the base material.
  • FIGS. 4A and 4B a pair of images shows some effects of noise balance according to embodiments of the present apparatus and processing.
  • FIG. 4A is a monochrome image reconstructed from noise balanced data according to an embodiment of the present apparatus and processing.
  • FIG. 4B is a monochrome image reconstructed from data that has not been brought close to the noise balance according to the apparatus and processing embodiment of the present invention.
  • Unbalanced noise can cause severe artifacts in monochrome images, as shown in FIG. 4B, and that noise will likely reduce diagnostic capabilities. For this reason, the improved noise nature probably increases the diagnostic ability based on the final image quality.
  • FIG. 4C is a diagram showing FIG. 4A as a diagram.
  • FIG. 4D is a diagram showing FIG. 4B as a diagram.
  • an energy bin to be synthesized is selected based on the photon count collected by each of a plurality of energy bins, and the X-rays of the selected energy bins are selected.
  • the number of photons can be synthesized.
  • This energy bin selection can be performed to balance the photon counts belonging to the composite energy bin.
  • the energy bins may be selected such that the dispersion of the base material thickness is small.
  • the present embodiment it is also possible to select the energy bin to be synthesized according to the scanning condition or the target substance that the operator pays attention to. Thereby, according to this embodiment, noise is balanced and the image corresponding to the scanning condition or the target substance can be reconstructed.
  • the noise in the plurality of synthetic energy bins can be balanced by making the photon counts in the plurality of synthetic energy bins substantially uniform.
  • the reconstructed image quality is improved due to noise balance.
  • the functions according to the embodiment can also be realized by installing a program (medical image reconstruction program) for executing the processing in a computer such as a workstation and developing the program on a memory.
  • a program capable of causing the computer to execute the technique is stored in a storage medium such as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), an optical disk (CD-ROM, DVD, etc.), or a semiconductor memory. It can also be distributed.
  • DESCRIPTION OF SYMBOLS 100 ... Gantry, 101 ... X-ray tube, 102 ... Annular frame (support mechanism), 103 ... X-ray detector, 104 ... Data acquisition circuit, 105 ... Non-contact data transmitter, 106 ... Pre-processing device, 107 ... Rotation unit , 108 ... slip ring, 109 ... high voltage generator, 110 ... system controller, 111 ... data collection device, 112 ... storage device, 114 ... reconstruction device, 115 ... input device, 116 ... display device, 117 ... noise balance device (Combining unit), 118 ... current regulator, 200 ... scan plan support device.
  • Combining unit Combining unit
  • Current regulator 200 ... scan plan support device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A photon-counting X-ray computed tomography device according to the present embodiment is provided with: an X-ray tube (101) which generates X-rays; an X-ray detector (103) which detects X-ray photons generated from the X-ray tube (101), and generates output signals corresponding to the number of the detected X-ray photons with respect to each of at least three energy bins; a support mechanism (102) which supports the X-ray tube (101) rotatably about a rotation axis; a combining unit (117) which selects at least two energy bins to be combined on the basis of the numbers of the X-ray photons in the respective energy bins, and combines the numbers of the X-ray photos in the selected energy bins to thereby acquire a combined output signal in a combined energy bin obtained by combining the selected energy bins; and a reconstruction unit (114) which reconstructs an image using the combined output signal.

Description

フォトンカウンティングX線コンピュータ断層撮影装置、およびフォトンカウンティングX線コンピュータ断層撮影方法Photon counting X-ray computed tomography apparatus and photon counting X-ray computed tomography method
 本発明の実施形態は、一般的にスペクトルコンピュータ断層撮影(CT)に関連し、画像を再構成する前に取得したデータにおけるノイズを改善するために重み付けすることの特定の手法に関する。本実施形態は、フォトンカウンティングX線コンピュータ断層撮影装置、およびフォトンカウンティングX線コンピュータ断層撮影方法に関する。 Embodiments of the present invention generally relate to spectral computed tomography (CT) and relate to a particular technique of weighting to improve noise in data acquired prior to image reconstruction. The present embodiment relates to a photon counting X-ray computed tomography apparatus and a photon counting X-ray computed tomography method.
 デュアルエネルギーX線CTスキャンデータは、二つのエネルギーレベルで得られる。具体的には、X線管は80キロボルトと120キロボルトの、低管電圧と高管電圧のエネルギーレベルに設定されている。デュアルX線源CTスキャナは、二つのX線源を装備しており、それぞれが二つのデータセットを生成するために、異なるエネルギーレベルで作動する。一方で、サンドイッチ検出器では、下層が高エネルギーデータを記録する間、上層は低エネルギーデータを記録する。デュアルのエネルギーデータを物質的分類に対して用いるために、投影データは事前構成分解を経る。 Dual energy X-ray CT scan data is obtained at two energy levels. Specifically, the X-ray tube is set to an energy level of low tube voltage and high tube voltage of 80 kilovolts and 120 kilovolts. A dual X-ray source CT scanner is equipped with two X-ray sources, each operating at a different energy level to generate two data sets. On the other hand, in the sandwich detector, the upper layer records low energy data while the lower layer records high energy data. In order to use dual energy data for material classification, the projection data undergoes a preconstruction decomposition.
 より一般的には、スペクトル情報は、特定のX線CTスキャナに対して二つ以上のエネルギーレベルで取得される。具体的には、所定の数Nのエネルギー閾値は、物質の厚みの平均、又は空気に関するスキャンに従って決定され、基底物質の厚みは計測データに関連するN個のセットに基づいて直接的に計算される。この点で、全ての検出器ユニットと投影ビューは、同一の閾値設定を共有する。現実的には、閾値レベルをスペクトル変化に伴ってあるビューの間で変更することが、望ましい。 More generally, spectral information is acquired at two or more energy levels for a particular X-ray CT scanner. Specifically, a predetermined number N of energy thresholds is determined according to an average of the thickness of the material, or a scan for air, and the thickness of the base material is directly calculated based on the N sets associated with the measurement data. The In this regard, all detector units and projection views share the same threshold setting. In practice, it is desirable to change the threshold level between certain views as the spectrum changes.
 スキャンの間にスペクトルが変化するのに伴い、光子計数の対象となるエネルギービンのエネルギー帯域は、得られたデータの低ノイズレベルを維持するために、状況に応じて変化する必要がある。しかし、複数のビューの間で閾値を動的に変化させることは、理論上可能だが、CTスキャンが非常に短時間なため、技術的には挑戦的である。現在の光子計数検出器技術により制限されているため、0.5秒間に1800ビューという一つの典型的なレートで利用されるような複数のビューの間での短時間では、閾値は正しく適用されないかもしれない。一般的に、検出器と同様に読み出し電子回路は、有限の応答時間と不感時間とを有するため、現在利用できる技術を考慮すると、上記の要求の下で実装を変更する閾値は、制限される。 As the spectrum changes during the scan, the energy band of the energy bin subject to photon counting needs to change according to the situation in order to maintain the low noise level of the obtained data. However, it is theoretically possible to change the threshold dynamically between multiple views, but it is technically challenging because the CT scan is very short. Due to the limitations of current photon counting detector technology, thresholds are not applied correctly in the short time between multiple views as used at one typical rate of 1800 views in 0.5 seconds. It may be. In general, readout electronics, like detectors, have a finite response time and dead time, so considering the currently available technology, the threshold for changing the implementation under the above requirements is limited. .
 被検体の構造や厚みは非常に非一様なため、ボータイフィルタの使用も難しい。ボータイフィルタは、それ自身と患者の配置、異なる検出ユニット及び複数のビューをマッチングさせることの難しさに直面している。その上、異なる複数のユニット及び複数のビューは、著しく変化する減衰及び検出器に入射するX線スペクトラムに依存する。 ボ ー Since the structure and thickness of the specimen are very uneven, it is difficult to use a bow tie filter. The bowtie filter faces difficulties in matching itself and patient placement, different detection units and multiple views. Moreover, the different units and views depend on significantly changing attenuation and the X-ray spectrum incident on the detector.
 従って、普遍的に一定な閾値は、膨大な得られたデータセットにおいて望ましくないノイズ均衡(ノイズ量がバランスする)という結果が得られる閾値になる。得られたデータセットの不均衡なノイズは、スペクトルの画像に深刻なアーチファクトをもたらす可能性がある。複数のエネルギービン(光子計数を行うエネルギー帯域の単位)を付加的に、低エネルギービンまたは高エネルギービンにおける光子数は、より均衡が保たれる。 Therefore, a universally constant threshold value is a threshold value that can result in undesirable noise balance (noise amount balance) in a huge data set. Unbalanced noise in the resulting data set can cause serious artifacts in the spectral image. In addition to a plurality of energy bins (units of energy bands for performing photon counting), the number of photons in a low energy bin or a high energy bin is more balanced.
 これら及びその他の理由により、上記で述べられた従来技術は、スペクトル情報を有する得られたデータから再構成された画像において、ノイズ均衡を実質的に改善する点で望まれたままである。 For these and other reasons, the prior art described above remains desirable in that it substantially improves the noise balance in images reconstructed from the obtained data with spectral information.
特開2013-143980号公報JP 2013-143980 A
 目的は、画像再構成に係るエネルギービンにおけるノイズを均衡可能なフォトンカウンティングX線コンピュータ断層撮影装置、およびフォトンカウンティングX線コンピュータ断層撮影方法を提供することにある。 An object of the present invention is to provide a photon counting X-ray computed tomography apparatus and a photon counting X-ray computed tomography method capable of balancing noise in energy bins related to image reconstruction.
 本実施形態に係るフォトンカウンティングX線コンピュータ断層撮影装置は、X線を発生するX線管と、前記X線管から発生されたX線フォトンを検出し、前記検出したX線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生するX線検出器と、前記X線管を回転軸周りに回転可能に支持する支持機構と、前記エネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択し、前記選択されたエネルギービンのX線フォトン数を合成することにより、前記選択されたエネルギービンを合成した合成エネルギービンにおける合成出力信号を取得する合成部と、前記合成出力信号を用いて、画像を再構成する再構成部と、を具備する。 The photon counting X-ray computed tomography apparatus according to the present embodiment detects an X-ray tube that generates X-rays and X-ray photons generated from the X-ray tube, and according to the detected number of X-ray photons Based on an X-ray detector that generates an output signal for each of at least three energy bins, a support mechanism that rotatably supports the X-ray tube about a rotation axis, and the number of X-ray photons in each of the energy bins, A synthesis that obtains a synthesized output signal in a synthesized energy bin obtained by synthesizing the selected energy bins by selecting at least two energy bins to be synthesized and synthesizing the number of X-ray photons of the selected energy bins. And a reconstruction unit that reconstructs an image using the combined output signal.
図1は、ガントリ100とその他のデバイス又はユニットを有する本実施形態に係るマルチスライスX線CTデバイス、又はスキャナの一実施形態を示す図である。FIG. 1 is a diagram showing an embodiment of a multi-slice X-ray CT device or scanner according to this embodiment having a gantry 100 and other devices or units. 図2Aは、本実施形態に係り、ノイズ均衡を改善するためのノイズ均衡デバイスの一実施形態を示す図である。FIG. 2A is a diagram illustrating an embodiment of a noise balancing device for improving noise balancing according to this embodiment. 図2Bは、本実施形態に係り、ノイズ均衡処理又はデバイスの実施形態で利用される、重み値の典型的なセットである。FIG. 2B is an exemplary set of weight values used in the noise balancing process or device embodiment according to this embodiment. 図3は、本実施形態に係り、光子計数検出器を用いて、スペクトルのコンピュータ断層撮影においてノイズ均衡改善処理を有するステップ又は動作を示すフローチャートである。FIG. 3 is a flowchart showing steps or operations having a noise balance improvement process in a computed tomography of a spectrum using a photon counting detector according to the present embodiment. 図4Aは、本実施形態に係り、処理及びデバイスの実施形態によりノイズ均衡データから再構成されたモノクロ画像である。FIG. 4A is a monochrome image reconstructed from noise balance data according to an embodiment of the processing and device according to this embodiment. 図4Bは、本実施形態に係り、処理とデバイスの実施形態により、非ノイズ均衡データから再構成されたモノクロ画像である。FIG. 4B is a monochrome image reconstructed from non-noise balanced data according to the present embodiment and processing and device embodiments. 図4Cは、図4Aに記載の画像を線で示した線図である。FIG. 4C is a diagram showing the image shown in FIG. 4A with lines. 図4Dは、図4Bに記載の画像を線で示した線図である。FIG. 4D is a diagram showing the image shown in FIG. 4B with lines.
 図に関して、参照数字は、図の至る所における対応する構造を明示する。また特に図1はガントリ100とその他のデバイスやユニットを含む現在の実施形態に係るマルチスライスX線CTデバイス、又はスキャナの一実施形態を図示する。ガントリ100は、前面から図示され、X線管101、環状フレーム(支持機構)102、および多列又は二次元配列タイプのX線検出器103を有する。X線管101とX線検出器103は、軸RAの周りを回転する環状フレーム102に、被検体Sを横切って、正反対に搭載される。回転ユニット107は、被検体Sが軸RAに沿って、図示されたページの奥へ又は手前に動く間に、環状フレーム102を1回転あたり0.4秒のような高速で回転させる。支持機構102は、X線管101を回転軸RA周りに回転可能に支持する。 Referring to the figure, the reference numerals clearly indicate the corresponding structure throughout the figure. In particular, FIG. 1 illustrates one embodiment of a multi-slice X-ray CT device, or scanner, according to the current embodiment that includes a gantry 100 and other devices and units. The gantry 100 is illustrated from the front, and includes an X-ray tube 101, an annular frame (support mechanism) 102, and an X-ray detector 103 of a multi-row or two-dimensional array type. The X-ray tube 101 and the X-ray detector 103 are mounted on the annular frame 102 rotating around the axis RA across the subject S in the opposite direction. The rotation unit 107 rotates the annular frame 102 at a high speed, such as 0.4 seconds per rotation, while the subject S moves along the axis RA toward or away from the illustrated page. The support mechanism 102 supports the X-ray tube 101 so as to be rotatable around the rotation axis RA.
 マルチスライスX線CTデバイスは、X線管101がX線を発生するように、X線管101に管電圧を供給する高電圧発生器109を更に有する。一実施形態において、高電圧発生器109は環状フレーム102に搭載される。電流調整器118は、システムコントローラ110の制御のもとで、高電圧発生器109に供給する電流を調整する。X線は、被検体Sに向けて放射され、被検体Sの断面積は円によって示される。X線検出器103は、被検体Sを透過した放射X線を検出するために、被検体を横切ってX線管101の反対側に配置される。 The multi-slice X-ray CT device further includes a high voltage generator 109 that supplies a tube voltage to the X-ray tube 101 so that the X-ray tube 101 generates X-rays. In one embodiment, the high voltage generator 109 is mounted on the annular frame 102. The current regulator 118 adjusts the current supplied to the high voltage generator 109 under the control of the system controller 110. X-rays are emitted toward the subject S, and the cross-sectional area of the subject S is indicated by a circle. The X-ray detector 103 is disposed on the opposite side of the X-ray tube 101 across the subject in order to detect the emitted X-rays transmitted through the subject S.
 また、図1に関して、X線CTデバイス又はスキャナは、放射X線を検出し、検出された信号を処理するデータ収集デバイス111をさらに有する。一実施形態において、X線検出器103は、所定の数のエネルギービン各々において、光子のカウントするための複数の光子計数検出器を用いて実装される。例えば、X線検出器103は、X線管101から発生されたX線フォトンを検出し、検出したX線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生する。複数のエネルギービン各々は、X線検出器103において、透過されたX線のエネルギーに関する所定の範囲を定義にする。X線検出器103で放射X線を検出した後、データ収集回路104は、各々のチャネルに関して、X線検出器103からの信号出力を電圧信号に変換し、それを増幅し、更にそれをデジタル信号へ変換する。X線検出器103とデータ収集回路104は、一回転あたりの所定の総投影数(Total number of projections per rotation:TPPR)を処理するように構成されている。 Also with reference to FIG. 1, the X-ray CT device or scanner further comprises a data acquisition device 111 that detects the emitted X-rays and processes the detected signals. In one embodiment, the X-ray detector 103 is implemented using a plurality of photon counting detectors for counting photons in each of a predetermined number of energy bins. For example, the X-ray detector 103 detects X-ray photons generated from the X-ray tube 101 and generates an output signal corresponding to the detected number of X-ray photons for each of at least three energy bins. Each of the plurality of energy bins defines a predetermined range regarding the energy of transmitted X-rays in the X-ray detector 103. After detecting the emitted X-rays with the X-ray detector 103, the data acquisition circuit 104 converts the signal output from the X-ray detector 103 into a voltage signal for each channel, amplifies it, and further converts it to digital. Convert to signal. The X-ray detector 103 and the data acquisition circuit 104 are configured to process a predetermined total number of projections per rotation (Total number of projections per rotation: TPPR).
 上記で述べられたデータは、非接触データ伝送器105を通して、ガントリ100外のコンソールに収容された前処理デバイス106に送られる。前処理デバイス106は、ローデータに対して感度補正のような特定の補正を実行する。記憶デバイス112はその後、再構成処理の直前の段階での投影データとも呼ばれる結果データを記憶する。記憶デバイス112は、再構成デバイス(再構成部)114、表示デバイス116、入力デバイス115、そしてスキャン計画サポートデバイス200とともに、データ/コントロールバスを介して、システムコントローラ110に接続される。スキャン計画サポートデバイス200は、スキャン計画をたてるために、画像技術者を支援する機能を有する。 The data described above is sent to the preprocessing device 106 housed in the console outside the gantry 100 through the non-contact data transmitter 105. The preprocessing device 106 performs specific correction such as sensitivity correction on the raw data. The storage device 112 then stores result data, also called projection data, immediately before the reconstruction process. The storage device 112 is connected to the system controller 110 via the data / control bus together with the reconstruction device (reconstruction unit) 114, the display device 116, the input device 115, and the scan plan support device 200. The scan plan support device 200 has a function of assisting the image technician in order to create a scan plan.
 本実施形態の一側面に係る再構成デバイス114の一実施形態は、ノイズの重みを用いたフィルタ補正逆投影(Filtered backprojection:FBP)技術に基づいて、記憶デバイス112に記憶された投影データから画像を再構成する。上記実施形態において、再構成デバイス114は、所定の逐次再構成アルゴリズムに従って、所定の反復回数での特定の反復結果をエミュレートする特徴を用いたフィルタ補正逆投影(FBP)技術に基づいて、投影データから画像を再構成する。再構成デバイス114は、ソフトウェアとハードウェアとの組み合わせで実装され、特定の実装に制限されない。以下の再構成デバイス114の説明において、「ユニット」又は「デバイス」という用語は、ハードウェア及び又はソフトウェアを含んでいる。加えて、再構成デバイス114の概念は、核医学や磁気共鳴イメージング(magnetic resonance imaging:MRI)を含む他のモダリティにも適用可能である。 One embodiment of the reconstruction device 114 according to one aspect of the present embodiment is based on a filtered back projection (FBP) technique using noise weights, and an image from projection data stored in the storage device 112. Reconfigure. In the above embodiment, the reconstruction device 114 projects based on a filtered backprojection (FBP) technique using features that emulate a specific iteration result at a predetermined number of iterations according to a predetermined sequential reconstruction algorithm. Reconstruct an image from data. The reconstruction device 114 is implemented by a combination of software and hardware, and is not limited to a specific implementation. In the following description of the reconfiguration device 114, the term “unit” or “device” includes hardware and / or software. In addition, the concept of the reconstruction device 114 can be applied to other modalities including nuclear medicine and magnetic resonance imaging (MRI).
 ノイズ均衡デバイス(合成部)117は、一実施形態において、所定の多数のエネルギービンの間で光子計数の数を実質的に均一にすることによって得られたデータにおいてノイズを均衡する(バランスさせる)ために、ソフトウェア、ハードウェア、又は両方を組み合わせて実装される。一般的に、ノイズ均衡(バランス)デバイス117は、所定の数Mと、画像表示される被検体における所定の数の基底物質N(Nは基底物質の数)とを仮定し、所定の数Mは、CTシステムにおけるX線検出器103における複数の光子計数検出器各々において少なくとも3(M>2)エネルギービンであり、エネルギービンの数Mは基底物質の数Nよりも大きい(M>N)。基底物質とは、例えば、水、骨、造影剤などである。後述する合成エネルギービンに対応する基底物質は、予め設定されていてもよいし、操作者の指示により選択されてもよい。エネルギービンと基底物質が同じ数(M=N)であることは、理論上可能であるが、ノイズ均衡デバイス117は、ノイズ均衡状態に近づくように、MエネルギービンがN基底物質よりも大きいこと(M>N)を要求する。X線検出器103の全てにおいてE=1からMで示されるM個のエネルギービン各々における光子計数n(E)を取得した後、N個のエネルギービン各々における光子計数の数を、実質的に等しく、又は可能な限り等しく、又は最適にするために、ノイズ均衡デバイス117は、M個のエネルギービンを組み合わせて、N個のエネルギービンに合成する。すなわち、光子計数の数は、各ビュー及び各光子計数検出器における検出素子に対して得られたデータにおけるN個のエネルギービンの間で、理想的には同一となる。その後、ノイズ均衡デバイス117は、均衡のとれた各エネルギービンの光子計数を、非ゼロなL(i)を見いだすためのコーディネイトパーシュー(基底追跡:Basis pursuitともいう)技術のような所定の方法を用いることによって、i=1からNまでの物質の厚みL(i)に、関連づける。ノイズ均衡デバイス117は、複数の検出素子各々および複数のビュー各々に対して、上記の演算を繰り返す。最後に、モノクロ画像のような画像が、ノイズ均衡デバイス117が決定した物質の厚みL(i)に従って、再構成デバイス114により再構成される。 The noise balancing device (synthesizer) 117, in one embodiment, balances (balances) noise in the data obtained by making the number of photon counts substantially uniform among a given number of energy bins. Therefore, it is implemented as software, hardware, or a combination of both. In general, the noise balance device 117 assumes a predetermined number M and a predetermined number of base materials N (N is the number of base materials) in a subject to be image-displayed. Is at least 3 (M> 2) energy bins in each of the plurality of photon counting detectors in the X-ray detector 103 in the CT system, and the number M of energy bins is greater than the number N of base materials (M> N). . The base material is, for example, water, bone, contrast medium or the like. A base material corresponding to a synthetic energy bin, which will be described later, may be set in advance or may be selected according to an operator's instruction. It is theoretically possible that the energy bin and the basis material are the same number (M = N), but the noise balance device 117 is such that the M energy bin is larger than the N basis material to approach the noise balance state. (M> N) is requested. After obtaining the photon count n (E) in each of the M energy bins denoted by E = 1 to M in all of the X-ray detectors 103, the number of photon counts in each of the N energy bins is substantially In order to be equal or as equal as possible or optimal, the noise balancing device 117 combines the M energy bins into N energy bins. That is, the number of photon counts is ideally the same among the N energy bins in the data obtained for each view and the sensing element in each photon counting detector. The noise balancing device 117 then uses a predetermined method, such as a coordinated pursuit (also referred to as Basis pursuit) technique, to find a non-zero L (i) for the photon count of each balanced energy bin. Is related to the thickness L (i) of the material from i = 1 to N. The noise balancing device 117 repeats the above calculation for each of the plurality of detection elements and each of the plurality of views. Finally, an image such as a monochrome image is reconstructed by the reconstruction device 114 according to the material thickness L (i) determined by the noise balancing device 117.
 ノイズ均衡デバイス117は、M個のエネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択する。ノイズ均衡デバイス117は、選択されたエネルギービンのX線フォトン数を合成することにより、選択されたエネルギービンを合成したN個の合成エネルギービンにおける合成出力信号を取得する。このとき、再構成デバイス114は、合成出力信号を用いて、画像を再構成する。 The noise balancing device 117 selects at least two energy bins to be combined based on the number of X-ray photons in each of the M energy bins. The noise balancing device 117 obtains a composite output signal in N synthetic energy bins obtained by synthesizing the selected energy bins by synthesizing the number of X-ray photons of the selected energy bins. At this time, the reconstruction device 114 reconstructs an image using the combined output signal.
 なお、ノイズ均衡デバイス117は、所定のエネルギービンに合成される合成対象のエネルギービンとして、所定のエネルギービンに隣接する2つのエネルギービンのうちいずれか一方を選択する際、X線フォトン数の少ない方のエネルギービンを合成対象として選択してもよい。また、ノイズ均衡デバイス117は、互いに異なるエネルギービンに属するX線フォトン数を合成することにより、2つの合成エネルギービンにそれぞれ対応する2つの合成出力信号を取得してもよい。このとき、再構成デバイス114は、2つの合成出力信号を用いて、画像を再構成する。 The noise balancing device 117 has a small number of X-ray photons when selecting one of the two energy bins adjacent to the predetermined energy bin as the energy bin to be combined with the predetermined energy bin. One energy bin may be selected as a synthesis target. The noise balancing device 117 may acquire two combined output signals respectively corresponding to the two combined energy bins by combining the numbers of X-ray photons belonging to different energy bins. At this time, the reconstruction device 114 reconstructs an image using the two combined output signals.
 また、ノイズ均衡デバイス117は、2つの合成エネルギービンにそれぞれ対応する2つのX線フォトン数の間における差異を最小にするために、合成対象となるエネルギービンを選択してもよい。また、ノイズ均衡デバイス117は、M個のエネルギービンとN個の合成エネルギービンとに応じた複数の重みを、選択されたエネルギービンのX線フォトン数に乗じて合成することにより、N個の合成エネルギービン各々における合成出力信号を取得してもよい。 Also, the noise balancing device 117 may select the energy bin to be synthesized in order to minimize the difference between the two X-ray photon numbers respectively corresponding to the two synthesized energy bins. Further, the noise balance device 117 synthesizes a plurality of weights corresponding to the M energy bins and the N combined energy bins by multiplying the number of X-ray photons of the selected energy bin, thereby combining the N energy bins. A combined output signal in each of the combined energy bins may be acquired.
 また、ノイズ均衡デバイス117は、合成出力信号を用いて、合成エネルギービンの数(N個)に等しい数の複数の基底物質各々の厚みを決定してもよい。このとき、再構成デバイス114は、決定された厚みに対応する前記合成出力信号を用いて、画像を再構成する。なお、ノイズ均衡デバイス117は、所定の条件付きアルゴリズムと合成出力信号とを用いて、複数の基底物質各々の厚みを決定してもよい。また、ノイズ均衡デバイス117は、所定の条件無しアルゴリズムと合成出力信号とを用いて、複数の基底物質各々の厚みを決定してもよい。 Also, the noise balancing device 117 may determine the thickness of each of a plurality of base materials equal to the number of composite energy bins (N) using the composite output signal. At this time, the reconstruction device 114 reconstructs an image using the composite output signal corresponding to the determined thickness. Note that the noise balancing device 117 may determine the thickness of each of the plurality of base materials using a predetermined conditional algorithm and the synthesized output signal. In addition, the noise balancing device 117 may determine the thickness of each of the plurality of base materials using a predetermined no-condition algorithm and the synthesized output signal.
 なお、合成エネルギービンへの合成対象となるエネルギービンの選択は、操作者が注目する注目物質、所望するスキャン条件により選択されてもよい。スキャン条件とは、例えば、管電圧、被検体の厚みなどである。スキャン条件は、スキャン計画サポートデバイス200、入力デバイス115等を介して操作者により入力される。なお、スキャン条件は、図示していないネットワークを介して、放射線部門情報管理システム(radiology information system:RIS)などにより入力されてもよい。入力されたスキャン条件は、記憶デバイス112に記憶される。注目物質は、複数の基底物質のうち、操作者が注目する物質である。 It should be noted that the energy bin to be synthesized into the synthesized energy bin may be selected depending on the target substance that the operator pays attention to and the desired scanning condition. The scan conditions are, for example, a tube voltage, a thickness of the subject, and the like. The scan condition is input by the operator via the scan plan support device 200, the input device 115, and the like. The scan conditions may be input by a radiology information management system (RIS) or the like via a network (not shown). The input scan condition is stored in the storage device 112. An attention substance is a substance which an operator pays attention among a plurality of base substances.
 すなわち、ノイズ均衡デバイスは、合成エネルギービン同士のノイズ量を比べたとき、両者のノイズ量が近づくように(両者のノイズ量がノイズ均衡状態に近づくように)、エネルギービンを合成する。 That is, the noise balance device synthesizes the energy bins so that when the noise amounts of the combined energy bins are compared, the noise amounts of the two approach each other (so that both noise amounts approach the noise balance state).
 基底物質への分解は、本実施形態において、レイサム対に基づいて、実行される。そのペアは、光子計数において、空間的及び時間的に同一である。レイサムとは、X線源の点と検出素子とによって定義されるレイに沿った減弱係数の和である。レイサム対とは、同じレイサムに沿った異なる2つのスペクトラム(例えば、高エネルギーと低エネルギー)で得られる2つのレイサムである。レイサム対は、一実施形態において、デュアルエネルギー源に適用可能である。デュアルエネルギーとして、例えば、管電圧の高低を切り替えることで、2つのエネルギーを有するX線を発生させるデュアルエネルギー源と、2つのX線管に2つの異なる管電圧をそれぞれ印加することで2つのX線管からエネルギーの異なる2つのX線をそれぞれ同時に発生させるデュアルエネルギー源とがある。他の実施形態において、レイサムの三組又はより高次の組は、多色X線のエネルギーCT又はスペクトルCTに適用可能である。一般的に、エネルギービンの数Mは、同じレイパスに沿った実際のスペクトラムMとともに生成された、レイサムの数と一致する。レイパスとは、X線のビームの通過の沿った直線を表している。M>Nであって、N個のエネルギービン各々の光子計数の数を、実質的に等しく、又はできるだけ等しく、又は最適にするために、ノイズは、M個のエネルギービンを合成してN個のエネルギービンにすることによって均衡される。合成の処理において、特定の複数の重みは、N個のエネルギービンにおいて、複数の光子計数を実質的に等しくするために利用され、重みは、n=1からNまでの基底物質とm=1からMまでのスペクトルとの両者に関連付けられる。エネルギービンの数と基底物質の数とが同じ数(M=N)であることは、理論上可能であるが、ノイズ均衡デバイス117は、ノイズ均衡状態に近づくように、エネルギービンの数Mが基底物質の数Nよりも大きいこと(M>N)を要求する。すなわち、ノイズ均衡方法の処理又はノイズ均衡デバイス117の実施形態は、一つのレイパスにおいて少なくとも一つの余分な計測が要求されるため、デュアルエネルギーCTデータにおいては、ノイズ均衡状態にならない。 In the present embodiment, the decomposition into the base material is performed based on the Latham pair. The pair is spatially and temporally identical in photon counting. Latham is the sum of attenuation coefficients along a ray defined by the point of the X-ray source and the detector element. A Latham pair is two Lathams obtained with two different spectra (eg, high energy and low energy) along the same Latham. Latham pairs are applicable to dual energy sources in one embodiment. As dual energy, for example, a dual energy source that generates X-rays having two energies by switching between high and low tube voltages, and two X-ray tubes by applying two different tube voltages to each of the two X-ray tubes. There is a dual energy source that simultaneously generates two X-rays having different energies from a tube. In other embodiments, three or higher order sets of Latham are applicable to polychromatic X-ray energy CT or spectral CT. In general, the number M of energy bins coincides with the number of laysums generated with the actual spectrum M along the same ray path. A ray path represents a straight line along the passage of an X-ray beam. In order to make M> N and the number of photon counts in each of the N energy bins is substantially equal or as equal as possible or optimal, the noise is synthesized by combining the M energy bins to N It is balanced by making it an energy bin. In the process of synthesis, specific weights are used to make the photon counts substantially equal in N energy bins, with weights from n = 1 to N basis materials and m = 1. To M spectrum. Although it is theoretically possible that the number of energy bins and the number of basis materials are the same number (M = N), the noise balance device 117 is configured so that the number of energy bins M is close to the noise balance state. Requires greater than the number N of base materials (M> N). That is, the processing of the noise balancing method or the embodiment of the noise balancing device 117 does not go into noise balancing in dual energy CT data because at least one extra measurement is required in one ray path.
 次に、図2Aは、本ノイズ均衡デバイス117の一実施形態がノイズ均衡状態に近づけることを示す図である。図2Aは、1から4の4つのエネルギービンの全体で光子計数のセットが収集される簡単な概要を有している。換言すると、各々レイサムの集団を有する所定の数のビューに関して光子計数を収集するために固定された閾値に従って、少なくとも3つの収集されたエネルギービンは、定義される。レイサムの集団とは、例えば、コーンビームに含まれる複数のレイサムに対応する。4つのエネルギー収集されたエネルギービンにおける光子計数セットを含むスペクトルデータは、取得される。収集されたエネルギービンにおいて光子計数の均衡をとるために、被検体における基底物質とエネルギービンとに関連した重みのセットに従って、光子計数は、別の所定の二つまたはそれ以上の処理された合成エネルギービンの間で、組み合わせ(合成)又は再配分される。図2Aでは、収集されたエネルギービンの数は4(M=4)である一方で、処理された合成エネルギービンの数は2(N=2)である。例示されている通り、光子計数は、収集されたエネルギービンから処理された低エネルギービン及び高エネルギービン(合成エネルギービン)に、組み合わせられる(合成される)。 Next, FIG. 2A is a diagram illustrating that one embodiment of the present noise balancing device 117 approaches a noise balancing state. FIG. 2A has a simple overview in which a set of photon counts are collected across four energy bins from 1 to 4. In other words, at least three collected energy bins are defined according to a fixed threshold for collecting photon counts for a predetermined number of views each having a population of Lathams. A group of laysomes corresponds to, for example, a plurality of laysums included in a cone beam. Spectral data including photon counting sets in the four energy collected energy bins is acquired. In order to balance the photon counts in the collected energy bins, the photon counts are another predetermined two or more processed composites according to a set of weights associated with the base material and energy bins in the subject. Combined (combined) or redistributed among energy bins. In FIG. 2A, the number of energy bins collected is 4 (M = 4), while the number of processed composite energy bins is 2 (N = 2). As illustrated, photon counts are combined (synthesized) into collected low energy bins and high energy bins (composite energy bins) from the collected energy bins.
 図2Bは、本実施形態に係る重みの複数の値の典型的なセットを、ノイズ均衡処理の実施形態として示す図である。図2Aに示されている上記簡単な例に基づいて、図2Bの左側には重み値の4つの典型的なセットが列挙してあり、4つの重み値のそれぞれが被検体の基底物質及びエネルギービンに関する特定の組み合わせ(合成エネルギービン)と関連付けられている。図2Bの左側において、上付き文字Lは、処理された合成エネルギービンとして低エネルギービンを示し、下付き数字は、収集されたエネルギービンのうち一つを示している。同様にして、図2Bの右側には4つの典型的な重み値のセットが列挙してあり、4つの重み値のそれぞれが被検体中の基底物質及びエネルギービンに関する特定の組み合わせ(合成エネルギービン)と関連付けられている。図2Bの右側において、処理された合成エネルギービンは、高エネルギービンに対応する。図2Bの右側において、上付き文字Hは、処理された合成エネルギービンとして高エネルギービンを示し、下付き数字は、収集されたエネルギービンのうちの一つを示している。 FIG. 2B is a diagram illustrating a typical set of a plurality of weight values according to the present embodiment as an embodiment of the noise balancing process. Based on the above simple example shown in FIG. 2A, the left side of FIG. 2B lists four typical sets of weight values, each of which is the basis material and energy of the subject. Associated with a specific combination of bins (synthetic energy bins). On the left side of FIG. 2B, the superscript L indicates a low energy bin as a processed composite energy bin, and the subscript number indicates one of the collected energy bins. Similarly, on the right side of FIG. 2B, four typical sets of weight values are listed, each of the four weight values being a specific combination of the basis material and energy bins in the subject (synthetic energy bins). Associated with. On the right side of FIG. 2B, the processed composite energy bin corresponds to a high energy bin. On the right side of FIG. 2B, the superscript H indicates a high energy bin as a processed composite energy bin, and the subscript number indicates one of the collected energy bins.
 引き続き図2Aに関して、複数の重み値は、単に典型例に過ぎない。重み値1は特定のエネルギービンにおいては、通常光子計数を変化させない。一方で、1より少ない値は、関連するエネルギービンにおいて、光子計数を変化させる。これらの重み値は、得られたデータセットにおける光子計数を、特定のエネルギービンや複数のエネルギービンに再分配させる。 Continuing with FIG. 2A, the multiple weight values are merely exemplary. A weight value of 1 does not change the normal photon count in a specific energy bin. On the other hand, values less than 1 change the photon count in the associated energy bin. These weight values redistribute the photon counts in the resulting data set to a specific energy bin or multiple energy bins.
 次に、図3は、本実施形態に係る光子計数検出器を用いて、スペクトルのコンピュータ断層撮影において、ノイズ均衡状態に近づけるための処理を有する作用または段階を示すフローチャートである。スペクトルコンピュータ断層撮影において、ノイズ均衡状態に近づけるための処理は、ソフトウェア、ハードウェア、および両方の組み合わせを含む様々な方法によって実行される。以下の段階または作用は、図1に関して既述したように、本実施形態のユニットおよびデバイスによって任意で実行されるが、光子計数検出器を用いたスペクトルコンピュータ断層撮影においてノイズ均衡状態に近づけるための処理は、本特定の実施形態の性能に限されない。 Next, FIG. 3 is a flowchart showing an operation or stage having a process for approaching a noise equilibrium state in a computed tomography of a spectrum using the photon counting detector according to the present embodiment. In spectral computed tomography, the process to approximate the noise balance is performed by various methods including software, hardware, and a combination of both. The following steps or actions are optionally performed by the units and devices of the present embodiment, as described above with reference to FIG. 1, but for approaching noise balance in spectral computed tomography using a photon counting detector. Processing is not limited to the performance of this particular embodiment.
 具体的には図3に関して、光子は、ステップS100において所定の光子計数検出器又はX線検出器103で、複数のエネルギービン各々に関して検出又はカウントされる。光子計数検出器は、所定の数の検出素子を有し、検出素子各々は、エネルギーレベルにおいて固定の閾値に関して対応する数によって分離される所定の数のエネルギービン(M個のエネルギービン)を有する。典型的な実行において、エネルギー閾値のレベルは、読み出し電子デバイスに、予め決定されて記憶される。収集されたエネルギービンに関する所定の数Mは、ノイズ均衡状態に近づけるため、少なくとも3つある。従って、光子計数の第一セットは、レイサムの集団を有する所定の数のビュー各々に対して、少なくとも3つのエネルギービンで得られる。 Specifically, with reference to FIG. 3, photons are detected or counted for each of a plurality of energy bins at a predetermined photon counting detector or X-ray detector 103 in step S100. The photon counting detector has a predetermined number of detector elements, each detector element having a predetermined number of energy bins (M energy bins) separated by a corresponding number with respect to a fixed threshold at the energy level. . In a typical implementation, the energy threshold level is predetermined and stored in the readout electronic device. There are at least three predetermined numbers M for the collected energy bins to approximate the noise balance. Thus, a first set of photon counts is obtained with at least three energy bins for each of a predetermined number of views having a collection of lathams.
 引き続き図3に関して、光子計数が少なくとも3つのエネルギービン(M=3のエネルギービン)で得られた後、光子計数は、本実施形態に係るステップS110において、処理された合成エネルギービンに含まれる光子計数の第二セットに合成される。合成エネルギービンの数Nは、2つ以上で、被検体における基底物質の数にも等しい。合成エネルギービンの数Nは、合成エネルギービンの間で、スペクトルデータにおけるノイズを均衡状態に近づけるために、エネルギービンの所定の数Mより小さい(N<M)。ノイズの均衡状態に近づけることにおいて、所定の複数の重みのセットが用いられ、所定の複数の重み各々は、一意的に、対応する主成分(又は合成エネルギービン)のうちの一つ、及び対応するエネルギービンのうちの一つに関連付けられている。 Continuing with FIG. 3, after the photon count is obtained with at least three energy bins (M = 3 energy bins), the photon count is the photons contained in the processed composite energy bin in step S110 according to this embodiment. Synthesized into a second set of counts. The number N of synthetic energy bins is two or more and is equal to the number of base substances in the subject. The number N of composite energy bins is smaller than a predetermined number M of energy bins (N <M) in order to bring the noise in the spectral data closer to equilibrium between the composite energy bins. In approximating the noise balance, a predetermined set of weights is used, each of the predetermined weights uniquely being one of the corresponding principal components (or composite energy bins) and corresponding Is associated with one of the energy bins.
 ノイズ均衡がステップS110で実行された後、合成エネルギービンにおける光子計数は、ステップS120において、基底物質各々に関する物質の厚みに関連付けられる。合成エネルギービン各々における光子計数は、ステップS110の前よりも、今では、よりノイズの均衡状態が取れている。ステップS120において、合成エネルギービン各々におけるよりノイズを均衡した光子計数は、今では、iが1からMとなる物質の厚みL(i)に関連付けられる。所定のコーディネイトパーシュー技術を用いて、非ゼロのL(i)が決定される。 After the noise balance is performed in step S110, the photon count in the composite energy bin is related to the material thickness for each of the base materials in step S120. The photon counts in each of the combined energy bins are now more balanced in noise than before step S110. In step S120, the more noise balanced photon count in each of the combined energy bins is now associated with the material thickness L (i) where i is 1 to M. Non-zero L (i) is determined using a predetermined coordinated perchue technique.
 所定のコーディネイトパーシュー技術は、例えば、基底追跡(basis pursuit)であって、本実施形態の場合、以下に示す条件式、 
Figure JPOXMLDOC01-appb-M000001
The predetermined coordinate pursuit technique is, for example, basis pursuit, and in the case of this embodiment, the following conditional expression:
Figure JPOXMLDOC01-appb-M000001
もとで、以下の式 
Figure JPOXMLDOC01-appb-M000002
The following formula
Figure JPOXMLDOC01-appb-M000002
を解くアルゴリズムである。 
 ステップS130において、あらゆるビューに対する検出素子又は光子計数検出器に関するどのような残りのものに対してステップS100、S110、及びS120がさらに実行されるか否かが決定される。仮にステップS130において、ステップS100、S110、及びS120が、あらゆるビューに対する検出素子または光子計数検出器各々に対して完了されていないと決定された場合、処理は、上記複数のステップが検出素子または光子計数検出器またはビューにおける残りのものに実行されるために、ステップS100に戻る。一方、仮にステップS130において、ステップS100、S110、及びS120が、あらゆるビューに対する検出素子または光子計数検出器各々に対して完了したと決定された場合、処理は、基底物質各々の物質的な厚みと処理された合成エネルギービンにおけるノイズが均衡された光子計数とから画像を再構成するステップS140へ進む。
Is an algorithm for solving
In step S130, it is determined whether steps S100, S110, and S120 are further performed for any remaining elements relating to detector elements or photon counting detectors for every view. If, in step S130, it is determined that steps S100, S110, and S120 have not been completed for each detection element or photon counting detector for every view, the process proceeds with the plurality of steps being either detection elements or photons. Return to step S100 to be performed on the counting detector or the rest in the view. On the other hand, if it is determined in step S130 that steps S100, S110, and S120 are complete for each detector or photon counting detector for every view, the process proceeds with the material thickness of each base material. Proceed to step S140 to reconstruct the image from the noise-balanced photon count in the processed composite energy bin.
 2つの基底物質が使われたと仮定して、第三のエネルギービンが高エネルギービンと低エネルギービンのような第一と第二ビンの間でノイズを均衡させることにかかわるため、少なくとも3つのエネルギービン(M=3)が、エネルギービンとして必要となる。例えば、レイパスが長くて殆どの低エネルギー光子が被検体により吸収される時、第三の又は中程度のエネルギービンにおけるカウントが、低エネルギービンに加算される。一方、短いレイパスでは、中程度のエネルギービンにおけるカウントは、高エネルギービンに加えられる。 Assuming that two basis materials were used, at least three energy bins are involved because the third energy bin is involved in balancing noise between the first and second bins, such as the high energy bin and the low energy bin. A bin (M = 3) is required as an energy bin. For example, when the ray path is long and most of the low energy photons are absorbed by the subject, the count in the third or medium energy bin is added to the low energy bin. On the other hand, for short ray paths, the count in the medium energy bin is added to the high energy bin.
 一般的に、基底物質の数Nを任意と仮定すると、エネルギービンの数Mは、処理された合成エネルギービンの数Nよりも大きい(M>N)。換言すると、収集されたエネルギービンにおける光子計数は、エネルギービンにおけるノイズ均衡状態に近づけるために、処理された合成エネルギービンに合成される。仮に収集されたエネルギービンMが、処理された合成エネルギービンNと数の点で等しければ、同じ数のエネルギービンはノイズ均衡状態に近づけることに失敗する。このとき、エネルギービンmで測定された投影データgは、g (BH)を線質効果項、基底物質nとエネルギースペクトルmに関する平均減衰係数 
Figure JPOXMLDOC01-appb-M000003
In general, assuming that the number N of base materials is arbitrary, the number M of energy bins is greater than the number N of synthetic energy bins processed (M> N). In other words, the photon counts in the collected energy bins are combined into processed composite energy bins to approximate the noise balance in the energy bins. If the collected energy bin M is equal in number to the processed composite energy bin N, the same number of energy bins will fail to approach the noise equilibrium. At this time, the projection data g m measured in the energy bin m is expressed by g m (BH) as a radiation effect term, an average attenuation coefficient with respect to the base material n and the energy spectrum m.
Figure JPOXMLDOC01-appb-M000003
として、 
Figure JPOXMLDOC01-appb-M000004
As
Figure JPOXMLDOC01-appb-M000004
により、基底物質の概算の厚みLの推定値に関連づけられる。基底物質は、1からNの間で、特定の基底物質を明示するために、nによってインデックス付けされている。同様にして、エネルギービンは、1からMエネルギービンの間で、特定のエネルギービンを明示ことによって、インデックス付けされている。 Is related to the estimated thickness L n of the base material. The base material is indexed by n to indicate a specific base material between 1 and N. Similarly, energy bins are indexed by specifying specific energy bins between 1 and M energy bins.
 特定のレイパスに着目すると、柔組織のようなただ一つの物質が存在するかもしれず、他の基底物質の厚さは、ゼロとなる。従って、基底物質の厚みLは、以下の評価関数(L)を最小化するか最適化によって決定される。 
Figure JPOXMLDOC01-appb-M000005
Focusing on a particular ray path, there may be only one material, such as soft tissue, and the thickness of the other base material is zero. Therefore, the thickness L n of the base material is determined by optimizing or minimizing the following evaluation function (L).
Figure JPOXMLDOC01-appb-M000005
このとき、上記最適化は、データ条件に依存する。 
Figure JPOXMLDOC01-appb-M000006
At this time, the optimization depends on data conditions.
Figure JPOXMLDOC01-appb-M000006
ここで、σは、測定された投影gのノイズを示す。 Here, σ m represents the noise of the measured projection g m .
 代替的に、ノイズ均衡ステップは任意にスキップされ、Lは、付加的な束縛条件で評価関数を最小限することによって、直接的に決定される。条件付きアルゴリズムにおいて、基底物質の厚みLは、式(1)でに表されているように、 
Figure JPOXMLDOC01-appb-M000007
Alternatively, the noise balancing step is arbitrarily skipped and L n is determined directly by minimizing the evaluation function with additional constraints. In the conditional algorithm, the thickness L of the base material is expressed by Equation (1) as follows:
Figure JPOXMLDOC01-appb-M000007
の逆関数に基づいて、投影データgから決定される。 
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Is determined from the projection data g based on the inverse function of.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
は、後述する(17)により定義される重み付き平均減衰係数である。 
 続いて、評価関数は、ノイズ除去のステップサイズを決定するための定数aを用いて、式(2)で表されているように、ノイズを低減又はノイズを均衡させるために最小化にされる。 
Figure JPOXMLDOC01-appb-M000010
Is a weighted average attenuation coefficient defined by (17) described later.
Subsequently, the evaluation function is minimized to reduce or balance the noise, as represented by equation (2), using a constant a to determine the noise removal step size. .
Figure JPOXMLDOC01-appb-M000010
このとき、ノイズは、式(3)で表されているように、以下のデータ条件を仮定することで、確認される。ノイズ均衡デバイス117は、エネルギービンにおいて計測された投影データgとエネルギービンにおいて基底物質の厚み(L)に依存する線質硬化投影データg (BH)(L)との和から、基底物質の厚みLと基底物質の種類nとエネルギービンmとにより規定される平均減弱係数 
Figure JPOXMLDOC01-appb-M000011
At this time, the noise is confirmed by assuming the following data conditions, as represented by Expression (3). The noise balance device 117 calculates the basis material from the sum of the projection data g m measured in the energy bin and the radiation hardening projection data g m (BH) (L) depending on the thickness (L) of the basis material in the energy bin. Mean attenuation coefficient defined by the thickness L, the base material type n and the energy bin m
Figure JPOXMLDOC01-appb-M000011
との積の種類nに亘る総和を減算した差の絶対値が、投影データに関するノイズσより小さくなることを条件(式(3))として、重みを決定する。 
Figure JPOXMLDOC01-appb-M000012
The weight is determined on condition that the absolute value of the difference obtained by subtracting the sum over the product type n is smaller than the noise σ m related to the projection data (formula (3)).
Figure JPOXMLDOC01-appb-M000012
投影データgは、式(4)で表されているように、基底物質の厚みに依存する線質硬化項g(BH)(L)を用いることにより、更新される。 
Figure JPOXMLDOC01-appb-M000013
Projection data g m, as represented by the formula (4), by using a radiation quality curing section depends on the thickness of the base material g (BH) (L) are updated.
Figure JPOXMLDOC01-appb-M000013
式(1)から(4)を通して要約されているような条件付きアルゴリズムにおける上記ステップは、あらゆるビューに対して繰り返される。上記ステップにおける条件付きアルゴリズムは、基底物質において、非ゼロな厚みの分散が小さくなるように実行される。 The above steps in the conditional algorithm as summarized through equations (1) through (4) are repeated for every view. The conditional algorithm in the above steps is executed such that the non-zero thickness variance is reduced in the base material.
 条件なしアルゴリズムにおいて、評価関数Λ(L)は、損失項の重みを決定する正の定数であるβを用いて、式(5)で表される。 
Figure JPOXMLDOC01-appb-M000014
In the unconditional algorithm, the evaluation function Λ (L) is expressed by Equation (5) using β, which is a positive constant that determines the weight of the loss term.
Figure JPOXMLDOC01-appb-M000014
基底物質の厚みLは、 
Figure JPOXMLDOC01-appb-M000015
The thickness L of the base material is
Figure JPOXMLDOC01-appb-M000015
の逆数に基づいて、投影データgを基に初期化される。 
Figure JPOXMLDOC01-appb-M000016
Is initialized based on the projection data g.
Figure JPOXMLDOC01-appb-M000016
続いて、評価関数Λ(L)の傾きは、式(6)で表される。 
Figure JPOXMLDOC01-appb-M000017
Subsequently, the slope of the evaluation function Λ (L) is expressed by Expression (6).
Figure JPOXMLDOC01-appb-M000017
式(6)は、式(7)で以下のように近似される。式(6)から式(7)への近似において、Lによるg (BH)(L)の偏微分は、式(6)の他の項に比べて相対的に小さいため、無視できる。 
Figure JPOXMLDOC01-appb-M000018
Equation (6) is approximated by Equation (7) as follows. In the approximation from Equation (6) to Equation (7), the partial differentiation of g m (BH) (L) by L n is relatively small compared to the other terms in Equation (6) and can be ignored.
Figure JPOXMLDOC01-appb-M000018
基底物質の厚みは、式(8)によって、更新される。 
Figure JPOXMLDOC01-appb-M000019
The thickness of the base material is updated by equation (8).
Figure JPOXMLDOC01-appb-M000019
ここで、上式(8)におけるL (0)は、繰り返しにおいて現在の値を示している。また、上式(8)におけるLは、繰り返しにおいて更新された値を示している。L(0)は、L (0)を要素として有するベクトルである。 
 ここで、 
Figure JPOXMLDOC01-appb-M000020
Here, L n in the above formula (8) (0) shows the current value in the repetition. In addition, L n in the above formula (8) indicates a value updated in repetition. L (0) is a vector having L n (0) as an element.
here,
Figure JPOXMLDOC01-appb-M000020
または、 
Figure JPOXMLDOC01-appb-M000021
Or
Figure JPOXMLDOC01-appb-M000021
である。最後に、ノイズは、式(9)で表されているように、以下のデータ条件を仮定することで、確認される。 
Figure JPOXMLDOC01-appb-M000022
It is. Finally, the noise is confirmed by assuming the following data conditions as represented by Equation (9).
Figure JPOXMLDOC01-appb-M000022
式(6)から(9)を通して要約されているような条件なしのアルゴリズムにおける上記ステップは、あらゆるビューで繰り返される。上記ステップは、基底物質において、非ゼロな厚みの分散が小さくなるように実行される。 The above steps in the unconditional algorithm as summarized through equations (6) through (9) are repeated for every view. The above steps are performed so that the non-zero thickness dispersion is reduced in the base material.
 本実施形態に係るノイズ低減に関する上記例示的な処理において、特定の評価関数が用いられているが、ノイズ均衡状態に近づけるための処理は、本実施形態に係る具体例としての評価関数に限定されるものではない。第2の評価関数Λは、与えられた測定投影gに対して、エネルギービンmに対するノイズをσ として、式(10)で定義される。すなわち、ノイズ均衡デバイス117は、評価関数Λを、エネルギービンにおいて計測された投影データgとエネルギービンにおいて基底物質の厚み(L)に依存する線質硬化投影データg (BH)(L)との和から、基底物質の厚みLと基底物質の種類nとエネルギービンmとにより規定される平均減弱係数 
Figure JPOXMLDOC01-appb-M000023
In the exemplary processing related to noise reduction according to the present embodiment, a specific evaluation function is used. However, processing for approaching the noise equilibrium state is limited to the evaluation function as a specific example according to the present embodiment. It is not something. The second evaluation function Λ is defined by Equation (10), with the noise for the energy bin m as σ m 2 for a given measurement projection g m . That is, the noise balancing device 117 uses the evaluation function Λ as the projection data g m measured in the energy bin and the line hardening hardening projection data g m (BH) (L) depending on the thickness (L) of the base material in the energy bin. Mean attenuation coefficient defined by the base material thickness L, the base material type n, and the energy bin m
Figure JPOXMLDOC01-appb-M000023
との積の種類nに亘る総和を減算した差の2乗を投影データに関するノイズの2乗σ で除算した商のエネルギービンmに亘る総和として規定する。 
Figure JPOXMLDOC01-appb-M000024
The square of the difference obtained by subtracting the sum over the product type n is defined as the sum over the energy bin m of the quotient obtained by dividing the square of the noise σ m 2 for the projection data.
Figure JPOXMLDOC01-appb-M000024
評価関数Λの最小値を見いだすため、または評価関数Λを最適化するために、Lに対する線質硬化項g BHの依存性は、重み計算の基で無視される。従って、近似された結果は、n=1からNと同じような値の範囲をとり、基底物質に対する第2インデックスであるn’=1からNを用いて、以下の式(11)で表される。 
Figure JPOXMLDOC01-appb-M000025
In order to find the minimum value of the evaluation function Λ or to optimize the evaluation function Λ, the dependence of the quality hardening term g m BH on L n is ignored based on the weight calculation. Therefore, the approximated result takes the same value range as n = 1 to N, and is expressed by the following equation (11) using n ′ = 1 to N as the second index for the base material. The
Figure JPOXMLDOC01-appb-M000025
n’=1からNは、インデックスの第二の使用を簡単に区別するために使われる。 n '= 1 to N is used to easily distinguish the second use of the index.
 重み値wは、ノイズ低減を実行するために定義され、対応する基底物質n各々とエネルギービンmとに対して決定され、今、以下の式(12)のように特定の基底物質に対する規格化因子であるkを用いて定義される。 
Figure JPOXMLDOC01-appb-M000026
The weight value w is defined to perform noise reduction and is determined for each corresponding basis material n and energy bin m and is now normalized to a particular basis material as in equation (12) below. is defined by using the k n is a factor.
Figure JPOXMLDOC01-appb-M000026
規格化因子kは、以下の式(13)のように定義される。 
Figure JPOXMLDOC01-appb-M000027
Normalization factor k n are defined as the following equation (13).
Figure JPOXMLDOC01-appb-M000027
このようにして、測定された投影の重み付き版と基底物質の厚みは、式(14)で表されているように、以下の関係を有するべきである。 
Figure JPOXMLDOC01-appb-M000028
Thus, the measured weighted version of the projection and the thickness of the basis material should have the following relationship, as represented by equation (14):
Figure JPOXMLDOC01-appb-M000028
ここで、 
Figure JPOXMLDOC01-appb-M000029
here,
Figure JPOXMLDOC01-appb-M000029
は、以下の式(15)で定義されるような、全ての測定スペクトルエネルギーレベルに基づく基底物質nに対する重み付き測定投影データである。 
Figure JPOXMLDOC01-appb-M000030
Is the weighted measurement projection data for the base material n based on all measured spectral energy levels, as defined by equation (15) below.
Figure JPOXMLDOC01-appb-M000030
同様に、
Figure JPOXMLDOC01-appb-M000031
Similarly,
Figure JPOXMLDOC01-appb-M000031
は、以下の式(16)で定義されるような、全ての測定スペクトルエネルギーレベルに基づく基底物質nに対する重み付き線質硬化項である。 
Figure JPOXMLDOC01-appb-M000032
Is a weighted line hardening term for the base material n based on all measured spectral energy levels, as defined by equation (16) below.
Figure JPOXMLDOC01-appb-M000032
最後に、 
Figure JPOXMLDOC01-appb-M000033
Finally,
Figure JPOXMLDOC01-appb-M000033
は、以下の式(17)で定義されるような、全ての測定スペクトルエネルギーレベルに基づく基底物質nに対する重み付き平均減衰係数である。 
Figure JPOXMLDOC01-appb-M000034
Is the weighted average attenuation coefficient for the base material n based on all measured spectral energy levels, as defined by equation (17) below.
Figure JPOXMLDOC01-appb-M000034
上記2つの評価関数に加えて、第三の評価関数は、本実施形態に係るエネルギービンにおいて、ノイズ均衡状態に近づけるための処理とともに用いられるために定義される。第三の評価関数を定義するために、以下の式(18)が、仮定される。 
Figure JPOXMLDOC01-appb-M000035
In addition to the above two evaluation functions, the third evaluation function is defined to be used together with the process for approaching the noise balance state in the energy bin according to the present embodiment. In order to define the third evaluation function, the following equation (18) is assumed:
Figure JPOXMLDOC01-appb-M000035
ここで、測定された投影データgは、エネルギービンmで測定され、厚みLの推定に関連付けられる。基底物質g (BH)は、線質硬化項であり、一方、 
Figure JPOXMLDOC01-appb-M000036
Here, the measured projection data g m is measured by the energy bins m, associated with the estimation of the thickness L n. The base material g m (BH) is a linear hardening term,
Figure JPOXMLDOC01-appb-M000036
は、基底物質nとエネルギービンmとに関する平均減衰係数である。基底物質は、1からNの基底物質の間で特定の基底物質を規定するために、nによってインデックス付けされる。同様に、エネルギービンは、1からMのエネルギースペクトルの間で特定のエネルギービンを規定するために、インデックス付けされる。 Is the average attenuation coefficient for the base material n and the energy bin m. The basis material is indexed by n to define a particular basis material between 1 and N basis materials. Similarly, energy bins are indexed to define a particular energy bin between 1 and M energy spectra.
 更に、式(14)で表されているような、測定された投影と基底物質の厚みとに関する重み付き版は、式(15)、(16)、(17)で表されているような重みの定義に基づいて、式(18)で表されているような関係性に応用可能である。基底物質に対するノイズ推定に関する式(14)における線質硬化項を無視することで、以下の近似が、式(19)のように得られる。 
Figure JPOXMLDOC01-appb-M000037
Further, the weighted version of the measured projection and the base material thickness as represented by equation (14) is the weight as represented by equations (15), (16) and (17). Is applicable to the relationship represented by the equation (18). By ignoring the linear hardening term in Equation (14) relating to noise estimation for the base material, the following approximation is obtained as in Equation (19).
Figure JPOXMLDOC01-appb-M000037
以下の式のような、 
Figure JPOXMLDOC01-appb-M000038
Like the following formula,
Figure JPOXMLDOC01-appb-M000038
の逆数である変数Ξが定義される。 
Figure JPOXMLDOC01-appb-M000039
A variable Ξ that is the reciprocal of is defined.
Figure JPOXMLDOC01-appb-M000039
このようにして、式(19)は、方程式(20)と(15)とに基づいて、基底物質nの厚みを示す式(21)となる。 
Figure JPOXMLDOC01-appb-M000040
Thus, Expression (19) becomes Expression (21) indicating the thickness of the base material n based on Equations (20) and (15).
Figure JPOXMLDOC01-appb-M000040
以下の式のような、 
Figure JPOXMLDOC01-appb-M000041
Like the following formula,
Figure JPOXMLDOC01-appb-M000041
の逆数である重み付き版の変数 
Figure JPOXMLDOC01-appb-M000042
A weighted version of the variable that is the inverse of
Figure JPOXMLDOC01-appb-M000042
が定義される。 
Figure JPOXMLDOC01-appb-M000043
Is defined.
Figure JPOXMLDOC01-appb-M000043
基底物質の厚さに関する分散共分散は、今、以下のような式(23)で決定される。 
Figure JPOXMLDOC01-appb-M000044
The dispersion covariance regarding the thickness of the base material is now determined by the following equation (23).
Figure JPOXMLDOC01-appb-M000044
 最後に、基底物質の厚さの重み付きノイズとしての評価関数Λは、式(24)で表される。すなわち、ノイズ均衡デバイス117は、評価関数Λを、基底物質に対する重み付き平均減弱係数の逆数 
Figure JPOXMLDOC01-appb-M000045
Finally, the evaluation function Λ as the weighted noise of the thickness of the base material is expressed by Expression (24). That is, the noise balancing device 117 calculates the evaluation function Λ by the inverse of the weighted average attenuation coefficient for the base material.
Figure JPOXMLDOC01-appb-M000045
とエネルギービンmに対するノイズの2乗σ との積により規定される基底物質の厚みLの分散共分散として用いる。 
Figure JPOXMLDOC01-appb-M000046
And the variance of the base material thickness L defined by the product of the noise squared to the energy bin m σ m 2 .
Figure JPOXMLDOC01-appb-M000046
以下で示されるような最適な重みを見つけるために、上記式は解析的に解かれなくてもよい。数値的な方法が、最適な重みを見つけるために、使われる。 
Figure JPOXMLDOC01-appb-M000047
In order to find the optimal weight as shown below, the above equation need not be solved analytically. A numerical method is used to find the optimal weight.
Figure JPOXMLDOC01-appb-M000047
 次に図4Aと4Bに関して、一対の画像は、本装置と処理との実施形態によるノイズ均衡状態のいくつかの効果を示している。図4Aは、本装置と処理との実施形態によるノイズ均衡状態が取れたデータから再構成されたモノクロ画像である。図4Bは、本発明に係る装置と処理との実施形態によるノイズ均衡状態に近づけられていないデータから再構成されたモノクロ画像である。不均衡なノイズは、図4Bに示されているように、モノクロ画像に深刻なアーチファクトの原因となり、そのノイズは診断能力をおそらく低下させる。この理由のため、改善されたノイズ性質は、最終的画質に基づいた診断能力を、おそらく増加させる。図4Cは、図4Aを線図として示す図である。図4Dは、図4Bを線図として示す図である。 Referring now to FIGS. 4A and 4B, a pair of images shows some effects of noise balance according to embodiments of the present apparatus and processing. FIG. 4A is a monochrome image reconstructed from noise balanced data according to an embodiment of the present apparatus and processing. FIG. 4B is a monochrome image reconstructed from data that has not been brought close to the noise balance according to the apparatus and processing embodiment of the present invention. Unbalanced noise can cause severe artifacts in monochrome images, as shown in FIG. 4B, and that noise will likely reduce diagnostic capabilities. For this reason, the improved noise nature probably increases the diagnostic ability based on the final image quality. FIG. 4C is a diagram showing FIG. 4A as a diagram. FIG. 4D is a diagram showing FIG. 4B as a diagram.
 以上に述べた構成によれば、以下の効果を得ることができる。 
 本実施形態に係るフォトンカウンティングX線コンピュータ断層撮影装置によれば、複数のエネルギービン各々により収集された光子計数に基づいて、合成対象となるエネルギービンを選択し、選択されたエネルギービンのX線フォトン数を合成することができる。このエネルギービンの選択は、合成エネルギービンに属する光子計数を均衡(バランス)させるように、実行することができる。また、エネルギービンは、基底物質の厚みの分散が小さくなるように選択されてもよい。これにより、本実施形態によれば、合成エネルギービンに属する光子計数は、略同一または近くなる。これらのことから、本実施形態に係るフォトンカウンティングX線コンピュータ断層撮影装置によれば、特定のエネルギービンにノイズが多く乗ることを防ぐことができる。
According to the configuration described above, the following effects can be obtained.
According to the photon counting X-ray computed tomography apparatus according to the present embodiment, an energy bin to be synthesized is selected based on the photon count collected by each of a plurality of energy bins, and the X-rays of the selected energy bins are selected. The number of photons can be synthesized. This energy bin selection can be performed to balance the photon counts belonging to the composite energy bin. Also, the energy bins may be selected such that the dispersion of the base material thickness is small. Thereby, according to this embodiment, the photon count which belongs to a synthetic energy bin becomes substantially the same or close. Therefore, according to the photon counting X-ray computed tomography apparatus according to the present embodiment, it is possible to prevent a specific energy bin from being excessively noisy.
 また、本実施形態によれば、合成対象となるエネルギービンを、スキャン条件または操作者が注目する注目物質に応じて選択することも可能である。これにより、本実施形態によれば、ノイズが均衡され、かつスキャン条件または注目物質に対応する画像を再構成することができる。 Further, according to the present embodiment, it is also possible to select the energy bin to be synthesized according to the scanning condition or the target substance that the operator pays attention to. Thereby, according to this embodiment, noise is balanced and the image corresponding to the scanning condition or the target substance can be reconstructed.
 以上のことから、本実施形態によれば、複数の合成エネルギービンにおける光子計数を略均一化させることにより、複数の合成エネルギービンにおけるノイズを均衡(バランス)することができる。これにより、図4Dと図4Cとから明らかなように、本実施形態によれば、ノイズの均衡により、再構成される画質が向上する。 From the above, according to the present embodiment, the noise in the plurality of synthetic energy bins can be balanced by making the photon counts in the plurality of synthetic energy bins substantially uniform. Thus, as is apparent from FIGS. 4D and 4C, according to the present embodiment, the reconstructed image quality is improved due to noise balance.
 なお、実施形態に係る機能は、当該処理を実行するプログラム(医用画像再構成プログラム)をワークステーション等のコンピュータにインストールし、これらをメモリ上で展開することによっても実現することができる。このとき、コンピュータに当該手法を実行させることのできるプログラムは、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD-ROM、DVDなど)、半導体メモリなどの記憶媒体に格納して頒布することも可能である。 Note that the functions according to the embodiment can also be realized by installing a program (medical image reconstruction program) for executing the processing in a computer such as a workstation and developing the program on a memory. At this time, a program capable of causing the computer to execute the technique is stored in a storage medium such as a magnetic disk (floppy (registered trademark) disk, hard disk, etc.), an optical disk (CD-ROM, DVD, etc.), or a semiconductor memory. It can also be distributed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 100…ガントリ、101…X線管、102…環状フレーム(支持機構)、103…X線検出器、104…データ収集回路、105…非接触データ伝送器、106…前処理デバイス、107…回転ユニット、108…スリップリング、109…高電圧発生器、110…システムコントローラ、111…データ収集デバイス、112…記憶デバイス、114…再構成デバイス、115…入力デバイス、116…表示デバイス、117…ノイズ均衡デバイス(合成部)、118…電流調整器、200…スキャン計画サポートデバイス。 DESCRIPTION OF SYMBOLS 100 ... Gantry, 101 ... X-ray tube, 102 ... Annular frame (support mechanism), 103 ... X-ray detector, 104 ... Data acquisition circuit, 105 ... Non-contact data transmitter, 106 ... Pre-processing device, 107 ... Rotation unit , 108 ... slip ring, 109 ... high voltage generator, 110 ... system controller, 111 ... data collection device, 112 ... storage device, 114 ... reconstruction device, 115 ... input device, 116 ... display device, 117 ... noise balance device (Combining unit), 118 ... current regulator, 200 ... scan plan support device.

Claims (16)

  1.  X線を発生するX線管と、
     前記X線管から発生されたX線フォトンを検出し、前記検出したX線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生するX線検出器と、
     前記X線管を回転軸周りに回転可能に支持する支持機構と、
     前記エネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択し、前記選択されたエネルギービンのX線フォトン数を合成することにより、前記選択されたエネルギービンを合成した合成エネルギービンにおける合成出力信号を取得する合成部と、
     前記合成出力信号を用いて、画像を再構成する再構成部と、
     を具備するフォトンカウンティングX線コンピュータ断層撮影装置。
    An X-ray tube that generates X-rays;
    An X-ray detector that detects X-ray photons generated from the X-ray tube and generates an output signal corresponding to the detected number of X-ray photons for each of at least three energy bins;
    A support mechanism for rotatably supporting the X-ray tube around a rotation axis;
    Based on the number of X-ray photons in each of the energy bins, at least two energy bins to be combined are selected, and the selected energy bins are synthesized by combining the number of X-ray photons of the selected energy bins. A combining unit for obtaining a combined output signal in the combined combined energy bin;
    A reconstruction unit that reconstructs an image using the combined output signal;
    A photon counting X-ray computed tomography apparatus comprising:
  2.  前記合成部は、所定のエネルギービンに合成される前記合成対象のエネルギービンとして、前記所定のエネルギービンに隣接する2つのエネルギービンのうちいずれか一方を選択する際、前記X線フォトン数の少ない方のエネルギービンを合成対象として選択する請求項1に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 When the combining unit selects one of the two energy bins adjacent to the predetermined energy bin as the energy bin to be combined to be combined with the predetermined energy bin, the number of X-ray photons is small. 2. The photon counting X-ray computed tomography apparatus according to claim 1, wherein one of the energy bins is selected as a synthesis target.
  3.  前記合成部は、互いに異なる前記エネルギービンに属する前記X線フォトン数を合成することにより、2つの前記合成エネルギービンにそれぞれ対応する2つの前記合成出力信号を取得し、
     前記再構成部は、前記2つの合成出力信号を用いて、前記画像を再構成する請求項1に記載のフォトンカウンティングX線コンピュータ断層撮影装置。
    The combining unit acquires the two combined output signals respectively corresponding to the two combined energy bins by combining the X-ray photon numbers belonging to the different energy bins.
    The photon counting X-ray computed tomography apparatus according to claim 1, wherein the reconstruction unit reconstructs the image using the two combined output signals.
  4.  前記合成部は、
     前記2つの合成エネルギービンにそれぞれ対応する2つのX線フォトン数の間における差異を最小にするために、前記合成対象となるエネルギービンを選択する請求項3に記載のフォトンカウンティングX線コンピュータ断層撮影装置。
    The synthesis unit is
    4. Photon counting X-ray computed tomography according to claim 3, wherein the energy bins to be combined are selected in order to minimize the difference between the two X-ray photon numbers respectively corresponding to the two combined energy bins. apparatus.
  5.  前記合成部は、前記エネルギービンと前記合成エネルギービンとに応じた複数の重みを、前記選択されたエネルギービンの前記X線フォトン数に乗じて合成することにより、前記合成エネルギービンにおける合成出力信号を取得する請求項1に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The combining unit combines a plurality of weights corresponding to the energy bin and the combined energy bin by multiplying the number of X-ray photons of the selected energy bin, thereby combining the combined output signal in the combined energy bin The photon counting X-ray computed tomography apparatus according to claim 1, wherein:
  6.  前記合成部は、前記合成出力信号を用いて、前記合成エネルギービンの数に等しい数の複数の基底物質各々の厚みを決定し、
     前記再構成部は、前記厚みに対応する前記合成出力信号を用いて、前記画像を再構成する請求項5に記載のフォトンカウンティングX線コンピュータ断層撮影装置。
    The synthesis unit determines a thickness of each of a plurality of basis materials equal to the number of the synthesized energy bins using the synthesized output signal,
    The photon counting X-ray computed tomography apparatus according to claim 5, wherein the reconstruction unit reconstructs the image using the combined output signal corresponding to the thickness.
  7.  前記合成部は、所定の条件付きアルゴリズムと前記合成出力信号とを用いて、前記厚みを決定する請求項6に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The photon counting X-ray computed tomography apparatus according to claim 6, wherein the synthesis unit determines the thickness using a predetermined conditional algorithm and the synthesized output signal.
  8.  前記合成部は、所定の条件無しアルゴリズムと前記合成出力信号とを用いて、前記厚みを決定する請求項6に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The photon counting X-ray computed tomography apparatus according to claim 6, wherein the combining unit determines the thickness using a predetermined no-condition algorithm and the combined output signal.
  9.  前記X線管は、異なる2つのエネルギーを有する2種のX線を発生し、
     前記X線検出器は、前記2種のX線にそれぞれ対応する前記X線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生し、
     前記合成部は、前記2種のX線にそれぞれ対応する前記エネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択し、前記選択されたエネルギービンのX線フォトン数を合成することにより、前記選択されたエネルギービンを合成した合成エネルギービンにおける合成出力信号を取得する請求項1に記載のフォトンカウンティングX線コンピュータ断層撮影装置。
    The X-ray tube generates two types of X-rays having two different energies,
    The X-ray detector generates an output signal corresponding to the number of X-ray photons corresponding to the two types of X-rays for each of at least three energy bins,
    The combining unit selects at least two energy bins to be combined based on the number of X-ray photons in each of the energy bins respectively corresponding to the two types of X-rays, and X-rays of the selected energy bins The photon counting X-ray computed tomography apparatus according to claim 1, wherein a combined output signal in a combined energy bin obtained by combining the selected energy bins is acquired by combining the number of photons.
  10.  前記X線管は、異なる複数のエネルギーを有する多色X線を発生し、
     前記X線検出器は、前記多色X線のエネルギーにそれぞれ対応する前記X線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生し、
     前記合成部は、前記多色X線のエネルギーにそれぞれ対応する前記エネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択し、前記選択されたエネルギービンのX線フォトン数を合成することにより、前記選択されたエネルギービンを合成した合成エネルギービンにおける合成出力信号を取得する請求項1に記載のフォトンカウンティングX線コンピュータ断層撮影装置。
    The X-ray tube generates multicolor X-rays having different energy,
    The X-ray detector generates, for each of at least three energy bins, an output signal corresponding to the number of X-ray photons corresponding to the energy of the polychromatic X-ray;
    The combining unit selects at least two energy bins to be combined based on the number of X-ray photons in each of the energy bins respectively corresponding to the energy of the polychromatic X-ray, and the X of the selected energy bin The photon counting X-ray computed tomography apparatus according to claim 1, wherein a combined output signal in a combined energy bin obtained by combining the selected energy bins is acquired by combining the number of line photons.
  11.  前記合成部は、評価関数を最小化することにより、前記基底物質において、非ゼロの前記厚みを特定することによって、前記重みを決定する請求項6に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The photon counting X-ray computed tomography apparatus according to claim 6, wherein the synthesis unit determines the weight by specifying the non-zero thickness in the base material by minimizing an evaluation function.
  12.  前記合成部は、前記エネルギービンにおいて計測された投影データと前記エネルギービンにおいて前記基底物質の厚みに依存する線質硬化投影データとの和から、前記基底物質の厚みと前記基底物質の種類と前記エネルギービンとにより規定される平均減弱係数との積の前記種類に亘る総和を減算した差の絶対値が、前記投影データに関するノイズより小さくなることを条件として、前記重みを決定する請求項11に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The combining unit calculates the thickness of the base material, the type of the base material, and the sum of the projection data measured in the energy bin and the radiation hardening projection data depending on the thickness of the base material in the energy bin. 12. The weight is determined on the condition that an absolute value of a difference obtained by subtracting a sum total over the types of products with an average attenuation coefficient defined by an energy bin is smaller than noise related to the projection data. The photon counting X-ray computed tomography apparatus as described.
  13.  前記評価関数は、前記基底物質の厚みの和である請求項11に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The photon counting X-ray computed tomography apparatus according to claim 11, wherein the evaluation function is a sum of thicknesses of the base materials.
  14.  前記評価関数は、前記エネルギービンにおいて計測された投影データと前記エネルギービンにおいて前記基底物質の厚みに依存する線質硬化投影データとの和から、前記基底物質の厚みと前記基底物質の種類と前記エネルギービンとにより規定される平均減弱係数との積の前記種類に亘る総和を減算した差の2乗を前記投影データに関するノイズの2乗で除算した商の前記エネルギービンに亘る総和により規定される請求項11に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 The evaluation function is calculated based on the sum of the projection data measured in the energy bin and the radiation hardening projection data depending on the thickness of the base material in the energy bin, and the thickness of the base material, the type of the base material, and the Defined by the sum over the energy bin of the quotient obtained by dividing the square of the difference obtained by subtracting the sum over the type of product with the average attenuation coefficient defined by the energy bin by the square of the noise for the projection data. The photon counting X-ray computed tomography apparatus according to claim 11.
  15.  前記評価関数は、前記基底物質に対する重み付き平均減弱係数の逆数と前記エネルギービンに対するノイズの2乗との積により規定される前記基底物質の厚みの分散共分散である請求項11に記載のフォトンカウンティングX線コンピュータ断層撮影装置。 12. The photon according to claim 11, wherein the evaluation function is a variance covariance of the thickness of the base material defined by a product of an inverse of a weighted average attenuation coefficient for the base material and a square of noise for the energy bin. Counting X-ray computed tomography system.
  16.  X線管によりX線を発生し、
     前記X線管から発生されたX線フォトンを検出し、前記検出したX線フォトン数に応じた出力信号を、少なくとも3つのエネルギービン各々について発生し、
     前記エネルギービン各々におけるX線フォトン数に基づいて、合成対象となるエネルギービンを少なくとも2つ選択し、
     前記選択されたエネルギービンのX線フォトン数を合成することにより、前記選択されたエネルギービンを合成した合成エネルギービンにおける合成出力信号を取得し、
     前記合成出力信号を用いて、画像を再構成すること、
     を具備するフォトンカウンティングX線コンピュータ断層撮影方法。
    X-rays are generated by the X-ray tube,
    Detecting X-ray photons generated from the X-ray tube, and generating an output signal corresponding to the detected number of X-ray photons for each of at least three energy bins;
    Based on the number of X-ray photons in each energy bin, select at least two energy bins to be combined,
    By synthesizing the number of X-ray photons of the selected energy bin, a combined output signal in the combined energy bin obtained by combining the selected energy bin is obtained,
    Reconstructing an image using the composite output signal;
    A photon counting X-ray computed tomography method comprising:
PCT/JP2014/064490 2013-05-30 2014-05-30 Photon-counting x-ray computed tomography device and photon-counting x-ray computed tomography method WO2014192935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480026386.1A CN105246410B (en) 2013-05-30 2014-05-30 Photon counting X-ray computed tomograohy apparatus and photon counting X ray computer tomography method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/906,110 2013-05-30
US13/906,110 US8965095B2 (en) 2013-05-30 2013-05-30 Noise balance pre-reconstruction data decomposition in spectral CT
JP2014111727A JP6345486B2 (en) 2013-05-30 2014-05-29 Photon counting X-ray computed tomography apparatus and medical image reconstruction program
JP2014-111727 2014-05-29

Publications (1)

Publication Number Publication Date
WO2014192935A1 true WO2014192935A1 (en) 2014-12-04

Family

ID=51988953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064490 WO2014192935A1 (en) 2013-05-30 2014-05-30 Photon-counting x-ray computed tomography device and photon-counting x-ray computed tomography method

Country Status (1)

Country Link
WO (1) WO2014192935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147844A1 (en) * 2015-03-19 2016-09-22 株式会社日立製作所 X-ray ct device and multi-energy image creation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101926A (en) * 2004-09-30 2006-04-20 M & C:Kk Radiation detector, radiation image diagnostic device and generation method of radiation image
JP2010500119A (en) * 2006-08-09 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for spectral computed tomography
JP2011085479A (en) * 2009-10-15 2011-04-28 Tele Systems:Kk Calibration device for photon counting type radiation detector and calibration method thereof
JP2013056149A (en) * 2011-08-18 2013-03-28 Toshiba Corp Photon-counting x-ray computed tomography system and scatter correction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101926A (en) * 2004-09-30 2006-04-20 M & C:Kk Radiation detector, radiation image diagnostic device and generation method of radiation image
JP2010500119A (en) * 2006-08-09 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for spectral computed tomography
JP2011085479A (en) * 2009-10-15 2011-04-28 Tele Systems:Kk Calibration device for photon counting type radiation detector and calibration method thereof
JP2013056149A (en) * 2011-08-18 2013-03-28 Toshiba Corp Photon-counting x-ray computed tomography system and scatter correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147844A1 (en) * 2015-03-19 2016-09-22 株式会社日立製作所 X-ray ct device and multi-energy image creation method
JPWO2016147844A1 (en) * 2015-03-19 2018-01-11 株式会社日立製作所 X-ray CT apparatus and multi-energy image creation method

Similar Documents

Publication Publication Date Title
JP6345486B2 (en) Photon counting X-ray computed tomography apparatus and medical image reconstruction program
JP6670586B2 (en) X-ray CT system
EP2843623B1 (en) X-ray dual-energy CT reconstruction method
JP6513431B2 (en) X-ray CT apparatus and control method thereof
JP6564254B2 (en) X-ray CT apparatus and control method thereof
US7738625B2 (en) X-ray CT apparatus
Leng et al. Ultra-high spatial resolution multi-energy CT using photon counting detector technology
JP6494982B2 (en) X-ray computed tomography apparatus, image processing apparatus, and image processing program
US20150043795A1 (en) Image domain pansharpening method and system for spectral ct with large pixel energy discriminating detectors
US9330443B1 (en) Noise reduction in image domain for spectral computed tomography
JP6431068B2 (en) Spectral projection data denoising with anti-correlation filter
JP2014503828A (en) Detection value processing device
JP6822778B2 (en) X-ray computed tomography equipment
US10210632B2 (en) Structure-compliant noise reduction during multispectral computed tomography imaging
CN108280860B (en) Reducing the number of spectral channels in multi-energy CT imaging
CN109381214B (en) Computed tomography recording with different energy threshold sets
JP6462397B2 (en) X-ray computed tomography apparatus and image reconstruction method
US20220409159A1 (en) Apparatus for generating photon counting spectral image data
CN111818851A (en) Non-spectral Computed Tomography (CT) scanner configured to generate spectral volumetric image data
WO2014192935A1 (en) Photon-counting x-ray computed tomography device and photon-counting x-ray computed tomography method
Fahmi et al. Dynamic myocardial perfusion in a porcine balloon-induced ischemia model using a prototype spectral detector CT
JP2022145494A (en) Image processing device, correction method, and program
JP2020075078A (en) Medical image processing device, x-ray ct device, and medical image processing method
Szczykutowicz et al. The dependence of image quality on the number of high and low kVp projections in dual energy CT using the prior image constrained compressed sensing (PICCS) algorithm
Li et al. Estimation of signal and noise for a whole-body photon counting research CT system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803787

Country of ref document: EP

Kind code of ref document: A1