WO2014192747A1 - Engine control device and control method - Google Patents

Engine control device and control method Download PDF

Info

Publication number
WO2014192747A1
WO2014192747A1 PCT/JP2014/063981 JP2014063981W WO2014192747A1 WO 2014192747 A1 WO2014192747 A1 WO 2014192747A1 JP 2014063981 W JP2014063981 W JP 2014063981W WO 2014192747 A1 WO2014192747 A1 WO 2014192747A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
temperature
engine
head
warm
Prior art date
Application number
PCT/JP2014/063981
Other languages
French (fr)
Japanese (ja)
Inventor
尊雄 井上
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014192747A1 publication Critical patent/WO2014192747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/46Engine parts temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting

Definitions

  • the present invention relates to a control device and control method of an engine mounted on a vehicle.
  • JP2011-179435A the bore wall surface temperature is estimated based on the engine coolant temperature, the fuel injection amount, the exhaust temperature, and the exhaust flow rate, the warm-up state is determined, and afterglow is performed until the wall surface temperature reaches a predetermined temperature.
  • a combustion control system for an internal combustion engine is disclosed.
  • the engine is started under various conditions such as starting from a completely cold state, stopping after starting from a cold state, and immediately restarting.
  • temperature conditions of the engine differ depending on different extrinsic conditions such as cold places and hot places. Due to these factors, the warm-up state of the engine is different.
  • a heat management system that actively controls the exchange of heat at each part using cooling water is configured.
  • the cooling water flow path is disposed not only in the engine and the transmission but also in the intake and exhaust pipes and the like so as to perform the warm-up and the cooling.
  • the warm-up state differs in the engine and the surrounding area.
  • the cooling water temperature is different for each part. Therefore, it is difficult to accurately grasp the warm-up state of the engine only by detecting the cooling water temperature as in the prior art.
  • the present invention is made in view of such a problem, and an object of the present invention is to provide a control device of an engine which warms up the engine by grasping the warm-up state of the engine.
  • a control device for an engine that warms up the engine by a warm-up mode for setting the circulation state of the cooling water flowing through the engine, the head side circulating the cooling water through the cylinder head of the engine
  • the present invention is applicable to a cooling water flow control valve and a cooling water control valve that controls the flow of cooling water in a block-side cooling water flow path that distributes the cooling water to a cooling water flow path and a cylinder block of an engine.
  • the cooling water control valve controls a flow rate of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage to warm up at least one of the etching head and the cylinder block. Is configured to be controllable.
  • the control device of the engine selects one warm-up mode from a plurality of warm-up modes based on the combustion chamber wall temperature in the cylinder head and the block bore wall temperature in the cylinder block, and based on the selected warm-up mode
  • the amount of flow of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage is controlled by the cooling water control valve.
  • FIG. 1 is an explanatory view showing a configuration of an engine control system centering on an engine according to an embodiment of the present invention.
  • Drawing 2 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention.
  • Drawing 3 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention.
  • Drawing 4 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention.
  • Drawing 5 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention.
  • FIG. 6 is an explanatory view showing the flow of the cooling water according to the control position of the second cooling water control valve of the embodiment of the present invention.
  • FIG. 7 is an explanatory view showing the flow of the cooling water at the control position of the second cooling water control valve according to the embodiment of the present invention.
  • FIG. 8 is an explanatory view showing the flow of cooling water according to the control position of the second cooling water control valve of the embodiment of the present invention.
  • FIG. 9 is a flowchart of engine warm-up control executed by the ECU according to the embodiment of the present invention.
  • FIG. 10 is an explanatory view showing the correlation between the oil temperature and the block bore wall temperature according to the embodiment of this invention.
  • FIG. 11 is an explanatory view showing the correlation between the head combustion chamber temperature, the block bore wall temperature, and the friction (frictional resistance) of the engine according to the embodiment of this invention.
  • FIG. 1 is an explanatory diagram of an engine control system 1 centering on an engine 10 according to the embodiment of this invention.
  • the engine control system 1 includes an engine 10, a transmission 20, a coolant circuit 30, and an engine control unit (ECU) 60 that controls them.
  • ECU engine control unit
  • the engine 10 is composed of a cylinder head 11 and a cylinder block 12.
  • the cylinder head 11 is provided with a head side cooling water flow passage 37
  • the cylinder block 12 is provided with a block side cooling water flow passage 38, through which the cooling water flows.
  • the cylinder block 12 is provided with an oil cooler (O / C) 15.
  • the O / C 15 cools the hydraulic oil in the cylinder block 12 by circulating the cooling water, and maintains the hydraulic oil at a temperature suitable for the operation of the engine 10.
  • a transmission 20 is connected to the engine 10.
  • the transmission 20 is provided with a transmission oil warmer (O / W) 21.
  • the O / W 21 warms up the hydraulic fluid in the transmission 20 by circulating the coolant, and maintains the hydraulic fluid at a temperature suitable for the operation of the transmission 20.
  • the cooling water circuit 30 is provided with a water pump 36 and circulates the cooling water in the cooling water circuit 30.
  • the cooling water flow path 30 is configured such that the cooling water discharged from the engine 10 is returned to the water pump 36 again via the throttle valve 31, the EGR valve 33, the heater 35, the EGR cooler 32, the radiator 40 and the like.
  • the EGR cooler 32 cools the exhaust gas to be recirculated from the exhaust to the intake with cooling water.
  • the heater 35 is used not only for heating the passenger compartment but also as a heat source for electronic devices.
  • the radiator 40 is provided at the front end of the vehicle and reduces the temperature of the coolant by exchanging heat between the atmosphere and the coolant.
  • a first coolant control valve 51 is provided at the outlet of the head-side coolant channel 37.
  • the first cooling water control valve 51 is a 1-input 3-output switching valve that distributes the cooling water from the head-side cooling water flow path 37 to at least one of the heater 35, the radiator 40 and the second cooling water control valve 52. is there.
  • a second coolant control valve 52 is provided at the outlet of the block side coolant flow path 38.
  • the second cooling water control valve 52 switches the 1-input and 2-output mode of circulating the cooling water from the block-side cooling water flow path 38 to at least one of the O / C 15, the O / W 21 and the first cooling water control valve 51. It is a valve.
  • Part of the cooling water in the head-side cooling water flow path 37 flows to the EGR cooler 32 through a cooling water flow path formed in the throttle valve 31 and a cooling water flow path formed in the EGR valve 33.
  • the coolant that has passed through the EGR cooler 32 returns to the water pump 36.
  • a head inlet cooling water temperature sensor 101 for detecting the temperature of the cooling water flowing into the cylinder head 11 is provided in the vicinity of the inlet of the head side cooling water flow passage 37 of the cylinder head 11.
  • a head outlet cooling water temperature sensor 102 for detecting the temperature of the cooling water flowing out of the cylinder head 11 is provided near the outlet of the head side cooling water flow passage 37 of the cylinder head 11.
  • the cylinder block 12 is provided with an engine oil temperature sensor 103 that detects the temperature of hydraulic fluid of the engine 10.
  • the ECU 60 controls the first cooling water control valve 51 and the second cooling water control valve 52 based on the temperatures detected by the head inlet cooling water temperature sensor 101, the head outlet cooling water temperature sensor 102, and the engine oil temperature sensor 103. Control position and flow.
  • FIG. 2 to 6 are explanatory views showing the flow of the cooling water at the control position of the first cooling water control valve 51.
  • FIG. 2 shows the flow of the cooling water when the first cooling water control valve 51 is in the first control position.
  • the first coolant control valve 51 controls the flow rate of the coolant in the head-side coolant channel 37.
  • the coolant is controlled so as not to flow out of the first coolant control valve 51.
  • the cooling water flowing out of the water pump 36 returns from the head side cooling water flow path 37 to the water pump 36 again through the throttle valve 31, the EGR valve 33 and the EGR cooler 32.
  • the coolant circulates only the cylinder head 11 without passing through the radiator 40, so the warm-up of the cylinder head 11 is promoted. Be done.
  • the coolant in the cylinder block 12 is set by the control position of the second coolant control valve 52.
  • FIG. 3 shows the flow of cooling water when the first cooling water control valve 51 is in the second control position.
  • the first cooling water control valve 51 When the first cooling water control valve 51 is in the second control position, the first cooling water control valve 51 switches the cooling water from the head side cooling water flow passage 37 to flow out to the heater 35. In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the EGR cooler 32 to the water pump 36 again from the first cooling water control valve 51 through the heater 35.
  • the coolant when the first coolant control valve 51 is in the second control position, the coolant does not pass through the radiator 40 but passes through the cylinder head 11 and the heater. At this time, when the cooling water passes through the heater 35, the temperature of the cooling water is lowered compared to the first control position. As a result, the warm-up of the cylinder head 11 is gradual compared to the first control position.
  • the flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
  • FIG. 4 shows the flow of the cooling water when the first cooling water control valve 51 is in the third control position.
  • the first cooling water control valve 51 When the first cooling water control valve 51 is in the third control position, the first cooling water control valve 51 switches the cooling water from the head side cooling water flow passage 37 to flow out to the radiator 40. In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the first cooling water control valve 51 to the water pump 36 again via the radiator 40.
  • the cooling water control valve 51 when the first cooling water control valve 51 is in the third control position, the cooling water passes through the radiator 40, so that heat is exchanged with air in the radiator 40, and the temperature of the cooling water decreases. For this reason, the temperature of the cylinder head 11 is cooled by the cooling water.
  • the flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
  • FIG. 5 shows the flow of the cooling water when the first cooling water control valve 51 is in the fourth control position.
  • the first cooling water control valve 51 When the first cooling water control valve 51 is in the fourth control position, the first cooling water control valve 51 switches the cooling water from the head-side cooling water passage 37 to flow out to the heater 35 and the radiator 40 . In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the first cooling water control valve 51 through the heater 35 and the EGR cooler 32 or through the radiator 40 to the water pump 36 again.
  • the cooling water passes through the heater 35 and the radiator 40, so that the third control position for circulating the cooling water only to the radiator 40 Further, the temperature of the cooling water is lowered as compared with. Therefore, the temperature of the cylinder head 11 is further cooled by the cooling water.
  • the flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
  • FIG. 6 to 8 are explanatory diagrams showing the flow of the cooling water at the control position of the second cooling water control valve 52.
  • FIG. 6 to 8 are explanatory diagrams showing the flow of the cooling water at the control position of the second cooling water control valve 52.
  • FIG. 6 shows the flow of the coolant when the second coolant control valve 52 is in the first control position.
  • the second cooling water control valve 52 controls the flow rate of the cooling water in the block side cooling water flow passage 38.
  • the second cooling water control valve 52 When the second cooling water control valve 52 is in the first control position, the second cooling water control valve 52 controls the cooling water not to flow in the block-side cooling water flow path 38. In this case, the coolant does not flow through the cylinder block 12. With such a configuration, when the second coolant control valve 52 is in the first control position, the coolant does not flow through the cylinder block 12, so the warm-up of the cylinder block 12 is promoted.
  • the coolant for the cylinder head 11 is set to one of the above-described FIGS. 2 to 5 depending on the control position of the first coolant control valve 51.
  • FIG. 7 shows the flow of the cooling water when the second cooling water control valve 52 is in the second control position.
  • the second cooling water control valve 52 When the second cooling water control valve 52 is in the second control position, the second cooling water control valve 52 cools the block-side cooling water passage 38 to the O / C 15 of the engine 10 and the O / W 21 of the transmission 20. Control the flow of water. In this case, the cooling water flowing out of the water pump 36 flows to the block side cooling water flow path 38, and a portion of the cooling water flows to the O / C 15 of the engine 10 and returns to the water pump 36 again. Another part of the cooling water flows to the O / W 21 of the transmission 20 and returns to the water pump 36 again.
  • the cooling water control valve 52 when the second cooling water control valve 52 is in the second control position, the cooling water flows through the block-side cooling water flow path 38, so the cylinder block 12 is cooled by the temperature of the cooling water. At this time, by controlling the opening degree of the second cooling water control valve 52, the flow rate of the cooling water passing through the second cooling water control valve 52, that is, the flow rate of the cooling water flowing through the cylinder block 12 is controlled. And the temperature of the cylinder block 12 can be controlled.
  • FIG. 8 shows the flow of the cooling water when the second cooling water control valve 52 is in the third control position.
  • the second cooling water control valve 52 When the second cooling water control valve 52 is in the third control position, the second cooling water control valve 52 cools from the block side cooling water passage 38 to the O / C 15 of the engine 10 and the O / W 21 of the transmission 20. Control the flow of water. Further, the second cooling water control valve 52 is controlled to flow from the block side cooling water flow path 38 to the first cooling water control valve 51. At this time, the first cooling water control valve 51 is in the fourth control position, and the cooling water is controlled to flow through the radiator 40.
  • Such control causes part of the cooling water to return from the engine 10 and the transmission 20 to the water pump 36 again. Another part of the cooling water returns to the water pump 36 again via the radiator 40 via the first cooling water control valve 51.
  • the cooling water is controlled to pass through the radiator 40 after flowing through the block side cooling water flow path 38, so the temperature of the cooling water The cylinder block 12 is cooled.
  • the opening degree of the second cooling water control valve 52 the flow rate of the cooling water passing through the second cooling water control valve 52, that is, the flow rate of the cooling water flowing from the cylinder block 12 to the radiator 40.
  • the temperature of the cylinder block 12 can be controlled.
  • FIG. 9 is a flowchart of engine warm-up control executed by the ECU 60 according to the embodiment of this invention.
  • the flowchart shown in FIG. 9 is executed by the ECU 60 in parallel with other processing in a predetermined cycle (for example, 10 ms).
  • step S1 the ECU 60 acquires the head inlet coolant temperature TwHi from the head inlet coolant temperature sensor 101, the head outlet coolant temperature TwHo from the head outlet coolant temperature sensor 102, and the oil temperature To from the engine oil temperature sensor 103.
  • the ECU 60 determines whether the head outlet coolant temperature TwHo is less than the predetermined temperature L1 and the oil temperature To is less than the predetermined temperature L1. If it is determined that the head outlet water temperature TwHo and the oil temperature To are both less than L1, then the process proceeds to step S3. If it is determined that at least one is greater than or equal to L1, the process proceeds to step S4.
  • the predetermined temperature L1 is a temperature that can determine whether both the coolant temperature and the oil temperature are in the cold state, and is set to 35 ° C., for example.
  • step S3 the ECU 60 sets the first coolant control valve 51 to the first control position and sets the second coolant control valve 52 to the first control position. Do.
  • step S3 the process of this flowchart is once ended, and the process returns to another process.
  • step S2 When it is determined in step S2 that at least one of the head outlet water temperature TwHo and the oil temperature To is equal to or higher than the predetermined temperature L1, the process proceeds to step S4.
  • step S4 it is determined whether the head outlet coolant temperature TwHo is less than the predetermined temperature H1 or the oil temperature To is less than the predetermined temperature H1. If it is determined that at least one of the head outlet water temperature TwHo and the oil temperature To is less than the predetermined temperature H1, the process proceeds to step S5. If it is determined that the head outlet water temperature TwHo and the oil temperature To are both equal to or higher than the predetermined temperature H1, the process proceeds to step S17.
  • the predetermined temperature H1 is a temperature at which the temperature of the cooling water temperature and the oil temperature can be sufficiently raised to determine that the warm-up is completed, and is set to, for example, 80 ° C. If YES is selected in step S4, it is determined that the warm-up has not been completed yet, and warm-up of the engine 10 is performed in the warm-up mode in any of steps S11, S14 or S16 described below.
  • step S5 the ECU 60 determines whether the warm-up mode has not been selected. If the warm-up mode in any one of steps S11, S14 or S16 is selected and the flag is satisfied in step S12, it is determined that the warm-up mode has been selected, and the process proceeds to step S8.
  • step S6 the ECU 60 sets the warm-up mode (warm-up mode 0) in the initial state. Specifically, the ECU 60 sets the first coolant control valve 51 to the second control position, and sets the valve opening degree so that the flow rate in the first coolant control valve 51 is low. Further, the second coolant control valve 52 is set to the first control position.
  • the cooling water circulates from the cylinder head 11 to the water pump 36 via the heater 35, while the cooling water does not circulate in the cylinder block 12, so the warm air of the engine 10 Is promoted.
  • the ECU 60 determines whether a predetermined time has elapsed since the warm-up mode 0 was set in step S6. If the predetermined time has not yet elapsed, the process of this flowchart is once ended, and the process returns to another process. If it is determined that the predetermined time has elapsed, the process proceeds to step S8.
  • the predetermined time in step S7 is set to a time from when the engine 10 is started and circulation of cooling water is started by the water pump 36 to when water flow is generated inside the cylinder head 11 or the cylinder block 12. That is, it waits for a predetermined time until the correlation between the temperature of the cylinder head 11 and the head inlet temperature TwHi and the head outlet temperature TwHo becomes clear by the water flow.
  • step S5 If it is determined in step S5 that the warm-up mode has already been set, or if it is determined in step S7 that the predetermined time has elapsed, the process proceeds to step S8.
  • step S8 the ECU 60 estimates the head combustion chamber wall temperature TH in the cylinder head 11 based on the head inlet temperature TwHi and the head outlet temperature TwHo.
  • the head combustion chamber wall temperature TH is calculated, for example, according to the following equation (1).
  • the head combustion chamber temperature TH can be estimated based on the temperature of the cooling water circulating through the head.
  • step S9 the ECU 60 estimates a block bore wall temperature TB in the cylinder block 12 based on the oil temperature To.
  • the oil temperature To and the block bore wall temperature TB have a correlation as shown in FIG.
  • the ECU 60 can estimate the block bore wall temperature TB based on the oil temperature To by holding the correlation in advance using a map or the like.
  • the block bore wall temperature TB can also be estimated from the integrated value of the input fuel amount. That is, the temperature of the block bore wall rises due to the heat generated by the combustion of the injected fuel after the start of the start of the engine 10. Therefore, the block bore wall temperature TB can be estimated based on the integrated value of the fuel supplied from the start of the engine 10 and the coefficient determined from the bore shape and the like.
  • processing for determining the warm-up mode is performed based on the estimated head combustion chamber temperature TH and block bore wall temperature TB.
  • step S10 the ECU 60 determines whether the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is less than the predetermined temperature H3.
  • the process proceeds to step S11.
  • the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 or the block bore wall temperature TB is equal to or higher than the predetermined temperature H3, the process proceeds to step S13.
  • the predetermined temperature H2 is a temperature at which the temperature of the cylinder head 11 rises and it can be determined that the warm-up in the cylinder head 11 is completed, and is set to 100 ° C., for example.
  • the predetermined temperature H3 is a temperature at which it can be determined that the temperature of the cylinder block 12 has risen and the warm-up in the cylinder block 12 has been completed, and is set to 120 ° C., for example.
  • step S11 the ECU 60 sets the warm-up mode 1. Specifically, the ECU 60 sets the first coolant control valve 51 to the first control position, and sets the second coolant control valve 52 to the first control position.
  • the coolant does not pass through the radiator 40, and the coolant circulates between the cylinder head 11 and the water pump 36, thereby promoting the warm-up of the cylinder head 11. Since cooling water does not circulate in the cylinder block 12, warm-up of the cylinder block 12 is promoted.
  • FIG. 11 is an explanatory view showing the correlation between the head combustion chamber temperature TH, the block bore wall temperature TB, and the friction (frictional resistance) of the engine 10 according to the embodiment of the present invention.
  • the block bore wall temperature TB greatly affects the increase in friction of the engine 10.
  • step S10 When determination of step S10 is NO, it transfers to step S13.
  • step S13 the ECU 60 determines whether the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3. When the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3, the process proceeds to step S14. When the head combustion chamber temperature TH is less than the predetermined temperature H2 or the block bore wall temperature TB is the predetermined temperature H3 or more, the process proceeds to step S15.
  • step S13 If it is determined in step S13 that the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3, the warm-up of the cylinder head 11 is completed. It is determined that the cylinder block 12 has not been warmed up yet. Therefore, in step S14, the ECU 60 sets the warm-up mode 2. Specifically, the ECU 60 sets the first coolant control valve 51 to the second control position, and sets the second coolant control valve 52 to the first control position.
  • the cooling water circulates between the cylinder head 11 and the water pump 36 via the heater 35, so that the temperature of the cylinder head 11 is maintained. Water circulates. On the other hand, since the cooling water does not circulate in the cylinder block 12, the warm-up of the cylinder block 12 is promoted.
  • step S13 the ECU 60 determines whether the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more. When the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more, the process proceeds to step S16. When the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 or the block bore wall temperature TB is lower than the predetermined temperature H3, the process proceeds to step S17.
  • step S15 If it is determined in step S15 that the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more, the cylinder head 11 has not completed warm-up yet The cylinder block 12 is determined to be in a state where the warm-up is completed. Therefore, in step S16, the ECU 60 sets the warm-up mode 3. Specifically, the ECU 60 sets the first coolant control valve 51 to the first control position, and sets the second coolant control valve 52 to the second control position.
  • the coolant is circulated between the cylinder head 11 and the water pump 36, so the warm-up of the cylinder head 11 is promoted. Since the coolant is circulated in the cylinder block 12, the coolant is circulated to maintain the temperature of the cylinder block 12.
  • step S12 the ECU 60 sets a flag indicating that the selection of the warm-up mode has been completed, and temporarily terminates the processing of this flowchart. Return.
  • step S4 If it is determined in step S4 that both the head outlet water temperature TwHo and the oil temperature To are equal to or higher than the predetermined temperature H1, or if the determinations in step S10, step S13, and step S15 are all NO, step S17. Migrate to
  • step S17 it is determined that the warm-up of the engine 10 is completed. Therefore, the ECU 60 shifts from the warm-up mode to a mode in which normal cooling water circulates. For example, the ECU 60 sets the first coolant control valve 51 to the fourth control position, and sets the second coolant control valve 52 to the second control position. In this state, cooling water is circulated between the cylinder head 11 and the cylinder block 12 and the heater 35 and the radiator 40 to control the temperature of the engine 10 and its surrounding area to be properly maintained.
  • the ECU 60 selects any one of the plurality of warm-up modes based on the head combustion chamber temperature TH and the block bore chamber temperature TB, and selects the selected warm-up mode.
  • the control positions of the first coolant control valve 51 and the second coolant control valve 52 are controlled based on the machine mode.
  • one of the warm-up modes is selected based on the head combustion chamber temperature TH and the block bore chamber temperature TB.
  • appropriate warm-up control can be performed based on the temperature of each part of the engine 10 having different temperatures, so warm-up can be promoted, and warm-up is promoted. Fuel consumption performance of the engine 10 can be improved.
  • the warm-up mode 1 is selected so that the cylinder head 11 and the cylinder block 12 are warmed up.
  • the control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed.
  • the ECU 60 selects the warm-up mode 2 and maintains the temperature of the cylinder head 11.
  • the control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed so that only the cylinder block 12 is warmed up.
  • the ECU 60 selects the warm-up mode 3 and warms up only the cylinder head 11 The control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed so as to maintain the temperature of the cylinder block 12.
  • the coolant temperature instead of detecting the coolant temperature and using it for warm-up control, it is estimated from the head combustion chamber wall temperature TH estimated from the head inlet coolant temperature TwHi and the head outlet coolant temperature TwHo, and the oil temperature To.
  • the warm-up mode is selected by the block bore wall temperature TB.
  • both the cylinder head 11 and the cylinder block 12 of the engine 10 are properly warmed up by selecting the warm-up mode based on the temperatures of different parts of the cylinder head 11 and the cylinder block 12 different from each other. can do. This can promote warm-up.
  • the head combustion chamber wall temperature TH is estimated from the head inlet water temperature TwHi and the head outlet water temperature TwHo, and the block bore wall temperature TB is estimated from the oil temperature To.
  • the head combustion chamber temperature TH can be estimated by circulating the cooling water.
  • the block bore wall temperature TB can be detected based on the oil temperature in the cylinder block 12 in which it is not desirable to circulate the cooling water during warm-up in order to prevent the friction increase of the engine 10.
  • the flow amount of the cooling water is reduced to estimate the head combustion chamber temperature TH.
  • the flow rate is reduced in a range that does not affect the warm-up of the cylinder head 11 and in a range where the temperature of the cylinder head 11 can be detected by the flow of cooling water, thereby warming the cylinder head 11 Can promote the machine.
  • the block bore wall temperature TB is estimated from the oil temperature To while the cooling water is not circulated.
  • the block bore wall temperature TB is estimated from the integrated value of the injected fuel in a state where the cooling water is not circulated.
  • the vehicle which is equipped with the engine 10 and is warmed up has been described as an example, but the present invention is not limited thereto.
  • the present invention can be similarly applied to warm-up when the engine 10 is driven again from the stopped state of the engine 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

A cooling water control valve is configured to be capable of controlling multiple warm-up modes, and this control device selects one of the multiple warm-up modes on the basis of the combustion chamber wall temperature in the cylinder head and the block bore wall temperature in the cylinder block and, on the basis of the selected warm-up mode, controls, by means of the cooling water control valve, the flow amount of cooling water in the head-side cooling water flow path and/or the block-side cooling water flow path.

Description

エンジンの制御装置及び制御方法Engine control device and control method
 この発明は車両に搭載されるエンジンの制御装置及び制御方法に関する。 The present invention relates to a control device and control method of an engine mounted on a vehicle.
 エンジンが冷機状態で始動する場合には、作動油の粘性の上昇、ジャーナル等の摺動部分における隙間の増大等によりエンジンのフリクションが増大する。フリクションの増大はエンジンの燃費低下、寿命低下に繋がるため、エンジンを冷機状態で始動する際には速やかに暖機を行う必要がある。 When the engine is started in a cold state, the friction of the engine is increased due to the increase of the viscosity of the hydraulic oil, the increase of the gap in the sliding portion such as the journal and the like. Since an increase in friction leads to a decrease in fuel efficiency and a decrease in life of the engine, it is necessary to warm up quickly when starting the engine in a cold state.
 JP2011-179435Aには、エンジン冷却水温、燃料噴射量、排気温度及び排気流量に基づいてボア壁面温度を推定して、暖機状態を判定し、壁面温度が所定温度に達するまで、アフターグローを行う内燃機関の燃焼制御装置が開示されている。 In JP2011-179435A, the bore wall surface temperature is estimated based on the engine coolant temperature, the fuel injection amount, the exhaust temperature, and the exhaust flow rate, the warm-up state is determined, and afterglow is performed until the wall surface temperature reaches a predetermined temperature. A combustion control system for an internal combustion engine is disclosed.
 エンジンの始動は、完全な冷機状態からの始動のほか、冷機状態から始動した後停止し、即リスタートするなど、さまざまな条件で行われる。また、冷機状態からの始動のとき、寒地や熱地など、外因条件が異なるとエンジンの温度変化が異なる。このような要因により、エンジンの暖機状態が異なったものとなる。 The engine is started under various conditions such as starting from a completely cold state, stopping after starting from a cold state, and immediately restarting. In addition, when starting from a cold state, temperature conditions of the engine differ depending on different extrinsic conditions such as cold places and hot places. Due to these factors, the warm-up state of the engine is different.
 また、近年のエンジンでは、冷却水を用いて各部位の熱の授受を積極的に制御する熱マネジメントシステムが構成されている。例えば、エンジン、変速機だけでなく、吸排気管等に冷却水流路を配置して、暖機や冷却を行うように構成することが行われている。 In addition, in recent engines, a heat management system that actively controls the exchange of heat at each part using cooling water is configured. For example, the cooling water flow path is disposed not only in the engine and the transmission but also in the intake and exhaust pipes and the like so as to perform the warm-up and the cooling.
 このように構成した場合、エンジンやその周辺の部位において暖機状態が異なる。また、各部位毎に冷却水の流通や遮断が随時制御されるため、冷却水温が部位毎に異なる。そのため、従来技術のように、冷却水温を検出するのみでは、エンジンの暖機状態を正確に把握することが難しい。 When configured in this manner, the warm-up state differs in the engine and the surrounding area. In addition, since the flow and blocking of the cooling water are controlled as needed for each part, the cooling water temperature is different for each part. Therefore, it is difficult to accurately grasp the warm-up state of the engine only by detecting the cooling water temperature as in the prior art.
 本発明は、このような問題点に鑑みてなされてものであり、エンジンの暖機状態を把握してエンジンを暖機させるエンジンの制御装置を提供することを目的とする。 The present invention is made in view of such a problem, and an object of the present invention is to provide a control device of an engine which warms up the engine by grasping the warm-up state of the engine.
 本発明の一実施態様によると、エンジンに流通する冷却水の流通状態を設定する暖機モードによりエンジンを暖機させるエンジンの制御装置であって、エンジンのシリンダヘッドに冷却水を流通させるヘッド側冷却水流路及びエンジンのシリンダブロックに冷却水を流通させるブロック側冷却水流路の冷却水の流通を制御する冷却水制御弁と、を備えるものに適用される。冷却水制御弁は、ヘッド側冷却水流路及びブロック側冷却水流路の少なくとも一方の冷却水の流通量を制御することで、エシリンダヘッド及びシリンダブロックの少なくとも一方を暖機する複数の暖機モードを制御可能に構成されている。エンジンの制御装置は、シリンダヘッドにおける燃焼室壁温度と、シリンダブロックにおけるブロックボア壁温度とに基づいて、複数の暖機モードから一つの暖機モードを選択し、選択された暖機モードに基づいて、ヘッド側冷却水流路及びブロック側冷却水流路の少なくとも一方の冷却水の流通量を、冷却水制御弁により制御させる。 According to an embodiment of the present invention, there is provided a control device for an engine that warms up the engine by a warm-up mode for setting the circulation state of the cooling water flowing through the engine, the head side circulating the cooling water through the cylinder head of the engine The present invention is applicable to a cooling water flow control valve and a cooling water control valve that controls the flow of cooling water in a block-side cooling water flow path that distributes the cooling water to a cooling water flow path and a cylinder block of an engine. The cooling water control valve controls a flow rate of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage to warm up at least one of the etching head and the cylinder block. Is configured to be controllable. The control device of the engine selects one warm-up mode from a plurality of warm-up modes based on the combustion chamber wall temperature in the cylinder head and the block bore wall temperature in the cylinder block, and based on the selected warm-up mode The amount of flow of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage is controlled by the cooling water control valve.
図1は、本発明の実施形態のエンジンを中心としたエンジン制御システムの構成を示す説明図である。FIG. 1 is an explanatory view showing a configuration of an engine control system centering on an engine according to an embodiment of the present invention. 図2は、本発明の実施形態の第1冷却水制御弁の制御位置による冷却水の流れを示す説明図である。 Drawing 2 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention. 図3は、本発明の実施形態の第1冷却水制御弁の制御位置による冷却水の流れを示す説明図である。Drawing 3 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention. 図4は、本発明の実施形態の第1冷却水制御弁の制御位置による冷却水の流れを示す説明図である。Drawing 4 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention. 図5は、本発明の実施形態の第1冷却水制御弁の制御位置による冷却水の流れを示す説明図である。 Drawing 5 is an explanatory view showing the flow of the cooling water by the control position of the 1st cooling water control valve of the embodiment of the present invention. 図6は、本発明の実施形態の第2冷却水制御弁の制御位置による冷却水の流れを示す説明図である。FIG. 6 is an explanatory view showing the flow of the cooling water according to the control position of the second cooling water control valve of the embodiment of the present invention. 図7は、本発明の実施形態の第2冷却水制御弁の制御位置による冷却水の流れを示す説明図である。FIG. 7 is an explanatory view showing the flow of the cooling water at the control position of the second cooling water control valve according to the embodiment of the present invention. 図8は、本発明の実施形態の第2冷却水制御弁の制御位置による冷却水の流れを示す説明図である。FIG. 8 is an explanatory view showing the flow of cooling water according to the control position of the second cooling water control valve of the embodiment of the present invention. 図9は、本発明の実施形態のECUが実行するエンジン暖機制御のフローチャートである。FIG. 9 is a flowchart of engine warm-up control executed by the ECU according to the embodiment of the present invention. 図10は、本発明の実施形態の油温とブロックボア壁温度との相関関係を示す説明図である。FIG. 10 is an explanatory view showing the correlation between the oil temperature and the block bore wall temperature according to the embodiment of this invention. 図11は、本発明の実施形態のヘッド燃焼室温度とブロックボア壁温度とエンジンのフリクション(摩擦抵抗)との相関関係を示す説明図である。FIG. 11 is an explanatory view showing the correlation between the head combustion chamber temperature, the block bore wall temperature, and the friction (frictional resistance) of the engine according to the embodiment of this invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
 図1は、本発明の実施の形態のエンジン10を中心としたエンジン制御システム1の説明図である。 FIG. 1 is an explanatory diagram of an engine control system 1 centering on an engine 10 according to the embodiment of this invention.
 エンジン制御システム1は、エンジン10と、変速機20と、冷却水回路30と、これらを制御するエンジンコントロールユニット(ECU)60と、から構成される。 The engine control system 1 includes an engine 10, a transmission 20, a coolant circuit 30, and an engine control unit (ECU) 60 that controls them.
 エンジン10は、シリンダヘッド11とシリンダブロック12とから構成される。シリンダヘッド11にはヘッド側冷却水流路37が、シリンダブロック12にはブロック側冷却水流路38がそれぞれ備えられ、各流路に冷却水が流通する。 The engine 10 is composed of a cylinder head 11 and a cylinder block 12. The cylinder head 11 is provided with a head side cooling water flow passage 37, and the cylinder block 12 is provided with a block side cooling water flow passage 38, through which the cooling water flows.
 シリンダブロック12にはオイルクーラー(O/C)15が備えられる。O/C15は、冷却水が流通することでシリンダブロック12内の作動油を冷却して、作動油をエンジン10の運転に適切な温度へと維持する。 The cylinder block 12 is provided with an oil cooler (O / C) 15. The O / C 15 cools the hydraulic oil in the cylinder block 12 by circulating the cooling water, and maintains the hydraulic oil at a temperature suitable for the operation of the engine 10.
 エンジン10には変速機20が接続される。変速機20には変速機オイルウォーマー(O/W)21が備えられる。O/W21は、冷却水が流通することで変速機20内の作動油を暖機して、作動油を変速機20の動作に適切な温度へと維持する。 A transmission 20 is connected to the engine 10. The transmission 20 is provided with a transmission oil warmer (O / W) 21. The O / W 21 warms up the hydraulic fluid in the transmission 20 by circulating the coolant, and maintains the hydraulic fluid at a temperature suitable for the operation of the transmission 20.
 冷却水回路30にはウォーターポンプ36が備えられ、冷却水回路30内の冷却水を循環させる。冷却水流路30は、エンジン10から出た冷却水が、スロットルバルブ31、EGRバルブ33、ヒーター35、EGRクーラー32、ラジエター40等を経由して、再びウォーターポンプ36に戻るように構成されている。EGRクーラー32は、排気から吸気へと再循環させる排ガスを冷却水により冷却する。ヒーター35は車室内の暖房に用いられる他、電子機器の熱源として用いられる。ラジエター40は、車両前端部に備えられ、大気と冷却水とで熱交換することにより冷却水の温度を低下させる。 The cooling water circuit 30 is provided with a water pump 36 and circulates the cooling water in the cooling water circuit 30. The cooling water flow path 30 is configured such that the cooling water discharged from the engine 10 is returned to the water pump 36 again via the throttle valve 31, the EGR valve 33, the heater 35, the EGR cooler 32, the radiator 40 and the like. . The EGR cooler 32 cools the exhaust gas to be recirculated from the exhaust to the intake with cooling water. The heater 35 is used not only for heating the passenger compartment but also as a heat source for electronic devices. The radiator 40 is provided at the front end of the vehicle and reduces the temperature of the coolant by exchanging heat between the atmosphere and the coolant.
 ヘッド側冷却水流路37の出口には第1冷却水制御弁51が備えられる。第1冷却水制御弁51は、ヘッド側冷却水流路37から出た冷却水を、ヒーター35、ラジエター40及び第2冷却水制御弁52の少なくとも一方へと流通させる1入力3出力の切換弁である。 A first coolant control valve 51 is provided at the outlet of the head-side coolant channel 37. The first cooling water control valve 51 is a 1-input 3-output switching valve that distributes the cooling water from the head-side cooling water flow path 37 to at least one of the heater 35, the radiator 40 and the second cooling water control valve 52. is there.
 ブロック側冷却水流路38の出口には第2冷却水制御弁52が備えられる。第2冷却水制御弁52は、ブロック側冷却水流路38から出た冷却水を、O/C15、O/W21及び第1冷却水制御弁51の少なくとも一方へと流通させる1入力2出力の切換弁である。 A second coolant control valve 52 is provided at the outlet of the block side coolant flow path 38. The second cooling water control valve 52 switches the 1-input and 2-output mode of circulating the cooling water from the block-side cooling water flow path 38 to at least one of the O / C 15, the O / W 21 and the first cooling water control valve 51. It is a valve.
 ヘッド側冷却水流路37の冷却水の一部は、スロットルバルブ31に形成された冷却水流路、EGRバルブ33に形成された冷却水流路を経て、EGRクーラー32へと流通する。EGRクーラー32を通過した冷却水は、ウォーターポンプ36へと戻る。 Part of the cooling water in the head-side cooling water flow path 37 flows to the EGR cooler 32 through a cooling water flow path formed in the throttle valve 31 and a cooling water flow path formed in the EGR valve 33. The coolant that has passed through the EGR cooler 32 returns to the water pump 36.
 シリンダヘッド11のヘッド側冷却水流路37の入口付近には、シリンダヘッド11に流入する冷却水水温を検出するヘッド入口冷却水温度センサ101が備えられる。シリンダヘッド11のヘッド側冷却水流路37の出口付近には、シリンダヘッド11から流出する冷却水水温を検出するヘッド出口冷却水温度センサ102が備えられる。シリンダブロック12には、エンジン10の作動油の温度を検出するエンジン油温センサ103が備えられる。 A head inlet cooling water temperature sensor 101 for detecting the temperature of the cooling water flowing into the cylinder head 11 is provided in the vicinity of the inlet of the head side cooling water flow passage 37 of the cylinder head 11. A head outlet cooling water temperature sensor 102 for detecting the temperature of the cooling water flowing out of the cylinder head 11 is provided near the outlet of the head side cooling water flow passage 37 of the cylinder head 11. The cylinder block 12 is provided with an engine oil temperature sensor 103 that detects the temperature of hydraulic fluid of the engine 10.
 ECU60は、ヘッド入口冷却水温度センサ101、ヘッド出口冷却水温度センサ102、エンジン油温センサ103により検出された温度に基づいて、第1冷却水制御弁51及び第2冷却水制御弁52の制御位置及び流量を制御する。 The ECU 60 controls the first cooling water control valve 51 and the second cooling water control valve 52 based on the temperatures detected by the head inlet cooling water temperature sensor 101, the head outlet cooling water temperature sensor 102, and the engine oil temperature sensor 103. Control position and flow.
 図2から図6は、第1冷却水制御弁51の制御位置による冷却水の流れを示す説明図である。 2 to 6 are explanatory views showing the flow of the cooling water at the control position of the first cooling water control valve 51. FIG.
 図2は、第1冷却水制御弁51が第1制御位置のときの、冷却水の流れを示す。 FIG. 2 shows the flow of the cooling water when the first cooling water control valve 51 is in the first control position.
 第1冷却水制御弁51は、ヘッド側冷却水流路37の冷却水の流量を制御する。 The first coolant control valve 51 controls the flow rate of the coolant in the head-side coolant channel 37.
 第1冷却水制御弁51が第1制御位置のときは、第1冷却水制御弁51から冷却水が流出しないように制御される。この場合、ウォーターポンプ36から流出する冷却水は、ヘッド側冷却水流路37から、スロットルバルブ31、EGRバルブ33、EGRクーラー32を経て、再びウォーターポンプ36へと戻る。 When the first coolant control valve 51 is in the first control position, the coolant is controlled so as not to flow out of the first coolant control valve 51. In this case, the cooling water flowing out of the water pump 36 returns from the head side cooling water flow path 37 to the water pump 36 again through the throttle valve 31, the EGR valve 33 and the EGR cooler 32.
 このように構成することで、第1冷却水制御弁51が第1制御位置のときは、冷却水はラジエター40を経由せずシリンダヘッド11のみを循環するため、シリンダヘッド11の暖機が促進される。なお、シリンダブロック12の冷却水については第2冷却水制御弁52の制御位置により設定される。 With this configuration, when the first coolant control valve 51 is in the first control position, the coolant circulates only the cylinder head 11 without passing through the radiator 40, so the warm-up of the cylinder head 11 is promoted. Be done. The coolant in the cylinder block 12 is set by the control position of the second coolant control valve 52.
 図3は、第1冷却水制御弁51が第2制御位置のときの、冷却水の流れを示す。 FIG. 3 shows the flow of cooling water when the first cooling water control valve 51 is in the second control position.
 第1冷却水制御弁51が第2制御位置のときは、第1冷却水制御弁51は、ヘッド側冷却水流路37からの冷却水を、ヒーター35へと流出するように切り替える。この場合、ウォーターポンプ36から流出する冷却水は、ヘッド側冷却水流路37へと流れ、冷却水の一部は、スロットルバルブ31、EGRバルブ33、EGRクーラー32を経て、再びウォーターポンプ36へと戻る。冷却水の他の一部は、第1冷却水制御弁51からヒーター35を経て、EGRクーラー32から再びウォーターポンプ36へと戻る。 When the first cooling water control valve 51 is in the second control position, the first cooling water control valve 51 switches the cooling water from the head side cooling water flow passage 37 to flow out to the heater 35. In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the EGR cooler 32 to the water pump 36 again from the first cooling water control valve 51 through the heater 35.
 このように構成することで、第1冷却水制御弁51が第2制御位置のときは、冷却水はラジエター40を経由せず、シリンダヘッド11及びヒーターを経由する。このとき、冷却水がヒーター35を経由することで、第1制御位置と比較して冷却水の温度が低下する。これにより第1制御位置と比較して、シリンダヘッド11の暖機は緩やかとなる。なお、第1冷却水制御弁51の開度を制御して、ヘッド側冷却水流路37を流通する冷却水の流量を制御することができる。 With this configuration, when the first coolant control valve 51 is in the second control position, the coolant does not pass through the radiator 40 but passes through the cylinder head 11 and the heater. At this time, when the cooling water passes through the heater 35, the temperature of the cooling water is lowered compared to the first control position. As a result, the warm-up of the cylinder head 11 is gradual compared to the first control position. The flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
 図4は、第1冷却水制御弁51が第3制御位置のときの、冷却水の流れを示す。 FIG. 4 shows the flow of the cooling water when the first cooling water control valve 51 is in the third control position.
 第1冷却水制御弁51が第3制御位置のときは、第1冷却水制御弁51は、ヘッド側冷却水流路37からの冷却水を、ラジエター40へと流出するように切り替える。この場合、ウォーターポンプ36から流出する冷却水は、ヘッド側冷却水流路37へと流れ、冷却水の一部は、スロットルバルブ31、EGRバルブ33、EGRクーラー32を経て、再びウォーターポンプ36へと戻る。冷却水の他の一部は、第1冷却水制御弁51からラジエター40を経て、再びウォーターポンプ36へと戻る。 When the first cooling water control valve 51 is in the third control position, the first cooling water control valve 51 switches the cooling water from the head side cooling water flow passage 37 to flow out to the radiator 40. In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the first cooling water control valve 51 to the water pump 36 again via the radiator 40.
 このような構成により、第1冷却水制御弁51が第3制御位置のときは、冷却水はラジエター40を経由するため、ラジエター40において空気と熱交換されて冷却水の温度は低下する。このため、シリンダヘッド11の温度は冷却水により冷却される。なお、第1冷却水制御弁51の開度を制御して、ヘッド側冷却水流路37を流通する冷却水の流量を制御することができる。 With such a configuration, when the first cooling water control valve 51 is in the third control position, the cooling water passes through the radiator 40, so that heat is exchanged with air in the radiator 40, and the temperature of the cooling water decreases. For this reason, the temperature of the cylinder head 11 is cooled by the cooling water. The flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
 図5は、第1冷却水制御弁51が第4制御位置のときの、冷却水の流れを示す。 FIG. 5 shows the flow of the cooling water when the first cooling water control valve 51 is in the fourth control position.
 第1冷却水制御弁51が第4制御位置のときは、第1冷却水制御弁51は、ヘッド側冷却水流路37からの冷却水を、ヒーター35とラジエター40とへと流出するように切り替える。この場合、ウォーターポンプ36から流出する冷却水は、ヘッド側冷却水流路37へと流れ、冷却水の一部は、スロットルバルブ31、EGRバルブ33、EGRクーラー32を経て、再びウォーターポンプ36へと戻る。冷却水の他の一部は、第1冷却水制御弁51からヒーター35とEGRクーラー32を経て、または、ラジエター40を経て、再びウォーターポンプ36へと戻る。 When the first cooling water control valve 51 is in the fourth control position, the first cooling water control valve 51 switches the cooling water from the head-side cooling water passage 37 to flow out to the heater 35 and the radiator 40 . In this case, the cooling water flowing out of the water pump 36 flows to the head side cooling water flow path 37, and a part of the cooling water passes through the throttle valve 31, the EGR valve 33, and the EGR cooler 32 to the water pump 36 again. Return. Another part of the cooling water returns from the first cooling water control valve 51 through the heater 35 and the EGR cooler 32 or through the radiator 40 to the water pump 36 again.
 このような構成により、第1冷却水制御弁51が第4制御位置のときは、冷却水は、ヒーター35とラジエター40とを経由するため、ラジエター40のみに冷却水を流通させる第3制御位置と比較して、更に冷却水の温度は低下する。このため、シリンダヘッド11の温度は冷却水によりさらに冷却される。なお、第1冷却水制御弁51の開度を制御して、ヘッド側冷却水流路37を流通する冷却水の流量を制御することができる。 With such a configuration, when the first cooling water control valve 51 is at the fourth control position, the cooling water passes through the heater 35 and the radiator 40, so that the third control position for circulating the cooling water only to the radiator 40 Further, the temperature of the cooling water is lowered as compared with. Therefore, the temperature of the cylinder head 11 is further cooled by the cooling water. The flow rate of the cooling water flowing through the head-side cooling water channel 37 can be controlled by controlling the opening degree of the first cooling water control valve 51.
 図6から図8は、第2冷却水制御弁52の制御位置による冷却水の流れを示す説明図である。 6 to 8 are explanatory diagrams showing the flow of the cooling water at the control position of the second cooling water control valve 52. FIG.
 図6は、第2冷却水制御弁52が第1制御位置のときの、冷却水の流れを示す。 FIG. 6 shows the flow of the coolant when the second coolant control valve 52 is in the first control position.
 第2冷却水制御弁52は、ブロック側冷却水流路38の冷却水の流量を制御する。 The second cooling water control valve 52 controls the flow rate of the cooling water in the block side cooling water flow passage 38.
 第2冷却水制御弁52が第1制御位置のときは、第2冷却水制御弁52は、ブロック側冷却水流路38において冷却水が流通しないように制御する。この場合、シリンダブロック12には冷却水は流通しない。このような構成により、第2冷却水制御弁52が第1制御位置のときは、冷却水はシリンダブロック12を流通しないので、シリンダブロック12の暖機が促進される。 When the second cooling water control valve 52 is in the first control position, the second cooling water control valve 52 controls the cooling water not to flow in the block-side cooling water flow path 38. In this case, the coolant does not flow through the cylinder block 12. With such a configuration, when the second coolant control valve 52 is in the first control position, the coolant does not flow through the cylinder block 12, so the warm-up of the cylinder block 12 is promoted.
 なお、シリンダヘッド11の冷却水については第1冷却水制御弁51の制御位置により、前述の図2から図5のいずれかに設定される。 The coolant for the cylinder head 11 is set to one of the above-described FIGS. 2 to 5 depending on the control position of the first coolant control valve 51.
 図7は、第2冷却水制御弁52が第2制御位置のときの、冷却水の流れを示す。 FIG. 7 shows the flow of the cooling water when the second cooling water control valve 52 is in the second control position.
 第2冷却水制御弁52が第2制御位置のときは、第2冷却水制御弁52は、ブロック側冷却水流路38から、エンジン10のO/C15及び変速機20のO/W21へと冷却水が流通するように制御する。この場合、ウォーターポンプ36から流出する冷却水は、ブロック側冷却水流路38へと流れ、冷却水の一部は、エンジン10のO/C15へと流通し、再びウォーターポンプ36へと戻る。冷却水の他の一部は、変速機20のO/W21へと流通し、再びウォーターポンプ36へと戻る。 When the second cooling water control valve 52 is in the second control position, the second cooling water control valve 52 cools the block-side cooling water passage 38 to the O / C 15 of the engine 10 and the O / W 21 of the transmission 20. Control the flow of water. In this case, the cooling water flowing out of the water pump 36 flows to the block side cooling water flow path 38, and a portion of the cooling water flows to the O / C 15 of the engine 10 and returns to the water pump 36 again. Another part of the cooling water flows to the O / W 21 of the transmission 20 and returns to the water pump 36 again.
 このような構成により、第2冷却水制御弁52が第2制御位置のときは、冷却水はブロック側冷却水流路38を流通するので、冷却水の温度によりシリンダブロック12が冷却される。このとき、第2冷却水制御弁52の開度を制御することにより、第2冷却水制御弁52を通過する冷却水の流量、すなわち、シリンダブロック12を流通する冷却水の流量を制御することができ、シリンダブロック12の温度を制御することができる。 With such a configuration, when the second cooling water control valve 52 is in the second control position, the cooling water flows through the block-side cooling water flow path 38, so the cylinder block 12 is cooled by the temperature of the cooling water. At this time, by controlling the opening degree of the second cooling water control valve 52, the flow rate of the cooling water passing through the second cooling water control valve 52, that is, the flow rate of the cooling water flowing through the cylinder block 12 is controlled. And the temperature of the cylinder block 12 can be controlled.
 図8は、第2冷却水制御弁52が第3御位置のときの、冷却水の流れを示す。 FIG. 8 shows the flow of the cooling water when the second cooling water control valve 52 is in the third control position.
 第2冷却水制御弁52が第3制御位置のときは、第2冷却水制御弁52は、ブロック側冷却水流路38から、エンジン10のO/C15及び変速機20のO/W21へと冷却水が流通するように制御する。さらに、第2冷却水制御弁52は、ブロック側冷却水流路38から、第1冷却水制御弁51へと流通するように制御する。このとき、第1冷却水制御弁51は第4制御位置とされ、ラジエター40に冷却水が流通するように制御される。 When the second cooling water control valve 52 is in the third control position, the second cooling water control valve 52 cools from the block side cooling water passage 38 to the O / C 15 of the engine 10 and the O / W 21 of the transmission 20. Control the flow of water. Further, the second cooling water control valve 52 is controlled to flow from the block side cooling water flow path 38 to the first cooling water control valve 51. At this time, the first cooling water control valve 51 is in the fourth control position, and the cooling water is controlled to flow through the radiator 40.
 このような制御により、冷却水の一部は、エンジン10及び変速機20から、再びウォーターポンプ36へと戻る。冷却水の他の一部は、第1冷却水制御弁51を経由してラジエター40を経て、再びウォーターポンプ36へと戻る。 Such control causes part of the cooling water to return from the engine 10 and the transmission 20 to the water pump 36 again. Another part of the cooling water returns to the water pump 36 again via the radiator 40 via the first cooling water control valve 51.
 このように、第2冷却水制御弁52が第3制御位置のときは、冷却水はブロック側冷却水流路38を流通した後、ラジエター40を通過するように制御するので、冷却水の温度によりシリンダブロック12が冷却される。このとき、第2冷却水制御弁52の開度を制御することにより、第2冷却水制御弁52を通過する冷却水の流量、すなわち、シリンダブロック12からラジエター40へと流通する冷却水の流量を制御することができ、シリンダブロック12の温度を制御することができる。 As described above, when the second cooling water control valve 52 is in the third control position, the cooling water is controlled to pass through the radiator 40 after flowing through the block side cooling water flow path 38, so the temperature of the cooling water The cylinder block 12 is cooled. At this time, by controlling the opening degree of the second cooling water control valve 52, the flow rate of the cooling water passing through the second cooling water control valve 52, that is, the flow rate of the cooling water flowing from the cylinder block 12 to the radiator 40. The temperature of the cylinder block 12 can be controlled.
 次に、このように構成されたエンジン制御システム1の動作を説明する。 Next, the operation of the engine control system 1 configured as described above will be described.
 図9は、本発明の実施形態のECU60が実行するエンジン暖機制御のフローチャートである。図9に示すフローチャートは、ECU60において、他の処理と並行して所定の周期(例えば10ms)で実行される。 FIG. 9 is a flowchart of engine warm-up control executed by the ECU 60 according to the embodiment of this invention. The flowchart shown in FIG. 9 is executed by the ECU 60 in parallel with other processing in a predetermined cycle (for example, 10 ms).
 フローチャートが開始されると、ステップS1の処理が実行される。ステップS1では、ECU60は、ヘッド入口冷却水温度センサ101からヘッド入口水温TwHiを、ヘッド出口冷却水温度センサ102からヘッド出口水温TwHoを、エンジン油温センサ103から油温Toを、それぞれ取得する。 When the flowchart is started, the process of step S1 is performed. In step S1, the ECU 60 acquires the head inlet coolant temperature TwHi from the head inlet coolant temperature sensor 101, the head outlet coolant temperature TwHo from the head outlet coolant temperature sensor 102, and the oil temperature To from the engine oil temperature sensor 103.
 次に、ECU60は、ヘッド出口水温TwHoが所定温度L1未満、かつ、油温Toが所定温度L1未満であるか否かを判定する。ヘッド出口水温TwHo及び油温Toが共にL1未満であると判定した場合は、ステップS3に移行する。少なくとも一方がL1以上であると判定した場合は,ステップS4に移行する。 Next, the ECU 60 determines whether the head outlet coolant temperature TwHo is less than the predetermined temperature L1 and the oil temperature To is less than the predetermined temperature L1. If it is determined that the head outlet water temperature TwHo and the oil temperature To are both less than L1, then the process proceeds to step S3. If it is determined that at least one is greater than or equal to L1, the process proceeds to step S4.
 所定温度L1は、冷却水水温及び油温が共に冷機状態であるかを判定できる温度であり、例えば35℃に設定される。 The predetermined temperature L1 is a temperature that can determine whether both the coolant temperature and the oil temperature are in the cold state, and is set to 35 ° C., for example.
 冷機状態であると判定した場合は、ステップS3に移行し、ECU60は、第1冷却水制御弁51を第1制御位置に設定し、第2冷却水制御弁52を第1位制御位置に設定する。 When it is determined that the engine is in the cold state, the process proceeds to step S3, and the ECU 60 sets the first coolant control valve 51 to the first control position and sets the second coolant control valve 52 to the first control position. Do.
 この状態では、シリンダヘッド11とウォーターポンプ36との間で冷却水が循環し、シリンダブロック12には冷却水が循環しない。この状態では、エンジン10の暖気が最も促進される。ステップS3の処理の後、本フローチャートの処理を一旦終了して、他の処理に戻る。 In this state, the cooling water circulates between the cylinder head 11 and the water pump 36, and the cooling water does not circulate in the cylinder block 12. In this state, warmth of engine 10 is most promoted. After the process of step S3, the process of this flowchart is once ended, and the process returns to another process.
 ステップS2において、ヘッド出口水温TwHo及び油温Toの少なくとも一方が所定温度L1以上であると判定した場合は、ステップS4に移行する。 When it is determined in step S2 that at least one of the head outlet water temperature TwHo and the oil temperature To is equal to or higher than the predetermined temperature L1, the process proceeds to step S4.
 ステップS4では、ヘッド出口水温TwHoが所定温度H1未満、又は、油温Toが所定温度H1未満であるかを判定する。ヘッド出口水温TwHoと油温Toとの少なくとも一方が所定温度H1未満であると判定した場合はステップS5に移行する。ヘッド出口水温TwHoと油温Toとがいずれも所定温度H1以上であると判定した場合は、ステップS17に移行する。 In step S4, it is determined whether the head outlet coolant temperature TwHo is less than the predetermined temperature H1 or the oil temperature To is less than the predetermined temperature H1. If it is determined that at least one of the head outlet water temperature TwHo and the oil temperature To is less than the predetermined temperature H1, the process proceeds to step S5. If it is determined that the head outlet water temperature TwHo and the oil temperature To are both equal to or higher than the predetermined temperature H1, the process proceeds to step S17.
 所定温度H1は、冷却水水温と油温との温度が十分に上昇して暖機が完了したことを判定できる温度であり、例えば80℃に設定される。ステップS4においてYESが選択される場合は、未だ暖機が完了していないと判定され、以降に説明するステップS11、S14又はS16のいずれかの暖機モードにより、エンジン10の暖機を行う。 The predetermined temperature H1 is a temperature at which the temperature of the cooling water temperature and the oil temperature can be sufficiently raised to determine that the warm-up is completed, and is set to, for example, 80 ° C. If YES is selected in step S4, it is determined that the warm-up has not been completed yet, and warm-up of the engine 10 is performed in the warm-up mode in any of steps S11, S14 or S16 described below.
 ステップS5では、ECU60は、暖機モードが未だ選択されていないかを判定する。既にステップS11、S14又はS16のいずれかの暖機モードが選択され、ステップS12においてフラグが成立している場合は、暖機モードが選択済みであると判定して、ステップS8に移行する。 In step S5, the ECU 60 determines whether the warm-up mode has not been selected. If the warm-up mode in any one of steps S11, S14 or S16 is selected and the flag is satisfied in step S12, it is determined that the warm-up mode has been selected, and the process proceeds to step S8.
 暖機モードが未だ選択されていない場合は、ステップS6に移行する。ステップS6では、ECU60は、初期状態の暖機モード(暖機モード0)を設定する。具体的には、ECU60は、第1冷却水制御弁51を第2制御位置に設定すると共に、第1冷却水制御弁51における流量が低流量となるように、弁開度を設定する。また、第2冷却水制御弁52は、第1制御位置に設定する。 If the warm-up mode is not yet selected, the process proceeds to step S6. In step S6, the ECU 60 sets the warm-up mode (warm-up mode 0) in the initial state. Specifically, the ECU 60 sets the first coolant control valve 51 to the second control position, and sets the valve opening degree so that the flow rate in the first coolant control valve 51 is low. Further, the second coolant control valve 52 is set to the first control position.
 暖機モード0に設定された場合は、シリンダヘッド11からヒーター35を介してウォーターポンプ36との間で冷却水が循環する一方、シリンダブロック12には冷却水が循環しないので、エンジン10の暖気が促進される。 When the warm-up mode 0 is set, the cooling water circulates from the cylinder head 11 to the water pump 36 via the heater 35, while the cooling water does not circulate in the cylinder block 12, so the warm air of the engine 10 Is promoted.
 次に、ECU60は、ステップS6において暖機モード0に設定してから所定時間が経過したかを判定する。所定時間が未だ経過していない場合は、本フローチャートの処理を一旦終了して、他の処理に戻る。所定時間が経過したと判定した場合は、ステップS8に移行する。 Next, the ECU 60 determines whether a predetermined time has elapsed since the warm-up mode 0 was set in step S6. If the predetermined time has not yet elapsed, the process of this flowchart is once ended, and the process returns to another process. If it is determined that the predetermined time has elapsed, the process proceeds to step S8.
 ステップS7における所定時間は、エンジン10が始動してウォーターポンプ36により冷却水の循環を開始してから、シリンダヘッド11又はシリンダブロック12の内部に水流が生じるまでの時間に設定する。すなわち、水流によりシリンダヘッド11の温度とヘッド入口温度TwHi、ヘッド出口温度TwHoとの相関が明確となるまで、所定時間待機する。 The predetermined time in step S7 is set to a time from when the engine 10 is started and circulation of cooling water is started by the water pump 36 to when water flow is generated inside the cylinder head 11 or the cylinder block 12. That is, it waits for a predetermined time until the correlation between the temperature of the cylinder head 11 and the head inlet temperature TwHi and the head outlet temperature TwHo becomes clear by the water flow.
 ステップS5において既に暖機モードが設定されている、又は、ステップS7において所定時間が経過したと判定した場合は、ステップS8に移行する。ステップS8では、ECU60は、ヘッド入口温度TwHi及びヘッド出口温度TwHoに基づいて、シリンダヘッド11におけるヘッド燃焼室壁温度THを推定する。 If it is determined in step S5 that the warm-up mode has already been set, or if it is determined in step S7 that the predetermined time has elapsed, the process proceeds to step S8. In step S8, the ECU 60 estimates the head combustion chamber wall temperature TH in the cylinder head 11 based on the head inlet temperature TwHi and the head outlet temperature TwHo.
 ヘッド燃焼室壁温度THは、例えば次式(1)のように計算される。 The head combustion chamber wall temperature TH is calculated, for example, according to the following equation (1).
 TH=TwHo+k(TwHo-TwHi) ・・・ (1)
 ただし、kは係数
TH = TwHo + k (TwHo-TwHi) (1)
Where k is a factor
 このような構成により、ヘッド燃焼室温度THは、ヘッドを循環する冷却水の水温に基づいて推定することができる。 With such a configuration, the head combustion chamber temperature TH can be estimated based on the temperature of the cooling water circulating through the head.
 次に、ステップS9において、ECU60は、油温Toに基づいて、シリンダブロック12におけるブロックボア壁温度TBを推定する。 Next, in step S9, the ECU 60 estimates a block bore wall temperature TB in the cylinder block 12 based on the oil temperature To.
 油温Toとブロックボア壁温度TBとは、図10に示すように相関関係がある。ECU60は、相関関係をマップ等により予め保持することにより、油温Toに基づいてブロックボア壁温度TBを推定することができる。 The oil temperature To and the block bore wall temperature TB have a correlation as shown in FIG. The ECU 60 can estimate the block bore wall temperature TB based on the oil temperature To by holding the correlation in advance using a map or the like.
 なお、ブロックボア壁温度TBは、投入燃料量の積算値からも推定することができる。すなわち、エンジン10が始動を開始してから投入された燃料が燃焼されることにより発生する熱によりブロックボア壁の温度が上昇する。そこで、エンジン10の始動から投入された燃料の積算値とボア形状等から決定される係数とに基づいて、ブロックボア壁温度TBを推定することができる。 The block bore wall temperature TB can also be estimated from the integrated value of the input fuel amount. That is, the temperature of the block bore wall rises due to the heat generated by the combustion of the injected fuel after the start of the start of the engine 10. Therefore, the block bore wall temperature TB can be estimated based on the integrated value of the fuel supplied from the start of the engine 10 and the coefficient determined from the bore shape and the like.
 次に、推定されたヘッド燃焼室温度THとブロックボア壁温度TBとに基づいて、暖機モードを決定する処理を行う。 Next, processing for determining the warm-up mode is performed based on the estimated head combustion chamber temperature TH and block bore wall temperature TB.
 まず、ステップS10において、ECU60は、ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3未満であるか否かを判定する。ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3未満である場合は、ステップS11に移行する。ヘッド燃焼室温度THが所定温度H2以上、又は、ブロックボア壁温度TBが所定温度H3以上である場合は、ステップS13に移行する。 First, in step S10, the ECU 60 determines whether the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is less than the predetermined temperature H3. When the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is less than the predetermined temperature H3, the process proceeds to step S11. When the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 or the block bore wall temperature TB is equal to or higher than the predetermined temperature H3, the process proceeds to step S13.
 所定温度H2は、シリンダヘッド11の温度が上昇してシリンダヘッド11における暖機が完了したことを判定できる温度であり、例えば100℃に設定される。また、所定温度H3は、シリンダブロック12の温度が上昇してシリンダブロック12における暖機が完了したことを判定できる温度であり、例えば120℃に設定される。 The predetermined temperature H2 is a temperature at which the temperature of the cylinder head 11 rises and it can be determined that the warm-up in the cylinder head 11 is completed, and is set to 100 ° C., for example. Further, the predetermined temperature H3 is a temperature at which it can be determined that the temperature of the cylinder block 12 has risen and the warm-up in the cylinder block 12 has been completed, and is set to 120 ° C., for example.
 ステップS10の判定の結果、ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3未満である場合は、シリンダヘッド11及びシリンダブロック12のいずれも未だ暖機が完了していない状態であると判定される。そこで、ステップS11において、ECU60は、暖機モード1を設定する。具体的には、ECU60は、第1冷却水制御弁51を第1制御位置に設定すると共に、第2冷却水制御弁52を第1制御位置に設定する。 When the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is less than the predetermined temperature H3 as a result of the determination in step S10, both the cylinder head 11 and the cylinder block 12 are still warmed up. Is determined to be not completed. Therefore, in step S11, the ECU 60 sets the warm-up mode 1. Specifically, the ECU 60 sets the first coolant control valve 51 to the first control position, and sets the second coolant control valve 52 to the first control position.
 暖機モード1に設定された場合は、冷却水はラジエター40を経由せず、シリンダヘッド11とウォーターポンプ36との間で冷却水が循環するため、シリンダヘッド11の暖機が促進される。シリンダブロック12では冷却水が循環しないので、シリンダブロック12の暖気が促進される。 When the warm-up mode 1 is set, the coolant does not pass through the radiator 40, and the coolant circulates between the cylinder head 11 and the water pump 36, thereby promoting the warm-up of the cylinder head 11. Since cooling water does not circulate in the cylinder block 12, warm-up of the cylinder block 12 is promoted.
 図11は、本発明の実施形態の、ヘッド燃焼室温度THとブロックボア壁温度TBとエンジン10のフリクション(摩擦抵抗)との相関関係を示す説明図である。 FIG. 11 is an explanatory view showing the correlation between the head combustion chamber temperature TH, the block bore wall temperature TB, and the friction (frictional resistance) of the engine 10 according to the embodiment of the present invention.
 エンジン10の温度が低い場合は作動油粘性の増大や摺動部の隙間の増加により摺動抵抗が増加して、エンジン10のフリクションが増加する。エンジン10のフリクションの増加は、燃費や機械寿命に影響がある。 When the temperature of the engine 10 is low, the sliding resistance increases due to the increase of the hydraulic oil viscosity and the clearance of the sliding portion, and the friction of the engine 10 increases. The increase in the friction of the engine 10 affects the fuel efficiency and the machine life.
 図11に示すように、ブロックボア壁温度TBは、エンジン10のフリクションの増大に大きく影響する。暖機制御においては、シリンダブロック12の温度を速やかに上昇させるように制御する必要がある。そこで、暖機制御中は、シリンダブロック12には冷却水を流通させないように制御する。シリンダブロック12の内部には作動油が循環しているため、直ちにエンジン10のヒート限界を超えることはない。 As shown in FIG. 11, the block bore wall temperature TB greatly affects the increase in friction of the engine 10. In the warm-up control, it is necessary to control so that the temperature of the cylinder block 12 is rapidly raised. Therefore, during the warm-up control, control is performed so that the coolant does not flow through the cylinder block 12. Since the hydraulic oil circulates inside the cylinder block 12, the heat limit of the engine 10 is not immediately exceeded.
 ステップS10の判定がNOである場合は、ステップS13に移行する。ステップS13では、ECU60は、ヘッド燃焼室温度THが所定温度H2以上であり、かつ、ブロックボア壁温度TBが所定温度H3未満であるか否かを判定する。ヘッド燃焼室温度THが所定温度H2以上であり、かつ、ブロックボア壁温度TBが所定温度H3未満である場合は、ステップS14に移行する。ヘッド燃焼室温度THが所定温度H2未満、又は、ブロックボア壁温度TBが所定温度H3以上である場合は、ステップS15に移行する。 When determination of step S10 is NO, it transfers to step S13. In step S13, the ECU 60 determines whether the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3. When the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3, the process proceeds to step S14. When the head combustion chamber temperature TH is less than the predetermined temperature H2 or the block bore wall temperature TB is the predetermined temperature H3 or more, the process proceeds to step S15.
 ステップS13の判定の結果、ヘッド燃焼室温度THが所定温度H2以上であり、かつ、ブロックボア壁温度TBが所定温度H3未満である場合は、シリンダヘッド11の暖機は完了しているが、シリンダブロック12では未だ暖機が完了していない状態であると判定される。そこで、ステップS14において、ECU60は、暖機モード2を設定する。具体的には、ECU60は、第1冷却水制御弁51を第2制御位置に設定すると共に、第2冷却水制御弁52を第1制御位置に設定する。 If it is determined in step S13 that the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 and the block bore wall temperature TB is lower than the predetermined temperature H3, the warm-up of the cylinder head 11 is completed. It is determined that the cylinder block 12 has not been warmed up yet. Therefore, in step S14, the ECU 60 sets the warm-up mode 2. Specifically, the ECU 60 sets the first coolant control valve 51 to the second control position, and sets the second coolant control valve 52 to the first control position.
 暖機モード2に設定された場合は、冷却水は、シリンダヘッド11からヒーター35を経由してウォーターポンプ36との間で冷却水が循環するため、シリンダヘッド11の温度を維持するように冷却水が循環する。一方、シリンダブロック12では冷却水が循環しないので、シリンダブロック12の暖気が促進される。 When the warm-up mode 2 is set, the cooling water circulates between the cylinder head 11 and the water pump 36 via the heater 35, so that the temperature of the cylinder head 11 is maintained. Water circulates. On the other hand, since the cooling water does not circulate in the cylinder block 12, the warm-up of the cylinder block 12 is promoted.
 ステップS13の判定がNOである場合は、ステップS15に移行する。ステップS13では、ECU60は、ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3以上であるか否かを判定する。ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3以上である場合は、ステップS16に移行する。ヘッド燃焼室温度THが所定温度H2以上、又は、ブロックボア壁温度TBが所定温度H3未満である場合は、ステップS17に移行する。 When determination of step S13 is NO, it transfers to step S15. In step S13, the ECU 60 determines whether the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more. When the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more, the process proceeds to step S16. When the head combustion chamber temperature TH is equal to or higher than the predetermined temperature H2 or the block bore wall temperature TB is lower than the predetermined temperature H3, the process proceeds to step S17.
 ステップS15の判定の結果、ヘッド燃焼室温度THが所定温度H2未満であり、かつ、ブロックボア壁温度TBが所定温度H3以上である場合は、シリンダヘッド11では未だ暖機が完了していないが、シリンダブロック12は暖機が完了している状態であると判定される。そこで、ステップS16において、ECU60は、暖機モード3を設定する。具体的には、ECU60は、第1冷却水制御弁51を第1制御位置に設定すると共に、第2冷却水制御弁52を第2制御位置に設定する。 If it is determined in step S15 that the head combustion chamber temperature TH is less than the predetermined temperature H2 and the block bore wall temperature TB is the predetermined temperature H3 or more, the cylinder head 11 has not completed warm-up yet The cylinder block 12 is determined to be in a state where the warm-up is completed. Therefore, in step S16, the ECU 60 sets the warm-up mode 3. Specifically, the ECU 60 sets the first coolant control valve 51 to the first control position, and sets the second coolant control valve 52 to the second control position.
 暖機モード3に設定された場合は、冷却水は、シリンダヘッド11とウォーターポンプ36との間で冷却水が循環するため、シリンダヘッド11の暖機が促進される。シリンダブロック12では冷却水が循環されるので、シリンダブロック12の温度を維持するように冷却水が循環する。 When the warm-up mode 3 is set, the coolant is circulated between the cylinder head 11 and the water pump 36, so the warm-up of the cylinder head 11 is promoted. Since the coolant is circulated in the cylinder block 12, the coolant is circulated to maintain the temperature of the cylinder block 12.
 ステップS11、S14、S16の処理の後、ステップS12に移行し、ECU60は、暖機モードの選択が完了したことを示すフラグをセットして、本フローチャートの処理を一旦終了し、他の処理に戻る。 After the processing of steps S11, S14, and S16, the process proceeds to step S12, the ECU 60 sets a flag indicating that the selection of the warm-up mode has been completed, and temporarily terminates the processing of this flowchart. Return.
 ステップS4において、ヘッド出口水温TwHoと油温Toとがいずれも所定温度H1以上であると判定した場合、又は、ステップS10、ステップS13、ステップS15の判定がいずれもNOである場合は、ステップS17に移行する。 If it is determined in step S4 that both the head outlet water temperature TwHo and the oil temperature To are equal to or higher than the predetermined temperature H1, or if the determinations in step S10, step S13, and step S15 are all NO, step S17. Migrate to
 ステップS17では、エンジン10の暖機が完了したと判定する。そこで、ECU60は、暖機モードから通常の冷却水が循環するモードへと移行する。例えば、ECU60は、第1冷却水制御弁51を第4制御位置とし、第2冷却水制御弁52を第2制御位置とする。この状態では、シリンダヘッド11及びシリンダブロック12と、ヒーター35及びラジエター40との間で冷却水を循環させることにより、エンジン10及びその周辺部位の温度を適切に維持するように制御する。 In step S17, it is determined that the warm-up of the engine 10 is completed. Therefore, the ECU 60 shifts from the warm-up mode to a mode in which normal cooling water circulates. For example, the ECU 60 sets the first coolant control valve 51 to the fourth control position, and sets the second coolant control valve 52 to the second control position. In this state, cooling water is circulated between the cylinder head 11 and the cylinder block 12 and the heater 35 and the radiator 40 to control the temperature of the engine 10 and its surrounding area to be properly maintained.
 以上のように本発明の実施形態では、ECU60は、ヘッド燃焼室温度THとブロックボア室温度TBとに基づいて、複数の暖機モードのうちのいずれか一つを選択し、選択された暖機モードに基づいて、第1冷却水制御弁51及び第2冷却水制御弁52の制御位置を制御するように構成した。 As described above, in the embodiment of the present invention, the ECU 60 selects any one of the plurality of warm-up modes based on the head combustion chamber temperature TH and the block bore chamber temperature TB, and selects the selected warm-up mode. The control positions of the first coolant control valve 51 and the second coolant control valve 52 are controlled based on the machine mode.
 従来、冷却水温を検出するのみではエンジン10の各部の暖機状態を正確に把握することが難しいという課題があった。これに対して、本願発明の実施形態では、ヘッド燃焼室温度THとブロックボア室温度TBとに基づいて、複数の暖機モードのうちの一つを選択する。このような構成により、温度が異なるエンジン10の各部位の温度に基づいて適切な暖機制御を実行することができるので、暖機を促進することができ、暖機が促進されることで、エンジン10の燃費性能を向上することができる。 Heretofore, there has been a problem that it is difficult to accurately grasp the warm-up state of each part of the engine 10 only by detecting the cooling water temperature. On the other hand, in the embodiment of the present invention, one of the warm-up modes is selected based on the head combustion chamber temperature TH and the block bore chamber temperature TB. With such a configuration, appropriate warm-up control can be performed based on the temperature of each part of the engine 10 having different temperatures, so warm-up can be promoted, and warm-up is promoted. Fuel consumption performance of the engine 10 can be improved.
 例えば、ECU60は、シリンダヘッド11及びシリンダブロック12の双方の暖機が完了していないと判断した場合は、暖機モード1を選択して、シリンダヘッド11及びシリンダブロック12が暖機されるように、第1冷却水制御弁51及び第2冷却水制御弁52の制御位置を変更する。 For example, when the ECU 60 determines that the warm-up of both the cylinder head 11 and the cylinder block 12 is not completed, the warm-up mode 1 is selected so that the cylinder head 11 and the cylinder block 12 are warmed up. The control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed.
 また、ECU60は、シリンダヘッド11の暖機は完了したが、シリンダブロック12の暖機が完了していないと判断した場合は、暖機モード2を選択して、シリンダヘッド11の温度を維持し、シリンダブロック12のみが暖機されるように、第1冷却水制御弁51及び第2冷却水制御弁52の制御位置を変更する。 When it is determined that the warm-up of the cylinder head 11 is completed but the warm-up of the cylinder block 12 is not completed, the ECU 60 selects the warm-up mode 2 and maintains the temperature of the cylinder head 11. The control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed so that only the cylinder block 12 is warmed up.
 また、ECU60は、シリンダヘッド11の暖機が完了していないが、シリンダブロック12の暖機は完了したと判断した場合は、暖機モード3を選択して、シリンダヘッド11のみを暖機し、シリンダブロック12の温度を維持するように、第1冷却水制御弁51及び第2冷却水制御弁52の制御位置を変更する。 Further, when it is determined that the warm-up of the cylinder block 11 is completed although the warm-up of the cylinder head 11 is not completed, the ECU 60 selects the warm-up mode 3 and warms up only the cylinder head 11 The control positions of the first coolant control valve 51 and the second coolant control valve 52 are changed so as to maintain the temperature of the cylinder block 12.
 すなわち、冷却水水温を検出してこれを暖機の制御に用いるのではなく、ヘッド入口水温TwHiとヘッド出口水温TwHoとから推定されたヘッド燃焼室壁温度THと、油温Toから推定されたブロックボア壁温度TBにより暖機モードを選択する。 That is, instead of detecting the coolant temperature and using it for warm-up control, it is estimated from the head combustion chamber wall temperature TH estimated from the head inlet coolant temperature TwHi and the head outlet coolant temperature TwHo, and the oil temperature To. The warm-up mode is selected by the block bore wall temperature TB.
 このような構成により、異なるシリンダヘッド11とシリンダブロック12との異なる部位の温度に基づいて暖機モードを選択することにより、エンジン10のシリンダヘッド11及びシリンダブロック12の双方を、適切に暖機することができる。これにより、暖機を促進することができる。 With such a configuration, both the cylinder head 11 and the cylinder block 12 of the engine 10 are properly warmed up by selecting the warm-up mode based on the temperatures of different parts of the cylinder head 11 and the cylinder block 12 different from each other. can do. This can promote warm-up.
 また、ヘッド入口水温TwHiとヘッド出口水温TwHoとからヘッド燃焼室壁温度THを推定し、油温Toからブロックボア壁温度TBを推定する。 The head combustion chamber wall temperature TH is estimated from the head inlet water temperature TwHi and the head outlet water temperature TwHo, and the block bore wall temperature TB is estimated from the oil temperature To.
 このような構成により、シリンダヘッド11においては、冷却水を流通することでヘッド燃焼室温度THを推定できる。エンジン10のフリクション増加を防ぐために暖機中は冷却水を流通させたくないシリンダブロック12においては、油温に基づいてブロックボア壁温度TBを検出できる。 With such a configuration, in the cylinder head 11, the head combustion chamber temperature TH can be estimated by circulating the cooling water. The block bore wall temperature TB can be detected based on the oil temperature in the cylinder block 12 in which it is not desirable to circulate the cooling water during warm-up in order to prevent the friction increase of the engine 10.
 また、シリンダヘッド11においては、冷却水の流通量を減少させてヘッド燃焼室温度THを推定する。このような構成により、シリンダヘッド11の暖機に影響を与えない範囲で、かつ、冷却水の流通によりシリンダヘッド11の温度を検出できる範囲で、流量を減少させることで、シリンダヘッド11の暖機を促進することができる。 Further, in the cylinder head 11, the flow amount of the cooling water is reduced to estimate the head combustion chamber temperature TH. With such a configuration, the flow rate is reduced in a range that does not affect the warm-up of the cylinder head 11 and in a range where the temperature of the cylinder head 11 can be detected by the flow of cooling water, thereby warming the cylinder head 11 Can promote the machine.
 また、シリンダブロック12においては、冷却水を流通させない状態で、油温Toからブロックボア壁温度TBを推定する。このようにシリンダブロック12に冷却水を流通させないように構成することにより、シリンダブロック12の暖機を促進することができる。 Further, in the cylinder block 12, the block bore wall temperature TB is estimated from the oil temperature To while the cooling water is not circulated. By thus configuring the cooling fluid not to flow through the cylinder block 12, the warm-up of the cylinder block 12 can be promoted.
 また、シリンダブロック12において、冷却水を流通させない状態で、投入された燃料の積算値からブロックボア壁温度TBを推定する。このようにシリンダブロック12に冷却水を流通させないように構成することにより、シリンダブロック12の暖機を促進することができる。 Further, in the cylinder block 12, the block bore wall temperature TB is estimated from the integrated value of the injected fuel in a state where the cooling water is not circulated. By thus configuring the cooling fluid not to flow through the cylinder block 12, the warm-up of the cylinder block 12 can be promoted.
 以上説明した本発明の実施形態では、エンジン10を搭載して暖機を行う車両を例に説明したが、これに限られない。例えば、モータとエンジン10によって駆動されるハイブリッド自動車において、エンジン10の停止状態から再びエンジン10を駆動する場合の暖機においても、同様に適用することができる。 In the embodiment of the present invention described above, the vehicle which is equipped with the engine 10 and is warmed up has been described as an example, but the present invention is not limited thereto. For example, in a hybrid vehicle driven by the motor and the engine 10, the present invention can be similarly applied to warm-up when the engine 10 is driven again from the stopped state of the engine 10.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する主旨ではない。 As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and the main point which limits the technical scope of the present invention to the concrete composition of the above-mentioned embodiment Absent.
 本願は、2013年5月28日に日本国特許庁に出願された特願2013-112284に基づく優先権を主張する。この出願のすべての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2013-112284 filed on May 28, 2013 in the Japanese Patent Office. The entire contents of this application are incorporated herein by reference.

Claims (6)

  1.  エンジンに流通する冷却水の流通状態を設定する暖機モードに基づいて前記エンジンを暖機するエンジンの制御装置であって、
     前記エンジンのシリンダヘッドに冷却水を流通させるヘッド側冷却水流路及び前記エンジンのシリンダブロックに冷却水を流通させるブロック側冷却水流路の冷却水の流通を制御する冷却水制御弁と、
     を備え、
     前記冷却水制御弁は、前記ヘッド側冷却水流路及び前記ブロック側冷却水流路の少なくとも一方の冷却水の流通量を制御することで、前記シリンダヘッド及び前記シリンダブロックの少なくとも一方を暖機する複数の暖機モードを設定可能に構成され、
     前記制御装置は、
     前記シリンダヘッドにおける燃焼室壁温度と、前記シリンダブロックにおけるブロックボア壁温度とに基づいて、複数の前記暖機モードから一つの暖機モードを選択し、
     選択された前記暖機モードに基づいて、前記ヘッド側冷却水流路及び前記ブロック側冷却水流路の少なくとも一方の冷却水の流通量を、前記冷却水制御弁により制御させる
    エンジンの制御装置。
    A control device for an engine that warms up the engine based on a warm-up mode for setting a circulation state of cooling water flowing through the engine,
    A head-side cooling water flow passage for circulating cooling water through a cylinder head of the engine, and a cooling water control valve for controlling the flow of cooling water in a block-side cooling water passage for circulating the cooling water through a cylinder block of the engine;
    Equipped with
    The plurality of cooling water control valves warms up at least one of the cylinder head and the cylinder block by controlling the flow rate of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage. Is configured to be able to set the warm-up mode of
    The controller is
    One warm-up mode is selected from the plurality of warm-up modes based on a combustion chamber wall temperature in the cylinder head and a block bore wall temperature in the cylinder block,
    A control device of an engine which controls the amount of circulation of cooling water of at least one of the head side cooling water channel and the block side cooling water channel by the cooling water control valve based on the warm-up mode selected.
  2.  請求項1に記載のエンジンの制御装置であって、
     前記ヘッド側冷却水流路の入口の冷却水温度を検出するヘッド入口冷却水温度検出手段と、
     前記ヘッド側冷却水流路の出口の冷却水温度を検出するヘッド出口冷却水温度検出手段と、
     前記エンジンの作動油温度を検出する作動油温度検出手段と、
     を備え、
     前記制御装置は、
     前記燃焼室温度を、前記入口の冷却水温度と前記出口の冷却水温度とに基づいて推定し、
     前記ブロックボア壁温度を、前記作動油温度に基づいて推定する
    エンジンの制御装置。
    The engine control device according to claim 1, wherein
    Head inlet coolant temperature detection means for detecting the coolant temperature at the inlet of the head side coolant flow path;
    Head outlet coolant temperature detection means for detecting coolant temperature at the outlet of the head side coolant channel;
    Hydraulic oil temperature detection means for detecting the hydraulic oil temperature of the engine;
    Equipped with
    The controller is
    The combustion chamber temperature is estimated based on the inlet coolant temperature and the outlet coolant temperature,
    An engine control device which estimates the block bore wall temperature based on the hydraulic fluid temperature.
  3.  請求項2に記載のエンジンの制御装置であって、
     前記制御装置は、前記ヘッド入口冷却水温度検出手段及び前記ヘッド出口冷却水温度検出手段が前記ヘッド側冷却水流路の入口の冷却水温度と出口の冷却水温度を検出するときに、前記冷却水制御弁を制御して、前記ヘッド側冷却水流路の冷却水の流通量を減少させる
    エンジンの制御装置。
    The engine control device according to claim 2,
    When the head inlet cooling water temperature detecting means and the head outlet cooling water temperature detecting means detect the cooling water temperature at the inlet of the head side cooling water flow path and the cooling water temperature at the outlet, the control device may A control device for an engine, which controls a control valve to reduce a flow rate of cooling water in the head side cooling water flow passage.
  4.  請求項3に記載のエンジンの制御装置であって、
     前記制御装置は、前記ヘッド入口冷却水温度検出手段及び前記ヘッド出口冷却水温度検出手段が前記ヘッド側冷却水流路の入口の冷却水温度と出口の冷却水温度を検出するときは、前記シリンダブロック側冷却水流路の冷却水流の流通を停止する
    エンジンの制御装置。
    The engine control device according to claim 3,
    When the head inlet cooling water temperature detecting means and the head outlet cooling water temperature detecting means detect the cooling water temperature at the inlet of the head side cooling water flow path and the cooling water temperature at the outlet of the control device, the cylinder block An engine control device for stopping the flow of the cooling water flow of the side cooling water flow path.
  5.  請求項1に記載のエンジンの制御装置であって、
     前記制御装置は、前記ブロックボア壁温度を、前記エンジンの始動後に投入された燃料の積算値に基づいて推定することを
    エンジンの制御装置。
    The engine control device according to claim 1, wherein
    The control device for an engine according to claim 1, wherein the control device estimates the block bore wall temperature based on an integrated value of fuel injected after the start of the engine.
  6.  エンジンに流通する冷却水の流通状態を設定する暖機モードにより前記エンジンを暖機させるエンジンの制御方法であって、
     前記エンジンには、前記エンジンのシリンダヘッドに冷却水を流通させるヘッド側冷却水流路と、前記エンジンのシリンダブロックに冷却水を流通させるブロック側冷却水流路と、の冷却水の流通を制御する冷却水制御弁と、が備えられ、
     前記冷却水制御弁は、前記ヘッド側冷却水流路及び前記ブロック側冷却水流路の少なくとも一方の冷却水の流通量を制御することで、前記エシリンダヘッド及び前記シリンダブロックの少なくとも一方を暖機する複数の暖機モードを変更可能に構成され、
     前記シリンダヘッドにおける燃焼室壁温度を取得し、
     前記シリンダブロックにおけるブロックボア壁温度を取得し、
     取得した前記燃焼室壁温度と、前記ブロックボア壁温度とに基づいて、複数の前記暖機モードから一つの暖機モードを選択し、
     選択された前記暖機モードに基づいて、前記ヘッド側冷却水流路及び前記ブロック側冷却水流路の少なくとも一方の冷却水の流通量を、前記冷却水制御弁により制御させる
    エンジンの制御方法。
    A control method of an engine which warms up the engine by a warm-up mode for setting a circulation state of cooling water flowing through the engine,
    Cooling that controls the flow of cooling water between the head side cooling water flow path that causes cooling water to flow through the cylinder head of the engine and the block side cooling water flow path that causes cooling water to flow through the cylinder block of the engine And a water control valve,
    The cooling water control valve warms up at least one of the etching head and the cylinder block by controlling the flow rate of the cooling water of at least one of the head side cooling water flow passage and the block side cooling water flow passage. Multiple warm-up modes are configured to be changeable,
    Obtaining combustion chamber wall temperature in the cylinder head;
    Obtaining a block bore wall temperature in the cylinder block;
    One warm-up mode is selected from the plurality of warm-up modes based on the acquired combustion chamber wall temperature and the block bore wall temperature,
    The control method of the engine which controls the circulation amount of the cooling water of at least one of the said head side cooling water flow path and the said block side cooling water flow path by the said cooling water control valve based on the said warm-up mode selected.
PCT/JP2014/063981 2013-05-28 2014-05-27 Engine control device and control method WO2014192747A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013112284 2013-05-28
JP2013-112284 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192747A1 true WO2014192747A1 (en) 2014-12-04

Family

ID=51988776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063981 WO2014192747A1 (en) 2013-05-28 2014-05-27 Engine control device and control method

Country Status (1)

Country Link
WO (1) WO2014192747A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056904A1 (en) * 2015-09-30 2017-04-06 アイシン精機株式会社 Cooling control device
WO2017217462A1 (en) * 2016-06-16 2017-12-21 日立オートモティブシステムズ株式会社 Cooling device of vehicle internal combustion engine, and control method for cooling device
US20180245503A1 (en) * 2015-12-17 2018-08-30 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
US20180266304A1 (en) * 2016-01-06 2018-09-20 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
WO2018225305A1 (en) * 2017-06-05 2018-12-13 三菱自動車工業株式会社 Engine cooling system
CN109026335A (en) * 2018-08-23 2018-12-18 浙江吉利控股集团有限公司 A kind of heat management control method and system for engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212970A (en) * 1992-12-25 1994-08-02 Mazda Motor Corp Cooling device of engine
JP2002030962A (en) * 2000-07-14 2002-01-31 Nissan Motor Co Ltd Control device for diesel engine
JP2009293415A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Cooling circuit for internal combustion engine
JP2010223050A (en) * 2009-03-23 2010-10-07 Aisin Seiki Co Ltd Cooling device for engine
JP2011179435A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Combustion control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212970A (en) * 1992-12-25 1994-08-02 Mazda Motor Corp Cooling device of engine
JP2002030962A (en) * 2000-07-14 2002-01-31 Nissan Motor Co Ltd Control device for diesel engine
JP2009293415A (en) * 2008-06-03 2009-12-17 Nissan Motor Co Ltd Cooling circuit for internal combustion engine
JP2010223050A (en) * 2009-03-23 2010-10-07 Aisin Seiki Co Ltd Cooling device for engine
JP2011179435A (en) * 2010-03-02 2011-09-15 Toyota Motor Corp Combustion control device of internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056904A1 (en) * 2015-09-30 2017-04-06 アイシン精機株式会社 Cooling control device
US20180245503A1 (en) * 2015-12-17 2018-08-30 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
US10371041B2 (en) * 2015-12-17 2019-08-06 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
US20180266304A1 (en) * 2016-01-06 2018-09-20 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
US10605150B2 (en) * 2016-01-06 2020-03-31 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
US20180245504A1 (en) * 2016-06-16 2018-08-30 Hitachi Automotive Systems, Ltd. Cooling Device for Internal Combustion Engine of Vehicle and Control Method Thereof
CN108026824A (en) * 2016-06-16 2018-05-11 日立汽车系统株式会社 The cooling device of internal combustion engine for vehicle and the control method of cooling device
JP2017223171A (en) * 2016-06-16 2017-12-21 日立オートモティブシステムズ株式会社 Cooler of vehicular internal combustion engine and control method of cooler
WO2017217462A1 (en) * 2016-06-16 2017-12-21 日立オートモティブシステムズ株式会社 Cooling device of vehicle internal combustion engine, and control method for cooling device
CN108026824B (en) * 2016-06-16 2020-07-10 日立汽车系统株式会社 Cooling device for internal combustion engine for vehicle and control method for cooling device
US10865696B2 (en) 2016-06-16 2020-12-15 Hitachi Automotive Systems, Ltd. Cooling device for internal combustion engine of vehicle and control method thereof
WO2018225305A1 (en) * 2017-06-05 2018-12-13 三菱自動車工業株式会社 Engine cooling system
CN109026335A (en) * 2018-08-23 2018-12-18 浙江吉利控股集团有限公司 A kind of heat management control method and system for engine

Similar Documents

Publication Publication Date Title
JP6266393B2 (en) Cooling device for internal combustion engine
WO2014192747A1 (en) Engine control device and control method
US9470138B2 (en) Coolant circulation system for engine
JP6378055B2 (en) Cooling control device for internal combustion engine
JP4962657B2 (en) Control device for internal combustion engine
JP6265171B2 (en) Vehicle heat exchange device
JP4911136B2 (en) Control device for vehicle heat exchange system
US20130167784A1 (en) Method for operating a coolant circuit
JP6096492B2 (en) Engine cooling system
JP6090138B2 (en) Engine cooling system
JP2016164404A (en) Cooling device for vehicular internal combustion engine, and control method
EP3428419B1 (en) Control apparatus of heat exchanging system
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
KR101550981B1 (en) Mode Control Method of Variable Divide Cooling System in Vehicle
JP2016211461A (en) Vehicle cooling device
JP2010151067A (en) Cooling device for engine
JP7206757B2 (en) Cooling system for vehicle and control method thereof
JP6246633B2 (en) Cooling device for internal combustion engine for vehicle
JP5776601B2 (en) Fuel injection control device
JPWO2010106615A1 (en) Engine cooling system
JP2009287455A (en) Cooling device of internal combustion engine
US10612452B2 (en) Control method of coolant control valve unit
JP6064603B2 (en) Internal combustion engine cooling system and internal combustion engine cooling method
JP2016210298A (en) Cooling device of internal combustion engine
JP4994546B2 (en) Cooling device for liquid-cooled internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14805023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP