WO2014192725A1 - Method for manufacturing electroconductive material, and electroconductive material - Google Patents

Method for manufacturing electroconductive material, and electroconductive material Download PDF

Info

Publication number
WO2014192725A1
WO2014192725A1 PCT/JP2014/063931 JP2014063931W WO2014192725A1 WO 2014192725 A1 WO2014192725 A1 WO 2014192725A1 JP 2014063931 W JP2014063931 W JP 2014063931W WO 2014192725 A1 WO2014192725 A1 WO 2014192725A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
carbon material
boron nitride
carbon
residue
Prior art date
Application number
PCT/JP2014/063931
Other languages
French (fr)
Japanese (ja)
Inventor
敏憲 秋山
小野 泰一
貴之 藤田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2015519860A priority Critical patent/JP6152418B2/en
Publication of WO2014192725A1 publication Critical patent/WO2014192725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Definitions

  • the present invention relates to a method for producing a conductive material having a boron-containing carbon material, and a conductive material.
  • the present invention is for solving the above-described conventional problems, and in particular, an object of the present invention is to provide a method for producing a conductive material and a conductive material capable of improving the slidability.
  • the method for producing a conductive material in the present invention is as follows. Mixing and heating a carbon material and boron nitride to form a boron-containing carbon material in which a part of the boron nitride is doped into the carbon material and a part of the boron nitride is left as a residue; Mixing the boron-containing carbon material with a resin; It is characterized by having.
  • boron nitride (BN) is used as a boron compound mixed with the carbon material, and boron nitride is used as a boron doping source for the carbon material, and a part of the boron nitride is left as a residue. Reducing the resistance by doping boron into the carbon material, and using as a residue a part of boron nitride having sliding characteristics superior to those of other boron compounds such as boron and boron carbide used in carbon materials and prior art By leaving, slidability can be improved.
  • hexagonal boron nitride has a property of easily cleaving, so that it is easy to become fine powder. Doping to the carbon material is promoted, and among boron compounds having excellent sliding properties, hexagonal boron nitride is more Since it is excellent, slidability can be more effectively improved when hexagonal boron nitride remains as a residue.
  • the melting point (sublimation) of boron nitride is about 2700 ° C., by setting the heating temperature to 2000 ° C. or less, boron dope and a partial residue of boron nitride can be realized, which is more slidable than the conventional one. An excellent conductive material can be manufactured.
  • the carbon material is preferably in the form of fibers, particles or scales.
  • boron nitride (BN) was used as the boron compound, and the boron nitride was left as a residue together with a boron doping source for the carbon material.
  • BN boron nitride
  • hexagonal boron nitride is easily cleaved because it has a property of being easily cleaved, promotes doping into the carbon material, and more effectively slides when hexagonal boron nitride remains as a residue. The mobility can be improved.
  • the conductive material in the present embodiment is obtained by mixing a boron-containing carbon material obtained by mixing and heating a carbon material and boron nitride with a resin.
  • the boron-containing carbon material can be produced in a discharge plasma sintering machine (SPS), a vacuum heating furnace, or an inert atmosphere furnace.
  • SPS discharge plasma sintering machine
  • vacuum heating furnace a vacuum heating furnace
  • inert atmosphere furnace a vacuum heating furnace
  • FIG. 1 is a schematic view of a discharge plasma sintering machine (SPS).
  • a discharge plasma sintering machine (SPS) 1 includes an upper electrode 2, a lower electrode 3, a sample holding vessel (die) 4, a water-cooled vacuum chamber 5, a DC pulse power source 8, and the like. Composed.
  • lid materials 6 and 6 made of, for example, carbon are provided at the tips of the upper electrode 2 and the lower electrode 3 on the sample holding container 4 side.
  • the sample holding container 4 is also made of carbon, for example.
  • the sample holding container 4 is filled with a mixed material 7 of a carbon material and a boron nitride that is a dopant material.
  • a carbon material almost all kinds of materials such as a fiber shape, a particle shape, and a scale shape can be used.
  • carbon nanotube (CNT), carbon black, and graphite can be used.
  • An existing method can be selected as a method for mixing the carbon material and boron nitride.
  • the concentration of boron in the mixed material 7 is preferably about 1 to 10 wt%.
  • the boron-containing carbon material thus obtained is taken out from the sample holding container 4. Then, a powdered boron-containing carbon material and a resin are mixed, and a conductive material (resistive material) obtained by dispersing the boron-containing carbon material in the resin can be obtained.
  • a sliding substrate provided with a conductive layer can be formed on the substrate by printing a paste-like (ink-like) conductive material on the substrate and performing a predetermined heat treatment or the like.
  • boron nitride (BN) is used as a boron doping source, but since the melting point (sublimation) of boron nitride is about 2700 ° C., the heating temperature in the discharge plasma sintering machine (SPS) is 2000 ° C. Even if it rises to a certain extent, not all of the boron is doped into the carbon material, leaving a portion of the boron nitride as a residue.
  • boron nitride By doping boron into the carbon material in this way, the resistance of the conductive material (conductive layer) can be reduced, and boron nitride, which has better sliding characteristics than the carbon material, is left as a residue, thereby probing the sliding substrate. It is possible to obtain good slidability when the is slid.
  • the slidability can be effectively improved by using boron nitride (BN) rather than using B powder, B 4 C, B 2 O 3 or the like as a boron source.
  • the boron nitride is preferably hexagonal boron nitride, and the hexagonal boron nitride has a property of being easily cleaved during the mixing process, so that it tends to become fine powder, and the doping to the carbon material is more effectively promoted.
  • hexagonal boron nitride remains as a residue, more excellent slidability can be obtained.
  • the heating temperature for the mixed material 7 is preferably 2000 ° C. or less. Thereby, a part of boron nitride can be appropriately left as a residue, and a conductive material excellent in slidability can be manufactured more effectively.
  • the lower limit of the heating temperature is preferably about 1200 ° C. This is because no resistance change is observed by simple heating, but the resistance is halved at 1400 ° C., and it is estimated that the effect is effective from about 1200 ° C.
  • the present embodiment has a characteristic configuration in that the mixed material 7 is heated in a state where an electric current is applied to dope boron into the carbon material, and a part of the boron nitride is left as a residue.
  • the means is not limited, it is preferable to use a discharge plasma sintering machine (SPS) as an effective means.
  • SPS discharge plasma sintering machine
  • Hexagonal boron nitride is mixed with carbon material (graphite carbon # 3845 made by Tokai Carbon Co., Ltd.) so that the boron content is 3 wt% (in the mixed material), and in a discharge plasma sintering machine (SPS) in vacuum at 2000 ° C. Boron-containing carbon material treated for 30 minutes
  • FIG. 2 is a graph showing the relationship between the powder compression density and the specific resistance value in Examples and Comparative Examples.
  • the boron-containing carbon material of the above-described example was mixed with a phenol resin to form a carbon ink.
  • the boron-containing carbon material in the carbon ink was 10 (vol%)
  • the curing catalyst was 1 (vol%)
  • the remainder was phenol resin.
  • the carbon material of the above comparative example (without boron doping) was mixed with a phenol resin to form a carbon ink.
  • the boron-containing carbon material in the carbon ink was 12.5 (vol%)
  • the curing catalyst was 1 (vol%)
  • the remainder was phenol resin.
  • the carbon inks of the above examples and comparative examples were printed on a phenol substrate to form a conductive layer. Then, the silver plated probe is brought into contact with the conductive layer, and then the probe is run on the conductive layer with a load of 50 g, a moving speed of 1 mm / sec, and a measurement distance of 6 mm, and a static friction coefficient ( ⁇ s) and a dynamic friction coefficient. ( ⁇ k) was measured respectively.
  • the static friction coefficient ( ⁇ s) is 0.22 and the dynamic friction coefficient ( ⁇ k) is 0.07
  • the static friction coefficient ( ⁇ s) is 0.31 and the dynamic friction coefficient ( ⁇ k) is 0. .2.
  • the friction resistance of the example can be made smaller than that of the comparative example. This is because in the embodiment, a part of the hexagonal boron nitride mixed with the carbon material is left as a residue.
  • boron-containing carbon material (mixed material in a mixed material) obtained by heating a mixed material obtained by mixing graphitized carbon with boron nitride (BN) powder (1 to 3 ⁇ m) using a discharge plasma sintering machine (SPS). Boron amount: 3 wt%) was produced.
  • a boron-containing carbon material (amount of boron in the mixed material: 3 wt%) obtained by heating a mixed material obtained by mixing B 4 C powder into graphitized carbon with a discharge plasma sintering machine (SPS) is manufactured. did.
  • Table 1 and FIG. 3 show the XRD analysis results in the examples
  • Table 2 and FIG. 4 show the XRD analysis results in the comparative examples.

Abstract

[Purpose] The purpose of the present invention is to provide a method for manufacturing an electroconductive material in which sliding performance is improved in particular, and to provide an electroconductive material. [Solution] This method for manufacturing an electroconductive material is characterized in having a step for heating a mixture of a carbon material and boron nitride and forming a boron-containing carbon material in which the carbon material is doped with some of the boron in the boron nitride and some of the boron nitride is left as residue; and a step for mixing the boron-containing carbon material with a resin.

Description

導電材料の製造方法、及び、導電材料Manufacturing method of conductive material and conductive material
 本発明は、ホウ素含有カーボン材料を有する導電材料の製造方法、及び導電材料に関する。 The present invention relates to a method for producing a conductive material having a boron-containing carbon material, and a conductive material.
 下記の各特許文献にはカーボン材料にホウ素化合物を添加してなる導電材料(抵抗材料)に関する発明が開示されている。各特許文献にはホウ素源として様々なホウ素化合物が開示されている。 The following patent documents disclose inventions relating to conductive materials (resistance materials) formed by adding boron compounds to carbon materials. Each patent document discloses various boron compounds as a boron source.
 ところで導電材料を摺動基板の導電層(抵抗層)として用いたとき、良好な導電性のみならず良好な摺動性も必要とされたが、従来では、摺動性を向上させるための導電材料の製造方法が確立していなかった。 By the way, when a conductive material is used as a conductive layer (resistive layer) of a sliding substrate, not only good conductivity but also good slidability is required. Conventionally, a conductive material for improving slidability is required. The manufacturing method of material was not established.
特開昭58-50003号公報JP 58-50003 A 特開平7-235403号公報JP 7-235403 A 特開平11-31507号公報Japanese Patent Laid-Open No. 11-31507 特開2000-12032号公報Japanese Unexamined Patent Publication No. 2000-12032 特開2002-88249号公報JP 2002-88249 A 特開2004-221071号公報JP 2004-221071 A
 本発明は、上記従来の課題を解決するためのものであり、特に、摺動性を向上させることが可能な導電材料の製造方法及び導電材料を提供することを目的としている。 The present invention is for solving the above-described conventional problems, and in particular, an object of the present invention is to provide a method for producing a conductive material and a conductive material capable of improving the slidability.
 本発明における導電材料の製造方法は、
 カーボン材料と窒化ホウ素とを混合し加熱して、前記窒化ホウ素の一部のホウ素を前記カーボン材料にドープするとともに、前記窒化ホウ素の一部を残渣として残したホウ素含有カーボン材料を形成する工程、
 前記ホウ素含有カーボン材料を樹脂と混合する工程、
 を有することを特徴とするものである。
The method for producing a conductive material in the present invention is as follows.
Mixing and heating a carbon material and boron nitride to form a boron-containing carbon material in which a part of the boron nitride is doped into the carbon material and a part of the boron nitride is left as a residue;
Mixing the boron-containing carbon material with a resin;
It is characterized by having.
 本発明では、カーボン材料と混合するホウ素化合物として窒化ホウ素(BN)を用い、窒化ホウ素をカーボン材料に対するホウ素のドープ源にするとともに、窒化ホウ素の一部を残渣として残した。ホウ素のカーボン材料へのドープにより低抵抗化とともに、カーボン材料 や先行技術で用いられているホウ素、炭化ホウ素などの他のホウ素化合物よりも優れた摺動特性を有する窒化ホウ素の一部を残渣として残すことで、摺動性を向上させることができる。特に六方晶窒化ホウ素であると、容易にへき開する性質を持つため微粉となりやすく、カーボン材料へのドープが促進されるとともに、摺動特性が優れているホウ素化合物の中でも六方晶の窒化ホウ素はより優れているため、残渣として六方晶の窒化ホウ素が残った際により効果的に摺動性を向上させることができる。 In the present invention, boron nitride (BN) is used as a boron compound mixed with the carbon material, and boron nitride is used as a boron doping source for the carbon material, and a part of the boron nitride is left as a residue. Reducing the resistance by doping boron into the carbon material, and using as a residue a part of boron nitride having sliding characteristics superior to those of other boron compounds such as boron and boron carbide used in carbon materials and prior art By leaving, slidability can be improved. In particular, hexagonal boron nitride has a property of easily cleaving, so that it is easy to become fine powder. Doping to the carbon material is promoted, and among boron compounds having excellent sliding properties, hexagonal boron nitride is more Since it is excellent, slidability can be more effectively improved when hexagonal boron nitride remains as a residue.
 本発明では、2000℃以下で加熱することが好ましい。窒化ホウ素の融点(昇華)は2700℃程度であるため、加熱温度を2000℃以下に設定することで、ホウ素ドープと窒化ホウ素の一部の残渣とを実現でき、従来に比べて摺動性に優れた導電材料を製造することができる。 In the present invention, it is preferable to heat at 2000 ° C. or lower. Since the melting point (sublimation) of boron nitride is about 2700 ° C., by setting the heating temperature to 2000 ° C. or less, boron dope and a partial residue of boron nitride can be realized, which is more slidable than the conventional one. An excellent conductive material can be manufactured.
 また本発明では、前記カーボン材料は繊維状、粒子状あるいは鱗片状であることが好ましい。 In the present invention, the carbon material is preferably in the form of fibers, particles or scales.
 本発明によれば、ホウ素化合物として窒化ホウ素(BN)を用い、窒化ホウ素をカーボン材料に対するホウ素のドープ源とともに、一部を残渣として残した。ホウ素のカーボン材料へのドープにより低抵抗化とともに、窒化ホウ素の一部を残渣として残すことで、従来にくらべて 摺動性を向上させることができる。特に六方晶窒化ホウ素であると、容易にへき開する性質を持つため微粉となりやすく、カーボン材料へのドープが促進されるとともに、残渣として六方晶の窒化ホウ素が残った際に、より効果的に摺動性を向上させることができる。 According to the present invention, boron nitride (BN) was used as the boron compound, and the boron nitride was left as a residue together with a boron doping source for the carbon material. By reducing the resistance by doping boron into the carbon material and leaving a part of the boron nitride as a residue, it is possible to improve the slidability as compared with the prior art. In particular, hexagonal boron nitride is easily cleaved because it has a property of being easily cleaved, promotes doping into the carbon material, and more effectively slides when hexagonal boron nitride remains as a residue. The mobility can be improved.
放電プラズマ焼結機(SPS)の模式図、Schematic diagram of a spark plasma sintering machine (SPS), 実施例及び比較例における粉末圧縮密度と比抵抗値との関係を示すグラフ、A graph showing the relationship between powder compression density and specific resistance value in Examples and Comparative Examples, 実施例におけるXRD分析結果、XRD analysis results in Examples, 比較例におけるXRD分析結果、XRD analysis result in comparative example,
 本実施形態における導電材料は、カーボン材料と窒化ホウ素とを混合し加熱して得られたホウ素含有カーボン材料を樹脂に混合してなるものである。 The conductive material in the present embodiment is obtained by mixing a boron-containing carbon material obtained by mixing and heating a carbon material and boron nitride with a resin.
 本実施形態では、ホウ素含有カーボン材料を、放電プラズマ焼結機(SPS)や真空加熱炉、不活性雰囲気炉にて製造することができる。 In this embodiment, the boron-containing carbon material can be produced in a discharge plasma sintering machine (SPS), a vacuum heating furnace, or an inert atmosphere furnace.
 図1は、放電プラズマ焼結機(SPS)の模式図である。
 図1に示すように、放電プラズマ焼結機(SPS)1は、上部電極2、下部電極3、試料保持容器(ダイ)4、水冷真空チャンバー5、及び、DCパルス電源8等を有して構成される。
FIG. 1 is a schematic view of a discharge plasma sintering machine (SPS).
As shown in FIG. 1, a discharge plasma sintering machine (SPS) 1 includes an upper electrode 2, a lower electrode 3, a sample holding vessel (die) 4, a water-cooled vacuum chamber 5, a DC pulse power source 8, and the like. Composed.
 図1に示すように、上部電極2及び下部電極3の試料保持容器4側の先端には例えばカーボンからなる蓋材6,6が設けられている。なお試料保持容器4も例えば、カーボンで形成されている。 As shown in FIG. 1, lid materials 6 and 6 made of, for example, carbon are provided at the tips of the upper electrode 2 and the lower electrode 3 on the sample holding container 4 side. The sample holding container 4 is also made of carbon, for example.
 試料保持容器4内には、カーボン材料とドーパント材料である窒化ホウ素との混合材料7が充填されている。カーボン材料には繊維状、粒子状あるいは鱗片状等のほとんどの種類のものが使用でき、例えばカーボンナノチューブ(CNT)、カーボンブラック及びグラファイトを用いることができる。カーボン材料と窒化ホウ素との混合方法については既存の方法を選択することが出来る。 The sample holding container 4 is filled with a mixed material 7 of a carbon material and a boron nitride that is a dopant material. As the carbon material, almost all kinds of materials such as a fiber shape, a particle shape, and a scale shape can be used. For example, carbon nanotube (CNT), carbon black, and graphite can be used. An existing method can be selected as a method for mixing the carbon material and boron nitride.
 ここで混合材料7中に占めるホウ素の濃度は1~10wt%程度であることが好適である。 Here, the concentration of boron in the mixed material 7 is preferably about 1 to 10 wt%.
 図1に示す水冷真空チャンバー5内を真空にし、DCパルス電源8により、パルス電流を投入する。これにより、電極2,3から蓋材6を介して、混合材料7及び試料保持容器4にパルス電流が流れる。これにより、混合材料7に対する加熱温度を2000℃程度にまで急上昇させる。そしてこの状態を数十分程度保持する。これにより、カーボン材料にホウ素がドープされる。 1) A vacuum is applied to the inside of the water-cooled vacuum chamber 5 shown in FIG. As a result, a pulse current flows from the electrodes 2 and 3 through the lid member 6 to the mixed material 7 and the sample holding container 4. Thereby, the heating temperature with respect to the mixed material 7 is rapidly raised to about 2000 degreeC. This state is maintained for several tens of minutes. Thereby, boron is doped to the carbon material.
 このようにして得られたホウ素含有カーボン材料を試料保持容器4から取り出す。そして粉末状のホウ素含有カーボン材料と樹脂とを混合し、ホウ素含有カーボン材料を樹脂中に分散させてなる導電材料(抵抗材料)を得ることができる。 The boron-containing carbon material thus obtained is taken out from the sample holding container 4. Then, a powdered boron-containing carbon material and a resin are mixed, and a conductive material (resistive material) obtained by dispersing the boron-containing carbon material in the resin can be obtained.
 ペースト状(インク状)の導電材料を基板上に印刷し、所定の加熱処理などを行うことで、基板上に導電層(抵抗層)を備えた摺動基板を形成することができる。 A sliding substrate provided with a conductive layer (resistance layer) can be formed on the substrate by printing a paste-like (ink-like) conductive material on the substrate and performing a predetermined heat treatment or the like.
 本実施形態では、ホウ素のドープ源として窒化ホウ素(BN)を用いたが、窒化ホウ素の融点(昇華)は2700℃程度であるため、放電プラズマ焼結機(SPS)での加熱温度が2000℃程度まで上昇しても、全てのホウ素がカーボン材料にドープされるわけでなく、窒化ホウ素の一部が残渣として残される。 In this embodiment, boron nitride (BN) is used as a boron doping source, but since the melting point (sublimation) of boron nitride is about 2700 ° C., the heating temperature in the discharge plasma sintering machine (SPS) is 2000 ° C. Even if it rises to a certain extent, not all of the boron is doped into the carbon material, leaving a portion of the boron nitride as a residue.
 このようにカーボン材料にホウ素をドープすることで導電材料(導電層)の低抵抗化を促進できるとともに、カーボン材料よりも摺動特性に優れる窒化ホウ素を残渣として残すことで、摺動基板にプローブを摺動させた際に良好な摺動性を得ることが可能になる。摺動性については、ホウ素源としてB粉末やBC、Bなどを用いるよりも、窒化ホウ素(BN)を用いることで効果的に向上させることができる。 By doping boron into the carbon material in this way, the resistance of the conductive material (conductive layer) can be reduced, and boron nitride, which has better sliding characteristics than the carbon material, is left as a residue, thereby probing the sliding substrate. It is possible to obtain good slidability when the is slid. The slidability can be effectively improved by using boron nitride (BN) rather than using B powder, B 4 C, B 2 O 3 or the like as a boron source.
 本実施形態では、ホウ素のドープ源となる窒化化合物と、残渣として残す窒化化合物とを異ならせる必要がなく、窒化ホウ素(BN)を用いれば足りる。したがって、簡単な製造方法により、ホウ素がドープしかつ窒化ホウ素の一部が残渣として残されたホウ素含有カーボンを得ることができる。 In this embodiment, it is not necessary to make the nitride compound that becomes a boron doping source different from the nitride compound that remains as a residue, and it is sufficient to use boron nitride (BN). Therefore, by a simple manufacturing method, boron-containing carbon in which boron is doped and a part of boron nitride is left as a residue can be obtained.
 また窒化ホウ素は六方晶窒化ホウ素であることが好ましく、六方晶窒化ホウ素は、混合過程で、容易にへき開する性質を持つため微粉となりやすく、カーボン材料へのドープがより効果的に促進されるとともに、残渣として六方晶の窒化ホウ素が残った際に、より優れた摺動性を得ることができる。 Further, the boron nitride is preferably hexagonal boron nitride, and the hexagonal boron nitride has a property of being easily cleaved during the mixing process, so that it tends to become fine powder, and the doping to the carbon material is more effectively promoted. When hexagonal boron nitride remains as a residue, more excellent slidability can be obtained.
 混合材料7に対する加熱温度は2000℃以下であることが好ましい。これにより、窒化ホウ素の一部を残渣として適切に残すことができ、より効果的に摺動性に優れた導電材料を製造することができる。なお加熱温度の下限値は1200℃程度であることが好適である。単なる加熱では抵抗変化が見られないが1400℃で抵抗が半減し、凡そ1200℃位から効果があると推定されるからである。 The heating temperature for the mixed material 7 is preferably 2000 ° C. or less. Thereby, a part of boron nitride can be appropriately left as a residue, and a conductive material excellent in slidability can be manufactured more effectively. The lower limit of the heating temperature is preferably about 1200 ° C. This is because no resistance change is observed by simple heating, but the resistance is halved at 1400 ° C., and it is estimated that the effect is effective from about 1200 ° C.
 本実施形態は、混合材料7に電流を流した状態で加熱して、カーボン材料にホウ素をドープするとともに、窒化ホウ素の一部を残渣として残す点に特徴的な構成があり、それを実現する手段を限定するものではないが、効果的な手段として、放電プラズマ焼結機(SPS)を用いることが好適である。 The present embodiment has a characteristic configuration in that the mixed material 7 is heated in a state where an electric current is applied to dope boron into the carbon material, and a part of the boron nitride is left as a residue. Although the means is not limited, it is preferable to use a discharge plasma sintering machine (SPS) as an effective means.
(比抵抗値の測定)
 カーボンの粉体抵抗値について測定した。
(Measurement of resistivity value)
The powder resistance value of carbon was measured.
(比較例)
 黒鉛化カーボン(ホウ素ドープなし)
(Comparative example)
Graphitized carbon (no boron doping)
(実施例)
 カーボン材料(東海カーボン製 黒鉛化カーボン#3845)に六方晶窒化ホウ素をホウ素が3wt%(混合材料中)となるように混合して放電プラズマ焼結機(SPS)にて、真空中、2000℃、30分間の条件で処理したホウ素含有カーボン材料
(Example)
Hexagonal boron nitride is mixed with carbon material (graphite carbon # 3845 made by Tokai Carbon Co., Ltd.) so that the boron content is 3 wt% (in the mixed material), and in a discharge plasma sintering machine (SPS) in vacuum at 2000 ° C. Boron-containing carbon material treated for 30 minutes
 図2は、実施例及び比較例における粉末圧縮密度と比抵抗値との関係を示すグラフである。 FIG. 2 is a graph showing the relationship between the powder compression density and the specific resistance value in Examples and Comparative Examples.
 図2に示すように実施例及び比較例において、粉末圧縮密度が大きくなるほど比抵抗値の低下が見られた。 As shown in FIG. 2, in Examples and Comparative Examples, the specific resistance value decreased as the powder compression density increased.
 そして、図2に示すように、実施例は、比較例に比べて比抵抗値を、同じ粉末圧縮密度で見たときに必ず低くできることがわかった。このように実施例によれば、比較例に比べてカーボンの低抵抗化を図ることができるとわかった。また実施例において加熱温度を2000℃程度とすれば低抵抗化でき、したがって低抵抗化に必要な加熱温度を比較的低温で設定できることがわかった。 Then, as shown in FIG. 2, it was found that the specific resistance value can be always lowered in the example when compared with the comparative example at the same powder compression density. Thus, according to the Example, it turned out that resistance reduction of carbon can be achieved compared with a comparative example. Also, in the examples, it was found that if the heating temperature is about 2000 ° C., the resistance can be reduced, and therefore the heating temperature necessary for reducing the resistance can be set at a relatively low temperature.
(摺動性の測定)
 次に、上記した実施例のホウ素含有カーボン材料をフェノール樹脂と混ぜてカーボンインクを形成した。このときカーボンインクに占めるホウ素含有カーボン材料を10(vol%)、硬化触媒を1(vol%)、残りをフェノール樹脂とした。
(Slidability measurement)
Next, the boron-containing carbon material of the above-described example was mixed with a phenol resin to form a carbon ink. At this time, the boron-containing carbon material in the carbon ink was 10 (vol%), the curing catalyst was 1 (vol%), and the remainder was phenol resin.
 また、上記した比較例のカーボン材料(ホウ素ドープなし)をフェノール樹脂と混ぜてカーボンインクを形成した。このときカーボンインクに占めるホウ素含有カーボン材料を12.5(vol%)、硬化触媒を1(vol%)、残りをフェノール樹脂とした。 Further, the carbon material of the above comparative example (without boron doping) was mixed with a phenol resin to form a carbon ink. At this time, the boron-containing carbon material in the carbon ink was 12.5 (vol%), the curing catalyst was 1 (vol%), and the remainder was phenol resin.
 上記の実施例及び比較例の各カーボンインクをフェノール基板上に印刷して導電層を形成した。そして銀メッキが施されたプローブを導電層上に接触させ、その後、荷重50g、移動速度1mm/sec、及び測定距離を6mmとしてプローブを導電層上に走行させ、静摩擦係数(μs)及び動摩擦係数(μk)をそれぞれ測定した。 The carbon inks of the above examples and comparative examples were printed on a phenol substrate to form a conductive layer. Then, the silver plated probe is brought into contact with the conductive layer, and then the probe is run on the conductive layer with a load of 50 g, a moving speed of 1 mm / sec, and a measurement distance of 6 mm, and a static friction coefficient (μs) and a dynamic friction coefficient. (Μk) was measured respectively.
 その結果、実施例では、静摩擦係数(μs)が0.22、動摩擦係数(μk)が0.07であり、比較例では、静摩擦係数(μs)が0.31、動摩擦係数(μk)が0.2であった。 As a result, in the example, the static friction coefficient (μs) is 0.22 and the dynamic friction coefficient (μk) is 0.07, and in the comparative example, the static friction coefficient (μs) is 0.31 and the dynamic friction coefficient (μk) is 0. .2.
 このように実施例は、比較例よりも摩擦抵抗を小さくできることがわかった。これは、実施例では、カーボン材料に混合した六方晶窒化ホウ素の一部が、残渣として残されるためである。 Thus, it was found that the friction resistance of the example can be made smaller than that of the comparative example. This is because in the embodiment, a part of the hexagonal boron nitride mixed with the carbon material is left as a residue.
(XRD分析結果)
 続いて実施例として、黒鉛化カーボンに窒化ホウ素(BN)の粉末(1~3μm)を混合した混合材料を放電プラズマ焼結機(SPS)にて加熱処理したホウ素含有カーボン材料(混合材料中のホウ素量:3wt%)を製造した。
(Results of XRD analysis)
Subsequently, as an example, a boron-containing carbon material (mixed material in a mixed material) obtained by heating a mixed material obtained by mixing graphitized carbon with boron nitride (BN) powder (1 to 3 μm) using a discharge plasma sintering machine (SPS). Boron amount: 3 wt%) was produced.
 また比較例として、黒鉛化カーボンにBCの粉末を混合した混合材料を放電プラズマ焼結機(SPS)にて加熱処理したホウ素含有カーボン材料(混合材料中のホウ素量:3wt%)を製造した。 As a comparative example, a boron-containing carbon material (amount of boron in the mixed material: 3 wt%) obtained by heating a mixed material obtained by mixing B 4 C powder into graphitized carbon with a discharge plasma sintering machine (SPS) is manufactured. did.
 そして実施例及び比較例の各ホウ素含有カーボン材料をXRD分析した。その結果が以下の表1,表2及び図3,図4に示されている。 And each boron-containing carbon material of the example and the comparative example was subjected to XRD analysis. The results are shown in Tables 1 and 2 below and FIGS. 3 and 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び図3は、実施例におけるXRD分析結果であり、表2及び図4は、比較例におけるXRD分析結果である。 Table 1 and FIG. 3 show the XRD analysis results in the examples, and Table 2 and FIG. 4 show the XRD analysis results in the comparative examples.
 表1、表2、図3及び図4に示すように実施例では、比較例と同様に、(002)面、(004)面、及び(110)面が検出されたが、比較例と違ってBC由来の結晶面は検出されなかった。 As shown in Table 1, Table 2, FIG. 3 and FIG. 4, in the example, the (002) plane, (004) plane, and (110) plane were detected as in the comparative example, but unlike the comparative example. Thus, no crystal plane derived from B 4 C was detected.
1 放電プラズマ焼結機(SPS)
2、3 電極
4 試料保持容器(ダイ)
5 水冷真空チャンバー
6 蓋材
7 混合材料
8 DCパルス電源
1 Spark Plasma Sintering Machine (SPS)
2, 3 Electrode 4 Sample holder (die)
5 Water-cooled vacuum chamber 6 Lid 7 Mixed material 8 DC pulse power supply

Claims (5)

  1.  カーボン材料と窒化ホウ素とを混合し加熱して、前記窒化ホウ素の一部のホウ素を前記カーボン材料にドープするとともに、前記窒化ホウ素の一部を残渣として残したホウ素含有カーボン材料を形成する工程、
     前記ホウ素含有カーボン材料を樹脂と混合する工程、
     を有することを特徴とする導電材料の製造方法。
    Mixing and heating a carbon material and boron nitride to form a boron-containing carbon material in which a part of the boron nitride is doped into the carbon material and a part of the boron nitride is left as a residue;
    Mixing the boron-containing carbon material with a resin;
    The manufacturing method of the electrically-conductive material characterized by having.
  2.  前記窒化ホウ素は六方晶窒化ホウ素である請求項1記載の導電材料の製造方法。 The method for producing a conductive material according to claim 1, wherein the boron nitride is hexagonal boron nitride.
  3.  2000℃以下で加熱する請求項1又は2に記載の導電材料の製造方法。 The manufacturing method of the electrically-conductive material of Claim 1 or 2 heated at 2000 degrees C or less.
  4.  前記カーボン材料は繊維状、粒子状あるいは鱗片状である請求項1ないし3のいずれか1項に記載の導電材料の製造方法。 The method for producing a conductive material according to any one of claims 1 to 3, wherein the carbon material is in the form of fibers, particles, or scales.
  5.  カーボン材料にホウ素がドープされており、前記ホウ素のドープ源としての窒化ホウ素の一部が残渣として残されていることを特徴とする導電材料。 A conductive material, wherein a carbon material is doped with boron, and a part of boron nitride as a boron doping source is left as a residue.
PCT/JP2014/063931 2013-05-28 2014-05-27 Method for manufacturing electroconductive material, and electroconductive material WO2014192725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519860A JP6152418B2 (en) 2013-05-28 2014-05-27 Manufacturing method of conductive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013111831 2013-05-28
JP2013-111831 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192725A1 true WO2014192725A1 (en) 2014-12-04

Family

ID=51988754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063931 WO2014192725A1 (en) 2013-05-28 2014-05-27 Method for manufacturing electroconductive material, and electroconductive material

Country Status (2)

Country Link
JP (1) JP6152418B2 (en)
WO (1) WO2014192725A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162959A (en) * 2015-03-04 2016-09-05 アルプス電気株式会社 Resistive element and variable resistor employing the resistive element
JP2017070138A (en) * 2015-10-01 2017-04-06 アルプス電気株式会社 Polymer Actuator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383175A (en) * 1966-01-21 1968-05-14 Cabot Corp Production of carbon black
JP2002533551A (en) * 1998-12-23 2002-10-08 デグサ アクチエンゲゼルシャフト Doped carbon black

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3383175A (en) * 1966-01-21 1968-05-14 Cabot Corp Production of carbon black
JP2002533551A (en) * 1998-12-23 2002-10-08 デグサ アクチエンゲゼルシャフト Doped carbon black

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162959A (en) * 2015-03-04 2016-09-05 アルプス電気株式会社 Resistive element and variable resistor employing the resistive element
JP2017070138A (en) * 2015-10-01 2017-04-06 アルプス電気株式会社 Polymer Actuator

Also Published As

Publication number Publication date
JPWO2014192725A1 (en) 2017-02-23
JP6152418B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
JP7020627B2 (en) How to produce an electron emitter coated with a nanorod-containing coating
Selvan et al. Single step, low-temperature synthesis of submicron-sized rare earth hexaborides
Liu et al. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading
JP6152418B2 (en) Manufacturing method of conductive material
Saravanan et al. Structural evaluation of reduced graphene oxide in graphene oxide during ion irradiation: X-ray absorption spectroscopy and in-situ sheet resistance studies
Hu et al. Catalytic effect of dopants on microstructure and performance of MCMB-derived carbon laminations
JP5453601B2 (en) Electroless Ni-P plating solution and electroless Ni-P plating method
Toyoda et al. Intercalation of formic acid into carbon fibers and their exfoliation
JP5376274B2 (en) Method for producing highly conductive diamond sintered body
Gubernat et al. Thermomechanical characterisation of coal tar pitch-based carbon containing SiC nanoparticles
JP6924477B2 (en) Heating energizer
JP5911051B2 (en) Method for producing boron-containing carbon material
KR20160032409A (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
JP2013014487A (en) Method for producing conductive ceramics
JP5831015B2 (en) Semiconductor polycrystalline diamond and method for producing the same
KR102362517B1 (en) Tungsten doped grapheneoxide, manufacturing method thereof and electron emitter including the same
Yoon et al. Dispersion and densification of nano Si–(Al)–C powder with amorphous/nanocrystalline bimodal microstructure
JP6291446B2 (en) Method for producing conductive silicon carbide sintered body
JP4809582B2 (en) High thermal conductive graphite material and method for producing the same
TWI568676B (en) ITO powder and its manufacturing method
JP2020083744A (en) Conductive ceramic
JPH0419905A (en) Conductive composite material
Zhou et al. Field-emission property of self-purification SiC/SiO x coaxial nanowires synthesized via direct microwave irradiation using iron-containing catalyst
CN112837842B (en) Electrode paste and preparation method thereof
KR101792876B1 (en) Composition for heater including SiC particle, electrically conductive component graphite and metal particles, and heater from the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804792

Country of ref document: EP

Kind code of ref document: A1