WO2014192606A1 - Cuff pressure control device - Google Patents

Cuff pressure control device Download PDF

Info

Publication number
WO2014192606A1
WO2014192606A1 PCT/JP2014/063413 JP2014063413W WO2014192606A1 WO 2014192606 A1 WO2014192606 A1 WO 2014192606A1 JP 2014063413 W JP2014063413 W JP 2014063413W WO 2014192606 A1 WO2014192606 A1 WO 2014192606A1
Authority
WO
WIPO (PCT)
Prior art keywords
vent hole
cuff
hole
pump
cuff pressure
Prior art date
Application number
PCT/JP2014/063413
Other languages
French (fr)
Japanese (ja)
Inventor
東山祐三
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015519806A priority Critical patent/JP6037005B2/en
Publication of WO2014192606A1 publication Critical patent/WO2014192606A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0465Tracheostomy tubes; Devices for performing a tracheostomy; Accessories therefor, e.g. masks, filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0434Cuffs
    • A61M16/044External cuff pressure control or supply, e.g. synchronisation with respiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0475Tracheal tubes having openings in the tube
    • A61M16/0477Tracheal tubes having openings in the tube with incorporated means for delivering or removing fluids
    • A61M16/0479Tracheal tubes having openings in the tube with incorporated means for delivering or removing fluids above the cuff, e.g. giving access to the upper trachea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means

Definitions

  • the present invention relates to a cuff pressure control device for controlling the pressure in the cuff.
  • an operator such as a doctor inserts an intubation or cannula into a trachea of a subject (mainly a human body) to secure an airway, and sends oxygen to the lungs through the intubation or cannula.
  • Tracheal intubation is known.
  • VAP ventilator-associated pneumonia
  • a cuff is provided on the outer wall of the intubation or cannula.
  • This cuff expands when gas is supplied into the cuff. As the cuff expands, the outer peripheral surface of the cuff contacts the inner wall of the trachea and closes the trachea. Thus, conventionally, inflow of secretions into the trachea is prevented by the cuff while securing the airway by intubation or cannula.
  • the expanded cuff presses the blood vessel of the mucosal tissue of the trachea.
  • a blood vessel is compressed, it becomes ischemic, and as a result, there is a risk of causing necrosis, bleeding, and the like.
  • the cuff pressure when the cuff pressure is less than the proper range, the cuff does not expand sufficiently, creating a gap between the outer surface of the cuff and the inner wall of the trachea, and secretions such as saliva and gastric juice flow into the trachea. There are things to do.
  • Patent Document 1 discloses a cuff pressure control device that controls the pressure in the cuff to be within a predetermined range.
  • FIG. 14 is a cross-sectional view showing a configuration of a cuff pressure control apparatus 900 according to Patent Document 1.
  • the cuff pressure of the cuff 952 is controlled by the cuff pressure control device 900.
  • the cuff pressure control device 900 includes an adapter 910, a pressurizing pump 917, a cuff internal pressure gauge 918, and a suction pump 927.
  • a breathing tube 941 and a cannula 951 are connected to the adapter 910.
  • the respiratory tube 941 is connected to the artificial respirator 940.
  • a cuff 952 is provided on the outer wall of the cannula 951.
  • the cuff 952 is connected to the pressurizing pump 917 through the pipe 953.
  • the cuff 952 expands when gas is supplied by the pressurizing pump 917.
  • the outer peripheral surface of the cuff 952 comes into contact with the inner wall 6 of the trachea 2 and closes the trachea 2.
  • the cuff pressure control device 900 controls the driving of the pressurizing pump 917 based on the cuff pressure detected by the cuff internal pressure gauge 918 so that the cuff pressure of the cuff 952 is within a predetermined range.
  • the artificial respirator 940 delivers oxygen to the lungs through the respiratory tube 941, the adapter 910, and the cannula 951.
  • the cuff pressure control device 900 controls the driving of the suction pump 927 in a state where the cuff 952 is expanded and the trachea 2 is closed. As a result, the suction pump 927 sucks secretions accumulated on the epiglottis 4 side of the cuff 952 in the trachea 2 through the tube 954.
  • the cuff pressure control device 900 of Patent Document 1 needs to include both the pressurizing pump 917 and the suction pump 927 in order to supply gas to the cuff 952 and suck secretion.
  • Patent Document 1 the cuff pressure control device 900 is enlarged. Further, in the cuff pressure control device 900 of Patent Document 1, both the pressurization pump 917 and the suction pump 927 are prepared, or a manufacturing process for attaching both the pressurization pump 917 and the suction pump 927 to the apparatus main body is not set. In other words, it contributes to high manufacturing costs.
  • an object of the present invention is to provide a cuff pressure control device that achieves downsizing of the device main body and reduction of manufacturing cost.
  • the cuff pressure control device of the present invention has the following configuration in order to solve the above-mentioned problems.
  • a pump having a gas suction hole and the gas discharge hole;
  • a valve housing a first vent hole connected to the discharge hole, a second vent hole connected to the cuff, a third vent hole connected to the suction hole, and a tip facing the cuff
  • a fourth vent hole connected to the pipe, a fifth vent hole and a sixth vent hole communicating with the outside of the valve housing, and the first vent hole and the second vent hole or the fifth vent hole.
  • a valve having a flow path connecting any one of the third vent hole and the fourth vent hole or the sixth vent hole, and a switching mechanism for switching the flow path;
  • the flow path is switched by the switching mechanism, the first vent hole and either the second vent hole or the fifth vent hole are connected, and the third vent hole, the fourth vent hole or the sixth vent hole is connected.
  • a control unit that connects any of the pores.
  • the distal end of the tube is arranged, for example, in the vicinity of the cuff epiglottis side surface in the trachea.
  • the gas outside the valve housing flows into the valve from the sixth vent and flows out from the third vent.
  • the gas flowing out from the third vent hole flows into the pump through the suction hole and is discharged from the discharge hole, flows into the valve from the first vent hole, flows out from the second vent hole, and is supplied to the cuff.
  • the gas flows into the valve from the tip of the tube through the fourth vent and flows out from the third vent.
  • the gas flowing out from the third vent hole flows into the pump through the suction hole, is discharged from the discharge hole, flows into the valve from the first vent hole, and is discharged from the fifth vent hole to the outside of the valve housing. Is done.
  • the secretions accumulated on the epiglottis side of the cuff in the trachea are sucked through the tube by the operation of the pump.
  • the gas can be supplied to the cuff and the secretions can be sucked with a single pump, so that the device body can be downsized and the manufacturing cost can be reduced. Can do.
  • a cuff pressure detection unit for detecting the pressure in the cuff is provided, When the cuff pressure detection unit detects that the pressure in the cuff is smaller than a lower limit of a predetermined range, the control unit connects the first ventilation hole and the second ventilation hole, and connects the third communication hole. When the cuff pressure detector detects that the pressure in the cuff is within the predetermined range by connecting the air hole and the sixth air hole, the first air hole and the fifth air hole It is preferable to connect the third vent hole and the fourth vent hole.
  • the first vent hole and the fifth vent hole are connected, and the third vent hole and the fourth vent hole are connected. No back flow into the valve from the second vent. Therefore, the cuff pressure is maintained without depending on the operation of the pump. During this time, the pump aspirates secretions through the tube.
  • the pump when the pressure in the cuff is below the lower limit of the predetermined range, the pump supplies gas to the cuff, and when the pressure in the cuff falls within the predetermined range, the pump Suck through.
  • the gas can be supplied to the cuff and the secretions can be sucked with a single pump, so that the device body can be downsized and the manufacturing cost can be reduced. Can do.
  • the fifth vent hole and the sixth vent hole are configured by sharing a single fifth vent hole.
  • the valve since the vent hole communicating with the outside is shared, the valve can be downsized, and the cuff pressure control device can be further downsized.
  • the switching mechanism opens and closes a valve by electromagnetic driving to switch the flow path.
  • the flow path can be switched with high reliability.
  • the controller switches the flow path by the switching mechanism while the pump is on, and connects the first vent hole and the second vent hole for a time shorter than the pump on time. Is preferred.
  • the flow rate of the gas supplied to the cuff can be finely adjusted by switching the valve at high speed.
  • the pump includes a piezoelectric element as an actuator, and a vibration plate having a main surface bonded to the piezoelectric element and bending and vibrating by expansion and contraction of the piezoelectric element.
  • a tank for storing the liquid sucked through the tube A filter that allows the gas to pass therethrough and prevents the liquid from passing therethrough, It is preferable that the filter and the tank are detachably connected to the fourth vent hole.
  • the filter and the tank can be separated from the cuff pressure control device.
  • a worker such as a doctor can easily discard the filter and the tank contaminated with the secretion, the risk of the subject being infected with VAP can be reduced.
  • FIG. 4 is a cross-sectional view of a main part of the valve 120 when the pump 110 shown in FIG. 3 is operating.
  • 6A is a view when the first vent hole 121 and the second vent hole 122 are connected, and FIG.
  • FIG. 6B is a view when the first vent hole 121 and the fifth vent hole 125 are connected. It is sectional drawing of the principal part of the valve
  • 7A is a view when the third vent hole 133 and the sixth vent hole 136 are connected, and
  • FIG. 11 is a sectional view taken along line SS of the piezoelectric pump 101 shown in FIG. 10.
  • FIG. 11 is a cross-sectional view taken along line SS of the piezoelectric pump 101 when the piezoelectric pump 101 shown in FIG.
  • FIG. 13A is a diagram when the volume of the pump chamber is increased
  • FIG. 13B is a diagram when the volume of the pump chamber is decreased.
  • FIG. 13A is a diagram when the volume of the pump chamber is increased
  • FIG. 13B is a diagram when the volume of the pump chamber is decreased.
  • FIG. 1 is a schematic view showing a state in which the intubation 1 is inserted into the trachea from the oral cavity.
  • FIG. 2 is a cross-sectional view of the main part of the intubation 1 shown in FIG.
  • a cuff 10 is provided at a predetermined position on the outer periphery of the intubation 1.
  • the cuff 10 expands by being pressurized from outside the body via an air supply pipe 175 described later. As the cuff 10 expands, the outer peripheral surface of the cuff 10 contacts the inner wall 6 of the trachea 2 and closes the trachea 2.
  • the cuff pressure control device 100 can prevent the inflow of secretions into the trachea 2 by the cuff 10 while securing the airway by the intubation 1.
  • the volume of the cuff 10 is 20 ml.
  • the secretion H accumulates on the surface of the cuff 10 on the epiglottis 4 side in the trachea 2 as shown in FIG. If the secretion H accumulates excessively, the secretion H may flow into the back of the trachea 2 through a minute gap between the cuff 10 and the trachea 2.
  • the minute gap is generated, for example, when the cuff 10 is displaced due to body movement.
  • FIG. 3 is a block diagram showing a configuration of a main part of the cuff pressure control apparatus 100 according to the first embodiment of the present invention.
  • the cuff pressure control device 100 is connected to the cuff 10 via an air supply pipe 175.
  • the “cuff pressure” in the cuff 10 is controlled by the cuff pressure control device 100.
  • the cuff pressure control device 100 includes a control unit 111, a storage unit 112, a cuff pressure detection unit 171, a suction pressure detection unit 173, an input unit 114, a display unit 115, a sound generation unit 116, and a drive circuit 119. .
  • the cuff pressure control apparatus 100 further includes a pump 110, valves 120 and 130, a filter 176, a tank 160, and an exhaust valve 172.
  • the control unit 111 controls each unit in the cuff pressure control device 100.
  • the control unit 111 includes a timer circuit (not shown) that measures time.
  • the control unit 111 measures time and acquires time information such as elapsed time.
  • the control unit 111 controls the cuff pressure detection unit 171, the suction pressure detection unit 173, the drive circuit 119, and the exhaust valve 172 so that the cuff pressure is within a predetermined range based on the detection result of the cuff pressure detection unit 171 and the like. Control.
  • the predetermined range is a range of 20 cmH 2 O to 30 cmH 2 O.
  • control unit 111 switches the flow paths of the valves 120 and 130 based on the detection result of the cuff pressure detection unit 171 and the like.
  • the cuff pressure detection unit 171 is connected to the cuff 10 via a cuff pressure detection pipe 118 that communicates with the air supply pipe 175.
  • the cuff pressure detector 171 detects the cuff pressure of the cuff 10. Then, the control unit 111 reads the cuff pressure from the cuff pressure detection unit 171.
  • the storage unit 112 is a non-volatile memory, and includes, for example, a flash memory and an HDD (HardDisk Drive).
  • the storage unit 112 stores range information related to the predetermined range.
  • the control unit 111 records information on the cuff pressure read from the cuff pressure detection unit 171 and the time information acquired by the timer circuit in the storage unit 112 as a change with time of the cuff pressure.
  • the storage unit 112 also stores information on a plurality of pressurization parameters according to product types such as the cuff 10, information on a plurality of operation modes, and the like.
  • the input unit 114 has operation buttons and accepts an input operation from an operator such as a doctor.
  • the input unit 114 outputs a signal corresponding to the accepted input operation to the control unit 111.
  • the display unit 115 is configured by a liquid crystal display, for example.
  • the display unit 115 receives the display command from the control unit 111, the display unit 115 displays, for example, information on the cuff pressure, time information, and the like on the screen based on the display information included in the display command.
  • the sounding unit 116 is, for example, a speaker.
  • the sound generation unit 116 is driven by the control unit 111 and outputs an alarm sound that notifies an operator such as a doctor of an abnormality of the cuff 10, for example.
  • the drive circuit 119 drives the pump 110 at a drive frequency of 100 Hz or less.
  • the valve 120 is connected between the pump 110 and the cuff 10, as will be described in detail later.
  • the pump 110 is a diaphragm pump using a motor as an actuator.
  • the pump 110 has an air suction hole 110A and an air discharge hole 110B.
  • the pump 110 is operated by the drive circuit 119 and sucks air from the suction hole 110A and discharges it from the discharge hole 110B.
  • the magnitude and speed of pressurization to the cuff 10 are set under the control of the control unit 111.
  • the exhaust valve 172 is connected to the cuff 10.
  • the exhaust valve 172 is controlled by the control unit 111 to be opened and closed.
  • the exhaust valve 172 opens the interior of the cuff 10 to the atmosphere via the air supply pipe 175 and exhausts the air in the cuff 10.
  • the exhaust valve 172 stops the release of the air in the cuff 10 to the atmosphere and stops the exhaust of the cuff 10.
  • control unit 111 When the cuff pressure exceeds a predetermined range, the control unit 111 opens the exhaust valve 172 to exhaust air from the cuff 10. Accordingly, the control unit 111 can adjust the cuff pressure within a predetermined range.
  • the tank 160 is connected to a suction pipe 141 having a tip 141A facing the cuff 10 and a suction pipe 142.
  • the distal end 141A of the suction tube 141 is disposed in the vicinity of the surface of the cuff 10 on the epiglottis 4 side in the trachea 2 (see FIGS. 1 and 2).
  • the tank 160 stores the secretion H sucked through the suction pipe 141.
  • the tank 160 is connected to the filter 176 via the suction pipe 142.
  • the filter 176 is connected to the fourth vent hole 134 of the valve 130 via the suction pipe 143.
  • the filter 176 allows air to pass from the suction tube 142 to the suction tube 143, and prevents passage of liquid (such as secretion H) from the suction tube 142 to the suction tube 143.
  • the suction pressure detection unit 173 is connected to the filter 176 and the valve 130 via the suction pipe 143.
  • the suction pressure detection unit 173 detects the pressure in the suction pipe 143 by the operation of the pump 110. If any of the suction pipes 141, 142, 143 is disconnected or any of the suction pipes 141, 142, 143 is clogged, this pressure becomes zero or a very high value.
  • the control unit 111 notifies the abnormality by the sound generation unit 116 or the display unit 115.
  • the valve 130 is connected between the pump 110 and the filter 176.
  • valves 120 and 130 will be described in detail with reference to FIGS.
  • FIG. 4 is a cross-sectional view of the main part of the valve 120 shown in FIG. 3
  • FIG. 5 is a cross-sectional view of the main part of the valve 130 shown in FIG. 6A and 6B are cross-sectional views of the main part of the valve 120 when the pump 110 shown in FIG. 3 is operating.
  • 6A is a diagram when the first vent hole 121 and the second vent hole 122 are connected
  • FIG. 6B is a diagram when the first vent hole 121 and the fifth vent hole 125 are connected.
  • 7A and 7B are cross-sectional views of the main part of the valve 130 when the pump 110 shown in FIG. 3 is operating.
  • 7A is a diagram when the third vent hole 133 and the sixth vent hole 136 are connected
  • FIG. 7B is a diagram when the third vent hole 133 and the fourth vent hole 134 are connected. is there. Note that arrows in FIGS. 6A and 6B and FIGS. 7A and 7B indicate the flow of air.
  • the valve 120 has a valve housing 129 and a valve body 128 as shown in FIG.
  • the valve housing 129 includes a first ventilation hole 121 connected to the discharge hole 110B of the pump 110 via the relay pipe 178, and a second ventilation hole 122 connected to the cuff 10 via the air supply pipe 175.
  • a fifth vent hole 125 communicating with the outside of the valve housing 129 is provided.
  • the valve body 128 has rectangular parallelepiped end portions 128A and 128B and a rod-shaped central portion 128C connecting the end portions 128A and 128B.
  • the valve body 128 is slidably provided in the valve housing 129 in the direction of the arrow shown in FIG. And the valve body 128 comprises the flow path which connects the 1st ventilation hole 121 and either the 2nd ventilation hole 122 or the 5th ventilation hole 125 with the valve housing 129.
  • the control unit 111 slides the valve body 128 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 120.
  • the valve body 128 slides by being electromagnetically driven by a solenoid (not shown), closes either the second vent hole 122 or the fifth vent hole 125 and opens the other.
  • the control part 111 connects the 1st ventilation hole 121 and either the 2nd ventilation hole 122 or the 5th ventilation hole 125, as shown to FIG. 6 (A) (B). Therefore, the valve 120 can realize the switching of the flow path of the valve 120 with high reliability.
  • the structure of the valve 130 is the same as the structure of the valve 120 as shown in FIG.
  • the valve 130 also has a valve housing 139 and a valve body 138.
  • the two valves 120 and 130 constitute the “valve” of the present invention.
  • Each of the valve bodies 128 and 138 corresponds to the “switching mechanism” of the present invention.
  • the valve housing 139 is connected to the third vent hole 133 connected to the suction hole 110A of the pump 110 via the relay pipe 177 and the suction pipes 141, 142, and 143 with the tip 141A facing the cuff 10.
  • a fourth ventilation hole 134 and a sixth ventilation hole 136 communicating with the outside of the valve housing 139 are provided.
  • the valve body 138 has rectangular parallelepiped end portions 138A and 138B, and a rod-shaped central portion 138C connecting the end portions 138A and 138B.
  • the valve body 138 is provided in the valve housing 139 so as to be slidable in the direction of the arrow shown in FIG.
  • the valve body 138 configures a flow path connecting the third ventilation hole 133 and either the fourth ventilation hole 134 or the sixth ventilation hole 136 together with the valve housing 139.
  • the control unit 111 slides the valve body 138 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 130.
  • the valve body 138 slides by being electromagnetically driven by a solenoid (not shown), and closes either the fourth vent hole 134 or the sixth vent hole 136 and opens the other.
  • control unit 111 connects the third ventilation hole 133 and either the fourth ventilation hole 134 or the sixth ventilation hole 136. Therefore, the valve 130 can realize the switching of the flow path with high reliability.
  • the cuff pressure control device 100 starts filling the cuff 10 with air.
  • the control unit 111 is connected to the first vent hole 121 and the first cuff 10.
  • the second vent hole 122 is connected, and the third vent hole 133 and the sixth vent hole 136 are connected.
  • the control unit 111 instructs the drive circuit 119 to drive the pump 110 while being repeatedly turned on and off at a predetermined cycle (for example, 0.5 seconds). At this time, the control unit 111 switches the flow path of the valve 120 at a cycle shorter than the predetermined cycle, and connects the first vent hole 121 and either the second vent hole 122 or the fifth vent hole 125. In the cuff pressure control apparatus 100, the control unit 111 can finely adjust the flow rate of the air supplied to the cuff 10 by switching the flow path of the valve 120 at high speed.
  • a predetermined cycle for example, 0.5 seconds
  • air outside the valve housing 139 flows into the valve 130 from the sixth vent hole 136 and flows out from the third vent hole 133.
  • the air that has flowed out of the third vent hole 133 flows into the pump 110 through the suction hole 110A, is discharged from the discharge hole 110B, flows into the valve 120 from the first vent hole 121, and is discharged from the second vent hole 122. It flows out and is supplied to the cuff 10.
  • the cuff 10 is inflated, and the trachea 2 is closed by the cuff 10.
  • the control unit 111 When the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is within the predetermined range, the control unit 111 temporarily stops the driving of the pump 110, and the first ventilation hole 121 and the fifth ventilation hole 125. And connect.
  • the control unit 111 connects the third vent hole 133 and the fourth vent hole 134 to resume the driving of the pump 110 and sucks the secretion H through the suction pipe 141.
  • the air that has flowed out of the third vent hole 133 flows into the pump 110 through the suction hole 110A, is discharged from the discharge hole 110B, flows into the valve 120 through the first vent hole 121, and is discharged from the fifth vent hole 125. It is discharged to the outside of the valve housing 129.
  • the secretion H collected on the epiglottis 4 side of the cuff 10 in the trachea 2 is sucked together with air from the tip 141A of the suction tube 141 by the operation of the pump 110 and is collected in the tank 160.
  • the pump 110 when the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the pump 110 supplies air to the cuff 10, and when the cuff pressure of the cuff 10 falls within the predetermined range, The pump 110 continues to suck the secretion H through the suction pipe 141.
  • the pump 110 when the cuff pressure of the cuff 10 falls within a predetermined range, the pump 110 repeatedly turns on and off at regular time intervals, and continues to suck the secretion H through the suction pipe 141.
  • the air can be supplied to the cuff 10 and the secretion H can be sucked by one pump 110. Therefore, according to the cuff pressure control apparatus 100, it is possible to reduce the size of the apparatus main body and reduce the manufacturing cost.
  • FIG. 8 is a block diagram showing a configuration of a main part of the cuff pressure control apparatus 200 according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the main part of the valve 220 shown in FIG.
  • the cuff pressure control device 200 according to the second embodiment is different from the cuff pressure control device 100 according to the first embodiment in that a single valve 220 is provided instead of the two valves 120 and 130. Since other configurations are the same, description thereof is omitted.
  • valve 220 includes a valve housing 229 and a valve body 228.
  • the valve housing 229 includes a first ventilation hole 221 connected to the discharge hole 110B of the pump 110, a second ventilation hole 222 connected to the cuff 10 via the air supply pipe 175, and a suction hole of the pump 110.
  • 5 vent holes 225 are provided.
  • the valve body 228 is provided in the valve housing 229 so as to be slidable in the direction of the arrow shown in FIG.
  • the valve body 228 connects the first ventilation hole 221 and either the second ventilation hole 222 or the fifth ventilation hole 225, and the third ventilation hole 223, the fourth ventilation hole 224, or the fifth ventilation hole 225. Are formed together with the valve housing 229.
  • the control unit 111 slides the valve body 228 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 220.
  • the valve body 228 slides by being electromagnetically driven by a solenoid (not shown), and closes either the second vent hole 222 or the fourth vent hole 224 and opens the other.
  • the valve body 228 always opens the fifth ventilation hole 225.
  • the control unit 111 connects the first ventilation hole 221 and either the second ventilation hole 222 or the fifth ventilation hole 225, and the third ventilation hole 223, the fourth ventilation hole 224, or the fifth ventilation hole 225 is connected. Connect one of them. Therefore, the valve 220 can realize the switching of the flow path with high reliability.
  • the cuff pressure control device 200 starts filling the cuff 10 with air.
  • the control unit 111 controls the first vent 221 and the first cuff 10.
  • the second vent hole 222 is connected, and the third vent hole 223 and the fifth vent hole 225 are connected.
  • control unit 111 instructs the drive circuit 119 to turn on and off the pump 110. At this time, the control unit 111 switches the flow path of the valve 220 in a time shorter than the ON time of the pump 110.
  • the control unit 111 When the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is within the predetermined range, the control unit 111 temporarily stops driving the pump 110 and connects the first vent hole 221 and the fifth communication port. The air holes 225 are connected, and the third air holes 223 and the fourth air holes 224 are connected. Thereafter, the control unit 111 resumes driving of the pump 110.
  • the pump 110 when the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the pump 110 supplies air to the cuff 10 and when the cuff pressure of the cuff 10 falls within the predetermined range. The pump 110 continues to suck the secretion H through the suction pipe 141. Alternatively, when the cuff pressure of the cuff 10 falls within a predetermined range, the pump 110 continues to suck the secretion H through the suction pipe 141.
  • the cuff pressure control device 200 according to the second embodiment has the same effect as the cuff pressure control device 100 according to the first embodiment. Furthermore, since the valve is integrated and the vent hole communicating with the outside is shared as compared with the first embodiment, the valve can be downsized, and the cuff pressure control device can be further downsized.
  • the difference between the cuff pressure control device of the third embodiment and the cuff pressure control device 100 of the first embodiment is that a piezoelectric pump 101 is provided instead of the pump 110. Since other configurations are the same, description thereof is omitted.
  • FIG. 10 is an external perspective view of the piezoelectric pump 101 provided in the cuff pressure control device of the third embodiment.
  • FIG. 11 is an exploded perspective view of the piezoelectric pump 101 shown in FIG. 12 is a cross-sectional view taken along line SS of the piezoelectric pump 101 shown in FIG.
  • the piezoelectric pump 101 includes an outer casing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order.
  • the top plate 37, the side plate 38, and the diaphragm 39 constitute a pump chamber 36.
  • the piezoelectric pump 101 has a size of width 20 mm ⁇ length 20 mm ⁇ height of the region other than the nozzle 18 1.85 mm.
  • the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 constitute a pump body.
  • the outer casing 17 has a nozzle 18 provided with a discharge hole 24 through which air is discharged, for example.
  • the nozzle 18 has a size of an outer diameter of 2.0 mm ⁇ an inner shape (that is, a discharge hole 24) of a diameter of 0.8 mm ⁇ a height of 1.6 mm.
  • Screw holes 56A to 56D are provided in the square of the outer casing 17.
  • the outer casing 17 has a concave opening at the bottom and has a U-shaped cross section.
  • the outer housing 17 houses the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 of the pump chamber 36.
  • the outer casing 17 is made of, for example, resin.
  • the top plate 37 of the pump chamber 36 has a disk shape and is made of metal, for example.
  • the top plate 37 is provided with a central portion 61, a key-shaped protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the outer casing 17, and an external terminal 63 for connecting to an external circuit. It has been.
  • the central portion 61 of the top plate 37 is provided with a vent hole 45 that allows the inside and outside of the pump chamber 36 to communicate with each other.
  • the vent hole 45 is provided at a position facing the discharge hole 24 of the outer casing 17.
  • the top plate 37 is provided on the upper surface of the side plate 38.
  • the side plate 38 of the pump chamber 36 has an annular shape, and is made of metal, for example.
  • the side plate 38 is provided on the upper surface 39 ⁇ / b> A of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the pump chamber 36.
  • the diaphragm 39 has a disk shape and is made of metal, for example.
  • the diaphragm 39 constitutes a pump chamber 36 together with the side plate 38 and the top plate 37.
  • the piezoelectric element 40 has a disk shape and is made of, for example, a lead zirconate titanate ceramic.
  • the piezoelectric element 40 expands and contracts according to the applied AC drive voltage.
  • the piezoelectric element 40 is provided on the lower surface 39 ⁇ / b> B of the diaphragm 39 on the side opposite to the pump chamber 36.
  • the joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 has a central portion of the joined body with respect to the outer housing 17 by the four protrusions 62 provided on the top plate 37. It is supported so that it can be displaced.
  • the electrode conduction plate 70 includes an internal terminal 73 connected to the piezoelectric element 40 and an external terminal 72 connected to an external circuit.
  • the tip of the internal terminal 73 is joined to the flat plate surface of the piezoelectric element 40 with solder.
  • solder By setting the position to be joined by solder to a position corresponding to the bending vibration node of the piezoelectric element 40, the internal terminal 73 can be joined to the piezoelectric element 40 without inhibiting the bending vibration of the piezoelectric element 40. Thereby, the vibration of the internal terminal 73 can be suppressed.
  • the cap 42 is provided with a disk-shaped suction hole 53.
  • the diameter of the suction hole 53 is larger than the diameter of the piezoelectric element 40.
  • the cap 42 is provided with notches 55A to 55D at positions corresponding to the screw holes 56A to 56D of the outer casing 17.
  • the cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge.
  • the cap 42 sandwiches the outer casing 17 with the protruding portion 52, and houses the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 of the pump chamber 36 in the outer casing 17.
  • the cap 42 is made of resin, for example.
  • a ventilation path 31 is provided between the joined body of the top plate 37, the side plate 38, the diaphragm 39 and the piezoelectric element 40 and the outer casing 17 and the cap 42.
  • the suction hole 53 of the piezoelectric pump 101 is connected to the third vent hole 133 of the valve 130, and the discharge hole 24 of the piezoelectric pump 101 is the first vent hole of the valve 120. 121 (see FIG. 3).
  • FIG. 13A and 13B show the SS line of the piezoelectric pump 101 when the piezoelectric pump 101 shown in FIG. 10 is resonantly driven at the frequency (fundamental wave) of the primary vibration mode of the pump body. It is sectional drawing. Here, the arrows in the figure indicate the flow of air.
  • the piezoelectric pump 101 of this embodiment the discharge flow rate per power consumption is significantly increased. Therefore, the piezoelectric pump 101 can obtain a large discharge flow rate with low power consumption.
  • the operation of the cuff pressure control device of the third embodiment other than the piezoelectric pump 101 is the same as the operation of the cuff pressure control device 100 of the first embodiment.
  • the cuff pressure control device of the third embodiment has the same effect as the cuff pressure control device 100 of the first embodiment.
  • the flow rate of air discharged by one cycle of pumping of the piezoelectric pump 101 is smaller than the flow rate of air discharged by one cycle of pumping of the motor type pump 110, for example, 1/200 or less.
  • the flow rate of air discharged by one cycle of pumping of the piezoelectric pump 101 is, for example, 1 nL (nanoliter) or more and 10 ⁇ L (microliter) or less.
  • the flow rate of the air discharged by one cycle of pumping of the piezoelectric pump 101 is, for example, about 0.2 ⁇ L.
  • the piezoelectric pump 101 is driven at a driving frequency of, for example, an audible range (20 Hz to 20,000 Hz) or more.
  • the pump 110 is driven at a driving frequency of 100 Hz or less.
  • the control unit 111 controls the drive circuit 119 on the millisecond (ms) order, the control unit 111 can finely adjust the flow rate of the air supplied to the cuff 10 by the piezoelectric pump 101. That is, the cuff pressure control device according to the third embodiment does not need to switch the flow path of the valve 120 at a cycle shorter than the above-described predetermined cycle.
  • the cuff pressure control device of the third embodiment can reduce power consumption compared to the cuff pressure control device 100 of the first embodiment.
  • air is used as the gas, but the present invention is not limited to this.
  • the gas can be applied even if it is a gas other than air.
  • valves 120 and 130 having the structure shown in FIG. 4 and the valve 220 having the structure shown in FIG. 9 are used.
  • the present invention is not limited to this. Even a valve having a structure other than these structures can be applied.
  • the cuff pressure control device includes the exhaust valve 172, but the present invention is not limited to this.
  • the control unit 111 connects the first ventilation hole 121 and the second ventilation hole 122, and the third ventilation hole 133 and the sixth ventilation hole 136. Connect.
  • the cuff pressure control apparatus 100 exhausts the gas in the cuff 10 from the sixth vent hole 136 of the valve 130 via the valve 120 and the pump 110.
  • the cuff pressure control apparatus 100 can adjust the cuff pressure within a predetermined range.
  • the piezoelectric element is composed of lead zirconate titanate ceramics, but is not limited thereto.
  • it may be made of a non-lead piezoelectric ceramic material such as potassium sodium niobate and alkali niobate ceramics.
  • a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this.
  • a bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are provided on both surfaces of the vibration plate 39 may be used.
  • a disk-shaped piezoelectric element a disk-shaped diaphragm, and a disk-shaped top plate are used, but the present invention is not limited to this.
  • these shapes may be a rectangular plate shape, a polygonal plate shape, or an elliptical plate shape.
  • the piezoelectric pump is driven to resonate at the frequency (fundamental wave) of the primary vibration mode of the pump body, but the present invention is not limited to this.
  • resonance driving may be performed at a frequency of an odd-order vibration mode having a plurality of vibration antinodes and higher than the third-order vibration mode.
  • the filter 176 and the tank 160 are connected to the 4th ventilation hole 134 of the valve
  • the filter 176 and the tank 160 may be detachably connected to the fourth vent hole 134 of the valve 130 and separable from the cuff pressure control device.
  • the suction pipe 141, the tank 160, the suction pipe 142, and the filter 176 are detachably connected to the suction pipe 143 connected to the fourth vent hole 134 of the valve 130, and can be separated from the cuff pressure control device. Good. In this case, since a worker such as a doctor can easily discard the portion contaminated with the secretion, the risk of the subject being infected with VAP can be reduced.
  • Suction hole 110B Discharge hole 111 ... Control unit 112 ... Storage unit 114 ... Input unit 115 ... Display unit 116 ... Sound generation unit 118 ... Cuff pressure detection tube 119 ... Drive circuit 120 ... Valve 121 ... First vent 122 ... Second vent 125 ... Fifth vent 128 ... Valve body 129 ... Valve housing 130 ... Valve 133 ... Third vent 134 ... Fourth vent 136 ... Fourth 6 Hole 138 ... Valve body 139 ... Valve housing 141, 142, 143 ... Suction pipe 160 ... Tank 171 ... Cuff pressure detection part 172 ... Exhaust valve 173 ... Suction pressure detection part 175 ... Air supply pipe 176 ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The cuff pressure control device (100) is provided with a control unit (111), a cuff pressure-detecting unit (171), a suction pressure-detecting unit (173), a pump (110), a valve (120), a valve (130), a filter (176), and a tank (160). The valve (120) comprises: a first air hole (121) connected to the discharge hole (110B) of the pump (110); a second air hole (122) connected to the cuff (10) via an air supply tube (175); and a fifth air hole (125) that communicates with the outside of the valve housing (129). The valve (130) comprises: a third air hole (133) connected to the suction hole (110A) of the pump (110); a fourth air hole (134) connected to a suction tube (141), the tip (141A) of which faces the cuff (10), a suction tube (142), and a suction tube (143); and a sixth air hole (136) that communicates with the outside of the valve housing (139).

Description

カフ圧制御装置Cuff pressure control device
 本発明は、カフ内の圧力を制御するカフ圧制御装置に関するものである。 The present invention relates to a cuff pressure control device for controlling the pressure in the cuff.
 従来、人工呼吸器に関する医療分野において、医師等の作業者が挿管又はカニューレを被検体(主に人体)の気管内に挿入して気道を確保し、挿管又はカニューレを介して酸素を肺に送り込む気管挿管が知られている。 Conventionally, in a medical field related to a ventilator, an operator such as a doctor inserts an intubation or cannula into a trachea of a subject (mainly a human body) to secure an airway, and sends oxygen to the lungs through the intubation or cannula. Tracheal intubation is known.
 挿管又はカニューレと気管の内壁との間に隙間が生じると、気管内に胃液や唾液等の分泌物が流入し、被検体が人工呼吸器関連肺炎(VAP;Ventilator-associatedpneumonia。以下「VAP」と称する。)を発症するおそれがある。特に、気管挿管においては喉頭蓋が開かれた状態となるため食道からの胃液が気管に流入し易い。 When there is a gap between the intubation or the cannula and the inner wall of the trachea, secretions such as gastric juice and saliva flow into the trachea, and the subject is ventilator-associated pneumonia (VAP; VAP). May develop). In particular, in tracheal intubation, the epiglottis is opened, so that gastric fluid from the esophagus tends to flow into the trachea.
 このような分泌物の流入を防止するため、挿管又はカニューレの外壁にはカフが設けられる。 In order to prevent such inflow of secretions, a cuff is provided on the outer wall of the intubation or cannula.
 このカフは、カフ内に気体が供給されて膨張する。カフが膨張することにより、カフの外周面が気管の内壁に接触して気管を閉塞する。このようにして、従来では、挿管又はカニューレにより気道を確保しつつ、カフにより気管への分泌物の流入を防止している。 This cuff expands when gas is supplied into the cuff. As the cuff expands, the outer peripheral surface of the cuff contacts the inner wall of the trachea and closes the trachea. Thus, conventionally, inflow of secretions into the trachea is prevented by the cuff while securing the airway by intubation or cannula.
 このカフの内圧(以下「カフ圧」と記述する。)が適正な範囲外の値となったとき、次のような問題が生じることが知られている。 It is known that the following problems occur when the internal pressure of this cuff (hereinafter referred to as “cuff pressure”) falls outside the proper range.
 例えば、カフ圧が適正な範囲を超えるとき、膨張したカフが気管の粘膜組織の血管を圧迫することとなる。血管が圧迫されると虚血状態となり、その結果、壊死、出血等が引き起こされるおそれがある。 For example, when the cuff pressure exceeds an appropriate range, the expanded cuff presses the blood vessel of the mucosal tissue of the trachea. When a blood vessel is compressed, it becomes ischemic, and as a result, there is a risk of causing necrosis, bleeding, and the like.
 一方、カフ圧が適正な範囲に満たないとき、カフの膨張が不十分となり、カフの外周面と気管の内壁との間に隙間が生じて、気管内に唾液や胃液等の分泌物が流入することがある。 On the other hand, when the cuff pressure is less than the proper range, the cuff does not expand sufficiently, creating a gap between the outer surface of the cuff and the inner wall of the trachea, and secretions such as saliva and gastric juice flow into the trachea. There are things to do.
 そこで、特許文献1では、カフ内の圧力が所定の範囲内になるよう制御するカフ圧制御装置が開示されている。 Therefore, Patent Document 1 discloses a cuff pressure control device that controls the pressure in the cuff to be within a predetermined range.
 図14は、特許文献1に係るカフ圧制御装置900の構成を示す断面図である。カフ952のカフ圧は、カフ圧制御装置900により制御される。カフ圧制御装置900は、アダプタ910と、加圧ポンプ917と、カフ内圧計918と、吸引ポンプ927と、を備える。 FIG. 14 is a cross-sectional view showing a configuration of a cuff pressure control apparatus 900 according to Patent Document 1. The cuff pressure of the cuff 952 is controlled by the cuff pressure control device 900. The cuff pressure control device 900 includes an adapter 910, a pressurizing pump 917, a cuff internal pressure gauge 918, and a suction pump 927.
 アダプタ910には、呼吸管941とカニューレ951が接続されている。呼吸管941は、人口呼吸器940に接続されている。カニューレ951の外壁にはカフ952が設けられている。 A breathing tube 941 and a cannula 951 are connected to the adapter 910. The respiratory tube 941 is connected to the artificial respirator 940. A cuff 952 is provided on the outer wall of the cannula 951.
 カフ952は、管953を介して加圧ポンプ917に接続されている。カフ952は、加圧ポンプ917によって気体が供給されることにより膨張する。カフ952が膨張することにより、カフ952の外周面が気管2の内壁6に接触して気管2を閉塞する。 The cuff 952 is connected to the pressurizing pump 917 through the pipe 953. The cuff 952 expands when gas is supplied by the pressurizing pump 917. As the cuff 952 expands, the outer peripheral surface of the cuff 952 comes into contact with the inner wall 6 of the trachea 2 and closes the trachea 2.
 以上の構成においてカフ圧制御装置900は、カフ内圧計918によって検出されたカフ圧に基づいて、カフ952のカフ圧が所定の範囲内になるよう、加圧ポンプ917の駆動を制御する。カフ952が膨張して気管2が閉塞された状態で、人口呼吸器940は、呼吸管941、アダプタ910、及びカニューレ951を介して酸素を肺に送り込む。 In the above configuration, the cuff pressure control device 900 controls the driving of the pressurizing pump 917 based on the cuff pressure detected by the cuff internal pressure gauge 918 so that the cuff pressure of the cuff 952 is within a predetermined range. With the cuff 952 inflated and the trachea 2 occluded, the artificial respirator 940 delivers oxygen to the lungs through the respiratory tube 941, the adapter 910, and the cannula 951.
 さらに、カフ圧制御装置900は、カフ952が膨張して気管2が閉塞された状態で、吸引ポンプ927の駆動を制御する。これにより、吸引ポンプ927は、気管2内におけるカフ952の喉頭蓋4側に溜まる分泌物を管954を介して吸引する。 Furthermore, the cuff pressure control device 900 controls the driving of the suction pump 927 in a state where the cuff 952 is expanded and the trachea 2 is closed. As a result, the suction pump 927 sucks secretions accumulated on the epiglottis 4 side of the cuff 952 in the trachea 2 through the tube 954.
特開2002-219175号公報JP 2002-219175 A
 しかしながら、特許文献1のカフ圧制御装置900は、カフ952への気体の供給と分泌物の吸引とを行うために、加圧ポンプ917及び吸引ポンプ927の両方を備える必要がある。 However, the cuff pressure control device 900 of Patent Document 1 needs to include both the pressurizing pump 917 and the suction pump 927 in order to supply gas to the cuff 952 and suck secretion.
 そのため、特許文献1ではカフ圧制御装置900が大型化する。また、前記特許文献1のカフ圧制御装置900では、加圧ポンプ917及び吸引ポンプ927の両方を用意したり、加圧ポンプ917及び吸引ポンプ927の両方を装置本体に取り付ける製造工程を組まなければならず、製造コスト高の一因となる。 Therefore, in Patent Document 1, the cuff pressure control device 900 is enlarged. Further, in the cuff pressure control device 900 of Patent Document 1, both the pressurization pump 917 and the suction pump 927 are prepared, or a manufacturing process for attaching both the pressurization pump 917 and the suction pump 927 to the apparatus main body is not set. In other words, it contributes to high manufacturing costs.
 そこで本発明は、装置本体の小型化、及び製造コストの低減を図ったカフ圧制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a cuff pressure control device that achieves downsizing of the device main body and reduction of manufacturing cost.
 本発明のカフ圧制御装置は、前記課題を解決するために以下の構成を備えている。 The cuff pressure control device of the present invention has the following configuration in order to solve the above-mentioned problems.
(1)気体の吸引孔と前記気体の吐出孔を有するポンプと、
 バルブ筺体と、前記吐出孔に接続されている第1通気孔と、カフに接続されている第2通気孔と、前記吸引孔に接続されている第3通気孔と、先端が前記カフに対向する管に接続されている第4通気孔と、前記バルブ筺体の外部に連通する第5通気孔および第6通気孔と、前記第1通気孔と前記第2通気孔又は前記第5通気孔のいずれかとを結び、前記第3通気孔と前記第4通気孔又は前記第6通気孔のいずれかとを結ぶ流路と、前記流路を切替える切替機構と、を有するバルブと、
 前記流路を前記切替機構により切替え、前記第1通気孔と前記第2通気孔又は前記第5通気孔のいずれかとを接続し、前記第3通気孔と前記第4通気孔又は前記第6通気孔のいずれかとを接続する制御部と、を備える。
(1) a pump having a gas suction hole and the gas discharge hole;
A valve housing, a first vent hole connected to the discharge hole, a second vent hole connected to the cuff, a third vent hole connected to the suction hole, and a tip facing the cuff A fourth vent hole connected to the pipe, a fifth vent hole and a sixth vent hole communicating with the outside of the valve housing, and the first vent hole and the second vent hole or the fifth vent hole. A valve having a flow path connecting any one of the third vent hole and the fourth vent hole or the sixth vent hole, and a switching mechanism for switching the flow path;
The flow path is switched by the switching mechanism, the first vent hole and either the second vent hole or the fifth vent hole are connected, and the third vent hole, the fourth vent hole or the sixth vent hole is connected. A control unit that connects any of the pores.
 この構成において、管の先端は例えば、気管内におけるカフの喉頭蓋側の面の近傍に配置される。 In this configuration, the distal end of the tube is arranged, for example, in the vicinity of the cuff epiglottis side surface in the trachea.
 この構成において、第1通気孔と第2通気孔とが接続され、第3通気孔と第6通気孔とが接続されているとき、気体は、ポンプの動作によって次のように流れる。 In this configuration, when the first vent hole and the second vent hole are connected and the third vent hole and the sixth vent hole are connected, the gas flows as follows by the operation of the pump.
 すなわち、バルブ筐体の外部の気体は、第6通気孔からバルブ内に流入して第3通気孔から流出する。そして、第3通気孔から流出した気体は、吸引孔からポンプ内に流入して吐出孔から吐出され、第1通気孔からバルブ内に流入して第2通気孔から流出し、カフに供給される。これにより、カフが膨張する。 That is, the gas outside the valve housing flows into the valve from the sixth vent and flows out from the third vent. The gas flowing out from the third vent hole flows into the pump through the suction hole and is discharged from the discharge hole, flows into the valve from the first vent hole, flows out from the second vent hole, and is supplied to the cuff. The As a result, the cuff expands.
 一方、第1通気孔と第5通気孔とが接続され、第3通気孔と第4通気孔とが接続されているとき、気体は、ポンプの動作によって次のように流れる。 On the other hand, when the first vent hole and the fifth vent hole are connected and the third vent hole and the fourth vent hole are connected, the gas flows as follows by the operation of the pump.
 すなわち、気体は、管の先端から第4通気孔を介してバルブ内に流入して第3通気孔から流出する。そして、第3通気孔から流出した気体は、吸引孔からポンプ内に流入して吐出孔から吐出され、第1通気孔からバルブ内に流入して第5通気孔からバルブ筐体の外部へ排出される。これにより、気管内におけるカフの喉頭蓋側に溜まる分泌物は、ポンプの動作によって管を介して吸引される。 That is, the gas flows into the valve from the tip of the tube through the fourth vent and flows out from the third vent. The gas flowing out from the third vent hole flows into the pump through the suction hole, is discharged from the discharge hole, flows into the valve from the first vent hole, and is discharged from the fifth vent hole to the outside of the valve housing. Is done. As a result, the secretions accumulated on the epiglottis side of the cuff in the trachea are sucked through the tube by the operation of the pump.
 したがって、この構成のカフ圧制御装置によれば、一つのポンプでカフへの気体の供給と分泌物の吸引とを行うことができるため、装置本体の小型化、及び製造コストの低減を図ることができる。 Therefore, according to the cuff pressure control device of this configuration, the gas can be supplied to the cuff and the secretions can be sucked with a single pump, so that the device body can be downsized and the manufacturing cost can be reduced. Can do.
(2)前記カフ内の圧力を検出するカフ圧検出部を備え、
 前記制御部は、前記カフ内の圧力が所定の範囲の下限より小さいことを前記カフ圧検出部が検出したとき、前記第1通気孔と前記第2通気孔とを接続し、前記第3通気孔と前記第6通気孔とを接続し、前記カフ内の圧力が前記所定の範囲内になったことを前記カフ圧検出部が検出したとき、前記第1通気孔と前記第5通気孔とを接続し、前記第3通気孔と前記第4通気孔とを接続することが好ましい。
(2) A cuff pressure detection unit for detecting the pressure in the cuff is provided,
When the cuff pressure detection unit detects that the pressure in the cuff is smaller than a lower limit of a predetermined range, the control unit connects the first ventilation hole and the second ventilation hole, and connects the third communication hole. When the cuff pressure detector detects that the pressure in the cuff is within the predetermined range by connecting the air hole and the sixth air hole, the first air hole and the fifth air hole It is preferable to connect the third vent hole and the fourth vent hole.
 この構成では、カフ内の圧力が所定の範囲の下限より小さいとき、第1通気孔と第2通気孔とが接続され、第3通気孔と第6通気孔とが接続されるため、バルブ筐体の外部の気体は、ポンプの動作によってカフに供給される。 In this configuration, when the pressure in the cuff is smaller than the lower limit of the predetermined range, the first vent hole and the second vent hole are connected, and the third vent hole and the sixth vent hole are connected. Gas outside the body is supplied to the cuff by the operation of the pump.
 そして、カフ内の圧力が所定の範囲になったとき、第1通気孔と第5通気孔とが接続され、第3通気孔と第4通気孔とが接続されるため、カフ内の気体は第2通気孔からバルブ内に逆流しない。そのため、ポンプの動作によらなくとも、カフ圧は維持される。そして、ポンプはこの間に、分泌物を管を介して吸引する。 When the pressure in the cuff reaches a predetermined range, the first vent hole and the fifth vent hole are connected, and the third vent hole and the fourth vent hole are connected. No back flow into the valve from the second vent. Therefore, the cuff pressure is maintained without depending on the operation of the pump. During this time, the pump aspirates secretions through the tube.
 すなわち、この構成では、カフ内の圧力が所定の範囲の下限より小さいとき、ポンプは気体をカフに供給し、カフ内の圧力が所定の範囲内になったとき、ポンプは分泌物を管を介して吸引する。 That is, in this configuration, when the pressure in the cuff is below the lower limit of the predetermined range, the pump supplies gas to the cuff, and when the pressure in the cuff falls within the predetermined range, the pump Suck through.
 したがって、この構成のカフ圧制御装置によれば、一つのポンプでカフへの気体の供給と分泌物の吸引とを行うことができるため、装置本体の小型化、及び製造コストの低減を図ることができる。 Therefore, according to the cuff pressure control device of this configuration, the gas can be supplied to the cuff and the secretions can be sucked with a single pump, so that the device body can be downsized and the manufacturing cost can be reduced. Can do.
(3)前記第5の通気孔と前記第6の通気孔とを単一の第5の通気孔を共用することにより構成することが好ましい。この構成では、外部に連通する通気孔を共用したため、バルブを小型化でき、それによりさらにカフ圧制御装置を小型化できる。 (3) It is preferable that the fifth vent hole and the sixth vent hole are configured by sharing a single fifth vent hole. In this configuration, since the vent hole communicating with the outside is shared, the valve can be downsized, and the cuff pressure control device can be further downsized.
(4)前記切替機構は、電磁駆動で弁を開閉し、前記流路を切替えることが好ましい。 (4) It is preferable that the switching mechanism opens and closes a valve by electromagnetic driving to switch the flow path.
 この構成では、流路の切り替えを信頼性高く実現することができる。 In this configuration, the flow path can be switched with high reliability.
(5)前記制御部は、前記ポンプのオン中に前記流路を前記切替機構により切替え、前記ポンプのオン時間よりも短い時間だけ前記第1通気孔と前記第2通気孔とを接続することが好ましい。 (5) The controller switches the flow path by the switching mechanism while the pump is on, and connects the first vent hole and the second vent hole for a time shorter than the pump on time. Is preferred.
 この構成では、バルブを高速で切替えることによってカフに供給する気体の流量を微小に調整することができる。 In this configuration, the flow rate of the gas supplied to the cuff can be finely adjusted by switching the valve at high speed.
(6)前記ポンプは、アクチュエータとしての圧電素子と、前記圧電素子に接合する主面を持ち、前記圧電素子の伸縮により屈曲振動する振動板と、を有することが好ましい。 (6) It is preferable that the pump includes a piezoelectric element as an actuator, and a vibration plate having a main surface bonded to the piezoelectric element and bending and vibrating by expansion and contraction of the piezoelectric element.
 この構成では、アクチュエータとして圧電素子を用いることで、効率が高くなる。したがって、この構成のカフ圧制御装置によれば、消費電力を低減できる。 In this configuration, the efficiency is increased by using a piezoelectric element as the actuator. Therefore, according to the cuff pressure control device having this configuration, power consumption can be reduced.
(7)前記管を介して吸引された液体を貯蔵するタンクと、
 前記気体を通過させ、前記液体の通過を阻止するフィルタと、を備え、
 前記フィルタ及び前記タンクは、前記第4通気孔に着脱自在に接続されていることが好ましい。
(7) a tank for storing the liquid sucked through the tube;
A filter that allows the gas to pass therethrough and prevents the liquid from passing therethrough,
It is preferable that the filter and the tank are detachably connected to the fourth vent hole.
 この構成において、フィルタ及びタンクは、カフ圧制御装置から分離可能である。この場合、医師等の作業者は、分泌物に汚染されたフィルタ及びタンクを簡単に廃棄できるため、被検体がVAPに感染するリスクを低下できる。 In this configuration, the filter and the tank can be separated from the cuff pressure control device. In this case, since a worker such as a doctor can easily discard the filter and the tank contaminated with the secretion, the risk of the subject being infected with VAP can be reduced.
 この発明によれば、装置本体の小型化、及び製造コストの低減を図ることができる。 According to this invention, it is possible to reduce the size of the apparatus main body and reduce the manufacturing cost.
挿管1が口腔から気管内に挿入された様子を示す模式図である。It is a schematic diagram which shows a mode that the intubation 1 was inserted in the trachea from the oral cavity. 図1に示す挿管1の主要部の断面図である。It is sectional drawing of the principal part of the intubation 1 shown in FIG. 本発明の第1実施形態に係るカフ圧制御装置100の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the cuff pressure control apparatus 100 which concerns on 1st Embodiment of this invention. 図3に示すバルブ120の要部の断面図である。It is sectional drawing of the principal part of the valve | bulb 120 shown in FIG. 図3に示すバルブ130の要部の断面図である。It is sectional drawing of the principal part of the valve | bulb 130 shown in FIG. 図3に示すポンプ110が動作している際における、バルブ120の要部の断面図である。図6(A)は第1通気孔121と第2通気孔122が接続したときの図、図6(B)は第1通気孔121と第5通気孔125が接続したときの図である。FIG. 4 is a cross-sectional view of a main part of the valve 120 when the pump 110 shown in FIG. 3 is operating. 6A is a view when the first vent hole 121 and the second vent hole 122 are connected, and FIG. 6B is a view when the first vent hole 121 and the fifth vent hole 125 are connected. 図3に示すポンプ110が動作している際における、バルブ130の要部の断面図である。図7(A)は第3通気孔133と第6通気孔136が接続したときの図、図7(B)は第3通気孔133と第4通気孔134が接続したときの図である。It is sectional drawing of the principal part of the valve | bulb 130 when the pump 110 shown in FIG. 3 is operate | moving. 7A is a view when the third vent hole 133 and the sixth vent hole 136 are connected, and FIG. 7B is a view when the third vent hole 133 and the fourth vent hole 134 are connected. 本発明の第2実施形態に係るカフ圧制御装置200の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the cuff pressure control apparatus 200 which concerns on 2nd Embodiment of this invention. 図8に示すバルブ220の要部の断面図である。It is sectional drawing of the principal part of the valve | bulb 220 shown in FIG. 本発明の第3実施形態に係るカフ圧制御装置に備えられる圧電ポンプ101の外観斜視図である。It is an external appearance perspective view of the piezoelectric pump 101 with which the cuff pressure control apparatus which concerns on 3rd Embodiment of this invention is equipped. 図10に示す圧電ポンプ101の分解斜視図である。It is a disassembled perspective view of the piezoelectric pump 101 shown in FIG. 図10に示す圧電ポンプ101のS-S線の断面図である。FIG. 11 is a sectional view taken along line SS of the piezoelectric pump 101 shown in FIG. 10. 図10に示す圧電ポンプ101をポンプ本体の1次振動モードの周波数(基本波)で共振駆動させた際における、圧電ポンプ101のS-S線の断面図である。図13(A)はポンプ室の体積が増大したときの図、図13(B)はポンプ室の体積が減少したときの図である。FIG. 11 is a cross-sectional view taken along line SS of the piezoelectric pump 101 when the piezoelectric pump 101 shown in FIG. FIG. 13A is a diagram when the volume of the pump chamber is increased, and FIG. 13B is a diagram when the volume of the pump chamber is decreased. 特許文献1に係るカフ圧制御装置900の主要部の構成を示すブロック図である。It is a block diagram which shows the structure of the principal part of the cuff pressure control apparatus 900 concerning patent document 1. FIG.
《本発明の第1実施形態》
 以下、本発明の第1実施形態に係るカフ圧制御装置100について説明する。
<< First Embodiment of the Invention >>
Hereinafter, the cuff pressure control apparatus 100 according to the first embodiment of the present invention will be described.
 図1は、挿管1が口腔から気管内に挿入された様子を示す模式図である。図2は、図1に示す挿管1の主要部の断面図である。 FIG. 1 is a schematic view showing a state in which the intubation 1 is inserted into the trachea from the oral cavity. FIG. 2 is a cross-sectional view of the main part of the intubation 1 shown in FIG.
 人工呼吸器の使用時に気管挿管で気道を確保する場合、被検体の口腔5から挿入された挿管1と気管2の内壁6との間に隙間が生じると、気管2内に食道3からの胃液や唾液等の分泌物が流入し、被検体が人工呼吸器関連肺炎(VAP)を発症するおそれがある。特に、気管挿管においては喉頭蓋4が開かれた状態となるため食道3からの胃液が気管2に流入し易い。 When the airway is secured by tracheal intubation when using the ventilator, if a gap is formed between the intubation 1 inserted from the oral cavity 5 of the subject and the inner wall 6 of the trachea 2, gastric fluid from the esophagus 3 in the trachea 2. And secretions such as saliva may flow into the subject, and the subject may develop ventilator-associated pneumonia (VAP). In particular, in tracheal intubation, the epiglottis 4 is opened, so that gastric fluid from the esophagus 3 easily flows into the trachea 2.
 このような分泌物の流入を防止するため、挿管1の外周の所定の位置にはカフ10が設けられる。このカフ10は、後述の空気供給管175を介して体外より加圧されることにより膨張する。カフ10が膨張することにより、カフ10の外周面が気管2の内壁6に接触して気管2を閉塞する。 In order to prevent such inflow of secretions, a cuff 10 is provided at a predetermined position on the outer periphery of the intubation 1. The cuff 10 expands by being pressurized from outside the body via an air supply pipe 175 described later. As the cuff 10 expands, the outer peripheral surface of the cuff 10 contacts the inner wall 6 of the trachea 2 and closes the trachea 2.
 このようにして、カフ圧制御装置100は、挿管1により気道を確保しつつ、カフ10により気管2への分泌物の流入を防止することができる。本実施形態においてカフ10の容積は、20mlである。 Thus, the cuff pressure control device 100 can prevent the inflow of secretions into the trachea 2 by the cuff 10 while securing the airway by the intubation 1. In the present embodiment, the volume of the cuff 10 is 20 ml.
 また、カフ10が膨張して気管2が閉塞された状態では、図2に示すように、気管2内におけるカフ10の喉頭蓋4側の面に分泌物Hが溜まる。分泌物Hが過剰に溜まると、カフ10と気管2の微小な隙間から気管2の奥へ分泌物Hが流入するおそれがある。この微小な隙間は例えば、体動によってカフ10がズレることによって生じる。 Further, in the state where the cuff 10 is expanded and the trachea 2 is blocked, the secretion H accumulates on the surface of the cuff 10 on the epiglottis 4 side in the trachea 2 as shown in FIG. If the secretion H accumulates excessively, the secretion H may flow into the back of the trachea 2 through a minute gap between the cuff 10 and the trachea 2. The minute gap is generated, for example, when the cuff 10 is displaced due to body movement.
 そのため、カフ10が膨張して気管2が閉塞された状態では、気管2内におけるカフ10の喉頭蓋4側に溜まる分泌物Hは、除去される必要がある。 Therefore, in a state where the cuff 10 is inflated and the trachea 2 is occluded, the secretion H accumulated on the epiglottis 4 side of the cuff 10 in the trachea 2 needs to be removed.
 図3は、本発明の第1実施形態に係るカフ圧制御装置100の主要部の構成を示すブロック図である。カフ圧制御装置100は、空気供給管175を介して前記カフ10に接続されている。カフ10内の「カフ圧」は、カフ圧制御装置100により制御される。 FIG. 3 is a block diagram showing a configuration of a main part of the cuff pressure control apparatus 100 according to the first embodiment of the present invention. The cuff pressure control device 100 is connected to the cuff 10 via an air supply pipe 175. The “cuff pressure” in the cuff 10 is controlled by the cuff pressure control device 100.
 カフ圧制御装置100は、制御部111と、記憶部112と、カフ圧検出部171と、吸引圧検出部173と、入力部114と、表示部115と、発音部116と、駆動回路119と、を備える。カフ圧制御装置100は、さらに、ポンプ110と、バルブ120、130と、フィルタ176と、タンク160と、排気弁172と、を備える。 The cuff pressure control device 100 includes a control unit 111, a storage unit 112, a cuff pressure detection unit 171, a suction pressure detection unit 173, an input unit 114, a display unit 115, a sound generation unit 116, and a drive circuit 119. . The cuff pressure control apparatus 100 further includes a pump 110, valves 120 and 130, a filter 176, a tank 160, and an exhaust valve 172.
 制御部111は、カフ圧制御装置100内の各部を制御する。制御部111は、時間を計測するタイマー回路(不図示)を内蔵する。制御部111は、時間を計測して経過時間等の時間情報を取得する。 The control unit 111 controls each unit in the cuff pressure control device 100. The control unit 111 includes a timer circuit (not shown) that measures time. The control unit 111 measures time and acquires time information such as elapsed time.
 制御部111は、カフ圧検出部171の検出結果等に基づいて、カフ圧が所定の範囲内になるよう、カフ圧検出部171、吸引圧検出部173、駆動回路119、及び排気弁172を制御する。本実施形態において所定の範囲は、20cmHO以上30cmHO以下の範囲である。 The control unit 111 controls the cuff pressure detection unit 171, the suction pressure detection unit 173, the drive circuit 119, and the exhaust valve 172 so that the cuff pressure is within a predetermined range based on the detection result of the cuff pressure detection unit 171 and the like. Control. In the present embodiment, the predetermined range is a range of 20 cmH 2 O to 30 cmH 2 O.
 さらに、制御部111は、カフ圧検出部171の検出結果等に基づいて、バルブ120、130の流路を切り替える。 Further, the control unit 111 switches the flow paths of the valves 120 and 130 based on the detection result of the cuff pressure detection unit 171 and the like.
 カフ圧検出部171は、空気供給管175に通じるカフ圧検出管118を介してカフ10に接続されている。カフ圧検出部171は、カフ10のカフ圧を検出する。そして、制御部111は、そのカフ圧をカフ圧検出部171から読み取る。 The cuff pressure detection unit 171 is connected to the cuff 10 via a cuff pressure detection pipe 118 that communicates with the air supply pipe 175. The cuff pressure detector 171 detects the cuff pressure of the cuff 10. Then, the control unit 111 reads the cuff pressure from the cuff pressure detection unit 171.
 記憶部112は、不揮発性メモリであり、例えばフラッシュメモリ、HDD(HardDisk Drive)で構成される。記憶部112は、前記所定の範囲に係る範囲情報を記憶する。また、制御部111は、カフ圧検出部171より読み取ったカフ圧に関する情報とタイマー回路で取得した時間情報とを互いに関連付けて、カフ圧の経時変化として記憶部112に記録する。記憶部112は、また、カフ10等の製品種類に応じた複数の加圧パラメータに関する情報や、複数の動作モードに関する情報等を記憶する。 The storage unit 112 is a non-volatile memory, and includes, for example, a flash memory and an HDD (HardDisk Drive). The storage unit 112 stores range information related to the predetermined range. In addition, the control unit 111 records information on the cuff pressure read from the cuff pressure detection unit 171 and the time information acquired by the timer circuit in the storage unit 112 as a change with time of the cuff pressure. The storage unit 112 also stores information on a plurality of pressurization parameters according to product types such as the cuff 10, information on a plurality of operation modes, and the like.
 入力部114は、操作ボタンを有し、医師等の作業者からの入力操作を受け付ける。入力部114は、受け付けた入力操作に応じた信号を制御部111に出力する。 The input unit 114 has operation buttons and accepts an input operation from an operator such as a doctor. The input unit 114 outputs a signal corresponding to the accepted input operation to the control unit 111.
 表示部115は、例えば液晶ディスプレイで構成される。表示部115は、制御部111から表示命令を受信すると、表示命令に含まれる表示情報に基づいて、例えばカフ圧に関する情報や時間情報等を画面に表示する。 The display unit 115 is configured by a liquid crystal display, for example. When the display unit 115 receives the display command from the control unit 111, the display unit 115 displays, for example, information on the cuff pressure, time information, and the like on the screen based on the display information included in the display command.
 発音部116は、例えばスピーカである。発音部116は、制御部111により駆動され、例えばカフ10の異常等を医師等の作業者に報知するアラーム音を出力する。 The sounding unit 116 is, for example, a speaker. The sound generation unit 116 is driven by the control unit 111 and outputs an alarm sound that notifies an operator such as a doctor of an abnormality of the cuff 10, for example.
 駆動回路119は、ポンプ110を100Hz以下の駆動周波数で駆動する。 The drive circuit 119 drives the pump 110 at a drive frequency of 100 Hz or less.
 バルブ120は、詳細を後述するが、ポンプ110とカフ10との間に接続されている。 The valve 120 is connected between the pump 110 and the cuff 10, as will be described in detail later.
 ポンプ110は、アクチュエータとしてモータを使ったダイヤフラムポンプである。ポンプ110は、空気の吸引孔110Aと空気の吐出孔110Bとを有する。ポンプ110は、駆動回路119により動作し、空気を吸引孔110Aから吸引して吐出孔110Bから吐出する。ポンプ110は、制御部111の制御のもとで、カフ10への加圧の大きさや速度などが設定される。 The pump 110 is a diaphragm pump using a motor as an actuator. The pump 110 has an air suction hole 110A and an air discharge hole 110B. The pump 110 is operated by the drive circuit 119 and sucks air from the suction hole 110A and discharges it from the discharge hole 110B. In the pump 110, the magnitude and speed of pressurization to the cuff 10 are set under the control of the control unit 111.
 排気弁172は、カフ10に接続される。排気弁172は、制御部111により制御されて開放及び閉塞する。排気弁172は、開放状態において、空気供給管175を介してカフ10内を大気に開放してカフ10内の空気を排気する。排気弁172は、閉塞状態において、カフ10内の空気の大気への開放を停止してカフ10の排気を停止する。 The exhaust valve 172 is connected to the cuff 10. The exhaust valve 172 is controlled by the control unit 111 to be opened and closed. In the open state, the exhaust valve 172 opens the interior of the cuff 10 to the atmosphere via the air supply pipe 175 and exhausts the air in the cuff 10. In the closed state, the exhaust valve 172 stops the release of the air in the cuff 10 to the atmosphere and stops the exhaust of the cuff 10.
 制御部111は、カフ圧が所定の範囲を超える場合、排気弁172を開くことで、カフ10内から空気を排気する。これにより、制御部111は、カフ圧を所定の範囲内に調整することができる。 When the cuff pressure exceeds a predetermined range, the control unit 111 opens the exhaust valve 172 to exhaust air from the cuff 10. Accordingly, the control unit 111 can adjust the cuff pressure within a predetermined range.
 タンク160には、先端141Aがカフ10に対向する吸引管141と、吸引管142と、が接続されている。吸引管141の先端141Aは例えば、気管2内におけるカフ10の喉頭蓋4側の面の近傍に配置される(図1、図2参照)。タンク160は、吸引管141を介して吸引された分泌物Hを貯蔵する。タンク160は、吸引管142を介してフィルタ176に接続されている。 The tank 160 is connected to a suction pipe 141 having a tip 141A facing the cuff 10 and a suction pipe 142. For example, the distal end 141A of the suction tube 141 is disposed in the vicinity of the surface of the cuff 10 on the epiglottis 4 side in the trachea 2 (see FIGS. 1 and 2). The tank 160 stores the secretion H sucked through the suction pipe 141. The tank 160 is connected to the filter 176 via the suction pipe 142.
 フィルタ176は、吸引管143を介してバルブ130の第4通気孔134に接続されている。フィルタ176は、吸引管142から吸引管143へ空気を通過させ、吸引管142から吸引管143への液体(分泌物Hなど)の通過を阻止する。 The filter 176 is connected to the fourth vent hole 134 of the valve 130 via the suction pipe 143. The filter 176 allows air to pass from the suction tube 142 to the suction tube 143, and prevents passage of liquid (such as secretion H) from the suction tube 142 to the suction tube 143.
 吸引圧検出部173は、吸引管143を介してフィルタ176及びバルブ130に接続されている。吸引圧検出部173は、ポンプ110の動作によって吸引管143内の圧力を検出する。吸引管141、142、143のいずれかが外れたり、吸引管141、142、143のいずれかが詰まったりした場合、この圧力が0になったり、著しく高い値になったりする。 The suction pressure detection unit 173 is connected to the filter 176 and the valve 130 via the suction pipe 143. The suction pressure detection unit 173 detects the pressure in the suction pipe 143 by the operation of the pump 110. If any of the suction pipes 141, 142, 143 is disconnected or any of the suction pipes 141, 142, 143 is clogged, this pressure becomes zero or a very high value.
 そのため、この圧力が0になったり、著しく高い値になったりしたことを吸引圧検出部173が検出した場合、制御部111は、発音部116や表示部115によって異常を報知する。 Therefore, when the suction pressure detection unit 173 detects that the pressure has become 0 or has a significantly high value, the control unit 111 notifies the abnormality by the sound generation unit 116 or the display unit 115.
 バルブ130は、ポンプ110とフィルタ176との間に接続されている。 The valve 130 is connected between the pump 110 and the filter 176.
 ここで、バルブ120、130の構造について図4~図7を用いて詳述する。 Here, the structure of the valves 120 and 130 will be described in detail with reference to FIGS.
 図4は、図3に示すバルブ120の要部の断面図であり、図5は、図3に示すバルブ130の要部の断面図である。図6(A)(B)は、図3に示すポンプ110が動作している際における、バルブ120の要部の断面図である。図6(A)は、第1通気孔121と第2通気孔122が接続したときの図、図6(B)は、第1通気孔121と第5通気孔125が接続したときの図である。図7(A)(B)は、図3に示すポンプ110が動作している際における、バルブ130の要部の断面図である。図7(A)は、第3通気孔133と第6通気孔136が接続したときの図、図7(B)は、第3通気孔133と第4通気孔134が接続したときの図である。なお、図6(A)(B)図7(A)(B)における矢印は、空気の流れを示している。 4 is a cross-sectional view of the main part of the valve 120 shown in FIG. 3, and FIG. 5 is a cross-sectional view of the main part of the valve 130 shown in FIG. 6A and 6B are cross-sectional views of the main part of the valve 120 when the pump 110 shown in FIG. 3 is operating. 6A is a diagram when the first vent hole 121 and the second vent hole 122 are connected, and FIG. 6B is a diagram when the first vent hole 121 and the fifth vent hole 125 are connected. is there. 7A and 7B are cross-sectional views of the main part of the valve 130 when the pump 110 shown in FIG. 3 is operating. 7A is a diagram when the third vent hole 133 and the sixth vent hole 136 are connected, and FIG. 7B is a diagram when the third vent hole 133 and the fourth vent hole 134 are connected. is there. Note that arrows in FIGS. 6A and 6B and FIGS. 7A and 7B indicate the flow of air.
 バルブ120は、図4に示すように、バルブ筺体129と、弁体128と、を有する。 The valve 120 has a valve housing 129 and a valve body 128 as shown in FIG.
 バルブ筺体129には、中継管178を介してポンプ110の吐出孔110Bに接続されている第1通気孔121と、空気供給管175を介してカフ10に接続されている第2通気孔122と、バルブ筐体129の外部に連通する第5通気孔125と、が設けられている。 The valve housing 129 includes a first ventilation hole 121 connected to the discharge hole 110B of the pump 110 via the relay pipe 178, and a second ventilation hole 122 connected to the cuff 10 via the air supply pipe 175. A fifth vent hole 125 communicating with the outside of the valve housing 129 is provided.
 弁体128は、直方体状の端部128A、128Bと、端部128A、128Bを接続する棒状の中央部128Cとを有する。弁体128は、バルブ筺体129内において、図4に示す矢印の方向へスライド自在に設けられている。そして、弁体128は、第1通気孔121と第2通気孔122又は第5通気孔125のいずれかとを結ぶ流路をバルブ筺体129とともに構成している。 The valve body 128 has rectangular parallelepiped end portions 128A and 128B and a rod-shaped central portion 128C connecting the end portions 128A and 128B. The valve body 128 is slidably provided in the valve housing 129 in the direction of the arrow shown in FIG. And the valve body 128 comprises the flow path which connects the 1st ventilation hole 121 and either the 2nd ventilation hole 122 or the 5th ventilation hole 125 with the valve housing 129.
 制御部111は、カフ圧検出部171の検出結果等に基づいて弁体128をスライドさせ、バルブ120の流路を切り替える。弁体128は、不図示のソレノイドで電磁駆動されることによりスライドし、第2通気孔122又は第5通気孔125のいずれか一方を閉塞し、他方を開放する。これにより、制御部111は、図6(A)(B)に示すように、第1通気孔121と第2通気孔122又は第5通気孔125のいずれかとを接続する。そのため、バルブ120は、バルブ120の流路の切り替えを信頼性高く実現することができる。 The control unit 111 slides the valve body 128 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 120. The valve body 128 slides by being electromagnetically driven by a solenoid (not shown), closes either the second vent hole 122 or the fifth vent hole 125 and opens the other. Thereby, the control part 111 connects the 1st ventilation hole 121 and either the 2nd ventilation hole 122 or the 5th ventilation hole 125, as shown to FIG. 6 (A) (B). Therefore, the valve 120 can realize the switching of the flow path of the valve 120 with high reliability.
 バルブ130の構造は、図5に示すように、バルブ120の構造と同じである。バルブ130も、バルブ筺体139と、弁体138と、を有する。 The structure of the valve 130 is the same as the structure of the valve 120 as shown in FIG. The valve 130 also has a valve housing 139 and a valve body 138.
 なお、2つのバルブ120、130が、本発明の「バルブ」を構成する。また、弁体128、138のそれぞれが、本発明の「切替機構」に相当する。 The two valves 120 and 130 constitute the “valve” of the present invention. Each of the valve bodies 128 and 138 corresponds to the “switching mechanism” of the present invention.
 バルブ筺体139には、中継管177を介してポンプ110の吸引孔110Aに接続されている第3通気孔133と、先端141Aがカフ10に対向する吸引管141、142、143が接続されている第4通気孔134と、バルブ筐体139の外部に連通する第6通気孔136と、が設けられている。 The valve housing 139 is connected to the third vent hole 133 connected to the suction hole 110A of the pump 110 via the relay pipe 177 and the suction pipes 141, 142, and 143 with the tip 141A facing the cuff 10. A fourth ventilation hole 134 and a sixth ventilation hole 136 communicating with the outside of the valve housing 139 are provided.
 弁体138は、直方体状の端部138A、138Bと、端部138A、138Bを接続する棒状の中央部138Cとを有する。弁体138は、バルブ筺体139内において、図5に示す矢印の方向へスライド自在に設けられている。そして、弁体138は、第3通気孔133と第4通気孔134又は第6通気孔136のいずれかとを結ぶ流路をバルブ筺体139とともに構成している。 The valve body 138 has rectangular parallelepiped end portions 138A and 138B, and a rod-shaped central portion 138C connecting the end portions 138A and 138B. The valve body 138 is provided in the valve housing 139 so as to be slidable in the direction of the arrow shown in FIG. The valve body 138 configures a flow path connecting the third ventilation hole 133 and either the fourth ventilation hole 134 or the sixth ventilation hole 136 together with the valve housing 139.
 制御部111は、カフ圧検出部171の検出結果等に基づいて弁体138をスライドさせ、バルブ130の流路を切り替える。弁体138は、不図示のソレノイドで電磁駆動されることによりスライドし、第4通気孔134又は第6通気孔136のいずれか一方を閉塞し、他方を開放する。 The control unit 111 slides the valve body 138 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 130. The valve body 138 slides by being electromagnetically driven by a solenoid (not shown), and closes either the fourth vent hole 134 or the sixth vent hole 136 and opens the other.
 これにより、制御部111は、図7(A)(B)に示すように、第3通気孔133と第4通気孔134又は第6通気孔136のいずれかとを接続する。そのため、バルブ130は、流路の切り替えを信頼性高く実現することができる。 Thereby, as shown in FIGS. 7A and 7B, the control unit 111 connects the third ventilation hole 133 and either the fourth ventilation hole 134 or the sixth ventilation hole 136. Therefore, the valve 130 can realize the switching of the flow path with high reliability.
 以上の構成において、医師等の作業者が挿管1を被検体の口腔5から挿入した後、カフ圧制御装置100は、カフ10への空気の充填を開始する。カフ10への空気の充填を開始するとき、即ちカフ10のカフ圧が所定の範囲の下限より小さいことをカフ圧検出部171が検出したとき、制御部111は、第1通気孔121と第2通気孔122とを接続し、第3通気孔133と第6通気孔136とを接続する。 In the above configuration, after an operator such as a doctor inserts the intubation 1 from the oral cavity 5 of the subject, the cuff pressure control device 100 starts filling the cuff 10 with air. When the cuff 10 starts to be filled with air, that is, when the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the control unit 111 is connected to the first vent hole 121 and the first cuff 10. The second vent hole 122 is connected, and the third vent hole 133 and the sixth vent hole 136 are connected.
 そして、制御部111は、ポンプ110のオンオフを所定の周期(例えば0.5秒)で繰り返しながら駆動するよう駆動回路119に指示する。このとき、制御部111は、この所定の周期より短い周期でバルブ120の流路を切り替え、第1通気孔121と第2通気孔122又は第5通気孔125のいずれかとを接続する。カフ圧制御装置100では制御部111が、バルブ120の流路を高速で切替えることによってカフ10に供給する空気の流量を微小に調整することができる。 Then, the control unit 111 instructs the drive circuit 119 to drive the pump 110 while being repeatedly turned on and off at a predetermined cycle (for example, 0.5 seconds). At this time, the control unit 111 switches the flow path of the valve 120 at a cycle shorter than the predetermined cycle, and connects the first vent hole 121 and either the second vent hole 122 or the fifth vent hole 125. In the cuff pressure control apparatus 100, the control unit 111 can finely adjust the flow rate of the air supplied to the cuff 10 by switching the flow path of the valve 120 at high speed.
 第1通気孔121と第2通気孔122とが接続され、第3通気孔133と第6通気孔136とが接続されているとき、空気は、ポンプ110の動作によって次のように流れる。 When the first vent hole 121 and the second vent hole 122 are connected and the third vent hole 133 and the sixth vent hole 136 are connected, air flows as follows according to the operation of the pump 110.
 まず、バルブ筐体139の外部の空気は、第6通気孔136からバルブ130内に流入して第3通気孔133から流出する。そして、第3通気孔133から流出した空気は、吸引孔110Aからポンプ110内に流入して吐出孔110Bから吐出され、第1通気孔121からバルブ120内に流入して第2通気孔122から流出し、カフ10に供給される。これにより、カフ10が膨張していき、気管2がカフ10によって閉塞された状態となる。 First, air outside the valve housing 139 flows into the valve 130 from the sixth vent hole 136 and flows out from the third vent hole 133. The air that has flowed out of the third vent hole 133 flows into the pump 110 through the suction hole 110A, is discharged from the discharge hole 110B, flows into the valve 120 from the first vent hole 121, and is discharged from the second vent hole 122. It flows out and is supplied to the cuff 10. As a result, the cuff 10 is inflated, and the trachea 2 is closed by the cuff 10.
 カフ10のカフ圧が所定の範囲内になったことをカフ圧検出部171が検出したとき、制御部111は、ポンプ110の駆動を一旦停止し、第1通気孔121と第5通気孔125とを接続する。 When the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is within the predetermined range, the control unit 111 temporarily stops the driving of the pump 110, and the first ventilation hole 121 and the fifth ventilation hole 125. And connect.
 ここで、第1通気孔121と第5通気孔125とが接続されるため、カフ10内の空気はバルブ120の第2通気孔122からポンプ110側へ逆流しない。そのため、ポンプ110の動作によらなくとも、カフ10のカフ圧は維持される。制御部111はこの間に、第3通気孔133と第4通気孔134とを接続してポンプ110の駆動を再開し、分泌物Hを、吸引管141を介して吸引する。 Here, since the first vent hole 121 and the fifth vent hole 125 are connected, the air in the cuff 10 does not flow backward from the second vent hole 122 of the valve 120 to the pump 110 side. Therefore, the cuff pressure of the cuff 10 is maintained without depending on the operation of the pump 110. During this time, the control unit 111 connects the third vent hole 133 and the fourth vent hole 134 to resume the driving of the pump 110 and sucks the secretion H through the suction pipe 141.
 第1通気孔121と第5通気孔125とが接続され、第3通気孔133と第4通気孔134とが接続されているとき、空気は、ポンプ110の動作によって次のように流れる。 When the first vent hole 121 and the fifth vent hole 125 are connected and the third vent hole 133 and the fourth vent hole 134 are connected, air flows as follows according to the operation of the pump 110.
 まず、空気は、吸引管141の先端141Aから第4通気孔134を介してバルブ130内に流入して第3通気孔133から流出する。そして、第3通気孔133から流出した空気は、吸引孔110Aからポンプ110内に流入して吐出孔110Bから吐出され、第1通気孔121からバルブ120内に流入して第5通気孔125からバルブ筐体129の外部へ排出される。 First, air flows from the tip 141A of the suction pipe 141 into the valve 130 via the fourth vent hole 134 and flows out from the third vent hole 133. The air that has flowed out of the third vent hole 133 flows into the pump 110 through the suction hole 110A, is discharged from the discharge hole 110B, flows into the valve 120 through the first vent hole 121, and is discharged from the fifth vent hole 125. It is discharged to the outside of the valve housing 129.
 これにより、気管2内におけるカフ10の喉頭蓋4側に溜まる分泌物Hは、ポンプ110の動作によって吸引管141の先端141Aから空気とともに吸引され、タンク160内に溜まっていく。 Thereby, the secretion H collected on the epiglottis 4 side of the cuff 10 in the trachea 2 is sucked together with air from the tip 141A of the suction tube 141 by the operation of the pump 110 and is collected in the tank 160.
 すなわち、カフ圧制御装置100では、カフ10のカフ圧が所定の範囲の下限より小さいとき、ポンプ110は空気をカフ10に供給し、カフ10のカフ圧が所定の範囲内になったとき、ポンプ110は分泌物Hを、吸引管141を介して吸引し続ける。又は、カフ10のカフ圧が所定の範囲内になったとき、ポンプ110は一定の時間間隔でオンオフを繰り返し、分泌物Hを、吸引管141を介して吸引し続ける。 That is, in the cuff pressure control device 100, when the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the pump 110 supplies air to the cuff 10, and when the cuff pressure of the cuff 10 falls within the predetermined range, The pump 110 continues to suck the secretion H through the suction pipe 141. Alternatively, when the cuff pressure of the cuff 10 falls within a predetermined range, the pump 110 repeatedly turns on and off at regular time intervals, and continues to suck the secretion H through the suction pipe 141.
 したがって、カフ圧制御装置100によれば、一つのポンプ110でカフ10への空気の供給と分泌物Hの吸引とを行うことができる。そのため、カフ圧制御装置100によれば、装置本体の小型化、及び製造コストの低減を図ることができる。 Therefore, according to the cuff pressure control device 100, the air can be supplied to the cuff 10 and the secretion H can be sucked by one pump 110. Therefore, according to the cuff pressure control apparatus 100, it is possible to reduce the size of the apparatus main body and reduce the manufacturing cost.
《本発明の第2実施形態》
 以下、本発明の第2実施形態に係るカフ圧制御装置200について説明する。
<< Second Embodiment of the Invention >>
Hereinafter, the cuff pressure control apparatus 200 according to the second embodiment of the present invention will be described.
 図8は、本発明の第2実施形態に係るカフ圧制御装置200の主要部の構成を示すブロック図である。図9は、図8に示すバルブ220の主要部の断面図である。第2実施形態のカフ圧制御装置200が第1実施形態のカフ圧制御装置100と相違する点は、2つのバルブ120、130の代わりに1つのバルブ220を備える点である。その他の構成については同じであるため、説明を省略する。 FIG. 8 is a block diagram showing a configuration of a main part of the cuff pressure control apparatus 200 according to the second embodiment of the present invention. FIG. 9 is a cross-sectional view of the main part of the valve 220 shown in FIG. The cuff pressure control device 200 according to the second embodiment is different from the cuff pressure control device 100 according to the first embodiment in that a single valve 220 is provided instead of the two valves 120 and 130. Since other configurations are the same, description thereof is omitted.
 詳述すると、バルブ220は、バルブ筺体229と、弁体228と、を有する。 More specifically, the valve 220 includes a valve housing 229 and a valve body 228.
 バルブ筺体229には、ポンプ110の吐出孔110Bに接続されている第1通気孔221と、空気供給管175を介してカフ10に接続されている第2通気孔222と、ポンプ110の吸引孔110Aに接続されている第3通気孔223と、先端141Aがカフ10に対向する吸引管141、142、143が接続されている第4通気孔224と、バルブ筐体229の外部に連通する第5通気孔225と、が設けられている。 The valve housing 229 includes a first ventilation hole 221 connected to the discharge hole 110B of the pump 110, a second ventilation hole 222 connected to the cuff 10 via the air supply pipe 175, and a suction hole of the pump 110. A third vent hole 223 connected to 110A, a fourth vent hole 224 to which the suction pipes 141, 142, 143 with the tip 141A facing the cuff 10 are connected, and a first vent communicating to the outside of the valve housing 229. 5 vent holes 225 are provided.
 弁体228は、バルブ筺体229内において、図9に示す矢印の方向へスライド自在に設けられている。そして、弁体228は、第1通気孔221と第2通気孔222又は第5通気孔225のいずれかとを結び、第3通気孔223と第4通気孔224又は第5通気孔225のいずれかとを結ぶ流路をバルブ筺体229とともに構成している。 The valve body 228 is provided in the valve housing 229 so as to be slidable in the direction of the arrow shown in FIG. The valve body 228 connects the first ventilation hole 221 and either the second ventilation hole 222 or the fifth ventilation hole 225, and the third ventilation hole 223, the fourth ventilation hole 224, or the fifth ventilation hole 225. Are formed together with the valve housing 229.
 制御部111は、カフ圧検出部171の検出結果等に基づいて弁体228をスライドさせ、バルブ220の流路を切り替える。弁体228は、不図示のソレノイドで電磁駆動されることによりスライドし、第2通気孔222又は第4通気孔224のいずれか一方を閉塞して他方を開放する。弁体228は、第5通気孔225を常時開放する。 The control unit 111 slides the valve body 228 based on the detection result of the cuff pressure detection unit 171 and switches the flow path of the valve 220. The valve body 228 slides by being electromagnetically driven by a solenoid (not shown), and closes either the second vent hole 222 or the fourth vent hole 224 and opens the other. The valve body 228 always opens the fifth ventilation hole 225.
 これにより、制御部111は、第1通気孔221と第2通気孔222又は第5通気孔225のいずれかとを接続し、第3通気孔223と第4通気孔224又は第5通気孔225のいずれかとを接続する。そのため、バルブ220は、流路の切り替えを信頼性高く実現することができる。 As a result, the control unit 111 connects the first ventilation hole 221 and either the second ventilation hole 222 or the fifth ventilation hole 225, and the third ventilation hole 223, the fourth ventilation hole 224, or the fifth ventilation hole 225 is connected. Connect one of them. Therefore, the valve 220 can realize the switching of the flow path with high reliability.
 以上の構成において、医師等の作業者が挿管1を被検体の口腔5から挿入した後、カフ圧制御装置200は、カフ10への空気の充填を開始する。カフ10への空気の充填を開始するとき、即ちカフ10のカフ圧が所定の範囲の下限より小さいことをカフ圧検出部171が検出したとき、制御部111は、第1通気孔221と第2通気孔222とを接続し、第3通気孔223と第5通気孔225とを接続する。 In the above configuration, after an operator such as a doctor inserts the intubation 1 from the oral cavity 5 of the subject, the cuff pressure control device 200 starts filling the cuff 10 with air. When the cuff 10 starts to be filled with air, that is, when the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the control unit 111 controls the first vent 221 and the first cuff 10. The second vent hole 222 is connected, and the third vent hole 223 and the fifth vent hole 225 are connected.
 さらに、制御部111は、ポンプ110のオンオフを駆動回路119に指示する。このとき、制御部111は、このポンプ110のオン時間より短い時間でバルブ220の流路を切り替える。 Furthermore, the control unit 111 instructs the drive circuit 119 to turn on and off the pump 110. At this time, the control unit 111 switches the flow path of the valve 220 in a time shorter than the ON time of the pump 110.
 そして、カフ10のカフ圧が所定の範囲内になったことをカフ圧検出部171が検出したとき、制御部111は、ポンプ110の駆動を一旦停止し、第1通気孔221と第5通気孔225とを接続し、第3通気孔223と第4通気孔224とを接続する。その後、制御部111は、ポンプ110の駆動を再開する。 When the cuff pressure detection unit 171 detects that the cuff pressure of the cuff 10 is within the predetermined range, the control unit 111 temporarily stops driving the pump 110 and connects the first vent hole 221 and the fifth communication port. The air holes 225 are connected, and the third air holes 223 and the fourth air holes 224 are connected. Thereafter, the control unit 111 resumes driving of the pump 110.
 すなわち、カフ圧制御装置200においても、カフ10のカフ圧が所定の範囲の下限より小さいとき、ポンプ110は空気をカフ10に供給し、カフ10のカフ圧が所定の範囲内になったとき、ポンプ110は分泌物Hを、吸引管141を介して吸引し続ける。又は、カフ10のカフ圧が所定の範囲内になったとき、ポンプ110は、分泌物Hを、吸引管141を介して吸引し続ける。 That is, also in the cuff pressure control device 200, when the cuff pressure of the cuff 10 is smaller than the lower limit of the predetermined range, the pump 110 supplies air to the cuff 10 and when the cuff pressure of the cuff 10 falls within the predetermined range. The pump 110 continues to suck the secretion H through the suction pipe 141. Alternatively, when the cuff pressure of the cuff 10 falls within a predetermined range, the pump 110 continues to suck the secretion H through the suction pipe 141.
 したがって、第2実施形態のカフ圧制御装置200においても、第1実施形態のカフ圧制御装置100と同様の効果を奏する。さらに、第1実施形態に比べるとバルブを一体化し、外部に連通する通気孔を共用したため、バルブを小型化でき、それによりさらにカフ圧制御装置を小型化できる。 Therefore, the cuff pressure control device 200 according to the second embodiment has the same effect as the cuff pressure control device 100 according to the first embodiment. Furthermore, since the valve is integrated and the vent hole communicating with the outside is shared as compared with the first embodiment, the valve can be downsized, and the cuff pressure control device can be further downsized.
《本発明の第3実施形態》
 以下、本発明の第3実施形態に係るカフ圧制御装置について説明する。
<< Third Embodiment of the Invention >>
Hereinafter, a cuff pressure control device according to a third embodiment of the present invention will be described.
 第3実施形態のカフ圧制御装置が第1実施形態のカフ圧制御装置100と相違する点は、ポンプ110の代わりに圧電ポンプ101を備える点である。その他の構成については同じであるため、説明を省略する。 The difference between the cuff pressure control device of the third embodiment and the cuff pressure control device 100 of the first embodiment is that a piezoelectric pump 101 is provided instead of the pump 110. Since other configurations are the same, description thereof is omitted.
 圧電ポンプ101の構造について図10~図12を用いて詳述する。 The structure of the piezoelectric pump 101 will be described in detail with reference to FIGS.
 図10は、第3実施形態のカフ圧制御装置に備えられる圧電ポンプ101の外観斜視図である。図11は、図10に示す圧電ポンプ101の分解斜視図である。図12は、図10に示す圧電ポンプ101のS-S線の断面図である。 FIG. 10 is an external perspective view of the piezoelectric pump 101 provided in the cuff pressure control device of the third embodiment. FIG. 11 is an exploded perspective view of the piezoelectric pump 101 shown in FIG. 12 is a cross-sectional view taken along line SS of the piezoelectric pump 101 shown in FIG.
 圧電ポンプ101は、上から順に、外筐体17、天板37、側板38、振動板39、圧電素子40、及びキャップ42を備え、それらが順に積層された構造を有している。天板37、側板38、及び振動板39は、ポンプ室36を構成している。圧電ポンプ101は、幅20mm×長さ20mm×ノズル18以外の領域の高さ1.85mmの寸法となっている。 The piezoelectric pump 101 includes an outer casing 17, a top plate 37, a side plate 38, a vibration plate 39, a piezoelectric element 40, and a cap 42 in order from the top, and has a structure in which these are stacked in order. The top plate 37, the side plate 38, and the diaphragm 39 constitute a pump chamber 36. The piezoelectric pump 101 has a size of width 20 mm × length 20 mm × height of the region other than the nozzle 18 1.85 mm.
 なお、天板37、側板38、振動板39、及び圧電素子40によって、ポンプ本体が構成されている。 The top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 constitute a pump body.
 外筐体17は、例えば空気が吐出される吐出孔24が中心に設けられたノズル18を有する。このノズル18は、外形の直径2.0mm×内形(即ち吐出孔24)の直径0.8mm×高さ1.6mmの寸法となっている。外筐体17の四角には、ネジ穴56A~56Dが設けられている。 The outer casing 17 has a nozzle 18 provided with a discharge hole 24 through which air is discharged, for example. The nozzle 18 has a size of an outer diameter of 2.0 mm × an inner shape (that is, a discharge hole 24) of a diameter of 0.8 mm × a height of 1.6 mm. Screw holes 56A to 56D are provided in the square of the outer casing 17.
 外筐体17は、下方に凹状の開口を有し、断面がコ字状である。外筐体17は、ポンプ室36の天板37、側板38、振動板39及び圧電素子40を収納する。外筐体17は、例えば樹脂からなる。 The outer casing 17 has a concave opening at the bottom and has a U-shaped cross section. The outer housing 17 houses the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 of the pump chamber 36. The outer casing 17 is made of, for example, resin.
 ポンプ室36の天板37は、円板状であり、例えば金属からなる。天板37には、中央部61と、中央部61から水平方向に突出し、外筐体17の内壁に当接する鍵状の突出部62と、外部回路に接続するための外部端子63とが設けられている。 The top plate 37 of the pump chamber 36 has a disk shape and is made of metal, for example. The top plate 37 is provided with a central portion 61, a key-shaped protruding portion 62 that protrudes horizontally from the central portion 61 and contacts the inner wall of the outer casing 17, and an external terminal 63 for connecting to an external circuit. It has been.
 また、天板37の中央部61には、ポンプ室36の内部と外部とを連通させる通気孔45が設けられている。この通気孔45は、外筐体17の吐出孔24と対向する位置に設けられている。天板37は、側板38の上面に設けられている。 In addition, the central portion 61 of the top plate 37 is provided with a vent hole 45 that allows the inside and outside of the pump chamber 36 to communicate with each other. The vent hole 45 is provided at a position facing the discharge hole 24 of the outer casing 17. The top plate 37 is provided on the upper surface of the side plate 38.
 ポンプ室36の側板38は、円環状であり、例えば金属からなる。側板38は、振動板39の上面39Aに設けられている。そのため、側板38の厚みは、ポンプ室36の高さとなる。 The side plate 38 of the pump chamber 36 has an annular shape, and is made of metal, for example. The side plate 38 is provided on the upper surface 39 </ b> A of the diaphragm 39. Therefore, the thickness of the side plate 38 is the height of the pump chamber 36.
 振動板39は、円板状であり、例えば金属からなる。振動板39は、側板38と天板37と共にポンプ室36を構成する。 The diaphragm 39 has a disk shape and is made of metal, for example. The diaphragm 39 constitutes a pump chamber 36 together with the side plate 38 and the top plate 37.
 圧電素子40は、円板状であり、例えばチタン酸ジルコン酸鉛系セラミックスからなる。圧電素子40は、印加された交流駆動電圧に応じて伸縮する。圧電素子40は、振動板39におけるポンプ室36とは逆側の下面39Bに設けられている。 The piezoelectric element 40 has a disk shape and is made of, for example, a lead zirconate titanate ceramic. The piezoelectric element 40 expands and contracts according to the applied AC drive voltage. The piezoelectric element 40 is provided on the lower surface 39 </ b> B of the diaphragm 39 on the side opposite to the pump chamber 36.
 そして、天板37、側板38、振動板39、及び圧電素子40の接合体は、天板37に設けられている4個の突出部62によって外筐体17に対して接合体の中央部が変位可能なように支持されている。 The joined body of the top plate 37, the side plate 38, the vibration plate 39, and the piezoelectric element 40 has a central portion of the joined body with respect to the outer housing 17 by the four protrusions 62 provided on the top plate 37. It is supported so that it can be displaced.
 電極導通用板70は、圧電素子40に接続される内部端子73と、外部回路に接続される外部端子72とで構成されている。内部端子73の先端は圧電素子40の平板面にはんだで接合されている。はんだで接合される位置を圧電素子40の屈曲振動の節に相当する位置とすることにより、圧電素子40の屈曲振動を阻害することなく、内部端子73を圧電素子40に接合することができる。これにより、内部端子73の振動が抑制できる。 The electrode conduction plate 70 includes an internal terminal 73 connected to the piezoelectric element 40 and an external terminal 72 connected to an external circuit. The tip of the internal terminal 73 is joined to the flat plate surface of the piezoelectric element 40 with solder. By setting the position to be joined by solder to a position corresponding to the bending vibration node of the piezoelectric element 40, the internal terminal 73 can be joined to the piezoelectric element 40 without inhibiting the bending vibration of the piezoelectric element 40. Thereby, the vibration of the internal terminal 73 can be suppressed.
 キャップ42には、円板形状の吸引孔53が設けられている。吸引孔53の直径は、圧電素子40の直径より大きい。また、キャップ42には、外筐体17のネジ穴56A~56Dに対応する位置に切欠き55A~55Dが設けられている。 The cap 42 is provided with a disk-shaped suction hole 53. The diameter of the suction hole 53 is larger than the diameter of the piezoelectric element 40. The cap 42 is provided with notches 55A to 55D at positions corresponding to the screw holes 56A to 56D of the outer casing 17.
 また、キャップ42は、外周縁に、天板37側へ突出する突出部52を有する。キャップ42は、突出部52で外筐体17を挟持し、ポンプ室36の天板37、側板38、振動板39及び圧電素子40を、外筐体17内に収納する。キャップ42は、例えば樹脂からなる。 The cap 42 has a protruding portion 52 that protrudes toward the top plate 37 on the outer peripheral edge. The cap 42 sandwiches the outer casing 17 with the protruding portion 52, and houses the top plate 37, the side plate 38, the vibration plate 39 and the piezoelectric element 40 of the pump chamber 36 in the outer casing 17. The cap 42 is made of resin, for example.
 そして、図12に示すように、天板37、側板38、振動板39及び圧電素子40の接合体と外筐体17及びキャップ42との間には通気路31が設けられている。 As shown in FIG. 12, a ventilation path 31 is provided between the joined body of the top plate 37, the side plate 38, the diaphragm 39 and the piezoelectric element 40 and the outer casing 17 and the cap 42.
 なお、第3実施形態のカフ圧制御装置において、圧電ポンプ101の吸引孔53は、バルブ130の第3通気孔133に接続され、圧電ポンプ101の吐出孔24は、バルブ120の第1通気孔121に接続される(図3参照)。 In the cuff pressure control device of the third embodiment, the suction hole 53 of the piezoelectric pump 101 is connected to the third vent hole 133 of the valve 130, and the discharge hole 24 of the piezoelectric pump 101 is the first vent hole of the valve 120. 121 (see FIG. 3).
 以下、圧電ポンプ101の動作時における空気の流れについて説明する。 Hereinafter, the flow of air during the operation of the piezoelectric pump 101 will be described.
 図13(A)(B)は、図10に示す圧電ポンプ101を、ポンプ本体の1次振動モードの周波数(基本波)で共振駆動をさせた際における、圧電ポンプ101のS-S線の断面図である。ここで、図中の矢印は、空気の流れを示している。 13A and 13B show the SS line of the piezoelectric pump 101 when the piezoelectric pump 101 shown in FIG. 10 is resonantly driven at the frequency (fundamental wave) of the primary vibration mode of the pump body. It is sectional drawing. Here, the arrows in the figure indicate the flow of air.
 図12に示す状態において、ポンプ本体の1次振動モードの周波数(基本波)に対応する交流駆動電圧が駆動回路119から外部端子63,72を介して圧電素子40に印加されると、振動板39は同心円状に屈曲振動する。同時に、天板37は、振動板39の屈曲振動に伴うポンプ室36の圧力変動により、振動板39の屈曲振動に伴って(この実施形態では振動位相が180°遅れて)同心円状に屈曲振動する。これにより、図13(A)(B)に示すように、振動板39及び天板37が屈曲変形してポンプ室36の体積が周期的に変化する。 In the state shown in FIG. 12, when an AC drive voltage corresponding to the frequency (fundamental wave) of the primary vibration mode of the pump body is applied from the drive circuit 119 to the piezoelectric element 40 via the external terminals 63 and 72, the diaphragm 39 is bent and vibrated concentrically. At the same time, the top plate 37 bends concentrically with the bending vibration of the vibration plate 39 (in this embodiment, the vibration phase is delayed by 180 °) due to the pressure fluctuation of the pump chamber 36 accompanying the bending vibration of the vibration plate 39. To do. Thereby, as shown in FIGS. 13A and 13B, the diaphragm 39 and the top plate 37 are bent and deformed, and the volume of the pump chamber 36 is periodically changed.
 図13(A)に示すように、交流駆動電圧が圧電素子40に印加されて振動板39が圧電素子40側へ屈曲すると、ポンプ室36の体積が増大する。これに伴い、圧電ポンプ101の外部の空気が吸引孔53、通気路31、及び通気孔45を介してポンプ室36内に吸引される。ポンプ室36からの空気の流出は無いものの、吐出孔24から圧電ポンプ101の外部への空気の流れの慣性力が働いている。 As shown in FIG. 13A, when an AC drive voltage is applied to the piezoelectric element 40 and the diaphragm 39 bends toward the piezoelectric element 40, the volume of the pump chamber 36 increases. Accordingly, air outside the piezoelectric pump 101 is sucked into the pump chamber 36 through the suction hole 53, the air passage 31, and the air hole 45. Although there is no outflow of air from the pump chamber 36, the inertial force of the air flow from the discharge hole 24 to the outside of the piezoelectric pump 101 works.
 図13(B)に示すように、交流駆動電圧が圧電素子40に印加されて振動板39がポンプ室36側へ屈曲すると、ポンプ室36の体積が減少する。これに伴い、ポンプ室36内の空気が通気孔45、通気路31を介して吐出孔24から吐出される。 As shown in FIG. 13B, when an AC drive voltage is applied to the piezoelectric element 40 and the diaphragm 39 is bent toward the pump chamber 36, the volume of the pump chamber 36 decreases. Accordingly, the air in the pump chamber 36 is discharged from the discharge hole 24 through the vent hole 45 and the vent path 31.
 このとき、ポンプ室36から吐出される空気によって、圧電ポンプ101の外部の空気が吸引孔53及び通気路31を介して引き込まれて吐出孔24から吐出される。そのため、吐出孔24から吐出される空気の流量が、外部から引き込まれる空気の流量分多くなる。 At this time, by the air discharged from the pump chamber 36, the air outside the piezoelectric pump 101 is drawn through the suction hole 53 and the air passage 31 and discharged from the discharge hole 24. Therefore, the flow rate of air discharged from the discharge holes 24 is increased by the flow rate of air drawn from the outside.
 以上により、この実施形態の圧電ポンプ101によれば、消費電力あたりの吐出流量が大幅に多くなる。そのため、圧電ポンプ101では、低消費電力でありながら大きな吐出流量が得られる。 As described above, according to the piezoelectric pump 101 of this embodiment, the discharge flow rate per power consumption is significantly increased. Therefore, the piezoelectric pump 101 can obtain a large discharge flow rate with low power consumption.
 なお、圧電ポンプ101以外の第3実施形態のカフ圧制御装置の動作は、第1実施形態のカフ圧制御装置100の動作と同様である。 The operation of the cuff pressure control device of the third embodiment other than the piezoelectric pump 101 is the same as the operation of the cuff pressure control device 100 of the first embodiment.
 したがって、第3実施形態のカフ圧制御装置においても、第1実施形態のカフ圧制御装置100と同様の効果を奏する。 Therefore, the cuff pressure control device of the third embodiment has the same effect as the cuff pressure control device 100 of the first embodiment.
 ここで、圧電ポンプ101の1周期のポンピングによって吐出される空気の流量は、モータ式のポンプ110の1周期のポンピングによって吐出される空気の流量に比べて小さく、例えば1/200以下である。圧電ポンプ101の1周期のポンピングによって吐出される空気の流量は例えば、1nL(ナノリットル)以上、10μL(マイクロリットル)以下である。カフ圧が所定の範囲内になっているときにおける、圧電ポンプ101の1周期のポンピングによって吐出される空気の流量は例えば、約0.2μLである。また、圧電ポンプ101は例えば、可聴域(20Hz~20,000Hz)以上の駆動周波数で駆動する。一方、前述したように、ポンプ110は、100Hz以下の駆動周波数で駆動する。 Here, the flow rate of air discharged by one cycle of pumping of the piezoelectric pump 101 is smaller than the flow rate of air discharged by one cycle of pumping of the motor type pump 110, for example, 1/200 or less. The flow rate of air discharged by one cycle of pumping of the piezoelectric pump 101 is, for example, 1 nL (nanoliter) or more and 10 μL (microliter) or less. When the cuff pressure is within a predetermined range, the flow rate of the air discharged by one cycle of pumping of the piezoelectric pump 101 is, for example, about 0.2 μL. Further, the piezoelectric pump 101 is driven at a driving frequency of, for example, an audible range (20 Hz to 20,000 Hz) or more. On the other hand, as described above, the pump 110 is driven at a driving frequency of 100 Hz or less.
 そのため、制御部111が駆動回路119をミリ秒(ms)オーダーで制御することで、制御部111は、カフ10に供給する空気の流量を、圧電ポンプ101で微小に調整することができる。すなわち、第3実施形態のカフ圧制御装置は、前述の所定の周期より短い周期でバルブ120の流路を切り替えることを必要としない。 Therefore, when the control unit 111 controls the drive circuit 119 on the millisecond (ms) order, the control unit 111 can finely adjust the flow rate of the air supplied to the cuff 10 by the piezoelectric pump 101. That is, the cuff pressure control device according to the third embodiment does not need to switch the flow path of the valve 120 at a cycle shorter than the above-described predetermined cycle.
 したがって、第3実施形態のカフ圧制御装置は、第1実施形態のカフ圧制御装置100より消費電力を低減できる。 Therefore, the cuff pressure control device of the third embodiment can reduce power consumption compared to the cuff pressure control device 100 of the first embodiment.
《その他の実施形態》
 前記実施形態では気体として空気を用いているが、これに限るものではない。当該気体が、空気以外の他の気体であっても適用できる。
<< Other Embodiments >>
In the embodiment, air is used as the gas, but the present invention is not limited to this. The gas can be applied even if it is a gas other than air.
 また、前記実施形態では、図4に示す構造のバルブ120、130や図9に示す構造のバルブ220を用いているが、これに限るものではない。これらの構造以外の構造を持つバルブであっても適用できる。 In the above embodiment, the valves 120 and 130 having the structure shown in FIG. 4 and the valve 220 having the structure shown in FIG. 9 are used. However, the present invention is not limited to this. Even a valve having a structure other than these structures can be applied.
 また、前記実施形態では、カフ圧制御装置が排気弁172を備えているが、これに限るものではない。例えばカフ圧制御装置100ではカフ圧が所定の範囲を超える場合、制御部111が、第1通気孔121と第2通気孔122とを接続し、第3通気孔133と第6通気孔136とを接続する。これにより、カフ圧制御装置100は、カフ10内の気体をバルブ120及びポンプ110を介してバルブ130の第6通気孔136から排気する。これにより、カフ圧制御装置100は、カフ圧を所定の範囲内に調整することができる。 In the above embodiment, the cuff pressure control device includes the exhaust valve 172, but the present invention is not limited to this. For example, in the cuff pressure control device 100, when the cuff pressure exceeds a predetermined range, the control unit 111 connects the first ventilation hole 121 and the second ventilation hole 122, and the third ventilation hole 133 and the sixth ventilation hole 136. Connect. Thereby, the cuff pressure control apparatus 100 exhausts the gas in the cuff 10 from the sixth vent hole 136 of the valve 130 via the valve 120 and the pump 110. Thereby, the cuff pressure control apparatus 100 can adjust the cuff pressure within a predetermined range.
 また、前記実施形態では、圧電素子はチタン酸ジルコン酸鉛系セラミックスからなるが、これに限るものではない。例えば、ニオブ酸カリウムナトリウム系及びアルカリニオブ酸系セラミックス等の非鉛系圧電体セラミックスの圧電材料などからなってもよい。 In the above embodiment, the piezoelectric element is composed of lead zirconate titanate ceramics, but is not limited thereto. For example, it may be made of a non-lead piezoelectric ceramic material such as potassium sodium niobate and alkali niobate ceramics.
 また、前記実施形態ではユニモルフ型の圧電振動子を使用しているが、これに限るものではない。振動板39の両面に圧電素子40を設けたバイモルフ型の圧電振動子を使用してもよい。 In the above embodiment, a unimorph type piezoelectric vibrator is used, but the present invention is not limited to this. A bimorph type piezoelectric vibrator in which the piezoelectric elements 40 are provided on both surfaces of the vibration plate 39 may be used.
 また、前記実施形態では、円板状の圧電素子、円板状の振動板、及び円板状の天板を用いたが、これに限るものではない。例えば、これらの形状が矩形板状や多角板状、楕円板状であってもよい。 In the above embodiment, a disk-shaped piezoelectric element, a disk-shaped diaphragm, and a disk-shaped top plate are used, but the present invention is not limited to this. For example, these shapes may be a rectangular plate shape, a polygonal plate shape, or an elliptical plate shape.
 また、前記実施形態では、圧電ポンプを、ポンプ本体の1次振動モードの周波数(基本波)で共振駆動させたが、これに限るものではない。実施の際は、複数の振動の腹を有する、3次振動モード以上の奇数次の振動モードの周波数で共振駆動させても良い。 In the above embodiment, the piezoelectric pump is driven to resonate at the frequency (fundamental wave) of the primary vibration mode of the pump body, but the present invention is not limited to this. At the time of implementation, resonance driving may be performed at a frequency of an odd-order vibration mode having a plurality of vibration antinodes and higher than the third-order vibration mode.
 また、前記実施形態では、フィルタ176及びタンク160は、バルブ130の第4通気孔134に接続され、カフ圧制御装置として他の構成物(バルブ130等)と一体化しているが、これに限るものではない。実施の際、フィルタ176及びタンク160は、バルブ130の第4通気孔134に着脱自在に接続され、カフ圧制御装置から分離可能であってもよい。 Moreover, in the said embodiment, the filter 176 and the tank 160 are connected to the 4th ventilation hole 134 of the valve | bulb 130, and are integrated with other components (valve 130 grade | etc.) As a cuff pressure control apparatus, However, it is not restricted to this It is not a thing. In implementation, the filter 176 and the tank 160 may be detachably connected to the fourth vent hole 134 of the valve 130 and separable from the cuff pressure control device.
 例えば、吸引管141、タンク160、吸引管142、及びフィルタ176は、バルブ130の第4通気孔134に接続する吸引管143に着脱自在に接続され、カフ圧制御装置から分離可能であってもよい。この場合、医師等の作業者は、分泌物に汚染された部分を簡単に廃棄できるため、被検体がVAPに感染するリスクを低下できる。 For example, the suction pipe 141, the tank 160, the suction pipe 142, and the filter 176 are detachably connected to the suction pipe 143 connected to the fourth vent hole 134 of the valve 130, and can be separated from the cuff pressure control device. Good. In this case, since a worker such as a doctor can easily discard the portion contaminated with the secretion, the risk of the subject being infected with VAP can be reduced.
 最後に、前記実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Finally, the description of the embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
H…分泌物
1…挿管
2…気管
3…食道
4…喉頭蓋
5…口腔
6…内壁
10…カフ
17…外筐体
18…ノズル
24…吐出孔
31…通気路
36…ポンプ室
37…天板
38…側板
39…振動板
40…圧電素子
42…キャップ
45…通気孔
52…突出部
53…吸引孔
61…中央部
62…突出部
63…外部端子
70…電極導通用板
72…外部端子
73…内部端子
100…カフ圧制御装置
101…圧電ポンプ
110…ポンプ
110A…吸引孔
110B…吐出孔
111…制御部
112…記憶部
114…入力部
115…表示部
116…発音部
118…カフ圧検出管
119…駆動回路
120…バルブ
121…第1通気孔
122…第2通気孔
125…第5通気孔
128…弁体
129…バルブ筐体
130…バルブ
133…第3通気孔
134…第4通気孔
136…第6通気孔
138…弁体
139…バルブ筐体
141、142、143…吸引管
160…タンク
171…カフ圧検出部
172…排気弁
173…吸引圧検出部
175…空気供給管
176…フィルタ
177、178…中継管
200…カフ圧制御装置
220…バルブ
221…第1通気孔
222…第2通気孔
223…第3通気孔
224…第4通気孔
225…第5通気孔
228…弁体
229…バルブ筺体
900…カフ圧制御装置
910…アダプタ
917…加圧ポンプ
918…カフ内圧計
927…吸引ポンプ
940…人口呼吸器
941…呼吸管
951…カニューレ
952…カフ
953、954…管
H ... secretion 1 ... intubation 2 ... trachea 3 ... esophagus 4 ... epiglottis 5 ... oral cavity 6 ... inner wall 10 ... cuff 17 ... outer casing 18 ... nozzle 24 ... discharge hole 31 ... vent passage 36 ... pump chamber 37 ... top plate 38 ... side plate 39 ... diaphragm 40 ... piezoelectric element 42 ... cap 45 ... vent hole 52 ... protrusion 53 ... suction hole 61 ... central part 62 ... protrusion 63 ... external terminal 70 ... electrode conduction plate 72 ... external terminal 73 ... internal Terminal 100 ... Cuff pressure control device 101 ... Piezoelectric pump 110 ... Pump 110A ... Suction hole 110B ... Discharge hole 111 ... Control unit 112 ... Storage unit 114 ... Input unit 115 ... Display unit 116 ... Sound generation unit 118 ... Cuff pressure detection tube 119 ... Drive circuit 120 ... Valve 121 ... First vent 122 ... Second vent 125 ... Fifth vent 128 ... Valve body 129 ... Valve housing 130 ... Valve 133 ... Third vent 134 ... Fourth vent 136 ... Fourth 6 Hole 138 ... Valve body 139 ... Valve housing 141, 142, 143 ... Suction pipe 160 ... Tank 171 ... Cuff pressure detection part 172 ... Exhaust valve 173 ... Suction pressure detection part 175 ... Air supply pipe 176 ... Filter 177, 178 ... Relay Pipe 200 ... Cuff pressure control device 220 ... Valve 221 ... First vent 222 ... Second vent 223 ... Third vent 224 ... Fourth vent 225 ... Fifth vent 228 ... Valve body 229 ... Valve housing 900 ... Cuff pressure control device 910 ... Adapter 917 ... Pressure pump 918 ... Cuff internal pressure gauge 927 ... Suction pump 940 ... Respirator 941 ... Respiratory tube 951 ... Cannula 952 ... Cuff 953, 954 ... Tube

Claims (7)

  1.  気体の吸引孔と前記気体の吐出孔を有するポンプと、
     バルブ筺体と、前記吐出孔に接続されている第1通気孔と、カフに接続されている第2通気孔と、前記吸引孔に接続されている第3通気孔と、先端が前記カフに対向する管に接続されている第4通気孔と、前記バルブ筺体の外部に連通する第5通気孔および第6通気孔と、前記第1通気孔と前記第2通気孔又は前記第5通気孔のいずれかとを結び、前記第3通気孔と前記第4通気孔又は前記第6通気孔のいずれかとを結ぶ流路と、前記流路を切替える切替機構と、を有するバルブと、
     前記流路を前記切替機構により切替え、前記第1通気孔と前記第2通気孔又は前記第5通気孔のいずれかとを接続し、前記第3通気孔と前記第4通気孔又は前記第6通気孔のいずれかとを接続する制御部と、を備える、カフ圧制御装置。
    A pump having a gas suction hole and the gas discharge hole;
    A valve housing, a first vent hole connected to the discharge hole, a second vent hole connected to the cuff, a third vent hole connected to the suction hole, and a tip facing the cuff A fourth vent hole connected to the pipe, a fifth vent hole and a sixth vent hole communicating with the outside of the valve housing, and the first vent hole and the second vent hole or the fifth vent hole. A valve having a flow path connecting any one of the third vent hole and the fourth vent hole or the sixth vent hole, and a switching mechanism for switching the flow path;
    The flow path is switched by the switching mechanism, the first vent hole and either the second vent hole or the fifth vent hole are connected, and the third vent hole, the fourth vent hole or the sixth vent hole is connected. A cuff pressure control device comprising: a control unit that connects any of the pores.
  2.  前記カフ内の圧力を検出するカフ圧検出部を備え、
     前記制御部は、前記カフ内の圧力が所定の範囲の下限より小さいことを前記カフ圧検出部が検出したとき、前記第1通気孔と前記第2通気孔とを接続し、前記第3通気孔と前記第6通気孔とを接続し、前記カフ内の圧力が前記所定の範囲内になったことを前記カフ圧検出部が検出したとき、前記第1通気孔と前記第5通気孔とを接続し、前記第3通気孔と前記第4通気孔とを接続する、請求項1に記載のカフ圧制御装置。
    A cuff pressure detector for detecting the pressure in the cuff;
    When the cuff pressure detection unit detects that the pressure in the cuff is smaller than a lower limit of a predetermined range, the control unit connects the first ventilation hole and the second ventilation hole, and connects the third communication hole. When the cuff pressure detector detects that the pressure in the cuff is within the predetermined range by connecting the air hole and the sixth air hole, the first air hole and the fifth air hole The cuff pressure control device according to claim 1, wherein the third vent hole and the fourth vent hole are connected.
  3.  前記第5の通気孔と前記第6の通気孔とを単一の通気孔を共用することにより構成した、請求項1または2に記載のカフ圧制御装置。 The cuff pressure control device according to claim 1 or 2, wherein the fifth vent hole and the sixth vent hole are configured by sharing a single vent hole.
  4.  前記切替機構は、電磁駆動で弁を開閉し、前記流路を切替える、請求項1から3のいずれか1項に記載のカフ圧制御装置。 The cuff pressure control device according to any one of claims 1 to 3, wherein the switching mechanism switches a flow path by opening and closing a valve by electromagnetic drive.
  5.  前記制御部は、前記ポンプのオン中に前記流路を前記切替機構により切替え、前記ポンプのオン時間よりも短い時間だけ前記第1通気孔と前記第2通気孔とを接続する、請求項1から4のいずれか1項に記載のカフ圧制御装置。 The control unit switches the flow path by the switching mechanism while the pump is on, and connects the first vent hole and the second vent hole for a time shorter than an on time of the pump. 5. The cuff pressure control device according to any one of items 1 to 4.
  6.  前記ポンプは、アクチュエータとしての圧電素子と、前記圧電素子に接合する主面を持ち、前記圧電素子の伸縮により屈曲振動する振動板と、を有する、請求項1から5のいずれか1項に記載のカフ圧制御装置。 The said pump has a piezoelectric element as an actuator, and a diaphragm which has a main surface joined to the said piezoelectric element, and bends and vibrates by expansion / contraction of the said piezoelectric element. Cuff pressure control device.
  7.  前記管を介して吸引された液体を貯蔵するタンクと、
     前記気体を通過させ、前記液体の通過を阻止するフィルタと、を備え、
     前記フィルタ及び前記タンクは、前記第4通気孔に着脱自在に接続されている、請求項1から6のいずれか1項に記載のカフ圧制御装置。
    A tank for storing the liquid sucked through the tube;
    A filter that allows the gas to pass therethrough and prevents the liquid from passing therethrough,
    The cuff pressure control device according to any one of claims 1 to 6, wherein the filter and the tank are detachably connected to the fourth vent hole.
PCT/JP2014/063413 2013-05-28 2014-05-21 Cuff pressure control device WO2014192606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519806A JP6037005B2 (en) 2013-05-28 2014-05-21 Cuff pressure control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112068 2013-05-28
JP2013112068 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192606A1 true WO2014192606A1 (en) 2014-12-04

Family

ID=51988639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063413 WO2014192606A1 (en) 2013-05-28 2014-05-21 Cuff pressure control device

Country Status (2)

Country Link
JP (1) JP6037005B2 (en)
WO (1) WO2014192606A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160944A1 (en) * 2022-02-23 2023-08-31 Hamilton Medical Ag Fluid-conducting device for introducing fluid into and/or removing fluid from an oesophageal balloon catheter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873361A (en) * 1994-11-14 1999-02-23 Instrumentarium Corp. Method of preventing the formation of a dangerous underpressure in a respiratory system
JP2007198147A (en) * 2006-01-24 2007-08-09 Star Micronics Co Ltd Diaphragm pump
US20110197888A1 (en) * 2008-10-24 2011-08-18 Hospitech Respiration Ltd. Matalon Center Building Wing-A 3rd floor Method and system for ventilation
JP2011194222A (en) * 2010-02-24 2011-10-06 Jun Takano Cuff pressure control device, and cuff pressure control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873361A (en) * 1994-11-14 1999-02-23 Instrumentarium Corp. Method of preventing the formation of a dangerous underpressure in a respiratory system
JP2007198147A (en) * 2006-01-24 2007-08-09 Star Micronics Co Ltd Diaphragm pump
US20110197888A1 (en) * 2008-10-24 2011-08-18 Hospitech Respiration Ltd. Matalon Center Building Wing-A 3rd floor Method and system for ventilation
JP2011194222A (en) * 2010-02-24 2011-10-06 Jun Takano Cuff pressure control device, and cuff pressure control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023160944A1 (en) * 2022-02-23 2023-08-31 Hamilton Medical Ag Fluid-conducting device for introducing fluid into and/or removing fluid from an oesophageal balloon catheter

Also Published As

Publication number Publication date
JPWO2014192606A1 (en) 2017-02-23
JP6037005B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6119847B2 (en) Cuff pressure control device
JP5850210B1 (en) Valve, fluid control device
EP3239568B1 (en) Valve and fluid control device
US10794378B2 (en) Fluid control device, decompression device, and compression device
JP6528849B2 (en) Blower
US9408991B2 (en) Pump unit and breathing assistance device
JP6156507B2 (en) Gas control device
CA2870429C (en) Opening and closing device and respiratory assistance device
WO2013039104A1 (en) Exhalation valve and respiratory support apparatus
US20200316327A1 (en) Device for ventilating a patient
JP5286476B2 (en) Pump unit, breathing assistance device
JP2005218865A (en) Microamount adjusting apparatus
JP6037005B2 (en) Cuff pressure control device
JP6376216B2 (en) Suction device
EP3456255B1 (en) Valve, fluid control device, and blood-pressure monitor
JP6478002B1 (en) Pressure control device and pressure utilization device
JP6536669B2 (en) Suction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803443

Country of ref document: EP

Kind code of ref document: A1