WO2014192598A1 - 翻訳語順情報出力装置、翻訳語順情報出力方法、および記録媒体 - Google Patents

翻訳語順情報出力装置、翻訳語順情報出力方法、および記録媒体 Download PDF

Info

Publication number
WO2014192598A1
WO2014192598A1 PCT/JP2014/063387 JP2014063387W WO2014192598A1 WO 2014192598 A1 WO2014192598 A1 WO 2014192598A1 JP 2014063387 W JP2014063387 W JP 2014063387W WO 2014192598 A1 WO2014192598 A1 WO 2014192598A1
Authority
WO
WIPO (PCT)
Prior art keywords
term
language sentence
candidate
vector
current
Prior art date
Application number
PCT/JP2014/063387
Other languages
English (en)
French (fr)
Inventor
功雄 後藤
Original Assignee
独立行政法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構 filed Critical 独立行政法人情報通信研究機構
Priority to EP14803390.5A priority Critical patent/EP3007076A4/en
Priority to US14/893,452 priority patent/US20160085748A1/en
Priority to CN201480023752.8A priority patent/CN105144149B/zh
Priority to KR1020157030874A priority patent/KR20160016768A/ko
Publication of WO2014192598A1 publication Critical patent/WO2014192598A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/42Data-driven translation
    • G06F40/44Statistical methods, e.g. probability models

Definitions

  • the present invention relates to a translation word order information output device that supports the determination of the translation word order.
  • phrase-based statistical translation which is one of machine translation techniques
  • a typical translation algorithm is to continuously generate a target language sentence from the left (beginning of sentence) to the right (end of sentence).
  • NP position of the input sentence
  • CP position of the translated input sentence
  • CP position of the translated input sentence
  • NP position of the input sentence to be translated next
  • NP position of the input sentence to be translated next
  • NP is estimated mainly by a lexical reordering model (see, for example, Non-Patent Document 1).
  • the lexical-reordering model calculates the probability that NP will be one of monotone, swap, or discontinuous. Note that monotone means that CP and NP are continuous, swap means that the word order of CP and NP is switched, and discontinuous means that CP and NP are discontinuous (see FIG. 12). .
  • Non-Patent Document 2 a method for estimating NP using a model for estimating the probability of the distortion class has been proposed (for example, see Non-Patent Document 2).
  • Distortion is defined as ji ⁇ 1, where CP is i and NP candidate is j.
  • the Distortion class in Non-Patent Document 2 is the following nine classes for classifying Distortion: (? ⁇ ,? 8), [? 7,? 5], [? 4,? 3],? 2, 0 , 1, [2, 3], [4, 6], [7, ⁇ ].
  • the Distortion, the Distortion class, etc. are examples of information on the distance and the relative word order between CP and NP candidates, which will be described later.
  • the model that estimates the probability of the Distortion class does not consider the CP word and the NP candidate word at the same time, so the NP cannot be estimated correctly.
  • FIG. 13 shows a summary of the above difficulty of word order estimation.
  • the examples of FIGS. 13 (1) and 13 (2) are examples in which NP cannot be estimated correctly only with CP and surrounding words. That is, now, in (1) and (2), the target language term corresponding to the source language term “he” (CP “he”) is “he”. The NP is “Bought”, but when acquiring the NP “Bought”, it is necessary to consider the CP and NP candidate words at the same time. That is, in the examples of (1) and (2), it is necessary to consider the CP and NP candidate words at the same time.
  • FIGS. 13 (3) and 13 (4) are examples in which it is not possible to correctly estimate only the words of CP and NP candidates. That is, in (3), when CP is “he”, NP is “borrowed”, not “buyed”. In (4), if CP is “he”, NP is “buyed”, not “borrowed”. That is, in the examples of (3) and (4), it is necessary to consider relative word order.
  • the translated word order information output device includes a sentence storage unit that can store a source language sentence that is a source language sentence to be translated, and a weight vector that can store a weight vector indicating the weight of each element of the vector A storage unit, a term position in a source language sentence, a reception unit that accepts a current term position that is a current term position to be translated, a current term position, and a candidate to be translated next to the current term
  • a candidate acquisition unit that acquires one or more next term position candidates that are positions of a term from the source language sentence, a current term indicated by the current term position, a next term candidate indicated by the next term position candidate, and a current term
  • a vector acquisition unit that acquires a vector having two or more elements using one or more intermediate terms that are terms between the next term candidates, and a vector and a weight vector acquired by the vector acquisition unit.
  • candidate acquisition unit A probability information acquisition unit that acquires probability information for each of one or more next term position candidates, and probability information acquisition.
  • an output unit that output
  • the translated word order information output device is different from the first aspect in that the vector acquisition unit includes at least one current term including the current term, the term immediately before the current term or the term immediately after the current term.
  • Source information acquisition for acquiring source information having distance information, which is information about the distance between the current term and the next term candidate in the source language sentence, and one or more intermediate terms that are terms between the current term and the next term candidate
  • a vector acquisition means for acquiring a vector having two or more elements using the original information acquired by the original information acquisition means.
  • the translation word order information output device is the first aspect of the invention, wherein the vector acquisition unit includes at least one current term including the current term, the term immediately before the current term or the term immediately after the current term.
  • original information acquisition means for acquiring original information having distance information that is information relating to the distance between the current term and the next term candidate in the source language sentence, and using the original information acquired by the original information acquisition means, two or more Vector acquisition means for acquiring a vector having elements.
  • the machine translation device includes a term pair dictionary that can store two or more term pairs that are pairs of a source language term and a target language term, and the translated word order information output device described above.
  • a target language term acquisition unit that determines the next term from the probability information of one or more next term candidates output by the translation word order information output device, and acquires a target language term corresponding to the next term from the term pair dictionary;
  • the target language sentence composition part which comprises a target language sentence from the term of one or more target languages which the language term acquisition part acquired, and the target language sentence output part which outputs the target language sentence which the target language sentence structure part comprised is doing.
  • the learning device includes a weight vector storage unit that can store a weight vector indicating the weight of each element of the vector, and two or more parallel translation sentences that are a combination of a source language sentence and a target language sentence.
  • a parallel corpus storage unit capable of storing a certain parallel corpus
  • a term alignment information storage unit capable of storing term alignment information which is information indicating correspondence between terms constituting a source language sentence and terms constituting a target language sentence, Current term position and next term indicating the position of the current term of each target language sentence while moving the current term of each target language sentence from the left to the right of each of the two or more target language sentences of each of two or more parallel translation sentences Next term position indicating the position of the next term, and using the term alignment information, the current term position and next position indicating the current term position of each target language sentence and the current term position of each source language sentence corresponding to the next term position.
  • the word position and all the next term position candidates other than the next term position are acquired, and one or more feature amounts relating to the current term position, the next term position, and all the next term position candidates of each source language sentence are acquired.
  • the weight vector is determined so as to maximize entropy using the acquired feature amount, the learning unit that acquires the weight vector, and the weight vector acquired by the learning unit are stored in the weight vector storage unit A weight vector storage unit.
  • the translation word order information output device can accurately determine the translation word order in machine translation.
  • Block diagram of translated word order information output apparatus 1 in the first embodiment Flowchart for explaining the operation of translated word order information output apparatus 1 in the first embodiment
  • Block diagram of machine translation apparatus 2 according to Embodiment 2 Block diagram of learning device 3 according to Embodiment 3 Flowchart for explaining the operation of the learning device 3 in the third embodiment
  • the figure which shows the other experimental result in Embodiment 3. Overview of computer system in each of the above embodiments Block diagram of a computer system in each of the above embodiments
  • a translated word order information output device capable of accurately determining a term to be translated next in a state where a translated term is already known in a source language sentence will be described.
  • the term is usually a word, but it may be a plurality of words, phrases, and the like.
  • the translated word order information output device is normally used in statistical translation.
  • this translation word order information output device uses a Pair model or a Sequence model, which will be described later.
  • FIG. 1 is a block diagram of the translated word order information output device 1 in the present embodiment.
  • the translated word order information output device 1 includes a sentence storage unit 11, a weight vector storage unit 12, a reception unit 13, a candidate acquisition unit 14, a vector acquisition unit 15, a probability information acquisition unit 16, and an output unit 17.
  • the vector acquisition unit 15 includes original information acquisition means 151 and vector acquisition means 152.
  • the sentence storage unit 11 can store one or more source language sentences.
  • the source language sentence is a source language sentence to be translated.
  • the weight vector storage unit 12 can store a weight vector indicating the weight of each element of the vector.
  • a vector is information having two or more elements acquired using two or more feature functions having original information described later as an argument.
  • the weight vector is a vector learned by the learning device described in the second embodiment, for example.
  • the reception unit 13 receives the position of the current term, which is one term in the source language sentence and is the current translation target term.
  • the position of the current term is called the current term position. It may be said that the current translation target term is the last translation target term.
  • the term is usually a word, but may be a phrase or the like.
  • a term is a unitary part of a sentence.
  • reception means reception from software, reception of information transmitted via a wired or wireless communication line, reception of information read from a recording medium such as an optical disk, a magnetic disk, or a semiconductor memory, a keyboard or a mouse This is a concept including reception of information input from an input device such as a touch panel.
  • the candidate acquisition unit 14 acquires the current term position and one or more next term position candidates from the source language sentence.
  • the next term position candidate is the position of a term that is a candidate to be translated next to the current term.
  • the candidate acquisition unit 14 may acquire the positions of all terms other than the current term in the source language sentence as next term position candidates. Further, the candidate acquisition unit 14 may acquire the positions of all terms other than the current term and BOS (information indicating the end of the sentence) in the source language sentence as the next term position candidate.
  • the candidate acquisition unit 14 may acquire one or more terms in the source language sentence as next term candidates except for the current term in the source language sentence and the already translated term.
  • the vector acquisition unit 15 acquires a vector having two or more elements using the current term, the next term candidate, and the source language sentence.
  • the vector acquisition unit 15 uses a term having one or more intermediate terms, which is a term in the source language sentence and is a term between the current term and the next term candidate. It is preferable to acquire.
  • the vector acquisition unit 15 normally acquires a vector using the current term, the next term candidate, and the intermediate term separately. For example, the vector acquisition unit 15 labels the current term “0”, the intermediate term “1”, and the next term candidate “2”.
  • the vector acquisition part 15 comprises the label sequence which consists of "0" "1” "2", for example, and acquires a vector using the said label sequence.
  • the vector acquisition unit 15 normally acquires a vector using two or more feature functions.
  • the feature function is, for example, a binary feature function, but may be another feature function.
  • Original information is information necessary to acquire a vector.
  • the original information includes, for example, a current term, one or more current term peripheral terms, a next term candidate, one or more next term peripheral terms, word order information, and distance information.
  • the term around the current term is one or more terms including the term immediately before or after the current term.
  • Peripheral terms of the current term are usually consecutive terms in the source language sentence that include the term immediately preceding or following the current term.
  • the term around the current term is preferably two or more terms including the term immediately before and the term immediately after the current term.
  • the peripheral terms around the current term are, for example, four terms including two terms immediately before the current term and two terms immediately after the current term in the source language sentence.
  • next term peripheral term is a term including one or more terms including a term immediately before or a term immediately after the next term candidate.
  • the next term peripheral term is usually a continuous term in the source language sentence including the term immediately before or after the next term.
  • the next term peripheral term is preferably two or more terms including the term immediately before and the term immediately after the next term candidate.
  • the next term peripheral terms are, for example, four terms including two terms immediately before the next term and two terms immediately after the next term in the source language sentence.
  • the word order information is information on the relative word order of the current term and the next term candidate in the source language sentence.
  • the word order information is, for example, a flag indicating whether the current term exists on the left side or the right side of the next term candidate. For example, when the current term exists on the left side of the next term candidate, the word order information is “0”. For example, when the current term is on the right side of the next term candidate, the word order information is “1”.
  • the distance information is information regarding the distance in the source language sentence between the current term and the next term candidate.
  • the distance information is usually information indicating a class classified according to the distance in the source language sentence between the current term and the next term candidate.
  • the distance information may be the distance in the source language sentence between the current term and the next term candidate.
  • the distance information is information indicating the class, for example, when the distance is “1” (that is, when the current term and the next term candidate are adjacent), the distance information is “0”.
  • the distance information is “2 or more and 5 or less”, the distance information is “1”, and when the distance is “6 or more”, the distance information is “2”.
  • there are three classes, but four, five, etc. may be used.
  • the original information may further include, for example, one or more terms between the current term and the next term candidate. Needless to say, the original information may include information other than the above.
  • the vector acquisition unit 152 acquires a vector having two or more elements using the original information acquired by the original information acquisition unit 151.
  • the vector acquisition unit 152 normally acquires a vector using two or more feature functions.
  • the feature function here is preferably a binary feature function.
  • the vector acquisition unit 152 acquires, for example, a vector whose element is a return value from a feature function having two or more pieces of information constituting the original information as parameters. That is, the vector acquisition unit 152 gives each piece of information constituting the original information acquired by the original information acquisition unit 151 to a predetermined feature function, executes the feature function, and acquires an execution result. Then, the vector acquisition unit 152 acquires a vector having the execution result as an element.
  • the probability information acquisition unit 16 acquires probability information for each of one or more next term position candidates using the vector acquired by the vector acquisition unit 15 and the weight vector (w) of the weight vector storage unit 12.
  • the probability information is information regarding the probability that one or more next term position candidates acquired by the candidate acquisition unit 14 are positions of the next term (next term position) translated next to the current term.
  • This probability information acquisition unit 16 usually uses the inner product of the vector acquired by the vector acquisition unit 15 and a weight vector (or a transposed vector of the weight vector) to obtain probability information for each of one or more next term position candidates. get. It is preferable that the probability information acquisition unit 16 acquires probability information using an exponential function of the product. That is, it is preferable that the probability information acquisition unit 16 acquires the probability information using exp (product of the vector acquired by the vector acquisition unit 15 and the weight vector). Further, it is preferable that the probability information acquisition unit 16 normalizes the execution result of the product exponential function. That is, it is preferable that the probability information acquisition unit 16 acquires probability information using (1 / Z i ) exp (product of the vector acquired by the vector acquisition unit 15 and the weight vector).
  • Z i is a normalization term.
  • the probability information acquisition unit 16 stores in advance a probability calculation formula that is a formula for calculating the probability that the next term position candidate is the next term position. Then, the probability information acquisition unit 16 reads the probability calculation formula, substitutes the original information into the probability calculation formula, and executes the probability calculation formula. And the probability information acquisition part 16 acquires probability information for every next term position candidate.
  • the probability calculation formula includes, for example, a product of a vector acquired by the vector acquisition unit 15 and a weight vector (which may be a transposed vector of the weight vector). More specifically, the probability calculation formula is, for example, the following Formula 2 or Formula 3. Note that the model represented by Equation 2 is referred to as a Pair model, and the model represented by Equation 3 is referred to as a Sequence model.
  • Equation 2 which represents the Pair model
  • the current term position (also referred to as CP) is i
  • the next term position candidate (also referred to as NP candidate) is j
  • the probabilities are calculated by simultaneously considering the CP and surrounding words (s i ⁇ 2 i + 2 ) and the NP candidate and the surrounding word (s i ⁇ 2 i + 2 ).
  • i-2 i + Is the current term near term mentioned above, around the NP candidate word (s i-2 i + 2 ) is the next term near term as described above.
  • the first term in exp () is a combination of CP and another position in the label sequence.
  • the second term indicates combinations of NP candidates and other positions in the label series.
  • o word order information. When the current term exists before the next term candidate, the word order information is “0”, and when the current term exists after the next term candidate, the word order information is “1”.
  • d distance information. In Equation 2, the distance information can take three values. That is, in Equation 2, the distance between the current term and the next term candidate in the source language sentence is classified into one of three values.
  • the distance information is “0”, when the distance is 2 or more and 5 or less, the distance information is “1”, and when the distance is 6 or more, the distance information is “2”. It is.
  • the distance information is preferably classified into two or more classes based on the distance itself.
  • Equation 3 which represents the Sequence model, Z i is a normalization term.
  • the first term in exp () is a combination of CP and another position in the label sequence.
  • the second term indicates combinations of NP candidates and other positions in the label series.
  • Equation 3 l i is a label that can be taken by the term i (CP term), l j is a label that can be taken by the term j (NP candidate term), and l k is a label that can be taken by the term k.
  • the Sequence model is made possible by the Pair model: “CP and current term peripheral terms (words around CP (s i ⁇ 2 i + 2 ))” and NP candidates and next term peripheral terms (periphery of NP candidates) In addition to “considering the word (s i-2 i + 2 ) simultaneously”, “relative word order among NP candidates” and “difference in distance” are learned from the training data (ie, the weight vector is appropriate) These values can also be taken into account when calculating the probability of the NP candidate.
  • the reason why the relative word order can be taken into account is as follows.
  • the label sequence can take into account the relative word order. For example, in FIG. 3, when the label series ID is 10: it can be considered that “borrowed” exists to the left of “Bought”. This is because the label 2 is assigned to “Bought” and the label 1 is assigned to “Borrowed”. This is because label 1 is defined as being relatively closer to CP than label 2.
  • the reason why the difference in distance can be taken into account is as follows.
  • the model can naturally handle the effects of distance. Since a long label sequence includes many labels between CP and NP candidates, many features are extracted from the long label sequence. On the other hand, since a short label sequence includes a small number of labels between CPs and CP candidates, a small number of feature quantities are extracted from the short label sequence. The bias from these differences provides an important clue to learning the effect of distance.
  • the output unit 17 outputs the probability information acquired by the probability information acquisition unit 16.
  • the output is usually a delivery of a processing result to another processing device or another program.
  • the other program is, for example, a program included in machine translation software.
  • the output is a concept including display on a display, projection using a projector, printing with a printer, sound output, transmission to an external device, accumulation in a recording medium, and the like.
  • the sentence storage unit 11 and the weight vector storage unit 12 are preferably non-volatile recording media, but can also be realized by volatile recording media.
  • the source language sentence or the like may be stored in the sentence storage unit 11 or the like via a recording medium, and the source language sentence or the like transmitted via a communication line or the like is stored in the sentence storage unit 11 or the like.
  • a source language sentence or the like input via an input device may be stored in the sentence storage unit 11 or the like.
  • the candidate acquisition unit 14, the vector acquisition unit 15, the original information acquisition unit 151, the vector acquisition unit 152, and the probability information acquisition unit 16 can be usually realized by an MPU, a memory, or the like.
  • the processing procedure of the candidate acquisition unit 14 and the like is usually realized by software, and the software is recorded on a recording medium such as a ROM.
  • the processing procedure of the candidate acquisition unit 14 and the like may be realized by hardware (dedicated circuit).
  • the output unit 17 can usually be realized by an MPU, a memory, or the like. However, the output unit 17 may or may not include an output device such as a display or a speaker.
  • the output unit 17 can be realized by output device driver software, or output device driver software and an output device.
  • Step S201 The reception unit 13 determines whether or not the current term position has been received. If the current term position is accepted, the process goes to step S202, and if the current term position is not accepted, the process returns to step S201.
  • Step S202 The candidate acquisition unit 14 reads a sentence from the sentence storage unit 11. This sentence is a source language sentence to be translated. The current term accepted in step S201 is included in this source language sentence.
  • Step S203 The candidate acquisition unit 14 substitutes 1 for the counter c.
  • Step S204 The candidate acquisition unit 14 acquires the c-th next term position candidate.
  • Step S205 The vector acquisition unit 15 determines whether or not the c-th next term position candidate is acquired in step S204. If the c-th next term position candidate has been acquired, the process goes to step S206, and if not, the process goes to step S212.
  • the original information acquisition unit 151 of the vector acquisition unit 15 acquires the original information. That is, the original information acquisition unit 151 acquires, for example, one or more current term peripheral terms.
  • the peripheral terms around the current term are, for example, four terms: a term immediately before the current term, a term immediately before the current term, a term immediately after the current term, and a term immediately after the current term. It is assumed that the peripheral term of the current term can be expressed as (s i ⁇ 2 i + 2 ).
  • the original information acquisition unit 151 acquires one or more next term peripheral terms, for example.
  • next term peripheral terms are, for example, the four terms of the term immediately before the next term candidate, the term immediately before the next term candidate, the term immediately after the next term candidate, and the term immediately after the next term candidate. It is.
  • the next term peripheral term can be expressed as (s j-2 j + 2 ).
  • the original information acquisition unit 151 acquires word order information that is information related to the relative word order of the current term and the next term candidate in the source language sentence.
  • the word order information is, for example, 0 or 1. When the current term exists before the next term candidate, the word order information is “0”, and when the current term exists after the next term candidate, the word order information is “1”.
  • the original information acquisition unit 151 acquires distance information that is information regarding the distance between the current term and the next term candidate in the source language sentence. Furthermore, the original information acquisition unit 151 acquires, for example, one or more terms between the current term and the next term candidate. In addition, original information is comprised by the information which the original information acquisition means 151 acquired, the present term, and the next term candidate.
  • Step S207 The vector acquisition unit 152 acquires a vector using the original information acquired in step S206.
  • the vector acquisition unit 152 substitutes information constituting two or more original information into two or more feature functions, and acquires a vector having two or more elements.
  • the feature function is preferably a binary feature function.
  • the vector acquisition means 152 stores two or more feature functions in advance.
  • Step S208 The probability information acquisition unit 16 reads the weight vector (w) from the weight vector storage unit 12.
  • Step S209 The probability information acquisition unit 16 uses the vector acquired in step S207 and the weight vector read in step S208 to acquire probability information that the c-th next term position candidate can be the next term position.
  • Step S210 The probability information acquisition unit 16 temporarily stores the probability information acquired in Step S209 in a buffer (not shown) in association with the c-th next term position candidate.
  • Step S211 The candidate acquisition unit 14 increments the counter c by 1, and returns to Step S204.
  • Step S212 The output unit 17 outputs the probability information of each next term position candidate stored in a buffer (not shown), and returns to Step S201.
  • the process is terminated by turning off the power or interrupting the termination of the process.
  • the translated word order information output apparatus 1 in the present embodiment will be described.
  • a case where probability information of each next term candidate is output using the Sequence model will be described.
  • the translated word order information output device 1 is a device used in Japanese-English translation.
  • the sentence storage unit 11 stores the original language sentence “Yesterday he borrowed a book but she bought it”.
  • the vector acquisition unit 15 stores the following formulas 4 and 5 for calculating a vector.
  • the probability information acquisition unit 16 stores Formula 3.
  • Sequence model In this situation, the Sequence model will be explained.
  • the Sequence model consider a label sequence (see FIG. 3) in which CP is 0, the position between CP and NP candidates is 1, and NP candidates are 2.
  • the translation word order information output device 1 learns a model so as to identify the label series in FIG. 3 and calculates a probability using the model.
  • the reception unit 13 has received the position “2” of “hi”, which is the current term position (CP).
  • the operation of the translated word order information output apparatus 1 will be described for the case where the NP candidate is “Bought” at position “10”. That is, it is assumed that the candidate acquisition unit 14 has acquired “10”, which is the ninth next term position candidate (the position of “Bought”).
  • the vector acquisition means 152 substitutes each piece of information constituting the acquired original information into Expression 4 and Expression 5 (corresponding feature function) to acquire the vector f.
  • the probability information acquisition unit 16 reads the weight vector (w) from the weight vector storage unit 12.
  • the probability information acquisition unit 16 substitutes the acquired vector and the read weight vector into Equation 3, and the next term position candidate (“10” which is the position of “Bought”) can be the next term position. Get probability information.
  • the above processing is performed on all next term position candidates.
  • the output part 17 outputs the probability information of each next term position candidate.
  • the value of the NP candidate is used for the ID of the label series.
  • the calculation of the probability of the NP candidate and the identification of the label series have the same meaning.
  • the relative word order can be considered.
  • the label series having the label series ID 10 in FIG. 3 it can be considered that “borrowed” exists to the left of “Bought”. This is because the label 2 is assigned to “Bought” and the label 1 is assigned to “Borrowed”. This is because label 1 is defined as being relatively closer to CP than label 2. Note that “borrowed” is an example of the intermediate term described above.
  • the influence of the difference in the length of the label sequence can be used for learning the model. This is useful when learning the effects of distance differences.
  • the translated word order information output device 1 is particularly effective in statistical translation.
  • the processing in the present embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and distributed. This also applies to other embodiments in this specification.
  • achieves the translation word order information output device 1 in this Embodiment is the following programs.
  • a computer-accessible recording medium can store a sentence storage unit that can store a source language sentence that is a source language sentence to be translated, and a weight vector indicating the weight of each element of the vector.
  • a weight vector storage unit, and a computer that accepts a current term position that is a term position in the source language sentence and is a term position of a current translation target; the current term position;
  • the vector acquisition unit includes the current term, one or more current term peripheral terms including the term immediately before or the term immediately following the current term, the next term candidate, and the term immediately before the next term candidate. Or one or more next term peripheral terms including the immediately following term, word order information that is information on the relative word order of the current term and the next term candidate in the source language sentence, and the current term and the next term candidate.
  • a vector having two or more elements is acquired using original information acquisition means for acquiring original information having distance information, which is information relating to the distance in the source language sentence, and original information acquired by the original information acquisition means.
  • the program includes a vector acquisition unit that causes a computer to function.
  • the vector acquisition unit also uses one or more intermediate terms that are terms in the source language sentence and are terms between the current term and the next term candidate.
  • a program that causes a computer to function as the vector having the above elements is suitable.
  • the vector acquisition unit includes the current term, one or more current term peripheral terms including the term immediately before or the term immediately following the current term, the next term candidate, and the term immediately before the next term candidate. Or one or more next term peripheral terms including the immediately following term, word order information that is information on the relative word order of the current term and the next term candidate in the source language sentence, the current term and the next term candidate
  • Source information acquisition means for acquiring distance information, which is information related to a distance in a source language sentence, and original information having one or more terms between the current term and the next term candidate, and the original information acquisition means It is preferable that the program causes a computer to function as a vector acquisition unit that acquires a vector having two or more elements using the original information.
  • FIG. 4 shows a block diagram of the machine translation device 2 using the output result of the translation word order information output device 1 of the present invention described in detail with reference to FIGS. 1 to 3.
  • the machine translation device 2 includes a term pair dictionary 21, a translation word order information output device 1, a target language term acquisition unit 22, a target language sentence configuration unit 23, and a target language sentence output unit 24, and is usually a statistical machine translation. Device.
  • the term pair dictionary 21 can store two or more term pairs.
  • a term pair is a set of source language terms and target language terms.
  • the target language term acquisition unit 22 determines the next term from the probability information of one or more next term candidates output from the translation word order information output device 1, and selects the term in the target language corresponding to the next term from the term pair dictionary 21. get.
  • the target language sentence constructing unit 23 constructs a target language sentence from one or more target language terms acquired by the target language term acquiring unit 22.
  • the target language sentence output unit 24 outputs the target language sentence configured by the target language sentence configuration unit 23.
  • output refers to display on a display, projection using a projector, printing with a printer, sound output, transmission to an external device, storage in a recording medium, and output to other processing devices or other programs. It is a concept that includes delivery of processing results.
  • the term pair dictionary 21 is preferably a non-volatile recording medium, but can also be realized by a volatile recording medium.
  • the process of storing a term pair in the term pair dictionary 21 does not matter.
  • a term pair may be stored in the term pair dictionary 21 via a recording medium, or a term pair transmitted via a communication line or the like may be stored in the term pair dictionary 21.
  • the term pair input via the input device may be stored in the term pair dictionary 21.
  • the target language term acquisition unit 22 and the target language sentence composition unit 23 can be usually realized by an MPU, a memory, or the like.
  • the processing procedure of the target language term acquisition unit 22 and the like is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
  • the target language sentence output unit 24 may or may not include an output device such as a display or a speaker.
  • the ⁇ component> can be realized by driver software of the output device or driver software of the output device and the output device.
  • the software that implements the machine translation apparatus 2 in the present embodiment is the following program. That is, this program has a term pair dictionary capable of storing two or more term pairs, which is a set of source language terms and target language terms, as a computer-accessible recording medium.
  • the next term is determined from the probability information of one or more next term candidates output by the information output device 1 and the translated word order information output device, and the target language term corresponding to the next term is acquired from the term pair dictionary.
  • a target language term acquisition unit, a target language sentence configuration unit that configures a target language sentence from one or more target language terms acquired by the target language term acquisition unit, and a target language sentence configured by the target language sentence configuration unit A program for functioning as a target language sentence output unit for output.
  • FIG. 5 shows a learning device that learns weight vectors used in the translated word order information output device 1 or the machine translation device 2.
  • the learning device 3 includes a weight vector storage unit 12, a parallel corpus storage unit 31, a term alignment information storage unit 32, a learning unit 33, and a weight vector storage unit 34.
  • the parallel corpus storage unit 31 stores a parallel corpus.
  • the parallel corpus is a number of parallel translations that are pairs of source language sentences and target language sentences.
  • the source language sentence is a source language sentence to be translated.
  • the target language sentence is a correct translation of the paired source language sentence into the target language.
  • the term alignment information storage unit 32 stores term alignment information.
  • the term alignment information is information indicating correspondence between terms constituting the source language sentence and terms constituting the target language sentence.
  • the term constituting the target language sentence is a term in the target language, and is a result of translation of the term constituting the source language sentence into the target language.
  • the learning unit 33 acquires a weight vector by using the parallel translation stored in the parallel corpus storage unit 31 and the term alignment information stored in the term alignment information storage unit 32.
  • the learning unit 33 moves the current term of each target language sentence from the left to the right of the two or more target language sentences included in each of the two or more parallel translations stored in the parallel corpus storage unit 31. Then, the current term position indicating the position of the current term of each target language sentence and the next term position indicating the position of the next term are acquired. Next, using the term alignment information, the learning unit 33 uses the current term position of the target language sentence, the current term position of the source language sentence corresponding to the next term position, the next term position, and all the next term positions. Get candidates and.
  • the current term position is information indicating the position of the current term
  • the next term position is information indicating the position of the next term
  • the next term position candidate is information indicating the positions of all the next term candidates other than the next term position. It is.
  • the learning unit 33 obtains the feature amounts related to the current term position, the next term position, and all the next term position candidates of each source language sentence.
  • moving the current term means moving a pointer indicating the current term.
  • the feature quantity acquired by the learning unit 33 is, for example, ⁇ o> ⁇ s p > ⁇ s q >.
  • p can take values from i-2 to i + 2
  • q can take values from j-2 to j + 2.
  • ⁇ s p > is a total of five terms including the two terms before the CP including the CP and the two terms after the CP.
  • ⁇ s q > is a total of five terms including the two previous terms of the NP candidate including the NP candidate and the second term after the NP candidate.
  • both ⁇ s p > ⁇ s q > include information on the position of the term.
  • ⁇ s i-2 >, ⁇ s i-1 >, ⁇ s i >, ⁇ s i + 1 >, ⁇ s i + 2 >, ⁇ t i >, ⁇ t i ⁇ 1 , t i >, ⁇ t i , t i + 1 >, ⁇ s i , t i >, and the like may be used.
  • ⁇ s i > is the current term
  • ⁇ s i-2 > is the term two before the current term
  • ⁇ s i-1 > the term immediately before the current term
  • ⁇ s i + 1 > is the current term
  • ⁇ t i + 2 > is the term two ahead of the current term
  • ⁇ t i > is the part of speech of the current term
  • ⁇ t i-1 > is the part of speech of the term immediately before the current term
  • ⁇ t i + 1 > is the part of speech of the term immediately following the current term
  • ⁇ t i-1 , t i > is the part of speech of the term immediately before the current term and the part of speech of the current term
  • ⁇ t i , t i + 1 > is the part of speech of the current term
  • ⁇ t i , t i + 1 > is the part of speech of the current term
  • the part of speech of the term immediately following the current term is the part of speech of the current term.
  • the feature quantity to be acquired for example, ⁇ o>, ⁇ o, s p>, ⁇ o, t i>, ⁇ o, t j>, ⁇ o, d>, ⁇ o, s p, s q> , ⁇ o, t i , t j >, ⁇ o, t i ⁇ 1 , t i , t j >, ⁇ o, t i + 1 , t j >, ⁇ o, t i , t j ⁇ 1 , t j >, ⁇ o, t i , t j + 1 >, ⁇ o, s i , t i , t j >, ⁇ o, t i , t j + 1 >, ⁇ o, s i , t i , t j >, ⁇ o, s j , t i , t j >, etc.
  • p satisfies “p ⁇ ⁇ p
  • (p, q) is expressed as ⁇ (p, q) ⁇ ⁇ (p, q) i-2 ⁇ p ⁇ i + 2 ⁇ j-2 ⁇ q ⁇ j + 2 ⁇ (
  • 1 ⁇
  • 1) ⁇ ”.
  • the learning unit 33 determines a weight vector so as to maximize entropy.
  • This method is called LBFGS method, and is a known technique, and thus detailed description thereof is omitted. See also the paper “D.C. Liu and J. Nocedal. 1989. On the limited memory method for large scale ptimization. Mathematical Programming B, 45 (3): 503-528.” Further, it is preferable that the learning unit 33 uses Gaussian prior for smoothing the weight vector. Gaussian prior is described in the paper “Stanley F. Chen and Ronald Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy models.Technical report.”
  • the weight vector accumulation unit 34 accumulates the weight vector acquired by the learning process in the learning unit 33 in the weight vector storage unit 12.
  • the parallel corpus storage unit 31 and the term alignment information storage unit 32 are preferably non-volatile recording media, but can also be realized by volatile recording media.
  • the process of storing the parallel corpus or the like in the parallel corpus storage unit 31 or the like is not limited.
  • a parallel corpus or the like may be stored in the parallel corpus storage unit 31 or the like via a recording medium, and a parallel corpus or the like transmitted via a communication line or the like is stored in the parallel corpus storage unit 31 or the like.
  • a parallel corpus or the like input via an input device may be stored in the parallel corpus storage unit 31 or the like.
  • the learning unit 33 and the weight vector accumulation unit 34 can be usually realized by an MPU, a memory, or the like.
  • the processing procedure of the learning unit 33 and the like is usually realized by software, and the software is recorded on a recording medium such as a ROM. However, it may be realized by hardware (dedicated circuit).
  • Step S601 The learning unit 33 assigns 1 to the counter c.
  • Step S602 The learning unit 33 determines whether or not the c-th parallel translation exists in the parallel corpus storage unit 31. If the c-th parallel translation exists, the process goes to step S603, and if not, the process goes to step S610.
  • Step S603 The learning unit 33 assigns 1 to the counter d.
  • Step S604 The learning unit 33 determines whether or not the d-th current term exists in the target language sentence of the c-th parallel translation sentence. If the d-th current term exists, the process goes to step S605, and if the d-th current term does not exist, the process goes to step S609.
  • Step S605 The learning unit 33 acquires the current term indicating the position of the d-th current term and the next term position indicating the position of the next term from the target language sentence of the c-th parallel translation.
  • Step S606 The learning unit 33 uses the term alignment information to indicate the current term position and the next term position indicating the current term position in the source language sentence corresponding to the d-th current term position and the next term position. The next term position and all next term position candidates other than the next term position are acquired.
  • Step S607 The learning unit 33 acquires one or more feature amounts using the current term position, the next term position, and all the next term position candidates acquired in Step S606. Then, the learning unit 33 temporarily accumulates the acquired one or more feature quantities in a buffer (not shown).
  • Step S608 The learning unit 33 increments the counter d by 1, and returns to step S604.
  • Step S609 The learning unit 33 increments the counter c by 1, and returns to Step S602.
  • Step S610 The learning unit 33 determines a weight vector so as to maximize the entropy using a large number of feature amounts stored in a buffer (not shown). In this step, a weight vector smoothing process is also performed.
  • the weight vector storage unit 34 stores the weight vector acquired by the learning unit 33 in step S611 in the weight vector storage unit 12.
  • the weight vector used in the translated word order information output apparatus 1 can be learned.
  • the processing of the learning device 3 in the present embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and distributed.
  • achieves the learning apparatus 3 in this Embodiment is the following programs.
  • the computer-accessible recording medium is a combination of a weight vector storage unit capable of storing a weight vector indicating the weight of each element of the vector, and a source language sentence and a target language sentence.
  • Term alignment information storage that can store parallel corpus storage that can store parallel corpus that is a bilingual sentence, and term alignment information that is information indicating the correspondence between terms constituting source language sentences and terms constituting target language sentences The current term of each target language sentence while moving the current term of each target language sentence from the left to the right of each of the two or more target language sentences of each of the two or more parallel translation sentences.
  • the current term position that is the position of the next term and the next term position that is the position of the next term are obtained, and the term alignment information is used to correspond to the current term position and the next term position of each target language sentence.
  • the current term position indicating the position of the current term in each source language sentence, the next term position indicating the position of the next term, and all the next term position candidates other than the next term position are obtained, and the current term position of each source language sentence is acquired.
  • a weight vector is determined so as to maximize entropy using the obtained feature amount, and the weight vector is determined.
  • the particle ⁇ ga, ha ⁇ has been deleted from the Japanese sentence. This is because these words do not correspond to any words in other language sentences. After the word word alignment, the deleted word is returned to its original position.
  • a 5 gram language model was also used. This 5 gram language model is a set of English sentences of bilingual training data.
  • each parameter of the SMT weight vector was tuned by MERT.
  • the experimenter tuned the MERT three times using the first half of the development data in order to stabilize the result of the MERT. Then, from the three SMT weight vector parameter sets, the SMT weight vector parameter set with the best BLEU score was selected when the next half of the development data was used.
  • the experimenter compared the systems using a common SMT feature value set including a standard feature value set of SMT and a feature value set different from the standard feature value set.
  • a feature amount (SEQUENCE) of a Sequence model which is an example of the translation word order information output device 1.
  • the Pair model and Sequence model which are examples of the translation word order information output device 1
  • learning was performed as follows. That is, approximately 200,000 parallel translations and term alignment information were stored in the parallel corpus storage unit 31 and the term alignment information storage unit 32, respectively.
  • the feature quantity used in the Sequence model is a pair of labels of the position of the current term and the next term, and is ⁇ 0,1> ⁇ 1,0> ⁇ 1,2>.
  • the LBFGS method was used to determine the weight vector so as to maximize the entropy.
  • Gaussian prior was used for weight vector smoothing.
  • the Sequence model was better than the result of the Pair model. This indicates that it is effective to consider the relative word order between the CP and the NP candidate and the terms between the CP and the NP candidate.
  • the Pair model exceeded the 9-CLASS result. This indicates that it is effective to consider both CP terms and NP candidate terms.
  • CORPUS is the actual distortion probability of the learning data obtained from word alignment information used to build the translation model.
  • the CORPUS distortion probability here is a value obtained by dividing the number of distortions by the total number of distortions in the learning data.
  • the distance class used is the same.
  • FIG. 8 shows that PAIR generates approximately the same average distortion probability.
  • the average distortion probability of SEQUENCE shows a decreasing tendency.
  • the distance class is the same. This tendency was similar in CORPUS (see FIG. 8). From the above, it can be seen that SEQUENCE in the translated word order information output apparatus 1 can learn the influence of distance as appropriate from the training data.
  • FIG. 9 shows the external appearance of a computer that executes the program described in this specification to realize the translated word order information output device and the like of the various embodiments described above.
  • the above-described embodiments can be realized by computer hardware and a computer program executed thereon.
  • FIG. 9 is an overview diagram of the computer system 300
  • FIG. 10 is a block diagram of the system 300.
  • the computer system 300 includes a computer 301 including a CD-ROM drive 3012, a keyboard 302, a mouse 303, and a monitor 304.
  • the computer 301 includes an MPU 3013, a bus 3014, a ROM 3015, a RAM 3016, and a hard disk 3017 in addition to the CD-ROM drive 3012.
  • the bus 3014 is connected to the MPU 3013 and the CD-ROM drive 3012.
  • the ROM 3015 stores a program such as a bootup program.
  • the RAM 3016 is connected to the MPU 3013 and temporarily stores application program instructions and provides a temporary storage space.
  • the hard disk 3017 is for storing application programs, system programs, and data.
  • the computer 301 may further include a network card that provides connection to a LAN.
  • a program that causes the computer system 300 to execute functions such as the translated word order information output device of the above-described embodiment is stored in the CD-ROM 3101, inserted into the CD-ROM drive 3012, and further transferred to the hard disk 3017. good.
  • the program may be transmitted to the computer 301 via a network (not shown) and stored in the hard disk 3017.
  • the program is loaded into the RAM 3016 at the time of execution.
  • the program may be loaded directly from the CD-ROM 3101 or a network (not shown).
  • the program does not necessarily include an operating system or a third-party program that causes the computer 301 to execute functions such as the translated word order information output device according to the above-described embodiment.
  • the program only needs to include an instruction portion that calls an appropriate function (module) in a controlled manner and obtains a desired result. How the computer system 300 operates is well known and will not be described in detail.
  • the computer that executes the program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • each process may be realized by centralized processing by a single device (system), or by distributed processing by a plurality of devices. May be.
  • the translated word order information output device can accurately determine a term to be translated next in a state where the translated term is known in the source language sentence in statistical translation. This is useful as a statistical translation device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Translation (AREA)

Abstract

【課題】従来、統計翻訳において、翻訳の語順を正確に決定することが困難であった。 【解決手段】原言語文を格納し得る文格納部と、重みベクトルを格納し得る重みベクトル格納部と、現在の翻訳対象の用語である現用語の現用語位置を受け付ける受付部と、現用語位置と、現用語の次に翻訳される候補となる1以上の次用語位置候補を、原言語文から取得する候補取得部と、現用語、次用語候補、および原言語文を用いて、2以上の要素を有するベクトルを取得するベクトル取得部と、ベクトルと重みベクトルとを用いて、1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、1以上の各次用語位置候補ごとに取得する確率情報取得部と、確率情報を出力する出力部とを具備する翻訳語順情報出力装置により、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる。

Description

翻訳語順情報出力装置、翻訳語順情報出力方法、および記録媒体
 本発明は、翻訳の語順の決定を支援する翻訳語順情報出力装置等に関するものである。
 機械翻訳における主な課題は、訳語選択と語順推定である。また、例えば、統計翻訳は、訳語選択の性能は高いため、統計翻訳の現状の大きな課題は語順推定である。機械翻訳手法の1つであるフレーズベース統計翻訳において、代表的な翻訳アルゴリズムとして、目的言語の文を左(文頭)から右(文末)へ連続的に生成するというものがある。この場合、今、翻訳した入力文の位置(CP)が分かっている状態で、次に翻訳するべき入力文の位置(NP)を推定する必要がある。下記にCPとNPの例を、図11に示す。なお、CPは、今、翻訳した入力文の位置であり、当該位置の用語であると考えても良い。かかる位置の用語を、以下、適宜、現用語という。また、NPは、次に翻訳するべき入力文の位置であり、当該位置の用語であると考えても良い。かかる位置の用語を、以下、適宜、次用語という。
 従来技術において、NPの推定を主にlexical reorderingモデルにより行っている(例えば、非特許文献1参照)。lexical reorderingモデルとは、NPがmonotone, swap, discontinuousのいずれかになる確率を計算する。なお、monotoneとはCPとNPが連続していること、swapとはCPとNPとの語順が入れ替わっていること、discontinuousとはCPとNPとが非連続であることである(図12参照)。
 また、Distortionクラスの確率を推定するモデルを用いて、NPの推定を行う手法も提案されている(例えば、非特許文献2参照)。本従来技術において、CPの語とその周囲の語を利用して、NPはどのくらい離れているかを推定する。どのくらい離れているかは、Distortionクラスを用いて表す。CPをi、NPの候補をjとすると、Distortionはj-i-1と定義される。非特許文献2でのDistortionクラスは、Distortionを分類する次の9つのクラスである:(?∞,?8),[?7,?5],[?4,?3],?2,0,1,[2,3],[4,6],[7,∞]。なお、Distortion、Distortionクラス等は、後述する距離およびCPとNP候補間の相対的な語順の情報の一例である。
 なお、NPの候補の語とその周囲の語を利用して、そのNPの候補の語がNPの場合に、CPはどれだけ離れているべきかの確率を推定するモデルも利用することも提案されている。
Christoph Tillman. 2004. A unigram orientation model for statistical machine translation. HLT-NAACL 2004: Short Papers, pages 101- 104, Boston, Massachusetts, USA, May 2 - May 7. Association for Computational Linguistics. Spence Green, Michel Galley, and Christopher D. Manning. 2010. Improved models of distortion cost for statistical machine translation. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 867-875, LosAngeles, California, June. Association for Computational Linguistics.
 しかしながら、従来の翻訳語順情報出力装置においては、統計翻訳において、原言語文中において、今、翻訳した用語の位置が分かっている状態で、次に翻訳するべき用語の位置を正確に決定することが困難であった。
 さらに具体的には、lexical reorderingモデルでは、discontinuousの確率を用いているのみであるので、CPから離れたNPを特定することが出来ないため,語順が大きく異なる言語間では高精度な語順推定は困難である。
 Distortionクラスの確率を推定するモデルでは、CPの語とNP候補の語を同時に考慮していないため、NPを正しく推定できない。
 上記の語順推定の難しさの課題のまとめを図13に示す。図13(1)(2)の例は、CPとその周囲の語だけではNPを正しく推定できない例である。つまり、今、(1)(2)において、原言語の用語「彼」(CP「彼」)に対応する目的言語の用語が「he」である。そして、NPが「買った」であるが、NP「買った」を取得する場合、CPとNP候補の語を同時に考慮する必要がある。つまり、(1)(2)の例では、CPとNP候補の語を同時に考慮する必要がある。
 また、図13(3)(4)の例は、CPとNP候補の語だけでは正しく推定できない例である。つまり、(3)において、CPが「彼」である場合、NPは「借りた」であって、「買った」ではない。また、(4)において、CPが「彼」である場合、NPは「買った」であって、「借りた」ではない。つまり、(3)(4)の例では、相対的な語順を考慮する必要がある。
 また、図13(4)(5)の例では、近いものを選べば良いわけではない例である。(4)において、CPが「彼」である場合、NPは「買った」であるが、(5)において、CPが「彼」である場合、NPは「借りた」である。つまり、(4)(5)の例は、CPやNP候補の周囲の語を考慮する必要がある。
 本第一の発明の翻訳語順情報出力装置は、翻訳対象の原言語の文である原言語文を格納し得る文格納部と、ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部と、原言語文の中の一の用語位置であり、現在の翻訳対象の用語位置である現用語位置を受け付ける受付部と、現用語位置と、現用語の次に翻訳される候補となる用語の位置である1以上の次用語位置候補を、原言語文から取得する候補取得部と、現用語位置で示される現用語、次用語位置候補で示される次用語候補、および現用語と次用語候補との間の用語である1以上の中間用語を、各々区別して用いて、2以上の要素を有するベクトルを取得するベクトル取得部と、ベクトル取得部が取得したベクトルと重みベクトルとを用いて、候補取得部が取得した1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、1以上の次用語位置候補ごとに取得する確率情報取得部と、確率情報取得部が取得した確率情報を出力する出力部とを具備している。
 かかる構成により、原言語文中において、今、翻訳した用語位置が分かっている状態で、次に翻訳するべき用語位置を正確に決定することができる。
 また、本第二の発明の翻訳語順情報出力装置は、第一の発明に対して、ベクトル取得部は、現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、原言語文における現用語と次用語候補の相対的な語順に関する情報である語順情報、現用語と次用語候補との原言語文での距離に関する情報である距離情報、および現用語と次用語候補との間の用語である1以上の中間用語を有する元情報を取得する元情報取得手段と、元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備している。
 かかる構成により、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる。
 また、本第三の発明の翻訳語順情報出力装置は、第一の発明に対して、ベクトル取得部は、現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、原言語文における現用語と次用語候補の相対的な語順に関する情報である語順情報、および現用語と次用語候補との原言語文での距離に関する情報である距離情報を有する元情報を取得する元情報取得手段と、元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備している。
 かかる構成により、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語をより正確に決定することができる。
 また、本第四の発明の機械翻訳装置は、原言語の用語と目的言語の用語との組である2以上の用語対を格納し得る用語対辞書と、上記の翻訳語順情報出力装置と、翻訳語順情報出力装置が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、用語対辞書から取得する目的言語用語取得部と、目的言語用語取得部が取得した1以上の目的言語の用語から目的言語文を構成する目的言語文構成部と、目的言語文構成部が構成した目的言語文を出力する目的言語文出力部とを具備している。
 かかる構成により、精度の高い機械翻訳が可能となる。
 また、本第五の発明の学習装置は、ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部と、原言語文と目的言語文との組である2以上の対訳文であるパラレルコーパスを格納し得るパラレルコーパス格納部と、原言語文を構成する用語と目的言語文を構成する用語との対応を示す情報である用語アライメント情報を格納し得る用語アライメント情報格納部と、2以上の各対訳文が有する2以上の各目的言語文の左から右に、各目的言語文の現用語を移動させながら、各目的言語文の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置とを取得し、用語アライメント情報を用いて、各目的言語文の現用語位置と次用語位置に対応する各原言語文の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置と当該次用語位置以外のすべての次用語位置候補とを取得し、各原言語文の現用語位置と次用語位置とすべての次用語位置候補に関する1または2以上の特徴量を取得し、当該取得した特徴量を用いて、エントロピーを最大にするように重みベクトルを決定し、当該重みベクトルを取得する学習部と、学習部が取得した重みベクトルを、前記重みベクトル格納部に蓄積する重みベクトル蓄積部とを具備する。
 かかる構成により、精度の高い機械翻訳を行うために利用される重みベクトルを学習できる。
 本発明による翻訳語順情報出力装置によれば、機械翻訳において、翻訳の語順を正確に決定できる。
実施の形態1における翻訳語順情報出力装置1のブロック図 実施の形態1における翻訳語順情報出力装置1の動作について説明するフローチャート 実施の形態1におけるSequenceモデルにおけるラベル系列を示す図 実施の形態2における機械翻訳装置2のブロック図 実施の形態3における学習装置3のブロック図 実施の形態3における学習装置3の動作について説明するフローチャート 実施の形態3における実験結果を示す図 実施の形態3における他の実験結果を示す図 上記各実施の形態におけるコンピュータシステムの概観図 上記各実施の形態におけるコンピュータシステムのブロック図 従来技術におけるCPとNPの例を示す図 従来技術におけるlexical reorderingモデルを説明する図 従来技術の課題を説明する図
 以下、翻訳語順情報出力装置等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。
 (実施の形態1)
 本実施の形態において、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる翻訳語順情報出力装置について説明する。なお、本明細書において、用語とは、通常、単語であるが、複数の単語、句等でも良い。また、翻訳語順情報出力装置は、通常、統計翻訳において利用される。
 また、本翻訳語順情報出力装置は、後述するPairモデル、またはSequenceモデル等を用いる。
 図1は、本実施の形態における翻訳語順情報出力装置1のブロック図である。翻訳語順情報出力装置1は、文格納部11、重みベクトル格納部12、受付部13、候補取得部14、ベクトル取得部15、確率情報取得部16、出力部17を備える。
 ベクトル取得部15は、元情報取得手段151、ベクトル取得手段152を備える。
 文格納部11は、1または2以上の原言語文を格納し得る。原言語文とは、翻訳対象の原言語の文である。
 重みベクトル格納部12は、ベクトルの各要素の重みを示す重みベクトルを格納し得る。ベクトルとは、後述する元情報を引数とする2以上の素性関数を用いて取得された2以上の要素を有する情報である。素性関数は、バイナリ素性関数であることは好適である。例えば、ある素性関数fは、CPの用語をsi、NP候補の用語をsjで表した場合に、その素性関数で用いている素性をsi=「彼」,sj=「買った」とすると、以下の数式1のようになる。
Figure JPOXMLDOC01-appb-M000001
 また、重みベクトルは、例えば、実施の形態2で説明する学習装置により学習されたベクトルである。
 受付部13は、原言語文の中の一の用語であり、現在の翻訳対象の用語である、現用語の位置を受け付ける。現用語の位置を現用語位置という。現在の翻訳対象の用語とは、最後の翻訳対象の用語である、と言っても良い。ここで、用語とは、通常、単語であるが、句等でも良い。用語は文を構成するまとまりのある一部分である。また、受け付けとは、ソフトウェアからの受け付け、有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付け、キーボードやマウス、タッチパネルなどの入力デバイスから入力された情報の受け付けなどを含む概念である。
 候補取得部14は、現用語位置と、1以上の次用語位置候補を、原言語文から取得する。次用語位置候補とは、現用語の次に翻訳される候補となる用語の位置である。候補取得部14は、原言語文の中の現用語以外のすべての用語の位置を次用語位置候補として取得しても良い。また、候補取得部14は、原言語文の中の現用語およびBOS(文の最後を示す情報)以外のすべての用語の位置を次用語位置候補として取得しても良い。また、候補取得部14は、原言語文の中の現用語および既に翻訳された翻訳済用語を除いて、原言語文の中の1以上の用語を次用語候補として取得しても良い。
 ベクトル取得部15は、現用語、次用語候補、および原言語文を用いて、2以上の要素を有するベクトルを取得する。
 また、ベクトル取得部15は、原言語文の中の用語であって、現用語と次用語候補との間の用語である1以上の中間用語をも用いて、2以上の要素を有するベクトルを取得することは好適である。ここで、ベクトル取得部15は、通常、現用語と次用語候補と中間用語とを、各々区別して用いて、ベクトルを取得する。ベクトル取得部15は、例えば、現用語に「0」、中間用語に「1」、次用語候補に「2」のラベルを付す。そして、ベクトル取得部15は、例えば、「0」「1」「2」からなるラベルシーケンスを構成し、当該ラベルシーケンスを用いて、ベクトルを取得する。
 さらに、ベクトル取得部15は、通常、2以上の素性関数を用いてベクトルを取得する。ここで、素性関数は、例えば、バイナリ素性関数であるが、他の素性関数でも良い。
 そして、ベクトル取得部15を構成する元情報取得手段151は、元情報を取得する。元情報とは、ベクトルを取得するために必要な情報である。この元情報は、例えば、現用語、1以上の現用語周辺用語、次用語候補、1以上の次用語周辺用語、語順情報、距離情報を有する。
 なお、現用語周辺用語とは、現用語の直前の用語または直後の用語を含む1以上の用語である。現用語周辺用語は、通常、現用語の直前の用語または直後の用語を含む、原言語文中の連続する用語である。また、現用語周辺用語とは、現用語の直前の用語および直後の用語を含む2以上の用語であることは好適である。また、現用語周辺用語は、例えば、原言語文中の、現用語の直前の2用語、および直後の2用語を含む4用語である。
 また、次用語周辺用語とは、次用語候補の直前の用語または直後の用語を含む1以上の用語を含む用語である。次用語周辺用語とは、通常、次用語の直前の用語または直後の用語を含む、原言語文中の連続する用語である。また、次用語周辺用語とは、次用語候補の直前の用語および直後の用語を含む2以上の用語であることは好適である。また、次用語周辺用語は、例えば、原言語文中の、次用語の直前の2用語、および直後の2用語を含む4用語である。
 また、語順情報とは、原言語文における現用語と次用語候補の相対的な語順に関する情報である。語順情報は、例えば、現用語が次用語候補の左側に存在するか、右側に存在するかを示すフラグである。例えば、現用語が次用語候補の左側に存在する場合は、語順情報は「0」である。また、例えば、現用語が次用語候補の右側に存在する場合は、語順情報は「1」である。
 さらに、距離情報とは、現用語と次用語候補との原言語文での距離に関する情報である。距離情報は、通常、現用語と次用語候補との原言語文での距離に応じて、分類されたクラスを示す情報である。ただし、距離情報は、現用語と次用語候補との原言語文での距離そのものでも良い。なお、距離情報が上記クラスを示す情報である場合とは、例えば、距離が「1」(つまり、現用語と次用語候補とが隣接している場合)の場合は、距離情報は「0」、距離が「2以上5以下」である場合は、距離情報は「1」、距離が「6以上」である場合は、距離情報は「2」である。ここで、クラスは3つであるが、4つ、5つ等でも良い。
 また、元情報は、例えば、現用語と次用語候補との間の1以上の用語を、さらに有しても良い。なお、元情報は、上記以外の情報を有しても良いことは言うまでもない。
 ベクトル取得手段152は、元情報取得手段151が取得した元情報を用いて、2以上の要素を有するベクトルを取得する。ベクトル取得手段152は、通常、2以上の素性関数を用いてベクトルを取得する。ここでの素性関数は、バイナリ素性関数であることは好適である。
 また、ベクトル取得手段152は、例えば、元情報を構成する2以上の各情報をパラメータとする素性関数からのリターン値を要素とするベクトルを取得する。つまり、ベクトル取得手段152は、元情報取得手段151が取得した元情報を構成する各情報を、予め決められた素性関数に与え、当該素性関数を実行し、実行結果を取得する。そして、ベクトル取得手段152は、当該実行結果を要素とするベクトルを取得する。
 確率情報取得部16は、ベクトル取得部15が取得したベクトルと、重みベクトル格納部12の重みベクトル(w)とを用いて、確率情報を1以上の各次用語位置候補ごとに取得する。なお、確率情報とは、候補取得部14が取得した1以上の各次用語位置候補が現用語の次に翻訳される次用語の位置(次用語位置)である確率に関する情報である。
 この確率情報取得部16は、通常、ベクトル取得部15が取得したベクトルと重みベクトル(重みベクトルの転置ベクトルでも良い)との内積を用いて、1以上の各次用語位置候補ごとに確率情報を取得する。なお、確率情報取得部16は、当該積の指数関数を用いて確率情報を取得することは好適である。つまり、確率情報取得部16は、exp(ベクトル取得部15が取得したベクトルと重みベクトルとの積)を用いて確率情報を取得することは好適である。さらに、確率情報取得部16は、積の指数関数の実行結果を正規化することは好適である。つまり、確率情報取得部16は、(1/Z)exp(ベクトル取得部15が取得したベクトルと重みベクトルとの積)を用いて確率情報を取得することは好適である。なお、ここで、Zは、正規化項である。
 なお、確率情報取得部16は、次用語位置候補が次用語位置である確率を算出するための式である確率算出式を予め格納している。そして、確率情報取得部16は、確率算出式を読み出し、当該確率算出式に元情報を代入して、当該確率算出式を実行する。そして、確率情報取得部16は、次用語位置候補ごとに確率情報を取得する。また、確率算出式は、例えば、ベクトル取得部15が取得したベクトルと重みベクトル(重みベクトルの転置ベクトルでも良い)との積を有する。さらに具体的には、確率算出式は、例えば、以下の数式2、または数式3である。なお、数式2で示されるモデルはPairモデル、数式3で示されるモデルはSequenceモデルという。
Figure JPOXMLDOC01-appb-M000002
 なお、Pairモデルを示す数式2において、現用語位置(CPとも言う。)をi、次用語位置候補(NP候補とも言う。)をj、入力文(原言語文)をS=s・・・sn+1=s n+1(ただし、s=BOS(文頭マーカ)、sn+1=EOS(文頭マーカ)とする。また、数式2において、wは重みベクトル,fの要素はバイナリ素性関数、Zは正規化項である。このモデルを対訳コーパスと単語アラインメントを用いて学習し、翻訳時には、NPの確率計算に利用する。重みベクトルwは、訓練データと最大エントロピー法を用いて学習する。また、CPとその周囲の語(si-2 i+2)およびNP候補とその周囲の語(si-2 i+2)を同時に考慮して確率が計算される。なお、CPの周囲の語(si-2 i+2)は、上述した現用語周辺用語、NP候補の周囲の語(si-2 i+2)は、上述した次用語周辺用語である。
 また、exp()内の最初の項は、CPとラベル系列中の他の位置との組み合わせである。また、2番目の項は、NP候補とラベル系列中の他の位置との組み合わせを示している。また、数式2において、oは語順情報である。そして、現用語が次用語候補より前に存在する場合、語順情報は「0」、現用語が次用語候補より後に存在する場合、語順情報は「1」である。また、数式2において、dは距離情報である。数式2において、距離情報は3つの値を採り得る。つまり、数式2において、現用語と次用語候補との原言語文内での距離は、3つ値のいずれかにクラス分けされる。現用語と次用語候補との距離が1の場合、距離情報は「0」、距離が2以上5以下の場合、距離情報は「1」、距離が6以上の場合、距離情報は「2」である。なお、距離情報は、距離そのものより、2以上にクラス分けされていることは好適である。
Figure JPOXMLDOC01-appb-M000003
 なお、Sequenceモデルを示す数式3において、Zは正規化項である。また、exp()内の最初の項はCPとラベル系列中の他の位置との組み合わせである。また、2番目の項は、NP候補とラベル系列中の他の位置との組み合わせを示している。
 また、数式3において、lは用語i(CPの用語)のとり得るラベル、lは用語j(NP候補の用語)のとり得るラベル、lは用語kのとり得るラベルである。
 また、Sequenceモデルは、Pairモデルが可能にしている「CPと現用語周辺用語(CPの周囲の語(si-2 i+2))およびNP候補と次用語周辺用語(NP候補の周囲の語(si-2 i+2))を同時に考慮する」ことに加えて、「NP候補間の相対的な語順」および「距離の違い」を訓練データから学習し(すなわち、重みベクトルを適切な値に設定し)、NP候補の確率を計算する際には、これらも考慮することができる。
 相対的な語順を考慮できる理由は、次の通りである。ラベル系列は、相対的な語順を考慮することが出来る。例えば、図3において、ラベル系列IDが10の場合:「買った」の左に「借りた」が存在することを考慮できる。なぜなら、「買った」にはラベル2が付与され、「借りた」にはラベル1が付与されている。そして、ラベル1はラベル2よりCPに相対的に近いと定義されているからである。
 距離の違いを考慮できる理由は次の通りである。異なる長さのラベル系列間で区別するようにモデルを設計することによって、当該モデルは、当然距離の影響を取り扱うことができる。長いラベル系列はCPとNP候補の間に多くのラベルを含むので、多くの特徴量は、長いラベル系列から抽出される。一方、短いラベル系列はCPとCP候補の間に少数のラベルを含むので、少数の特徴量が短いラベル系列から抽出される。これらの違いからのバイアスが、距離の効果を学習するための重要な手がかりを提供する。
 出力部17は、確率情報取得部16が取得した確率情報を出力する。ここで、出力とは、通常、他の処理装置や他のプログラムなどへの処理結果の引渡しである。なお、他のプログラムとは、例えば、機械翻訳のソフトウェアが有するプログラムである。但し、出力とは、ディスプレイへの表示、プロジェクターを用いた投影、プリンタでの印字、音出力、外部の装置への送信、記録媒体への蓄積などを含む概念である。
 文格納部11、重みベクトル格納部12は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。文格納部11等に原言語文等が記憶される過程は問わない。例えば、記録媒体を介して原言語文等が文格納部11等で記憶されるようになってもよく、通信回線等を介して送信された原言語文等が文格納部11等で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された原言語文等が文格納部11等で記憶されるようになってもよい。
 候補取得部14、ベクトル取得部15、元情報取得手段151、ベクトル取得手段152、および確率情報取得部16は、通常、MPUやメモリ等から実現され得る。候補取得部14等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、候補取得部14等の処理手順は、ハードウェア(専用回路)で実現しても良い。
 出力部17は、通常、MPUやメモリ等から実現され得る。ただし、出力部17は、ディスプレイやスピーカー等の出力デバイスを含むと考えても含まないと考えても良い。出力部17は、出力デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等で実現され得る。
 次に、翻訳語順情報出力装置1の動作について、図2のフローチャートを用いて説明する。
 (ステップS201)受付部13は、現用語位置を受け付けたか否かを判断する。現用語位置を受け付ければステップS202に行き、現用語位置を受け付けなければステップS201に戻る。
 (ステップS202)候補取得部14は、文格納部11から文を読み出す。なお、この文は、翻訳対象の原言語文である。また、ステップS201で受け付けられた現用語は、この原言語文に含まれる。
 (ステップS203)候補取得部14は、カウンタcに1を代入する。
 (ステップS204)候補取得部14は、c番目の次用語位置候補を取得する。
 (ステップS205)ベクトル取得部15は、ステップS204においてc番目の次用語位置候補が取得されたか否かを判断する。c番目の次用語位置候補が取得されていればステップS206に行き、取得されていなければステップS212に行く。
 (ステップS206)ベクトル取得部15の元情報取得手段151は、元情報を取得する。つまり、元情報取得手段151は、例えば、1以上の現用語周辺用語を取得する。ここで、現用語周辺用語は、例えば、現用語の直前の用語、現用語の2つ前の用語、現用語の直後の用語、現用語の2つ後の用語の4つの用語である。かかる現用語周辺用語は、(si-2 i+2)と表すことができる、とする。また、元情報取得手段151は、例えば、1以上の次用語周辺用語を取得する。ここで、次用語周辺用語は、例えば、次用語候補の直前の用語、次用語候補の2つ前の用語、次用語候補の直後の用語、次用語候補の2つ後の用語の4つの用語である。かかる次用語周辺用語は、(sj-2 j+2)と表すことができる、とする。また、元情報取得手段151は、原言語文における現用語と次用語候補の相対的な語順に関する情報である語順情報を取得する。ここで、語順情報は、例えば、0または1である。現用語が次用語候補より前に存在する場合、語順情報は「0」、現用語が次用語候補より後に存在する場合、語順情報は「1」である。また、元情報取得手段151は、現用語と次用語候補との原言語文での距離に関する情報である距離情報を取得する。さらに、元情報取得手段151は、例えば、現用語と次用語候補との間の1以上の用語を取得する。なお、元情報取得手段151が取得した情報と現用語と次用語候補とにより元情報が構成される。
 (ステップS207)ベクトル取得手段152は、ステップS206で取得された元情報を用いて、ベクトルを取得する。ベクトル取得手段152は、例えば、2以上の各素性関数に、2以上の元情報を構成する情報を代入し、2以上の要素を有するベクトルを取得する。なお、ここで素性関数は、バイナリ素性関数であることは好適である。また、ベクトル取得手段152は、予め2以上の素性関数を格納している。
 (ステップS208)確率情報取得部16は、重みベクトル(w)を重みベクトル格納部12から読み出す。
 (ステップS209)確率情報取得部16は、ステップS207で取得されたベクトルとステップS208で読み出した重みベクトルとを用いて、c番目の次用語位置候補が次用語位置となり得る確率情報を取得する。
 (ステップS210)確率情報取得部16は、c番目の次用語位置候補に対応付けて、ステップS209で取得した確率情報を、図示しないバッファに一時蓄積する。
 (ステップS211)候補取得部14は、カウンタcを1、インクリメントし、ステップS204に戻る。
 (ステップS212)出力部17は、図示しないバッファに格納されている各次用語位置候補の確率情報を出力し、ステップS201に戻る。
 なお、図2のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は終了する。
 以下、本実施の形態における翻訳語順情報出力装置1の具体的な動作について説明する。ここでは、Sequenceモデルを用いて、各次用語候補の確率情報を出力する場合について説明する。また、ここで、翻訳語順情報出力装置1は日英翻訳で利用される装置である、とする。
 今、文格納部11には、原言語文「昨日彼は本を借りたが彼女は買った」が格納されている。
 また、ベクトル取得部15は、ベクトルを算出するための以下の数式4、数式5を格納している。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 そして、確率情報取得部16は、数式3を格納している。
 かかる状況において、Sequenceモデルについて説明する。Sequenceモデルにおいて、CPを0、CPとNP候補の間の位置を1、NP候補を2で表したラベル系列(図3参照)を考える。翻訳語順情報出力装置1は、図3のラベル系列を識別するようにモデルを学習し、そのモデルを用いて確率を計算する。
 ここで、受付部13は、現用語位置(CP)である「彼」の位置「2」を受け付けた、とする。そして、NP候補が「買った」の位置「10」の場合について、翻訳語順情報出力装置1の動作を説明する。つまり、候補取得部14は、9番目の次用語位置候補(「買った」の位置)である「10」を取得した、とする。
 次に、ベクトル取得部15の元情報取得手段151は、現用語周辺用語si-2=「BOS」,si-1=「昨日」,si+1=「は」,si+2=「本」を取得する。なお、ここで、例えば、単に周囲のどんな語彙があるか分かれば良いのではなく、その相対位置(si-1などの情報)も必要である。また、元情報取得手段151は、次用語周辺用語sj-2=「彼女」,sj-1=「は」,sj+1=「EOS」,sj+2=「NULL」を取得する。また、元情報取得手段151は、語順情報「o=0」(現用語が次用語候補より前に存在する)を取得する。また、元情報取得手段151は、距離情報「d=2」(現用語と次用語候補との距離が6以上)を取得する。さらに、元情報取得手段151は、現用語「彼」と次用語候補「買った」を取得する。
 次に、ベクトル取得手段152は、取得された元情報を構成する各情報を、数式4、数式5(対応する素性関数)に代入し、ベクトルfを取得する。
 次に、確率情報取得部16は、重みベクトル(w)を重みベクトル格納部12から読み出す。
 続いて、確率情報取得部16は、取得されたベクトルと読み出した重みベクトルとを数式3に代入し、次用語位置候補(「買った」の位置である「10」)が次用語位置となり得る確率情報を取得する。
 以上の処理がすべての次用語位置候補に対して行われる。そして、出力部17は、各次用語位置候補の確率情報を出力する。
 なお、図3において、ラベル系列のIDにはNP候補の値を用いている。これによって、NP候補の確率を計算することと、ラベル系列を識別することとが同じ意味になる。
 図3のラベル系列を用いれば、相対的な語順を考慮することが出来る。例えば、図3のラベル系列IDが10のラベル系列では、「買った」の左に「借りた」が存在することを考慮できる。なぜなら、「買った」にはラベル2が付与され、「借りた」にはラベル1が付与されている。ラベル1はラベル2よりCPに相対的に近いと定義されているからである。なお、「借りた」は、上述した中間用語の例である。
 また、CPから距離が遠いNP候補のラベル系列は長くなるため、ラベル系列の長さの違いによる影響をモデルの学習に活用することができる。これは、距離の違いによる影響を学習する際に有用である。
 以上、本実施の形態によれば、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる。
 なお、本実施の形態において、翻訳語順情報出力装置1は、特に、統計翻訳において有効である。
 さらに、本実施の形態における処理は、ソフトウェアで実現しても良い。そして、このソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布しても良い。なお、このことは、本明細書における他の実施の形態においても該当する。なお、本実施の形態における翻訳語順情報出力装置1を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータがアクセス可能な記録媒体は、翻訳対象の原言語の文である原言語文を格納し得る文格納部と、ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部とを有し、コンピュータを、前記原言語文の中の一の用語位置であり、現在の翻訳対象の用語位置である現用語位置を受け付ける受付部と、前記現用語位置と、当該現用語の次に翻訳される候補となる用語の位置である1以上の次用語位置候補を、前記原言語文から取得する候補取得部と、前記現用語位置で示される現用語、前記次用語位置候補で示される次用語候補、および前記原言語文を用いて、2以上の要素を有するベクトルを取得するベクトル取得部と、前記ベクトル取得部が取得したベクトルと前記重みベクトルとを用いて、前記候補取得部が取得した1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、前記1以上の各次用語位置候補ごとに取得する確率情報取得部と、前記確率情報取得部が取得した確率情報を出力する出力部として機能させるためのプログラム、である。
 また、上記プログラムにおいて、前記ベクトル取得部は、前記現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、前記次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、前記原言語文における前記現用語と前記次用語候補の相対的な語順に関する情報である語順情報、および前記現用語と前記次用語候補との前記原言語文での距離に関する情報である距離情報を有する元情報を取得する元情報取得手段と、前記元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備するものとして、コンピュータを機能させるプログラムであることは好適である。
 また、上記プログラムにおいて、前記ベクトル取得部は、前記原言語文の中の用語であって、前記現用語と前記次用語候補との間の用語である1以上の中間用語をも用いて、2以上の要素を有するベクトルを取得するものとして、コンピュータを機能させるプログラムであることは好適である。
 また、上記プログラムにおいて、前記ベクトル取得部は、前記現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、前記次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、前記原言語文における前記現用語と前記次用語候補の相対的な語順に関する情報である語順情報、前記現用語と前記次用語候補との前記原言語文での距離に関する情報である距離情報、および前記現用語と前記次用語候補との間の1以上の用語を有する元情報を取得する元情報取得手段と、前記元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備するものとして、コンピュータを機能させるプログラムであることは好適である。
 (実施の形態2)
 図4に、図1乃至図3を参照しつつ詳しく説明した本発明翻訳語順情報出力装置1の出力結果を利用した機械翻訳装置2のブロック図を示す。この機械翻訳装置2は、用語対辞書21、翻訳語順情報出力装置1、目的言語用語取得部22、目的言語文構成部23、目的言語文出力部24を備えており、通常は統計的機械翻訳装置である。
 用語対辞書21は、2以上の用語対を格納し得る。用語対とは、原言語の用語と目的言語の用語との組である。
 目的言語用語取得部22は、翻訳語順情報出力装置1が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、用語対辞書21から取得する。
 目的言語文構成部23は、目的言語用語取得部22が取得した1以上の目的言語の用語から目的言語文を構成する。
 目的言語文出力部24は、目的言語文構成部23が構成した目的言語文を出力する。ここで、出力とは、ディスプレイへの表示、プロジェクターを用いた投影、プリンタでの印字、音出力、外部の装置への送信、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念である。
 用語対辞書21は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。用語対辞書21に用語対が記憶される過程は問わない。例えば、記録媒体を介して用語対が用語対辞書21で記憶されるようになってもよく、通信回線等を介して送信された用語対が用語対辞書21で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された用語対が用語対辞書21で記憶されるようになってもよい。
 目的言語用語取得部22、および目的言語文構成部23は、通常、MPUやメモリ等から実現され得る。目的言語用語取得部22等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現しても良い。
 目的言語文出力部24は、ディスプレイやスピーカー等の出力デバイスを含むと考えても含まないと考えても良い。<構成要素>は、出力デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等で実現され得る。
 翻訳する語の語順を決定しながら機械翻訳を行う機械翻訳装置2の動作については公知技術であるので、詳細な説明を省略する。
 以上、本実施の形態によれば、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる結果、精度の高い機械翻訳が可能となる。
 なお、本実施の形態における機械翻訳装置2を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータがアクセス可能な記録媒体は、原言語の用語と目的言語の用語との組である2以上の用語対を格納し得る用語対辞書を有し、コンピュータを、翻訳語順情報出力装置1と、前記翻訳語順情報出力装置が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、前記用語対辞書から取得する目的言語用語取得部と、前記目的言語用語取得部が取得した1以上の目的言語の用語から目的言語文を構成する目的言語文構成部と、前記目的言語文構成部が構成した目的言語文を出力する目的言語文出力部として機能させるためのプログラム、である。
 (実施の形態3)
 図5に、上記翻訳語順情報出力装置1または機械翻訳装置2で利用される重みベクトルを学習する学習装置を示す。この学習装置3は、重みベクトル格納部12、パラレルコーパス格納部31、用語アライメント情報格納部32、学習部33、重みベクトル蓄積部34を備えている。
 パラレルコーパス格納部31は、パラレルコーパスを格納している。パラレルコーパスは、原言語文と目的言語文との組である多数の対訳文である。また、原言語文は、翻訳対象の原言語の文である。目的言語文は、対となる原言語文の目的言語への正しい翻訳文である。
 用語アライメント情報格納部32は、用語アライメント情報を格納している。用語アライメント情報とは、原言語文を構成する用語と、目的言語文を構成する用語との対応を示す情報である。ここで、目的言語文を構成する用語とは、目的言語の用語であり、原言語文を構成する用語の目的言語への翻訳結果である。
 学習部33は、パラレルコーパス格納部31に格納されている対訳文と、用語アライメント情報格納部32に格納されている用語アライメント情報とを用いて、重みベクトルを取得する。
 具体的には、学習部33は、パラレルコーパス格納部31に格納されている2以上の各対訳文が有する2以上の各目的言語文の左から右に、各目的言語文の現用語を移動させながら、各目的言語文の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置とを取得する。次に、学習部33は、用語アライメント情報を用いて、当該各目的言語文の現用語位置と次用語位置に対応する原言語文の現用語位置と、次用語位置と、すべての次用語位置候補とを取得する。なお、現用語位置は現用語の位置を示す情報であり、次用語位置は次用語の位置を示す情報であり、次用語位置候補は次用語位置以外のすべての次用語候補の位置を示す情報である。次に、学習部33は、各原言語文の現用語位置と次用語位置とすべての次用語位置候補に関する特徴量を取得する。なお、上記の「現用語を移動させる」とは、現用語を示すポインタを移動させること等の意味である。
 ここで、学習部33が取得する特徴量は、例えば、<o><sp><sq>である。また、pはi-2~i+2,qはj-2~j+2の値を取り得る。また、ここで、p=i,q=jの場合を考える、とする。また、<o>は語順情報であり、例えば、「i<j」の場合は「0」である。また、「si」=「彼」、「sj」=「買った」とする。<sp>は、CPを含むCPの前2用語、およびCPの後ろ2用語の、合計5用語である。また、<sq>は、NP候補含むNP候補の前2用語、およびNP候補の後ろ2用語の、合計5用語である。なお、<sp><sq>ともに、用語の位置の情報も含む。また、取得する特徴量は、例えば、<si-2>、<si-1>、<si>、<si+1>、<si+2>、<ti>、<ti-1,ti>、<ti,ti+1>、<si,ti>等でも良い。ここで、<si>は現用語、<si-2>は現用語より2つ前の用語、<si-1>現用語の直前の用語、<si+1>は現用語の直後の用語、<si+2>は現用語より2つ先の用語、<ti>は現用語の品詞、<ti-1>は現用語の直前の用語の品詞、<ti+1>は現用語の直後の用語の品詞、<ti-1,ti>は現用語の直前の用語の品詞および現用語の品詞、<ti,ti+1>は現用語の品詞および現用語の直後の用語の品詞である。さらに、取得する特徴量は、例えば、<o>,<o,sp>,<o,ti>,<o,tj>,<o,d>,<o,sp,sq>,<o,ti,tj>,<o,ti-1,ti,tj>,<o,ti,ti+1,tj>,<o,ti,tj-1,tj>,<o,ti,tj,tj+1>,<o,si,ti,tj>,<o,sj,ti,tj>等でも良い。ここで、pは「p∈{p|i-2<=p<=i+2 ∨ j-2<=p<=j+2}」を満たす。また、(p,q)は、「(p,q)∈{(p,q)i-2<p<i+2 ∧ j-2<q<j+2 ∧ (|p-i|<=1∨|q-j|<=1)}」を満たす。
 そして、学習部33は、上記の処理をすべての対訳文に対して行う。次に、学習部33は、エントロピーを最大にするように重みベクトルを決定する。なお、かかる方法は、LBFGS methodと呼ばれており、公知技術であるので、詳細な説明を省略する。また、LBFGS methodについて、論文"D.C. Liu and J. Nocedal. 1989. On the limited memory method for large scale ptimization. Mathematical Programming B, 45(3):503-528."を参照のこと。また、学習部33は、重みベクトルのスムージングのために、Gaussian priorを使用することは好適である。なお、Gaussian priorについて、論文"Stanley F. Chen and Ronald Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy models.Technical report."に記載されているので、詳細な説明は省略する。
 重みベクトル蓄積部34は、学習部33における学習処理により取得した重みベクトルを、重みベクトル格納部12に蓄積する。
 パラレルコーパス格納部31、および用語アライメント情報格納部32は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。パラレルコーパス格納部31等にパラレルコーパス等が記憶される過程は問わない。例えば、記録媒体を介してパラレルコーパス等がパラレルコーパス格納部31等で記憶されるようになってもよく、通信回線等を介して送信されたパラレルコーパス等がパラレルコーパス格納部31等で記憶されるようになってもよく、あるいは、入力デバイスを介して入力されたパラレルコーパス等がパラレルコーパス格納部31等で記憶されるようになってもよい。
 学習部33、および重みベクトル蓄積部34は、通常、MPUやメモリ等から実現され得る。学習部33等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現しても良い。
 次に、学習装置3の動作について、図6のフローチャートを用いて説明する。
 (ステップS601)学習部33は、カウンタcに1を代入する。
 (ステップS602)学習部33は、パラレルコーパス格納部31にc番目の対訳文が存在するか否かを判断する。c番目の対訳文が存在すればステップS603に行き、存在しなければステップS610に行く。
 (ステップS603)学習部33は、カウンタdに1を代入する。
 (ステップS604)学習部33は、c番目の対訳文の目的言語文中にd番目の現用語が存在するか否かを判断する。d番目の現用語が存在すればステップS605に行き、d番目の現用語が存在しなければステップS609に行く。
 (ステップS605)学習部33は、c番目の対訳文の目的言語文から、d番目の現用語の位置を示す現用語と次用語の位置を示す次用語位置とを取得する。
 (ステップS606)学習部33は、用語アライメント情報を用いて、d番目の現用語位置と次用語位置に対応する、原言語文中の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置と当該次用語位置以外のすべての次用語位置候補とを取得する。
 (ステップS607)学習部33は、ステップS606で取得した現用語位置と次用語位置とすべての次用語位置候補とを用いて、1または2以上の特徴量を取得する。そして、学習部33は、取得した1または2以上の特徴量を、図示しないバッファに一時蓄積する。
 (ステップS608)学習部33は、カウンタdを1、インクリメントし、ステップS604に戻る。
 (ステップS609)学習部33は、カウンタcを1、インクリメントし、ステップS602に戻る。
 (ステップS610)学習部33は、図示しないバッファに格納されている多数の特徴量を用いて、エントロピーを最大にするように重みベクトルを決定する。なお、本ステップにおいて、重みベクトルのスムージング処理も行う。
 (ステップS611)
重みベクトル蓄積部34は、ステップS611で学習部33が取得した重みベクトルを重みベクトル格納部12に蓄積する。
 以上、本実施の形態によれば、翻訳語順情報出力装置1で使用する重みベクトルを学習できる。
 さらに、本実施の形態における学習装置3の処理は、ソフトウェアで実現しても良い。そして、このソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布しても良い。
 なお、本実施の形態における学習装置3を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータがアクセス可能な記録媒体は、ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部と、原言語文と目的言語文との組である2以上の対訳文であるパラレルコーパスを格納し得るパラレルコーパス格納部と、原言語文を構成する用語と目的言語文を構成する用語との対応を示す情報である用語アライメント情報を格納し得る用語アライメント情報格納部とを具備し、コンピュータを、前記2以上の各対訳文が有する2以上の各目的言語文の左から右に、各目的言語文の現用語を移動させながら、各目的言語文の現用語の位置である現用語位置と次用語の位置である次用語位置とを取得し、前記用語アライメント情報を用いて、各目的言語文の現用語位置と次用語位置に対応する各原言語文の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置と当該次用語位置以外のすべての次用語位置候補とを取得し、各原言語文の現用語位置と次用語位置とすべての次用語位置候補とに関する1または2以上の特徴量を取得し、当該取得した特徴量を用いて、エントロピーを最大にするように重みベクトルを決定し、当該重みベクトルを取得する学習部と、前記学習部が取得した重みベクトルを、前記重みベクトル格納部に蓄積する重みベクトル蓄積部として機能させるためのプログラム、である。
(実験結果)
 以下、翻訳語順情報出力装置1等に対する実験の結果について述べる。
(1)実験の前提
 実験において、学習装置3のパラレルコーパス格納部31に、日本語を原言語とし、英語を目的言語とした、特許文書が格納された。また、英語を原言語とし、中国語を目的言語とした、特許文書も、パラレルコーパス格納部31に格納された。なお、用いた特許文書は、NTCIR-9の特許機械翻訳タスク(Isao Goto, Bin Lu, Ka Po Chow, Eiichiro Sumita, and Benjamin K. Tsou. 2011. Overview of the patent machine translation task at the NTCIR-9 workshop.In Proceedings of NTCIR-9, pages 559-578.参照)の文書である。
 そして、日本語の形態素解析ソフトとして、Mecab(インターネットURL:http://mecab.sourceforge.net参照)が用いられた。また、中国文の区切り、品詞タグ付けのために、Stanford segmenterとtagger(インターネットURL:http://nlp.stanford.edu/software/segmenter.shtml、http://nlp.stanford.edu/software/tagger.shtml参照)が用いられた。また、トレーニングデータとして、40語以内の文が選択された。そして、日英の約205万の対訳文、中英の約49万の対訳文が使用された。単語アライメントを取得するために、GIZA+ +とgrowdiag-final-and heuristicsが使用された。また、単語アライメントのエラーを低減するために、冠詞{a,an,the}が英文から削除された。また、助詞{が、を、は}が日本文から削除された。これらの単語は、他言語文のどの単語にも対応していないからである。そして、単語語アライメントの後、削除した単語が元の位置に戻された。また、5グラムの言語モデルが使用された。この5グラムの言語モデルは、バイリンガルのトレーニングデータの英語文のセットである。
 本実験では、Mosesデコーダー(論文"Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177-180, Prague, Czech Republic,June. Association for Computational Linguistics."参照)と互換性のある独自のフレーズベースのSMTが用いられた。
 また、本実験において、SMTの重みベクトルの各パラメータは、MERTによってチューニングされた。また、本実験において、実験者は、MERTの結果を安定させるために、開発データの最初の半分を使用して、MERTにより3回チューニングを行った。そして、3つのSMTの重みベクトルのパラメータセットの中から、次の半分の開発データを用いた場合に、BLEUのスコアが最も良いSMTの重みベクトルのパラメータセットが選択された。
 また、本実験において、実験者は、標準的なSMTの特徴量セットと標準的なものとは異なる特徴量セットとからなる共通のSMT特徴量セットを用いて、システムを比較した。共通のSMT特徴量セットは、以下の5つである。
(1)the linear distortion cost model feature(LINEAR)
(2)the linear distortion cost model feature and the six MSD bidirectional lexical distortion model features (LINEAR +LEX)
(3)the outbound and inbound distortion model features discriminating nine distortion classes(9-CLASS)
(4)翻訳語順情報出力装置1の一例であるPairモデルの特徴量(PAIR)
(5)翻訳語順情報出力装置1の一例であるSequenceモデルの特徴量(SEQUENCE).
 また、翻訳語順情報出力装置1の一例であるPairモデル、Sequenceモデルにおいて、以下のように学習させた。つまり、約20万の対訳文と用語アライメント情報とが、それぞれパラレルコーパス格納部31、用語アライメント情報格納部32に格納された。ここで、Sequenceモデルで使用した特徴量は、現用語と次用語の位置のラベルのペアであり、<0,1><1,0><1,2>である。
 また、LBFGS methodを用いて、エントロピーを最大にするように重みベクトルが決定された。さらに、重みベクトルのスムージングのために、Gaussian priorが使用された。
 また、9-CLASSにおいて、Sequenceモデルの際と同様の学習データが用いられた。また、9-CLASSにおいて、特徴量として<si-2>、<si-1>、<si>、<si+1>、<si+2>、<ti-1>、<ti>、<ti+1>、<ti-1,ti>、<ti,ti+1>が用いられた。なお、これらの特徴量テンプレートは、SequenceモデルやPairモデルの特徴量テンプレートに対応している。Sequenceモデル等において、上記の特徴量に加えて、相対的な原言語文における位置情報を特徴量として用いてられた。なお、この特徴量は、Greenら(論文"Spence Green, Michel Galley, and Christopher D. Manning. 2010. Improved models of distortion cost for statistical machine translation. In Human Language Technologies: The 2010 Annual onference of the North American Chapter of the Association for Computational Linguistics, pages 867-875, Los Angeles, California, June. Association for Computational Linguistics"参照)によって用いられた。また、位置情報は、5つの値にクラス化されている。また、インバウンドモデルにおいて、特徴量テンプレートのiはjに変化している。また、ここで、学習用の文章において、4回以上出現する特徴量が使用されている。さらに、モデルパラメータを推定するために、Gaussian priorスムージングを伴う最大エントロピー法が使用された。また、LINEAR +LEXのモデルは、翻訳モデルを構築するために用いられたデータをすべて用いて構築された。
(2)実験結果
 以下、翻訳語順情報出力装置1を用いた機械翻訳装置2の実験結果について説明する。ここで、上記の(1)~(5)の5つ(LINEAR、LINEAR +LEX、9-CLASS、PAIR、SEQUENCE)のぞれぞれを用いた場合について、機械翻訳の質を評価した。また、本実験において、BLEU-4の自動評価スコアを用いて、機械翻訳の質を評価した。
 また、本実験において、Distortionの制限として、10、20、30、および無限大(∞)について、評価を行った。その評価結果は図7である。図7において、翻訳語順情報出力装置1の一例であるSequenceモデルを使用した場合が、他と比較して、日英翻訳(Japanese-English)、および中英翻訳(Chinese-English)ともに、最良であった。
 また、Sequenceモデルは、Pairモデルの結果より良かった。これは、CPとNP候補の間の相対的な語順や、CPとNP候補の間の用語を考慮することは有効であることを示している。
 また、Pairモデルは、9-CLASSの結果を上回った。これは、CPの用語、NP候補の用語の両方を考慮することが有効であることを示している。
 また、語順が大きく異なる言語間(例えば、日本語と英語等)の翻訳では、小さいDistortionの制限では正確な翻訳は困難であることが示せた。
 日英翻訳において、Sequenceモデルを使用した場合、Distortionの制限10より、20や30の方が良好な結果が得られた(図7参照)。一方、LINEAR、LINEAR +LEX、9-CLASSでは、このようなことは実現されなかった(図7参照)。このことは、Sequenceモデルは、他と比較して、より長距離の並び替え候補を扱うことができることを示している。
 また、本実験において、Mosesインプリメンテーションを用いた階層型のフレーズベースSMT(Hier)をテストした。本テストにおいて、システム設定のために、無制限のmax-chart-spanを使用した。その結果、Hierにおいて日英翻訳では、BLEU-4の値は「30.47」、中英翻訳では、BLEU-4の値は「32.66」であった。これらの値は、Sequenceモデルを下回っている。また、日英翻訳における両者の差は大きく、中英翻訳における両者の差は小さかった。
 さらに、本実験において、日英翻訳において、3~20のDistortionを3種類のモデル(SEQUENCE、PAIR、CORPUS)に適用した結果である確率(平均的なDistortionの確率)を算出した。かかる実験の結果を示すグラフは図8である。CORPUSは、翻訳モデルを構築するために使用される単語アラインメント情報から得た学習データの実際の歪みの確率である。また、ここでのCORPUSのDistortionの確率は、Distortionの数を学習データのDistortionの総数で割った値である。3種類のモデルにおいて、使用されている距離のクラスは同じである。
 また、図8において、PAIRでは、ほぼ同じ平均のDistortion確率を生成していることを示している。一方、Distortionの長さが増加した場合に、SEQUENCEの平均のDistortion確率は減少傾向を示している。なお、ここで、Distortionの長さが異なっても、距離クラスは同じである。この傾向は、CORPUSでも同様であった(図8参照)。以上より、翻訳語順情報出力装置1におけるSEQUENCEでは、訓練データから、適宜、距離の影響を学習できることが分かる。
 また、図9は、本明細書で述べたプログラムを実行して、上述した種々の実施の形態の翻訳語順情報出力装置等を実現するコンピュータの外観を示す。上述の実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムで実現され得る。図9は、このコンピュータシステム300の概観図であり、図10は、システム300のブロック図である。
 図9において、コンピュータシステム300は、CD-ROMドライブ3012を含むコンピュータ301と、キーボード302と、マウス303と、モニタ304とを含む。
 図10において、コンピュータ301は、CD-ROMドライブ3012に加えて、MPU3013と、バス3014と、ROM3015と、RAM3016と、ハードディスク3017とを含む。なお、バス3014は、MPU3013やCD-ROMドライブ3012に接続されている。また、ROM3015には、ブートアッププログラム等のプログラムが記憶されている。また、RAM3016は、MPU3013に接続され、アプリケーションプログラムの命令を一時的に記憶するとともに一時記憶空間を提供するためのものである。また、ハードディスク3017は、アプリケーションプログラム、システムプログラム、及びデータを記憶するためのものである。ここでは、図示しないが、コンピュータ301は、さらに、LANへの接続を提供するネットワークカードを含んでも良い。
 コンピュータシステム300に、上述した実施の形態の翻訳語順情報出力装置等の機能を実行させるプログラムは、CD-ROM3101に記憶されて、CD-ROMドライブ3012に挿入され、さらにハードディスク3017に転送されても良い。これに代えて、プログラムは、図示しないネットワークを介してコンピュータ301に送信され、ハードディスク3017に記憶されても良い。プログラムは実行の際にRAM3016にロードされる。プログラムは、CD-ROM3101または図示しないネットワークから直接、ロードされても良い。
 プログラムは、コンピュータ301に、上述した実施の形態の翻訳語順情報出力装置等の機能を実行させるオペレーティングシステム、またはサードパーティープログラム等は、必ずしも含まなくても良い。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいれば良い。コンピュータシステム300がどのように動作するかは周知であり、詳細な説明は省略する。
 また、上記プログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、あるいは分散処理を行ってもよい。
 また、上記各実施の形態において、各処理(各機能)は、単一の装置(システム)によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい。
 本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
 以上のように、本発明にかかる翻訳語順情報出力装置は、統計翻訳において、原言語文中において、今、翻訳した用語が分かっている状態で、次に翻訳するべき用語を正確に決定することができる、という効果を有し、統計翻訳装置等として有用である。
 1 翻訳語順情報出力装置
 2 機械翻訳装置
 3 学習装置
 11 文格納部
 12 ベクトル格納部
 13 受付部
 14 候補取得部
 15 ベクトル取得部
 16 確率情報取得部
 17 出力部
 21 用語対辞書
 22 目的言語用語取得部
 23 目的言語文構成部
 24 目的言語文出力部
 31 パラレルコーパス格納部
 32 用語アライメント情報格納部
 33 学習部
 34 ベクトル蓄積部
 151 元情報取得手段
 152 ベクトル取得手段

Claims (9)

  1. 翻訳対象の原言語の文である原言語文を格納し得る文格納部と、
    ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部と、
    前記原言語文の中の一の用語位置であり、現在の翻訳対象の用語位置である現用語位置を受け付ける受付部と、
    前記現用語位置と、当該現用語の次に翻訳される候補となる用語の位置である1以上の次用語位置候補を、前記原言語文から取得する候補取得部と、
    前記現用語位置で示される現用語、前記次用語位置候補で示される次用語候補、および前記現用語と前記次用語候補との間の用語である1以上の中間用語を、各々区別して用いて、2以上の要素を有するベクトルを取得するベクトル取得部と、
    前記ベクトル取得部が取得したベクトルと前記重みベクトルとを用いて、前記候補取得部が取得した1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、前記1以上の各次用語位置候補ごとに取得する確率情報取得部と、
    前記確率情報取得部が取得した確率情報を出力する出力部とを具備する翻訳語順情報出力装置。
  2. 前記ベクトル取得部は、
    前記現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、前記次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、前記原言語文における前記現用語と前記次用語候補の相対的な語順に関する情報である語順情報、前記現用語と前記次用語候補との前記原言語文での距離に関する情報である距離情報、および前記現用語と前記次用語候補との間の用語である1以上の中間用語を有する元情報を取得する元情報取得手段と、
    前記元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備する請求項1記載の翻訳語順情報出力装置。
  3. 前記ベクトル取得部は、
    前記現用語、当該現用語の直前の用語または直後の用語を含む1以上の現用語周辺用語、前記次用語候補、当該次用語候補の直前の用語または直後の用語を含む1以上の次用語周辺用語、前記原言語文における前記現用語と前記次用語候補の相対的な語順に関する情報である語順情報、および前記現用語と前記次用語候補との前記原言語文での距離に関する情報である距離情報を有する元情報を取得する元情報取得手段と、
    前記元情報取得手段が取得した元情報を用いて、2以上の要素を有するベクトルを取得するベクトル取得手段とを具備する請求項1記載の翻訳語順情報出力装置。
  4. 原言語の用語と目的言語の用語との組である2以上の用語対を格納し得る用語対辞書と、
    請求項1記載の翻訳語順情報出力装置と、
    前記翻訳語順情報出力装置が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、前記用語対辞書から取得する目的言語用語取得部と、
    前記目的言語用語取得部が取得した1以上の目的言語の用語から目的言語文を構成する目的言語文構成部と、
    前記目的言語文構成部が構成した目的言語文を出力する目的言語文出力部とを具備する機械翻訳装置。
  5. 原言語の用語と目的言語の用語との組である2以上の用語対を格納し得る用語対辞書と、
    請求項2記載の翻訳語順情報出力装置と、
    前記翻訳語順情報出力装置が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、前記用語対辞書から取得する目的言語用語取得部と、
    前記目的言語用語取得部が取得した1以上の目的言語の用語から目的言語文を構成する目的言語文構成部と、
    前記目的言語文構成部が構成した目的言語文を出力する目的言語文出力部とを具備する機械翻訳装置。
  6. 原言語の用語と目的言語の用語との組である2以上の用語対を格納し得る用語対辞書と、
    請求項3記載の翻訳語順情報出力装置と、
    前記翻訳語順情報出力装置が出力した1以上の次用語候補の確率情報から次用語を決定し、当該次用語に対応する目的言語の用語を、前記用語対辞書から取得する目的言語用語取得部と、
    前記目的言語用語取得部が取得した1以上の目的言語の用語から目的言語文を構成する目的言語文構成部と、
    前記目的言語文構成部が構成した目的言語文を出力する目的言語文出力部とを具備する機械翻訳装置。
  7. ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部と、
    原言語文と目的言語文との組である2以上の対訳文であるパラレルコーパスを格納し得るパラレルコーパス格納部と、
    原言語文を構成する用語と目的言語文を構成する用語との対応を示す情報である用語アライメント情報を格納し得る用語アライメント情報格納部と、
    前記2以上の各対訳文が有する2以上の各目的言語文の左から右に、各目的言語文の現用語を移動させながら、各目的言語文の現用語の位置である現用語位置と次用語の位置である次用語位置とを取得し、前記用語アライメント情報を用いて、各目的言語文の現用語位置と次用語位置に対応する各原言語文の現用語の位置を示す現用語位置と次用語の位置を示す次用語位置と当該次用語位置以外のすべての次用語位置候補とを取得し、各原言語文の現用語位置と次用語位置とすべての次用語位置候補に関する1または2以上の特徴量を取得し、当該取得した特徴量を用いて、エントロピーを最大にするように重みベクトルを決定し、当該重みベクトルを取得する学習部と、
    前記学習部が取得した重みベクトルを、前記重みベクトル格納部に蓄積する重みベクトル蓄積部とを具備する学習装置。
  8. 記録媒体は、
    翻訳対象の原言語の文である原言語文を格納し得る文格納部と、
    ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部とを具備し、
    受付部、候補取得部、ベクトル取得部、確率情報取得部、および出力部により実現される翻訳語順情報出力方法であって、
    前記受付部が、前記原言語文の中の一の用語位置であり、現在の翻訳対象の用語位置である現用語位置を受け付ける受付ステップと、
    前記候補取得部が、前記現用語位置と、当該現用語の次に翻訳される候補となる用語の位置である1以上の次用語位置候補を、前記原言語文から取得する候補取得ステップと、
    前記ベクトル取得部が、前記現用語位置で示される現用語、前記次用語位置候補で示される次用語候補、および前記原言語文を用いて、2以上の要素を有するベクトルを取得するベクトル取得ステップと、
    前記確率情報取得部が、前記ベクトル取得ステップで取得されたベクトルと前記重みベクトルとを用いて、前記候補取得ステップで取得された1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、前記1以上の各次用語位置候補ごとに取得する確率情報取得ステップと、
    前記出力部が、前記確率情報取得ステップで取得された確率情報を出力する出力ステップとを具備する翻訳語順情報出力方法。
  9. 翻訳対象の原言語の文である原言語文を格納し得る文格納部と、ベクトルの各要素の重みを示す重みベクトルを格納し得る重みベクトル格納部とを有し、
    前記原言語文の中の一の用語位置であり、現在の翻訳対象の用語位置である現用語位置を受け付ける受付ステップと、
    前記現用語位置と、当該現用語の次に翻訳される候補となる用語の位置である1以上の次用語位置候補を、前記原言語文から取得する候補取得ステップと、
    前記現用語位置で示される現用語、前記次用語位置候補で示される次用語候補、および前記原言語文を用いて、2以上の要素を有するベクトルを取得するベクトル取得ステップと、
    前記ベクトル取得ステップで取得されたベクトルと前記重みベクトルとを用いて、前記候補取得ステップで取得された1以上の各次用語位置候補の用語が現用語の次に翻訳される次用語である確率に関する確率情報を、前記1以上の各次用語位置候補ごとに取得する確率情報取得ステップと、
    前記確率情報取得ステップで取得された確率情報を出力する出力ステップとを、
    コンピュータで実行させるためのプログラムを記録した記録媒体。
PCT/JP2014/063387 2013-05-29 2014-05-20 翻訳語順情報出力装置、翻訳語順情報出力方法、および記録媒体 WO2014192598A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14803390.5A EP3007076A4 (en) 2013-05-29 2014-05-20 Translation word order information output device, translation word order information output method, and recording medium
US14/893,452 US20160085748A1 (en) 2013-05-29 2014-05-20 Translation word order information output apparatus, translation word order information output method, and storage medium
CN201480023752.8A CN105144149B (zh) 2013-05-29 2014-05-20 翻译词序信息输出装置、翻译词序信息输出方法及存储介质
KR1020157030874A KR20160016768A (ko) 2013-05-29 2014-05-20 번역 어순 정보 출력 장치, 번역 어순 정보 출력 방법 및 기록 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013113397A JP6296592B2 (ja) 2013-05-29 2013-05-29 翻訳語順情報出力装置、機械翻訳装置、学習装置、翻訳語順情報出力方法、学習方法、およびプログラム
JP2013-113397 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192598A1 true WO2014192598A1 (ja) 2014-12-04

Family

ID=51988631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063387 WO2014192598A1 (ja) 2013-05-29 2014-05-20 翻訳語順情報出力装置、翻訳語順情報出力方法、および記録媒体

Country Status (6)

Country Link
US (1) US20160085748A1 (ja)
EP (1) EP3007076A4 (ja)
JP (1) JP6296592B2 (ja)
KR (1) KR20160016768A (ja)
CN (1) CN105144149B (ja)
WO (1) WO2014192598A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9817821B2 (en) * 2012-12-19 2017-11-14 Abbyy Development Llc Translation and dictionary selection by context
US9805028B1 (en) * 2014-09-17 2017-10-31 Google Inc. Translating terms using numeric representations
JP6777382B2 (ja) * 2015-07-17 2020-10-28 積水化学工業株式会社 太陽電池モジュールを搭載した建物
CN106383818A (zh) * 2015-07-30 2017-02-08 阿里巴巴集团控股有限公司 一种机器翻译方法及装置
CN106484681B (zh) 2015-08-25 2019-07-09 阿里巴巴集团控股有限公司 一种生成候选译文的方法、装置及电子设备
CN106484682B (zh) * 2015-08-25 2019-06-25 阿里巴巴集团控股有限公司 基于统计的机器翻译方法、装置及电子设备
KR102637338B1 (ko) * 2017-01-26 2024-02-16 삼성전자주식회사 번역 보정 방법 및 장치와 번역 시스템
CN107368476B (zh) * 2017-07-25 2020-11-03 深圳市腾讯计算机系统有限公司 一种翻译的方法、目标信息确定的方法及相关装置
WO2019107623A1 (ko) * 2017-11-30 2019-06-06 주식회사 시스트란인터내셔널 기계 번역 방법 및 이를 위한 장치
US11657277B2 (en) * 2019-05-23 2023-05-23 Google Llc Generating neural network outputs using insertion commands
CN110298045B (zh) * 2019-05-31 2023-03-24 北京百度网讯科技有限公司 机器翻译方法、装置、设备及存储介质
CN113988089A (zh) * 2021-10-18 2022-01-28 浙江香侬慧语科技有限责任公司 一种基于k近邻的机器翻译方法、装置及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068123A1 (en) * 2005-12-16 2007-06-21 National Research Council Of Canada Method and system for training and applying a distortion component to machine translation
JP2007317000A (ja) * 2006-05-26 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> 機械翻訳装置、その方法およびプログラム
US20080319736A1 (en) * 2007-06-21 2008-12-25 Microsoft Corporation Discriminative Syntactic Word Order Model for Machine Translation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227423A (ja) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd 機械翻訳装置
US5721938A (en) * 1995-06-07 1998-02-24 Stuckey; Barbara K. Method and device for parsing and analyzing natural language sentences and text
US7249012B2 (en) * 2002-11-20 2007-07-24 Microsoft Corporation Statistical method and apparatus for learning translation relationships among phrases
CN1661593B (zh) * 2004-02-24 2010-04-28 北京中专翻译有限公司 一种计算机语言翻译方法及其翻译系统
CN101201818A (zh) * 2006-12-13 2008-06-18 李萍 用hmm计算语言结构、进行分词、机器翻译和语音识别的方法
US20080154577A1 (en) * 2006-12-26 2008-06-26 Sehda,Inc. Chunk-based statistical machine translation system
JP2009205357A (ja) * 2008-02-27 2009-09-10 Toshiba Corp 中国語の品詞を判定する装置、方法およびプログラム
CN102243626A (zh) * 2011-07-22 2011-11-16 中国科学院计算技术研究所 一种基于依存句法树的翻译规则抽取方法和翻译方法
CN103116575B (zh) * 2011-11-16 2016-06-22 富士通株式会社 基于层次短语模型的译文词序概率确定方法及装置
US20150161109A1 (en) * 2012-01-13 2015-06-11 Google Inc. Reordering words for machine translation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007068123A1 (en) * 2005-12-16 2007-06-21 National Research Council Of Canada Method and system for training and applying a distortion component to machine translation
JP2007317000A (ja) * 2006-05-26 2007-12-06 Nippon Telegr & Teleph Corp <Ntt> 機械翻訳装置、その方法およびプログラム
US20080319736A1 (en) * 2007-06-21 2008-12-25 Microsoft Corporation Discriminative Syntactic Word Order Model for Machine Translation

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH TILLMAN: "HLT-NAACL 2004: Short Papers", 2 May 2004, ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, article "A unigram orientation model for statistical machine translation", pages: 101 - 104
D.C. LIU; J. NOCEDAL: "On the limited memory method for large scale optimization", MATHEMATICAL PROGRAMMING B, vol. 45, no. 3, 1989, pages 503 - 528
ISAO GOTO; BIN LU; KA PO CHOW; EIICHIRO SUMITA; BENJAMIN K. TSOU: "Overview of the patent machine translation task at the NTCIR-9 workshop", PROCEEDINGS OFNTCIR-9, 2011, pages 559 - 578
KAZUTERU OHASHI ET AL.: "Ku no Hon'yaku Junjo Pattern o Koryo shita Tokeiteki Kikai Hon'yaku Model", PROCEEDINGS OF THE 12TH ANNUAL MEETING OF THE ASSOCIATION FOR NATURAL LANGUAGE PROCESSING, 13 March 2006 (2006-03-13), pages 857 - 860 *
PHILIPP KOEHN; HIEU HOANG; ALEXANDRA BIRCH; CHRIS CALLISON-BURCH; MARCELLO FEDERICO; NICOLA BERTOLDI; BROOKE COWAN; WADE SHEN; CHR: "Proceedings of the 45th Annual Meeting of theAssociation for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions", June 2007, ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, article "Moses: Open source toolkit for statistical machine translation", pages: 177 - 180
See also references of EP3007076A4 *
SPENCE GREEN; MICHEL GALLEY; CHRISTOPHER D. MANNING: "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics", June 2010, ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, article "Improved models of distortion cost for statistical machine translation", pages: 867 - 875
SPENCE GREEN; MICHEL GALLEY; CHRISTOPHER D. MANNING: "Human Language Technologies: The 2010 Annual Conference of the North American Chapter of theAssociation for Computational Linguistics", June 2010, ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, article "Improved models of distortion cost for statistical machine translation", pages: 867 - 875
STANLEY F. CHEN; RONALD ROSENFELD, A GAUSSIAN PRIOR FOR SMOOTHING MAXIMUM ENTROPY MODELS. TECHNICAL REPORT., 1999

Also Published As

Publication number Publication date
CN105144149B (zh) 2017-10-27
KR20160016768A (ko) 2016-02-15
EP3007076A4 (en) 2017-01-25
CN105144149A (zh) 2015-12-09
JP6296592B2 (ja) 2018-03-20
JP2014232452A (ja) 2014-12-11
US20160085748A1 (en) 2016-03-24
EP3007076A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6296592B2 (ja) 翻訳語順情報出力装置、機械翻訳装置、学習装置、翻訳語順情報出力方法、学習方法、およびプログラム
Melamud et al. The role of context types and dimensionality in learning word embeddings
US10380264B2 (en) Machine translation method and apparatus
US20170075883A1 (en) Machine translation apparatus and machine translation method
US10061768B2 (en) Method and apparatus for improving a bilingual corpus, machine translation method and apparatus
Xu et al. Bayesian semi-supervised chinese word segmentation for statistical machine translation
WO2014196375A1 (ja) 翻訳装置、学習装置、翻訳方法、および記録媒体
Specia et al. Translation quality and productivity: A study on rich morphology languages
JP5002271B2 (ja) 入力された原言語文を目的言語に機械翻訳する装置、方法およびプログラム
CN110678868A (zh) 翻译支持系统等
Sajjad et al. Statistical models for unsupervised, semi-supervised, and supervised transliteration mining
US20090063127A1 (en) Apparatus, method, and computer program product for creating data for learning word translation
KR20170008357A (ko) 크라우드 소싱을 이용한 웹툰 언어 자동 번역 방법
Farzi et al. Improving statistical machine translation using syntax-based learning-to-rank system
JP2023002730A (ja) テキスト誤り訂正とテキスト誤り訂正モデルの生成方法、装置、機器及び媒体
WO2020241039A1 (ja) 情報処理装置、および情報処理方法、並びにプログラム
Venkataramani et al. English-hindi automatic word alignment with scarce resources
WO2021107006A1 (ja) 情報処理装置、情報処理方法及びプログラム
JP2007317000A (ja) 機械翻訳装置、その方法およびプログラム
Kri et al. Phrase-based machine translation of Digaru-English
Tambouratzis Conditional Random Fields versus template-matching in MT phrasing tasks involving sparse training data
Rodríguez et al. On the application of different evolutionary algorithms to the alignment problem in statistical machine translation
CN115376153B (zh) 一种合同比对方法、装置及存储介质
Hoang et al. Refining lexical translation training scheme for improving the quality of statistical phrase-based translation
JP5116580B2 (ja) 他言語の概念ベクトル生成装置及び方法及びプログラム及びコンピュータ読取可能な記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023752.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030874

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893452

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014803390

Country of ref document: EP