WO2014190652A1 - Dispositif d'antenne de positionnement de satellite - Google Patents

Dispositif d'antenne de positionnement de satellite Download PDF

Info

Publication number
WO2014190652A1
WO2014190652A1 PCT/CN2013/084715 CN2013084715W WO2014190652A1 WO 2014190652 A1 WO2014190652 A1 WO 2014190652A1 CN 2013084715 W CN2013084715 W CN 2013084715W WO 2014190652 A1 WO2014190652 A1 WO 2014190652A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip antenna
antenna
layer
layer microstrip
radiation patch
Prior art date
Application number
PCT/CN2013/084715
Other languages
English (en)
Chinese (zh)
Inventor
王春华
邹天云
黄毅
Original Assignee
深圳市华信天线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华信天线技术有限公司 filed Critical 深圳市华信天线技术有限公司
Publication of WO2014190652A1 publication Critical patent/WO2014190652A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to a satellite positioning antenna device. Background technique
  • the vehicle antenna device is one of the key components of the terminal positioning and communication system and has a significant impact on the performance of the system.
  • a large number of satellite positioning antenna devices such as mobile terminals such as onboard, shipboard, and airborne, are required.
  • the antenna design has the following technical difficulties:
  • satellite positioning antennas tend to impose higher requirements on the antenna's low elevation gain, which requires the antenna's low elevation gain to be high enough.
  • the transmitting frequency band of the Beidou system is 1616.68MHz, and the adjacent receiving bands are 1268.52MH and 1561.098MHz.
  • the high frequency board material with a dielectric constant of not 1 (generally greater than 2) is used.
  • the difference in the size of the radiating patch of the microstrip antenna is small, and the mutual coupling causes the isolation between the antennas to be deteriorated.
  • the isolation between the transmitting and receiving ports is required to reach a certain standard, so how to improve the transmission and isolation isolation of the antenna. It is also a major difficulty in design.
  • the Beidou satellite communication uses a circularly polarized signal.
  • the antenna on the satellite positioning antenna device must also have good circular polarization performance, so that the antenna can improve the working efficiency.
  • the technical problem solved by the present invention is to provide a satellite positioning antenna device that satisfies the requirements of low elevation gain, good circular polarization axis ratio, and high transmission and reception isolation.
  • An embodiment of the present invention provides a satellite positioning antenna device, including a PCB board with a phase shifting feed network on the back side, and an upper layer microstrip antenna, an intermediate layer microstrip antenna, and a lower layer microstrip antenna on the PCB board;
  • the upper microstrip antenna comprises an upper microstrip antenna dielectric plate and an upper microstrip antenna radiating patch layer
  • the intermediate layer microstrip antenna comprises an intermediate layer microstrip antenna dielectric plate and an intermediate layer microstrip antenna radiating patch layer
  • the lower layer microstrip antenna comprises Lower microstrip antenna dielectric plate and lower microstrip antenna radiation patch layer, feed probe of lower microstrip antenna, feed probe of intermediate layer microstrip antenna, and coaxial cable connection phase shift of upper microstrip antenna feed
  • the lower layer microstrip antenna has a first metallization hole at a central position
  • the middle layer microstrip antenna has a second metallization hole at a central position
  • the intermediate layer microstrip antenna feed probe passes through a lower layer microstrip antenna
  • the satellite positioning antenna device further includes a metal reflective base, and the metal reflective base has an annular reflective baffle.
  • the upper microstrip antenna, the intermediate layer microstrip antenna, the lower microstrip antenna, the PCB board, and the metal reflective base are fixed together.
  • the satellite positioning antenna device wherein the upper layer microstrip antenna dielectric plate, the intermediate layer microstrip antenna dielectric plate and the lower layer microstrip antenna dielectric plate have the same diameter, are coaxially stacked, and are dielectrically The constants are not the same.
  • the satellite positioning antenna device wherein an upper microstrip antenna radiating patch has an area smaller than an intermediate layer antenna radiating patch, and an intermediate layer antenna radiating patch has an area smaller than a lower T-band antenna radiating patch.
  • the satellite positioning antenna device wherein the upper layer antenna is connected to the phase shifting feed network through another end of a coaxial coaxial cable.
  • the satellite positioning antenna device wherein the intermediate layer antenna
  • the feed probe is passed through the intermediate layer microstrip antenna dielectric plate and then connected to the phase shift feed network on the back side of the PCB through a metallization hole in the lower microstrip antenna.
  • the satellite positioning antenna device wherein the lower layer microstrip antenna is fed by a double probe, and the feeding probe passes through a lower layer microstrip antenna dielectric plate and is moved to the back of the PCB board.
  • the electrical network is connected.
  • the satellite positioning antenna device wherein the intermediate layer antenna and the lower layer microstrip antenna have a metallized hole with a uniform diameter at a central position, and each layer of the antenna is ensured by a metallized hole.
  • the grounding between the two is in contact with the ground of the PCB.
  • the satellite positioning antenna device wherein the lower layer microstrip antenna further has two metallization holes for connecting the intermediate layer microstrip antenna radiation patch and the lower layer microstrip antenna radiation patch to the ground.
  • the upper layer antenna radiation patch layer, the intermediate layer microstrip antenna radiation patch layer, and the lower layer microstrip antenna radiation patch layer are circular.
  • a quad-frequency circularly polarized signal with a good circular polarization axis ratio, high elevation angle gain, and high transmission and reception isolation can be simultaneously provided, which is very suitable for Beidou satellite navigation.
  • the positioning system can be used as a vehicle antenna device for the dual-mode user of the Beidou satellite navigation and positioning system.
  • FIG. 1 is a schematic cross-sectional view of a satellite positioning antenna device according to an embodiment of the present invention
  • Figure 2 is a front elevational view of the upper layer microstrip antenna of the satellite positioning antenna device of Figure 1;
  • Figure 3 is a front elevational view of the intermediate layer microstrip antenna of the satellite positioning antenna device of Figure 1;
  • Figure 4 is a satellite positioning antenna device of Figure 1. Front view of the lower layer microstrip antenna.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the technical problems, technical solutions and beneficial effects of the present invention more clear and clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the radiation patch is a thin metal having a geometrically symmetrical pattern covering the dielectric plate and having a shape including a circle, a square, a polygon, etc., and the radiation patch functions to radiate electromagnetic waves externally.
  • the function of the phase-shifted feed network is a one-two-division power splitter with equal amplitudes at the output and a phase difference of 90°.
  • FIG. 1 it is a schematic cross-sectional view of a satellite positioning antenna device according to an embodiment of the present invention.
  • the antenna device includes a PCB board 7 with a phase shifting feed network on the back side, and is located on the PCB board 7 .
  • the upper microstrip antenna 1 includes an upper microstrip antenna dielectric plate 4 and an upper microstrip antenna radiating patch layer 8;
  • the intermediate layer microstrip antenna 2 includes an intermediate layer microstrip antenna dielectric plate 5 and an intermediate layer microstrip antenna radiating patch.
  • the lower layer microstrip antenna 3 includes a lower layer microstrip antenna dielectric plate 6 and a lower layer microstrip antenna radiation patch layer 10; a feed probe 12 of the lower layer microstrip antenna, and a feed probe of the intermediate layer microstrip antenna 13, the upper level
  • the microstrip antenna-fed coaxial cable 14 is connected to the phase-shifted feed network through the PCB board, and the lower layer microstrip antenna has a first metallization hole 15 at a central position thereof, and the intermediate layer microstrip antenna has a central position at the center
  • the second metallization hole 16 the intermediate layer microstrip antenna feed probe passes through the third metallization hole 18 of the lower layer microstrip antenna.
  • the upper layer microstrip antenna 1, the intermediate layer microstrip antenna 2, the lower layer microstrip antenna 3, the PCB board 7 and the metal reflective base 17 are fixed together, for example, in the embodiment of the present invention, the screw 11 passing through the edge
  • the upper microstrip antenna 1, the intermediate layer microstrip antenna 2, the lower microstrip antenna 3, the PCB board 7, and the metal reflective base 17 are fixed together.
  • the upper layer microstrip antenna dielectric board 4, the intermediate layer microstrip antenna dielectric board 5, and the lower layer microstrip antenna dielectric board 6 are all circular and have the same diameter and are coaxially stacked; preferably, the PCB The plate has a circular shape and is coaxially stacked with the upper microstrip antenna dielectric plate 4, the intermediate microstrip antenna dielectric plate 5, and the lower microstrip antenna dielectric plate 6.
  • the dielectric constants of the upper layer microstrip antenna dielectric plate 4, the intermediate layer microstrip antenna dielectric plate 5, and the lower microstrip antenna dielectric plate 6 are different.
  • the metal reflective base 17 is provided with an annular reflective baffle having a suitable distance from the radiation patch of each layer of the microstrip antenna, the distance being determined according to actual debugging.
  • the annular reflective baffle does not affect the circular polarization axis ratio of each layer of the microstrip antenna, but affects the direction of the microstrip antenna, especially the direction of the lower microstrip antenna and the intermediate layer microstrip antenna.
  • the low elevation gain of each layer of the microstrip antenna, especially the lower layer microstrip antenna and the intermediate layer microstrip antenna, is effectively improved.
  • the annular reflective baffle can also reduce the resonant frequency of the antenna, thereby reducing the size of the microstrip antenna, and miniaturizing the satellite positioning antenna device.
  • the area of the upper radiation patch is always smaller than that of the lower radiation patch.
  • the area of the upper microstrip antenna 4 radiating patch is smaller than that of the intermediate layer microstrip antenna 5.
  • the patch, the area of the radiation patch of the intermediate layer microstrip antenna 5 is smaller than the radiation patch of the lower layer microstrip antenna 6.
  • the upper antenna always uses the radiating patch on the lower antenna as the grounding or reflecting surface, and the increased reflecting surface can increase the gain of the antenna (including vertex gain and low elevation gain)
  • the upper layer antenna 1 is fed through a coaxial cable 14: one end of the inner core of the coaxial cable 14 is connected to the radiation patch 8 of the upper antenna 1 with the antenna, the coaxial cable
  • the other end of the inner core is connected to the phase shifting feed network, for example, by soldering;
  • the shielding layer of the coaxial cable 14 and the grounding of the upper microstrip antenna 1 (metal reflective base) are connected by soldering, and grounded
  • the solder joint size is smaller than the metallized hole at the center of the intermediate layer microstrip antenna 2.
  • the center of the upper T-band antenna 1 has a non-metallized hole, and the aperture size is the same as the inner core size of the coaxial line 14.
  • the inner core of the coaxial cable passes through the non-metallized hole and is soldered to the upper radiation patch.
  • the upper microstrip antenna 1 has a circular shape and has a screw hole 19, but the upper microstrip antenna 1 is not limited to a circular shape, and may be a square or the like.
  • the operating frequency of the upper T-band antenna corresponds to the S-band of the Beidou satellite system of 2491.75 MHz, and the working bandwidth is narrow, so that the single-feed is sufficient to meet the requirements, and the coaxial cable core can be connected to the radiating patch.
  • the single-feed mode in which the coaxial shielding layer and the reflective surface of the upper microstrip antenna are connected, and the right-hand circular polarization is realized by the method of generating the perturbation by the chamfer of the radiating patch 8 to better reduce the loss of the feeding network. , improve the gain index of the antenna.
  • the intermediate layer microstrip antenna 2 is circular, and 19 is a screw hole.
  • the intermediate layer microstrip antenna 2 is fed by a double probe: the feed probe 13 first passes through the dielectric plate 5 of the intermediate layer microstrip antenna 2, and then passes through the metallization hole 18 in the lower microstrip antenna, and A phase-shift feed network connection on the back of the PCB board.
  • the feeding probe 13 and the radiation patch 9 of the intermediate layer microstrip antenna 2 are welded to form a convex soldering point, so it is necessary to dig two shallow holes on the grounding surface of the upper microstrip antenna 1 to avoid the solder joint. .
  • the intermediate layer microstrip antenna 2 has a metallization hole 16 at the center position, and the radiation patch 9 of the intermediate layer microstrip antenna 2 is connected to the ground.
  • the metallization hole 16 functions to ensure that the Teflon medium and the metal probe plus the metallization holes in the interior thereof constitute a coaxial line structure.
  • the intermediate layer microstrip antenna 2 is circular, but not limited to a circular shape; the radiation patch 9 of the intermediate layer microstrip antenna 2 is square, but not limited to a square, and may also be a circular shape, a polygonal shape, or the like. .
  • the high-frequency plate medium having a large thickness is selected.
  • the feed mode selects the dual probe feed to ensure good circular polarization axis ratio and low elevation gain diagram. It is an indicator of the antenna, which means that the antenna is 360° to the azimuth plane at a certain elevation angle. Internal gain maximum and minimum Half of the difference.
  • the double probe is connected to the phase shift feeding network on the back side of the PCB through the medium of the intermediate layer and the metallized hole of the lower layer, and is respectively given according to the right circular polarization of B1 and the left circular polarization of L These two probes correspond to +90. Phase difference or -90. The phase difference is used to achieve the desired left-hand circular polarization or right-hand circular polarization.
  • the lower microstrip antenna 3 is circular and 19 is a screw hole.
  • the lower microstrip antenna 3 is also fed with a dual probe: the feed probe 12 directly passes through the dielectric plate 6 of the lower microstrip antenna 3 and is connected to a phase shift feed network on the back side of the PCB 7.
  • the feeding probe 12 and the radiation patch 10 of the lower microstrip antenna 3 are welded to form a convex soldering point, so it is necessary to dig two shallow holes on the ground plane of the intermediate layer microstrip antenna 2 to avoid the solder joint. .
  • the lower microstrip antenna 3 has two metallization holes 18 at the feed probe of the intermediate layer microstrip antenna 2.
  • the metallized holes 18 are filled with a Teflon dielectric material, and together with the feed probe 13 constitute a coaxial line structure.
  • the lower layer microstrip antenna 3 has a metallization hole 15 at the center position, so that the microstrip antennas of each layer are well grounded. It should be noted that the lower layer microstrip antenna 3 is circular, but not limited to a circular shape.
  • the radiation patch 10 of the lower microstrip antenna 3 is square, but not limited to a square, and may be a circle, a polygon or the like.
  • the lower layer microstrip antenna operates at 1268.52MHz with a bandwidth of 20MHz.
  • the high frequency plate medium with a low dielectric constant is used to meet the bandwidth requirement.
  • the dual feed mode is used to obtain a good circular polarization axis ratio and better.
  • the low elevation angle gain pattern is not rounded. Its right circular polarization is imparted to the two feed probes 90. The phase difference is achieved.
  • the intermediate layer microstrip antenna and the lower layer microstrip antenna have a metallized hole with a uniform diameter at a central position, and the metallized hole ensures that the ground between the layers of the antenna is in good contact with the ground of the PCB.
  • the PCB board and the circular metal reflection base are well grounded, so that the grounding of each layer antenna and the circular metal reflection base is good.
  • the above-mentioned lower layer microstrip antenna has two metallization holes, so that the radiation patch of the intermediate layer microstrip antenna and the lower microstrip antenna radiation patch are well connected to the ground, and the Teflon medium is filled in the metallization hole.
  • the material, and the metal feed probe through the metallized hole form a 50 ohm coaxial structure to achieve dual probe feed to the intermediate layer microstrip antenna.
  • the embodiment of the present invention has the following features as compared with the existing circularly polarized antenna: B3/B1/L/S quad-band with good circular polarization axis ratio, high elevation angle gain, and high transmission and isolation isolation can be provided at the same time.
  • the circularly polarized signal is very suitable for the Beidou satellite navigation and positioning system, and can be used as the vehicle antenna of the dual-mode user of the Beidou satellite navigation and positioning system.
  • the antenna device is designed for the Beidou satellite system, the antenna device is not limited to use in the Beidou satellite system, and can be applied to other satellite systems.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

La présente invention porte sur une technologie d'antenne. L'invention porte sur un dispositif d'antenne de positionnement de satellite, qui réalise un faible gain d'angle d'élévation, un bon rapport axial de polarisation circulaire et un degré d'isolation d'émission/réception élevé. Le dispositif d'antenne de positionnement de satellite comprend une carte PCB dont la surface arrière comporte un réseau d'alimentation de déphasage, et une antenne microruban de couche supérieure, une antenne microruban de couche milieu et une antenne microruban de couche inférieure qui sont localisées sur la carte PCB, l'antenne microruban de couche supérieure comprenant une plaque de diélectrique de l'antenne microruban de couche supérieure et une couche de plaque de rayonnement de l'antenne microruban de couche supérieure; l'antenne microruban de couche milieu comprenant une plaque de diélectrique de l'antenne microruban de couche milieu et une couche de plaque de rayonnement de l'antenne microruban de couche milieu; et l'antenne microruban de couche inférieure comprenant une plaque de diélectrique de l'antenne microruban de couche inférieure et une couche de plaque de rayonnement de l'antenne microruban de couche inférieure. Des câbles coaxiaux d'une sonde d'alimentation de l'antenne microruban de couche inférieure, d'une sonde d'alimentation de l'antenne microruban de couche milieu et d'une sonde d'alimentation de l'antenne microruban de couche supérieure sont connectés au réseau d'alimentation de déphasage. L'antenne microruban de couche inférieure comporte un premier trou métallisé au niveau de l'emplacement central, l'antenne microruban de couche milieu comporte un second trou métallisé au niveau de l'emplacement central, et la sonde d'alimentation de l'antenne microruban de couche milieu traverse un troisième trou métallisé disposé dans l'antenne microruban de couche inférieure.
PCT/CN2013/084715 2013-05-30 2013-09-30 Dispositif d'antenne de positionnement de satellite WO2014190652A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102084577A CN103311670A (zh) 2013-05-30 2013-05-30 一种卫星定位天线装置
CN201310208457.7 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014190652A1 true WO2014190652A1 (fr) 2014-12-04

Family

ID=49136635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084715 WO2014190652A1 (fr) 2013-05-30 2013-09-30 Dispositif d'antenne de positionnement de satellite

Country Status (2)

Country Link
CN (1) CN103311670A (fr)
WO (1) WO2014190652A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462929A (zh) * 2017-03-14 2019-11-15 阿莫技术有限公司 多层贴片天线
CN112151950A (zh) * 2020-09-11 2020-12-29 上海圣丹纳无线科技有限公司 一种叠加空气介质型测量天线
EP3859880A4 (fr) * 2018-09-28 2021-11-17 Vivo Mobile Communication Co., Ltd. Dispositif terminal

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置
CN104183919B (zh) * 2014-07-11 2017-07-28 深圳市华信天线技术有限公司 组合天线
CN104868236A (zh) * 2015-04-16 2015-08-26 深圳市华信天线技术有限公司 抗载微带天线
CN105305046B (zh) * 2015-10-23 2017-11-17 福州大学 电磁耦合馈电北斗一代卫星导航收发天线
CN106785320A (zh) * 2015-12-22 2017-05-31 中国电子科技集团公司第二十研究所 一种相位中心稳定的gnss掩星定位天线
CN207217783U (zh) * 2017-08-08 2018-04-10 深圳市华信天线技术有限公司 一种多功能gnss天线
CN112531356B (zh) * 2019-09-18 2022-05-03 北京小米移动软件有限公司 天线结构及移动终端
CN111668600B (zh) * 2020-06-28 2024-04-19 成都海澳科技有限公司 一种分体式导航天线
CN114824766B (zh) * 2021-01-19 2023-05-26 大唐移动通信设备有限公司 一种多模式导航天线
CN113794055A (zh) * 2021-08-31 2021-12-14 东南大学 一种宽带高增益双圆极化微带天线及通讯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999608A1 (fr) * 1998-11-04 2000-05-10 Thomson-Csf Antenne imprimée multifonctions
CN202678526U (zh) * 2012-06-28 2013-01-16 上海海积信息科技有限公司 一种北斗一代收发和北斗二代b3组合天线
CN202930564U (zh) * 2012-11-29 2013-05-08 深圳市鼎耀科技有限公司 一种多频卫星导航天线
CN103259085A (zh) * 2013-05-02 2013-08-21 深圳市华信天线技术有限公司 一种组合天线及手持天线装置
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117963B (zh) * 2011-03-11 2012-08-29 深圳市华信天线技术有限公司 一种双频天线
CN102117962B (zh) * 2011-03-11 2012-08-29 深圳市华信天线技术有限公司 一种双频天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999608A1 (fr) * 1998-11-04 2000-05-10 Thomson-Csf Antenne imprimée multifonctions
CN202678526U (zh) * 2012-06-28 2013-01-16 上海海积信息科技有限公司 一种北斗一代收发和北斗二代b3组合天线
CN202930564U (zh) * 2012-11-29 2013-05-08 深圳市鼎耀科技有限公司 一种多频卫星导航天线
CN103259085A (zh) * 2013-05-02 2013-08-21 深圳市华信天线技术有限公司 一种组合天线及手持天线装置
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462929A (zh) * 2017-03-14 2019-11-15 阿莫技术有限公司 多层贴片天线
EP3598573A4 (fr) * 2017-03-14 2020-12-23 Amotech Co., Ltd. Antenne patch multicouche
CN110462929B (zh) * 2017-03-14 2022-03-01 阿莫技术有限公司 多层贴片天线
EP3859880A4 (fr) * 2018-09-28 2021-11-17 Vivo Mobile Communication Co., Ltd. Dispositif terminal
US11688953B2 (en) 2018-09-28 2023-06-27 Vivo Mobile Communication Co., Ltd. Terminal device
CN112151950A (zh) * 2020-09-11 2020-12-29 上海圣丹纳无线科技有限公司 一种叠加空气介质型测量天线

Also Published As

Publication number Publication date
CN103311670A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014190652A1 (fr) Dispositif d'antenne de positionnement de satellite
JP4964294B2 (ja) マルチバンド逆l字状アンテナ
CN107895846B (zh) 一种具有宽频带的圆极化贴片天线
CN101752664B (zh) 基于正交耦合馈电的环形圆极化陶瓷天线
CN103280633B (zh) 一种卫星定位天线装置
US11196175B2 (en) Antenna device
CN106711596B (zh) 一种宽轴比波束宽度的宽带gnss天线
CN103151606A (zh) 一种嵌套式Koch分形北斗双频微带天线
CN104466380A (zh) 平面双频双圆极化阵列天线
CN110289483A (zh) 双频双圆极化导航测控天线馈源
JPH03166803A (ja) 二周波分離給電円偏波用マイクロストリップアンテナ
TW201628350A (zh) 微帶天線收發器
CN103794846B (zh) 一种双频圆极化北斗天线
WO2019196383A1 (fr) Antenne plane à polarisation circulaire bidirectionnelle et à émission par l'arrière à large faisceau
WO2022166941A1 (fr) Antenne à bande ultralarge et réseau d'antennes
EP4101027A1 (fr) Système d'antenne pour signaux à polarisation circulaire
CN107611606B (zh) 天线结构和终端
RU2480870C1 (ru) Многодиапазонная антенна круговой поляризации с метаматериалом
CN109004352A (zh) 一种收发一体圆极化组合天线
US20110291909A1 (en) Dual band antenna, in particular for satellite navigation applications
CN115882223A (zh) 双频双圆极化天线和天线系统
JP2022054525A (ja) 全地球測位衛星システム用基板型アンテナ
US20240283145A1 (en) Antenna Arrangement, Transceiver Arrangement, Communication System, Actuator Device, and Method for Operating an Antenna Arrangement
JP5692544B2 (ja) アンテナ
CN208272132U (zh) 一种收发一体圆极化组合天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885969

Country of ref document: EP

Kind code of ref document: A1