WO2014190652A1 - 一种卫星定位天线装置 - Google Patents

一种卫星定位天线装置 Download PDF

Info

Publication number
WO2014190652A1
WO2014190652A1 PCT/CN2013/084715 CN2013084715W WO2014190652A1 WO 2014190652 A1 WO2014190652 A1 WO 2014190652A1 CN 2013084715 W CN2013084715 W CN 2013084715W WO 2014190652 A1 WO2014190652 A1 WO 2014190652A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip antenna
antenna
layer
layer microstrip
radiation patch
Prior art date
Application number
PCT/CN2013/084715
Other languages
English (en)
French (fr)
Inventor
王春华
邹天云
黄毅
Original Assignee
深圳市华信天线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华信天线技术有限公司 filed Critical 深圳市华信天线技术有限公司
Publication of WO2014190652A1 publication Critical patent/WO2014190652A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to the field of antenna technologies, and in particular, to a satellite positioning antenna device. Background technique
  • the vehicle antenna device is one of the key components of the terminal positioning and communication system and has a significant impact on the performance of the system.
  • a large number of satellite positioning antenna devices such as mobile terminals such as onboard, shipboard, and airborne, are required.
  • the antenna design has the following technical difficulties:
  • satellite positioning antennas tend to impose higher requirements on the antenna's low elevation gain, which requires the antenna's low elevation gain to be high enough.
  • the transmitting frequency band of the Beidou system is 1616.68MHz, and the adjacent receiving bands are 1268.52MH and 1561.098MHz.
  • the high frequency board material with a dielectric constant of not 1 (generally greater than 2) is used.
  • the difference in the size of the radiating patch of the microstrip antenna is small, and the mutual coupling causes the isolation between the antennas to be deteriorated.
  • the isolation between the transmitting and receiving ports is required to reach a certain standard, so how to improve the transmission and isolation isolation of the antenna. It is also a major difficulty in design.
  • the Beidou satellite communication uses a circularly polarized signal.
  • the antenna on the satellite positioning antenna device must also have good circular polarization performance, so that the antenna can improve the working efficiency.
  • the technical problem solved by the present invention is to provide a satellite positioning antenna device that satisfies the requirements of low elevation gain, good circular polarization axis ratio, and high transmission and reception isolation.
  • An embodiment of the present invention provides a satellite positioning antenna device, including a PCB board with a phase shifting feed network on the back side, and an upper layer microstrip antenna, an intermediate layer microstrip antenna, and a lower layer microstrip antenna on the PCB board;
  • the upper microstrip antenna comprises an upper microstrip antenna dielectric plate and an upper microstrip antenna radiating patch layer
  • the intermediate layer microstrip antenna comprises an intermediate layer microstrip antenna dielectric plate and an intermediate layer microstrip antenna radiating patch layer
  • the lower layer microstrip antenna comprises Lower microstrip antenna dielectric plate and lower microstrip antenna radiation patch layer, feed probe of lower microstrip antenna, feed probe of intermediate layer microstrip antenna, and coaxial cable connection phase shift of upper microstrip antenna feed
  • the lower layer microstrip antenna has a first metallization hole at a central position
  • the middle layer microstrip antenna has a second metallization hole at a central position
  • the intermediate layer microstrip antenna feed probe passes through a lower layer microstrip antenna
  • the satellite positioning antenna device further includes a metal reflective base, and the metal reflective base has an annular reflective baffle.
  • the upper microstrip antenna, the intermediate layer microstrip antenna, the lower microstrip antenna, the PCB board, and the metal reflective base are fixed together.
  • the satellite positioning antenna device wherein the upper layer microstrip antenna dielectric plate, the intermediate layer microstrip antenna dielectric plate and the lower layer microstrip antenna dielectric plate have the same diameter, are coaxially stacked, and are dielectrically The constants are not the same.
  • the satellite positioning antenna device wherein an upper microstrip antenna radiating patch has an area smaller than an intermediate layer antenna radiating patch, and an intermediate layer antenna radiating patch has an area smaller than a lower T-band antenna radiating patch.
  • the satellite positioning antenna device wherein the upper layer antenna is connected to the phase shifting feed network through another end of a coaxial coaxial cable.
  • the satellite positioning antenna device wherein the intermediate layer antenna
  • the feed probe is passed through the intermediate layer microstrip antenna dielectric plate and then connected to the phase shift feed network on the back side of the PCB through a metallization hole in the lower microstrip antenna.
  • the satellite positioning antenna device wherein the lower layer microstrip antenna is fed by a double probe, and the feeding probe passes through a lower layer microstrip antenna dielectric plate and is moved to the back of the PCB board.
  • the electrical network is connected.
  • the satellite positioning antenna device wherein the intermediate layer antenna and the lower layer microstrip antenna have a metallized hole with a uniform diameter at a central position, and each layer of the antenna is ensured by a metallized hole.
  • the grounding between the two is in contact with the ground of the PCB.
  • the satellite positioning antenna device wherein the lower layer microstrip antenna further has two metallization holes for connecting the intermediate layer microstrip antenna radiation patch and the lower layer microstrip antenna radiation patch to the ground.
  • the upper layer antenna radiation patch layer, the intermediate layer microstrip antenna radiation patch layer, and the lower layer microstrip antenna radiation patch layer are circular.
  • a quad-frequency circularly polarized signal with a good circular polarization axis ratio, high elevation angle gain, and high transmission and reception isolation can be simultaneously provided, which is very suitable for Beidou satellite navigation.
  • the positioning system can be used as a vehicle antenna device for the dual-mode user of the Beidou satellite navigation and positioning system.
  • FIG. 1 is a schematic cross-sectional view of a satellite positioning antenna device according to an embodiment of the present invention
  • Figure 2 is a front elevational view of the upper layer microstrip antenna of the satellite positioning antenna device of Figure 1;
  • Figure 3 is a front elevational view of the intermediate layer microstrip antenna of the satellite positioning antenna device of Figure 1;
  • Figure 4 is a satellite positioning antenna device of Figure 1. Front view of the lower layer microstrip antenna.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the technical problems, technical solutions and beneficial effects of the present invention more clear and clear, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the radiation patch is a thin metal having a geometrically symmetrical pattern covering the dielectric plate and having a shape including a circle, a square, a polygon, etc., and the radiation patch functions to radiate electromagnetic waves externally.
  • the function of the phase-shifted feed network is a one-two-division power splitter with equal amplitudes at the output and a phase difference of 90°.
  • FIG. 1 it is a schematic cross-sectional view of a satellite positioning antenna device according to an embodiment of the present invention.
  • the antenna device includes a PCB board 7 with a phase shifting feed network on the back side, and is located on the PCB board 7 .
  • the upper microstrip antenna 1 includes an upper microstrip antenna dielectric plate 4 and an upper microstrip antenna radiating patch layer 8;
  • the intermediate layer microstrip antenna 2 includes an intermediate layer microstrip antenna dielectric plate 5 and an intermediate layer microstrip antenna radiating patch.
  • the lower layer microstrip antenna 3 includes a lower layer microstrip antenna dielectric plate 6 and a lower layer microstrip antenna radiation patch layer 10; a feed probe 12 of the lower layer microstrip antenna, and a feed probe of the intermediate layer microstrip antenna 13, the upper level
  • the microstrip antenna-fed coaxial cable 14 is connected to the phase-shifted feed network through the PCB board, and the lower layer microstrip antenna has a first metallization hole 15 at a central position thereof, and the intermediate layer microstrip antenna has a central position at the center
  • the second metallization hole 16 the intermediate layer microstrip antenna feed probe passes through the third metallization hole 18 of the lower layer microstrip antenna.
  • the upper layer microstrip antenna 1, the intermediate layer microstrip antenna 2, the lower layer microstrip antenna 3, the PCB board 7 and the metal reflective base 17 are fixed together, for example, in the embodiment of the present invention, the screw 11 passing through the edge
  • the upper microstrip antenna 1, the intermediate layer microstrip antenna 2, the lower microstrip antenna 3, the PCB board 7, and the metal reflective base 17 are fixed together.
  • the upper layer microstrip antenna dielectric board 4, the intermediate layer microstrip antenna dielectric board 5, and the lower layer microstrip antenna dielectric board 6 are all circular and have the same diameter and are coaxially stacked; preferably, the PCB The plate has a circular shape and is coaxially stacked with the upper microstrip antenna dielectric plate 4, the intermediate microstrip antenna dielectric plate 5, and the lower microstrip antenna dielectric plate 6.
  • the dielectric constants of the upper layer microstrip antenna dielectric plate 4, the intermediate layer microstrip antenna dielectric plate 5, and the lower microstrip antenna dielectric plate 6 are different.
  • the metal reflective base 17 is provided with an annular reflective baffle having a suitable distance from the radiation patch of each layer of the microstrip antenna, the distance being determined according to actual debugging.
  • the annular reflective baffle does not affect the circular polarization axis ratio of each layer of the microstrip antenna, but affects the direction of the microstrip antenna, especially the direction of the lower microstrip antenna and the intermediate layer microstrip antenna.
  • the low elevation gain of each layer of the microstrip antenna, especially the lower layer microstrip antenna and the intermediate layer microstrip antenna, is effectively improved.
  • the annular reflective baffle can also reduce the resonant frequency of the antenna, thereby reducing the size of the microstrip antenna, and miniaturizing the satellite positioning antenna device.
  • the area of the upper radiation patch is always smaller than that of the lower radiation patch.
  • the area of the upper microstrip antenna 4 radiating patch is smaller than that of the intermediate layer microstrip antenna 5.
  • the patch, the area of the radiation patch of the intermediate layer microstrip antenna 5 is smaller than the radiation patch of the lower layer microstrip antenna 6.
  • the upper antenna always uses the radiating patch on the lower antenna as the grounding or reflecting surface, and the increased reflecting surface can increase the gain of the antenna (including vertex gain and low elevation gain)
  • the upper layer antenna 1 is fed through a coaxial cable 14: one end of the inner core of the coaxial cable 14 is connected to the radiation patch 8 of the upper antenna 1 with the antenna, the coaxial cable
  • the other end of the inner core is connected to the phase shifting feed network, for example, by soldering;
  • the shielding layer of the coaxial cable 14 and the grounding of the upper microstrip antenna 1 (metal reflective base) are connected by soldering, and grounded
  • the solder joint size is smaller than the metallized hole at the center of the intermediate layer microstrip antenna 2.
  • the center of the upper T-band antenna 1 has a non-metallized hole, and the aperture size is the same as the inner core size of the coaxial line 14.
  • the inner core of the coaxial cable passes through the non-metallized hole and is soldered to the upper radiation patch.
  • the upper microstrip antenna 1 has a circular shape and has a screw hole 19, but the upper microstrip antenna 1 is not limited to a circular shape, and may be a square or the like.
  • the operating frequency of the upper T-band antenna corresponds to the S-band of the Beidou satellite system of 2491.75 MHz, and the working bandwidth is narrow, so that the single-feed is sufficient to meet the requirements, and the coaxial cable core can be connected to the radiating patch.
  • the single-feed mode in which the coaxial shielding layer and the reflective surface of the upper microstrip antenna are connected, and the right-hand circular polarization is realized by the method of generating the perturbation by the chamfer of the radiating patch 8 to better reduce the loss of the feeding network. , improve the gain index of the antenna.
  • the intermediate layer microstrip antenna 2 is circular, and 19 is a screw hole.
  • the intermediate layer microstrip antenna 2 is fed by a double probe: the feed probe 13 first passes through the dielectric plate 5 of the intermediate layer microstrip antenna 2, and then passes through the metallization hole 18 in the lower microstrip antenna, and A phase-shift feed network connection on the back of the PCB board.
  • the feeding probe 13 and the radiation patch 9 of the intermediate layer microstrip antenna 2 are welded to form a convex soldering point, so it is necessary to dig two shallow holes on the grounding surface of the upper microstrip antenna 1 to avoid the solder joint. .
  • the intermediate layer microstrip antenna 2 has a metallization hole 16 at the center position, and the radiation patch 9 of the intermediate layer microstrip antenna 2 is connected to the ground.
  • the metallization hole 16 functions to ensure that the Teflon medium and the metal probe plus the metallization holes in the interior thereof constitute a coaxial line structure.
  • the intermediate layer microstrip antenna 2 is circular, but not limited to a circular shape; the radiation patch 9 of the intermediate layer microstrip antenna 2 is square, but not limited to a square, and may also be a circular shape, a polygonal shape, or the like. .
  • the high-frequency plate medium having a large thickness is selected.
  • the feed mode selects the dual probe feed to ensure good circular polarization axis ratio and low elevation gain diagram. It is an indicator of the antenna, which means that the antenna is 360° to the azimuth plane at a certain elevation angle. Internal gain maximum and minimum Half of the difference.
  • the double probe is connected to the phase shift feeding network on the back side of the PCB through the medium of the intermediate layer and the metallized hole of the lower layer, and is respectively given according to the right circular polarization of B1 and the left circular polarization of L These two probes correspond to +90. Phase difference or -90. The phase difference is used to achieve the desired left-hand circular polarization or right-hand circular polarization.
  • the lower microstrip antenna 3 is circular and 19 is a screw hole.
  • the lower microstrip antenna 3 is also fed with a dual probe: the feed probe 12 directly passes through the dielectric plate 6 of the lower microstrip antenna 3 and is connected to a phase shift feed network on the back side of the PCB 7.
  • the feeding probe 12 and the radiation patch 10 of the lower microstrip antenna 3 are welded to form a convex soldering point, so it is necessary to dig two shallow holes on the ground plane of the intermediate layer microstrip antenna 2 to avoid the solder joint. .
  • the lower microstrip antenna 3 has two metallization holes 18 at the feed probe of the intermediate layer microstrip antenna 2.
  • the metallized holes 18 are filled with a Teflon dielectric material, and together with the feed probe 13 constitute a coaxial line structure.
  • the lower layer microstrip antenna 3 has a metallization hole 15 at the center position, so that the microstrip antennas of each layer are well grounded. It should be noted that the lower layer microstrip antenna 3 is circular, but not limited to a circular shape.
  • the radiation patch 10 of the lower microstrip antenna 3 is square, but not limited to a square, and may be a circle, a polygon or the like.
  • the lower layer microstrip antenna operates at 1268.52MHz with a bandwidth of 20MHz.
  • the high frequency plate medium with a low dielectric constant is used to meet the bandwidth requirement.
  • the dual feed mode is used to obtain a good circular polarization axis ratio and better.
  • the low elevation angle gain pattern is not rounded. Its right circular polarization is imparted to the two feed probes 90. The phase difference is achieved.
  • the intermediate layer microstrip antenna and the lower layer microstrip antenna have a metallized hole with a uniform diameter at a central position, and the metallized hole ensures that the ground between the layers of the antenna is in good contact with the ground of the PCB.
  • the PCB board and the circular metal reflection base are well grounded, so that the grounding of each layer antenna and the circular metal reflection base is good.
  • the above-mentioned lower layer microstrip antenna has two metallization holes, so that the radiation patch of the intermediate layer microstrip antenna and the lower microstrip antenna radiation patch are well connected to the ground, and the Teflon medium is filled in the metallization hole.
  • the material, and the metal feed probe through the metallized hole form a 50 ohm coaxial structure to achieve dual probe feed to the intermediate layer microstrip antenna.
  • the embodiment of the present invention has the following features as compared with the existing circularly polarized antenna: B3/B1/L/S quad-band with good circular polarization axis ratio, high elevation angle gain, and high transmission and isolation isolation can be provided at the same time.
  • the circularly polarized signal is very suitable for the Beidou satellite navigation and positioning system, and can be used as the vehicle antenna of the dual-mode user of the Beidou satellite navigation and positioning system.
  • the antenna device is designed for the Beidou satellite system, the antenna device is not limited to use in the Beidou satellite system, and can be applied to other satellite systems.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明涉及天线技术,提供了一种卫星定位天线装置,实现低仰角增益、圆极化轴比良好、收发隔离度高。包括背面带有移相馈电网络的PCB板,以及位于PCB板上的上层微带天线、中间层微带天线、下层微带天线;其中,上层微带天线包括上层微带天线介质板和上层微带天线辐射贴片层,中间层微带天线包括中间层微带天线介质板和中间层微带天线辐射贴片层,下层微带天线包括下层微带天线介质板和下层微带天线辐射贴片层,下层微带天线的馈电探针、中间层微带天线的馈电探针以及上层微带天线馈电的同轴电缆连接移相馈电网络,下层微带天线中心位置处具有第一金属化孔,中间层微带天线中心位置处具有第二金属化孔,中间层微带天线馈电探针通过下层微带天线具有的第三金属化孔。

Description

一种卫星定位天线装置
技术领域
本发明涉及天线技术领域, 特别地涉及一种卫星定位天线装置。 背景技术
近年来, 卫星导航、 定位和通信系统在军事和民用领域得到了越来越广 泛的应用,并起到了越来越重要的作用,如美国的 GPS、俄罗斯的 GLONASS、 中国的北斗系统。 车载天线装置是终端定位和通信系统的关键部件之一, 对 系统的性能有十分重要的影响。随着导航定位的大规模应用进入实质性阶段, 需要大量的卫星定位天线装置, 如车载、 舰载、 机载等移动终端, 。 目前在 天线定位装置中, 其天线设计存在以下几方面的技术难点:
1.低仰角增益
在卫星通讯中, 卫星定位天线装置往往对天线的低仰角增益提出较高的 要求, 这就要求天线的低仰角增益必须足够高
2.提高收发双端口天线隔离度技术
如北斗系统的发射频段为 1615.68MHz , 接收频段相邻较近的是 1268.52MH和 1561.098MHz,设计微带天线时由于使用了介电常数不为 1 (一 般大于 2 ) 的高频板材料, 使得微带天线的辐射贴片尺寸差异不大而产生互 耦导致天线间隔离度变差, 而在实际使用中往往要求收发端口之间的隔离度 达到一定的标准, 因此如何提高天线的收发隔离度也是设计中的一大难点。
3.良好的圓极化性能
如北斗卫星通讯使用的是圓极化信号, 根据极化匹配原则, 卫星定位天 线装置上的天线也必须拥有良好的圓极化性能,使得天线能够提高工作效率。
综上, 如何设计出低仰角增益高、 圓极化轴比良好、 收发隔离度高的卫 星定位天线装置是亟待解决的问题。 发明内容
本发明解决的技术问题在于提供了一种卫星定位天线装置, 以满足低仰 角增益、 圓极化轴比良好、 收发隔离度高的要求。
本发明实施例提供了一种卫星定位天线装置, 包括背面带有移相馈电网 络的 PCB板, 以及位于 PCB板上的上层微带天线、 中间层微带天线、 下层 微带天线; 其中, 上层微带天线包括上层微带天线介质板和上层微带天线辐 射贴片层, 中间层微带天线包括中间层微带天线介质板和中间层微带天线辐 射贴片层, 下层微带天线包括下层微带天线介质板和下层微带天线辐射贴片 层, 下层微带天线的馈电探针、 中间层微带天线的馈电探针以及上层微带天 线馈电的同轴电缆连接移相馈电网络, 下层微带天线中心位置处具有第一金 属化孔, 中间层微带天线中心位置处具有第二金属化孔, 中间层微带天线馈 电探针通过下层微带天线具有的第三金属化孔。
优选地, 所述的卫星定位天线装置, 其中, 还包括金属反射底座, 所述 金属反射底座带有环形反射挡板。
作为一个示例, 所述上层微带天线、 中间层微带天线、 下层微带天线、 PCB板和金属反射底座固定在一起。
优选地, 所述的卫星定位天线装置, 其中, 所述上层微带天线介质板、 中间层微带天线介质板和下层微带天线介质板的直径大小一致,呈同轴叠放, 且介电常数不相同。
作为一个示例, 所述的卫星定位天线装置, 其中, 上层微带天线辐射贴 片的面积小于中间层 带天线辐射贴片的面积, 中间层 带天线辐射贴片的 面积小于下层 T带天线辐射贴片的面积。 优选地, 所述的卫星定位天线装置, 其中, 所述上层 带天线通过同轴 同轴电缆的另外一端连接所述移相馈电网络。
作为一个示例, 所述的卫星定位天线装置, 其中, 所述中间层 带天线 釆用双探针馈电, 所述馈电探针穿过中间层微带天线介质板, 然后通过下层 微带天线内的金属化孔, 与 PCB板背面的移相馈电网络连接。
作为一个示例, 所述的卫星定位天线装置, 其中, 所述下层微带天线釆 用双探针馈电, 所述馈电探针通过下层微带天线介质板, 与 PCB板背面的移 相馈电网络相连。
作为一个示例, 所述的卫星定位天线装置, 其中, 所述中间层 带天线 和所述下层微带天线在中心位置均有一个直径大小一致的金属化孔, 通过金 属化孔来保证各层天线间的接地与 PCB板的接地接触。
作为一个示例, 所述的卫星定位天线装置, 其中, 所述下层微带天线还 有两个金属化孔, 以让中间层微带天线辐射贴片和下层微带天线辐射贴片与 接地连接。
优选地, 上述的卫星定位天线装置, 其中, 所述上层 带天线辐射贴片 层、 中间层微带天线辐射贴片层、 下层微带天线辐射贴片层为圓形。
釆用本发明的技术方案, 相对于现有的圓极化天线, 可以同时提供圓极 化轴比良好、 低仰角增益高、 收发隔离度高的四频圓极化信号, 非常适用于 北斗卫星导航定位系统, 可以作为北斗卫星导航定位系统双模用户的车载天 线装置。 附图说明
此处所说明的附图用来提供对本发明的进一步理解, 构成本发明的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是本发明实施例卫星定位天线装置的切面示意图;
图 2是图 1所述卫星定位天线装置的上层微带天线正面示意图; 图 3是图 1所述卫星定位天线装置的中间层微带天线正面示意图; 图 4是图 1所述卫星定位天线装置的下层微带天线的正面示意图。 具体实施方式 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚、 明 白, 以下结合附图和实施例, 对本发明进行进一步详细说明。 应当理解, 此 处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明的保护范 围。 在本发明的实施例中, 除非另作定义, 此处使用的技术术语或者科学术 语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。 本发明 专利申请说明书以及权利要求书中使用的 "第一" 、 "第二" 以及类似的词 语并不表示任何顺序、 数量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 、 "一" 、 "该" 等类似词语也不表示数量限制, 而是表示 存在至少一个。 "包括" 或者 "包含" 等类似的词语意指出现在 "包括" 或 者 "包含" 前面的元件或者物件涵盖出现在 "包括" 或者 "包含" 后面列举 的元件或者物件及其等同, 并不排除其他元件或者物件。 "连接" 或者 "相 连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上面" 、 "下面" "上层" 、 "中间层" "下层" 、 "上" 、 "下" 表示的是相对位置关系, 并不表示绝对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系也可能相应地改变。 在本发明的实施例中, 辐射贴片是一种具有几何对称图形的薄金属, 覆 盖在介质板上, 其形状包含圓形、 方形、 多边形等, 辐射贴片的作用是对外 辐射电磁波。 移相馈电网络起到的作用就是一个一分二等分功率器, 输出端 信号幅度相等, 相位差为 90° 。
如图 1所示, 是本发明实施例卫星定位天线装置的切面示意, 从图 1可 以看到, 该天线装置包含背面带有移相馈电网络的 PCB板 7, 以及位于 PCB 板 7上的上层微带天线 1、 中间层微带天线 2、 下层微带天线 3、 。 其中, 上 层微带天线 1 包括上层微带天线介质板 4和上层微带天线辐射贴片层 8; 中 间层微带天线 2包括中间层微带天线介质板 5和中间层微带天线辐射贴片层 9; 下层微带天线 3 包括下层微带天线介质板 6和下层微带天线辐射贴片层 10; 所述下层微带天线的馈电探针 12、 中间层微带天线的馈电探针 13、 上层 微带天线馈电的同轴电缆 14通过所述 PCB板连接移相馈电网络, 所述下层 微带天线中心位置处具有第一金属化孔 15 , 所述中间层微带天线中心位置处 具有第二金属化孔 16, 中间层微带天线馈电探针通过所述下层微带天线具有 的第三金属化孔 18。
优选地,所述上层微带天线 1、 中间层微带天线 2、下层微带天线 3、 PCB 板 7和金属反射底座 17固定在一起, 例如, 在本发明实施例中, 通过边缘的 螺钉 11将所述所述上层微带天线 1、 中间层微带天线 2、 下层微带天线 3、 PCB板 7和金属反射底座 17固定在一起。
优选地, 所述上层微带天线介质板 4、 中间层微带天线介质板 5、 下层微 带天线介质板 6均为圓形且直径大小一致, 呈同轴叠放; 优选地, 所述 PCB 板为圓形, 且与所述上层微带天线介质板 4、 中间层微带天线介质板 5、 下层 微带天线介质板 6直径大小一致, 呈同轴叠放。 所述上层微带天线介质板 4、 中间层微带天线介质板 5、 下层微带天线介质板 6所选用高频板介质的介电 常数不相同。 通过直径相等和介电常数不同的微带天线介质板, 可以使得相 对位置在下层的天线获得较好的低仰角增益, 例如, 所述下层微带天线和中 间层微带天线的低仰角增益得到提高。 优选地, 上述金属反射底座 17带有环形反射挡板, 该反射挡板距离各层 微带天线的辐射贴片有一个合适的距离, 该距离根据实际调试进行确定。 所 述的环形反射挡板不会影响各层微带天线的圓极化轴比, 但会对微带天线的 方向图特别是下层微带天线和中间层微带天线的方向图产生影响, 可以有效 提高各层微带天线特别是下层微带天线和中间层微带天线的低仰角增益。 所 述的环形反射挡板还可以将天线的谐振频率降低,进而将微带天线尺寸缩小 , 起到微型化该卫星定位天线装置的作用。 优选地, 上述卫星定位天线装置中, 在上辐射贴片的面积总比在下的辐 射贴片要小, 作为一个示例, 上层微带天线 4辐射贴片的面积小于中间层微 带天线 5的辐射贴片, 中间层微带天线 5的辐射贴片的面积小于下层微带天 线 6的辐射贴片。 对应地, 在上的天线总是以在下天线的辐射贴片作为接地 即反射面, 且反射面增大可以提高天线的增益 (包含顶点增益和低仰角增 益) „ „ 优选地, 如图 1和图 2所示, 上层 带天线 1通过同轴电缆 14来馈电: 同轴电缆 14内芯的一端与上层 带天线 1的辐射贴片 8连在一起, 同轴电缆 内芯的另外一端连接所述移相馈电网络, 例如可以通过焊接方式固定; 同轴 电缆 14的屏蔽层与上层微带天线 1的接地 (金属反射底座 )通过焊接连接在 一起, 且其接地焊接点大小要比中间层微带天线 2中心处的金属化孔要小。 上层 T带天线 1的中心位置处有一个非金属化孔,孔径大小与同轴线 14的内 芯大小一致, 同轴电缆的内芯穿过该非金属化孔与上层的辐射贴片相焊接。 作为示例上层微带天线 1为圓形, 具有螺丝孔 19, 但上层微带天线 1不限于 圓形, 也可以为方形等。 作为一个示例, 所述上层 T带天线的工作频率对应于北斗卫星系统的 S 波段 2491.75MHz, 工作带宽较窄因此釆用单馈足以满足要求, 可以釆用同轴 电缆内芯与辐射贴片连接、 同轴线屏蔽层与上层微带天线的反射面连接的单 馈方式, 通过辐射贴片 8切角产生微扰的方法来实现右旋圓极化, 可以更好 的降低馈电网络的损耗, 提高天线的增益指标。
优选地, 如图 1和图 3所示, 中间层微带天线 2为圓形, 19为螺丝孔。 所述中间层微带天线 2釆用双探针馈电:馈电探针 13先穿过中间层微带天线 2的介质板 5 , 然后穿过下层微带天线内的金属化孔 18 , 与 PCB板 Ί背面的 移相馈电网络连接。馈电探针 13与中间层微带天线 2的辐射贴片 9焊接后会 形成一个凸起的焊接点, 因此需要在上层微带天线 1 的接地面上挖两个浅孔 来避空焊接点。 中间层微带天线 2中心位置处有一个金属化孔 16, 将中间层 微带天线 2的辐射贴片 9和接地连接起来。该金属化孔 16作用是保证其内部 的 Teflon介质和金属探针加上金属化孔共同组成同轴线结构。 需要指出, 现 例中间层微带天线 2为圓形, 但不限于圓形; 现例中间层微带天线 2的辐射 贴片 9为方形, 但不限于方形, 也可以为圓形、 多边形等。 作为一个示例, 由于处在中间层且要同时兼顾北斗导航定位系统中频率 相邻的 B1波段即 1561.098MHz和 L波段即 1615.68MHz, 其工作带宽较宽, 则选用厚度较大的高频板介质来展宽工作带宽。 馈电方式选择双探针馈电来 保证良好的圓极化轴比和低仰角增益方向图的不圓度要求 (是天线的一个指 标, 是指天线在某一个俯仰角上对于方位面 360° 内增益最大值与最小值之 差值的一半。 ) , 所述双探针通过中间层的介质和下层的金属化孔, 与 PCB 板背面的移相馈电网络连接, 根据 B1的右旋圓极化和 L的左旋圓极化特性, 分别赋予这两个探针对应的 + 90。 相位差或者 - 90。 相位差来实现所需要的 左旋圓极化或者右旋圓极化。 优选地, 如图 1和图 4所示, 所述下层微带天线 3为圓形, 19为螺丝孔。 所述下层微带天线 3也釆用双探针馈电:馈电探针 12直接穿过下层微带天线 3的介质板 6, 与 PCB板 7背面的移相馈电网络相连。 馈电探针 12与下层微 带天线 3的辐射贴片 10焊接后会形成一个凸起的焊接点, 因此需要在中间层 微带天线 2的接地面上挖两个浅孔来避空焊接点。 下层微带天线 3在中间层 微带天线 2馈电探针处有两个金属化孔 18, 金属化孔 18内装有 Teflon介质 材料, 与馈电探针 13共同组成同轴线结构。 所述下层微带天线 3中心位置处 有一个金属化孔 15 , 使得各层微带天线接地良好。 需要指出, 现例下层微带 天线 3为圓形, 但不限于圓形; 现例下层微带天线 3的辐射贴片 10为方形, 但不限于方形, 也可以为圓形、 多边形等。 作为一个示例, 下层微带天线工作于 1268.52MHz, 带宽 20MHz, 选用 介电常数较低的高频板介质来满足带宽要求, 釆用双馈电方式来获得良好的 圓极化轴比和较好的低仰角增益方向图不圓度。 其右旋圓极化通过赋予两个 馈电探针 90。 的相位差来实现。
作为一个示例, 上述的中间层微带天线和下层微带天线在中心位置均有 一个直径大小一致的金属化孔, 通过金属化孔来保证各层天线间的接地与 PCB板的接地良好接触, 而 PCB板与圓形金属反射底座接地良好, 进而实现 各层天线与圓形金属反射底座的接地良好。
作为一个示例, 上述的下层微带天线中有两个金属化孔, 让中间层微带 天线的辐射贴片和下层微带天线辐射贴片与接地连接良好, 同时在金属化孔 内填充 Teflon介质材料,和穿过金属化孔的金属馈电探针组成 50欧姆的同轴 线结构, 实现对中间层微带天线的双探针馈电。 综上所述, 本发明实施例相对于现有的圓极化天线具有以下特点: 可以 同时提供圓极化轴比良好、 低仰角增益高、 收发隔离度高的 B3/B1/L/S 四频 圓极化信号, 非常适用于北斗卫星导航定位系统, 可以作为北斗卫星导航定 位系统双模用户的车载天线。 本发明实施例虽然针对北斗卫星系统进行的天线装置的设计, 但本天线 装置并不仅限于在北斗卫星系统中使用, 也可以应用于其他的卫星系统。 上述说明示出并描述了本发明的一个优选实施例, 但如前所述, 应当理解本 发明并非局限于本文所披露的形式, 不应看作是对其他实施例的排除, 而可 用于各种其他组合、 修改和环境, 并能够在本文所述发明构想范围内, 通过 上述教导或相关领域的技术或知识进行改动。 而本领域人员所进行的改动和 变化不脱离本发明的精神和范围, 则都应在本发明所附权利要求的保护范围 内。

Claims

权 利 要 求 书
1、 一种卫星定位天线装置, 包括背面带有移相馈电网络的 PCB板, 以 及位于 PCB板上的上层微带天线、 中间层微带天线、 下层微带天线; 其中, 上层微带天线包括上层微带天线介质板和上层微带天线辐射贴片层, 中间层 微带天线包括中间层微带天线介质板和中间层微带天线辐射贴片层, 下层微 带天线包括下层微带天线介质板和下层微带天线辐射贴片层, 下层微带天线 连接移相馈电网络, 下层微带天线中心位置处具有第一金属化孔, 中间层微 带天线中心位置处具有第二金属化孔, 中间层微带天线馈电探针通过下层微 带天线具有的第三金属化孔。
2、 根据权利要求 1所述的天线装置, 其中, 还包括金属反射底座, 所述 金属反射底座带有环形反射挡板。
3、 根据权利要求 2所述的天线装置, 其中, 所述上层微带天线、 中间层 微带天线、 下层微带天线、 PCB板和金属反射底座固定在一起。
4、 根据权利要求 1所述的天线装置, 其中, 所述上层微带天线介质板、 中间层微带天线介质板和下层微带天线介质板均为圓形且直径大小一致, 呈 同轴叠放; 所述上层微带天线介质板、 中间层微带天线介质板、 下层微带天 线介质板的介电常数不相同。
5、 根据权利要求 4所述的天线装置, 其中, 所述上层微带天线辐射贴片 的面积小于中间层微带天线辐射贴片的面积, 所述中间层微带天线辐射贴片 的面积小于下层 T带天线辐射贴片的面积。
6、 根据权利要求 1至 5任一所述的天线装置, 其中, 所述上层微带天线 起, 所述同轴电缆的另外一端连接所述移相馈电网络。
7、 根据权利要求 6所述的天线装置, 其中, 所述中间层微带天线釆用双 探针馈电, 所述馈电探针穿过中间层微带天线介质板, 然后通过下层微带天 线内的金属化孔, 与 PCB板背面的移相馈电网络连接。
8、 根据权利要求 7所述的天线装置, 其特征在于, 所述下层微带天线釆 用双探针馈电, 所述馈电探针通过下层微带天线介质板, 与 PCB板背面的移 相馈电网络相连。
9、 根据权利要求 7或 8所述的天线装置, 其中, 所述中间层微带天线和 所述下层微带天线在中心位置均有一个直径大小一致的金属化孔, 通过金属 化孔来保证各层天线间的接地与 PCB板的接地接触。
10、 根据权利要求 9所述的天线装置, 其中, 所述下层微带天线还有两 个金属化孔, 以让中间层微带天线辐射贴片和下层微带天线辐射贴片与接地 连接。
11、 根据权利要求 1所述的天线装置, 其中, 所述上层微带天线辐射贴 片层、 中间层微带天线辐射贴片层、 下层微带天线辐射贴片层为圓形。
PCT/CN2013/084715 2013-05-30 2013-09-30 一种卫星定位天线装置 WO2014190652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013102084577A CN103311670A (zh) 2013-05-30 2013-05-30 一种卫星定位天线装置
CN201310208457.7 2013-05-30

Publications (1)

Publication Number Publication Date
WO2014190652A1 true WO2014190652A1 (zh) 2014-12-04

Family

ID=49136635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084715 WO2014190652A1 (zh) 2013-05-30 2013-09-30 一种卫星定位天线装置

Country Status (2)

Country Link
CN (1) CN103311670A (zh)
WO (1) WO2014190652A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462929A (zh) * 2017-03-14 2019-11-15 阿莫技术有限公司 多层贴片天线
CN112151950A (zh) * 2020-09-11 2020-12-29 上海圣丹纳无线科技有限公司 一种叠加空气介质型测量天线
EP3859880A4 (en) * 2018-09-28 2021-11-17 Vivo Mobile Communication Co., Ltd. TERMINAL DEVICE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置
CN104183919B (zh) * 2014-07-11 2017-07-28 深圳市华信天线技术有限公司 组合天线
CN104868236A (zh) * 2015-04-16 2015-08-26 深圳市华信天线技术有限公司 抗载微带天线
CN105305046B (zh) * 2015-10-23 2017-11-17 福州大学 电磁耦合馈电北斗一代卫星导航收发天线
CN106785320A (zh) * 2015-12-22 2017-05-31 中国电子科技集团公司第二十研究所 一种相位中心稳定的gnss掩星定位天线
CN207217783U (zh) * 2017-08-08 2018-04-10 深圳市华信天线技术有限公司 一种多功能gnss天线
CN112531356B (zh) * 2019-09-18 2022-05-03 北京小米移动软件有限公司 天线结构及移动终端
CN111668600B (zh) * 2020-06-28 2024-04-19 成都海澳科技有限公司 一种分体式导航天线
CN114824766B (zh) * 2021-01-19 2023-05-26 大唐移动通信设备有限公司 一种多模式导航天线
CN113794055A (zh) * 2021-08-31 2021-12-14 东南大学 一种宽带高增益双圆极化微带天线及通讯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999608A1 (fr) * 1998-11-04 2000-05-10 Thomson-Csf Antenne imprimée multifonctions
CN202678526U (zh) * 2012-06-28 2013-01-16 上海海积信息科技有限公司 一种北斗一代收发和北斗二代b3组合天线
CN202930564U (zh) * 2012-11-29 2013-05-08 深圳市鼎耀科技有限公司 一种多频卫星导航天线
CN103259085A (zh) * 2013-05-02 2013-08-21 深圳市华信天线技术有限公司 一种组合天线及手持天线装置
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117962B (zh) * 2011-03-11 2012-08-29 深圳市华信天线技术有限公司 一种双频天线
CN102117963B (zh) * 2011-03-11 2012-08-29 深圳市华信天线技术有限公司 一种双频天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999608A1 (fr) * 1998-11-04 2000-05-10 Thomson-Csf Antenne imprimée multifonctions
CN202678526U (zh) * 2012-06-28 2013-01-16 上海海积信息科技有限公司 一种北斗一代收发和北斗二代b3组合天线
CN202930564U (zh) * 2012-11-29 2013-05-08 深圳市鼎耀科技有限公司 一种多频卫星导航天线
CN103259085A (zh) * 2013-05-02 2013-08-21 深圳市华信天线技术有限公司 一种组合天线及手持天线装置
CN103311670A (zh) * 2013-05-30 2013-09-18 深圳市华信天线技术有限公司 一种卫星定位天线装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462929A (zh) * 2017-03-14 2019-11-15 阿莫技术有限公司 多层贴片天线
EP3598573A4 (en) * 2017-03-14 2020-12-23 Amotech Co., Ltd. MULTI-LAYER PATCH ANTENNA
CN110462929B (zh) * 2017-03-14 2022-03-01 阿莫技术有限公司 多层贴片天线
EP3859880A4 (en) * 2018-09-28 2021-11-17 Vivo Mobile Communication Co., Ltd. TERMINAL DEVICE
US11688953B2 (en) 2018-09-28 2023-06-27 Vivo Mobile Communication Co., Ltd. Terminal device
CN112151950A (zh) * 2020-09-11 2020-12-29 上海圣丹纳无线科技有限公司 一种叠加空气介质型测量天线

Also Published As

Publication number Publication date
CN103311670A (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2014190652A1 (zh) 一种卫星定位天线装置
JP4964294B2 (ja) マルチバンド逆l字状アンテナ
CN107895846B (zh) 一种具有宽频带的圆极化贴片天线
CN101752664B (zh) 基于正交耦合馈电的环形圆极化陶瓷天线
CN103280633B (zh) 一种卫星定位天线装置
CN103151606A (zh) 一种嵌套式Koch分形北斗双频微带天线
CN106711596B (zh) 一种宽轴比波束宽度的宽带gnss天线
CN110289483A (zh) 双频双圆极化导航测控天线馈源
CN104466380A (zh) 平面双频双圆极化阵列天线
JPH03166803A (ja) 二周波分離給電円偏波用マイクロストリップアンテナ
CN103794846B (zh) 一种双频圆极化北斗天线
WO2019196383A1 (zh) 一种宽波束平面背射及双向圆极化天线
TW201628350A (zh) 微帶天線收發器
CN112909512B (zh) 超宽带天线及天线阵列
CN109037971A (zh) 宽轴比带宽双频双圆极化微带阵列天线
WO2021159137A1 (en) Antenna system for circularly polarized signals
RU2480870C1 (ru) Многодиапазонная антенна круговой поляризации с метаматериалом
CN109004352A (zh) 一种收发一体圆极化组合天线
US20110291909A1 (en) Dual band antenna, in particular for satellite navigation applications
CN107611606B (zh) 天线结构和终端
JP2022054525A (ja) 全地球測位衛星システム用基板型アンテナ
JP5692544B2 (ja) アンテナ
CN208272132U (zh) 一种收发一体圆极化组合天线
CN115882223A (zh) 双频双圆极化天线和天线系统
CN107230832B (zh) 一种用于双频精确导航天线的新型馈电网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885969

Country of ref document: EP

Kind code of ref document: A1