WO2014190131A1 - Compact fluid laundry detergent composition - Google Patents
Compact fluid laundry detergent composition Download PDFInfo
- Publication number
- WO2014190131A1 WO2014190131A1 PCT/US2014/039101 US2014039101W WO2014190131A1 WO 2014190131 A1 WO2014190131 A1 WO 2014190131A1 US 2014039101 W US2014039101 W US 2014039101W WO 2014190131 A1 WO2014190131 A1 WO 2014190131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- surfactant
- composition according
- surfactants
- acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38618—Protease or amylase in liquid compositions only
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38636—Preparations containing enzymes, e.g. protease or amylase containing enzymes other than protease, amylase, lipase, cellulase, oxidase or reductase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
Definitions
- the present invention relates to low pH, compact fluid laundry detergent compositions comprising branched surfactants.
- Fluid laundry products such as liquids, gels, pastes and the like, are preferred by many consumers over solid detergents. Many consumers also have a desire to conserve resources and eliminate what they perceive as waste or unnecessary, without a noticeable or significant reduction in the performance of the product. Consequently, there is renewed interest in the concentrated or so-called compact laundry product.
- compaction is not as simple a solution as perceived by consumers.
- a reduction or increase in one or more of the components of a fluid laundry product, such as water, solvent, or surfactant, to arrive at a concentrated or compact formulation means that the relative amount of each component is different as compared to the amount present in a non-compact or dilute product. Thus, significant effort is required to produce a compact product that has comparable performance to a non-compact or dilute product.
- nonionic surfactants which are capable of delivering cleaning that is comparable to the cleaning delivered by anionic surfactants.
- Nonionic surfactants are low foaming as compared to anionic surfactants. Consequently, a compact, nonionic- surfactant- based laundry detergent may be perceived by a consumer as not performing as well as a non- compact, anionic- surfactant-based product, given that consumers tend to equate foaming with cleaning performance.
- One aspect of the invention relates to a compact fluid laundry detergent composition
- a compact fluid laundry detergent composition comprising from about 30% to about 50%, by weight of the composition, of a surfactant system, where the surfactant system comprises from about 35% to about 70%, by weight of the surfactant system, of a branched anionic surfactant; from about 5% to about 15%, by weight of the composition, of a water soluble organic acid; where the composition has a pH of from about 2 to about 7, measured neat.
- Another aspect of the invention relates to methods of cleaning soiled materials. Such methods include pretreatment of soiled material comprising contacting the soiled material with the detergent compositions of the invention.
- low pH detergent composition refers to a detergent composition having a pH ranging from about 2 to about 7, measured neat.
- compositions described herein have a neat pH of from about 2 to about 7, or from about 2.5 to about 6, or from about 3 to about 5.5, or from about 4 to about 5.5.
- compact or “concentrated” refers to a liquid composition that comprises less than about 35% water by the weight of composition.
- recommended doses refers to the amount of compact fluid laundry detergent composition that a consumer should use in any particular usage situation.
- the recommended dose generally ranges from about 5 g to about 50 g per washload.
- the article of commerce has the following recommended doses in function of water hardness and soil level: low soil or soft water dosage is 10 ml to 40ml; medium soil or medium water hardness water dosage 20 to 50 ml; high soil or high water hardness water dosage 30 to 70 ml.
- the water insoluble container has a capacity of may contain from about 3 to about 50, specifically from about 6 to about 50, recommended doses of the compact fluid laundry detergent composition.
- the water insoluble container has a volume of from 250 ml to 1500 ml and a dose capacity of from about 6 to about 50 recommended doses.
- liquid includes liquid, paste, wax, and gel compositions.
- the liquid composition may comprise a solid, including a powder or an agglomerate, e.g., microcapsules, beads, noodles, or one or more pearlized balls. Such a solid element may provide a technical benefit or an aesthetic effect.
- the terms “substantially free of or “substantially free from” means that the indicated material is at the very minimum not deliberately added to the composition to form part of it, or, preferably, is not present at analytically detectable levels. It is meant to include compositions whereby the indicated material is present only as an impurity in one of the other materials deliberately included.
- component or composition levels are in reference to the active portion of that component or composition, and are exclusive of impurities, for example, residual solvents or by-products, which may be present in commercially available sources of such components or compositions.
- cleaning composition includes compositions and formulations designed for cleaning a substrate or soiled material.
- substrates include flexible materials consisting of a network of natural or artificial fibers, including natural, artificial, and synthetic fibers, e.g., cotton, linen, wool, polyester, nylon, silk, acrylic, or blends thereof, and hard surfaces, including natural, artificial, or synthetic surfaces, e.g., tile, granite, grout, glass, composite, vinyl, hardwood, metal, cooking surfaces, plastic, or blends thereof.
- compositions include but are not limited to, laundry cleaning compositions and detergents, fabric softening compositions, fabric enhancing compositions, fabric freshening compositions, laundry prewash, laundry pretreat, laundry additives, spray products, dry cleaning agent or composition, laundry rinse additive, wash additive, post-rinse fabric treatment, ironing aid, unit dose formulation, delayed delivery formulation, liquid hand dishwashing composition, detergent contained on or in a porous substrate or nonwoven sheet, automatic dish-washing agent, hard surface cleaner, and other suitable forms that may be apparent to one skilled in the art in view of the teachings herein..
- Such compositions may be used as a pre-laundering treatment, a post- laundering treatment, may be added during the rinse or wash cycle of the laundering operation, or used in homecare cleaning applications.
- the cleaning compositions may have a form selected from liquid, single-phase or multi-phase unit dose, pouch, gel, paste.
- the cleaning compositions disclosed herein are low pH, compact fluid laundry detergent compositions that comprise branched surfactants, typically a branched anionic surfactant. Without intending to be bound by theory, it is generally shown that pH adjustments can be used to change the microstructures, and thus the appearance and rheology, of detergent compositions.
- Appearance and rheology are aesthetic components of detergent compositions that are known to have a significant impact on consumer acceptance.
- hydrophobic materials such as surfactant
- high ionic strength poses problems for achieving stability, desirable rheology, and acceptable aesthetics.
- the cleaning compositions comprise a surfactant system in an amount sufficient to provide desired cleaning properties.
- the cleaning composition comprises, by weight of the composition, from about 20% to about 70% of a surfactant system.
- the cleaning composition comprises, by weight of the composition, from about 25% to about 60% of the surfactant system.
- the cleaning composition comprises, by weight of the composition, from about 30% to about 50% of the surfactant system.
- the surfactant system may comprise a detersive surfactant selected from anionic surfactants, nonionic surfactants, cationic surfactants, zwitterionic surfactants, amphoteric surfactants, ampholytic surfactants, or mixtures thereof.
- a detersive surfactant encompasses any surfactant or mixture of surfactants that provide cleaning, stain removing, or laundering benefit to soiled material.
- the surfactant system of the cleaning composition comprises from about 1% to about 70%, by weight of the surfactant system, of one or more anionic surfactants. In certain aspects, the surfactant system of the cleaning composition comprises from about 2% to about 60%, by weight of the surfactant system, of one or more anionic surfactants. In further aspects, the surfactant system of the cleaning composition comprises from about 5% to about 30%, by weight of the surfactant system, of one or more anionic surfactants. In some aspects, the surfactant system may consist essentially of, or even consist of one or more anionic surfactants.
- the surfactant system comprises a branched detersive surfactant, typically a branched anionic surfactant.
- Branched Surfactants typically a branched anionic surfactant.
- Suitable branched detersive surfactants include anionic branched surfactants selected from branched sulphate or branched sulphonate surfactants, e.g., branched alkyl sulphate, branched alkyl alkoxylated sulphate, and branched alkyl benzene sulphonates, comprising one or more random alkyl branches, e.g., C 1-4 alkyl groups, typically methyl and/or ethyl groups.
- anionic branched surfactants selected from branched sulphate or branched sulphonate surfactants, e.g., branched alkyl sulphate, branched alkyl alkoxylated sulphate, and branched alkyl benzene sulphonates, comprising one or more random alkyl branches, e.g., C 1-4 alkyl groups, typically methyl and/or ethyl groups.
- the branched detersive surfactant is a mid-chain branched detersive surfactant, typically, a mid-chain branched anionic detersive surfactant, for example, a mid-chain branched alkyl sulphate and/or a mid-chain branched alkyl benzene sulphonate.
- the detersive surfactant is a mid-chain branched alkyl sulphate.
- the mid-chain branches are C 1-4 alkyl groups, typically methyl and/or ethyl groups.
- the branched surfactant comprises a longer alkyl chain, mid-chain branched surfactant compound of the formula:
- a b is a hydrophobic C9 to C22 (total carbons in the moiety), typically from about C12 to about C18, mid-chain branched alkyl moiety having: (1) a longest linear carbon chain attached to the - X-B moiety in the range of from 8 to 21 carbon atoms; (2) one or more CI - C3 alkyl moieties branching from this longest linear carbon chain; (3) at least one of the branching alkyl moieties is attached directly to a carbon of the longest linear carbon chain at a position within the range of position 2 carbon (counting from carbon #1 which is attached to the - X-B moiety) to position CO - 2 carbon (the terminal carbon minus 2 carbons, i.e., the third carbon from the end of the longest linear carbon chain); and (4) the surfactant composition has an average total number of carbon atoms in the A b -X moiety in the above formula within the range of greater than 14.5 to about 17.5 (typically from about 15 to about 17);
- B is a hydrophilic moiety selected from sulfates, sulfonates, amine oxides,
- polyoxyalkylene such as polyoxyethylene and polyoxypropylene
- alkoxylated sulfates polyhydroxy moieties, phosphate esters, glycerol sulfonates, poly gluconates, polyphosphate esters, phosphonates, sulfosuccinates, sulfosuccaminates, polyalkoxylated carboxylates, glucamides, taurinates, sarcosinates, glycinates, isethionates, dialkanolamides,
- monoalkanolamides monoalkanolamides, monoalkanolamide sulfates, diglycolamides, diglycolamide sulfates, glycerol esters, glycerol ester sulfates, glycerol ethers, glycerol ether sulfates, polyglycerol ethers, polyglycerol ether sulfates, sorbitan esters, polyalkoxylated sorbitan esters, ammonioalkanesulfonates, amidopropyl betaines, alkylated quats,
- alkylated/polyhydroxyalkylated quats alkylated/polyhydroxylated quats, alkylated/polyhydroxylated oxypropyl quats, imidazolines, 2-yl-succinates, sulfonated alkyl esters, or sulfonated fatty acids (it is to be noted that more than one hydrophobic moiety may be attached to B, for example as in (At,-X) z -B to give dimethyl quats); and
- X is selected from -CH2- or -C(O)-.
- the A b moiety does not have any quaternary substituted carbon atoms (i.e., 4 carbon atoms directly attached to one carbon atom).
- the resultant surfactant may be anionic, nonionic, cationic, zwitterionic, amphoteric, or ampholytic.
- B is sulfate and the resultant surfactant is anionic.
- the branched surfactant comprises a longer alkyl chain, mid-chain branched surfactant compound of the above formula wherein the A b moiety is a branched primary alkyl moiety having the formula:
- R, Rl, and R2 are each independently selected from hydrogen and C1-C3 alkyl (typically methyl), provided R, Rl, and R2 are not all hydrogen and, when z is 0, at least R or Rl is not hydrogen; w is an integer from 0 to 13; x is an integer from 0 to 13; y is an integer from 0 to 13; z is an integer from 0 to 13; and w + x + y + z is from 7 to 13.
- the branched surfactant comprises a longer alkyl chain, mid-chain branched surfactant compound of the above formula wherein the A b moiety is a branched primary alkyl moiety having a formula selected from: H 3 CH 3
- mid-chain branched surfactant compounds described above, certain points of branching (e.g., the location along the chain of the R, R.1, and/or R2 moieties in the above formula) are preferred over other points of branching along the backbone of the surfactant.
- the formula below illustrates the mid-chain branching range (i.e., where points of branching occur), preferred mid-chain branching range, and more preferred mid-chain branching range for mono- methyl branched alkyl moieties.
- these ranges exclude the two terminal carbon atoms of the chain and the carbon atom immediately adjacent to the -X-B group.
- the formula below illustrates the mid-chain branching range, preferred mid-chain branching range, and more preferred mid-chain branching range for di-methyl substituted alkyl moieties.
- branched surfactants are disclosed in US 6008181, US 6060443, US 6020303, US 6153577, US 6093856, US 6015781, US 6133222, US 6326348, US 6482789, US 6677289, US 6903059, US 6660711, US 6335312, and WO 9918929.
- suitable branched surfactants include those described in W09738956, W09738957, and WOO 102451.
- the branched anionic surfactant comprises a branched modified alkylbenzene sulfonate (MLAS), as discussed in WO 99/05243, WO 99/05242, WO 99/05244, WO 99/05082, WO 99/05084, WO 99/05241, WO 99/07656, WO 00/23549, and WO 00/23548.
- MLAS branched modified alkylbenzene sulfonate
- the branched anionic surfactant comprises a C12/13 alcohol-based (alcohols such as Safol®, Marlipal®, available from Sasol) surfactant comprising a methyl branch randomly distributed along the hydrophobe chain.
- branched anionic detersive surfactants include surfactants derived from alcohols branched in the 2-alkyl position, such as the alcohols sold under the trade names Isalchem®123, Isalchem®125, Isalchem®145, Isalchem®167, which are derived from the oxo process. Due to the oxo process, the branching is situated in the 2-alkyl position.
- These 2-alkyl branched alcohols are typically in the range of CI 1 to C14/C15 in length and comprise structural isomers that are all branched in the 2-alkyl position. These branched alcohols and surfactants are described in US20110033413.
- branched surfactants include those disclosed in US6037313 (P&G), WO9521233 (P&G), US3480556 (Atlantic Richfield), US6683224 (Cognis), US20030225304A1 (Kao), US2004236158A1 (R&H), US6818700 (Atofina), US2004154640 (Smith et al), EP1280746 (Shell), EP1025839 (L'Oreal), US6765119 (BASF), EP1080084 (Dow), US6723867 (Cognis), EP1401792A1 (Shell), EP1401797A2 (Degussa AG), US2004048766 (Raths et al), US6596675 (L'Oreal), EP1136471 (Kao), EP961765 (Albemarle), US6580009 (BASF), US2003105352 (Dado et al), US6573345 (Cryovac), DE10155520 (BASF
- EP1159237B1 BASF
- US20040006250A1 NONE
- EP1230200B1 BASF
- WO2004014826A1 (SHELL), US6703535B2 (CHEVRON), EP1140741B1 (BASF), WO2003095402A1 (OXENO), US6765106B2 (SHELL), US20040167355A1, US6700027B1 (CHEVRON), US20040242946A1 (NONE), WO2005037751A2 (SHELL), WO2005037752A1 (SHELL), US6906230B1 (BASF), WO2005037747A2 (SHELL) OIL COMPANY.
- branched anionic detersive surfactants include surfactant derivatives of isoprenoid-based polybranched detergent alcohols, as described in US 8044249, US 7994369, US 8299308, US 8232432, and US 8232431. Isoprenoid-based surfactants and isoprenoid derivatives are also described in the book entitled “Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids (Vol. two)", Barton and Nakanishi , ⁇ 1999, Elsevier Science Ltd and are included in the structure E, and are hereby incorporated by reference.
- branched anionic detersive surfactants include those derived from anteiso and iso-alcohols. Such surfactants are disclosed in US2013/0053300A1.
- Suitable branched anionic surfactants also include Guerbet-alcohol-based surfactants.
- Guerbet alcohols are branched, primary monofunctional alcohols that have two linear carbon chains with the branch point always at the second carbon position. Guerbet alcohols are chemically described as 2-alkyl-l-alkanols. Guerbet alcohols generally have from 12 carbon atoms to 36 carbon atoms.
- the Guerbet alcohols may be represented by the following formula: (Rl)(R2)CHCH 2 OH, where Rl is a linear alkyl group, R2 is a linear alkyl group, the sum of the carbon atoms in Rl and R2 is 10 to 34, and both Rl and R2 are present. Guerbet alcohols are commercially available from Sasol as Isofol® alcohols and from Cognis as Guerbetol®.
- the surfactant system disclosed herein may comprise any of the branched surfactants described above individually or the surfactant system may comprise a mixture of the branched surfactants described above.
- each of the branched surfactants described above may include bio-based content (e.g., derived from a renewable resource or non-geologically derived, where geologically derived means derived from, for example, petrochemicals, natural gas, or coal; geologically derived materials cannot be easily replenished or regrown, in contrast to plant- or algae-produced oils).
- the branched surfactant has a bio-based content of at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or about 100%.
- the surfactant system of the cleaning composition may comprise a saturated or unsaturated, substituted or unsubstituted, linear anionic surfactant.
- Linear surfactants may be derived from natural triglycerides, linear alpha olefins, e.g., alpha-olefin sulfonate (AOS), or other materials.
- Suitable linear anionic detersive surfactants include linear sulphate and linear sulphonate surfactants.
- Suitable linear sulphonate detersive surfactants include alkyl benzene sulphonate, in one aspect, CI 0-13 alkyl benzene sulphonate.
- Suitable alkyl benzene sulphonate (LAS) may be obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, such as those supplied by Sasol under the tradename Isochem® or those supplied by Petresa under the tradename Petrelab®, other suitable LAB include high 2- phenyl LAB, such as those supplied by Sasol under the tradename Hyblene®.
- a suitable linear anionic detersive surfactant is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, although other synthesis routes, such as HF, may also be suitable.
- a magnesium salt of LAS is used.
- Suitable linear sulphate detersive surfactants include alkyl sulphate, in one aspect, C8-18 alkyl sulphate, or predominantly C12 alkyl sulphate.
- alkyl alkoxylated sulphate in one aspect, alkyl ethoxylated sulphate, in one aspect, a C8-18 alkyl alkoxylated sulphate, in another aspect, a C8-18 alkyl ethoxylated sulphate, typically the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, or from 0.5 to 10, typically the alkyl alkoxylated sulphate is a C8-18 alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, from 0.5 to 7, from 0.5 to 5 or even from 0.5 to 3.
- linear anionic surfactants useful herein are the water-soluble salts of: paraffin sulfonates and secondary alkane sulfonates containing from about 8 to about 24 (and in some examples about 12 to 18) carbon atoms; alkyl glyceryl ether sulfonates, especially those ethers of C 8-18 alcohols (e.g., those derived from tallow and coconut oil). Mixtures of the alkylbenzene sulfonates with the above-described paraffin sulfonates, secondary alkane sulfonates and alkyl glyceryl ether sulfonates are also useful. Further suitable anionic surfactants useful herein may be found in U.S. Patent No.
- the surfactant system of the cleaning composition may comprise a nonionic surfactant.
- the surfactant system comprises up to about 25%, by weight of the surfactant system, of one or more nonionic surfactants, e.g., as a co-surfactant.
- the cleaning compositions comprises from about 0.1% to about 15%, by weight of the surfactant system, of one or more nonionic surfactants.
- the cleaning compositions comprises from about 0.3% to about 10%, by weight of the surfactant system, of one or more nonionic surfactants.
- the cleaning compositions comprise from about 0.15% to about 5%, by weight of the surfactant system, of one or more nonionic surfactants.
- Suitable nonionic surfactants useful herein can comprise any conventional nonionic surfactant. These can include, for e.g., alkoxylated fatty alcohols and amine oxide surfactants. In some examples, the cleaning compositions may contain an ethoxylated nonionic surfactant. These materials are described in U.S. Pat. No. 4,285,841, Barrat et al, issued Aug. 25, 1981.
- the nonionic surfactant may be selected from the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC 2 H 4 ) consultOH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
- R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
- R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms
- nonionic surfactants useful herein include: C 12 -C 18 alkyl ethoxylates, such as, NEODOL ® nonionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates wherein the alkoxylate units are a mixture of ethyleneoxy and propyleneoxy units; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic ® from BASF; C14-C22 mid-chain branched alcohols, BA, as discussed in US 6,150,322; C 14 -C22 mid-chain branched alkyl alkoxylates, BAE X> wherein x is from 1 to 30, as discussed in U.S.
- the surfactant system may comprise a combination of anionic and nonionic surfactant materials.
- the weight ratio of anionic surfactant to nonionic surfactant is at least about 2: 1.
- the weight ratio of anionic surfactant to nonionic surfactant is at least about 3: 1 or at least about 5: 1.
- the weight ratio of anionic surfactant to nonionic surfactant is at least about 10: 1.
- the weight ratio of anionic surfactant to nonionic surfactant is from about 3: 1 to about 15: 1.
- the surfactant system may comprise a cationic surfactant.
- the surfactant system comprises from about 0% to about 7%, or from about 0.1% to about 5%, or from about 1% to about 4%, by weight of the surfactant system, of a cationic surfactant, e.g., as a co-surfactant.
- the cleaning compositions of the invention are substantially free of cationic surfactants and surfactants that become cationic below a pH of 7 or below a pH of 6.
- Non-limiting examples of cationic surfactants include: the quaternary ammonium surfactants, which can have up to 26 carbon atoms include: alkoxylate quaternary ammonium (AQA) surfactants as discussed in US 6,136,769; dimethyl hydroxyethyl quaternary ammonium as discussed in 6,004,922; dimethyl hydroxyethyl lauryl ammonium chloride; polyamine cationic surfactants as discussed in WO 98/35002, WO 98/35003, WO 98/35004, WO 98/35005, and WO 98/35006; cationic ester surfactants as discussed in US Patents Nos. 4,228,042, 4,239,660 4,260,529 and US 6,022,844; and amino surfactants as discussed in US 6,221,825 and WO 00/47708, specifically amido propyldimethyl amine (APA).
- AQA alkoxylate quaternary ammonium
- APA alkoxylate
- zwitterionic surfactants include: derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No.
- betaines including alkyl dimethyl betaine and cocodimethyl amidopropyl betaine, C 8 to C 18 (for example from C 12 to C 18 ) amine oxides and sulfo and hydroxy betaines, such as N- alkyl-N,N-dimethylammino- 1 -propane sulfonate where the alkyl group can be C 8 to C 18 and in certain embodiments from C 10 to C 14 .
- ampholytic surfactants include: aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain.
- One of the aliphatic substituents may contain at least about 8 carbon atoms, for example from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 at column 19, lines 18-35, for suitable examples of ampholytic surfactants.
- amphoteric surfactants include: aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain.
- One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water- solubilizing group, e.g. carboxy, sulfonate, sulfate.
- Examples of compounds falling within this definition are sodium 3-(dodecylamino)propionate, sodium 3- (dodecylamino) propane- 1 -sulfonate, sodium 2-(dodecylamino)ethyl sulfate, sodium 2- (dimethylamino) octadecanoate, disodium 3-(N-carboxymethyldodecylamino)propane 1- sulfonate, disodium octadecyl-imminodiacetate, sodium l-carboxymethyl-2-undecylimidazole, and sodium ⁇ , ⁇ -bis (2-hydroxyethyl)-2-sulfato-3-dodecoxypropylamine. See U.S. Pat. No. 3,929,678 to Laughlin et al., issued Dec. 30, 1975 at column 19, lines 18-35, for examples of amphoteric surfactants.
- the surfactant system comprises an anionic surfactant and, as a co- surfactant, a nonionic surfactant, for example, a C 12 -C 18 alkyl ethoxylate.
- the surfactant system comprises CKTQS alkyl benzene sulfonates (LAS) and, as a co- surfactant, an anionic surfactant, e.g., C 10 -C 18 alkyl alkoxy sulfates (AE X S), where x is from 1-30.
- the surfactant system comprises an anionic surfactant and, as a co- surfactant, a cationic surfactant, for example, dimethyl hydroxyethyl lauryl ammonium chloride.
- the cleaning compositions of the invention may also contain adjunct cleaning additives.
- the adjunct cleaning additives may be selected from soaps, builders, solvents, fabric
- Soap - Soap includes fatty acids and soluble salts thereof.
- Fatty acids and/or soaps or their derivatives are known to possess multiple functionalities in detergents, acting as surfactants, builders, thickeners, foam suppressors etc.
- Soaps are commonly neutralized or partially neutralized in situ in the formulation using neutralizers such as sodium hydroxide, potassium hydroxide and/or alkanolamines, such as MEA.
- Any soluble soap or fatty acid is suitable for use herein, including, lauric, myristic, palmitic stearic, oleic, linoleic, linolenic acid, and mixtures thereof.
- Naturally obtainable fatty acids which are usually complex mixtures, are also suitable (such as tallow, coconut, and palm kernel fatty acids).
- Builder examples include water-soluble alkali metal phosphates, polyphosphates, borates, silicates and also carbonates; water-soluble amino polycarboxylates; water-soluble salts of phytic acid; polycarboxylates; zeolites or aluminosilicates and combinations thereof.
- sodium and potassium triphosphates sodium and potassium triphosphates, pyrophosphates, orthophosphates, hexametaphosphates, tetraborates, silicates, and carbonates; water-soluble salts of mellitic acid, citric acid, and carboxymethyloxysuccinic acid, salts of polymers of itaconic acid and maleic acid, tartrate monosuccinate, tartrate disuccinate.
- the cleaning compositions comprise organic solvent.
- the compositions may comprise from about 0.05% to about 25%, or from about 0.1% to about 15%, or from about 1% to about 10%, or from about 2% to about 5%, by weight of the composition organic solvent.
- the composition may comprise less than about 5%, or less than about 1%, organic solvent.
- the compositions are substantially free of organic solvent.
- the organic solvent may be selected from 1,2-propanediol, methanol, ethanol, glycerol, dipropylene glycol, diethylene glycol (DEG), methyl propanediol, or mixtures thereof.
- Other lower alcohols such C1-C4 alkanolamines, e.g., monoethanolamine and/or triethanolamine, may also be used.
- the organic solvent comprises propanediol or diethylene glycol (DEG).
- Fabric Enhancement Polymers - Fabric enhancement polymers may optionally be included in the cleaning compositions disclosed herein to, for example, aid in the deposition of certain actives, e.g., fabric softening actives.
- Suitable fabric enhancement polymers are typically cationically charged and/or have a high molecular weight. Suitable concentrations of this component are in the range of from about 0.01% to about 50%, or from about 0.1% to 15%, or from about 0.2% to about 5.0%, or from about 0.5% to about 3.0% by weight of the composition.
- the fabric enhancement polymers may be a homopolymer or be formed from two or more types of monomers. The monomer weight of the polymer will generally be between 5,000 and 10,000,000, typically at least 10,000 and preferably in the range 100,000 to 2,000,000.
- Typical fabric enhancement polymers will have cationic charge densities of at least about 0.2 meq/gm, or at least about 0.25 meq/gm, more typically at least about 0.3 meq/gm, but also typically less than about 5 meq/gm, or less than about 3 meq/gm, or less than about 2 meq/gm at the pH of intended use of the composition, which pH will generally range from pH 2 to pH 7.
- the fabric enhancement polymers may be of natural or synthetic origin.
- Suitable fabric enhancement polymers are selected from substituted or unsubstituted polyquaternary ammonium compounds, cationically modified polysaccharides, cationically modified (meth)acrylamide polymers/copolymers, cationically modified (meth)acrylate polymers/copolymers, chitosan, quaternized vinylimidazole polymers/copolymers, dimethyldiallylammonium polymers/copolymers, polyethylene imine based polymers, cationic guar gums, and derivatives thereof, or combinations thereof.
- Suitable fabric enhancement polymers include, for example: a) copolymers of 1- vinyl-2-pyrrolidine and l-vinyl-3-methyl-imidazolium salt (e.g. chloride alt), referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, (CTFA) as Polyquaternium-16; b) copolymers of l-vinyl-2-pyrrolidine and dimethylaminoethyl methacrylate, referred to in the industry (CTFA) as Polyquaternium- 11 ; c) cationic diallyl quaternary ammonium-containing polymers including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, reffered to in the industry (CTFA) as Polyquaternium 6 and Polyquaternium 7, respectively; d) mineral acid salts of amino- alkyl esters of homo- and copolymers of unsaturated carboxylic acids having from 3
- Suitable fabric enhancement polymers include cationic polysaccharide polymers, such as cationic cellulose and derivatives thereof, cationic starch and derivatives thereof, and cationic guar gums and derivatives thereof.
- cationic polysaccharide polymers include quaternary nitrogen-containing cellulose ethers and a cationic guar gum derivative.
- compositions of the present invention may also optionally contain water-soluble ethoxylated amines having clay soil removal and antiredeposition properties.
- the compositions typically contain from about 0.01% to about 5%, by weight of the composition, of these agents.
- Exemplary clay soil removal and antiredeposition agents are described in U.S. Pat. Nos. 4,597,898; 548,744; 4,891,160; European Patent Application Nos. 111,965; 111,984; 112,592; and WO 95/32272.
- Polymeric Soil Release Agent - Polymeric soil release agents may be employed in the present detergent compositions.
- the compositions will generally comprise from about 0.01% to about 10.0%, or from about 0.1% to about 5%, or from about 0.2% to about 3.0%, by weight of the composition, of SRA.
- Suitable SRAs typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
- SRAs include, for example, a variety of charged, e.g., anionic or even cationic (see U.S. Pat. No. 4,956,447), as well as noncharged monomer units and structures may be linear, branched, or even star- shaped. They may include capping moieties which are especially effective in controlling molecular weight or altering the physical or surface- active properties. Structures and charge distributions may be tailored for application to different fiber or textile types and for varied detergent or detergent additive products. SRAs are described in U.S. Pat. Nos.
- SRAs include Texcare® SRN 300 and Texcare® SRN 400, from Clariant.
- Polymeric Dispersing Agents may be utilized at levels of from about 0.1% to about 7%, by weight, in the compositions herein.
- Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used.
- polymeric polycarboxylates include polyethylene glycols, although others known in the art can also be used.
- modified or unmodified polyacrylates, polyacrylate/mealeates, or polyacrylate/methacrylates are useful. Examples of polymeric dispersing agents are found in U.S. Pat. No. 3,308,067.
- Alkoxylated Polyamine Polymers - Soil suspension, grease cleaning, and particulate cleaning polymers may include the alkoxylated polyamines. Such materials include but are not limited to ethoxylated polyethyleneimine, ethoxylated hexamethylene diamine, and sulfated versions thereof. Polypropoxylated derivatives are also included. A wide variety of amines and polyaklyeneimines can be alkoxylated to various degrees, and optionally further modified to provide the abovementioned benefits. A useful example is 600g/mol polyethyleneimine core ethoxylated to 20 EO groups per NH and is available from BASF.
- the composition may comprise a modified hexamentylenediamine.
- the modification of the hexamentylenediamine includes: (1) one or two alkoxylation modifications per nitrogen atom of the hexamentylenediamine.
- the alkoxylation modification consisting of the replacement of a hydrogen atom on the nitrogen of the hexamentylenediameine by a (poly)alkoxylene chain having an average of about 1 to about 40 alkoxy moieties per modification, wherein the terminal alkoxy moiety of the alkoxylene chain is capped with hydrogen, a C1-C4 alkyl, sulfates, carbonates, or mixtures thereof; (2) a substitution of one C1-C4 alkyl moiety and one or two alkoxylation modifications per nitrogen atom of the hexamentylenediamine.
- the alkoxylation modification consisting of the replacement of a hydrogen atom by a (poly)alkoxylene chain having an average of about 1 to about 40 alkoxy moieties per modification wherein the terminal alkoxy moiety of the alkoxylene chain is capped with hydrogen, a C1-C4 alkyl or mixtures thereof; or (3) a combination thereof.
- the alkoxylation may be in the form of ethoxy, propoxy, butoxy or a mixture thereof.
- a referred modified hexamethylenediamine has the general structure below: wherein x is from about 20 to about 30 and approximately 40% of the (poly)alkoxylene chain terminal alkoxy moieties are sulfonated.
- a illustrative modified hexamethylenediamine has the general structure below:
- Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO 91/08281 and PCT 90/01815. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side- chains are of the formula -(CH2CH20)m (CH2)nCH3 wherein m is 2-3 and n is 6-12. The side- chains are ester-linked to the polyacrylate "backbone” to provide a "comb” polymer type structure. The molecular weight can vary, but is typically in the range of about 2000 to about 50,000. Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.
- compositions disclosed herein may also comprise amphiphilic graft co-polymers.
- the amphiphilic graft co-polymer comprises (i) a polyethyelene glycol backbone; and (ii) and at least one pendant moiety selected from polyvinyl acetate, polyvinyl alcohol and mixtures thereof.
- a preferred amphiphilic graft co-polymer is Sokalan HP22, supplied from BASF. Further examples of suitable amphiphilic graft co-polymers are described in US 8143209.
- compositions herein may also contain one or more iron and/or manganese and/or other metal ion chelating agents.
- chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein.
- the chelating agent may be present in the detergent compositions of the present invention at from about 0.2% to about 0.7% or from about 0.3% to about 0.6% by weight of the detergent composition..
- Non-limiting examples of chelants of use in the present invention are found in USPN
- Useful chelants include heavy metal chelating agents, such as diethylenetriaminepentaacetic acid (DTPA) and/or a catechol, e.g., Tiron.
- DTPA diethylenetriaminepentaacetic acid
- Other chelating agents suitable for use herein can be selected from the group consisting of aminocarboxylates, aminophosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
- Chelants of use include, but are not limited to: HEDP (hydroxyethanedimethylenephosphonic acid); MGDA (methylglycinediacetic acid); ethylenediamine disuccinate (EDDS); or mixtures thereof.
- Enzymes - Suitable levels of enzymes in the compositions disclosed herein are from about 0.001% to about 5% by weight of the cleaning composition.
- Suitable enzymes include proteases, amylases, cellulases, lipases, xylogucanases, pectate lyases, mannanases, bleaching enzymes, cutinases, and mixtures thereof.
- accession numbers or IDs shown in parentheses refer to the entry numbers in the databases Genbank, EMBL and Swiss-Prot. For any mutations standard 1 -letter amino acid codes are used with a * representing a deletion. Accession numbers prefixed with DSM refer to microorganisms deposited at Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg lb, 38124 Brunswick (DSMZ). Protease.
- the composition may comprise a protease.
- Suitable proteases include metalloproteases and/or serine proteases, including neutral or alkaline microbial serine proteases, such as subtilisins (EC 3.4.21.62).
- Suitable proteases include those of animal, vegetable or microbial origin.
- such suitable protease may be of microbial origin.
- the suitable proteases include chemically or genetically modified mutants of the aforementioned suitable proteases.
- the suitable protease may be a serine protease, such as an alkaline microbial protease or/and a trypsin-type protease.
- suitable neutral or alkaline proteases include:
- subtilisins EC 3.4.21.62
- Bacillus lentus Bacillus alkalophilus (P27963, ELYA_BACAO)
- Bacillus subtilis Bacillus subtilis
- amyloliquefaciens P00782, SUBT_BACAM
- Bacillus pumilus P075178
- Bacillus gibsonii DSM14391
- trypsin-type or chymotrypsin-type proteases such as trypsin (e.g. of porcine or bovine origin), including the Fusarium protease and the chymotrypsin proteases derived from
- metalloproteases including those derived from Bacillus amyloliquefaciens (P06832, NPRE_BACAM).
- Preferred proteases include those derived from Bacillus gibsonii or Bacillus Lentus such as subtilisin 309 (P29600) and/or DSM 5483 (P29599).
- Suitable commercially available protease enzymes include: those sold under the trade names Alcalase®, Savinase®, Primase®, Durazym®, Polarzyme®, Kannase®, Liquanase®, Liquanase Ultra®, Savinase Ultra®, Ovozyme®, Neutrase®, Everlase® and Esperase® by Novozymes A/S (Denmark); those sold under the tradename Maxatase®, Maxacal®,
- Opticlean® and Optimase® by Solvay Enzymes those available from Henkel/Kemira, namely BLAP (P29599 having the following mutations S99D + S101 R + S103A + V104I + G159S), and variants thereof including BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.
- BLAP P29599 having the following mutations S99D + S101 R + S103A + V104I + G159S
- variants thereof including BLAP R (BLAP with S3T + V4
- Amylase Suitable amylases are alpha-amylases, including those of bacterial or fungal origin. Chemically or genetically modified mutants (variants) are included.
- a preferred alkaline alpha-amylase is derived from a strain of Bacillus, such as Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus stearothermophilus, Bacillus subtilis, or other Bacillus sp., such as Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513, sp 707, DSM 9375, DSM 12368, DSMZ no. 12649, KSM AP1378, KSM K36 or KSM K38.
- Preferred amylases include:
- alpha-amylase derived from Bacillus licheniformis P06278, AMY_BACLI
- variants thereof especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.
- AA560 amylase CBU30457, HD066534
- variants thereof especially the variants with one or more substitutions in the following positions: 26, 30, 33, 82, 37, 106, 118, 128, 133, 149, 150, 160, 178, 182, 186, 193, 203, 214, 231, 256, 257, 258, 269, 270, 272, 283, 295, 296, 298, 299, 303, 304, 305, 311, 314, 315, 318, 319, 339, 345, 361, 378, 383, 419, 421, 437, 441, 444, 445, 446, 447, 450, 461, 471, 482, 484, preferably that also contain the deletions of D 183* and G 184*.
- variants exhibiting at least 90% identity with the wild-type enzyme from Bacillus SP722 (CBU30453, HD066526), especially variants with deletions in the 183 and 184 positions.
- Suitable commercially available alpha-amylases are Duramyl®, Liquezyme® Termamyl®, Termamyl Ultra®, Natalase®, Supramyl®, Stainzyme®, Stainzyme Plus®, Fungamyl® and
- BAN® Novozymes A/S
- Bioamylase® and variants thereof Biocon India Ltd.
- Kemzym® AT 9000 Biozym Ges. m.b.H, Austria
- Rapidase® Purastar®
- Optisize HT Plus® Enzysize®
- Powerase® and Purastar Oxam® Maxamyl® (Genencor International Inc.)
- KAM® KAO, Japan
- Preferred amylases are Natalase®, Stainzyme® and Stainzyme Plus®.
- the composition may comprise a cellulase.
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum.
- the cellulase can include microbial-derived endoglucanases exhibiting endo- beta-l,4-glucanase activity (E.C. 3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% and even 99% identity to the amino acid sequence SEQ ID NO:2 in US 7,141,403) and mixtures thereof.
- Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme®
- the composition comprises a cleaning cellulase belonging to Glycosyl
- Hydrolase family 45 having a molecular weight of from 17kDa to 30 kDa, for example the endoglucanases sold under the tradename Biotouch® NCD, DCC and DCL (AB Enzymes, Darmstadt, Germany).
- Highly preferred cellulases also exhibit xyloglucanase activity, such as Whitezyme®.
- the composition may comprise a lipase.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g., from H. lanuginosa (T. lanuginosus), or from H. insolens, a Pseudomonas lipase, e.g., from P. alcaligenes or P. pseudoalcaligenes, P. cepacia, P. stutzeri, P. fluorescens, Pseudomonas sp. strain SD 705, P. wisconsinensis, a Bacillus lipase, e.g., from B. subtilis, B. stearothermophilus or B. pumilus.
- the lipase may be a "first cycle lipase", preferably a variant of the wild-type lipase from Thermomyces lanuginosus comprising T231R and N233R mutations.
- the wild-type sequence is the 269 amino acids (amino acids 23 - 291) of the Swissprot accession number Swiss-Prot 059952 (derived from Thermomyces lanuginosus (Humicola lanuginosa)).
- Preferred lipases would include those sold under the tradenames Lipex®, Lipolex® and Lipoclean® by
- the composition comprises a variant of Thermomyces lanuginosa (059952) lipase having >90% identity with the wild type amino acid and comprising substitution(s) at T231 and/or N233, preferably T231R and/or N233R.
- composition comprises a variant of Thermomyces lanuginosa (059952) lipase having >90% identity with the wild type amino acid and comprising
- Suitable xyloglucanase enzymes have enzymatic activity towards both xyloglucan and amorphous cellulose substrates, wherein the enzyme is a glycosyl hydrolase (GH) is selected from GH families 5, 12, 44 or 74.
- the glycosyl hydrolase is selected from GH family 44.
- Suitable glycosyl hydrolases from GH family 44 are the XYG1006 glycosyl hydrolase from Paenibacillus polyxyma (ATCC 832) and variants thereof.
- Pectate lyase Suitable pectate lyases are either wild-types or variants of Bacillus-derived pectate lyases (CAF05441, AAU25568) sold under the tradenames Pectawash®, Pectaway® and X-Pect® (from Novozymes A/S, Bagsvaerd, Denmark).
- Mannanase Suitable mannanases are sold under the tradenames Mannaway® (from Novozymes A/S, Bagsvaerd, Denmark), and Purabrite® (Genencor International Inc., Palo Alto, California).
- Suitable bleach enzymes include oxidoreductases, for example oxidases such as glucose, choline or carbohydrate oxidases, oxygenases, catalases, peroxidases, like halo-, chloro-, bromo-, lignin-, glucose- or manganese-peroxidases, dioxygenases or laccases (phenoloxidases, polyphenoloxidases).
- oxidases such as glucose, choline or carbohydrate oxidases
- oxygenases catalases
- peroxidases like halo-, chloro-, bromo-, lignin-, glucose- or manganese-peroxidases, dioxygenases or laccases (phenoloxidases, polyphenoloxidases).
- Suitable commercial products are sold under the Guardzyme® and Denilite® ranges from Novozymes.
- additional, preferably organic, particularly preferably aromatic compounds are incorporated with the bleaching enzyme; these compounds interact with the bleaching enzyme to enhance the activity of the oxidoreductase (enhancer) or to facilitate the electron flow (mediator) between the oxidizing enzyme and the stain typically over strongly different redox potentials.
- Suitable bleaching enzymes include perhydrolases, which catalyse the formation of peracids from an ester substrate and peroxygen source.
- Suitable perhydrolases include variants of the Mycobacterium smegmatis perhydrolase, variants of so-called CE-7 perhydrolases, and variants of wild-type subtilisin Carlsberg possessing perhydrolase activity.
- Cutinase are defined by E.C. Class 3.1.1.73, preferably displaying at least 90%, or 95%, or most preferably at least 98% identity with a wild-type derived from one of Fusarium solani, Pseudomonas Mendocina or Humicola Insolens.
- the alignment of two amino acid sequences is determined by using the Needle program from the EMBOSS package (http://emboss.org) version 2.8.0.
- the Needle program implements the global alignment algorithm described in Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453.
- the substitution matrix used is BLOSUM62, gap opening penalty is 10, and gap extension penalty is 0.5.
- the cleaning compositions may have any desired appearance or aesthetics.
- the composition may be opaque, transparent or translucent, of any color or appearance, such as a pearlescent liquid.
- the composition may contain air or gas bubbles, suspended liquid droplets, simple or multiple emulsion droplets, suspended particles and the like and combinations thereof.
- composition may comprise a perfume, typically in the range from about
- perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80 Annual Edition, published by Schnell Publishing Co. It is usual for a plurality of perfume components to be present in the compositions of the invention, for example four, five, six, seven or more. In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1995]).
- Preferred top notes include rose oxide, citrus oils, linalyl acetate, lavender, linalool, dihydromyrcenol and cis-3- hexanol.
- the perfume is encapsulated, such as a perfume micro capsule.
- Hydrotropes - may contain a hydrotrope.
- Illustrative hydrotropes include urea, toluene sulphonate, xylene sulphonate, cumene sulphonate or mixtures thereof.
- Illustrative salts include sodium, potassium, ammonium, monoethanolamine, triethanolamine or mixtures thereof.
- the hydrotrope is selected from xylene sulfonate, urea, or combinations thereof.
- the amount of the hydrotrope is in the range of from about 0.001% to about 10%, or from about 0.5% to 5%, or from about 1% to about 3%.
- Structurant / Thickeners - Structured liquids can either be internally structured, whereby the structure is formed by primary ingredients (e.g. surfactant material) and/or externally structured by providing a three dimensional matrix structure using secondary ingredients (e.g. polymers, clay and/or silicate material).
- the composition may comprise a structurant, typically from 0.01wt% to 5wt%, from 0.1wt% to 2.0wt%, by weight of the composition, structurant.
- the structurant is typically selected from diglycerides and triglycerides, ethylene glycol distearate, microcrystalline cellulose, cellulose-based materials, microfiber cellulose, biopolymers, xanthan gum, gellan gum, or mixtures thereof.
- a suitable structurant includes hydrogenated castor oil and non-ethoxylated derivatives thereof.
- a suitable structurant is disclosed in US Patent No. 6,855,680. Such structurants have a thread-like structuring system having a range of aspect ratios.
- Other suitable structurants and the processes for making them are described in WO2010/034736.
- Boric acid derivatives and/or pH jump systems - Another optional adjunct ingredient is boric acid or a boric acid derivative.
- Illustrative examples include boric acid, boric oxide, borax, alkali metal borates (such as sodium ortho-, meta- and pyroborate and sodium pentaborate), and mixtures thereof.
- Combinations of borates and polyols, especially sorbitol, constitute pH jump systems, see e.g., U.S. Pat. No. 5,089,163.
- the composition is substantially free of a pH jump systems.
- the composition disclosed herein may comprise less than about 3%, by weight of the composition, or less than about 1%, of boric acid derivatives.
- Neutralizers - The cleaning composition disclosed herein may comprise a neutralizes
- the neutralizers may be acidic or alkali in character, depending upon what they will be neutralizing.
- Suitable neutralizers include, alkali metal hydroxides, such as NaOH, LiOH, KOH etc; alkaline earth hydroxides, such as Mg(OH) 2 , Ca(OH) 2 ; ammonium or substituted ammonium hydroxides; alkanolamines, such as, mono-, di- and triethanolamines, for example, monoethanolamine (MEA); inorganic acids such as, sulfuric acid, hydrochloric acid, nitric acid; organic acids, such as acetic acids, citric acid, lactic acid and the like, or combinations thereof.
- alkali metal hydroxides such as NaOH, LiOH, KOH etc
- alkaline earth hydroxides such as Mg(OH) 2 , Ca(OH) 2
- ammonium or substituted ammonium hydroxides alkanolamine
- the composition may comprise a fabric hueing agent (sometimes referred to as shading, bluing, or whitening agents).
- hueing agent provides a blue or violet shade to fabric.
- Hueing agents can be used either alone or in combination to create a specific shade of hueing and/or to shade different fabric types. This may be provided for example by mixing a red and green-blue dye to yield a blue or violet shade.
- Hueing agents may be selected from any known chemical class of dye, including but not limited to acridine, anthraquinone (including polycyclic quinones), azine, azo (e.g., monoazo, disazo, trisazo, tetrakisazo, polyazo), including premetallized azo, benzodifurane and benzodifuranone, carotenoid, coumarin, cyanine, diazahemicyanine, diphenylmethane, formazan, hemicyanine, indigoids, methane, naphthalimides, naphthoquinone, nitro and nitroso, oxazine, phthalocyanine, pyrazoles, stilbene, styryl, triarylmethane, triphenylmethane, xanthenes and mixtures thereof.
- acridine e.g., monoazo, disazo, trisazo, tetrakisazo, polyazo
- Suitable fabric hueing agents include dyes, dye-clay conjugates, and organic and inorganic pigments.
- Suitable dyes include small molecule dyes and polymeric dyes.
- Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Colour Index (C.I.) classifications of Acid, Direct, Basic, Reactive or hydrolysed Reactive, Solvent or Disperse dyes for example that are classified as Blue, Violet, Red, Green or Black, and provide the desired shade either alone or in combination.
- C.I. Colour Index
- suitable small molecule dyes include small molecule dyes selected from the group consisting of Colour Index (Society of Dyers and Colourists, Bradford, UK) numbers Direct Violet dyes such as 9, 35, 48, 51, 66, and 99, Direct Blue dyes such as 1, 71, 80 and 279, Acid Red dyes such as 17, 73, 52, 88 and 150, Acid Violet dyes such as 15, 17, 24, 43, 49 and 50, Acid Blue dyes such as 15, 17, 25, 29, 40, 45, 75, 80, 83, 90 and 113, Acid Black dyes such as 1, Basic Violet dyes such as 1, 3, 4, 10 and 35, Basic Blue dyes such as 3, 16, 22, 47, 66, 75 and 159, Disperse or Solvent dyes such as those described in US 2008/034511 Al or US 8,268,016 B2, or dyes as disclosed in US 7,208,459 B2, and mixtures thereof.
- Colour Index Society of Dyers and Colourists, Bradford, UK
- Direct Violet dyes such as 9, 35, 48, 51, 66, and
- suitable small molecule dyes include small molecule dyes selected from the group consisting of C. I. numbers Acid Violet 17, Acid Blue 80, Acid Violet 50, Direct Blue 71, Direct Violet 51, Direct Blue 1, Acid Red 88, Acid Red 150, Acid Blue 29, Acid Blue 113 or mixtures thereof.
- Suitable polymeric dyes include polymeric dyes selected from the group consisting of polymers containing covalently bound (sometimes referred to as conjugated) chromogens, (dye- polymer conjugates), for example polymers with chromogens co-polymerized into the backbone of the polymer and mixtures thereof.
- Polymeric dyes include those described in WO2011/98355, US 2012/225803 Al, US 2012/090102 Al, WO2012/166768, US 7,686,892 B2, and
- suitable polymeric dyes include polymeric dyes selected from the group consisting of fabric-substantive colorants sold under the name of Liquitint® (Milliken, Spartanburg, South Carolina, USA), dye-polymer conjugates formed from at least one reactive dye and a polymer selected from the group consisting of polymers comprising a moiety selected from the group consisting of a hydroxyl moiety, a primary amine moiety, a secondary amine moiety, a thiol moiety and mixtures thereof.
- suitable polymeric dyes include polymeric dyes selected from the group consisting of Liquitint® Violet CT,
- CMC carboxymethyl cellulose
- a reactive blue, reactive violet or reactive red dye such as CMC conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S-ACMC, alkoxylated triphenyl-methane polymeric colourants, alkoxylated thiophene polymeric colourants, and mixtures thereof.
- Suitable hueing dyes include the whitening agents found in WO 08/87497 Al,
- Suitable hueing agents for use in the present invention may be the preferred dyes disclosed in these references, including those selected from Examples 1-42 in Table 5 of WO2011/011799. Other suitable dyes are disclosed in US
- Suitable dye clay conjugates include dye clay conjugates selected from the group comprising at least one cationic/basic dye and a smectite clay, and mixtures thereof.
- suitable dye clay conjugates include dye clay conjugates selected from the group consisting of one cationic/basic dye selected from the group consisting of C.I. Basic Yellow 1 through 108, C.I. Basic Orange 1 through 69, C.I. Basic Red 1 through 118, C.I. Basic Violet 1 through 51, C.I. Basic Blue 1 through 164, C.I. Basic Green 1 through 14, C.I. Basic Brown 1 through 23, CI Basic Black 1 through 11, and a clay selected from the group consisting of Montmorillonite clay, Hectorite clay, Saponite clay and mixtures thereof.
- suitable dye clay conjugates include dye clay conjugates selected from the group consisting of: Montmorillonite Basic Blue B7 C.I. 42595 conjugate, Montmorillonite Basic Blue B9 C.I. 52015 conjugate, Montmorillonite Basic Violet V3 C.I. 42555 conjugate, Montmorillonite Basic Green Gl C.I. 42040 conjugate, Montmorillonite Basic Red Rl C.I. 45160 conjugate, Montmorillonite C.I. Basic Black 2 conjugate, Hectorite Basic Blue B7 C.I. 42595 conjugate, Hectorite Basic Blue B9 C.I. 52015 conjugate, Hectorite Basic Violet V3 C.I.
- the hueing agent may be incorporated into the detergent composition as part of a reaction mixture which is the result of the organic synthesis for a dye molecule, with optional purification step(s).
- reaction mixtures generally comprise the dye molecule itself and in addition may comprise un-reacted starting materials and/or by-products of the organic synthesis route.
- Suitable pigments include pigments selected from the group consisting of flavanthrone, indanthrone, chlorinated indanthrone containing from 1 to 4 chlorine atoms, pyranthrone, dichloropyranthrone, monobromodichloropyranthrone, dibromodichloropyranthrone,
- tetrabromopyranthrone perylene-3,4,9,10-tetracarboxylic acid diimide
- the imide groups may be unsubstituted or substituted by C1-C3 -alkyl or a phenyl or heterocyclic radical, and wherein the phenyl and heterocyclic radicals may additionally carry substituents which do not confer solubility in water, anthrapyrimidinecarboxylic acid amides, violanthrone,
- phthalocyanine containing up to 14 bromine atoms per molecule and mixtures thereof.
- Other suitable pigments are described in WO2008/090091.
- suitable pigments include pigments selected from the group consisting of Ultramarine Blue (C.I. Pigment Blue 29), Ultramarine Violet (C.I. Pigment Violet 15), Monastral Blue and mixtures thereof.
- the aforementioned fabric hueing agents can be used in combination (any mixture of fabric hueing agents can be used).
- the cleaning compositions generally contain from about 1 wt% to about 30 wt%, or from about 10% to about 25%, by weight of the cleaning composition, of water.
- compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials, e.g., polypropylene (PP), polyethylene (PE), polycarbonate (PC), poly amides (PA) polyethylene terephthalate (PET), polyvinylchloride (PVC), polystyrene (PS).
- PP polypropylene
- PE polyethylene
- PC polycarbonate
- PA polyamides
- PET polyethylene terephthalate
- PVC polyvinylchloride
- PS polystyrene
- the composition may be releasably stored in a water insoluble container, which may be opaque, transparent, or translucent, or partially so.
- the water insoluble container comprises a deformable container for storing the cleaning composition and a dispensing cap, where the deformable container has a bottom end and an opening in the bottom end, more specifically the opening comprises a slit valve adapted for dispensing, liquids, gels and/or pastes.
- the present invention includes a method for cleaning a substrate or soiled material.
- Such method includes the steps of contacting the composition of the invention, in neat form or diluted in wash liquor, with at least a portion of the substrate, then optionally rinsing the substrate.
- the substrate is subjected to a washing step prior to the aforementioned optional rinsing step.
- washing includes, but is not limited to, scrubbing, wiping and mechanical agitation.
- the cleaning compositions of the present invention are ideally suited for use in home care (hard surface cleaning compositions) and/or laundry applications.
- Example 1 Liquid Laundry Cleaning Compositions
- liquid laundry cleaning compositions in Table 1 are prepared by traditional means known to those of ordinary skill in the art by mixing the following ingredients.
- Amylase (29.26 mg/g) 5 2.54 2.67 0.69
- 2 AE9 is C12-14 alcohol ethoxylate, with an average degree of ethoxylation of 9, supplied by Huntsman, Salt Lake City, Utah, USA.
- Citric acid is introduced as a raw material impurity.
- Proteases may be supplied by Genencor International, Palo Alto, California, USA (e.g., Purafect Prime®, Excellase®) or by Novozymes, Bagsvaerd, Denmark (e.g. Liquanase®, Coronase®).
- 8Random graft copolymer is a polyvinyl acetate grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains.
- the molecular weight of the polyethylene oxide backbone is about 6000 and the weight ratio of the polyethylene oxide to polyvinyl acetate is about 40 to 60 and no more than 1 grafting point per 50 ethylene oxide units, available from BASF as Sokalan PG101 ®.
- Suitable Fluorescent Whitening Agents are for example, Tinopal® AMS, Tinopal® CBS-X, Sulphonated zinc phthalocyanine Ciba Specialty Chemicals, Basel, Switzerland.
- HSAS is a mid-chain branched alcohol sulfate.
- DTPA is diethylenetriaminepentaacetic acid
- a sample of according Formula A of Table 3 was made, leaving formulation space to adjust pH, to level the water across the samples, and to add enzymes.
- the formula was aliquoted into 8 samples; the pH of each sample was adjusted to pH 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.5, respectively, with NaOH or H 2 S04 as needed.
- the total weight of each sample was then adjusted to make the water level equal in all aliquots.
- Three samples, all of Formula A, were then weighed out at each pH level.
- the water level of Formula A, when finished with enzyme, was approximately 24%.
- PNA N-Succinyl- ALA- ALA-PRO-PHE p- nitroanilide
- Protease analysis is carried out by reaction of a protease containing sample with Succinyl-Ala- Ala-Pro-Phe p-nitroanilide resulting in a change in absorbance over time spectrophotometrically.
- the response is proportional to the level of protease present in the sample.
- the protease sample is prepared by dilution in the diluent solution.
- the reaction begins by incubation of 250uL of working PNA solution at 37°C for 360 seconds then delivery of 25uL sample preparation and monitoring change in absorbance at 405 nm.
- the protease active level is determined by relation to a protease level vs. reaction rate calibration established for that specific protease.
- a reference curve may be established by measuring post-reaction absorbance as described above over a range of known enzyme concentrations, for example, from about lmg enzyme/ lOOg product to about lOOmg enzyme/ lOOg product.
- HSAS is a mid-chain branched alcohol sulfate.
- DTPA is diethylenetriaminepentaacetic acid.
- Table 4 shows protease stability at varying water levels and at various pHs. In general, compositions with lower levels of water provide surprisingly improved enzyme stability compared to equivalent compositions with higher levels of water.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14729834.3A EP3004306A1 (en) | 2013-05-24 | 2014-05-22 | Compact fluid laundry detergent composition |
JP2016515071A JP2016520148A (en) | 2013-05-24 | 2014-05-22 | Compact fluid laundry detergent composition |
CA2910836A CA2910836A1 (en) | 2013-05-24 | 2014-05-22 | Compact fluid laundry detergent composition |
BR112015028674A BR112015028674A2 (en) | 2013-05-24 | 2014-05-22 | fluid compact laundry detergent composition |
CN201480029955.8A CN105408461A (en) | 2013-05-24 | 2014-05-22 | Compact fluid laundry detergent composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361827373P | 2013-05-24 | 2013-05-24 | |
US61/827,373 | 2013-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014190131A1 true WO2014190131A1 (en) | 2014-11-27 |
Family
ID=50933557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/039101 WO2014190131A1 (en) | 2013-05-24 | 2014-05-22 | Compact fluid laundry detergent composition |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140349907A1 (en) |
EP (1) | EP3004306A1 (en) |
JP (1) | JP2016520148A (en) |
CN (1) | CN105408461A (en) |
BR (1) | BR112015028674A2 (en) |
CA (1) | CA2910836A1 (en) |
WO (1) | WO2014190131A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105385509A (en) * | 2015-11-30 | 2016-03-09 | 成都九十度工业产品设计有限公司 | Concentrated type laundry detergent |
JP2018515673A (en) * | 2015-05-22 | 2018-06-14 | ザ プロクター アンド ギャンブル カンパニー | Surfactant composition containing alkoxylated glycerin as solvent and method for making detergent composition |
JP2018517042A (en) * | 2015-06-05 | 2018-06-28 | ザ プロクター アンド ギャンブル カンパニー | Condensable liquid laundry detergent composition |
US10731143B2 (en) | 2014-10-28 | 2020-08-04 | Agrivida, Inc. | Methods and compositions for stabilizing trans-splicing intein modified proteases |
EP3974501A1 (en) * | 2020-09-25 | 2022-03-30 | Henkel AG & Co. KGaA | Concentrated flowable detergent composition with improved properties |
EP4438704A1 (en) | 2023-03-31 | 2024-10-02 | The Procter & Gamble Company | Antimicrobial liquid detergent composition |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3092293A1 (en) * | 2014-01-08 | 2016-11-16 | The Procter & Gamble Company | Liquid laundry detergents with improved suds profile |
JP6188239B2 (en) * | 2014-07-08 | 2017-08-30 | ライオン株式会社 | Liquid cleaning agent |
GB201413333D0 (en) * | 2014-07-28 | 2014-09-10 | Azotic Technologies Ltd | Plant inoculation |
DE102016202804A1 (en) * | 2016-02-24 | 2017-08-24 | Henkel Ag & Co. Kgaa | Optimized surfactant-enzyme mixtures |
US20180216029A1 (en) * | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Concentrated surfactant composition |
US20180216031A1 (en) * | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Concentrated surfactant composition |
US20180216038A1 (en) * | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Detergent particle comprising polymer and surfactant |
EP3574067A1 (en) * | 2017-01-27 | 2019-12-04 | The Procter and Gamble Company | Concentrated surfactant composition |
US20180216030A1 (en) * | 2017-01-27 | 2018-08-02 | The Procter & Gamble Company | Concentrated surfactant composition |
CN106987478A (en) * | 2017-03-19 | 2017-07-28 | 长沙协浩吉生物工程有限公司 | A kind of compound method of toilet Wall or floor tile ferment cleaning agent |
US11225631B2 (en) * | 2018-03-19 | 2022-01-18 | Ecolab Usa Inc. | Acidic liquid detergent compositions containing bleach catalyst and free of anionic surfactant |
BR112021009135A2 (en) * | 2018-12-13 | 2021-08-10 | Dow Global Technologies Llc | liquid laundry detergent formulation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737314A (en) * | 1985-02-08 | 1988-04-12 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Stabilized alkylene oxide adduct containing lactic acid or a lactate |
WO1991016409A1 (en) * | 1990-04-25 | 1991-10-31 | Unilever N.V. | Liquid detergent compositions |
WO1999010457A1 (en) * | 1997-08-25 | 1999-03-04 | Cognis Deutschland Gmbh | Method for stabilising aqueous ester sulphate tensides |
WO2014018309A1 (en) * | 2012-07-26 | 2014-01-30 | The Procter & Gamble Company | Low ph liquid cleaning compositions with enzymes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61231094A (en) * | 1985-04-04 | 1986-10-15 | ライオン株式会社 | Weak acidic detergent composition |
MA23234A1 (en) * | 1993-06-28 | 1994-12-31 | Procter & Gamble | LOW FOAMING LIQUID DETERSIVE COMPOSITIONS. |
CA2305330A1 (en) * | 1997-10-10 | 1999-04-22 | Susumu Murata | Mid-chain branched surfactants with cellulose derivatives |
WO2000043473A2 (en) * | 1999-01-20 | 2000-07-27 | The Procter & Gamble Company | Aqueous heavy duty liquid detergent compositions comprising modified alkylbenzene sulfonates |
JP3926567B2 (en) * | 2001-02-05 | 2007-06-06 | 花王株式会社 | Liquid detergent composition |
JP2003138300A (en) * | 2001-11-07 | 2003-05-14 | Raku:Kk | Weakly acidic liquid detergent composition |
US20060247148A1 (en) * | 2005-04-15 | 2006-11-02 | Rafael Ortiz | Laundry detergents containing mid-branched primary alkyl sulfate surfactant |
JP5500770B2 (en) * | 2006-12-01 | 2014-05-21 | 花王株式会社 | Surfactant composition |
EP2130897B1 (en) * | 2008-06-02 | 2011-08-31 | The Procter & Gamble Company | Surfactant concentrate |
-
2014
- 2014-05-22 WO PCT/US2014/039101 patent/WO2014190131A1/en active Application Filing
- 2014-05-22 EP EP14729834.3A patent/EP3004306A1/en not_active Withdrawn
- 2014-05-22 CA CA2910836A patent/CA2910836A1/en not_active Abandoned
- 2014-05-22 CN CN201480029955.8A patent/CN105408461A/en active Pending
- 2014-05-22 JP JP2016515071A patent/JP2016520148A/en not_active Ceased
- 2014-05-22 BR BR112015028674A patent/BR112015028674A2/en not_active IP Right Cessation
- 2014-05-22 US US14/284,422 patent/US20140349907A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4737314A (en) * | 1985-02-08 | 1988-04-12 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Stabilized alkylene oxide adduct containing lactic acid or a lactate |
WO1991016409A1 (en) * | 1990-04-25 | 1991-10-31 | Unilever N.V. | Liquid detergent compositions |
WO1999010457A1 (en) * | 1997-08-25 | 1999-03-04 | Cognis Deutschland Gmbh | Method for stabilising aqueous ester sulphate tensides |
WO2014018309A1 (en) * | 2012-07-26 | 2014-01-30 | The Procter & Gamble Company | Low ph liquid cleaning compositions with enzymes |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10731143B2 (en) | 2014-10-28 | 2020-08-04 | Agrivida, Inc. | Methods and compositions for stabilizing trans-splicing intein modified proteases |
US11066657B2 (en) | 2014-10-28 | 2021-07-20 | Agrivida, Inc | Methods and compositions for stabilizing trans-splicing intein modified proteases |
JP2018515673A (en) * | 2015-05-22 | 2018-06-14 | ザ プロクター アンド ギャンブル カンパニー | Surfactant composition containing alkoxylated glycerin as solvent and method for making detergent composition |
JP2018517042A (en) * | 2015-06-05 | 2018-06-28 | ザ プロクター アンド ギャンブル カンパニー | Condensable liquid laundry detergent composition |
CN105385509A (en) * | 2015-11-30 | 2016-03-09 | 成都九十度工业产品设计有限公司 | Concentrated type laundry detergent |
EP3974501A1 (en) * | 2020-09-25 | 2022-03-30 | Henkel AG & Co. KGaA | Concentrated flowable detergent composition with improved properties |
EP4438704A1 (en) | 2023-03-31 | 2024-10-02 | The Procter & Gamble Company | Antimicrobial liquid detergent composition |
Also Published As
Publication number | Publication date |
---|---|
US20140349907A1 (en) | 2014-11-27 |
JP2016520148A (en) | 2016-07-11 |
BR112015028674A2 (en) | 2017-07-25 |
CA2910836A1 (en) | 2014-11-27 |
CN105408461A (en) | 2016-03-16 |
EP3004306A1 (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3004306A1 (en) | Compact fluid laundry detergent composition | |
US9771547B2 (en) | Cleaning compositions containing a polyetheramine | |
CA2918838C (en) | Cleaning compositions containing a polyetheramine | |
US9487739B2 (en) | Cleaning compositions containing a polyetheramine | |
US9809784B2 (en) | Laundry detergents and cleaning compositions comprising sulfonate group-containing polymers | |
EP3122849B1 (en) | Cleaning compositions containing a polyetheramine | |
US9540596B2 (en) | Compositions comprising alkoxylated polyamines having low melting points | |
AU2014241193B2 (en) | Cleaning compositions containing a polyetheramine | |
WO2015187757A1 (en) | Detergent composition comprising polyalkyleneimine polymers | |
US20160090564A1 (en) | Cleaning compositions containing a polyetheramine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480029955.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14729834 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014729834 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014729834 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2910836 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2016515071 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/016149 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015028674 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015028674 Country of ref document: BR Kind code of ref document: A2 Effective date: 20151116 |