WO2014189191A1 - Graphene-cleaning process and device comprising graphene treated thereby - Google Patents

Graphene-cleaning process and device comprising graphene treated thereby Download PDF

Info

Publication number
WO2014189191A1
WO2014189191A1 PCT/KR2013/011732 KR2013011732W WO2014189191A1 WO 2014189191 A1 WO2014189191 A1 WO 2014189191A1 KR 2013011732 W KR2013011732 W KR 2013011732W WO 2014189191 A1 WO2014189191 A1 WO 2014189191A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
layer
cleaning
support layer
present
Prior art date
Application number
PCT/KR2013/011732
Other languages
French (fr)
Korean (ko)
Inventor
최원진
이정오
이영국
정윤장
박세린
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014189191A1 publication Critical patent/WO2014189191A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene

Definitions

  • the present invention relates to a graphene cleaning process and a device comprising the graphene treated thereby.
  • Rubbing Rubbing is one of the most intuitive and long-established methods used to shine or wipe off impurities on materials.
  • this rubbing method cannot be used when the mechanical strength of the material is weak.
  • nanoscale materials such as nanomaterials and graphene have stronger mutual strength than iron in the case of Young's modulus per unit size, but they break and break in practical use. Nanostructures, in particular, cannot be sustained by this rubbing method. So far, for this reason, researchers have not used the rub method.
  • graphene is a conductive material with carbon atoms in a hexagonal honeycomb arrangement with a layer of atoms.
  • Graphene was not only very stable structurally and chemically, but was also the subject of the Nobel Prize for 2010 in 2010 due to its excellent optical and electrical properties.
  • Non-Patent Document 1 The prior art for removal through an organic solvent describes a new graphene cleaning process using acetic acid and acetone disclosed in Non-Patent Document 1.
  • PMMA polymethyl methacrylate
  • the last remaining polymer is removed by heat treatment for more than a few tens of minutes under hydrogen or vacuum atmosphere at 250 to 300 ° C.
  • this heat treatment process does not correspond to the manufacturing process of the flexible device, which is the direction of future technology development. Not only does the heat treatment process incur additional heat treatment costs, but it is generally performed near 300 ° C above the melting point and transition temperature that the flexible substrates withstand.
  • the aforementioned mechanical scrubbing method may be used instead of the heat treatment process.
  • a method of using an atomic force microscope (AFM) tip to remove impurities on the graphene surface has been proposed.
  • Non-Patent Document 2 describes an atomic force microscope (AFM) as a method of removing the residual water in order to prevent electrical degradation due to residues on the graphene from nanomanipulation. A mechanical cleaning method is disclosed. .
  • the mechanical scrubbing method mentioned above does not correspond to nanomaterials with weak mechanical strength, and the method of strength suitable for nanomaterials such as atomic force microscopy (AFM) method takes too much time and effort. There is a disadvantage that it is necessary and cannot be applied in large quantities.
  • AFM atomic force microscopy
  • Non-Patent Document 1 "Michale Her, Ryan Beams, and Lukas Novotny, Physics
  • Non-Patent Document 2 "A.M. Goossens, V.E.Calado, A.Barreiro, K.Watanabe,
  • An object of the present invention is to provide a cleaning method for quickly and easily removing impurities on the graphene surface without raising the temperature significantly.
  • Another object of the present invention is graphene using graphene treated through the above method It is to provide an element.
  • step 1 Removing the graphene support layer having the graphene filling formed on one surface by using an organic solvent (step 1);
  • step 2 Placing the cleaning member at a distance that can be interacted with without the direct contact with the graphene layer from which the graphene layer is removed in step 1 (step 2);
  • It provides a graphene cleaning method comprising the step of moving the cleaning member on the graphene layer to remove the graphene support layer residue (step 3).
  • the present invention provides an element comprising graphene cleaned by the above method.
  • the present invention by using the graphene cleaning technology using the interaction with the residue of the graphene support layer, by securing the cleaning technology of graphene, which is a core material in the next-generation transparent electrode material, without additional process or cost It is possible to uniformly improve the performance of the graphene in a large area, and the cleaned graphene device made by the present invention has excellent electrical properties, mechanical and optical properties, and accordingly, using the device of the present invention having improved graphene Applicable to the display and semiconductor industries.
  • FIG. 2 is a schematic diagram of a graphene cleaning process by a cleaning member according to an embodiment of the present invention
  • FIG. 3 is a photograph comparing the graphene before cleaning by the cleaning member with the grapheneol atomic force microscope (AFM) cleaned by the embodiment of the present invention.
  • FIG. 4 is a photograph of the graphene before cleaning by the cleaning member and the graphene cleaned by the embodiment of the present invention with a scanning electron microscope (SEM), and
  • FIG. 5 is a result of measuring and comparing the electrical performance of the graphene before cleaning by the cleaning member and the graphene cleaned by the embodiment of the present invention.
  • the substrate 1 may be a metal foil or a thin film of copper, nickel, gold, or the like, which serves as a catalyst for forming graphene to be formed in the future.
  • Graphene (2) formed on the substrate (1) represents graphene formed in the process conditions of 800 ⁇ 1100 ° C.
  • the polymer (3) serves as a support layer that serves to support the graphene (2) not to be dried or torn after the substrate (1) is etched in the future, polymethyl methacrylate (P ⁇ A), polystyrene ( PS), photoresist (AZ5214) and the like can be used.
  • the solution (4) is a solution that can be removed by etching the substrate (1).
  • the metal substrate is copper, copper sulfate (CuS04), ammonia phosphate, nitric acid, or a commercially available copper etching solution is used. Or a commercially available nickel etching solution, in the case of gold, may be aqua regia or a commercially available gold etching solution.
  • the graphene is transferred to a new substrate (5).
  • the substrate 5 is a substrate on which the substrate 1 is etched and removed and the remaining layers of graphene 2 and polymer 3 are transferred, for example, a silicon substrate (Si0 2 / Si), a plastic substrate poly Tylenephthalate (PET), PI, PEN and the like can be used.
  • the polymer used as the graphene support layer is removed in the following manner.
  • the appropriate organic solvent can be selected and removed first, and then the residues that have not been completely removed can be removed by secondary methods such as mechanical scrubbing, heat treatment, or plasma.
  • FIG. 2 a process of gently rubbing the graphene 4 formed on the substrate 5 finally formed in FIG. 1 with the rub cloth 6 is shown.
  • step 1 Removing the graphene support layer having the graphene layer formed on one surface by using an organic solvent (step 1);
  • step 2 Placing the cleaning member at an interactive distance without directly contacting the graphene support layer on which the graphene support layer is removed in step 1 (step 2);
  • It provides a graphene cleaning method comprising the step of moving the cleaning member on the graphene layer to remove the graphene support layer residue (step 3).
  • the material forming the graphene support layer is first removed using an organic solvent to finally form a high purity graphene layer on a desired substrate. It's a step for you.
  • the organic solvent of step 1 according to the present invention may use acetone, methyl acetamide, toluene, chlorobenzene, anisol, dimethyl sulfoxide.
  • a polymer such as polymethyl methacrylate (PMMA) or photoresist (PR) is necessarily accompanied.
  • PMMA polymethyl methacrylate
  • PR photoresist
  • PMMA is the most commonly used graphene support layer, and can be easily removed using acetone, methyl acetamide, and dimethyl sulfoxide, which are typical organic solvents.
  • acetone, methyl acetamide, and dimethyl sulfoxide which are typical organic solvents.
  • the material forming the graphene layer in direct contact with graphene is difficult to remove completely.
  • the graphene support layer forming material of step 1 according to the present invention may be polymethyl methacrylate (PMMA), polystyrene (PS), a photoresist of AZ5214, or the like.
  • the graphene support layer of the present invention is a support for temporarily maintaining the shape in order to maintain and move the shape of the graphene layer to the desired substrate on the initially formed metal substrate, it is easy to form. It is desirable to have the property to be removed in a simple manner. Therefore, when a polymer material such as polyresin, such as polymethyl methacrylate (PMMA), polystyrene (PS), or AZ5214, is used as a graphene support layer, it is easy to remove organic solvents and have excellent moldability. It is advantageous.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • AZ5214 AZ5214
  • step 2 is a step of placing the cleaning member at a distance that can be interacted without directly contacting the graphene layer on which the graphene support layer is removed, which does not damage the graphene layer. Without any suitable distance between the cleaning member and the graphene layer for removal using electrostatic forces or other chemical interactions between the cleaning member used in the present invention and the remaining graphene support layer material on the graphene layer. It is necessary to locate it.
  • the cleaning member of step 2 according to the present invention may be in the form of a fiber member, a film member, and a velvet.
  • the shape of the cleaning member should be such that charge transfer between the two materials can be easily performed during friction for static electricity generation.
  • the cleaning member may be a fiber member, a film material, a velvet, or the like.
  • the material of the cleaning member of step 2 according to the present invention may be rayon, nylon, cotton, or glass.
  • rayon, nylon, cotton, and glass have a positive electric charge (+) when they encounter a polymer such as polymethyl methacrylate, because the electrostatic order generally called electrification heat is forward.
  • Nylon is a positive electricity (+)
  • polymers such as polymethyl methacrylate usually perform negative electrical offset (-), at which moment instantaneous strong shear force occurs between the polymethacryl that was present on the graphene
  • a polymer, such as methyl acid, is removed from the graphene layer.
  • step 3 is performed by moving the cleaning member on the graphene layer.
  • the step of removing the residue of the lapping support layer is a step of removing the graphene support layer residue without directly rubbing the graphene layer by using the electrical and chemical properties of the cleaning member positioned at an appropriate distance.
  • the movement of the cleaning member of step 3 according to the present invention may be performed automatically by a one-way or rotary power unit on the graphene layer or manually by an operator.
  • the liquid crystal alignment machine for smoothly scrubbing the cylinder while rotating the graphene support layer residue can be removed by moving the cleaning member manually according to the above method by the operator.
  • it can be performed using either one-way or rotary powertrains or each with XYZ-axis mechanical control designed to produce a rotary rubbing effect.
  • the present invention also provides a device comprising graphene cleaned by the above method.
  • Demagnetization of the cleaned graphene according to the present invention includes traditional photolithography and electron beam lithography methods, and may include fabricating an electrical device of a transistor, a memory, a diode, and a diode using vacuum electrode deposition. Can be.
  • the demagnetization of the cleaned graphene according to the present invention includes not only the above-mentioned electrical application but also the application as an optical element of a polarizing thin film, a liquid crystal alignment column, and a transparent substrate or other substrate for this purpose. It may include a method performed in. ⁇
  • a polymer capable of supporting graphene for transfer to the stacked graphene Polymethyl methacrylate (PMMA) was spin-coated at room temperature for 30 seconds at 2000 rpm using a spin coater (MIDAS SYSTEMS). In order to melt the copper foil layer, the copper foil layer was melted using a copper etching solution (Transene).
  • PMMA Polymethyl methacrylate
  • MIDAS SYSTEMS spin coater
  • the copper foil layer was melted using a copper etching solution (Transene).
  • the graphene I polymethyl methacrylate (PMMA) floating on the surface of the solution is transferred to a silicon substrate, and then put in acetone to remove the polymethyl methacrylate (PMMA). Methyl (PMMA) was removed. Most polymethyl methacrylate (PMMA) is removed in this way, but the final acetone treated graphene layer is about 5 nm thick polymethyl methacrylate (PMMA) with atomic force electron microscopy (dimension 3100 atoms). Observations using force electron microscopy (AFM-Beco) remained as residue.
  • AFM-Beco force electron microscopy
  • the nylon cloth was placed at a distance of 1 from the graphene layer, and then rubbed by hand to remove residual polymethyl methacrylate (PMMA).
  • the results were observed with an atomic force microscope and shown in FIG. 3 in contrast to the graphene layer before the residual polymethyl methacrylate (PMMA) was removed. It can be seen that afterwards the residue is clearly removed compared to before rubbing.
  • the results of the scanning electron microscope are shown in FIG. 4 in comparison with the graphene layer before the residual polymethyl methacrylate (PMMA) was removed.
  • Example 2 It was carried out under the same conditions as in Example 1, except that the process up to removing the polymethyl methacrylate (PMMA) with the acetone of Example 1 was carried out.
  • PMMA polymethyl methacrylate
  • Example 1 and Comparative Example 1 each of the cleaned graphene was fabricated by photolithography and a vacuum analyzer, and transistors including geat, source, and drain, which are graphene-based devices, were manufactured, respectively. Subsequently, the resistance and electron mobility of each element were measured using a Keitly 4200-SCS semiconductor characterization system, which can evaluate the electromagnetic properties of the device. When the electrical device is made of graphene, it was confirmed that the resistance is about 2 times lower and the electron mobility is about 2 times better, which is shown in FIG. 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a graphene-cleaning process using electrostatic force, and a graphene device treated thereby. More particularly, the present invention provides a graphene-cleaning process comprising the steps of: removing, using an organic solvent, a graphene support layer having a graphene layer formed on one side thereof; and removing a graphene support layer residue, by positioning a cleaning member, at a distance allowing for interaction, on the graphene layer from which the graphene support layer has been removed and then moving the cleaning member on the graphene layer, and a device comprising graphene cleaned by the process. According to the present invention, it is possible to uniformly improve the performance of graphene on a large scale without additional processes or costs. Furthermore, the cleaned graphene device which is manufactured in the present invention has excellent electrical properties, as well as excellent mechanical and optical properties.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
그래핀 클리닝 공정 및 이에 의해 처리된 그래핀을 포함하는 소자  Graphene Cleaning Process and Devices Comprising Graphene Treated thereby
【기술분야】  Technical Field
<ι> 본 발명은 그래핀 클리닝 공정 및 이에 의해 처리된 그래핀을 포함하는 소자 에 관한 것이다. - 【배경기술]  The present invention relates to a graphene cleaning process and a device comprising the graphene treated thereby. -Background
<2> 문지르개 천으로 문지르는 방법 (Rubbing)은 가장 직관적이면서 오래전부터 물질의 표면에 광을 내거나 불순물을 닦아낼 때 사용하는 방법 증의 하나이다. <2> Rubbing Rubbing is one of the most intuitive and long-established methods used to shine or wipe off impurities on materials.
<3> 실제로 물질의 표면에 묻은 불순을 제거할 때 단순히 물 ¾는 유기용매와 같 은 용매로만 제거할 때보다 기계적인 힘올 주면서 용매를 섞어줄 때 비로소 잘 닦 이는 것을 경험적으로 알고있다. <3> It is empirically known that when removing impurities on the surface of a substance, water ¾ simply wipes well when the solvent is mixed with mechanical force rather than only removed with a solvent such as an organic solvent.
<4>  <4>
<5> 한편, 이러한 문지르는 방법은 그 물질의 기계적 강도가 약할 때는 사용할 수 없다. 일반적으로 나노재료들이나 그래핀과 같은 나노크기의 물질들은 단위 크 기당 영의 모들러스 (Young's modulus)로 생각하는 경우에는 상호 간의 힘이 철보다 강하지만, 실제적인 웅용면에서는 잘 부러지고 망가진다. 특히 나노구조물들은 이 러한 문지르는 방법으로는 그 구조물이 버티지 못한다. 지금까지는 이러한 이유로 연구자들이 문지^는 방법을사용하지 않았다.  On the other hand, this rubbing method cannot be used when the mechanical strength of the material is weak. In general, nanoscale materials such as nanomaterials and graphene have stronger mutual strength than iron in the case of Young's modulus per unit size, but they break and break in practical use. Nanostructures, in particular, cannot be sustained by this rubbing method. So far, for this reason, researchers have not used the rub method.
<6>  <6>
<7> 잘 알려진 바와 같이, 그래핀은 탄소원자들이 육각형의 벌집 모양의 배열을 이루면서 원자 한 층의 두께를 갖는 전도성 물질이다. 그래핀은 구조적, 화학적으 로 매우 안정적일 뿐만 아니라, 뛰어난 광학적, 전기적 성질 때문에 2010년에 노벨 상의 주인공의 되었고, 현재 많은 주목을 받고 있는 물질이다.  As is well known, graphene is a conductive material with carbon atoms in a hexagonal honeycomb arrangement with a layer of atoms. Graphene was not only very stable structurally and chemically, but was also the subject of the Nobel Prize for 2010 in 2010 due to its excellent optical and electrical properties.
<8> 한편, 이러한 그래핀을 전기 소자로 사용하기 위해 일반적인 공정을 거치는 경우에는 폴리메타크릴산메틸 (PMMA)나 ¾토레지스터 (PR) 등의 폴리머가 반드시 수 반된다.  On the other hand, when the graphene is subjected to a general process for use as an electric device, a polymer such as polymethyl methacrylate (PMMA) or ¾ th register (PR) is necessarily accompanied.
<9> 유기용매를 통한 제거에 대한 종래기술에는 비특허문헌 1에서 개시하고 있는 아세트산 및 아세톤을사용하여 새로운 그래핀 클리닝 공정을 설명하고 있다. The prior art for removal through an organic solvent describes a new graphene cleaning process using acetic acid and acetone disclosed in Non-Patent Document 1.
<ιο> 그러나, 특히 폴리메타크릴산메틸 (PMMA)은 가장 많이 사용되는 그래핀 지지 층으로 일반적으로 아세톤에 잘 녹지만, 그래핀과 바로 맞닿아 있는 얇은 분자막은 아세톤에 잘 녹지 않아 제거가 어려운 특성이 있다. 이러한 이유로, 종래의 공지된 기술 대부분에서는 250 ~ 300 °C에서 수소 또는 진공 분위기 하에서 수 십여 분 이 상의 열처리를 통해 마지막 남은 이 폴리머를 제거한다. <ιο> In particular, polymethyl methacrylate (PMMA) is the most commonly used graphene support layer, and generally soluble in acetone, but the thin molecular film directly in contact with graphene does not soluble in acetone. There are difficult characteristics. For this reason, conventionally known In most techniques, the last remaining polymer is removed by heat treatment for more than a few tens of minutes under hydrogen or vacuum atmosphere at 250 to 300 ° C.
<ιι> 하지만, 이러한 열처리 공정은 앞으로의 기술이 발전될 방향인 유연소자의 제작공정과 부합하지 않는다. 열처리 공정은 추가적인 열처리 비용이 수반될 뿐만 아니라 일반적으로 유연한 기판이 견디는 녹는점 및 전이 온도보다 높은 300 °C 근 처에서 수행되기 때문이다. <ιι> However, this heat treatment process does not correspond to the manufacturing process of the flexible device, which is the direction of future technology development. Not only does the heat treatment process incur additional heat treatment costs, but it is generally performed near 300 ° C above the melting point and transition temperature that the flexible substrates withstand.
<12>  <12>
<13> 이 문제점을 해결하기 위해서, 열처리 공정 대신 앞서 언급한 기계적인 문지 르기 방법을 이용할 수 있다. 최근에는, 그래핀 표면의 불순물을 제거하기 위해 원 자힘현미경 (AFM)팁을 이용하는 방법이 제시된 바 있다.  In order to solve this problem, the aforementioned mechanical scrubbing method may be used instead of the heat treatment process. Recently, a method of using an atomic force microscope (AFM) tip to remove impurities on the graphene surface has been proposed.
<14> 원자힘현미경 (AFM)을 이용한 선행기술에 있어서 비특허문헌 2에서는 나노조 작으로부터 그래핀에 생기는 잔여물로 인한 전기적 성능 저하를 막기 위해 그 잔여 물 제거방법으로서 원자힘현미경 (AFM)에 의한 기계적 클리닝 방법을 개시하고 있 다. . In the prior art using an atomic force microscope (AFM), Non-Patent Document 2 describes an atomic force microscope (AFM) as a method of removing the residual water in order to prevent electrical degradation due to residues on the graphene from nanomanipulation. A mechanical cleaning method is disclosed. .
<15> 하지만, 앞서 언급한 바와 같은 기계적인 문지르는 방법은 그 기계적 강도가 약한 나노물질들과는 부합하지 않으며 원자힘현미경 (AFM)방법 등의 나노물질에 적 합한 강도의 방법은 지나치게 시간과 노력이 많이 필요하며 대량으로 적용될 수 없 는 단점이 있다. However, the mechanical scrubbing method mentioned above does not correspond to nanomaterials with weak mechanical strength, and the method of strength suitable for nanomaterials such as atomic force microscopy (AFM) method takes too much time and effort. There is a disadvantage that it is necessary and cannot be applied in large quantities.
<16>  <16>
<17> 이와 같은 문제점들을 해결하기 위해 본 발명의 발명자들은 본 발명을 연구, 완성하였다.  In order to solve these problems, the inventors of the present invention have studied and completed the present invention.
<18>  <18>
<19> <선행기술문헌〉  <19> <Prior art document>
<20> 비특허문헌 1· " Michale Her , Ryan Beams , and Lukas Novotny, Physics <20> Non-Patent Document 1 · "Michale Her, Ryan Beams, and Lukas Novotny, Physics
Ltters A, 10 April 2013 online published" Ltters A, 10 April 2013 online published "
<2i> 비특허문헌 2: " A.M. Goossens , V.E.Calado, A.Barreiro, K.Watanabe,<2i> Non-Patent Document 2: "A.M. Goossens, V.E.Calado, A.Barreiro, K.Watanabe,
T.Taniguchi and L.M.K.Vandersypen, Appl ied Physics Letters, 100, 073110" 【발명의 상세한 설명】 T.Taniguchi and L.M.K.Vandersypen, Appl ied Physics Letters, 100, 073110 "[detailed description of the invention]
[기술적 과제】  [Technical Challenges]
<22> 본 발명의 목적은 온도를 크게 올리지 않으면서도 쉽고 빠르게 그래핀 표면 의 불순물을 제거하는 클리닝 방법을 제공하는 것이다.  An object of the present invention is to provide a cleaning method for quickly and easily removing impurities on the graphene surface without raising the temperature significantly.
<23> 본 발명의 또 다른 목적은 상기 방법을 통해 처리된 그래핀을 이용한 그래핀 소자를 제공하는 것이다. Another object of the present invention is graphene using graphene treated through the above method It is to provide an element.
[기술적 해결방법】  [Technical Solution]
<24> 상기 목적을 달성하기 위하여 본 발명은,  In order to achieve the above object,
<25> 유기용매를사용하여 한쪽 면에 그래핀 충이 형성되어 있는 그래핀 지지층을 제거하는 단계 (단계 1);  Removing the graphene support layer having the graphene filling formed on one surface by using an organic solvent (step 1);
<26> 상기 단계 1에서 그래핀 지 층이 제거된 그래핀 층 상에 직접적으로 접촉되 지 않으면서 상호작용이 가능한 거리에 클리닝 부재를 위치시키는 단계 (단계 2); Placing the cleaning member at a distance that can be interacted with without the direct contact with the graphene layer from which the graphene layer is removed in step 1 (step 2);
<27> 상기 클리닝 부재를 그래핀 층 상에서 이동시켜 그래핀 지지층 잔사를 제거 하는 단계 (단계 3);를 포함하는 그래핀 클리닝 방법을 제공한다. It provides a graphene cleaning method comprising the step of moving the cleaning member on the graphene layer to remove the graphene support layer residue (step 3).
<28> 또한, 본 발명은 상기 방법에 의해 클리닝 처리된 그래핀을 포함하는 소자 를 제공한다.  In addition, the present invention provides an element comprising graphene cleaned by the above method.
【유리한 효과】  Advantageous Effects
<29> 본 발명에 따르면ᅳ 그래핀 지지층 잔여물과의 상호작용올 이용한 그래핀 클 리닝 기술을 이용하여 차세대 투명 전극재료 중에 핵심물질인 그래핀을 클리닝 기 술을 확보함으로써, 추가적인 공정이나 비용없이 대면적으로 그래핀의 성능을 균일 하게 향상시킬 수 있으며, 본 발명으로 만들어진 클리닝된 그래핀 소자는 우수한 전기적 특성 및 기계적, 광학적 특성을 가지며, 이에 따라 향상된 그래핀을 가지는 본 발명의 소자를 이용하여 다스플레이 및 반도체 산업에 적용할수 있다 .  According to the present invention, by using the graphene cleaning technology using the interaction with the residue of the graphene support layer, by securing the cleaning technology of graphene, which is a core material in the next-generation transparent electrode material, without additional process or cost It is possible to uniformly improve the performance of the graphene in a large area, and the cleaned graphene device made by the present invention has excellent electrical properties, mechanical and optical properties, and accordingly, using the device of the present invention having improved graphene Applicable to the display and semiconductor industries.
【도면의 간단한 설명】  [Brief Description of Drawings]
<30> 도 1은 일반적인 그래핀 제조공정의 개략도이고, 1 is a schematic diagram of a general graphene manufacturing process,
<31> 도 2은 본 발명의 일실시예에 따른 클리닝 부재에 의한 그래핀 클리닝 공정 부분의 개략도이고, '  2 is a schematic diagram of a graphene cleaning process by a cleaning member according to an embodiment of the present invention;
<32> 도 3은 클리닝 부재에 의한 클리닝 전의 그래핀과 본 발명의 일실시예에 의 해 클리닝된 그래핀올 원자힘현미경 (AFM)으로 관찰하여 비교한사진이고,  FIG. 3 is a photograph comparing the graphene before cleaning by the cleaning member with the grapheneol atomic force microscope (AFM) cleaned by the embodiment of the present invention.
<33> 도 4는 클리닝 부재에 의한 클리닝 전의 그래핀과 본 발명의 일실시예에 의 해 클리닝된 그래핀을 주사전자현미경 (SEM)으로 관찰한사진이고, 및  4 is a photograph of the graphene before cleaning by the cleaning member and the graphene cleaned by the embodiment of the present invention with a scanning electron microscope (SEM), and
<34> 도 5는 클리닝 부재에 의한 클리닝 전의 그래핀과 본 발명의 일실시예에 의 해 클리닝된 그래핀의 전기적인 성능을 측정 및 비교한 결과이다. ((a): 클리닝 되 기 전의 그래핀 소자 (빨강색)와 클리닝 후의 그래핀 소자 (파랑색)의 게이트 전압에 따른 드레인 전류 그래프, (b): 클리닝 되기 전의 그래핀 소자 (빨강색)와 클리닝 후의 그래핀 소자 (파랑색)의 게이트 전압에 따른 환산 전하 이동도 그래프, (c): 클리닝 되기 전의 그래핀 소자의 전기적 특성을 드루드 (Drude) 수식에 따라서 피팅 (fitting)한 그래프, (d): 클리닝 후의 그래핀 소자의 전기적 특성올 드루드 (Drude) 수식에 따라서 피팅 (fitting)한 그래프) 5 is a result of measuring and comparing the electrical performance of the graphene before cleaning by the cleaning member and the graphene cleaned by the embodiment of the present invention. ((a): Graph of drain current according to gate voltage of graphene device (red) before cleaning and graphene device (blue) after cleaning, (b): Graphene device (red) and before cleaning Graph of converted charge mobility according to gate voltage of graphene device (blue) after cleaning, (c): Graph of fitting electrical characteristics of graphene device before cleaning according to Drude's formula, (d): Electrical characteristics of graphene device after cleaning according to Drude's formula One graph)
<35>  <35>
<36> <부호의 설명 >  <36> <symbol description>
<37> 1 : 금속기판  1 : Metal substrate
<38> .2 : 그래핀  <38> .2 : graphene
<39> 3 : 그래핀 지지층  3 : Graphene Support Layer
<40> 4 : 금속 에칭 용액  4: Metal Etching Solution
<41> 5 : 실리콘 또는 플라스틱
Figure imgf000006_0001
5 : Silicone or plastic
Figure imgf000006_0001
<42> 6 : 문지르개 천  <42> 6: rub cloth
<43>  <43>
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<44> 본 발명의 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 제한하지 않는다 . 단수의 표현은 문맥상 명백하게 다르 )1 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명의 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 슷자, 단계, 동작, 구성요소, 부분품 또 는 이들을 조합한 것이 존재함을 의미할 뿐, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해된다.  The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates) 1. In the context of the present invention, the term "comprises" or "having" means that only the features, features, steps, actions, components, parts, or combinations thereof described exist, but one or more other It is understood that the present invention does not exclude the possibility of the presence or the addition of features, numbers, steps, operations, components, parts, or combinations thereof.
<45>  <45>
<46> 이하, 그래핀의 개괄적인 제조공정을 도 1을 참조하여 간단히 설명한다. 기 판 (1)은 향후 형성될 그래핀이 형성될 수 있는 촉매 역할을 해주는 구리, 니켈, 금 등의 금속호일 또는 박막일 수 있다. 기판 (1) 위에 형성된 그래핀 (2)은 800 ~ 1100 °C의 공정조건에서 형성된 그래핀올 나타낸다. 폴리머 (3)은 향후 기판 (1)올 에칭하고 나서 그래핀 (2)이 말리거나 찢어지지 않게 지지할 수 있는 역할을 해주는 지지층의 역할로, 폴리메타크릴산메틸 (P醒 A), 폴리스타이렌 (PS), 포토레지스터 (AZ5214) 등의 폴리머가 사용될 수 있다. 용액 (4)는 기판 (1)올 에칭하여 제거할 수 있는 용액으로 금속기판이 구리인 경우에는 황산구리 (CuS04), 암모니아 포스페 이트, 질산 또는 상용화된 구리 에칭 용액이 사용되고, 니켈의 경우에는 잘산 또는 상용화된 니켈 에칭 용액, 금의 경우에는 왕수 또는 상용화된 금 에칭 용액일 수 있다. <47> 상기 금속 에칭 용액에 의해 에칭이 되면 그래핀은 새로운 기판 (5)으로 옮겨 진다. 상기 기판 (5)은 기판 (1)이 에칭되어 제거되고 남은 그래핀 (2) 및 폴리머 (3) 층이 옮겨지는 기판으로 예를들면, 실리콘 기판 (Si02/Si), 플라스틱 기판인 폴리에 틸렌프탈레이트 (PET), PI, PEN등이 사용될수 있다. Hereinafter, a general manufacturing process of graphene will be briefly described with reference to FIG. The substrate 1 may be a metal foil or a thin film of copper, nickel, gold, or the like, which serves as a catalyst for forming graphene to be formed in the future. Graphene (2) formed on the substrate (1) represents graphene formed in the process conditions of 800 ~ 1100 ° C. The polymer (3) serves as a support layer that serves to support the graphene (2) not to be dried or torn after the substrate (1) is etched in the future, polymethyl methacrylate (P 醒 A), polystyrene ( PS), photoresist (AZ5214) and the like can be used. The solution (4) is a solution that can be removed by etching the substrate (1). If the metal substrate is copper, copper sulfate (CuS04), ammonia phosphate, nitric acid, or a commercially available copper etching solution is used. Or a commercially available nickel etching solution, in the case of gold, may be aqua regia or a commercially available gold etching solution. When etched by the metal etching solution, the graphene is transferred to a new substrate (5). The substrate 5 is a substrate on which the substrate 1 is etched and removed and the remaining layers of graphene 2 and polymer 3 are transferred, for example, a silicon substrate (Si0 2 / Si), a plastic substrate poly Tylenephthalate (PET), PI, PEN and the like can be used.
<48> 상기 기판 (5) 위에 옮겨진 뒤에는 다음과 같은 방법으로 그래핀 지지층으로 쓰인 폴리머를 제거하게 된다. 먼저, 적절한 유기용매를 선택하여 1차적으로 제거 한 후, 완전히 제거되지 않은 잔여물을 기계적 문지르기, 열처리, 플라즈마를 이용 한 방법 등과 같은 2차적인 방법으로 제거할 수 있다. 도 2를 참조하면, 도 1에서 최종적으로 생성된 기판 (5) 위에 형성된 그래핀 (4)를 문지르개 천 (6)으로 부드럽게 문지르는 공정을 나타낸다. After being transferred onto the substrate 5, the polymer used as the graphene support layer is removed in the following manner. First, the appropriate organic solvent can be selected and removed first, and then the residues that have not been completely removed can be removed by secondary methods such as mechanical scrubbing, heat treatment, or plasma. Referring to FIG. 2, a process of gently rubbing the graphene 4 formed on the substrate 5 finally formed in FIG. 1 with the rub cloth 6 is shown.
<49>  <49>
<50> 이하, 본 발명을 상세히 설명한다 .  Hereinafter, the present invention will be described in detail.
<51> 본 발명은,  <51> The present invention,
<52> 유기용매를사용하여 한쪽 면에 그래핀 층이 형성되어 있는 그래핀 지지층을 제거하는 단계 (단계 1);  Removing the graphene support layer having the graphene layer formed on one surface by using an organic solvent (step 1);
<53> 상기 단계 1에서 그래핀 지지층이 제거된 그래핀 층 상에 직접적으로 접촉되 지 않으면서 상호작용이 가능한 거리에 클리닝 부재를 위치시키는 단계 (단계 2); Placing the cleaning member at an interactive distance without directly contacting the graphene support layer on which the graphene support layer is removed in step 1 (step 2);
<54> 상기 클리닝 부재를 그래핀 층 상에서 이동시켜 그래핀 지지층 잔사를 제거 하는 단계 (단계 3);를 포함하는 그래핀 클리닝 방법을 제공한다. It provides a graphene cleaning method comprising the step of moving the cleaning member on the graphene layer to remove the graphene support layer residue (step 3).
<55>  <55>
<56> 먼저, 상기 단계 1은 통상적인 그래핀 제조공정에 있어서, 그래핀 지지층을 이루는 물질을 유기용매를 사용하여 1차적으로 제거함으로써 최종적으로 원하는 기 판에 순도가높은 그래핀 층을 형성시키기 위한 단계이다.  First, in the step 1 of the conventional graphene manufacturing process, the material forming the graphene support layer is first removed using an organic solvent to finally form a high purity graphene layer on a desired substrate. It's a step for you.
<57> 본 발명에 따른 상기 단계 1의 유기용매는 아세톤, 메틸아세트아마이드, 를 루엔, 클로로벤젠, 애니졸, 다이메틸설폭사이드 둥을사용할 수 있다.  The organic solvent of step 1 according to the present invention may use acetone, methyl acetamide, toluene, chlorobenzene, anisol, dimethyl sulfoxide.
<58> 그래핀을 전기소자로 사용하기 위해 공정처리를 할 경우, 폴리메틸메타크릴 레이트 (PMMA)나 포토레지스터 (PR) 등의 폴리머가 반드시 수반된다. 특히 폴리메틸 메타크릴레이트 (PMMA)는 가장 많이 사용되는 그래핀 지지층으로서, 대표적인 유기 용매인 아세톤, 메틸아세트아마이드, 다이메틸설폭사이드를 사용하면 용이하게 제 거될 수 있다. 다만, 이러한 공정을 통해서도 그래핀과 직접 접촉하는 그래핀 지 지층을 이루는 물질은 완벽한 제거가 어렵다. When processing the graphene for use as an electric device, a polymer such as polymethyl methacrylate (PMMA) or photoresist (PR) is necessarily accompanied. In particular, polymethyl methacrylate (PMMA) is the most commonly used graphene support layer, and can be easily removed using acetone, methyl acetamide, and dimethyl sulfoxide, which are typical organic solvents. However, even through this process, the material forming the graphene layer in direct contact with graphene is difficult to remove completely.
<59> <60> 본 발명에 따른 상기 단계 1의 그래핀 지지층 형성물질은 폴리메타크릴산메 틸 (PMMA), 폴리스타이렌 (PS), AZ5214인 포토레지스터 등을사용할수 있다. <59> The graphene support layer forming material of step 1 according to the present invention may be polymethyl methacrylate (PMMA), polystyrene (PS), a photoresist of AZ5214, or the like.
<61> 본 발명의 그래핀 지지층은 그래핀 층이 초기에 형성된 금속기판 위에서 원 하는 기판으로 그 형상을 유지시켜 이동 및 적층시키기 위해서, 일시적으로 형상을 유지시켜 주기 위한 지지체이므로, 성형이 용이하고, 간단한 방법으로 제거되어야 하는 성질을 가지는 것이 바람직하다. 따라서, 폴리메타크릴산메틸 (PMMA), 폴리스 타이렌 (PS), AZ5214인 포토레지스터와 같은 폴리머 물질을 그래핀 지지층을 이루는 물질로 사용하면 유기용매 등올 사용한 제거가 용이하고, 성형성이 우수하므로 유 리하다.  Since the graphene support layer of the present invention is a support for temporarily maintaining the shape in order to maintain and move the shape of the graphene layer to the desired substrate on the initially formed metal substrate, it is easy to form. It is desirable to have the property to be removed in a simple manner. Therefore, when a polymer material such as polyresin, such as polymethyl methacrylate (PMMA), polystyrene (PS), or AZ5214, is used as a graphene support layer, it is easy to remove organic solvents and have excellent moldability. It is advantageous.
<62> ,  <62>,
<63> 다음으로, 상기 단계 2는 그래핀 지지층이 제거된 그래핀 층 상에 직접적으 로 접촉되지 않으면서 상호작용이 가능한 거리에 클리닝 부재를 위치시키는 단계로 서, 이는 그래핀층에는 손상을 주지 않으면서, 본 발명에 사용되는 클리닝 부재와 그래핀 층상의 잔여 그래핀 지지층 물질간의 정전기적 힘 또는 기타 화학적인 상호 작용을 이용하여 제거하기 위해서 상기 클리닝 부재와 그래핀 층간의 적절한 거리 를 두고 클리닝 부재를 위치시키는 것이 필요하다.  Next, step 2 is a step of placing the cleaning member at a distance that can be interacted without directly contacting the graphene layer on which the graphene support layer is removed, which does not damage the graphene layer. Without any suitable distance between the cleaning member and the graphene layer for removal using electrostatic forces or other chemical interactions between the cleaning member used in the present invention and the remaining graphene support layer material on the graphene layer. It is necessary to locate it.
<64> ..  <64> ..
<65> 본 발명에 따른 상기 단계 2의 클리닝 부재는 섬유부재, 필름재, 벨벳의 형 태일 수 있다.  The cleaning member of step 2 according to the present invention may be in the form of a fiber member, a film member, and a velvet.
<66> 클리닝 부재의 형태는 정전기 발생을 위한 마찰 시에 두 물질간의 전하이동 이 용이하게 이루어질 수 있는 형태이어야 하며, 이에 대한 예로써, 섬유부재, 필 름재, 벨벳 등과 같은 형태가 될 수 있다.  The shape of the cleaning member should be such that charge transfer between the two materials can be easily performed during friction for static electricity generation. For example, the cleaning member may be a fiber member, a film material, a velvet, or the like.
<67> 본 발명에 따른 상기 단계 2의 클리닝 부재의 소재는 레이온, 나일론, 면, 유리일 수 있다.  The material of the cleaning member of step 2 according to the present invention may be rayon, nylon, cotton, or glass.
<68> 구체적으로 레이온, 나일론, 면, 유리는 일반적으로 대전열이라고 불리는 정 전기 순서가 앞쪽에 있으므로 폴리메타크릴산메틸과 같은 폴리머와 만나면 양의 전 기 ( + )의 성질을 띄므로, 극세사 나일론은 양의 전기 ( + ), 폴리메타크릴산메틸과 같 은 폴리머는 보통 음의 전기 (―)띄할을 수행하여, 이때 상호 간 순간적인 강한 전단 움력이 발생하여 그래핀 위에 존재하던 폴리메타크릴산메틸과 같은 폴리머가 그래 핀 층으로부터 제거된다.  Specifically, rayon, nylon, cotton, and glass have a positive electric charge (+) when they encounter a polymer such as polymethyl methacrylate, because the electrostatic order generally called electrification heat is forward. Nylon is a positive electricity (+), polymers such as polymethyl methacrylate usually perform negative electrical offset (-), at which moment instantaneous strong shear force occurs between the polymethacryl that was present on the graphene A polymer, such as methyl acid, is removed from the graphene layer.
<69>  <69>
<70> 다음으로, 상기 단계 3은 상기 클리닝 부재를 그래핀 층 상에서 이동시켜 그 래핀 지지층 잔사를 제거하는 단계로서, 적절한 거리를 두고 위치해 있는 클리닝 부재의 전기적, 화학적 특성을 이용하여 그래핀 층과 직접 마찰하지 않고 그래핀 지지층 잔사를 제거하는 단계이다. Next, step 3 is performed by moving the cleaning member on the graphene layer. The step of removing the residue of the lapping support layer is a step of removing the graphene support layer residue without directly rubbing the graphene layer by using the electrical and chemical properties of the cleaning member positioned at an appropriate distance.
<71> 본 발명에 따른 상기 단계 3의 클리닝 부재의 이동을 그래핀 층 상에서 일방 향 또는 회전식 동력장치에 의해 자동으로 또는 작업자에 의해 수동으로 수행될 수 있다.  The movement of the cleaning member of step 3 according to the present invention may be performed automatically by a one-way or rotary power unit on the graphene layer or manually by an operator.
<72> 구체적으로, 간편하게는 작업자에 의해 수동으로 상기 방법에 따라 클리닝 부재를 이동시켜 그래핀 지지층 잔사를 제거할 수 있으나, 바람직하게는, 모터형식 으로 원통이 돌아가며 부드럽게 문지르는 액정배향용 기계, 일방향 또는 회전식으 로 문지르는 효과를 내기 위해 고안된 XYZ축 기계제어를 통한 일방향 또는 회전식 동력장차모두 또는 각각을사용하여 수행될 수 있다.  Specifically, the liquid crystal alignment machine for smoothly scrubbing the cylinder while rotating the graphene support layer residue can be removed by moving the cleaning member manually according to the above method by the operator. Alternatively, it can be performed using either one-way or rotary powertrains or each with XYZ-axis mechanical control designed to produce a rotary rubbing effect.
<73>  <73>
<74> 또한, 본 발명은 상기의 방법으로 클리닝 처리된 그래핀을 포함하는 소자를 제공한다.  The present invention also provides a device comprising graphene cleaned by the above method.
<75> 본 발명에 따른 클리닝된 그래핀의 소자화는, 전통적인 포토리소그래피, 전 자빔리소그래피 방법을 포함하고, 진공 전극 증착법을 이용하여 트랜지스터, 메모 ■ 리, 다이오드 둥의 전기 장치를 제조하는 것을 포함할 수 있다.  Demagnetization of the cleaned graphene according to the present invention includes traditional photolithography and electron beam lithography methods, and may include fabricating an electrical device of a transistor, a memory, a diode, and a diode using vacuum electrode deposition. Can be.
<76> 본 발명에 따른 클리닝된 그래핀의 소자화는, 앞서 언급한 전기적 응용으로 서 뿐만 아니라, 편광 박막, 액정배향 둥의 광학적 소자로서 응용을 포함하는 것은 물론이고, 이를 위해 투명한 기판 또는 다른 기판에서 실시되는 방법을 포함할 수 있다. ·  The demagnetization of the cleaned graphene according to the present invention includes not only the above-mentioned electrical application but also the application as an optical element of a polarizing thin film, a liquid crystal alignment column, and a transparent substrate or other substrate for this purpose. It may include a method performed in. ·
[발명의 실시를 위한 형태]  [Mode for Carrying Out the Invention]
<77> 이하, 본 발명을 실시예를 통해 더욱 상세히 설명한다.  Hereinafter, the present invention will be described in more detail with reference to Examples.
<78> 그러나 하기 실시예는 본 발명을 예시하는 것 일뿐 이에 의하여 본 발명의 내용이 제한되는 것은 아니다.  However, the following examples are only intended to illustrate the present invention is not limited thereto.
<79>  <79>
<80> <실시예 1>정전기적 힘을 이용한그래핀 클리닝  Example 1 Graphene Cleaning Using Electrostatic Force
<8i> 먼저, 가로, 세로의 길이가 모두 6 cm 이고, 두께가 0.25 卿인 구리 호일층 <8i> First, a copper foil layer having a length of 6 cm in width and length and 0.25 mm in thickness
(Alfa aeser사의 46986, 99.8 %금속기반)을 준비하였다. (46986, 99.8% metal based Alfa aeser) was prepared.
<82> 이어서, 화학적 기상 증착 (CVD) 방법을 이용하여 구리 호일층의 일면 상에 그래핀 한 층을 적층시켰다. Subsequently, a layer of graphene was laminated on one surface of the copper foil layer using chemical vapor deposition (CVD).
<83> 이렇게 적층된 그래핀에 전사를 위해 그래핀을 지탱해 줄 수 있는 폴리머인 폴리메타크릴산메틸 (PMMA)을 스핀코팅기 (마이다스시스템사)를 사용하여 2000 rpm으 로 30초 동안, 상온에서 스핀코팅하였다. 상기 구리 호일층을 녹이기 위해 구리 에 칭 용액 (Transene시")을 이용하여 구리 호일층을 녹였다. <83> A polymer capable of supporting graphene for transfer to the stacked graphene Polymethyl methacrylate (PMMA) was spin-coated at room temperature for 30 seconds at 2000 rpm using a spin coater (MIDAS SYSTEMS). In order to melt the copper foil layer, the copper foil layer was melted using a copper etching solution (Transene).
<84> 그 후, 용액 표면에 떠있는 그래핀 I 폴리메타크릴산메틸 (PMMA)을 실리콘 기판에 전사한 후, 폴리메타크릴산메틸 (PMMA)를 제거하기 위해 아세톤에 넣어서 폴 리메타크릴산메틸 (PMMA)을 체거했다. 대부분의 폴리메타크릴산메틸 (PMMA)은 이러 한 방식으로 제거가 되지만, 최종적으로 아세톤처리를 거친 그래핀층에는 약 5 nm 두께의 폴리메타크릴산메틸 (PMMA)가 원자힘 전자현미경 (디멘션 3100 원자힘 전자현 미경 (AFM-베코))를 사용하여 관찰한 결과, 잔여물로 남아있었다.  Thereafter, the graphene I polymethyl methacrylate (PMMA) floating on the surface of the solution is transferred to a silicon substrate, and then put in acetone to remove the polymethyl methacrylate (PMMA). Methyl (PMMA) was removed. Most polymethyl methacrylate (PMMA) is removed in this way, but the final acetone treated graphene layer is about 5 nm thick polymethyl methacrylate (PMMA) with atomic force electron microscopy (dimension 3100 atoms). Observations using force electron microscopy (AFM-Beco) remained as residue.
<85> 이를 제거 하기 위해 나일론 천을, 그래핀 층과 1 의 거리를 두고 위치시 킨 후에 , 손으로 문질러서 잔여 폴리메타크릴산메틸 (PMMA)를 제거하였다. 그 결과 를 원자힘현미경으로 관찰하여 잔여 폴리메타크릴산메틸 (PMMA)가 제거되기 전의 그 래핀 층과 대비하여 도 3에 나타내었다. 문지르기 전에 비해서 후가 명확하게 잔 여물이 제거되었음을 알 수 있다. 또한, 더욱 명확하게 확인하기 위해서 주사전자 현미경으로 관찰한 결과를 잔여 폴리메타크릴산메틸 (PMMA)가 제거되기 전의 그래핀 층과 대비하여 도 4에 나타내었다.  To remove this, the nylon cloth was placed at a distance of 1 from the graphene layer, and then rubbed by hand to remove residual polymethyl methacrylate (PMMA). The results were observed with an atomic force microscope and shown in FIG. 3 in contrast to the graphene layer before the residual polymethyl methacrylate (PMMA) was removed. It can be seen that afterwards the residue is clearly removed compared to before rubbing. In addition, to confirm more clearly, the results of the scanning electron microscope are shown in FIG. 4 in comparison with the graphene layer before the residual polymethyl methacrylate (PMMA) was removed.
<86>  <86>
<87> <비교예 1>유기용매만을 이용한그래판클리닝  Comparative Example 1 Graphene Cleaning Using Only Organic Solvents
<88> 상기 실시예 1의 아세톤으로 폴리메타크릴산메틸 (PMMA)을 제거하는 단계까 지만의 공정을 수행한 것을 제외하고는 상기 실시예 1과 동일한 조건으로 수행하였 다 ·  It was carried out under the same conditions as in Example 1, except that the process up to removing the polymethyl methacrylate (PMMA) with the acetone of Example 1 was carried out.
<89>  <89>
<90> <실험예 1>소자성능에 대한 클리닝 처리의 영향  Experimental Example 1 Influence of Cleaning Treatment on Device Performance
<91> 본 발명에 따른 클리닝 처리된 그래핀을 이용한 소자의 저항 및 전자이동도 와 같은 전기적 성능의 개선효과를 알아보기 위해 하기와 같은 실험을 수행하였다. <92> 실시예 1 및 비교예 1에서 클리닝 처리된 그래핀 각각을 포토리소그래피 및 진공증측기를 이용한 방법으로, 그래핀을 이용한 소자인 게아트, 소스 , 드레인으로 구성되는 트랜지스터를 각각 제조하였다. 그 후에, 소자의 전자기적 성질을 평가 할수있는 케이틀리 (Keithely) 4200-SCS 반도체 특성 시스템을 사용하여 각각의 소 자에 대하여 저항과 전자이동도를 측정한 결과, 정전기적힘에 의한 클리닝 처리까 지된 그래핀으로 전기적인 소자를 만들 경우에 저항이 약 2 배가 더 낮아지고 전자 의 이동도가 2배 정도 좋아지는 것올 확인하였고, 이를 도 5에 나타내었다.  In order to examine the improvement of electrical performance such as resistance and electron mobility of the device using the cleaned graphene according to the present invention, the following experiment was performed. In Example 1 and Comparative Example 1, each of the cleaned graphene was fabricated by photolithography and a vacuum analyzer, and transistors including geat, source, and drain, which are graphene-based devices, were manufactured, respectively. Subsequently, the resistance and electron mobility of each element were measured using a Keitly 4200-SCS semiconductor characterization system, which can evaluate the electromagnetic properties of the device. When the electrical device is made of graphene, it was confirmed that the resistance is about 2 times lower and the electron mobility is about 2 times better, which is shown in FIG. 5.

Claims

[청구의 범위】  [Claims]
【청구항 11  [Claim 11
유기용매를사용하여 한쪽 면에 그래핀 층이 형성되어 있는 그래핀 지지층을 제거하는 단계 (단계 1);  Removing the graphene support layer having the graphene layer formed on one surface using an organic solvent (step 1);
상기 단계 1에서 그래핀 지지층이 제거된 그래핀 층 상에 직접적으로 접촉되 지 않으면서 상호작용이 가능한 거리에 클리닝 부재를 위치시키는 단계 (단계 2); 상기 클리닝 부재를 그래핀 층 상에서 이동시켜 그래핀 지지층 잔사를 제거 하는 단계 (단계 3);를 포함하는 그래핀 클리닝 방법.  Positioning the cleaning member at a distance that can be interacted with without the direct contact with the graphene layer from which the graphene support layer is removed in step 1 (step 2); Removing the graphene support layer residue by moving the cleaning member on the graphene layer (step 3).
【청구항 2】 [Claim 2]
저 U항에 있어서, 상기 단계 1의 유기용매는 아세톤, 메틸아세트아마이드, 를 루엔, 클로로벤젠, 애니졸 및 다이메틸설폭사이드로 이루어지는 군에서 선택되는 1 종인 것을 특징으로 하는 그래핀 클리닝 방법.  The method of claim 5, wherein the organic solvent of step 1 is a graphene cleaning method, characterized in that one kind selected from the group consisting of acetone, methyl acetamide, toluene, chlorobenzene, anisol and dimethyl sulfoxide.
【청구항 3Γ [Claim claim 3Γ
제 1항에 있어서, 상기 단계 1의 그래핀 지지층 형성물질은 폴리메타크릴산메 틸 (P顧 A), 폴리스타이렌 (PS),및 AZ5214인 포토레지스터로 이투어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 그래핀 클리닝 방법.  The method of claim 1, wherein the graphene support layer forming material of step 1 is one selected from the group consisting of polymethacrylate (P 顧 A), polystyrene (PS), and a photoresist of AZ5214. How to clean graphene.
【청구항 4】 [Claim 4]
제 1항에 있어서, 상기 단계 2의 클리닝 부재는 섬유부재, 필름재, 벨벳으로 포함하는 군에서 선택되는 1종의 형태인 것을 특징으로 하는 그래핀 클리닝 방법.  The method of claim 1, wherein the cleaning member of step 2 is a graphene cleaning method, characterized in that one type selected from the group consisting of a fiber member, a film material, velvet.
[청구항 5】 [Claim 5]
제 1항에 있어서, 상기 단계 2의 클리닝 부재의 소재는 레이온, 나일론, 면, 유리를 포함하는 군에서 선택되는 1종인 것을 특징으로 하는 그래핀 클리닝 방법 .  The method of claim 1, wherein the material of the cleaning member of step 2 is one selected from the group consisting of rayon, nylon, cotton, and glass.
【청구항 6】 [Claim 6]
제 1항에 있어서, 상기 단계 3의 클리닝 부재의 이동을 그래핀 층 상에서 일 방향 또는 회전식 동력장치에 의해 자동으로 또는 작업자에 의해 수동으로 수행되 는 것을 특징으로 하는 그래핀 클리닝 방법. 【청구항 7】 The method of claim 1, wherein the movement of the cleaning member of step 3 is performed automatically by a one-way or rotary power unit on the graphene layer or manually by an operator. [Claim 7]
제 1항에 따른 방법으로 츌리닝 처리된 그래핀을 포함하는 소자.  A device comprising graphene that has been thinned by the method of claim 1.
PCT/KR2013/011732 2013-05-20 2013-12-17 Graphene-cleaning process and device comprising graphene treated thereby WO2014189191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130056770A KR20140136601A (en) 2013-05-20 2013-05-20 Graphene cleaning method and graphene device treated by the same
KR10-2013-0056770 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014189191A1 true WO2014189191A1 (en) 2014-11-27

Family

ID=51933724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011732 WO2014189191A1 (en) 2013-05-20 2013-12-17 Graphene-cleaning process and device comprising graphene treated thereby

Country Status (2)

Country Link
KR (1) KR20140136601A (en)
WO (1) WO2014189191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495812A (en) * 2014-12-11 2015-04-08 中国科学院微电子研究所 Method for atomically cleaning mechanically stripped graphene surface
CN114289420A (en) * 2022-02-21 2022-04-08 常州二维碳素科技股份有限公司 Method for removing carbon deposit on inner wall of air inlet pipe in CVD (chemical vapor deposition) grown graphene powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084110A (en) * 2010-01-15 2011-07-21 성균관대학교산학협력단 Graphene protective film for preventing gas and water, method of forming the same and uses of the same
KR20130020424A (en) * 2011-08-19 2013-02-27 삼성전자주식회사 Method of transferring graphene using trench and substrate for transferring graphene
KR20130026679A (en) * 2011-09-06 2013-03-14 그래핀스퀘어 주식회사 Organic field-effect transistor and preparing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110084110A (en) * 2010-01-15 2011-07-21 성균관대학교산학협력단 Graphene protective film for preventing gas and water, method of forming the same and uses of the same
KR20130020424A (en) * 2011-08-19 2013-02-27 삼성전자주식회사 Method of transferring graphene using trench and substrate for transferring graphene
KR20130026679A (en) * 2011-09-06 2013-03-14 그래핀스퀘어 주식회사 Organic field-effect transistor and preparing method of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOOSSENS ET AL.: "Mechanical cleaning of graphene", APPLIED PHYSICS LETTERS, vol. 100, 16 February 2012 (2012-02-16), pages 073110-1 - 073110-3 *
HER ET AL.: "Graphene transfer with reduced residue", PHYSICS LETTERS A, vol. 377, 10 April 2013 (2013-04-10), pages 1455 - 1458 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495812A (en) * 2014-12-11 2015-04-08 中国科学院微电子研究所 Method for atomically cleaning mechanically stripped graphene surface
CN114289420A (en) * 2022-02-21 2022-04-08 常州二维碳素科技股份有限公司 Method for removing carbon deposit on inner wall of air inlet pipe in CVD (chemical vapor deposition) grown graphene powder
CN114289420B (en) * 2022-02-21 2023-09-01 常州二维碳素科技股份有限公司 Method for removing carbon deposition on inner wall of air inlet pipe in CVD (chemical vapor deposition) grown graphene powder

Also Published As

Publication number Publication date
KR20140136601A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
Wang et al. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns
Shivayogimath et al. Do-it-yourself transfer of large-area graphene using an office laminator and water
Kim et al. Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films
Lin et al. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate
Lee et al. Modification of electronic properties of graphene with self-assembled monolayers
Liang et al. Toward clean and crackless transfer of graphene
Kang et al. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications
Levendorf et al. Transfer-free batch fabrication of single layer graphene transistors
Kim et al. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes
Liang et al. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons
Shulaker et al. Linear increases in carbon nanotube density through multiple transfer technique
Wang et al. Super-elastic graphene ripples for flexible strain sensors
Son et al. A nonvolatile memory device made of a ferroelectric polymer gate nanodot and a single-walled carbon nanotube
Kim et al. Transparent flexible nanoline field-effect transistor array with high integration in a large area
Dubois et al. Crack-defined electronic nanogaps
Rouhi et al. Fabrication of nanogap electrodes via nano-oxidation mask by scanning probe microscopy nanolithography
Cramer et al. Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy
Belyaeva et al. Molecular caging of graphene with cyclohexane: transfer and electrical transport
Moon et al. An eco‐friendly, CMOS‐compatible transfer process for large‐scale CVD‐graphene
KR20130024360A (en) Transferring method of graphene, and graphene transferred flexible substrate thereby
Kovtun et al. Multiscale charge transport in van der Waals thin films: Reduced graphene oxide as a case study
Gasparutti et al. How clean is clean? Recipes for van der Waals heterostructure cleanliness assessment
Wang et al. Dip-pen nanolithography of electrical contacts to single graphene flakes
Zhang et al. Multilayer Si shadow mask processing of wafer-scale MoS2 devices
Song et al. High‐resolution van der Waals stencil lithography for 2D transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885221

Country of ref document: EP

Kind code of ref document: A1