WO2014189177A1 - Mesh-type separator for fuel cell and manufacturing method thereof - Google Patents

Mesh-type separator for fuel cell and manufacturing method thereof Download PDF

Info

Publication number
WO2014189177A1
WO2014189177A1 PCT/KR2013/007899 KR2013007899W WO2014189177A1 WO 2014189177 A1 WO2014189177 A1 WO 2014189177A1 KR 2013007899 W KR2013007899 W KR 2013007899W WO 2014189177 A1 WO2014189177 A1 WO 2014189177A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mesh
fuel cell
separator
mold
Prior art date
Application number
PCT/KR2013/007899
Other languages
French (fr)
Korean (ko)
Inventor
이용헌
이혁상
서준택
서정혁
유승을
구영모
김명환
김종학
Original Assignee
에이스산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이스산업 주식회사 filed Critical 에이스산업 주식회사
Publication of WO2014189177A1 publication Critical patent/WO2014189177A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a mesh type separator for fuel cells and a method of manufacturing the same. More specifically, both the bending strength and the electrical conductivity are mainly composed of two kinds of blends having different mixing ratios of thermoplastic resins or thermosetting resins and conductive carbon materials.
  • the present invention relates to a separator for a fuel cell having an excellent mesh structure and a method of manufacturing the same.
  • a fuel cell is an electrochemical device that directly converts chemical energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas into electrical energy.
  • hydrocarbon-based materials such as methanol, ethanol, and natural gas
  • the energy conversion process of a fuel cell is very efficient and environmentally friendly. Because of this, interest continues to be in recent years.
  • the fuel cell is a phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), polymer electrolyte fuel cell (PEMFC) and alkali type depending on the type of electrolyte used It is classified into a fuel cell (AFC) and the like.
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFC solid oxide fuel cell
  • PEMFC polymer electrolyte fuel cell
  • alkali type depending on the type of electrolyte used It is classified into a fuel cell (AFC) and the like.
  • AFC fuel cell
  • Each of these fuel cells operates on essentially the same principle, but differs in the type of fuel used, operating temperature, catalyst, and electrolyte.
  • the polymer electrolyte fuel cell is known to be most promising not only for small stationary power generation equipment but also for transportation systems, and membrane electrode assemblies and separators including the polymer electrolyte membrane are the core parts. Is actively underway.
  • a membrane electrode assembly including a polymer electrolyte membrane provided between an anode and a cathode is interposed therebetween, and a separator plate having a hydrogen flow path and a separator plate having an oxygen flow path are disposed on both sides thereof.
  • the unit cell is formed, and the unit cells are formed by stacking dozens or hundreds of unit cells.
  • the separator plate must have excellent electrical conductivity as well as gas impermeability such as hydrogen and oxygen. When used for transportation, such as fuel cells, it must have high mechanical strength to withstand various shocks and vibrations. In addition, it is also known to realize a low cost process through low weight thinning of the separator, which accounts for about 80% of the weight of the fuel cell.
  • a content of a fuel cell separator is molded from a conductive curable resin composition composed of a hydrocarbon compound having several carbon-carbon double bonds, an elastomer and a carbonaceous material (Patent Document 3).
  • a conductive resin composition in which powder, fiber, or a conductive material mixed with powder and fiber is mixed with a multicomponent polymer resin binder having a number average particle size of 0.1 to 2 ⁇ m in a dispersed phase.
  • Patent Document 4 Although a technique for manufacturing a separator for a battery is also known (Patent Document 4), all of these prior arts not only select a specific polymer resin as a molding material of a thin plate separator, but also carbon fine powder, carbon nanotubes, and usually 10-20. A conductive material in the form of microparticles such as carbon fiber having a length of ⁇ m is selected. It is not easy to select the molecular material, and sufficient bending strength cannot be obtained by using only a microm fine conductive material, and when the thin plate is manufactured, the fine powder conductive material itself is expensive, so Due to the rise, there is a problem that it is difficult to realize a low-cost process.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-335695
  • Patent Document 2 Korea Patent Registration No. 10-0485285
  • Patent Document 3 Korean Patent Publication No. 10-2007-0110531
  • Patent Document 4 Korean Patent No. 10-0798121
  • the present invention has been devised in view of the above problems, and an object of the present invention is to realize low-cost thin weight thinning without using a specific polymer material and expensive conductive carbon material, and to have excellent flexural strength and electrical conductivity.
  • the present invention is to provide a separator plate for a fuel cell having a mesh structure and a method of manufacturing the same, comprising two kinds of blends having different blending ratios of thermoplastic resins or thermosetting resins and conductive carbon materials.
  • a mesh-type separator for fuel cells comprising a thermoplastic resin or a thermosetting resin, and two kinds of blends different in the mixing ratio of the conductive carbon material.
  • thermoplastic resin is polyethylene, polypropylene, polymethyl methacrylate, polybutylene terephthalate, polyamide, polyimide, polycarbonate, polyvinylidene fluoride, polyether sulfone, polyether ether ketone, polyphenylene sulfide, And it is characterized in that any one selected from the group consisting of polybenzimidazole.
  • thermosetting resin is characterized in that any one selected from the group consisting of phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polycarbodiimide resin, perryl alcohol resin, and alkyd resin.
  • the conductive carbon material is characterized in any one selected from the group consisting of natural graphite, artificial graphite, expanded graphite, carbon black, carbon fiber, carbon nanotubes, amorphous carbon, and mixtures thereof.
  • thermoplastic resin or the thermosetting resin and the conductive carbon material is characterized in that 10:90 ⁇ 60:40.
  • the present invention comprises the steps of: i) kneading each of the two kinds of raw materials differing in the mixing ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material; ii) injecting two kinds of raw materials having different mixing ratios in step i) into a mold in a mesh form and pressing to form a sheet; And iii) inserting the sheet formed in step ii) into a mold having a flow path and compressing the sheet.
  • the process of putting in the mold is characterized in that it is carried out in a width of 5 ⁇ 20 mm in the form of a mesh using an automatic powder injection device.
  • the sheet formed in step ii) is characterized in that the thickness of 0.05 ⁇ 1.5 mm.
  • the sheet formed in step ii) is characterized in that the laminated structure of 2-3 layers.
  • the mold of step iii) is characterized in that a wavy flow path having a concave portion and a convex portion is formed by a stamping process.
  • Compression molding of step iii) is characterized in that it is carried out for 1 to 5 minutes at a pressure of 1,000 ⁇ 2,000 kgf / cm 2 , a temperature of 150 ⁇ 170 °C.
  • a fuel cell mesh separation plate for fuel cell which realizes low-cost low-weight thinning and excellent flexural strength and electrical conductivity without using a specific polymer material and expensive conductive carbon material.
  • FIG. 1 is a conceptual diagram of a mesh type separator for fuel cells according to the present invention.
  • FIG. 2 is an explanatory diagram of (a) surface direction and (b) vertical direction of a mesh type separator for fuel cell according to the present invention
  • Figure 3 is a mesh separator for a fuel cell prepared from Example 1 of the present invention.
  • Figure 4 is a graph showing the electrical conductivity average value, maximum value, minimum value of the mesh type separator for fuel cells prepared from Example 2 of the present invention and the separators prepared from Comparative Examples 1 and 2 [(a) Comparative Example 1 average value, (b) Example 2 maximum value, (c) Example 2 average value, (d) Example 2 minimum value, (e) Comparative example 2 average value].
  • Figure 5 is a graph showing the electrical conductivity characteristics of 17 parts of the surface of the separator plate prepared from the fuel cell mesh separator and Comparative Examples 1, 2 prepared from Example 2 of the present invention.
  • a separator for a fuel cell is formed by mixing a polymer resin and graphite particles.
  • a polymer resin is mixed to reinforce flexural strength, the flexural strength is excellent, but electrical conductivity and thermal conductivity tend to be inferior.
  • electrical conductivity and thermal conductivity tend to be inferior.
  • conductive carbon materials such as black string particles are mixed, the electric conductivity and the thermal conductivity are excellent, but the flexural strength is reduced, so that when the external shock or vibration is broken or cracks are generated, hydrogen or oxygen leaks.
  • thermoplastic resin or thermosetting resin and conductive carbon material have different mixing ratios.
  • the above problem that is, the trade-off relationship between bending strength and electrical conductivity, was solved by forming a separator using a blend of as a raw material and having the mesh structure.
  • 1 is a conceptual diagram of a mesh type separator for fuel cells according to the present invention, and two kinds of raw materials A having different mixing ratios (higher carbon materials than B) and B (lower carbon contents than A) ), And the blend is capable of forming a mesh-type separator plate in which A and B mesh structures are combined by inputting A and B raw materials in a mesh form into a mold prepared in advance.
  • the present invention provides a mesh type separator for fuel cell comprising a thermoplastic resin or a thermosetting resin and two blends having different blending ratios of conductive carbon materials.
  • a thermoplastic resin or a thermosetting resin can be used as the polymer resin that is the main raw material of the separator for fuel cell.
  • thermoplastic resin examples include polyethylene, polypropylene, polymethyl methacrylate, polybutylene terephthalate, polyamide, polyimide, polycarbonate, polyvinylidene fluoride, polyether sulfone, polyether ether ketone, polyphenylene sulfide, And polybenzimidazole, any one selected from the group consisting of can be used without limitation.
  • thermosetting resin may be any one selected from the group consisting of phenol resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, polycarbodiimide resins, perperyl alcohol resins, and alkyd resins.
  • the phenol resin usually used in the production of separator plates for fuel cells can be used more preferably.
  • the conductive carbon material may be used without particular limitation as long as the carbon material exhibits conductivity.
  • graphite is easily available and inexpensive, and may be used regardless of the type of graphite. Any one of graphite or expanded graphite may be used, and any one selected from the group consisting of carbon black, carbon fiber, carbon nanotubes, amorphous carbon, and mixtures thereof may be used.
  • thermoplastic resin or the thermosetting resin and the conductive carbon material When the blending ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material is 10:90 to 60:40, when the two kinds of blends having different blending ratios within the range are used as raw materials, both the electrical conductivity and the flexural strength are used. It is preferable to obtain an excellent separator, and the mixing ratio can be adjusted in consideration of the characteristics of the separator within the above range.
  • Figure 2 is a diagram illustrating the electrical flow in the (a) surface direction and (b) vertical direction of the mesh type separator for fuel cell according to the present invention, the content of the carbon material compared to the two kinds of raw materials A (B) different in the mixing ratio High), B (lower carbon content than A) into mesh form, and then into the mold to form a mesh-type separating plate in which A and B mesh structures are combined. It shows that the electrical conductivity is high in the part with the raw material A, and also excellent in the conductivity with the raw material A in the vertical direction.
  • the present invention comprises the steps of: i) kneading each of the two kinds of raw materials differing in the mixing ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material; ii) injecting two kinds of raw materials having different mixing ratios in step i) into a mold in a mesh form and pressing to form a sheet; And iii) inserting the sheet formed in step ii) into a mold having a flow path and compressing the sheet.
  • thermoplastic resin or thermosetting resin, the conductive carbon material, and the blending ratio of step i) are as described above, and as the raw material of the separator, other than the thermoplastic resin or the thermosetting resin, and the conductive carbon material, glass fibers, etc. Reinforcing materials and release agents may also be added.
  • step ii) two kinds of raw materials kneaded in step i) are added in a mesh form using an automatic powder input device, and the width of the powder is preferably 5-20 mm. If the width is less than 5 mm, it is difficult to maintain the mesh form made of two kinds of raw materials in which the raw materials are mixed with each other and the mixing ratio is different. If the width exceeds 20 mm, the compatibility is inferior.
  • the sheet formed in step ii) has a thickness of 0.05 to 1.5 mm, and whether or not the final object can be formed into a thin plate-shaped separation plate is determined by the thickness of the sheet formed in step ii). Because it is determined according to the thickness can be adjusted well to reduce the thickness variation, it is possible to obtain a mesh-shaped separator plate. If the thickness of the sheet is less than 0.05 mm, there is a disadvantage that the mechanical strength is lowered, and if the thickness exceeds 1.5 mm, it is impossible to manufacture a mesh-type separation plate into a thin plate.
  • the sheet of step ii) has a multilayer structure, it is advantageous in terms of improving the performance and precision of the separator, but a sheet having a multilayer structure of more than three layers becomes so thick that the separator, which is the final object, is thinned. Since it becomes difficult to manufacture, it is preferable to have a laminated structure of 2-3 layers.
  • step iii) can be used to produce a separation plate of better performance by using a wavy channel having a concave portion and a convex portion formed by the stamping process.
  • the pressure of 1,000 to 2,000 kgf / cm 2 and the pressure of 150 to 170 are used in the compression molding of step iii).
  • the pressure of 1,000 to 2,000 kgf / cm 2 and the pressure of 150 to 170 are used in the compression molding of step iii).
  • a raw material consisting of 15 parts by weight of phenol resin and 85 parts by weight of graphite having an average particle diameter of 20 ⁇ m was kneaded, and B raw material consisting of 40 parts by weight of phenol resin and 60 parts by weight of graphite having an average particle diameter of 20 ⁇ m was kneaded, and then kneaded A, B
  • the raw material was fed into a mold in the form of a mesh of 10 mm in width using an automatic powder feeding device, and the sheet was formed by simply pressing without heating.
  • the molded sheet was introduced into a mold having a flow path and compression molded at 170 ° C. for 2 minutes and 30 seconds at a pressure of 1,000 kgf / cm 2 to prepare a mesh separator plate for a fuel cell having a thickness of 1.2 mm.
  • a thin-walled fuel cell mesh separator of 1.2 mm in thickness was manufactured in the same manner as in Example 1, except that 25 parts by weight of a phenol resin and 75 parts by weight of graphite having an average particle diameter of 20 m were used as B materials.
  • a separator for a conventional fuel cell was manufactured in the same manner as in Example 1, except that only A was added to a mold.
  • a separator for a conventional fuel cell was manufactured in the same manner as in Example 1, except that only B was added to a mold.
  • Figure 3 shows a real picture of the fuel cell mesh separator prepared from Example 1 of the present invention
  • Table 1 is a fuel cell mesh separator prepared according to Examples 1, 2 of the present invention and Electrical conductivity and flexural strength of conventional fuel cell separators prepared according to Comparative Examples 1 and 2 are shown.
  • the conventional fuel cell separators prepared according to Comparative Examples 1 and 2 use only one raw material A or one raw material B as raw materials. Therefore, electrical conductivity and flexural strength are typical according to the mixing ratio of phenol resin and graphite. While it can be seen that there is a trade-off relationship, the mesh type separator for fuel cells of thin plates manufactured according to Examples 1 and 2 of the present invention has the electrical conductivity and flexural strength without having a typical trade-off relationship. It can be confirmed that the eggplant properties are all excellent.
  • Figure 4 is a graph showing the electrical conductivity average value, maximum value, minimum value of the fuel cell mesh separator of the thin plate prepared from Example 2 of the present invention and the conventional fuel cell separator prepared from Comparative Examples 1, 2 [ (a) Comparative Example 1 average value, (b) Example 2 maximum value, (c) Example 2 average value, (d) Example 2 minimum value, (e) Comparative example 2 average value].
  • FIG. 5 shows the results of the random measurement of the electrical conductivity of 17 parts of the surface of the separator plate in order to more reliably confirm the electrical conductivity characteristics of the mesh type separator for fuel cell thin plate prepared from Example 2 of the present invention
  • the thin plate fuel cell separator prepared from Example 2 of the present invention has a mesh-like structure, and thus, two kinds of A and B raw materials having different blending ratios exhibit blended electrical conductivity characteristics.
  • the mesh separator of the thin plate manufactured according to the present invention has excellent electrical conductivity and flexural strength, and can be applied as a separator of a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a mesh-type separator for a fuel cell and a manufacturing method thereof, and more specifically, to a mesh-type separator for a fuel cell, having excellent flexural strength and electric conductivity, comprising, as main components, two types of blends having different mixing ratios of a thermoplastic resin or a thermosetting resin to a conductive carbon material, and a manufacturing method thereof. The present invention provides a mesh-type separator for a fuel cell, with excellent flexural strength and electric conductivity, which can embody a low-weight thin plate at a low cost without using a particular polymeric material and an expensive conductive carbon material.

Description

연료전지용 망사형 분리판 및 그 제조방법Mesh type separator for fuel cell and manufacturing method thereof
본 발명은 연료전지용 망사형 분리판 및 그 제조방법에 관한 것으로, 보다 상세하게는 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 주성분으로 하는 굴곡강도 및 전기전도도가 모두 우수한 망사형 구조의 연료전지용 분리판 및 이를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mesh type separator for fuel cells and a method of manufacturing the same. More specifically, both the bending strength and the electrical conductivity are mainly composed of two kinds of blends having different mixing ratios of thermoplastic resins or thermosetting resins and conductive carbon materials. The present invention relates to a separator for a fuel cell having an excellent mesh structure and a method of manufacturing the same.
연료전지는 메탄올, 에탄올, 천연가스와 같은 탄화수소계열의 물질 내에 함유되어 있는 수소와 산소의 화학에너지를 직접 전기에너지로 전환하는 전기화학장치로서, 연료전지의 에너지 전환공정은 대단히 효율적이고도 환경친화적이기 때문에 최근에도 계속 관심이 대상이 되고 있다.A fuel cell is an electrochemical device that directly converts chemical energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol, and natural gas into electrical energy. The energy conversion process of a fuel cell is very efficient and environmentally friendly. Because of this, interest continues to be in recent years.
일반적으로 연료전지는 그 사용되는 전해질의 종류에 따라 인산형 연료전지(PAFC), 용융탄산염형 연료전지(MCFC), 고체산화물형 연료전지(SOFC), 고분자 전해질형 연료전지(PEMFC) 및 알칼리형 연료전지(AFC) 등으로 분류된다. 이들 각각의 연료전지는 근본적으로 동일한 원리에 의해 작동되지만 사용되는 연료의 종류, 운전온도, 촉매, 전해질 등이 서로 다르다. 이 중에서 고분자 전해질형 연료전지는 소규모 거치형 발전장비 뿐만 아니라 수송시스템에도 가장 유망한 것으로 알려져 있고, 고분자 전해질막을 포함하는 막 전극 접합체 및 분리판(separator)이 핵심부라 할 수 있는데, 특히 분리판에 대한 연구가 활발하게 진행되고 있다.In general, the fuel cell is a phosphoric acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid oxide fuel cell (SOFC), polymer electrolyte fuel cell (PEMFC) and alkali type depending on the type of electrolyte used It is classified into a fuel cell (AFC) and the like. Each of these fuel cells operates on essentially the same principle, but differs in the type of fuel used, operating temperature, catalyst, and electrolyte. Among them, the polymer electrolyte fuel cell is known to be most promising not only for small stationary power generation equipment but also for transportation systems, and membrane electrode assemblies and separators including the polymer electrolyte membrane are the core parts. Is actively underway.
보통의 고분자 전해질형 연료전지는, 애노드 및 캐소드 사이에 구비되는 고분자 전해질막을 포함하는 막 전극 접합체를 사이에 두고, 수소 유로를 갖는 분리판 및 산소 유로를 갖는 분리판이 그 양쪽에 각각 배치되어 하나의 단위 셀을 형성하고, 그 단위 셀들이 수십 내지 수백 개 적층하여 구성되는 것인데, 이러한 연료전지의 부품 중 분리판은 수소와 산소 등의 가스 불투과성과 아울러 기본적으로 전기전도도가 우수하여야 하고, 자동차용 연료전지와 같이 수송용으로 사용할 때는 각종 충격이나 진동에 견딜 수 있도록 높은 기계적 강도를 가져야 한다. 게다가 현재 연료전지 무게의 80% 정도를 차지하는 분리판의 저중량 박판화를 통하여 저가의 공정을 실현하는 것도 중요한 해결과제로 알려져 있다.In a typical polymer electrolyte fuel cell, a membrane electrode assembly including a polymer electrolyte membrane provided between an anode and a cathode is interposed therebetween, and a separator plate having a hydrogen flow path and a separator plate having an oxygen flow path are disposed on both sides thereof. The unit cell is formed, and the unit cells are formed by stacking dozens or hundreds of unit cells. Among the fuel cell components, the separator plate must have excellent electrical conductivity as well as gas impermeability such as hydrogen and oxygen. When used for transportation, such as fuel cells, it must have high mechanical strength to withstand various shocks and vibrations. In addition, it is also known to realize a low cost process through low weight thinning of the separator, which accounts for about 80% of the weight of the fuel cell.
이를 위하여 종래에는 평균입경이 일정범위인 흑연입자와 열경화성 수지 또는 비탄소질수지를 배합한 원료를 성형함으로써 탄화공정 및 절삭공정을 거치지 않고도 성형성, 전기전도성 및 기계적 강도가 양호한 고분자 전해질형 연료전지용 분리판을 제조한 바 있으나, 그 원료물질의 배합비에 따라서는 전기전도도와 기계적 강도(굴곡강도) 사이의 트레이드-오프 관계를 개선하는데 한계가 있었다(특허문헌 1, 2).To this end, conventionally, a polymer electrolyte fuel cell having good moldability, electrical conductivity, and mechanical strength without forming a carbonization process and a cutting process by molding a raw material containing graphite particles having a predetermined average particle diameter in a range and thermosetting resin or non-carbonaceous resin is removed. Although the plate was manufactured, there was a limit in improving the trade-off relationship between electrical conductivity and mechanical strength (bending strength) depending on the mixing ratio of the raw materials (Patent Documents 1 and 2).
또한, 분리판의 박판화와 관련된 선행기술로서는 탄소-탄소 이중결합을 여러개 갖는 탄화수소화합물과 엘라스토머 및 탄소질 재료로 이루어진 도전성 경화성 수지 조성물로부터 연료전지용 분리판을 성형한 내용이 공지되어 있고(특허문헌 3),분산상의 수평균입도가 0.1~2 μm인 다성분 폴리머형 수지바인더에 분말형태, 섬유형태 또는 분말형태와 섬유형태가 혼합된 도전성재료를 혼합한 전도성 수지조성물을 이용하여 접촉저항이 우수한 연료전지용 분리판을 제조한 기술도 알려져 있으나(특허문헌 4), 이들 선행기술 모두가 박판형 세퍼레이터의 성형재료로 특정의 고분자 수지를 선택하고 있을 뿐만 아니라, 탄소미분말, 탄소나노튜브 및 통상적으로 10~20 μm 길이를 갖는 탄소섬유 등 μm 단위의 미립자 형태의 도전성 재료를 선택하고 있는바, 특정의 고분자 물질을 선택하는 것이 쉽지 않고, 또한 μm 단위의 미분말 도전성 재료만을 사용하여서는 충분한 굴곡강도를 얻을 수도 없으며, 이로부터 박판형의 분리판을 제조할 경우에는 미분말 도전성 재료 자체가 고가이기 때문에 분리판의 가격 상승으로 인하여 저가의 공정을 실현하기 어려운 문제점이 있다.In addition, as a prior art related to the thinning of the separator, a content of a fuel cell separator is molded from a conductive curable resin composition composed of a hydrocarbon compound having several carbon-carbon double bonds, an elastomer and a carbonaceous material (Patent Document 3). Excellent contact resistance by using a conductive resin composition in which powder, fiber, or a conductive material mixed with powder and fiber is mixed with a multicomponent polymer resin binder having a number average particle size of 0.1 to 2 μm in a dispersed phase. Although a technique for manufacturing a separator for a battery is also known (Patent Document 4), all of these prior arts not only select a specific polymer resin as a molding material of a thin plate separator, but also carbon fine powder, carbon nanotubes, and usually 10-20. A conductive material in the form of microparticles such as carbon fiber having a length of μm is selected. It is not easy to select the molecular material, and sufficient bending strength cannot be obtained by using only a microm fine conductive material, and when the thin plate is manufactured, the fine powder conductive material itself is expensive, so Due to the rise, there is a problem that it is difficult to realize a low-cost process.
특허문헌 1. 일본공개특허 특개2001-335695호 Patent Document 1. Japanese Patent Application Laid-Open No. 2001-335695
특허문헌 2. 한국등록특허 제10-0485285호 Patent Document 2. Korea Patent Registration No. 10-0485285
특허문헌 3. 한국공개특허 제10-2007-0110531호 Patent Document 3. Korean Patent Publication No. 10-2007-0110531
특허문헌 4. 한국등록특허 제10-0798121호 Patent Document 4. Korean Patent No. 10-0798121
따라서 본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 특정한 고분자 물질 및 고가의 전도성 탄소재료를 사용하지 않고서도 저가의 저중량 박판화를 구현하고, 굴곡강도 및 전기전도도가 모두 우수한 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 포함하는 망사형 구조의 연료전지용 분리판 및 그 제조방법을 제공하고자 하는 것이다.Therefore, the present invention has been devised in view of the above problems, and an object of the present invention is to realize low-cost thin weight thinning without using a specific polymer material and expensive conductive carbon material, and to have excellent flexural strength and electrical conductivity. The present invention is to provide a separator plate for a fuel cell having a mesh structure and a method of manufacturing the same, comprising two kinds of blends having different blending ratios of thermoplastic resins or thermosetting resins and conductive carbon materials.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 포함하는 연료전지용 망사형 분리판을 제공한다.The present invention for achieving the above object, there is provided a mesh-type separator for fuel cells comprising a thermoplastic resin or a thermosetting resin, and two kinds of blends different in the mixing ratio of the conductive carbon material.
상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리메틸메타크릴레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌술피드, 및 폴리벤즈이미다졸로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The thermoplastic resin is polyethylene, polypropylene, polymethyl methacrylate, polybutylene terephthalate, polyamide, polyimide, polycarbonate, polyvinylidene fluoride, polyether sulfone, polyether ether ketone, polyphenylene sulfide, And it is characterized in that any one selected from the group consisting of polybenzimidazole.
상기 열경화성 수지는 페놀 수지, 에폭시 수지, 우레아 수지, 멜라민 수지, 불포화폴리에스테르 수지, 폴리카르보디이미드 수지, 퍼퍼릴알콜 수지, 및 알키드 수지로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The thermosetting resin is characterized in that any one selected from the group consisting of phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polycarbodiimide resin, perryl alcohol resin, and alkyd resin.
상기 전도성 탄소물질은 천연흑연, 인조흑연, 팽창흑연, 카본블랙, 탄소섬유, 탄소나노튜브, 무정형 탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The conductive carbon material is characterized in any one selected from the group consisting of natural graphite, artificial graphite, expanded graphite, carbon black, carbon fiber, carbon nanotubes, amorphous carbon, and mixtures thereof.
상기 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비는 10:90~60:40인 것을 특징으로 한다.The blending ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material is characterized in that 10:90 ~ 60:40.
또한, 본 발명은 i) 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 원료를 각각 혼련하는 단계; ii) 상기 i) 단계에서 혼련된 배합비가 상이한 2종의 원료를 망사 형태로 금형에 투입하고 가압하여 시트를 성형하는 단계; 및 iii) 상기 ii) 단계에서 성형된 시트를 유로가 형성된 금형에 투입하고 압축성형하는 단계;를 포함하는 연료전지용 망사형 분리판의 제조방법을 제공한다.In addition, the present invention comprises the steps of: i) kneading each of the two kinds of raw materials differing in the mixing ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material; ii) injecting two kinds of raw materials having different mixing ratios in step i) into a mold in a mesh form and pressing to form a sheet; And iii) inserting the sheet formed in step ii) into a mold having a flow path and compressing the sheet.
상기 ii) 단계에서 금형에 투입하는 과정은 자동 분말투입장치를 이용하여 망사 형태로 5~20 mm 범위의 폭에서 수행되는 것을 특징으로 한다.In the step ii) the process of putting in the mold is characterized in that it is carried out in a width of 5 ~ 20 mm in the form of a mesh using an automatic powder injection device.
상기 ii) 단계에서 성형된 시트는 그 두께가 0.05~1.5 mm인 것을 특징으로 한다.The sheet formed in step ii) is characterized in that the thickness of 0.05 ~ 1.5 mm.
상기 ii) 단계에서 성형된 시트는 2~3층의 적층 구조인 것을 특징으로 한다.The sheet formed in step ii) is characterized in that the laminated structure of 2-3 layers.
상기 iii) 단계의 금형은 스탬핑 가공에 의하여 오목부와 볼록부를 갖는 물결 모양의 유로가 형성된 것을 특징으로 한다.The mold of step iii) is characterized in that a wavy flow path having a concave portion and a convex portion is formed by a stamping process.
상기 iii) 단계의 압축성형은 1,000~2,000 kgf/cm2의 압력, 150~170℃의 온도에서 1~5분 동안 수행되는 것을 특징으로 한다.Compression molding of step iii) is characterized in that it is carried out for 1 to 5 minutes at a pressure of 1,000 ~ 2,000 kgf / cm 2 , a temperature of 150 ~ 170 ℃.
본 발명에 따르면, 특정한 고분자 물질 및 고가의 전도성 탄소재료를 사용하지 않고서도 저가의 저중량 박판화를 구현하고, 굴곡강도 및 전기전도도가 모두 우수한 연료전지용 망사형 분리판을 제공할 수 있다.According to the present invention, it is possible to provide a fuel cell mesh separation plate for fuel cell, which realizes low-cost low-weight thinning and excellent flexural strength and electrical conductivity without using a specific polymer material and expensive conductive carbon material.
도 1은 본 발명에 따른 연료전지용 망사형 분리판의 개념도.1 is a conceptual diagram of a mesh type separator for fuel cells according to the present invention.
도 2는 본 발명에 따른 연료전지용 망사형 분리판의 (a) 표면방향 및 (b) 수직방향의 전기흐름 설명도.2 is an explanatory diagram of (a) surface direction and (b) vertical direction of a mesh type separator for fuel cell according to the present invention;
도 3은 본 발명의 실시예 1로부터 제조된 연료전지용 망사형 분리판.Figure 3 is a mesh separator for a fuel cell prepared from Example 1 of the present invention.
도 4는 본 발명의 실시예 2로부터 제조된 연료전지용 망사형 분리판 및 비교예 1, 2로부터 제조된 분리판의 전기전도도 평균값, 최대값, 최소값을 나타낸 그래프[(a) 비교예 1 평균값, (b) 실시예 2 최대값, (c) 실시예 2 평균값, (d) 실시예 2 최소값, (e) 비교예 2 평균값].Figure 4 is a graph showing the electrical conductivity average value, maximum value, minimum value of the mesh type separator for fuel cells prepared from Example 2 of the present invention and the separators prepared from Comparative Examples 1 and 2 [(a) Comparative Example 1 average value, (b) Example 2 maximum value, (c) Example 2 average value, (d) Example 2 minimum value, (e) Comparative example 2 average value].
도 5는 본 발명의 실시예 2로부터 제조된 연료전지용 망사형 분리판 및 비교예 1, 2로부터 제조된 분리판의 표면 17개 부위별 전기전도도 특성을 나타낸 그래프.Figure 5 is a graph showing the electrical conductivity characteristics of 17 parts of the surface of the separator plate prepared from the fuel cell mesh separator and Comparative Examples 1, 2 prepared from Example 2 of the present invention.
이하에서는 본 발명에 따른 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 포함하는 연료전지용 망사형 분리판 및 그 제조방법에 관하여 도면과 함께 상세히 설명하기로 한다.Hereinafter, a mesh type separator for fuel cells comprising two kinds of blends having different blending ratios of thermoplastic resins or thermosetting resins and conductive carbon materials will be described in detail with reference to the accompanying drawings.
일반적으로 연료전지용 분리판은 고분자 수지와 흑연 입자를 혼합하여 성형되는 것인바, 굴곡강도의 보강을 위하여 고분자 수지가 많이 배합되면 굴곡강도는 우수하지만 전기전도도 및 열전도도가 떨어지는 경향이 있고, 박판형 분리판을 채택한 연료전지를 작동할 때는 열을 이기지 못해 터지는 경우도 가끔 발생한다. 반면, 흑현 입자와 같은 전도성 탄소재료가 많이 배합되면 전기전도도와 열전도도는 우수하지만 굴곡강도가 떨어져 외부충격이나 진동 시 부서지거나 균열이 생겨 수소나 산소가 새는 문제점이 있다.In general, a separator for a fuel cell is formed by mixing a polymer resin and graphite particles. When a polymer resin is mixed to reinforce flexural strength, the flexural strength is excellent, but electrical conductivity and thermal conductivity tend to be inferior. When operating a fuel cell with a plate, it sometimes happens that it can't beat the heat. On the other hand, when a large amount of conductive carbon materials such as black string particles are mixed, the electric conductivity and the thermal conductivity are excellent, but the flexural strength is reduced, so that when the external shock or vibration is broken or cracks are generated, hydrogen or oxygen leaks.
그러나 본 발명에서는, 종래 단순히 고분자 수지와 흑연 입자의 배합비만을 달리한 1종의 원료만을 사용하여 연료전지용 분리판을 성형하던 것과는 달리, 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 원료로 사용하여 분리판을 성형하고, 그 분리판이 망사형 구조를 갖도록 함으로써 상기 문제점, 즉 굴곡강도와 전기전도도의 트레이드-오프 관계를 해결하였다.However, in the present invention, unlike the conventional molding of a fuel cell separator using only one type of raw material which differs only in the mixing ratio of polymer resin and graphite particles, two kinds of thermoplastic resin or thermosetting resin and conductive carbon material have different mixing ratios. The above problem, that is, the trade-off relationship between bending strength and electrical conductivity, was solved by forming a separator using a blend of as a raw material and having the mesh structure.
도 1은 본 발명에 따른 연료전지용 망사형 분리판의 개념도를 나타낸 것으로서, 배합비가 상이한 2종의 원료 A(B에 비하여 탄소물질의 함량이 높음), B(A에 비하여 탄소물질의 함량이 낮음)를 블렌드 하는데, 그 블렌드는 미리 준비된 금형에 망사 형태로 A, B 원료를 투입함으로써 A, B 망사 구조가 합쳐진 망사형 분리판을 성형할 수 있게 되는 것이다.1 is a conceptual diagram of a mesh type separator for fuel cells according to the present invention, and two kinds of raw materials A having different mixing ratios (higher carbon materials than B) and B (lower carbon contents than A) ), And the blend is capable of forming a mesh-type separator plate in which A and B mesh structures are combined by inputting A and B raw materials in a mesh form into a mold prepared in advance.
따라서 본 발명은 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 포함하는 연료전지용 망사형 분리판을 제공한다. 본 발명에서는 연료전지용 분리판의 주원료인 고분자 수지로서 열가소성 수지 또는 열경화성 수지 중 어느 것이나 사용할 수 있다.Accordingly, the present invention provides a mesh type separator for fuel cell comprising a thermoplastic resin or a thermosetting resin and two blends having different blending ratios of conductive carbon materials. In the present invention, either a thermoplastic resin or a thermosetting resin can be used as the polymer resin that is the main raw material of the separator for fuel cell.
상기 열가소성 수지로서는 폴리에틸렌, 폴리프로필렌, 폴리메틸메타크릴레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌술피드, 및 폴리벤즈이미다졸로 이루어진 군으로부터 선택된 어느 하나의 것이라면 제한 없이 사용할 수 있다.Examples of the thermoplastic resin include polyethylene, polypropylene, polymethyl methacrylate, polybutylene terephthalate, polyamide, polyimide, polycarbonate, polyvinylidene fluoride, polyether sulfone, polyether ether ketone, polyphenylene sulfide, And polybenzimidazole, any one selected from the group consisting of can be used without limitation.
또한, 상기 열경화성 수지로서는 페놀 수지, 에폭시 수지, 우레아 수지, 멜라민 수지, 불포화폴리에스테르 수지, 폴리카르보디이미드 수지, 퍼퍼릴알콜 수지, 및 알키드 수지로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있는데, 통상 연료전지용 분리판의 제작에 많이 사용되는 페놀 수지를 더욱 바람직하게 사용할 수 있다.The thermosetting resin may be any one selected from the group consisting of phenol resins, epoxy resins, urea resins, melamine resins, unsaturated polyester resins, polycarbodiimide resins, perperyl alcohol resins, and alkyd resins. The phenol resin usually used in the production of separator plates for fuel cells can be used more preferably.
또한, 상기 전도성 탄소물질은 전도성을 나타내는 탄소재료라면 특별한 한정없이 사용할 수 있으나, 그 중에서도 입수가 용이하고 가격이 저렴한 흑연이 바람직하며, 흑연의 종류에 구애받지 않고 사용할 수 있는바, 천연흑연, 인조흑연 또는 팽창흑연 중에서 어느 것이나 사용가능하고, 그 밖에도 카본블랙, 탄소섬유, 탄소나노튜브, 무정형 탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있다.In addition, the conductive carbon material may be used without particular limitation as long as the carbon material exhibits conductivity. Among them, graphite is easily available and inexpensive, and may be used regardless of the type of graphite. Any one of graphite or expanded graphite may be used, and any one selected from the group consisting of carbon black, carbon fiber, carbon nanotubes, amorphous carbon, and mixtures thereof may be used.
그리고 상기 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비는 10:90~60:40인 것을 사용하면, 그 범위 내의 배합비가 상이한 2종의 블렌드를 원료로 사용하였을 때 전기전도도 및 굴곡강도가 모두 우수한 분리판을 얻을 수 있어 바람직하고, 상기 범위 내에서 분리판의 특성을 고려하여 배합비를 조절할 수 있다.When the blending ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material is 10:90 to 60:40, when the two kinds of blends having different blending ratios within the range are used as raw materials, both the electrical conductivity and the flexural strength are used. It is preferable to obtain an excellent separator, and the mixing ratio can be adjusted in consideration of the characteristics of the separator within the above range.
도 2는 본 발명에 따른 연료전지용 망사형 분리판의 (a) 표면방향 및 (b) 수직방향의 전기흐름 설명도를 나타낸 것으로, 배합비가 상이한 2종의 원료 A(B에 비하여 탄소물질의 함량이 높음), B(A에 비하여 탄소물질의 함량이 낮음)를 망사 형태로 블렌드 하여 금형에 투입함으로써 A, B 망사 구조가 합쳐진 망사형 분리판이 성형되어, 표면방향으로 볼 때, 표면을 중심으로 A 원료가 있는 부분에서 높은 전기전도도를 나타내고, 수직방향으로 볼 때도 A 원료가 있는 부분에서 전기전도도가 우수함을 알 수 있다.Figure 2 is a diagram illustrating the electrical flow in the (a) surface direction and (b) vertical direction of the mesh type separator for fuel cell according to the present invention, the content of the carbon material compared to the two kinds of raw materials A (B) different in the mixing ratio High), B (lower carbon content than A) into mesh form, and then into the mold to form a mesh-type separating plate in which A and B mesh structures are combined. It shows that the electrical conductivity is high in the part with the raw material A, and also excellent in the conductivity with the raw material A in the vertical direction.
또한, 본 발명은 i) 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 원료를 각각 혼련하는 단계; ii) 상기 i) 단계에서 혼련된 배합비가 상이한 2종의 원료를 망사 형태로 금형에 투입하고 가압하여 시트를 성형하는 단계; 및 iii) 상기 ii) 단계에서 성형된 시트를 유로가 형성된 금형에 투입하고 압축성형하는 단계;를 포함하는 연료전지용 망사형 분리판의 제조방법을 제공한다.In addition, the present invention comprises the steps of: i) kneading each of the two kinds of raw materials differing in the mixing ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material; ii) injecting two kinds of raw materials having different mixing ratios in step i) into a mold in a mesh form and pressing to form a sheet; And iii) inserting the sheet formed in step ii) into a mold having a flow path and compressing the sheet.
상기 i) 단계의 열가소성 수지 또는 열경화성 수지, 전도성 탄소물질, 및 배합비에 관해서는 앞서 서술한바와 같고, 분리판의 원료로서 상기 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질 이외에 필요에 따라 유리섬유 등의 보강재와 이형제를 첨가할 수도 있다.The thermoplastic resin or thermosetting resin, the conductive carbon material, and the blending ratio of step i) are as described above, and as the raw material of the separator, other than the thermoplastic resin or the thermosetting resin, and the conductive carbon material, glass fibers, etc. Reinforcing materials and release agents may also be added.
그리고 상기 ii) 단계에서는 상기 i) 단계에서 혼련된 배합비가 상이한 2종의 원료를 자동 분말투입장치를 이용하여 망사 형태로 투입하는바, 분말투입 시 폭을 5~20 mm로 하는 것이 바람직한데, 그 폭이 5 mm 미만이면 원료끼리 혼합되어 배합비가 상이한 2종의 원료로 이루어지는 망사 형태를 유지하기가 어렵고, 그 폭이 20 mm를 초과하면 상용성이 떨어지는 단점이 있다.In step ii), two kinds of raw materials kneaded in step i) are added in a mesh form using an automatic powder input device, and the width of the powder is preferably 5-20 mm. If the width is less than 5 mm, it is difficult to maintain the mesh form made of two kinds of raw materials in which the raw materials are mixed with each other and the mixing ratio is different. If the width exceeds 20 mm, the compatibility is inferior.
또한, 상기 ii) 단계에서 성형된 시트는 그 두께가 0.05~1.5 mm인 것이 바람직한데, 최종 목적물인 망사형 분리판을 박판으로 성형할 수 있는지 여부는 상기 ii) 단계에서 성형되는 시트의 두께에 따라 결정되므로 두께를 잘 조절하여야만 두께 편차를 줄일 수 있고, 박판의 망사형 분리판을 얻을 수 있는 것이다. 상기 시트의 두께가 0.05 mm 미만이면 기계적 강도가 떨어지는 단점이 있고, 1.5 mm를 초과하면 망사형 분리판을 박판으로 제조할 수 없게 된다.In addition, it is preferable that the sheet formed in step ii) has a thickness of 0.05 to 1.5 mm, and whether or not the final object can be formed into a thin plate-shaped separation plate is determined by the thickness of the sheet formed in step ii). Because it is determined according to the thickness can be adjusted well to reduce the thickness variation, it is possible to obtain a mesh-shaped separator plate. If the thickness of the sheet is less than 0.05 mm, there is a disadvantage that the mechanical strength is lowered, and if the thickness exceeds 1.5 mm, it is impossible to manufacture a mesh-type separation plate into a thin plate.
또한, 상기 ii) 단계의 시트는 다층 구조를 갖는 것이 분리판의 성능이나 정밀도 향상 측면에서 유리하지만, 3층을 초과하는 다층 구조의 시트는 그 두께가 지나치게 두꺼워져 최종 목적물인 분리판을 박판으로 제조하는 것이 어렵게 되므로 2~3층의 적층 구조를 갖는 것이 바람직하다.In addition, although the sheet of step ii) has a multilayer structure, it is advantageous in terms of improving the performance and precision of the separator, but a sheet having a multilayer structure of more than three layers becomes so thick that the separator, which is the final object, is thinned. Since it becomes difficult to manufacture, it is preferable to have a laminated structure of 2-3 layers.
그리고 상기 iii) 단계의 금형은 스탬핑 가공에 의하여 오목부와 볼록부를 갖는 물결 모양의 유로가 형성된 것을 사용함으로써 더 우수한 성능의 분리판을 제조할 수 있다.And the mold of step iii) can be used to produce a separation plate of better performance by using a wavy channel having a concave portion and a convex portion formed by the stamping process.
마지막으로, 상기 iii) 단계의 압축성형 시 배합비가 상이한 2종의 원료를 사용하기 때문에 밀도 차이로 인한 부분적인 두께 편차가 발생하는 단점을 피하기 위하여 1,000~2,000 kgf/cm2의 압력, 150~170℃의 온도에서 1~5분 동안 압착 및 가온을 수행함으로써 연료전지용 박판의 망사형 분리판을 제조할 수 있게 된다.Finally, in order to avoid the disadvantage of partial thickness variation due to the density difference, the pressure of 1,000 to 2,000 kgf / cm 2 and the pressure of 150 to 170 are used in the compression molding of step iii). By performing compression and warming for 1 to 5 minutes at a temperature of ℃ it is possible to manufacture a mesh separator of the thin plate for fuel cells.
이하 구체적인 실시예를 상세히 설명한다.Hereinafter, specific embodiments will be described in detail.
(실시예 1) 연료전지용 망사형 분리판의 제조Example 1 Manufacture of Mesh Type Separator for Fuel Cell
페놀 수지 15 중량부 및 평균입경 20 μm의 흑연 85 중량부로 이루어진 A 원료를 혼련하고, 페놀 수지 40 중량부 및 평균입경 20 μm의 흑연 60 중량부로 이루어진 B 원료를 혼련한 후, 혼련된 A, B 원료를 자동 분말투입장치를 이용하여 폭 10 mm의 망사 형태로 금형에 투입하고, 가열 없이 가압하는 것만으로 시트를 성형하였다. 상기 성형된 시트를 유로가 형성된 금형에 투입하고 1,000 kgf/cm2의 압력으로 170℃에서 2분 30초 동안 압축성형하여 두께 1.2 mm인 박판의 연료전지용 망사형 분리판을 제조하였다.A raw material consisting of 15 parts by weight of phenol resin and 85 parts by weight of graphite having an average particle diameter of 20 μm was kneaded, and B raw material consisting of 40 parts by weight of phenol resin and 60 parts by weight of graphite having an average particle diameter of 20 μm was kneaded, and then kneaded A, B The raw material was fed into a mold in the form of a mesh of 10 mm in width using an automatic powder feeding device, and the sheet was formed by simply pressing without heating. The molded sheet was introduced into a mold having a flow path and compression molded at 170 ° C. for 2 minutes and 30 seconds at a pressure of 1,000 kgf / cm 2 to prepare a mesh separator plate for a fuel cell having a thickness of 1.2 mm.
(실시예 2) 연료전지용 망사형 분리판의 제조Example 2 Fabrication of Mesh Type Separator for Fuel Cell
B 원료로서 페놀 수지 25 중량부 및 평균입경 20 m의 흑연 75 중량부를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 두께 1.2 mm인 박판의 연료전지용 망사형 분리판을 제조하였다.A thin-walled fuel cell mesh separator of 1.2 mm in thickness was manufactured in the same manner as in Example 1, except that 25 parts by weight of a phenol resin and 75 parts by weight of graphite having an average particle diameter of 20 m were used as B materials.
(비교예 1) 통상의 연료전지용 분리판의 제조Comparative Example 1 Production of Separator Plate for Fuel Cell
A 원료만을 사용하여 금형에 투입하는 과정을 제외하고는 실시예 1과 동일한 방법으로 통상의 연료전지용 분리판을 제조하였다.A separator for a conventional fuel cell was manufactured in the same manner as in Example 1, except that only A was added to a mold.
(비교예 2) 통상의 연료전지용 분리판의 제조Comparative Example 2 Production of Separator Plate for Fuel Cell
B 원료만을 사용하여 금형에 투입하는 과정을 제외하고는 실시예 1과 동일한 방법으로 통상의 연료전지용 분리판을 제조하였다.A separator for a conventional fuel cell was manufactured in the same manner as in Example 1, except that only B was added to a mold.
도 3에는 본 발명의 실시예 1로부터 제조된 연료전지용 망사형 분리판의 실물 사진을 나타내었고, 하기 [표 1]에는 본 발명의 실시예 1, 2에 따라 제조된 연료전지용 망사형 분리판 및 비교예 1, 2에 따라 제조된 통상의 연료전지용 분리판의 전기전도도 및 굴곡강도를 나타내었다.Figure 3 shows a real picture of the fuel cell mesh separator prepared from Example 1 of the present invention, the following Table 1 is a fuel cell mesh separator prepared according to Examples 1, 2 of the present invention and Electrical conductivity and flexural strength of conventional fuel cell separators prepared according to Comparative Examples 1 and 2 are shown.
표 1
물성 실시예 1 실시예 2 비교예 1 비교예 2
전기전도도(S/cm) 13.76~85.06 36~83 75~83 16~19
굴곡강도(Mpa) 40 35 20 50
Table 1
Properties Example 1 Example 2 Comparative Example 1 Comparative Example 2
Electrical Conductivity (S / cm) 13.76-85.06 36 ~ 83 75-83 16-19
Flexural Strength (Mpa) 40 35 20 50
표 1에서 보는 바와 같이 비교예 1 및 2에 따라 제조된 통상의 연료전지용 분리판은 A 원료 또는 B 원료 1종만을 원료로 사용하고 있어 페놀 수지 및 흑연의 배합비에 따라 전기전도도와 굴곡강도는 전형적인 트레이드-오프 관계를 가짐을 알 수 있는 반면, 본 발명의 실시예 1 및 2에 따라 제조된 박판의 연료전지용 망사형 분리판은 전기전도도와 굴곡강도가 전형적인 트레이드-오프 관계를 갖지 않으면서도 그 두 가지 물성이 모두 우수함을 확인할 수 있다.As shown in Table 1, the conventional fuel cell separators prepared according to Comparative Examples 1 and 2 use only one raw material A or one raw material B as raw materials. Therefore, electrical conductivity and flexural strength are typical according to the mixing ratio of phenol resin and graphite. While it can be seen that there is a trade-off relationship, the mesh type separator for fuel cells of thin plates manufactured according to Examples 1 and 2 of the present invention has the electrical conductivity and flexural strength without having a typical trade-off relationship. It can be confirmed that the eggplant properties are all excellent.
또한, 도 4는 본 발명의 실시예 2로부터 제조된 박판의 연료전지용 망사형 분리판 및 비교예 1, 2로부터 제조된 통상의 연료전지용 분리판의 전기전도도 평균값, 최대값, 최소값을 나타낸 그래프[(a) 비교예 1 평균값, (b) 실시예 2 최대값, (c) 실시예 2 평균값, (d) 실시예 2 최소값, (e) 비교예 2 평균값]인데, 비교예 1의 경우에는 전기전도도의 평균값이 75 S/cm, 비교예 2의 경우에는 전기전도도의 평균값이40 S/cm로 측정된 반면, 실시예 2의 경우에는 전기전도도의 평균값은 57 S/cm로 다소 낮지만, 그 최대값은 83 S/cm, 최소값은 36 S/cm로 측정되어 A 원료 또는 B 원료만을 사용하여 제조한 분리판의 전기전도도 특성을 모두 보유하는 것으로 확인되었다.In addition, Figure 4 is a graph showing the electrical conductivity average value, maximum value, minimum value of the fuel cell mesh separator of the thin plate prepared from Example 2 of the present invention and the conventional fuel cell separator prepared from Comparative Examples 1, 2 [ (a) Comparative Example 1 average value, (b) Example 2 maximum value, (c) Example 2 average value, (d) Example 2 minimum value, (e) Comparative example 2 average value]. In the case of the average value of the conductivity of 75 S / cm, Comparative Example 2, the average value of the electrical conductivity was measured as 40 S / cm, while in the case of Example 2 the average value of the electrical conductivity is slightly lower, 57 S / cm, The maximum value was 83 S / cm and the minimum value was 36 S / cm, and it was confirmed that all of the electrical conductivity properties of the separator manufactured using only the raw material A or B were obtained.
그리고 도 5는 본 발명의 실시예 2로부터 제조된 박판의 연료전지용 망사형 분리판의 전기전도도 특성을 더욱 확실하게 확인하기 위하여 분리판의 표면 17개 부위의 전기전도도를 무작위로 측정한 결과를 나타낸 그래프인데, 역시 본 발명의 실시예 2로부터 제조된 박판의 연료전지용 분리판은 망사형 구조를 갖고 있기 때문에 배합비가 상이한 A 원료 및 B 원료 2종이 블렌드된 전기전도도 특성을 나타내는 것임을 알 수 있다.And Figure 5 shows the results of the random measurement of the electrical conductivity of 17 parts of the surface of the separator plate in order to more reliably confirm the electrical conductivity characteristics of the mesh type separator for fuel cell thin plate prepared from Example 2 of the present invention As a graph, it can be seen that the thin plate fuel cell separator prepared from Example 2 of the present invention has a mesh-like structure, and thus, two kinds of A and B raw materials having different blending ratios exhibit blended electrical conductivity characteristics.
그러므로 본 발명에 따라 제조된 박판의 망사형 분리판은 전기전도도 및 굴곡강도가 모두 우수하여 연료전지의 분리판으로 응용할 수 있다.Therefore, the mesh separator of the thin plate manufactured according to the present invention has excellent electrical conductivity and flexural strength, and can be applied as a separator of a fuel cell.

Claims (11)

  1. 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 블렌드를 포함하는 연료전지용 망사형 분리판.A mesh type separator for fuel cell comprising a thermoplastic resin or a thermosetting resin and two blends having different mixing ratios of conductive carbon materials.
  2. 제1항에 있어서, 상기 열가소성 수지는 폴리에틸렌, 폴리프로필렌, 폴리메틸메타크릴레이트, 폴리부틸렌테레프탈레이트, 폴리아미드, 폴리이미드, 폴리카보네이트, 폴리비닐리덴플루오라이드, 폴리에테르술폰, 폴리에테르에테르케톤, 폴리페닐렌술피드, 및 폴리벤즈이미다졸로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 연료전지용 망사형 분리판.The method of claim 1, wherein the thermoplastic resin is polyethylene, polypropylene, polymethyl methacrylate, polybutylene terephthalate, polyamide, polyimide, polycarbonate, polyvinylidene fluoride, polyether sulfone, polyether ether ketone A mesh type separator for fuel cell, characterized in that any one selected from the group consisting of polyphenylene sulfide, and polybenzimidazole.
  3. 제1항에 있어서, 상기 열경화성 수지는 페놀 수지, 에폭시 수지, 우레아 수지, 멜라민 수지, 불포화폴리에스테르 수지, 폴리카르보디이미드 수지, 퍼퍼릴알콜 수지, 및 알키드 수지로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 연료전지용 망사형 분리판.The method of claim 1, wherein the thermosetting resin is any one selected from the group consisting of phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, polycarbodiimide resin, perryl alcohol resin, and alkyd resin A mesh type separator for fuel cell.
  4. 제1항에 있어서, 상기 전도성 탄소물질은 천연흑연, 인조흑연, 팽창흑연, 카본블랙, 탄소섬유, 탄소나노튜브, 무정형 탄소, 및 이들의 혼합물로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 연료전지용 망사형 분리판.The fuel according to claim 1, wherein the conductive carbon material is any one selected from the group consisting of natural graphite, artificial graphite, expanded graphite, carbon black, carbon fiber, carbon nanotubes, amorphous carbon, and mixtures thereof. Mesh separator for battery.
  5. 제1항에 있어서, 상기 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비는 10:90~60:40인 것을 특징으로 하는 연료전지용 망사형 분리판.The fuel cell mesh separation plate according to claim 1, wherein a blending ratio of the thermoplastic resin or the thermosetting resin and the conductive carbon material is 10:90 to 60:40.
  6. i) 열가소성 수지 또는 열경화성 수지, 및 전도성 탄소물질의 배합비가 상이한 2종의 원료를 각각 혼련하는 단계;i) kneading the two kinds of raw materials having different mixing ratios of the thermoplastic resin or the thermosetting resin and the conductive carbon material;
    ii) 상기 i) 단계에서 혼련된 배합비가 상이한 2종의 원료를 망사 형태로 금형에 투입하고 가압하여 시트를 성형하는 단계; 및ii) injecting two kinds of raw materials having different mixing ratios in step i) into a mold in a mesh form and pressing to form a sheet; And
    iii) 상기 ii) 단계에서 성형된 시트를 유로가 형성된 금형에 투입하고 압축성형하는 단계;를 포함하는 연료전지용 망사형 분리판의 제조방법.iii) inserting the sheet formed in the step ii) into a mold in which a flow path is formed and compressing the molded sheet.
  7. 제 6항에 있어서, 상기 ii) 단계에서 금형에 투입하는 과정은 자동 분말투입장치를 이용하여 망사 형태로 5~20 mm 범위의 폭에서 수행되는 것을 특징으로 하는 연료전지용 망사형 분리판의 제조방법.The method of claim 6, wherein the step of adding the mold to the mold in the step ii) is performed in a width of 5 to 20 mm in a mesh form using an automatic powder input device. .
  8. 제6항에 있어서, 상기 ii) 단계에서 성형된 시트는 그 두께가 0.05~1.5 mm인 것을 특징으로 하는 연료전지용 망사형 분리판의 제조방법.The method of claim 6, wherein the sheet formed in step ii) has a thickness of 0.05 to 1.5 mm.
  9. 제6항에 있어서, 상기 ii) 단계에서 성형된 시트는 2~3층의 적층 구조인 것을 특징으로 하는 연료전지용 망사형 분리판의 제조방법.The method of claim 6, wherein the sheet formed in step ii) has a laminated structure of two to three layers.
  10. 제6항에 있어서, 상기 iii) 단계의 금형은 스탬핑 가공에 의하여 오목부와 볼록부를 갖는 물결 모양의 유로가 형성된 것을 특징으로 하는 연료전지용 망사형 분리판의 제조방법.7. The method of claim 6, wherein the mold of step iii) has a wavy flow path having a concave portion and a convex portion formed by a stamping process.
  11. 제6항에 있어서, 상기 iii) 단계의 압축성형은 1,000~2,000 kgf/cm2의 압력, 150~170℃의 온도에서 1~5분 동안 수행되는 것을 특징으로 하는 연료전지용 망사형 분리판의 제조방법.The method of claim 6, wherein the compression molding of step iii) is prepared for the fuel cell mesh separator for 1-5 minutes at a pressure of 1,000 ~ 2,000 kgf / cm 2 , a temperature of 150 ~ 170 ℃. Way.
PCT/KR2013/007899 2013-05-24 2013-09-02 Mesh-type separator for fuel cell and manufacturing method thereof WO2014189177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0058699 2013-05-24
KR1020130058699A KR101316006B1 (en) 2013-05-24 2013-05-24 Mesh type separator for fuel cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2014189177A1 true WO2014189177A1 (en) 2014-11-27

Family

ID=49637978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007899 WO2014189177A1 (en) 2013-05-24 2013-09-02 Mesh-type separator for fuel cell and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101316006B1 (en)
WO (1) WO2014189177A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932424B1 (en) * 2014-12-24 2018-12-27 (주)엘지하우시스 Composite material for bipolar plate of fuel cell, bipolar plate of fuel cell and manufacturing method of the same
KR101764383B1 (en) 2015-07-28 2017-08-02 서준택 Thin bipolar plate for fuel cell containing non-woven glass fiber and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067882A (en) * 1998-08-26 2000-03-03 Mitsubishi Plastics Ind Ltd Cell separator for fuel cell and its manufacture
JP2002158017A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Manufacturing method of base board for fuel cell, and fuel cell
JP2003323899A (en) * 2002-02-28 2003-11-14 Sumitomo Bakelite Co Ltd Separator for solid polymer fuel cell and its manufacturing method
KR20090072709A (en) * 2007-12-28 2009-07-02 한국과학기술연구원 Method for manufacturing polymer composite separator plates for fuel cells
KR20120114511A (en) * 2011-04-07 2012-10-17 에이스산업 주식회사 Reinforced thin fuel cell seperator containing pulverized carbon fiber and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000067882A (en) * 1998-08-26 2000-03-03 Mitsubishi Plastics Ind Ltd Cell separator for fuel cell and its manufacture
JP2002158017A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Manufacturing method of base board for fuel cell, and fuel cell
JP2003323899A (en) * 2002-02-28 2003-11-14 Sumitomo Bakelite Co Ltd Separator for solid polymer fuel cell and its manufacturing method
KR20090072709A (en) * 2007-12-28 2009-07-02 한국과학기술연구원 Method for manufacturing polymer composite separator plates for fuel cells
KR20120114511A (en) * 2011-04-07 2012-10-17 에이스산업 주식회사 Reinforced thin fuel cell seperator containing pulverized carbon fiber and method of manufacturing the same

Also Published As

Publication number Publication date
KR101316006B1 (en) 2013-10-08

Similar Documents

Publication Publication Date Title
KR101041697B1 (en) Molding material for fuel cell separator and fuel cell separator prepared therefrom
EP1287573B1 (en) Nanocomposite for fuel cell bipolar plate
US6436567B1 (en) Separator for fuel cells
KR102478772B1 (en) Bipolar plate for fuel cell, method of the same
US20070126137A1 (en) Method of manufacturing integrated bipolar plate/diffuser components for proton exchange membrane fuel cells
US20070128494A1 (en) Integrated bipolar plate/diffuser for a proton exchange membrane fuel cell
KR100901362B1 (en) Bipolar plate for fuel cell and manufacturing method thereof
WO2014189177A1 (en) Mesh-type separator for fuel cell and manufacturing method thereof
KR101364072B1 (en) Separating plate for fuel cell and the method of manufacturing the same
KR20180076949A (en) Polymer electrolyte membrane for fuel cell and manufacturing method thereof
KR101428551B1 (en) Epoxy-Carbon Composition for Bipolar Plate of PEMFC and Manufacturing Method for Bipolar Plate Using the Same
KR20090072709A (en) Method for manufacturing polymer composite separator plates for fuel cells
KR100834607B1 (en) Compositionf for manufacturing separator for pemfc and separator for pemfc manufactured out of the same
KR101402391B1 (en) Method for producing separator material for solid polymer fuel cell
CN1507665A (en) Plow field plates and a method for forming a seal between them
US20140134520A1 (en) Molding material for fuel cell separator
KR102050971B1 (en) Ultralight weight carbon based bipolar plate and fuel cell stack comprising the same and manufacturing method for the same
JP4339582B2 (en) Fuel cell separator and method for producing the same
KR101764383B1 (en) Thin bipolar plate for fuel cell containing non-woven glass fiber and manufacturing method thereof
JP4725872B2 (en) Separator for polymer electrolyte fuel cell
JP2006172776A (en) Separator material for fuel cell, and its manufacturing method
JP2001250566A (en) Separator for fuel cell and method of manufacturing the same
KR20110130640A (en) Polymer composite comprising plated carbon fiber for manufacturing bipolar plate of fuel cell
KR100886525B1 (en) Separator for fuel cell and stack for fuel cell comprising the same
KR101869963B1 (en) Separators for fuel cell, method for manufacturing the same and fuel cell comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885065

Country of ref document: EP

Kind code of ref document: A1