WO2014189077A1 - Multi-point probe and electronic contact sheet for configuring same, multi-point probe array and multi-point probe manufacturing method - Google Patents

Multi-point probe and electronic contact sheet for configuring same, multi-point probe array and multi-point probe manufacturing method Download PDF

Info

Publication number
WO2014189077A1
WO2014189077A1 PCT/JP2014/063467 JP2014063467W WO2014189077A1 WO 2014189077 A1 WO2014189077 A1 WO 2014189077A1 JP 2014063467 W JP2014063467 W JP 2014063467W WO 2014189077 A1 WO2014189077 A1 WO 2014189077A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
electronic contact
electronic
multipoint probe
probe
Prior art date
Application number
PCT/JP2014/063467
Other languages
French (fr)
Japanese (ja)
Inventor
隆夫 染谷
毅 関谷
酒井 真理
Original Assignee
独立行政法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人科学技術振興機構 filed Critical 独立行政法人科学技術振興機構
Priority to US14/892,485 priority Critical patent/US10588525B2/en
Priority to EP14801868.2A priority patent/EP3000389B1/en
Priority to CN201480028978.7A priority patent/CN105228519B/en
Publication of WO2014189077A1 publication Critical patent/WO2014189077A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0502Skin piercing electrodes

Definitions

  • the present invention relates to a multipoint probe, an electronic contact sheet constituting the multipoint probe, a multipoint probe array, and a method for manufacturing the multipoint probe.
  • This application claims priority based on Japanese Patent Application No. 2013-107229 for which it applied to Japan on May 21, 2013, and uses the content here.
  • Detecting biological signals emitted from the surface and inside of a living body not only grasps the current state of health, but also makes it possible to detect possible future diseases in advance, thereby creating a healthy and rich society. It is attracting attention as a next-generation medical technology to be realized.
  • an electrical signal of a biological tissue such as the brain or spinal cord is performed by inserting a probe having a plurality of voltage detection electronic contacts formed at the tip thereof into the brain (for example, Patent Documents 1 and 2).
  • the probe disclosed in Patent Document 1 is configured to include an electronic contact and wiring connected thereto on a sheet-like or plate-like insulating base (hereinafter referred to as “flat insulating base” as appropriate).
  • the probe disclosed in Patent Document 2 is configured to include a probe electronic contact that is erected on a flat insulating substrate and wiring that is connected to the probe electronic contact.
  • a sheet-like insulating base material formed with an electronic contact such as an electronic contact or a sensor for detecting an electrical signal on the side surface of a tubular structure, for example, a catheter or an endoscope, is spirally wound to be electrically and chemically
  • a device for detecting mechanical and mechanical biological signals has been proposed by the present inventors (Non-Patent Document 1).
  • the present invention has been made in view of the above circumstances, and a multipoint probe capable of realizing a remarkably high spatial resolution as compared with conventional probes, and an electronic contact sheet, a multipoint probe array, and a multipoint probe constituting the multipoint probe.
  • An object is to provide a manufacturing method.
  • a multipoint probe is an electron having a plurality of electronic contacts arranged in a row in a sheet-like insulating base and a plurality of wirings connected to each electronic contact.
  • a contact point sheet is a multipoint probe comprising a tubular laminate formed by laminating a contact sheet from one end to the other end, and the electronic contact is the sheet-like insulating substrate. It is exposed without being covered, and the wiring is laminated so that at least a part of the wiring other than the wiring of the uppermost layer is covered with the sheet-like insulating substrate.
  • the “electronic contact” means a part through which a current flows widely, such as an electrode.
  • a multipoint probe according to an aspect of the present invention is characterized in that, in the multipoint probe described above, an axial core material is provided, and the electronic contact sheet is wound around an outer peripheral surface of the core material.
  • the multipoint probe which concerns on 1 aspect of this invention is the said multipoint probe,
  • the said several electronic contact is along the edge part of the one end side of the said electronic contact sheet in one surface of the said sheet-like insulating base material. It is characterized by being arranged.
  • the sheet-like insulating base material is formed such that the edge portion recedes from one end to the other end of the tubular laminate. It is characterized by.
  • the multi-point probe according to an aspect of the present invention is characterized in that, in the multi-point probe, the plurality of electronic contacts are arranged in a spiral shape with respect to an axis of the tubular laminate.
  • the plurality of wirings extend along a direction of an axis of the tubular laminate over a predetermined range starting from the plurality of electronic contacts. It is characterized by being.
  • a plurality of pads connected to each wiring and connected to an external circuit extend along the other end in the vicinity of the other end of the electronic contact sheet. It is characterized by being arranged.
  • the electronic contact sheet is covered with a first insulating material so that a plurality of electronic contacts and a plurality of pads are exposed.
  • a first shield conductive film is formed on the other surface of the sheet-like insulating base on which the wiring is disposed. It is characterized by.
  • a second shield conductive film is formed on a surface of the sheet-like insulating base material on which the wiring is disposed.
  • the multi-point probe according to an aspect of the present invention is characterized in that, in the multi-point probe, the sheet-like insulating base has an amplifier connected to the plurality of electronic contacts.
  • the multi-point probe array according to an aspect of the present invention is characterized in that a plurality of the multi-point probes are provided separately on the base substrate.
  • the electronic contact sheet according to an aspect of the present invention is an electronic contact sheet that constitutes the multipoint probe.
  • the manufacturing method of the multipoint probe which concerns on 1 aspect of this invention is a manufacturing method of the said multipoint probe, Comprising:
  • seat is directed toward the other end so that the said several electronic contact may be exposed.
  • the second insulating material is entirely covered with the second insulating material, and then the second insulating material on the plurality of electronic contacts and the plurality of pads is removed.
  • the electronic contact sheet is composed of a tubular laminate formed by laminating multiple layers by winding the electronic contact sheet from one end to the other end.
  • the electronic contacts can be integrated and placed on the surface of the multipoint probe, enabling high-density electronic contact placement and high spatial resolution.
  • it is possible to detect an electric signal, apply an electrical stimulus, and the like.
  • a multilayer wiring structure is obtained.
  • non-winding probes As a result, high-density electronic contact arrangement is possible. It becomes. By increasing the number of windings, it is possible to arrange electronic contacts at a much higher density than conventional non-winding probes, and to detect a large number of simultaneous signals.
  • the multipoint probe of the present invention requires a simple wiring layout and a low wiring density compared to a high-density electronic contact arrangement comparable to that of a conventional non-winding probe.
  • the multipoint probe which concerns on 1 aspect of this invention, it was equipped with the axial core material, and the electronic contact sheet employ
  • a more flexible multipoint probe can be realized by winding the electronic contact sheet around the core material and then removing the core material. Moreover, when it uses in the living body with the structure which extracted the core material, it can reduce that a biological body is damaged by vibration.
  • the plurality of electronic contacts employs a configuration in which the electronic contact sheet is disposed along one edge of the electronic contact sheet on one surface of the sheet-like insulating base material. Therefore, it is possible to arrange electronic contacts at high density on the outer peripheral surface of the tubular laminate. For example, in the case of a rectangular electronic contact sheet, it is possible to arrange the contact points densely with respect to the axis of the tubular laminate by simply winding the edge so that the edge is inclined with respect to the axis, and the electronic contacts can be arranged with high density. .
  • the sheet-like insulating base material employs a configuration in which the edge portion is formed so as to recede from one end of the tubular laminate to the other end.
  • the electronic contact is arranged along the edge, and the electronic contact sheet is wound around the core so that the edge is inclined with respect to the axis of the tubular laminate, and the axis of the tubular laminate is
  • the electronic contacts can be arranged at high density.
  • the plurality of electronic contacts since the plurality of electronic contacts employs a configuration in which the plurality of electronic contacts are arranged in a spiral manner with respect to the axis of the tubular laminate, electrons are disposed on the outer peripheral surface of the tubular laminate.
  • Electronic contacts can be arranged with high density by arranging contacts closely.
  • the plurality of wirings are configured by adopting a configuration that extends along the axial direction of the tubular laminated body over a predetermined range starting from the plurality of electronic contacts.
  • count of superimposition of wiring decreases and crosstalk can be reduced.
  • the portion where the wiring is formed becomes thicker than the portion where the wiring is not formed, the multilayer wiring structure is thinned by reducing the number of overlapping times.
  • the wiring layout is simple, high-density wiring is possible.
  • a plurality of pads are arranged along the other end in the vicinity of the other end of the electronic contact sheet, thereby arranging a large number of pads.
  • the other end of the electronic contact sheet is a portion remaining on the outermost surface of the probe after winding, and is not covered with the electronic contact sheet, so that it can be arranged with high density.
  • a pad is formed at this end portion. The pad can be formed only in the range of the outer periphery of the tubular laminate on the other end side. Therefore, a large number of pads cannot be formed, and as a result, the electronic contacts cannot be arranged with high density.
  • the electronic contact sheet employs a configuration in which the plurality of electronic contacts and the plurality of pads are covered with the first insulating material so that wiring is provided. Covering with the first insulating material ensures the insulation. By winding the electronic contact sheet, the surface of the wiring is covered by the other surface of the sheet-like insulating base material, so that insulation is secured. It will be certain.
  • the multipoint probe by adopting the configuration in which the first shield conductive film is formed on the other surface of the surface on which the wiring is disposed, Crosstalk between wirings is reduced.
  • the multipoint probe by adopting the configuration in which the second shield conductive film is formed on the surface on which the wiring is disposed, the wiring between the layers in the multilayer wiring structure is provided. Crosstalk is reduced.
  • a weak signal (input voltage) is effectively obtained by adopting a configuration having an amplifier connected to a plurality of electronic contacts on a sheet-like insulating substrate. Can be amplified.
  • the manufacturing method of the multipoint probe which concerns on 1 aspect of this invention, after winding an electronic contact sheet
  • FIG. 1 shows a composition or a conductive material that can be used for an electronic contact material of a multipoint probe of the present invention, wherein (a) shows a case where carbon nanotubes covered with molecules constituting DEMEBF 4 are dispersed in a polyrotaxane.
  • FIG. 1 (B) is a photograph of a sheet obtained by photocrosslinking the composition shown in (a), and (c) is a photocrosslink of the composition shown in (a). And an optical micrograph of a patterned fine structure having a line width of about 50 ⁇ m. It is a high-resolution cross-sectional transmission electron microscope image (TEM image), (a) is a TEM image of carbon nanotubes that can be used for the electronic contact material of the multipoint probe of the present invention, (b) without ionic liquid, It is a TEM image of carbon nanotubes covered with polyrotaxane obtained by mixing carbon nanotubes and polyrotaxane in water and stirring while subdividing with a jet mill, and (c) is shown in FIG. 1 (a).
  • TEM image transmission electron microscope image
  • (a) is a TEM image of carbon nanotubes that can be used for the electronic contact material of the multipoint probe of the present invention
  • (b) without ionic liquid It is a TEM image of carbon nano
  • FIG. 1 is a perspective view showing an example of a multipoint probe according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a state in which the electronic contact sheet that has been wound for the purpose of explanation is unwound from the multipoint probe shown in FIG. 1 and 2 show a multi-point probe having a configuration including a core material.
  • the electronic contact sheet which concerns on one Embodiment of this invention is also demonstrated.
  • the multipoint probe 100 includes a plurality of electronic contacts 2 that are spaced apart from each other on the sheet-like insulating substrate 1, a plurality of wirings 3 (3a, 3b, 3c) connected to the respective electronic contacts 2, An electronic contact sheet 10 having a plurality of pads 4 connected to the wiring 3 and connected to an external circuit (not shown) is laminated in multiple layers by winding from one end 10a to the other end 10b.
  • the electronic contact 2 is exposed without being covered with the sheet-like insulating substrate 1, and the wiring 3 is other than the uppermost wiring 3a (that is, FIG. 1).
  • the multipoint probe shown in FIG. 1 has a configuration including a plurality of pads, but these pads are not essential components for the multipoint probe of the present invention.
  • the multipoint probe 100 shown in FIGS. 1 and 2 further includes a shaft-shaped core member 20, and the electronic contact 2 is wound around the outer peripheral surface 20 a of the core member 20.
  • the structure which is not provided with may be sufficient.
  • the shaft-shaped core material may be used as a configuration in which the multi-point probe is detachably attached to the core material at an appropriate timing, for example, after mounting.
  • a more flexible multipoint probe can be realized.
  • the rod-shaped core member is shown as a shaft-like core material.
  • the rod-like probe is not limited to a rod shape and is flexible. It may be a thing, and the thing whose hardness changes with conditions, such as temperature, may be used.
  • FIGS. 14A and 14B show a part of an example of a multi-point probe using a flexible shaft-like core material. Examples of applications of such multipoint probes include catheters and endoscopes.
  • the electronic contact sheet 10 has a plurality of electronic contacts 2, a plurality of wirings 3, and a plurality of pads 4 on one surface 1 a of the sheet-like insulating substrate 1.
  • the multipoint probe 100 has a wiring structure in which an electronic contact sheet 10 provided with wiring 3 is wound on one surface 1a of the insulating base material 1, and thus a layer (sheet) on which wiring is formed is laminated. is doing.
  • a multilayer wiring structure is formed only by winding.
  • the number of turns of the layer (sheet) on which the wiring is formed is increased, the total number of wirings can be increased, and as a result, the number of electronic contacts that can be arranged can be increased.
  • the sheet-like insulating substrate 1 is made of a flexible insulating material that can be wound. Specifically, for example, polyimide, polyethylene terephthalate, polyethylene naphthalate, polyetheretherketone, paraxylylene, and the like are used. Examples include polymer materials. Further, by using an elastomer such as silicon rubber for the insulating substrate 1, a flexible multipoint probe can be realized in combination with a flexible core material.
  • the thickness is not limited, but for example, a thickness of 1 ⁇ m to 20 ⁇ m can be used. For example, if a sheet-like insulating substrate having a thickness of 1 ⁇ m is used, the thickness of the laminated multilayer sheet is about 30 ⁇ m even if the sheet is wound 30 times.
  • the shape of the sheet-like insulating substrate 1 is not particularly limited, but the sheet-like insulating substrate (that is, the electronic contact sheet) needs to be wound so that the plurality of electronic contacts 2 are exposed.
  • the sheet-like insulating substrate that is, the electronic contact sheet
  • the plurality of electronic contacts are exposed. Then, it is wound so as to be inclined with respect to the axis of the tubular laminated body 10A (in the case of the configuration shown, coincides with the axis of the core 20).
  • the sheet-like insulating base material 1 has the 1st rectangular part 1b in the predetermined range from the end (start end) from which winding is started to the core material 20,
  • the edge 1c on the one end 20b side of the core member 20 is formed so as to recede from the one end 20b of the core member 20 toward the other end 20c, and the pad 4 is attached to the end (other end) 1d opposite to the start end.
  • the opposite edge 1f of the edge 1c is formed without retreating from the edge of the first rectangular part 1b.
  • the plurality of electronic contacts 2 are arranged along the edge portion 1c, and the plurality of pads 4 are the other in the second rectangular portion (near the other end) 1e.
  • the sheet-like insulating base material 1 is formed so that the edge portion 1c on the one end 20b side of the core material 20 is retracted from the one end 20b of the core material 20 toward the other end 20c.
  • the electronic contact 2 serves as an interface for detecting an electrical signal by touching the object and applying an electrical stimulus according to the application of the multipoint probe.
  • the electronic contacts 2 are arranged apart from each other on the surface 1a opposite to the surface wound around the core member 20 of the sheet-like insulating substrate 1, and the number of the electronic contacts 2 is not particularly limited, and the area of the outer peripheral surface is large. Many electronic contacts can be arranged by using a large core material.
  • the electronic contacts 2 are preferably arranged at intervals of 10 to 200 ⁇ m, and the diameter of each electronic contact 2 is preferably 5 to 100 ⁇ m.
  • the shape is not particularly limited, and may be, for example, a round shape or a square shape.
  • the arrangement of the electronic contacts 2 is not particularly limited.
  • the electronic contacts 2 may be arranged along the edge portion 1c on one end side of the electronic contact sheet 10, and as shown in FIG. It is good also as a structure arrange
  • positioned in 3 or more rows may be sufficient.
  • the material of the electronic contact 2 it is preferable to use a metal material that is not easily corroded, such as gold or platinum.
  • a metal material that is not easily corroded such as gold or platinum.
  • flexible nanomaterials such as a carbon nanotube (CNT)
  • CNT carbon nanotube
  • FIG. For example, a gel-like structure in which a carbon nanomaterial that is doubly coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer is dispersed in a water-soluble polymer medium and the water-soluble polymer is crosslinked.
  • a conductive material conductive gel
  • This conductive gel will be described later.
  • the wiring 3 connects the corresponding electronic contact 2 and the pad 4. Similarly to the electronic contact 2, the surface of the sheet-like insulating base 1 opposite to the surface wound around the core member 20. They are arranged apart from each other in 1a.
  • the wiring 3 is preferably arranged at intervals of 5 to 200 ⁇ m, and the width is preferably 2 to 100 ⁇ m. Further, as the material of the wiring 3, it is preferable to use a metal material that is not easily corroded, such as gold or platinum.
  • the wiring 3 can arrange many wiring by using the sheet-like insulating base material 1 having a wide width (length in the winding direction). Even if the number of wires is increased by using a very wide sheet-like insulating base material 1, these wires can be accumulated on the outer peripheral surface of the core material, so that the entire multipoint probe can be integrated. The size does not need to be increased.
  • the wiring 3 extends along the axial direction of the core member 20 over a predetermined range starting from the electronic contact 2. That is, the wiring 3 extends from the electronic contact 2 to the edge 1 f side along the axial direction of the core member 20. From there, it extends to the pad 4 arranged at the second rectangular portion 1d at a different angle.
  • the configuration in which the wiring 3 extends along the axial direction of the core material 20 is shorter in the length of the wiring and the number of superpositions than the configuration in which the wiring is inclined with respect to the axial direction of the core material, and crosstalk is reduced. Can be reduced.
  • the pad 4 is connected to the corresponding wiring 3 and is connected to an external circuit such as an electric signal measuring instrument or a voltage applying device according to the use of the multipoint probe, and is similar to the electronic contact 2 and the wiring 3.
  • the sheet-like insulating base material 1 is disposed so as to be separated from each other on the surface 1 a opposite to the surface wound around the core material 20.
  • the pads 4 are preferably arranged at intervals of 50 to 1000 ⁇ m, and the width of the pads 4 is preferably 20 to 500 ⁇ m.
  • the shape is not particularly limited, and examples thereof include a round shape and a square shape.
  • the structure which makes mounting easy by taking a staggered arrangement of pads in a plurality of stages can be taken.
  • the pad 4 may be arranged along the other end 10b in the vicinity of the other end 10b of the electronic contact sheet 10 (position of the second rectangular portion 1e).
  • the other end 10b of the electronic contact sheet 10 is a portion remaining on the outermost surface of the probe after winding, it is not covered with the electronic contact sheet, so that the electronic contact sheet 10 can be arranged with high density. A large number of electronic contacts can be arranged.
  • the edge 1f Since the electronic contact sheet covers and overlaps by winding, the pad can be arranged only about the length of the outer periphery of the rod of the core material 10. Therefore, a large number of pads cannot be formed, and as a result, the electronic contacts cannot be arranged with high density.
  • a metal material that is not easily corroded such as gold or platinum
  • a flexible nanomaterial such as a carbon nanotube (CNT) may be used, or the gel-like conductive material (conductive gel) may be used.
  • the core material 20 has a shaft shape, and there is no limitation on its shape as long as the electronic contact sheet can be wound and fixed, but it is preferably a columnar shape from the viewpoint of ease of winding and fixing. .
  • the tip part to be inserted into a target to detect an electrical signal or to apply an electrical stimulus may have a tapered shape from the viewpoint of ease of insertion as shown in FIGS. 1 and 2. preferable.
  • the material of the core material 20 is not limited, but for example, a flexible metal such as stainless steel, tungsten, titanium, etc., engineering plastics such as polyacetal, silicon rubber, polypropylene, polyethylene, polyethylene terephthalate, etc.
  • the electronic contact sheet 10 has a configuration in which a first insulating material (not shown) is coated on one surface 1a of the sheet-like insulating base 1 so that the plurality of electronic contacts 2 and the plurality of pads 4 are exposed. Also good. Although it does not limit as a material of the 1st insulating material, Parylene (registered trademark) and Cytop (registered trademark) can be used, for example. Parylene can be coated by, for example, CVD, and cytop by dipping. The thickness of the coating layer of the first insulating material is preferably 1 to 10 ⁇ m.
  • the electronic contact sheet 10 may have a configuration in which a first shield conductive film (not shown) is formed on the back surface of the one surface 1 a of the sheet-like insulating base material 1. In this configuration, crosstalk between wirings in the multilayer wiring structure is reduced. Although it does not limit as a material of a 1st shield conductive film, Gold can be mentioned, for example.
  • the thickness of the first shield conductive film is preferably 0.02 to 0.2 ⁇ m.
  • the electronic contact sheet 10 may have a configuration in which a second shield conductive film 6 is formed on the one surface 1 a of the sheet-like insulating substrate 1. In this configuration, crosstalk between wirings in the multilayer wiring structure is reduced.
  • the material of the second shield conductive film is not limited, for example, gold can be used.
  • the thickness of the second shield conductive film is preferably 0.02 to 0.2 ⁇ m. . This second conductive film can be formed simultaneously with the wiring.
  • the electronic contact sheet 10 may have an amplifier connected to a plurality of electronic contacts 2 on one surface 1a of the sheet-like insulating substrate 1.
  • one end 10a of the electronic contact sheet 10 is fixed to the outer peripheral surface 20a of the core member 20 using an epoxy adhesive or an acrylate adhesive. After that, for example, every time one turn is wound, the front surface and the back surface of the electronic contact sheet 10 are bonded using an adhesive, and the winding is continued. The back surface of the end 10b is adhered to the front surface of the electronic contact sheet 10 using an adhesive to complete the winding.
  • the electronic contact sheet 10 is wound around the outer peripheral surface 20a of the core member 20, and then the second insulating material is entirely covered, and then the second contact points on the plurality of electronic contacts and the plurality of pads.
  • the structure which removed these insulating materials and exposed them may be sufficient.
  • Parylene (registered trademark) and Cytop (registered trademark) can be used, for example.
  • the step of the wound electronic contact sheet is covered by the configuration in which the whole is covered with the second insulating material, the multipoint probe can be easily inserted into the target.
  • a method of removing the second insulating material on the plurality of electronic contacts and the plurality of pads for example, there is a method using a laser.
  • the multipoint probe of the present invention can be used to detect electrical signals of biological tissues such as the brain and spinal cord and to apply electrical stimulation to biological tissues, but also to exchange signals with nerve cells and muscle cells, calcium ions It can also be used for applications such as glucose concentration measurement.
  • the application target is not limited to a living body.
  • it can be used for sensors such as ultrasonic sensors and optical sensors, and elements such as light emitting elements and ultrasonic elements. By incorporating these sensors into the surface of a catheter or endoscope, it is possible to expand the application range of examinations and treatments.
  • Gel-like conductive material As described above, as a material for the multi-point probe, the electronic contact, and the multi-point probe array of the present invention, carbon double-coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer A gel-like conductive material (conductive gel) in which a nanomaterial is dispersed in a water-soluble polymer medium and the water-soluble polymer is crosslinked can be used.
  • the ionic liquid is also referred to as a normal temperature molten salt or simply a molten salt, and is a salt that exhibits a molten state in a wide temperature range including normal temperature.
  • a hydrophilic ionic liquid among various conventionally known ionic liquids can be used.
  • the carbon nanomaterial is a component composed of carbon atoms and structured in a nanometer size (for example, one CNT), and the carbon atoms of the component are generally van der Waals forces.
  • carbon nanotubes, carbon nanofibers (of carbon fibers having a diameter of 10 nm or less), carbon nanohorns, and fullerenes are generally van der Waals forces.
  • a fine carbon nanomaterial of 10 nm or less exhibits good dispersibility in water.
  • the carbon nanotube has a structure in which a graphene sheet in which carbon atoms are arranged in a hexagonal network is a single layer or a multilayer and is rounded in a cylindrical shape (single-wall nanotube (SWNT), double-wall nanotube (DWNT), multilayer
  • SWNT single-wall nanotube
  • DWNT double-wall nanotube
  • the carbon nanotube that can be used as the carbon nanomaterial is not particularly limited, and any of SWNT, DWNT, and MWNT may be used.
  • Carbon nanotubes can generally be produced by laser ablation, arc discharge, thermal CVD, plasma CVD, gas phase, combustion, etc., but carbon nanotubes produced by any method may be used. A plurality of types of carbon nanotubes may be used.
  • Carbon nanotubes are likely to aggregate due to van der Waals forces between the carbon nanotubes, and usually a plurality of carbon nanotubes exist as bundles or aggregates.
  • the bundle or aggregate can be subdivided by applying a shearing force (reducing entanglement of carbon nanotubes).
  • a shearing force reducing entanglement of carbon nanotubes.
  • the van der Waals force that binds the carbon nanotubes is weakened and separated into individual carbon nanotubes, and the ionic liquid can be adsorbed to the individual carbon nanotubes.
  • a composition comprising a carbon nanotube and an ionic liquid, including a single carbon nanotube covered with molecules of the ionic liquid, can be obtained.
  • the means for applying the shearing force used in the subdividing step is not particularly limited, and a wet pulverizing apparatus capable of applying the shearing force, such as a ball mill, a roller mill, or a vibration mill, can be used.
  • the ionic liquid molecules bonded to the surface of the carbon nanotubes with reduced entanglement by the “cation- ⁇ ” interaction are connected via the ionic bonds.
  • Patent Document 2 the gel composition is rinsed with, for example, physiological saline, ethanol, etc.
  • a single ionic liquid molecule layer can be formed on the surface, and by mixing water and a water-soluble polymer, the carbon nanotubes covered with the molecules constituting the ionic liquid are converted into a water-soluble polymer medium.
  • a composition dispersed therein can be prepared.
  • the water-soluble polymer is not particularly limited as long as it is a polymer that can be dissolved or dispersed in water, and more preferably a polymer that can be crosslinked in water.
  • the following examples can be given.
  • Synthetic polymer (1) ionic polyacrylic acid (anionic) Polystyrene sulfonic acid (anionic) Polyethyleneimine (cationic) MPC polymer (Zwitterion) (2) Nonionic polyvinyl pyrrolidone (PVP) Polyvinyl alcohol (polyvinyl acetate saponified product) Polyacrylamide (PAM) Polyethylene oxide (PEO) 2.
  • Natural polymers (mostly polysaccharides) Starch Gelatin Hyaluronic acid Alginic acid Dextran protein (eg water-soluble collagen) 3.
  • Semi-synthetic polymer eg cellulose solubilized) Carboxymethylcellulose (CMC) Hydroxypropyl cellulose (HPC) Cellulose derivatives such as methylcellulose (MC) Water-soluble chitosan (can also be classified as “2. Natural polymers”)
  • polyrotaxane is cyclic at both ends (both ends of a linear molecule) of a pseudopolyrotaxane in which the opening of a cyclic molecule (rotator) is skewered by a linear molecule (axis).
  • a blocking group is arranged so that the molecule is not released.
  • polyrotaxane using ⁇ -cyclodextrin as a cyclic molecule and polyethylene glycol as a linear molecule can be used.
  • the water-soluble polymer medium a compound having a group that reacts with a crosslinking agent is more preferable because a strong film is formed by crosslinking.
  • the water-soluble polymer is preferably photocrosslinkable.
  • the molecular layer of the ionic liquid enclosing the carbon nanomaterial may be a monomolecular layer. Carbon nanomaterial surface and ionic liquid molecules are bonded by “cation- ⁇ ” interaction, but the bonds between ionic liquid molecules are smaller than those by “cation- ⁇ ” interaction. By selecting a combination of the material and the ionic liquid, the molecular layer of the ionic liquid enclosing the carbon nanomaterial can be made a monomolecular layer.
  • the molecular layer can be a monomolecular layer.
  • polyrotaxane is selected as the water-soluble polymer, a thin polyrotaxane layer of about 5 nm can be formed on the monomolecular layer of DEMEBF 4 .
  • the composition thus obtained can make the dispersion concentration of the carbon nanotubes high, and can be a highly conductive material. In a conductive member such as an electronic contact made of such a conductive material, electrons move between the carbon nanotubes through the thin DEMEBF 4 molecular layer and the polyrotaxane layer, and a current flows.
  • the molecule of the ionic liquid bonded to the surface of the carbon nanomaterial is water-soluble. Does not come out of the conductive polymer medium.
  • bonded with the surface of carbon nanomaterial can be removed by the rinse by the physiological saline or ethanol, for example.
  • the carbon nanomaterial contained therein is doubly covered with the ionic liquid molecule and the water-soluble polymer. There is virtually no touch. Further, since it has high flexibility, it has excellent followability with respect to the surface of an organ or the like in a living body, and an extremely good interface can be formed between the organ and the like. Furthermore, it can have a high electrical conductivity.
  • the conductive material is a first step in which a hydrophilic ionic liquid, a carbon nanomaterial, and water are mixed to obtain a first dispersion system in which the carbon nanomaterial covered with molecules constituting the ionic liquid is dispersed. And a first dispersion system, a water-soluble polymer and water are mixed to obtain a second dispersion system in which the carbon nanomaterial covered with the molecules constituting the ionic liquid and the water-soluble polymer are dispersed. It can manufacture by a manufacturing method provided with 2 processes.
  • the carbon nanomaterial may be subdivided by applying a shearing force. Thereby, the bundle or aggregation of the carbon nanomaterial can be covered with the hydrophilic ionic liquid in a state where the carbon nanomaterial is further unmelted.
  • the method further comprises the step of crosslinking the water-soluble polymer, the carbon nanomaterial being dispersed in the water-soluble polymer medium, and producing a composition in which the water-soluble polymer is crosslinked. Also good. Thereby, a moldability and workability improve.
  • a rinsing step may be further provided to remove molecules constituting the ionic liquid that are not bonded to the carbon nanomaterial. Thereby, a moldability and workability improve.
  • This rinsing step can be performed with, for example, physiological saline, ethanol, or a liquid that does not break the gel. This rinsing process may be performed at any stage.
  • the said electroconductive material can contain another substance in the range which does not impair the effect of this invention.
  • the manufacturing method of the said electroconductive material can include another process in the range which does not impair the effect of this invention.
  • the conductive material will be specifically described based on examples. However, these examples are merely disclosed for the purpose of easily understanding the present invention, and the present invention is not limited thereto.
  • FIG. 5A shows carbon nanotubes covered with molecules constituting N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) dispersed in polyrotaxane. It is a photograph which shows the state of the composition before ultraviolet (UV) curing. It can be seen that the obtained composition is in the form of a gel (in the present specification, the term “gel” refers to a state in which the fluidity is lost or the fluidity is substantially reduced with respect to the fluid liquid.
  • UV ultraviolet
  • This composition was prepared by using 30 mg of commercially available carbon nanotubes (MWNT, length 10 ⁇ m, diameter 5 nm) and N, N-diethyl-N-methyl-N- (2-methoxyethyl), which is a hydrophilic ionic liquid.
  • the mixture was mixed with 60 mg of ammonium tetrafluoroborate (DEMEBF 4 ), and stirred in deionized water at 25 ° C. for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer.
  • the resulting suspension was treated with a high pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh) to give a black material.
  • FIG. 5B is a photograph of a sheet obtained by curing the composition shown in FIG. 5A by irradiating with ultraviolet rays (wavelength: 365 nm) for 5 minutes.
  • the Young's modulus of the obtained sheet was lower than 10 kPa. Since the Young's modulus of silicon is about 100 GPa and the Young's modulus of a conventional plastic film is 1 to 5 GPa, it can be seen that it is very soft.
  • the Young's modulus of the brain is 1 to 2 kPa and the Young's modulus of the cardiac muscle cells is ⁇ 100 kPa
  • the composition or the conductive material of one embodiment of the present invention has the same level or higher than that of the organ. It was found to have a high softness. For this reason, it has high followability on the surface of the organ and can form an extremely good interface with the organ.
  • FIG. 5 (c) shows a case where photocrosslinking is performed using an ultrafine digital UV exposure system (“Digital Exposure Apparatus”, manufactured by PMT Corporation) and a fine structure having a line width of about 50 ⁇ m is patterned. It is an optical micrograph.
  • the composition or the conductive material is thus a material that can be finely processed. Since it can bridge
  • FIG. 6 is a high-resolution cross-sectional transmission electron microscope image (TEM image),
  • (a) is a TEM image of carbon nanotubes ((MWNT, length 10 ⁇ m, diameter 5 nm) that can be used in the present invention
  • (b) Without an ionic liquid, 30 mg of carbon nanotubes ((MWNT, length 10 ⁇ m, diameter 5 nm)) and 100 mg of polyrotaxane (“photocrosslinkable oscillating gel”, manufactured by Advanced Soft Materials Co., Ltd.) are mixed in water, and a jet mill
  • (c) is a composition obtained under the same conditions as the preparation conditions of the composition shown in FIG. It is a TEM image of.
  • HF-2000 Cold-FE TEM 80 kV, manufactured by Hitachi High-Technologies Corporation
  • the carbon nanotubes used consisted of three or four layers.
  • FIG. 6B it is understood that the single carbon nanotube is coated with polyrotaxane, but the layer thickness of the coating layer is not uniform.
  • FIG. 6 (c) the layer thickness of the polyrotaxane layer covering the single carbon nanotube is very uniform, and it can be seen that it is clearly different from that shown in FIG. 6 (b).
  • the difference in the uniformity of the thickness of the coating layer is that the molecule of the hydrophilic ionic liquid DEMEBF 4 that covered the carbon nanotubes was peeled off, and the polyrotaxane covered the carbon nanotubes instead of covering the carbon nanotubes.
  • the polyrotaxane is covered on the molecular layer of the hydrophilic ionic liquid DEMEBF 4 that has been used. If the molecules of the hydrophilic ionic liquid DEMEBF 4 covering the carbon nanotubes are peeled off and the polyrotaxane covers the carbon nanotubes, the thickness of the coating layer in FIG. 6C is the same as in FIG. 6B. Should be uneven. Further, since the bond between the carbon nanotube and the molecule of DEMEBF 4 is bonded by a high cation- ⁇ interaction comparable to a hydrogen bond, the molecule of the hydrophilic ionic liquid DEMEBF 4 covering the carbon nanotube is the above-described process. Then it is thought that it is not peeled off.
  • the surface of the carbon nanotube can be uniformly coated with the biocompatible material via the molecules of the ionic liquid.
  • FIG. 7 is a graph showing the sheet resistance of the composition (CNT-gel) and the dependence of the sheet resistance on the carbon nanotube content.
  • the composition (CNT-gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
  • a saline-based gel (Saline-based gel) was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. .
  • the size was 1 cm square and the thickness was 1 mm.
  • the sheet resistance of the composition was found to be 2 to 3 orders of magnitude lower than that of the conventional gel.
  • FIG. 8 is a graph showing the electric capacity of the composition (CNT-rotaxane gel) and the frequency dependence of the electric capacity.
  • polyacrylamide gel Poly-acrylamide gel
  • saline-containing polyacrylamide gel Saline poly-acrylamide gel
  • saline-containing rotaxane gel Saline-rotaxane gel
  • the composition (CNT-rotaxane gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
  • a polyacrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The size was 1 cm square and the thickness was 1 mm.
  • Saline-containing polyacrylamide gel Saline poly-acrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The thickness was 1 cm square and the thickness was 1 mm.
  • Saline-rotaxane gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV.
  • the size was 1 cm square and the thickness was 1 mm. As shown in FIG. 8, it was found that the electric capacity of the composition was higher than that of the gel of the comparative example.
  • the magnitude is proportional to the surface area of the electronic contact.
  • the composition or the conductive material includes a carbon nanomaterial, and since the carbon nanomaterial, particularly the carbon nanotube has a high specific surface area, it has a high signal detection capability also in this respect.
  • the conductivity of an electronic contact manufactured using the composition or the conductive material is lower than the conductivity of an Au electronic contact, but when the signal is taken by capacitance, it is not the conductivity but has a large effective surface area. This is very important.
  • carbon nanotubes are used as carbon nanomaterials
  • N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) is used as an ionic liquid
  • polyrotaxane is used as a water-soluble polymer.
  • a method for manufacturing the conductive material will be described with reference to FIG. (1) First Step First, carbon nanotubes, DEMEBF 4 and water are mixed and stirred to obtain a first dispersion system in which carbon nanotubes covered with molecules constituting the ionic liquid are dispersed.
  • the step of rinsing the first dispersion with physiological saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
  • the carbon nanotubes covered with the molecules constituting the ionic liquid are dispersed in water, and depending on the amount of the carbon nanotubes and the ionic liquid, other than the molecules constituting the ionic liquid are sufficient.
  • carbon nanotubes that are not covered or not covered at all (including bundled carbon nanotubes) and molecules that form an ionic liquid are contained.
  • the carbon nanotubes are bundled by van der Waals force, so that each carbon nanotube is unwound, the degree of bundling (aggregation) is reduced, and each carbon nanotube is unraveled to a single carbon nanotube. It is also possible.
  • FIG. 11 shows the results of examining the dispersibility of the carbon nanotubes.
  • A shows a state after 30 mg of carbon nanotubes are put in deionized water at 25 ° C. and stirred for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer
  • B shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4.
  • C is a state after stirring for 1 week in the same manner at 25 ° C., and (C) is the same as above.
  • D shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4 in 25 ° C.
  • (D) and (E) show that the carbon nanotubes show high dispersibility in water. It can be seen that it is preferable to subdivide the bundled carbon nanotubes by applying a shearing force in order to obtain high dispersibility.
  • the first dispersion, polyrotaxane (“photocrosslinkable tumbling gel”, manufactured by Advanced Soft Materials Co., Ltd.) and water are mixed and stirred, and the ionic liquid is mixed.
  • a second dispersion system is obtained in which the carbon nanomaterial covered with the constituent molecules and the water-soluble polymer are dispersed.
  • the step of rinsing the second dispersion with saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
  • a crosslinking agent can also be mixed.
  • the obtained second dispersion is a gel-like substance as shown in FIG.
  • composition (conductive material) can be obtained.
  • the second dispersion system is cast (cast) onto a glass substrate.
  • a cover glass is placed on the glass substrate via a spacer sheet having a desired thickness (50 ⁇ m in the illustrated example).
  • a sheet having a thickness of 50 ⁇ m can be obtained by exposure using an ultraviolet (365 nm) exposure apparatus.
  • an ultraviolet (365 nm) exposure apparatus When forming a line with a fine line width, as shown in FIG. 10D, for example, by using a digital ultraviolet (365 nm) exposure apparatus, for example, a line with a width of 50 ⁇ m is formed. Can be formed.
  • FIG. 12 is a perspective view showing an example of a multipoint probe array according to an embodiment of the present invention.
  • the multipoint probe array 200 a plurality of the multipoint probes 100 described above are provided on the base substrate 30 so as to be spaced apart from each other.
  • FIG. 5 six multipoint probes 100 can be erected, but in the figure, only one is drawn for convenience.
  • the multipoint probe 100 is configured not to be wound around the other end 10b of the electronic contact sheet 10 so that an external circuit can be easily connected to the pad.
  • the multipoint probe 100 is erected by inserting the other end 20 c of the core member 20 into a groove 32 provided in the base substrate 30.
  • the material of the base substrate 30 is preferably a workable ceramic such as zirconia or glass epoxy, but a single crystal silicon substrate or a glass substrate can also be used.
  • the base substrate is provided with a plurality of grooves 32 for precisely positioning the multipoint probe 100.
  • the mounting terminals are electrically connected to an electrical connector 31 fixed to the base substrate 30 through wiring formed on the base substrate 30.
  • the pads of the electronic contact sheet 10 and the flexible cable may be directly connected without forming the wiring or the electrical connector 31 on the base substrate 30.
  • the end portion of the electronic contact sheet 10 is bonded and fixed in a state where the pad is wound so that the pad faces the upper surface from the base substrate.
  • a sheet-like insulating base material having a predetermined shape is prepared. Specifically, for example, a commercially available polyimide film or polyethylene naphthalate film is prepared.
  • a known circuit creation technique for example, a flexible printed circuit board creation technique can be cited.
  • a layer made of a first insulating material is formed on the substrate on which the circuit is formed so as to expose the electronic contacts and the pads.
  • one end of the electronic contact sheet is fixed to the outer peripheral surface of the core material using, for example, a cyanoacrylate adhesive, and winding is started. Use to bond the front and back surfaces of the electronic contact sheet, continue winding, and finally use the back of the other end of the electronic contact sheet, for example, using the same epoxy adhesive Adhere to the surface and complete the winding.
  • a second insulating material such as parylene is entirely covered, and the second insulating material on the electronic contact and the pad is removed using a laser or the like to expose the electronic contact and the pad.
  • a multipoint probe can be manufactured by the above-described steps.
  • a sheet-like insulating substrate such as a polyimide film is pasted on a support substrate such as a flat glass substrate (step (a)).
  • a planarization layer using, for example, parylene or the like is formed by CVD on one surface of the sheet-like insulating base (step (b)).
  • a plurality of electronic contacts, a plurality of wirings connected to each electronic contact, and a plurality of pads connected to each wiring are formed on the planarizing layer by mask vapor deposition to form an electronic contact sheet.
  • Step (c) the entire electronic contact sheet on which the circuit is formed is covered with a first insulating material (step (d)), and then the first insulating material on the electronic contacts and the pads is removed (step (e)).
  • the sheet-like insulating base material (electronic contact sheet) is inverted and transferred to another support substrate (step (f)), for example, on one end of the surface that has been attached to the previous support substrate.
  • an adhesive such as a cyanoacrylate adhesive is applied (step (g)).
  • the core material is fixed to the portion of the electronic contact sheet to which the adhesive is applied (step (h)), the electronic contact sheet is wound around the core material, and finally the back surface of the other end of the electronic contact sheet is An epoxy adhesive is used to adhere to the front surface of the electronic contact sheet to complete winding (step (i)).
  • a second insulating material such as parylene is entirely covered, the second insulating material on the electronic contact and the pad is removed with a laser, etc., and the electronic contact and the pad are exposed to manufacture a multipoint probe.
  • the multipoint probe is fixed to the groove of the base substrate (step (j)).
  • the pads of the multipoint probe are mounted on the terminals of the base substrate (step (k)).
  • a multipoint probe array can be manufactured by the above-described steps.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Measuring Leads Or Probes (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The multi-point probe is obtained from a tubular laminate configured by winding an electronic contact sheet, which has multiple electronic contacts disposed on a sheet-shaped insulating base material so as to be separated from each other and multiple wires connected to the respective electronic contacts, from one edge to the other edge to laminate same in multiple layers. The sheet is laminated so that the electronic contacts are not covered by the sheet-shaped insulating base material but exposed and, except for the wires of the outermost layer, at least a portion of the wires is covered by the sheet-shaped insulating base material.

Description

多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法Multi-point probe, electronic contact sheet constituting the same, multi-point probe array, and method for manufacturing multi-point probe
 本発明は、多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法に関する。
 本願は、2013年5月21日に日本に出願された特願2013-107229号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a multipoint probe, an electronic contact sheet constituting the multipoint probe, a multipoint probe array, and a method for manufacturing the multipoint probe.
This application claims priority based on Japanese Patent Application No. 2013-107229 for which it applied to Japan on May 21, 2013, and uses the content here.
 生体表面および生体内部から発せられる生体信号を検出することは現在の健康状態を把握するだけでなく、将来起こり得る疾患を事前に検知することを可能にするという点で、健康で豊かな社会を実現する次世代医療技術として注目されている。 Detecting biological signals emitted from the surface and inside of a living body not only grasps the current state of health, but also makes it possible to detect possible future diseases in advance, thereby creating a healthy and rich society. It is attracting attention as a next-generation medical technology to be realized.
 この生体信号を、高空間分解能で検出することは疾患を詳細に調べる上で極めて重要である。
 例えば、脳や脊髄等の生体組織の電気信号の検出は、先端部に複数の電圧検出用電子接点が形成されたプローブを脳に刺入して行われる(例えば、特許文献1、2)。
It is extremely important to detect this biological signal with high spatial resolution in order to investigate the disease in detail.
For example, the detection of an electrical signal of a biological tissue such as the brain or spinal cord is performed by inserting a probe having a plurality of voltage detection electronic contacts formed at the tip thereof into the brain (for example, Patent Documents 1 and 2).
 特許文献1に開示されたプローブは、シート状もしくは板状の絶縁基材(以下適宜「平板絶縁基材」という)上に、電子接点とそれに接続された配線とを備える構成である。
 また、特許文献2に開示されたプローブは、同じく平板絶縁基材上に、立設するプローブ電子接点と、それに接続する配線とを備える構成である。
 一方、管状の構造体、例えばカテーテルや内視鏡の側面に電気信号を検出する電子接点やセンサー等の電子接点を形成したシート状の絶縁基材を、螺旋状に巻きつけて電気的、化学的、機械的生体信号を検知するデバイスが本発明者らによって提案されている(非技術文献1)。この方法では、管状の構造体表面に多数の電気接点を配設することが可能である。
 また、生体に適用するデバイスでは、生体信号の検出だけでなく、生体へ刺激を与える電子接点や、生体への刺激付与とその応答を検出する入出力電子接点の組み合わせで生体情報を検出する構成が知られている。
The probe disclosed in Patent Document 1 is configured to include an electronic contact and wiring connected thereto on a sheet-like or plate-like insulating base (hereinafter referred to as “flat insulating base” as appropriate).
In addition, the probe disclosed in Patent Document 2 is configured to include a probe electronic contact that is erected on a flat insulating substrate and wiring that is connected to the probe electronic contact.
On the other hand, a sheet-like insulating base material formed with an electronic contact such as an electronic contact or a sensor for detecting an electrical signal on the side surface of a tubular structure, for example, a catheter or an endoscope, is spirally wound to be electrically and chemically A device for detecting mechanical and mechanical biological signals has been proposed by the present inventors (Non-Patent Document 1). In this method, it is possible to arrange a large number of electrical contacts on the surface of the tubular structure.
In addition, in a device applied to a living body, not only the detection of a living body signal but also a configuration in which living body information is detected by a combination of an electronic contact that gives a stimulus to the living body and an input / output electronic contact that detects a stimulus applied to the living body and its response It has been known.
特許第4406697号公報Japanese Patent No. 4,406,697 特開2012-130519号公報JP 2012-130519 A
 しかしながら、特許文献1及び2に開示されたプローブによって、脳の一部位の電気信号を調べることはできるが、その3次元的な空間分解能は十分でなく、脳の多数の部位間の信号伝達を調べるには、広範囲に極めて高密度に電子接点が形成されたプローブが求められている。
 また、非特許文献1に開示されたシート状のプローブでは、広範囲で高密度に電子接点を形成すると、螺旋状の巻回し距離が長くなるとともに、配線の数が著しく増加し、配線抵抗の増加による信号検出精度の低下や、電子接点数が配線数で限定される等の課題がある。
However, although the electrical signals of one part of the brain can be examined by the probes disclosed in Patent Documents 1 and 2, the three-dimensional spatial resolution is not sufficient, and signal transmission between many parts of the brain is not possible. In order to investigate, there is a demand for a probe in which electronic contacts are formed in a wide range at an extremely high density.
Further, in the sheet-like probe disclosed in Non-Patent Document 1, when electronic contacts are formed in a wide range and at a high density, the spiral winding distance becomes longer, the number of wires is remarkably increased, and the wiring resistance is increased. There are problems such as a decrease in signal detection accuracy due to, and the number of electronic contacts being limited by the number of wires.
 本発明は、上記事情に鑑みなされたものであり、従来のプローブに比べて格段に高空間分解能が実現可能な多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a multipoint probe capable of realizing a remarkably high spatial resolution as compared with conventional probes, and an electronic contact sheet, a multipoint probe array, and a multipoint probe constituting the multipoint probe. An object is to provide a manufacturing method.
 上記課題を解決するため、本発明は以下の手段を採用した。
 本発明の一態様に係る多点プローブは、シート状の絶縁基材に、列状に離間して配設された複数の電子接点と、各電子接点に接続された複数の配線とを有する電子接点シートを、その一端から他端に向けて巻回することにより多層に積層して構成された管状の積層体からなる多点プローブであって、前記電子接点は前記シート状の絶縁基材で覆われることなく露出し、前記配線は、最上層の配線以外は少なくともその一部が前記シート状の絶縁基材に覆うように積層されていることを特徴とする。
 なお、本明細書において、「電子接点」とは、例えば電極等の広く電流を通す部分を意味する。
In order to solve the above problems, the present invention employs the following means.
A multipoint probe according to an aspect of the present invention is an electron having a plurality of electronic contacts arranged in a row in a sheet-like insulating base and a plurality of wirings connected to each electronic contact. A contact point sheet is a multipoint probe comprising a tubular laminate formed by laminating a contact sheet from one end to the other end, and the electronic contact is the sheet-like insulating substrate. It is exposed without being covered, and the wiring is laminated so that at least a part of the wiring other than the wiring of the uppermost layer is covered with the sheet-like insulating substrate.
In the present specification, the “electronic contact” means a part through which a current flows widely, such as an electrode.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、軸状の芯材を備え、前記電子接点シートは前記芯材の外周面に巻回されていることを特徴とする。 A multipoint probe according to an aspect of the present invention is characterized in that, in the multipoint probe described above, an axial core material is provided, and the electronic contact sheet is wound around an outer peripheral surface of the core material.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記複数の電子接点は、前記シート状の絶縁基材の一方の面において、前記電子接点シートの一端側の縁部に沿って配置されていることを特徴とする。 The multipoint probe which concerns on 1 aspect of this invention is the said multipoint probe, The said several electronic contact is along the edge part of the one end side of the said electronic contact sheet in one surface of the said sheet-like insulating base material. It is characterized by being arranged.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記シート状の絶縁基材は、前記縁部が前記管状の積層体の一端から他端に向けて後退するように形成されていることを特徴とする。 In the multipoint probe according to an aspect of the present invention, in the multipoint probe, the sheet-like insulating base material is formed such that the edge portion recedes from one end to the other end of the tubular laminate. It is characterized by.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記複数の電子接点は、前記管状の積層体の軸線を基準として螺旋状に配置されていることを特徴とする。 The multi-point probe according to an aspect of the present invention is characterized in that, in the multi-point probe, the plurality of electronic contacts are arranged in a spiral shape with respect to an axis of the tubular laminate.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記複数の配線は、前記複数の電子接点を起点として所定範囲にわたり前記管状の積層体の軸線方向に沿って延在されていることを特徴とする。 In the multipoint probe according to one aspect of the present invention, in the multipoint probe, the plurality of wirings extend along a direction of an axis of the tubular laminate over a predetermined range starting from the plurality of electronic contacts. It is characterized by being.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、各配線に接続され、外部回路に接続される複数のパッドが、前記電子接点シートの前記他端の近傍においてその他端に沿って配置されていることを特徴とする。 In the multipoint probe according to one aspect of the present invention, in the multipoint probe, a plurality of pads connected to each wiring and connected to an external circuit extend along the other end in the vicinity of the other end of the electronic contact sheet. It is characterized by being arranged.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記電子接点シートは、複数の電子接点及び複数のパッドが露出するように、第1の絶縁素材で被覆されていることを特徴とする。 In the multipoint probe according to an aspect of the present invention, in the multipoint probe, the electronic contact sheet is covered with a first insulating material so that a plurality of electronic contacts and a plurality of pads are exposed. Features.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記シート状の絶縁基材において、前記配線が配設された面の他方の面に、第1のシールド導電膜が形成されていることを特徴とする。 In the multipoint probe according to one aspect of the present invention, in the multipoint probe, a first shield conductive film is formed on the other surface of the sheet-like insulating base on which the wiring is disposed. It is characterized by.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記シート状の絶縁基材において、前記配線が配設された面に、第2のシールド導電膜が形成されていることを特徴とする。 In the multipoint probe according to an aspect of the present invention, in the multipoint probe, a second shield conductive film is formed on a surface of the sheet-like insulating base material on which the wiring is disposed. Features.
 本発明の一態様に係る多点プローブは、上記多点プローブにおいて、前記シート状の絶縁基材に、前記複数の電子接点に接続された増幅器を有することを特徴とする。 The multi-point probe according to an aspect of the present invention is characterized in that, in the multi-point probe, the sheet-like insulating base has an amplifier connected to the plurality of electronic contacts.
 本発明の一態様に係る多点プローブアレイは、上記多点プローブが、ベース基板上に離間して複数立設されていることを特徴とする。 The multi-point probe array according to an aspect of the present invention is characterized in that a plurality of the multi-point probes are provided separately on the base substrate.
 本発明の一態様に係る電子接点シートは、上記多点プローブを構成する電子接点シートである。 The electronic contact sheet according to an aspect of the present invention is an electronic contact sheet that constitutes the multipoint probe.
 本発明の一態様に係る多点プローブの製造方法は、上記多点プローブの製造方法であって、前記電子接点シートを、その一端から他端に向けて、前記複数の電子接点が露出するように巻回した後に、全体に第2の絶縁素材を被覆し、その後、前記複数の電子接点及び複数のパッド上の第2の絶縁素材を除去することを特徴とする。 The manufacturing method of the multipoint probe which concerns on 1 aspect of this invention is a manufacturing method of the said multipoint probe, Comprising: The said electronic contact sheet | seat is directed toward the other end so that the said several electronic contact may be exposed. The second insulating material is entirely covered with the second insulating material, and then the second insulating material on the plurality of electronic contacts and the plurality of pads is removed.
 本発明の一態様に係る多点プローブによれば、電子接点シートを、その一端から他端に向けて巻回することにより多層に積層して構成された管状の積層体からなり、電子接点はシート状の絶縁基材で覆われることなく露出された構成を採用したことにより、電子接点を多点プローブの表面に集積して配置できるので、高密度の電子接点配置が可能となり、高空間分解能で電気信号検出、電気的刺激付与等が可能となる。配線が最上層の配線以外は少なくともその一部がシート状の絶縁基材に覆うように積層されるように、電子接点シートが巻回された構成を採用したことにより、多層配線構造となるので、電子接点が配置された絶縁基材が巻回されていないプローブ(以下適宜「非巻回プローブ」という)に比べて高密度の配線が可能となり、その結果、高密度の電子接点配置が可能となる。巻回数を大きくすることにより、従来の非巻回プローブに比べて格段に高密度の電子接点配置が可能となり、多数の同時信号検出等が可能となる。また、本発明の多点プローブでは、従来の非巻回プローブと同程度の高密度の電子接点配置に対して、簡単な配線レイアウトで済み、配線密度も低くて済む。 According to the multipoint probe according to one aspect of the present invention, the electronic contact sheet is composed of a tubular laminate formed by laminating multiple layers by winding the electronic contact sheet from one end to the other end. By adopting a structure that is exposed without being covered with a sheet-like insulating substrate, the electronic contacts can be integrated and placed on the surface of the multipoint probe, enabling high-density electronic contact placement and high spatial resolution. Thus, it is possible to detect an electric signal, apply an electrical stimulus, and the like. By adopting a configuration in which the electronic contact sheet is wound so that at least a part of the wiring other than the uppermost layer wiring is laminated so as to cover the sheet-like insulating base material, a multilayer wiring structure is obtained. Higher density wiring is possible compared to probes that are not wound with an insulating base material on which electronic contacts are arranged (hereinafter referred to as “non-winding probes” as appropriate). As a result, high-density electronic contact arrangement is possible. It becomes. By increasing the number of windings, it is possible to arrange electronic contacts at a much higher density than conventional non-winding probes, and to detect a large number of simultaneous signals. In addition, the multipoint probe of the present invention requires a simple wiring layout and a low wiring density compared to a high-density electronic contact arrangement comparable to that of a conventional non-winding probe.
 本発明の一態様に係る多点プローブによれば、軸状の芯材を備え、電子接点シートはその芯材の外周面に巻回された構成を採用したことにより、電子接点を軸状の芯材の外周面に集積して配置できるので高密度の電子接点配置が可能となり、高空間分解能で電気信号検出、電気的刺激付与等が可能となる。電子接点シートを芯材に巻きつけた後に芯材を抜いて、よりフレキシブルな多点プローブを実現できる。また、芯材を抜いた構成で生体内に使用した場合、振動によって生体が損傷を受けることを低減することができる。 According to the multipoint probe which concerns on 1 aspect of this invention, it was equipped with the axial core material, and the electronic contact sheet employ | adopted the structure wound by the outer peripheral surface of the core material, Therefore An electronic contact is made into axial shape. Since they can be arranged and arranged on the outer peripheral surface of the core material, high-density electronic contact arrangement is possible, and electrical signals can be detected and electrical stimulation can be applied with high spatial resolution. A more flexible multipoint probe can be realized by winding the electronic contact sheet around the core material and then removing the core material. Moreover, when it uses in the living body with the structure which extracted the core material, it can reduce that a biological body is damaged by vibration.
 本発明の一態様に係る多点プローブによれば、複数の電子接点は、シート状の絶縁基材の一方の面において、電子接点シートの一端側の縁部に沿って配置された構成を採用したので、管状の積層体の外周面に高密度で電子接点配置が可能となる。例えば、矩形の電子接点シートの場合は縁部が軸線に対して傾斜するように巻回するだけで管状の積層体の軸線に対して密に並べることができ、高密度に電子接点を配置できる。 According to the multipoint probe according to one aspect of the present invention, the plurality of electronic contacts employs a configuration in which the electronic contact sheet is disposed along one edge of the electronic contact sheet on one surface of the sheet-like insulating base material. Therefore, it is possible to arrange electronic contacts at high density on the outer peripheral surface of the tubular laminate. For example, in the case of a rectangular electronic contact sheet, it is possible to arrange the contact points densely with respect to the axis of the tubular laminate by simply winding the edge so that the edge is inclined with respect to the axis, and the electronic contacts can be arranged with high density. .
 本発明の一態様に係る多点プローブによれば、シート状の絶縁基材は、縁部が管状の積層体の一端から他端に向けて後退するように形成された構成を採用したので、当該縁部に沿って電子接点を配置して、縁部が管状の積層体の軸線に対して傾斜するように電子接点シートを芯材に巻回するだけで、管状の積層体の軸線に対して密に並べることができ、高密度に電子接点を配置できる。 According to the multipoint probe according to one aspect of the present invention, the sheet-like insulating base material employs a configuration in which the edge portion is formed so as to recede from one end of the tubular laminate to the other end. The electronic contact is arranged along the edge, and the electronic contact sheet is wound around the core so that the edge is inclined with respect to the axis of the tubular laminate, and the axis of the tubular laminate is The electronic contacts can be arranged at high density.
 本発明の一態様に係る多点プローブによれば、複数の電子接点は、管状の積層体の軸線を基準として螺旋状に配置された構成を採用したので、管状の積層体の外周面に電子接点を密に並べることで高密度に電子接点を配置できる。 According to the multipoint probe according to one aspect of the present invention, since the plurality of electronic contacts employs a configuration in which the plurality of electronic contacts are arranged in a spiral manner with respect to the axis of the tubular laminate, electrons are disposed on the outer peripheral surface of the tubular laminate. Electronic contacts can be arranged with high density by arranging contacts closely.
 本発明の一態様に係る多点プローブによれば、複数の配線は、複数の電子接点を起点として所定範囲にわたり管状の積層体の軸線方向に沿って延在する構成を採用したことにより、配線が管状の積層体の軸線方向に対して傾斜して配置する構成に比べて、配線の重畳回数が少なくなり、クロストークを低減できる。また、配線が形成された箇所は配線が形成されていない箇所に比べて厚くなるので、重畳回数が少なくなることにより、多層配線構造が薄くなる。また、配線のレイアウトが簡単なので高密度で配線できる。 According to the multipoint probe according to an aspect of the present invention, the plurality of wirings are configured by adopting a configuration that extends along the axial direction of the tubular laminated body over a predetermined range starting from the plurality of electronic contacts. Compared with the structure which inclines with respect to the axial direction of a tubular laminated body, the frequency | count of superimposition of wiring decreases and crosstalk can be reduced. In addition, since the portion where the wiring is formed becomes thicker than the portion where the wiring is not formed, the multilayer wiring structure is thinned by reducing the number of overlapping times. In addition, since the wiring layout is simple, high-density wiring is possible.
 本発明の一態様に係る多点プローブによれば、複数のパッドは、電子接点シートの他端の近傍においてその他端に沿って配置された構成を採用したことにより、パッド数を多数配置することが可能になり、その結果、高密度の電子接点配置が可能となる。すなわち、電子接点シートの他端は巻回後にプローブの最表面に残る部分であり、電子接点シートで覆われないので高密度で配置することができる。これに対して、例えば、電子接点シートの上記一端と上記他端との間に位置する端部は巻回により電子接点シートが覆い重なっていくために、この端部にパッドを形成する場合には、上記他端側の、管状の積層体の外周の範囲にしかパッドを形成することができない。そのため、多数のパッドを形成することができず、その結果、高密度で電子接点を配置することができない。 According to the multipoint probe according to one aspect of the present invention, a plurality of pads are arranged along the other end in the vicinity of the other end of the electronic contact sheet, thereby arranging a large number of pads. As a result, high-density electronic contact arrangement is possible. That is, the other end of the electronic contact sheet is a portion remaining on the outermost surface of the probe after winding, and is not covered with the electronic contact sheet, so that it can be arranged with high density. On the other hand, for example, when the end portion located between the one end and the other end of the electronic contact sheet covers the electronic contact sheet by winding, a pad is formed at this end portion. The pad can be formed only in the range of the outer periphery of the tubular laminate on the other end side. Therefore, a large number of pads cannot be formed, and as a result, the electronic contacts cannot be arranged with high density.
 本発明の一態様に係る多点プローブによれば、電子接点シートは、複数の電子接点及び複数のパッドが露出するように第1の絶縁素材で被覆された構成を採用したことにより、配線が第1の絶縁素材で被覆されてその絶縁が確実となる。電子接点シートの巻回により、配線の表面はシート状の絶縁基材の他方の面に覆われることで絶縁が確保されるが、さらに第1の絶縁素材で被覆する構成とすることで絶縁が確実となる。 According to the multipoint probe according to an aspect of the present invention, the electronic contact sheet employs a configuration in which the plurality of electronic contacts and the plurality of pads are covered with the first insulating material so that wiring is provided. Covering with the first insulating material ensures the insulation. By winding the electronic contact sheet, the surface of the wiring is covered by the other surface of the sheet-like insulating base material, so that insulation is secured. It will be certain.
 本発明の一態様に係る多点プローブによれば、配線が配設された面の他方の面に、第1のシールド導電膜が形成された構成を採用したことにより、多層配線構造における層間の配線の間のクロストークが低減される。 According to the multipoint probe according to one aspect of the present invention, by adopting the configuration in which the first shield conductive film is formed on the other surface of the surface on which the wiring is disposed, Crosstalk between wirings is reduced.
 本発明の一態様に係る多点プローブによれば、配線が配設された面に、第2のシールド導電膜が形成された構成を採用したことにより、多層配線構造の層間の配線の間のクロストークが低減される。 According to the multipoint probe according to one aspect of the present invention, by adopting the configuration in which the second shield conductive film is formed on the surface on which the wiring is disposed, the wiring between the layers in the multilayer wiring structure is provided. Crosstalk is reduced.
 本発明の一態様に係る多点プローブによれば、シート状の絶縁基材に、複数の電子接点に接続された増幅器を有する構成を採用したことにより、微弱な信号(入力電圧)を効果的に増幅することができる。 According to the multipoint probe of one aspect of the present invention, a weak signal (input voltage) is effectively obtained by adopting a configuration having an amplifier connected to a plurality of electronic contacts on a sheet-like insulating substrate. Can be amplified.
 本発明の一態様に係る多点プローブの製造方法によれば、電子接点シートを、その一端から他端に向けて、前記複数の電子接点が露出するように巻回した後に、全体に第2の絶縁素材を被覆し、その後、前記複数の電子接点及び複数のパッド上の第2の絶縁素材を除去する構成を採用したので、確実に絶縁された多点プローブを製造することができる。 According to the manufacturing method of the multipoint probe which concerns on 1 aspect of this invention, after winding an electronic contact sheet | seat toward the other end from the one end so that said several electronic contact may be exposed, it is 2nd on the whole. Since the structure in which the second insulating material on the plurality of electronic contacts and the plurality of pads is removed thereafter is employed, a multi-point probe that is reliably insulated can be manufactured.
本発明の一実施形態に係る多点プローブの一例を示す斜視図である。It is a perspective view which shows an example of the multipoint probe which concerns on one Embodiment of this invention. 図1に示した多点プローブを、説明のために巻回されていた電子接点シートを巻き戻した状態を示す模式図である。It is a schematic diagram which shows the state which wound up the electronic contact sheet | seat wound up for description about the multipoint probe shown in FIG. 本発明の多点プローブの他の電子接点配置を説明するための摸式図である。It is a model for demonstrating other electronic contact arrangement | positioning of the multipoint probe of this invention. 本発明の他の実施形態に係る多点プローブの一例を示す斜視図である。It is a perspective view which shows an example of the multipoint probe which concerns on other embodiment of this invention. 本発明の多点プローブの電子接点材料に用いることができる組成物又は導電性材料を示すものであって、(a)はDEMEBFを構成する分子に覆われたカーボンナノチューブがポリロタキサンに分散されてなる組成物を示す写真であり、(b)は(a)で示した組成物を光架橋して得られたシートの写真であり、(c)は(a)で示した組成物を光架橋すると共に、約50μm程度の線幅の微細構造をパターニングしたものの光学顕微鏡写真である。1 shows a composition or a conductive material that can be used for an electronic contact material of a multipoint probe of the present invention, wherein (a) shows a case where carbon nanotubes covered with molecules constituting DEMEBF 4 are dispersed in a polyrotaxane. (B) is a photograph of a sheet obtained by photocrosslinking the composition shown in (a), and (c) is a photocrosslink of the composition shown in (a). And an optical micrograph of a patterned fine structure having a line width of about 50 μm. 高分解断面透過電子顕微鏡像(TEM像)であり、(a)は本発明の多点プローブの電子接点材料に用いることができるカーボンナノチューブのTEM像であり、(b)はイオン液体なしで、カーボンナノチューブとポリロタキサンとを水中で混合し、ジェットミルで細分化を行いながら撹拌して得られたポリロタキサンで覆われたカーボンナノチューブのTEM像であり、(c)は図1(a)で示した組成物の作製条件と同じ条件で得られたカーボンナノ材料あるいは組成物のTEM像である。It is a high-resolution cross-sectional transmission electron microscope image (TEM image), (a) is a TEM image of carbon nanotubes that can be used for the electronic contact material of the multipoint probe of the present invention, (b) without ionic liquid, It is a TEM image of carbon nanotubes covered with polyrotaxane obtained by mixing carbon nanotubes and polyrotaxane in water and stirring while subdividing with a jet mill, and (c) is shown in FIG. 1 (a). It is a TEM image of the carbon nanomaterial or composition obtained on the same conditions as the preparation conditions of a composition. 本発明の多点プローブの電子接点材料に用いることができる組成物(又は導電性材料)の面抵抗とそのカーボンナノチューブ含有量依存性を示すグラフである。It is a graph which shows the surface resistance of the composition (or electroconductive material) which can be used for the electronic contact material of the multipoint probe of this invention, and its carbon nanotube content dependency. 本発明の多点プローブの電子接点材料に用いることができる組成物(又は導電性材料)の電気容量とその周波数依存性を示すグラフである。It is a graph which shows the electrical capacitance of the composition (or electroconductive material) which can be used for the electronic contact material of the multipoint probe of this invention, and its frequency dependence. 本発明の多点プローブの電子接点材料に用いることができる導電性材料の製造方法を説明するためのフロー図である。It is a flowchart for demonstrating the manufacturing method of the electroconductive material which can be used for the electronic contact material of the multipoint probe of this invention. 本発明の多点プローブの電子接点材料に用いることができる導電性材料の製造方法の応用例を示すフロー図である。It is a flowchart which shows the application example of the manufacturing method of the electroconductive material which can be used for the electronic contact material of the multipoint probe of this invention. カーボンナノチューブの分散性を調べた結果を示す写真であり、(A)はカーボンナノチューブを脱イオン水に入れ、1週間撹拌した後の状態を示す写真であり、(B)は、カーボンナノチューブとDEMEBFとを脱イオン水に入れ、同様にして1週間撹拌した後の状態を示す写真であり、(C)はカーボンナノチューブを脱イオン水に入れ、同様にして1週間撹拌し、その後、ジェットミルで処理した後の状態を示す写真であり、(D)はカーボンナノチューブとDEMEBF60mgとを脱イオン水に入れ、同様にして1週間撹拌し、その後、ジェットミルで処理した後の状態を示す写真であり、(E)カーボンナノチューブとDEMEBFとミクロフィブリル化セルロースとを脱イオン水に入れ、同様にして1週間撹拌して得られたペーストを、その後、ジェットミルで処理した後の状態を示す写真である。It is the photograph which shows the result of having investigated the dispersibility of a carbon nanotube, (A) is a photograph which shows the state after putting a carbon nanotube in deionized water and stirring for one week, (B) is a carbon nanotube and DEMEBF. 4 is a photograph showing a state after 4 is put into deionized water and stirred for one week in the same manner. (C) is a photo of carbon nanotubes put into deionized water and stirred for one week in the same manner, and then a jet mill. (D) shows a state after carbon nanotubes and DEMEBF 4 60 mg were put into deionized water, similarly stirred for 1 week, and then treated with a jet mill. It is a photograph, (E) Carbon nanotubes, DEMEBF 4 and microfibrillated cellulose are put into deionized water and stirred for one week in the same manner. It is a photograph which shows the state after processing the obtained paste with a jet mill after that. 本発明の一実施形態に係る多点プローブアレイの一例を示す斜視図である。It is a perspective view which shows an example of the multipoint probe array which concerns on one Embodiment of this invention. 本発明の一実施形態に係る多点プローブアレイの製造工程のフロー図である。It is a flowchart of the manufacturing process of the multipoint probe array which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る多点プローブの一例を示す斜視図である。It is a perspective view which shows an example of the multipoint probe which concerns on other embodiment of this invention.
 以下、本発明を適用した多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法について、図面を用いてその構成を説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。また、本発明の多点プローブ、電子接点シート、多点プローブアレイは本発明の効果を損ねない範囲で以下に記載していない層などの構成要素を備えてもよい。 Hereinafter, a configuration of a multipoint probe to which the present invention is applied, an electronic contact sheet constituting the multipoint probe, a multipoint probe array, and a multipoint probe manufacturing method will be described with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. . In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof. In addition, the multipoint probe, the electronic contact sheet, and the multipoint probe array of the present invention may include components such as layers that are not described below as long as the effects of the present invention are not impaired.
(多点プローブ)
 図1は、本発明の一実施形態に係る多点プローブの一例を示す斜視図である。図2は図1に示した多点プローブを、説明のために巻回されていた電子接点シートを巻き戻した状態を示す模式図である。図1及び図2に示すのは、芯材を備えた構成の多点プローブである。
 なお、多点プローブの説明の中で、本発明の一実施形態に係る電子接点シートについても説明する。
(Multi-point probe)
FIG. 1 is a perspective view showing an example of a multipoint probe according to an embodiment of the present invention. FIG. 2 is a schematic view showing a state in which the electronic contact sheet that has been wound for the purpose of explanation is unwound from the multipoint probe shown in FIG. 1 and 2 show a multi-point probe having a configuration including a core material.
In addition, in description of a multipoint probe, the electronic contact sheet which concerns on one Embodiment of this invention is also demonstrated.
 多点プローブ100は、シート状の絶縁基材1に、互いに離間して配置する複数の電子接点2と、各電子接点2に接続された複数の配線3(3a,3b,3c)と、各配線3に接続され、外部回路(不図示)に接続された複数のパッド4とを有する電子接点シート10を、その一端10aから他端10bに向けて巻回することにより多層に積層して構成された管状の積層体10Aからなる多点プローブであって、電子接点2はシート状の絶縁基材1で覆われることなく露出し、配線3は、最上層の配線3a以外(すなわち、図1における符号3b、3cで示す配線)は少なくともその一部がシート状の絶縁基材に覆われるように積層されている。なお、図1に示す多点プローブでは、複数のパッドを備えた構成を示したが、これらのパッドは本発明の多点プローブに必須の構成要素ではない。 The multipoint probe 100 includes a plurality of electronic contacts 2 that are spaced apart from each other on the sheet-like insulating substrate 1, a plurality of wirings 3 (3a, 3b, 3c) connected to the respective electronic contacts 2, An electronic contact sheet 10 having a plurality of pads 4 connected to the wiring 3 and connected to an external circuit (not shown) is laminated in multiple layers by winding from one end 10a to the other end 10b. In the multi-point probe made of the tubular laminated body 10A, the electronic contact 2 is exposed without being covered with the sheet-like insulating substrate 1, and the wiring 3 is other than the uppermost wiring 3a (that is, FIG. 1). Are interconnected so that at least a part thereof is covered with a sheet-like insulating base material. The multipoint probe shown in FIG. 1 has a configuration including a plurality of pads, but these pads are not essential components for the multipoint probe of the present invention.
 図1及び図2に示す多点プローブ100は、さらに軸状の芯材20を備え、電子接点2が芯材20の外周面20aに巻回された構成であるが、軸状の芯材20を備えない構成でもよい。軸状の芯材は多点プローブに着脱自在に備えた構成として、適当なタイミング例えば、装着後に芯材を抜いて使用してもよい。多点プローブが芯材を有さない構成とすることにより、よりフレキシブルな多点プローブを実現できる。また、芯材を抜いた構成で生体内に使用する場合、振動によって生体が損傷を受けることを低減することができる。
 また、図1に示す多点プローブでは、軸状の芯材として棒状のものを示したが、シート状の絶縁基材を巻回することができる構成であれば、棒状に限らず、フレキシブルなものでもよく、また、温度等の条件によって硬さが変化するものでもよい。
 図14(a)及び(b)に、フレキシブルな軸状の芯材を用いた多点プローブの例の一部を示す。かかる多点プローブの応用例としては、カテーテルや内視鏡などがある。
The multipoint probe 100 shown in FIGS. 1 and 2 further includes a shaft-shaped core member 20, and the electronic contact 2 is wound around the outer peripheral surface 20 a of the core member 20. The structure which is not provided with may be sufficient. The shaft-shaped core material may be used as a configuration in which the multi-point probe is detachably attached to the core material at an appropriate timing, for example, after mounting. By adopting a configuration in which the multipoint probe does not have a core material, a more flexible multipoint probe can be realized. Moreover, when using it in the living body with the structure which extracted the core material, it can reduce that a biological body is damaged by vibration.
Moreover, in the multipoint probe shown in FIG. 1, the rod-shaped core member is shown as a shaft-like core material. However, as long as the sheet-like insulating base material can be wound, the rod-like probe is not limited to a rod shape and is flexible. It may be a thing, and the thing whose hardness changes with conditions, such as temperature, may be used.
FIGS. 14A and 14B show a part of an example of a multi-point probe using a flexible shaft-like core material. Examples of applications of such multipoint probes include catheters and endoscopes.
 電子接点シート10は、シート状の絶縁基材1の一方の面1aに、複数の電子接点2と、複数の配線3と、複数のパッド4とを有してなる。 The electronic contact sheet 10 has a plurality of electronic contacts 2, a plurality of wirings 3, and a plurality of pads 4 on one surface 1 a of the sheet-like insulating substrate 1.
 多点プローブ100は、絶縁基材1の一方の面1aに配線3を備えた電子接点シート10が巻回されているため、配線が形成された層(シート)が積層された配線構造を構成している。かかる多層配線構造を従来の方法で作製しようとすると非常に手間がかかるが、本発明の多点プローブでは、巻回するだけで多層配線構造が形成されている。配線が形成された層(シート)の巻回数を多くするほど、総配線数を多くすることでき、その結果、配置できる電子接点数を多くすることができる。そうして電子接点を表面に多数ならべることにより、高密度の電子接点配置が可能となり、それによって、高空間分解能で電気信号検出、電気的刺激付与等が可能となる。 The multipoint probe 100 has a wiring structure in which an electronic contact sheet 10 provided with wiring 3 is wound on one surface 1a of the insulating base material 1, and thus a layer (sheet) on which wiring is formed is laminated. is doing. Although it is very time-consuming to produce such a multilayer wiring structure by a conventional method, in the multipoint probe of the present invention, a multilayer wiring structure is formed only by winding. As the number of turns of the layer (sheet) on which the wiring is formed is increased, the total number of wirings can be increased, and as a result, the number of electronic contacts that can be arranged can be increased. Thus, by arranging a large number of electronic contacts on the surface, it is possible to arrange electronic contacts with high density, thereby enabling detection of electrical signals, application of electrical stimulation, etc. with high spatial resolution.
 シート状の絶縁基材1は、巻回可能な可撓性を有する絶縁材料からなるものであり、具体的には例えば、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルエーテルケトン、パラキシリレン系等の高分子材料が挙げられる。また、絶縁基材1にシリコンゴム等のエラストマーを用いることでフレキシブルな芯材との組み合わせで、フレキシブルな多点プローブを実現することができる。
 その厚さは限定するものではないが、例えば、1μm~20μmのものを用いることができる。例えば、厚さ1μmのシート状の絶縁基材を用いれば、30回巻回しても、積層された多層のシートの厚さは30μm程度となる。
The sheet-like insulating substrate 1 is made of a flexible insulating material that can be wound. Specifically, for example, polyimide, polyethylene terephthalate, polyethylene naphthalate, polyetheretherketone, paraxylylene, and the like are used. Examples include polymer materials. Further, by using an elastomer such as silicon rubber for the insulating substrate 1, a flexible multipoint probe can be realized in combination with a flexible core material.
The thickness is not limited, but for example, a thickness of 1 μm to 20 μm can be used. For example, if a sheet-like insulating substrate having a thickness of 1 μm is used, the thickness of the laminated multilayer sheet is about 30 μm even if the sheet is wound 30 times.
 シート状の絶縁基材1の形状は特に制限はないが、複数の電子接点2が露出するように、シート状の絶縁基材(すなわち、電子接点シート)を巻回できる必要がある。
 例えば、矩形のシート状の絶縁基材の、巻回される一端と他端との間の側端に沿って複数の電子接点が配置する場合には、複数の電子接点を露出されるために、管状の積層体10Aの軸線(図示する構成の場合、芯材20の軸線に一致)に対して傾斜するように巻回する。
The shape of the sheet-like insulating substrate 1 is not particularly limited, but the sheet-like insulating substrate (that is, the electronic contact sheet) needs to be wound so that the plurality of electronic contacts 2 are exposed.
For example, when a plurality of electronic contacts are arranged along a side edge between one end and the other end of a rectangular sheet-like insulating base material, the plurality of electronic contacts are exposed. Then, it is wound so as to be inclined with respect to the axis of the tubular laminated body 10A (in the case of the configuration shown, coincides with the axis of the core 20).
 図1及び図2に示す例では、シート状の絶縁基材1は、芯材20に巻回が開始される一端(開始端)から所定の範囲に第1の矩形部1bを有し、その先に、芯材20の一端20b側の縁部1cが芯材20の一端20bから他端20cに向けて後退するように形成され、開始端の反対側の端(他端)1dにパッド4を配置する第2の矩形部(他端の近傍)1eを有する形状である。縁部1cの対向する側の縁部1fは第1の矩形部1bの縁部から後退することなく形成されている。
 また、図1及び図2に示す例では、複数の電子接点2はその縁部1cに沿って配置され、また、複数のパッド4はその第2の矩形部(他端の近傍)1eにおいてその他端1dに沿って配置されている。
 図1及び図2に示す例のように、シート状の絶縁基材1が芯材20の一端20b側の縁部1cが芯材20の一端20bから他端20cに向けて後退するように形成された領域を有し、その縁部1cに沿って複数の電子接点2が配置する構成の電子接点シート10とすることにより、芯材20の軸線に対して特に傾斜させずに巻回するだけで、複数の電子接点2は露出することとなる。
In the example shown in FIG.1 and FIG.2, the sheet-like insulating base material 1 has the 1st rectangular part 1b in the predetermined range from the end (start end) from which winding is started to the core material 20, First, the edge 1c on the one end 20b side of the core member 20 is formed so as to recede from the one end 20b of the core member 20 toward the other end 20c, and the pad 4 is attached to the end (other end) 1d opposite to the start end. Is a shape having a second rectangular portion (near the other end) 1e. The opposite edge 1f of the edge 1c is formed without retreating from the edge of the first rectangular part 1b.
In the example shown in FIGS. 1 and 2, the plurality of electronic contacts 2 are arranged along the edge portion 1c, and the plurality of pads 4 are the other in the second rectangular portion (near the other end) 1e. Arranged along the end 1d.
1 and 2, the sheet-like insulating base material 1 is formed so that the edge portion 1c on the one end 20b side of the core material 20 is retracted from the one end 20b of the core material 20 toward the other end 20c. By making the electronic contact sheet 10 having a configuration in which a plurality of electronic contacts 2 are arranged along the edge portion 1c, the sheet is only wound without being inclined with respect to the axis of the core member 20. Thus, the plurality of electronic contacts 2 are exposed.
 電子接点2は、多点プローブの用途に応じて例えば、その対象に接触して電気信号を検出し、また、電気的刺激を付与等するインターフェースとなる。
 電子接点2は、シート状の絶縁基材1の、芯材20に巻回される面の反対側の面1aにおいて互いに離間して配置し、その個数に特に制限はなく、外周面の面積が大きい芯材を用いることにより多数の電子接点を配置できる。
 電子接点2は、10~200μmの間隔で配置することが好ましく、各電子接点2の径は、5~100μmであることが好ましい。その形状は特に制限はなく、例えば、丸型、角型等のものとすることができる。
The electronic contact 2 serves as an interface for detecting an electrical signal by touching the object and applying an electrical stimulus according to the application of the multipoint probe.
The electronic contacts 2 are arranged apart from each other on the surface 1a opposite to the surface wound around the core member 20 of the sheet-like insulating substrate 1, and the number of the electronic contacts 2 is not particularly limited, and the area of the outer peripheral surface is large. Many electronic contacts can be arranged by using a large core material.
The electronic contacts 2 are preferably arranged at intervals of 10 to 200 μm, and the diameter of each electronic contact 2 is preferably 5 to 100 μm. The shape is not particularly limited, and may be, for example, a round shape or a square shape.
 電子接点2の配置は特に制限はなく、例えば、電子接点シート10の一端側の縁部1cに沿って配置された構成としてもよく、そして図1に示すように、管状の積層体10Aの軸線(図示する構成の場合、芯材20の軸線に一致)を基準として螺旋状に配置された構成としてもよいし、また、図3に示すように、縁部に沿って段違いで2列に配置する構成や、3列以上に配置する構成であってもよい。 The arrangement of the electronic contacts 2 is not particularly limited. For example, the electronic contacts 2 may be arranged along the edge portion 1c on one end side of the electronic contact sheet 10, and as shown in FIG. It is good also as a structure arrange | positioned spirally on the basis (in the case of the structure shown in figure, it corresponds with the axis line of the core material 20), and as shown in FIG. The structure to arrange | position and the structure arrange | positioned in 3 or more rows may be sufficient.
 また、電子接点2の材料としては、金、白金等の腐食しにくい金属材料を用いることが好ましい。
 また、電子接点2の材料としてカーボンナノチューブ(CNT)等のフレキシブルなナノ材料を用いてもよい。
 例えば、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、該水溶性高分子が架橋されてなるゲル状の導電性材料(導電ゲル)を用いてもよい。この導電ゲルについては後述する。
Further, as the material of the electronic contact 2, it is preferable to use a metal material that is not easily corroded, such as gold or platinum.
Moreover, you may use flexible nanomaterials, such as a carbon nanotube (CNT), as a material of the electronic contact 2. FIG.
For example, a gel-like structure in which a carbon nanomaterial that is doubly coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer is dispersed in a water-soluble polymer medium and the water-soluble polymer is crosslinked. Alternatively, a conductive material (conductive gel) may be used. This conductive gel will be described later.
 配線3は、対応する電子接点2とパッド4とを接続するものであり、電子接点2と同様に、シート状の絶縁基材1の、芯材20に巻回される面の反対側の面1aにおいて互いに離間して配置する。
 配線3は、5~200μmの間隔で配置することが好ましく、その幅は、2~100μmであることが好ましい。
 また、配線3の材料としては、金、白金等の腐食しにくい金属材料を用いることが好ましい。
The wiring 3 connects the corresponding electronic contact 2 and the pad 4. Similarly to the electronic contact 2, the surface of the sheet-like insulating base 1 opposite to the surface wound around the core member 20. They are arranged apart from each other in 1a.
The wiring 3 is preferably arranged at intervals of 5 to 200 μm, and the width is preferably 2 to 100 μm.
Further, as the material of the wiring 3, it is preferable to use a metal material that is not easily corroded, such as gold or platinum.
 配線3は、幅(巻回方向の長さ)が広いシート状の絶縁基材1を用いることにより、多数の配線を配置することができる。非常に幅広のシート状の絶縁基材1を用いて、配線数を増やしたとしても巻回することにより、それらの配線を芯材の外周面に集積することができるので、多点プローブ全体のサイズは大型化せずに済む。 The wiring 3 can arrange many wiring by using the sheet-like insulating base material 1 having a wide width (length in the winding direction). Even if the number of wires is increased by using a very wide sheet-like insulating base material 1, these wires can be accumulated on the outer peripheral surface of the core material, so that the entire multipoint probe can be integrated. The size does not need to be increased.
 図1及び図2に示す例では、配線3は、電子接点2を起点として所定範囲にわたり芯材20の軸線方向に沿って延びている。すなわち、配線3は、電子接点2を起点として芯材20の軸線方向に沿って縁部1f側まで延びている。その先では、角度を変えて第2の矩形部1dに配置するパッド4まで延びている。
 配線3が芯材20の軸線方向に沿って延びる構成は、配線が芯材の軸線方向に対して傾斜して配置する構成に比べて配線の長さが短く重畳回数が少なくなり、クロストークを低減することができる。
In the example shown in FIGS. 1 and 2, the wiring 3 extends along the axial direction of the core member 20 over a predetermined range starting from the electronic contact 2. That is, the wiring 3 extends from the electronic contact 2 to the edge 1 f side along the axial direction of the core member 20. From there, it extends to the pad 4 arranged at the second rectangular portion 1d at a different angle.
The configuration in which the wiring 3 extends along the axial direction of the core material 20 is shorter in the length of the wiring and the number of superpositions than the configuration in which the wiring is inclined with respect to the axial direction of the core material, and crosstalk is reduced. Can be reduced.
 パッド4は、対応する配線3に接続され、当該多点プローブの用途に応じて電気信号の計測器や電圧印加装置等の外部回路に接続されるものであり、電子接点2及び配線3と同様に、シート状の絶縁基材1の、芯材20に巻回される面の反対側の面1aにおいて互いに離間して配置する。
 パッド4は、50~1000μmの間隔で配置することが好ましく、パッド4の幅は、20~500μmであることが好ましい。その形状は特に制限はなく、例えば、丸型、角型等である。また、パッドを複数段に千鳥配置することで、実装を容易にする構成も取ることができる。
The pad 4 is connected to the corresponding wiring 3 and is connected to an external circuit such as an electric signal measuring instrument or a voltage applying device according to the use of the multipoint probe, and is similar to the electronic contact 2 and the wiring 3. In addition, the sheet-like insulating base material 1 is disposed so as to be separated from each other on the surface 1 a opposite to the surface wound around the core material 20.
The pads 4 are preferably arranged at intervals of 50 to 1000 μm, and the width of the pads 4 is preferably 20 to 500 μm. The shape is not particularly limited, and examples thereof include a round shape and a square shape. Moreover, the structure which makes mounting easy by taking a staggered arrangement of pads in a plurality of stages can be taken.
 パッド4は、図2に示すように、電子接点シート10の他端10bの近傍(第2の矩形部1eの位置)においてその他端10bに沿って配置された構成としてもよい。この構成では、電子接点シート10の他端10bは巻回後にプローブの最表面に残る部分であるために、電子接点シートで覆われることがないため、高密度で配置することができ、その結果、多数の電子接点を配置することが可能になる。これに対して、例えば、電子接点シート10の一端10aと他端10bとの間に位置する、シート状の絶縁基材1の縁部1fに沿ってパッドが配置する構成では、この縁部1fは巻回により電子接点シートが覆い重なっていくために、芯材10の棒の外周の長さ程度にしかパッドを配置することができない。そのため、多数のパッドを形成することができず、その結果、高密度で電子接点を配置することができない。 As shown in FIG. 2, the pad 4 may be arranged along the other end 10b in the vicinity of the other end 10b of the electronic contact sheet 10 (position of the second rectangular portion 1e). In this configuration, since the other end 10b of the electronic contact sheet 10 is a portion remaining on the outermost surface of the probe after winding, it is not covered with the electronic contact sheet, so that the electronic contact sheet 10 can be arranged with high density. A large number of electronic contacts can be arranged. On the other hand, for example, in the configuration in which the pads are arranged along the edge 1f of the sheet-like insulating base material 1 located between the one end 10a and the other end 10b of the electronic contact sheet 10, the edge 1f Since the electronic contact sheet covers and overlaps by winding, the pad can be arranged only about the length of the outer periphery of the rod of the core material 10. Therefore, a large number of pads cannot be formed, and as a result, the electronic contacts cannot be arranged with high density.
 また、パッド4の材料としては、金、白金等の腐食しにくい金属材料を用いることができる。
 また、パッド4の材料として電子接点2と同様に、カーボンナノチューブ(CNT)等のフレキシブルなナノ材料を用いてもよく、上記ゲル状の導電性材料(導電ゲル)を用いてもよい。
Further, as the material of the pad 4, a metal material that is not easily corroded, such as gold or platinum, can be used.
As the material of the pad 4, similarly to the electronic contact 2, a flexible nanomaterial such as a carbon nanotube (CNT) may be used, or the gel-like conductive material (conductive gel) may be used.
 芯材20は、軸状であり、電子接点シートを巻回して固定することができれば、その形状に制限はないが、巻回及び固定のしやすさの観点からは円柱状であることが好ましい。
また、電気信号を検出又は電気的刺激を付与する対象に刺入される先端部は図1及び図2に示すように、刺入しやすさの観点から先細りの形状を有していることが好ましい。
The core material 20 has a shaft shape, and there is no limitation on its shape as long as the electronic contact sheet can be wound and fixed, but it is preferably a columnar shape from the viewpoint of ease of winding and fixing. .
Moreover, the tip part to be inserted into a target to detect an electrical signal or to apply an electrical stimulus may have a tapered shape from the viewpoint of ease of insertion as shown in FIGS. 1 and 2. preferable.
 芯材20の径及び長さに特に制限はなく、用途に応じて選択することができる。 
 芯材20の材料としては限定するものではないが、例えば、ステンレススチール、タングステン、チタン等の剛性を有する金属や、ポリアセタール等のエンジニアリングプラスチック、シリコンゴム、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等の柔軟性を有する樹脂を用いることができる。
There is no restriction | limiting in particular in the diameter and length of the core material 20, and it can select according to a use.
The material of the core material 20 is not limited, but for example, a flexible metal such as stainless steel, tungsten, titanium, etc., engineering plastics such as polyacetal, silicon rubber, polypropylene, polyethylene, polyethylene terephthalate, etc. The resin which has can be used.
 電子接点シート10は、シート状の絶縁基材1の一方の面1aに、複数の電子接点2及び複数のパッド4が露出するように、第1の絶縁素材(不図示)を被覆した構成としてもよい。
 第1の絶縁素材の材料としては限定するものではないが、例えば、パリレン(登録商標)、サイトップ(登録商標)を用いることができる。パリレンは例えばCVD法により、また、サイトップはディッピングにより、被覆することができる。
 この第1の絶縁素材の被覆層の厚さとしては、1~10μmであることが好ましい。
The electronic contact sheet 10 has a configuration in which a first insulating material (not shown) is coated on one surface 1a of the sheet-like insulating base 1 so that the plurality of electronic contacts 2 and the plurality of pads 4 are exposed. Also good.
Although it does not limit as a material of the 1st insulating material, Parylene (registered trademark) and Cytop (registered trademark) can be used, for example. Parylene can be coated by, for example, CVD, and cytop by dipping.
The thickness of the coating layer of the first insulating material is preferably 1 to 10 μm.
 電子接点シート10は、シート状の絶縁基材1の上記一方の面1aの裏側の面に、第1のシールド導電膜(不図示)を形成した構成としてもよい。この構成では、多層配線構造における層間の配線の間のクロストークが低減される。
 第1のシールド導電膜の材料としては限定するものではないが、例えば、金を挙げることができる。
 この第1のシールド導電膜の厚さとしては、0.02~0.2μmであることが好ましい。
The electronic contact sheet 10 may have a configuration in which a first shield conductive film (not shown) is formed on the back surface of the one surface 1 a of the sheet-like insulating base material 1. In this configuration, crosstalk between wirings in the multilayer wiring structure is reduced.
Although it does not limit as a material of a 1st shield conductive film, Gold can be mentioned, for example.
The thickness of the first shield conductive film is preferably 0.02 to 0.2 μm.
 電子接点シート10は、図4に示すように、シート状の絶縁基材1の上記一方の面1aに、第2のシールド導電膜6を形成した構成としてもよい。この構成では、多層配線構造における層間の配線の間のクロストークが低減される。
 第2のシールド導電膜の材料としては限定するものではないが、例えば、金を挙げることができる
 この第2のシールド導電膜の厚さとしては、0.02~0.2μmであることが好ましい。この第2の導電膜は配線と同時に形成することが可能である。
As shown in FIG. 4, the electronic contact sheet 10 may have a configuration in which a second shield conductive film 6 is formed on the one surface 1 a of the sheet-like insulating substrate 1. In this configuration, crosstalk between wirings in the multilayer wiring structure is reduced.
Although the material of the second shield conductive film is not limited, for example, gold can be used. The thickness of the second shield conductive film is preferably 0.02 to 0.2 μm. . This second conductive film can be formed simultaneously with the wiring.
 第1のシールド導電膜及び第2のシールド導電膜を両方備える構成としてもよい。 It is good also as a structure provided with both the 1st shield conductive film and the 2nd shield conductive film.
 電子接点シート10は、シート状の絶縁基材1の一方の面1aに、複数の電子接点2に接続された増幅器を有してもよい。 The electronic contact sheet 10 may have an amplifier connected to a plurality of electronic contacts 2 on one surface 1a of the sheet-like insulating substrate 1.
 電子接点シート10を芯材20の外周面20aに巻回するに際しては、電子接点シート10の一端10aをエポキシ接着剤やアクリレート接着剤を用いて芯材20の外周面20aに固定して巻回を開始し、その後例えば、1周巻回するごとに接着剤を用いて、電子接点シート10のおもて面と裏面とを接着して、巻回を続け、最後に電子接点シート10の他端10bの裏面を接着剤を用いて電子接点シート10のおもて面に接着して巻回を完了する。 When the electronic contact sheet 10 is wound around the outer peripheral surface 20a of the core member 20, one end 10a of the electronic contact sheet 10 is fixed to the outer peripheral surface 20a of the core member 20 using an epoxy adhesive or an acrylate adhesive. After that, for example, every time one turn is wound, the front surface and the back surface of the electronic contact sheet 10 are bonded using an adhesive, and the winding is continued. The back surface of the end 10b is adhered to the front surface of the electronic contact sheet 10 using an adhesive to complete the winding.
 本発明の多点プローブは、芯材20の外周面20aに電子接点シート10を巻回後、全体に第2の絶縁素材を被覆し、その後、複数の電子接点及び複数のパッド上の第2の絶縁素材を除去してそれらを露出させた構成であってもよい。
 第2の絶縁素材の材料としては限定するものではないが、例えば、パリレン(登録商標)、サイトップ(登録商標)を用いることができる。
 第2の絶縁素材で全体を被覆する構成により、巻回した電子接点シートの段差が覆われるので、対象に多点プローブを刺入しやすくなる。
 複数の電子接点及び複数のパッド上の第2の絶縁素材を除去する方法としては例えば、レーザーを用いる方法がある。
In the multipoint probe of the present invention, the electronic contact sheet 10 is wound around the outer peripheral surface 20a of the core member 20, and then the second insulating material is entirely covered, and then the second contact points on the plurality of electronic contacts and the plurality of pads. The structure which removed these insulating materials and exposed them may be sufficient.
Although it does not limit as a material of a 2nd insulating material, Parylene (registered trademark) and Cytop (registered trademark) can be used, for example.
Since the step of the wound electronic contact sheet is covered by the configuration in which the whole is covered with the second insulating material, the multipoint probe can be easily inserted into the target.
As a method of removing the second insulating material on the plurality of electronic contacts and the plurality of pads, for example, there is a method using a laser.
 本発明の多点プローブは、脳や脊髄等の生体組織の電気信号の検出や生体組織への電気的刺激の付与に用いることができるが、その他神経細胞や筋細胞との信号授受、カルシウムイオンやグルコースの濃度計測等の用途に用いることもできる。また、適用対象としては生体に限らない。例えば、超音波センサー、光センサー等のセンサーや、発光素子、超音波素子等の素子に用いることができる。これらのセンサーをカテーテルや内視鏡の表面に組み込むことで、検査や治療の適用範囲を拡大することが可能である。 The multipoint probe of the present invention can be used to detect electrical signals of biological tissues such as the brain and spinal cord and to apply electrical stimulation to biological tissues, but also to exchange signals with nerve cells and muscle cells, calcium ions It can also be used for applications such as glucose concentration measurement. Further, the application target is not limited to a living body. For example, it can be used for sensors such as ultrasonic sensors and optical sensors, and elements such as light emitting elements and ultrasonic elements. By incorporating these sensors into the surface of a catheter or endoscope, it is possible to expand the application range of examinations and treatments.
(ゲル状の導電性材料(導電ゲル))
 上述の通り、本発明の多点プローブ、電子接点及び多点プローブアレイを構成する電子接点の材料として、親水性のイオン液体を構成する分子と水溶性高分子とで二重に被覆されたカーボンナノ材料が水溶性高分子媒体中に分散され、該水溶性高分子が架橋されてなるゲル状の導電性材料(導電ゲル)を用いることができる。
(Gel-like conductive material (conductive gel))
As described above, as a material for the multi-point probe, the electronic contact, and the multi-point probe array of the present invention, carbon double-coated with a molecule constituting a hydrophilic ionic liquid and a water-soluble polymer A gel-like conductive material (conductive gel) in which a nanomaterial is dispersed in a water-soluble polymer medium and the water-soluble polymer is crosslinked can be used.
 本明細書においてイオン液体とは、常温溶融塩または単に溶融塩などとも称されるものであり、常温を含む幅広い温度域で溶融状態を呈する塩である。
 親水性のイオン液体としては、従来から知られた各種のイオン液体のうち、親水性のイオン液体を使用することができ、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を挙げることができる。
In this specification, the ionic liquid is also referred to as a normal temperature molten salt or simply a molten salt, and is a salt that exhibits a molten state in a wide temperature range including normal temperature.
As the hydrophilic ionic liquid, a hydrophilic ionic liquid among various conventionally known ionic liquids can be used. For example, N, N-diethyl-N-methyl-N- (2-methoxy Mention may be made of ethyl) ammonium tetrafluoroborate (DEMEBF 4 ).
 本明細書においてカーボンナノ材料とは、カーボン原子で構成され、ナノメートルサイズで構造化している構成要素(例えば、1本のCNT)が通常、その構成要素のカーボン原子同士がファンデルワールス力でくっついているもの、例えば、カーボンナノチューブ、カーボンナノファイバー(炭素繊維のうち、径が10nm以下のもの)、カーボンナノホーン、フラーレンをいう。10nm以下の微細なカーボンナノ材料であれば、水中で良好な分散性を発揮する。 In this specification, the carbon nanomaterial is a component composed of carbon atoms and structured in a nanometer size (for example, one CNT), and the carbon atoms of the component are generally van der Waals forces. For example, carbon nanotubes, carbon nanofibers (of carbon fibers having a diameter of 10 nm or less), carbon nanohorns, and fullerenes. A fine carbon nanomaterial of 10 nm or less exhibits good dispersibility in water.
 カーボンナノ材料は同じ種類のものだけが用いられていてもよいし、複数の種類のものが用いられていてもよい。 Only the same kind of carbon nanomaterials may be used, or a plurality of kinds may be used.
 カーボンナノチューブは、炭素原子が六角網目状に配列したグラフェンシートが単層で又は多層で円筒状に丸まった構造を有するものであるが(単層ナノチューブ(SWNT)、2層ナノチューブ(DWNT)、多層ナノチューブ(MWNT)と呼ばれる)、カーボンナノ材料として用いることができるカーボンナノチューブは特に制限はなく、SWNT、DWNT、MWNTのいずれでも構わない。また、カーボンナノチューブは一般にレーザーアブレーション法、アーク放電、熱CVD法、プラズマCVD法、気相法、燃焼法などで製造できるが、どのような方法で製造したカーボンナノチューブでも構わない。また、複数の種類のカーボンナノチューブを用いても構わない。 The carbon nanotube has a structure in which a graphene sheet in which carbon atoms are arranged in a hexagonal network is a single layer or a multilayer and is rounded in a cylindrical shape (single-wall nanotube (SWNT), double-wall nanotube (DWNT), multilayer The carbon nanotube that can be used as the carbon nanomaterial is not particularly limited, and any of SWNT, DWNT, and MWNT may be used. Carbon nanotubes can generally be produced by laser ablation, arc discharge, thermal CVD, plasma CVD, gas phase, combustion, etc., but carbon nanotubes produced by any method may be used. A plurality of types of carbon nanotubes may be used.
 カーボンナノチューブは、カーボンナノチューブ間のファンデルワールス力によって凝集しやすく、通常、複数本のカーボンナノチューブがバンドル(束)を形成したり、凝集体を形成して存在する。しかし、イオン液体の存在下で、そのバンドルもしくは凝集体にせん断力を加えて細分化する(カーボンナノチューブの絡み合いを低減する)ことができる。十分に細分化を行うことにより、カーボンナノチューブ同士をくっつけているファンデルワールス力を弱めて一本一本のカーボンナノチューブに分離すると共に、一本一本のカーボンナノチューブにイオン液体を吸着させることができ、その結果、イオン液体の分子が覆った単体のカーボンナノチューブを含む、カーボンナノチューブとイオン液体とからなる組成物を得ることできる。
 なお、細分化工程において用いるせん断力を付与する手段は特に限定されるものではなく、ボールミル、ローラーミル、振動ミルなどのせん断力を付与することができる湿式粉砕装置を使用することができる。
Carbon nanotubes are likely to aggregate due to van der Waals forces between the carbon nanotubes, and usually a plurality of carbon nanotubes exist as bundles or aggregates. However, in the presence of an ionic liquid, the bundle or aggregate can be subdivided by applying a shearing force (reducing entanglement of carbon nanotubes). By sufficiently subdividing, the van der Waals force that binds the carbon nanotubes is weakened and separated into individual carbon nanotubes, and the ionic liquid can be adsorbed to the individual carbon nanotubes. As a result, a composition comprising a carbon nanotube and an ionic liquid, including a single carbon nanotube covered with molecules of the ionic liquid, can be obtained.
The means for applying the shearing force used in the subdividing step is not particularly limited, and a wet pulverizing apparatus capable of applying the shearing force, such as a ball mill, a roller mill, or a vibration mill, can be used.
 カーボンナノチューブとイオン液体とを混ぜ、上記細分化工程を行うことにより、からみ合いが減少したカーボンナノチューブの表面に「カチオン-π」相互作用により結合したイオン液体の分子がイオン結合を介してカーボンナノチューブを結びつけることによりゲル状組成物になると考えられているが(特許文献2)、後述するように、このゲル状組成物を、例えば、生理食塩水やエタノール等でリンスすることにより、カーボンナノチューブの表面に1層のイオン液体の分子の層を形成することができ、さらに、水と水溶性高分子とを混ぜることにより、イオン液体を構成する分子に覆われたカーボンナノチューブが水溶性高分子媒体中に分散されてなる組成物を作製することができる。 By mixing the carbon nanotubes with the ionic liquid and performing the above fragmentation step, the ionic liquid molecules bonded to the surface of the carbon nanotubes with reduced entanglement by the “cation-π” interaction are connected via the ionic bonds. (Patent Document 2), as described later, the gel composition is rinsed with, for example, physiological saline, ethanol, etc. A single ionic liquid molecule layer can be formed on the surface, and by mixing water and a water-soluble polymer, the carbon nanotubes covered with the molecules constituting the ionic liquid are converted into a water-soluble polymer medium. A composition dispersed therein can be prepared.
 本明細書において水溶性高分子(媒体)としては、水に溶解でき、あるいは、分散できる高分子であれば特に制限はなく、水中で架橋できるものであればより好ましい。例えば、以下の例を挙げることができる。
1.合成高分子
(1)イオン性
 ポリマクリル酸(アニオン性)
 ポリスチレンスルホン酸(アニオン性)
 ポリエチレンイミン(カチオン性)
 MPCポリマー(両性イオン)
(2)非イオン性
 ポリビニルピロリドン(PVP)
 ポリビニルアルコール(ポリ酢酸ビニル鹸化物)
 ポリアクリルアミド(PAM)
 ポリエチレンオキシド(PEO)
2.天然系高分子(多くは多糖類)
 デンプン
 ゼラチン
 ヒアルロン酸
 アルギン酸
 デキストラン
 タンパク質(例えば水溶性コラーゲンなど)
3.半合成高分子(例えばセルロースを可溶化したもの)
 カルボキシメチルセルロース(CMC)
 ヒドロキシプロピルセルロース(HPC)
 メチルセルロース(MC)、等のセルロース誘導体
 水溶性キトサン(「2.天然系高分子」に分類することもできる)
In the present specification, the water-soluble polymer (medium) is not particularly limited as long as it is a polymer that can be dissolved or dispersed in water, and more preferably a polymer that can be crosslinked in water. For example, the following examples can be given.
1. Synthetic polymer (1) ionic polyacrylic acid (anionic)
Polystyrene sulfonic acid (anionic)
Polyethyleneimine (cationic)
MPC polymer (Zwitterion)
(2) Nonionic polyvinyl pyrrolidone (PVP)
Polyvinyl alcohol (polyvinyl acetate saponified product)
Polyacrylamide (PAM)
Polyethylene oxide (PEO)
2. Natural polymers (mostly polysaccharides)
Starch Gelatin Hyaluronic acid Alginic acid Dextran protein (eg water-soluble collagen)
3. Semi-synthetic polymer (eg cellulose solubilized)
Carboxymethylcellulose (CMC)
Hydroxypropyl cellulose (HPC)
Cellulose derivatives such as methylcellulose (MC) Water-soluble chitosan (can also be classified as “2. Natural polymers”)
 また、水溶性高分子の具体的な化合物としては、例えば、ポリロタキサンを挙げることができる。ポリロタキサンは、環状分子(回転子:rotator)の開口部が直鎖状分子(軸:axis)によって串刺し状に包接されてなる擬ポリロタキサンの両末端(直鎖状分子の両末端)に、環状分子が遊離しないように封鎖基を配置して成る。例えば、環状分子としてα-シクロデキストリン、直鎖状分子としてポリエチレングリコールを用いたポリロタキサンを用いることができる。 Moreover, as a specific compound of the water-soluble polymer, for example, polyrotaxane can be mentioned. Polyrotaxane is cyclic at both ends (both ends of a linear molecule) of a pseudopolyrotaxane in which the opening of a cyclic molecule (rotator) is skewered by a linear molecule (axis). A blocking group is arranged so that the molecule is not released. For example, polyrotaxane using α-cyclodextrin as a cyclic molecule and polyethylene glycol as a linear molecule can be used.
 また、水溶性高分子媒体としては架橋剤と反応する基を有する化合物であれば、架橋により強固な膜を形成することから、より好ましい。
 当該組成物又は導電性材料を用いて、微細な形状のパターンを形成するには、水溶性高分子が光架橋性であることが好ましい。
Further, as the water-soluble polymer medium, a compound having a group that reacts with a crosslinking agent is more preferable because a strong film is formed by crosslinking.
In order to form a finely shaped pattern using the composition or the conductive material, the water-soluble polymer is preferably photocrosslinkable.
 カーボンナノ材料を包み込むイオン液体の分子の層は単分子層であってもよい。カーボンナノ材料の表面とイオン液体の分子とは「カチオン-π」相互作用により結合するが、イオン液体の分子同士の間の結合がその「カチオン-π」相互作用による結合よりも小さい、カーボンナノ材料とイオン液体との組み合わせを選択することにより、カーボンナノ材料を包み込むイオン液体の分子の層を単分子層とすることが可能となる。
 例えば、カーボンナノ材料としてカーボンナノチューブ、イオン液体としてN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を選択することにより、カーボンナノチューブを包み込むDEMEBFの分子の層を単分子層とすることができる。さらに、水溶性高分子として例えば、ポリロタキサンを選択すると、DEMEBFの単分子層の上に5nm程度の薄いポリロタキサンの層を形成することができる。こうして得られる組成物はカーボンナノチューブの分散濃度を高密度とすることができ、高い導電性材料とすることができる。かかる導電性材料で作製した電子接点等の導電部材では、薄いDEMEBF分子層及びポリロタキサン層を介してカーボンナノチューブ間を電子が移動して電流が流れる。
The molecular layer of the ionic liquid enclosing the carbon nanomaterial may be a monomolecular layer. Carbon nanomaterial surface and ionic liquid molecules are bonded by “cation-π” interaction, but the bonds between ionic liquid molecules are smaller than those by “cation-π” interaction. By selecting a combination of the material and the ionic liquid, the molecular layer of the ionic liquid enclosing the carbon nanomaterial can be made a monomolecular layer.
For example, by selecting carbon nanotubes as the carbon nanomaterial and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) as the ionic liquid, DEMEBF 4 enclosing the carbon nanotubes The molecular layer can be a monomolecular layer. Furthermore, when, for example, polyrotaxane is selected as the water-soluble polymer, a thin polyrotaxane layer of about 5 nm can be formed on the monomolecular layer of DEMEBF 4 . The composition thus obtained can make the dispersion concentration of the carbon nanotubes high, and can be a highly conductive material. In a conductive member such as an electronic contact made of such a conductive material, electrons move between the carbon nanotubes through the thin DEMEBF 4 molecular layer and the polyrotaxane layer, and a current flows.
 当該導電性材料において、カーボンナノ材料の表面とイオン液体の分子とは「カチオン-π」相互作用によって強く結合しているために、カーボンナノ材料の表面と結合しているイオン液体の分子は水溶性高分子媒体の外に出てこない。なお、カーボンナノ材料の表面と結合していないイオン液体の分子は、例えば、生理食塩水やエタノールによる濯ぎによって除去することができる。 In the conductive material, since the surface of the carbon nanomaterial and the molecule of the ionic liquid are strongly bonded by the “cation-π” interaction, the molecule of the ionic liquid bonded to the surface of the carbon nanomaterial is water-soluble. Does not come out of the conductive polymer medium. In addition, the molecule | numerator of the ionic liquid which is not couple | bonded with the surface of carbon nanomaterial can be removed by the rinse by the physiological saline or ethanol, for example.
 当該導電性材料によれば、含有するカーボンナノ材料がイオン液体の分子と水溶性高分子とによって二重に被覆されているので、生体内に適用してもカーボンナノ材料が生体内の細胞に実質的に触れることがない。また、高い柔軟性を有するので、生体内の臓器等の表面に対して追従性に優れ、臓器等との間に極めて良好な界面を形成できる。さらにまた、高い導電率を有するものとすることができる。 According to the conductive material, the carbon nanomaterial contained therein is doubly covered with the ionic liquid molecule and the water-soluble polymer. There is virtually no touch. Further, since it has high flexibility, it has excellent followability with respect to the surface of an organ or the like in a living body, and an extremely good interface can be formed between the organ and the like. Furthermore, it can have a high electrical conductivity.
 当該導電性材料は、親水性のイオン液体とカーボンナノ材料と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料が分散する第1の分散系を得る第1の工程と、第1の分散系と水溶性高分子と水とを混合して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る第2の工程と、を備える製造方法によって製造することができる。 The conductive material is a first step in which a hydrophilic ionic liquid, a carbon nanomaterial, and water are mixed to obtain a first dispersion system in which the carbon nanomaterial covered with molecules constituting the ionic liquid is dispersed. And a first dispersion system, a water-soluble polymer and water are mixed to obtain a second dispersion system in which the carbon nanomaterial covered with the molecules constituting the ionic liquid and the water-soluble polymer are dispersed. It can manufacture by a manufacturing method provided with 2 processes.
 第1の工程において、カーボンナノ材料にせん断力を加えて細分化してもよい。
 これにより、カーボンナノ材料のバンドル又は凝集がより解けた状態で親水性のイオン液体で覆うことができる。
In the first step, the carbon nanomaterial may be subdivided by applying a shearing force.
Thereby, the bundle or aggregation of the carbon nanomaterial can be covered with the hydrophilic ionic liquid in a state where the carbon nanomaterial is further unmelted.
 第2の工程の後に、水溶性高分子を架橋させて、カーボンナノ材料が水溶性高分子媒体中に分散され、該水溶性高分子が架橋されてなる組成物を作製する工程をさらに備えてもよい。これにより、成形性や加工性が向上する。
 カーボンナノ材料に結合していない前記イオン液体を構成する分子を除去するために濯ぎ工程をさらに備えてもよい。これにより、成形性や加工性が向上する。
 この濯ぎ工程は例えば、生理食塩水、エタノール、ゲルを破壊しない液体によって行うことができる。この濯ぎ工程はいずれの段階で行ってもよい。
After the second step, the method further comprises the step of crosslinking the water-soluble polymer, the carbon nanomaterial being dispersed in the water-soluble polymer medium, and producing a composition in which the water-soluble polymer is crosslinked. Also good. Thereby, a moldability and workability improve.
A rinsing step may be further provided to remove molecules constituting the ionic liquid that are not bonded to the carbon nanomaterial. Thereby, a moldability and workability improve.
This rinsing step can be performed with, for example, physiological saline, ethanol, or a liquid that does not break the gel. This rinsing process may be performed at any stage.
 なお、当該導電性材料は、本発明の効果を損なわない範囲で他の物質を含むことができる。また、当該導電性材料の製造方法は、本発明の効果を損なわない範囲で他の工程を含むことができる。 In addition, the said electroconductive material can contain another substance in the range which does not impair the effect of this invention. Moreover, the manufacturing method of the said electroconductive material can include another process in the range which does not impair the effect of this invention.
 当該導電性材料を実施例に基づいて具体的に説明する。但し、これらの実施例はあくまでも本発明を容易に理解するための一助として開示するためのものであって、本発明はこれによって限定されるものではない。 The conductive material will be specifically described based on examples. However, these examples are merely disclosed for the purpose of easily understanding the present invention, and the present invention is not limited thereto.
 図5(a)は、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を構成する分子に覆われたカーボンナノチューブがポリロタキサンに分散されてなる組成物であって、紫外線(UV)硬化前のものの状態を示す写真である。得られた組成物は、ゲル状であることがわかる(なお、本明細書において「ゲル状」とは、流動性を有する液状に対して、流動性を失った状態、もしくは、流動性をほぼ失っている状態を意味する)。
 この組成物の作製は、市販のカーボンナノチューブ(MWNT、長さ10μm、径5nm)30mgと、親水性のイオン液体である、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)60mgと混合し、磁気スターラーを用いて700rpm以上の回転数で1週間、25℃で脱イオン水中で撹拌した。得られた懸濁液を、高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal, JN10, Jokoh)によって処理して、黒い物質を得た。得られたCNTゲルを含む溶液を生理食塩水で濯いだ後に、光架橋剤(Irgacure2959、長瀬産業株式会社製)1mgと、ポリロタキサンゲル(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)1000mgとを混合し、上記組成物を作製した。
FIG. 5A shows carbon nanotubes covered with molecules constituting N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) dispersed in polyrotaxane. It is a photograph which shows the state of the composition before ultraviolet (UV) curing. It can be seen that the obtained composition is in the form of a gel (in the present specification, the term “gel” refers to a state in which the fluidity is lost or the fluidity is substantially reduced with respect to the fluid liquid. Meaning lost.)
This composition was prepared by using 30 mg of commercially available carbon nanotubes (MWNT, length 10 μm, diameter 5 nm) and N, N-diethyl-N-methyl-N- (2-methoxyethyl), which is a hydrophilic ionic liquid. The mixture was mixed with 60 mg of ammonium tetrafluoroborate (DEMEBF 4 ), and stirred in deionized water at 25 ° C. for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer. The resulting suspension was treated with a high pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh) to give a black material. After rinsing the solution containing the obtained CNT gel with physiological saline, 1 mg of a photocrosslinking agent (Irgacure 2959, manufactured by Nagase Sangyo Co., Ltd.), polyrotaxane gel (“photocrosslinkable oscillating gel”, Advanced Soft Materials Co., Ltd.) The above composition was prepared by mixing 1000 mg.
 図5(b)は、図5(a)で示した組成物を、5分間、紫外線(波長:365nm)を照射して硬化して得られたシートの写真である。
 得られたシートのヤング率は10kPaよりも低かった。シリコンのヤング率は100GPa程度であり、従来のプラスチックフィルムのヤング率は1~5GPaであるから、非常に柔らかいことがわかる。また、脳のヤング率は1~2kPaであり、心臓の筋肉細胞のヤング率は~100kPaであるから、本発明の一実施形態の組成物又は導電性材料は、臓器と同程度あるいはそれ以上の高い柔らかさを有することがわかった。このため、臓器の表面に高い追従性を有し、臓器との間に極めて良好な界面を形成できる。
FIG. 5B is a photograph of a sheet obtained by curing the composition shown in FIG. 5A by irradiating with ultraviolet rays (wavelength: 365 nm) for 5 minutes.
The Young's modulus of the obtained sheet was lower than 10 kPa. Since the Young's modulus of silicon is about 100 GPa and the Young's modulus of a conventional plastic film is 1 to 5 GPa, it can be seen that it is very soft. In addition, since the Young's modulus of the brain is 1 to 2 kPa and the Young's modulus of the cardiac muscle cells is ˜100 kPa, the composition or the conductive material of one embodiment of the present invention has the same level or higher than that of the organ. It was found to have a high softness. For this reason, it has high followability on the surface of the organ and can form an extremely good interface with the organ.
 図5(c)は、超微細デジタル型UV露光システム(「デジタル露光装置」、ピーエムティー株式会社製)を用いて、光架橋を行うと共に、約50μm程度の線幅の微細構造をパターニングしたものの光学顕微鏡写真である。当該組成物又は当該導電性材料は、このように、微細加工が可能な材料である。
 光架橋材料の種類を変えることで様々な波長で架橋できるので、UVには限定されない。
FIG. 5 (c) shows a case where photocrosslinking is performed using an ultrafine digital UV exposure system (“Digital Exposure Apparatus”, manufactured by PMT Corporation) and a fine structure having a line width of about 50 μm is patterned. It is an optical micrograph. The composition or the conductive material is thus a material that can be finely processed.
Since it can bridge | crosslink by various wavelengths by changing the kind of photocrosslinking material, it is not limited to UV.
 図6は、高分解断面透過電子顕微鏡像(TEM像)であり、(a)は本発明で用いることができるカーボンナノチューブ((MWNT、長さ10μm、径5nm)のTEM像、(b)はイオン液体なしで、カーボンナノチューブ((MWNT、長さ10μm、径5nm)30mgと、ポリロタキサン(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)100mgとを水中で混合し、ジェットミルで細分化を行いながら撹拌して得られた、ポリロタキサンで覆われたカーボンナノチューブのTEM像、(c)は図1(a)で示した組成物の作製条件と同じ条件で得られた組成物のTEM像である。
 高分解断面透過電子顕微としては、HF-2000Cold-FE TEM(80kV、株式会社日立ハイテクノロジーズ製)を用いた。
FIG. 6 is a high-resolution cross-sectional transmission electron microscope image (TEM image), (a) is a TEM image of carbon nanotubes ((MWNT, length 10 μm, diameter 5 nm) that can be used in the present invention, (b) Without an ionic liquid, 30 mg of carbon nanotubes ((MWNT, length 10 μm, diameter 5 nm)) and 100 mg of polyrotaxane (“photocrosslinkable oscillating gel”, manufactured by Advanced Soft Materials Co., Ltd.) are mixed in water, and a jet mill A TEM image of carbon nanotubes covered with polyrotaxane, obtained by stirring while subdividing in FIG. 1, (c) is a composition obtained under the same conditions as the preparation conditions of the composition shown in FIG. It is a TEM image of.
As a high-resolution cross-sectional transmission electron microscope, HF-2000 Cold-FE TEM (80 kV, manufactured by Hitachi High-Technologies Corporation) was used.
 図6(a)に示すように、用いたカーボンナノチューブは3層又は4層からなっていたことがわかる。
 図6(b)に示すように、単体のカーボンナノチューブにポリロタキサンが被覆しているが、その被覆層の層厚は不均一であることがわかる。これに対して、図6(c)に示すように、単体のカーボンナノチューブを被覆するポリロタキサン層の層厚が非常に均一であり、図6(b)に示すものとは明確に異なることわかる。
 この被覆層の層厚の均一性の違いは、後者がカーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子が剥がされて、ポリロタキサンがカーボンナノチューブを覆いなおしたのではなく、カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子の層の上にポリロタキサンが覆ったものであることを示している。カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子が剥がされて、ポリロタキサンがカーボンナノチューブを覆ったのであれば、図6(c)も図6(b)と同様に被覆層の層厚は不均一になるはずである。また、カーボンナノチューブとDEMEBFの分子との結合が水素結合にも匹敵する高いカチオン-π相互作用で結合しているので、カーボンナノチューブを覆っていた親水性イオン液体DEMEBFの分子は上記の工程では剥がされないと考えられる。
As shown in FIG. 6A, it can be seen that the carbon nanotubes used consisted of three or four layers.
As shown in FIG. 6B, it is understood that the single carbon nanotube is coated with polyrotaxane, but the layer thickness of the coating layer is not uniform. In contrast, as shown in FIG. 6 (c), the layer thickness of the polyrotaxane layer covering the single carbon nanotube is very uniform, and it can be seen that it is clearly different from that shown in FIG. 6 (b).
The difference in the uniformity of the thickness of the coating layer is that the molecule of the hydrophilic ionic liquid DEMEBF 4 that covered the carbon nanotubes was peeled off, and the polyrotaxane covered the carbon nanotubes instead of covering the carbon nanotubes. It shows that the polyrotaxane is covered on the molecular layer of the hydrophilic ionic liquid DEMEBF 4 that has been used. If the molecules of the hydrophilic ionic liquid DEMEBF 4 covering the carbon nanotubes are peeled off and the polyrotaxane covers the carbon nanotubes, the thickness of the coating layer in FIG. 6C is the same as in FIG. 6B. Should be uneven. Further, since the bond between the carbon nanotube and the molecule of DEMEBF 4 is bonded by a high cation-π interaction comparable to a hydrogen bond, the molecule of the hydrophilic ionic liquid DEMEBF 4 covering the carbon nanotube is the above-described process. Then it is thought that it is not peeled off.
 図6に示すように、当該導電性材料の製造方法によれば、カーボンナノチューブの表面をイオン液体の分子を介して均一に生体適合性材料で被覆することが可能となる。 As shown in FIG. 6, according to the method for producing the conductive material, the surface of the carbon nanotube can be uniformly coated with the biocompatible material via the molecules of the ionic liquid.
 図7は、当該組成物(CNT-gel)の面抵抗、及び、面抵抗のカーボンナノチューブ含有量依存性を示すグラフである。比較のために、従来の生理食塩水を主成分とするゲル(Saline-based gel)の面抵抗についても点線で示した。
 当該組成物(CNT-gel)は、図5(a)で示した組成物の作製条件と同じ条件で得られた組成物である。大きさは1cm角、厚みは1mmであった。
 生理食塩水を主成分とするゲル(Saline-based gel)は、300mgのロタキサンゲルに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 図7に示すように、組成物の面抵抗は、従来のゲルに比べて、2桁~3桁以上低いことがわかった。
FIG. 7 is a graph showing the sheet resistance of the composition (CNT-gel) and the dependence of the sheet resistance on the carbon nanotube content. For comparison, the surface resistance of a gel based on conventional saline (Saline-based gel) is also indicated by a dotted line.
The composition (CNT-gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
A saline-based gel (Saline-based gel) was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. . The size was 1 cm square and the thickness was 1 mm.
As shown in FIG. 7, the sheet resistance of the composition was found to be 2 to 3 orders of magnitude lower than that of the conventional gel.
 図8は、当該組成物(CNT-rotaxane gel)の電気容量、及び、電気容量の周波数依存性を示すグラフである。比較のために、ポリアクリルアミドゲル(Poly-acrylamide gel)、生理食塩水含有ポリアクリルアミドゲル(Saline poly-acrylamide gel)、生理食塩水含有ロタキサンゲル(Saline-rotaxane gel)についても示した。
 当該組成物(CNT-rotaxane gel)は、図5(a)で示した組成物の作製条件と同じ条件で得られた組成物である。大きさは1cm角、厚みは1mmであった。
 ポリアクリルアミドゲル(Poly-acrylamide gel)は、300mgのポリアクリルアミドに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 生理食塩水含有ポリアクリルアミドゲル(Saline poly-acrylamide gelは、300mgのポリアクリルアミドに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 生理食塩水含有ロタキサンゲル(Saline-rotaxane gel)は、300mgのロタキサンゲルに1mgの光架橋剤を入れて、100mlの生理食塩水で溶かし、その後にUVにより光架橋することにより得た。大きさは1cm角、厚みは1mmであった。
 図8に示すように、当該組成物の電気容量は、比較例のゲルよりも高いことがわかった。
FIG. 8 is a graph showing the electric capacity of the composition (CNT-rotaxane gel) and the frequency dependence of the electric capacity. For comparison, polyacrylamide gel (Poly-acrylamide gel), saline-containing polyacrylamide gel (Saline poly-acrylamide gel), and saline-containing rotaxane gel (Saline-rotaxane gel) were also shown.
The composition (CNT-rotaxane gel) is a composition obtained under the same conditions as those for producing the composition shown in FIG. The size was 1 cm square and the thickness was 1 mm.
A polyacrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The size was 1 cm square and the thickness was 1 mm.
Saline-containing polyacrylamide gel (Saline poly-acrylamide gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of polyacrylamide, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The thickness was 1 cm square and the thickness was 1 mm.
Saline-rotaxane gel was obtained by adding 1 mg of a photocrosslinking agent to 300 mg of rotaxane gel, dissolving in 100 ml of physiological saline, and then photocrosslinking with UV. The size was 1 cm square and the thickness was 1 mm.
As shown in FIG. 8, it was found that the electric capacity of the composition was higher than that of the gel of the comparative example.
 電気信号を容量結合で検出する際、その大きさは電子接点の表面積に比例する。当該組成物で電子接点を形成して、その電子接点を使って容量結合で電気信号を検出する場合、当該組成物は従来の金属電子接点に比べると格段に柔らかく、電子接点は生体組織にぴったりとくっつくことができるために実質的な接触面積が大きくなる。そのため、電気信号を得るための実質的な容量の検出感度は従来の金属電子接点に比べて非常に高く、より小型の電子接点であっても高い検出能力を有するものとなる。
 また、当該組成物又は導電性材料は、カーボンナノ材料を含むものであり、カーボンナノ材料特に、カーボンナノチューブは高い比表面積を有するものなので、この点からも高い信号検出能力を有するものである。また、当該組成物又は導電性材料を用いて作製した電子接点の導電率は、Au電子接点の導電率より低いが、信号を容量でとる場合には導電率ではなく、実効的な表面積が大きいことが重要である。
When an electrical signal is detected by capacitive coupling, the magnitude is proportional to the surface area of the electronic contact. When an electronic contact is formed with the composition and an electrical signal is detected by capacitive coupling using the electronic contact, the composition is much softer than a conventional metal electronic contact, and the electronic contact is perfect for living tissue. The contact area can be increased due to the fact that they can stick to each other. Therefore, the detection sensitivity of a substantial capacity for obtaining an electric signal is very high as compared with a conventional metal electronic contact, and even a smaller electronic contact has a high detection capability.
In addition, the composition or the conductive material includes a carbon nanomaterial, and since the carbon nanomaterial, particularly the carbon nanotube has a high specific surface area, it has a high signal detection capability also in this respect. In addition, the conductivity of an electronic contact manufactured using the composition or the conductive material is lower than the conductivity of an Au electronic contact, but when the signal is taken by capacitance, it is not the conductivity but has a large effective surface area. This is very important.
 以下では、カーボンナノ材料としてカーボンナノチューブを、イオン液体としてN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム テトラフルオロボレート(DEMEBF)を、また、水溶性高分子としてポリロタキサンを用いた場合を例にとって、当該導電性材料の製造方法について、図9を用いて説明する。
(1)第1の工程
 まず、カーボンナノチューブとDEMEBFと水とを混合し、撹拌して、イオン液体を構成する分子に覆われたカーボンナノチューブが分散する第1の分散系を得る。
 第1の分散系を、生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
 この分散系においては、イオン液体を構成する分子に覆われたカーボンナノチューブが水に分散されており、カーボンナノチューブとイオン液体の量に依存して、他に、イオン液体を構成する分子に十分に覆われていない又は全く覆われていないカーボンナノチューブ(バンドル化されているカーボンナノチューブも含む)やイオン液体を構成する分子が含有されている場合がある。
 この工程において、ジェットミル等により、カーボンナノチューブにせん断力を加えて細分化するのが好ましい。この工程により、カーボンナノチューブは、ファンデルワールス力でバンドル化していた1本1本のカーボンナノチューブが解けて、バンドル化(凝集)の程度が低減し、1本1本のカーボンナノチューブにまで解くことも可能となるからである。
In the following, carbon nanotubes are used as carbon nanomaterials, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate (DEMEBF 4 ) is used as an ionic liquid, and polyrotaxane is used as a water-soluble polymer. A method for manufacturing the conductive material will be described with reference to FIG.
(1) First Step First, carbon nanotubes, DEMEBF 4 and water are mixed and stirred to obtain a first dispersion system in which carbon nanotubes covered with molecules constituting the ionic liquid are dispersed.
The step of rinsing the first dispersion with physiological saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
In this dispersion system, the carbon nanotubes covered with the molecules constituting the ionic liquid are dispersed in water, and depending on the amount of the carbon nanotubes and the ionic liquid, other than the molecules constituting the ionic liquid are sufficient. In some cases, carbon nanotubes that are not covered or not covered at all (including bundled carbon nanotubes) and molecules that form an ionic liquid are contained.
In this step, it is preferable to apply a shearing force to the carbon nanotubes by a jet mill or the like to subdivide them. Through this process, the carbon nanotubes are bundled by van der Waals force, so that each carbon nanotube is unwound, the degree of bundling (aggregation) is reduced, and each carbon nanotube is unraveled to a single carbon nanotube. It is also possible.
 図11は、カーボンナノチューブの分散性を調べた結果を示すものである。(A)は、カーボンナノチューブ30mgを25℃の脱イオン水に入れ、磁気スターラーを用いて700rpm以上の回転数で1週間撹拌した後の状態、(B)は、カーボンナノチューブ30mgと、DEMEBF60mgとを25℃の脱イオン水に入れ、同様にして1週間撹拌した後の状態、(C)は、カーボンナノチューブ30mgを25℃の脱イオン水に入れ、同様にして1週間撹拌し、その後、高圧ジェットミルホモジナイザー(60MPa;Nano-jet pal, JN10, Jokoh)で処理した後の状態、(D)は、カーボンナノチューブ30mgと、DEMEBF60mgとを25℃の脱イオン水に入れ、同様にして1週間撹拌し、その後、高圧ジェットミルホモジナイザーで処理した後の状態、(E)カーボンナノチューブ30mgと、DEMEBF60mgと、ミクロフィブリル化セルロース(10%セルロース含有の水溶液100mg、「セリッシュ(商品名)」、Daicel Chemical Industries社製)とを25℃の脱イオン水に入れ、同様にして1週間撹拌して得られたペーストを、その後、高圧ジェットミルホモジナイザーで処理した後の状態、を示すものであり、撹拌を終えてから1週間後に撮影した写真である。なお、「セリッシュ(商品名)」は、高度に精製した純植物繊維を原料とし、特殊な処理方法でミクロフィブリル化したセルロースナノファイバーであり、原料の繊維はこの処理によって数万本に引き裂かれ、繊維の太さは0.1-0.01μmまで微細化されている。 FIG. 11 shows the results of examining the dispersibility of the carbon nanotubes. (A) shows a state after 30 mg of carbon nanotubes are put in deionized water at 25 ° C. and stirred for 1 week at a rotation speed of 700 rpm or more using a magnetic stirrer, and (B) shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4. And (C) is a state after stirring for 1 week in the same manner at 25 ° C., and (C) is the same as above. A state after being treated with a high-pressure jet mill homogenizer (60 MPa; Nano-jet pal, JN10, Jokoh), (D) shows 30 mg of carbon nanotubes and 60 mg of DEMEBF 4 in 25 ° C. deionized water. (E) Carbon after stirring for 1 week and then treated with a high-pressure jet mill homogenizer And Bruno tube 30mg, and DEMEBF 4 60mg, microfibrillated cellulose (10% cellulose-containing aqueous solution 100mg, "Celish (trade name)" manufactured by Daicel Chemical Industries, Ltd.) and placed in deionized water 25 ° C., in the same manner 1 shows a state after the paste obtained by stirring for one week is processed with a high-pressure jet mill homogenizer, and is a photograph taken one week after the stirring is completed. “Serisch (trade name)” is cellulose nanofiber made from highly purified pure plant fiber as a raw material and microfibrillated by a special treatment method. The raw fiber is torn into tens of thousands by this treatment. The fiber thickness is refined to 0.1-0.01 μm.
 (D)及び(E)は、水の中でカーボンナノチューブが高い分散性を示していることがわかる。高い分散性を得るには、せん断力を加えてバンドル化されているカーボンナノチューブを細分化することが好ましいことがわかる。 (D) and (E) show that the carbon nanotubes show high dispersibility in water. It can be seen that it is preferable to subdivide the bundled carbon nanotubes by applying a shearing force in order to obtain high dispersibility.
(2)第2の工程
 次に、上記第1の分散系とポリロタキサン(「光架橋性環動ゲル」、アドバンストソフトマテリアルズ株式会社製)と水とを混合し、撹拌して、イオン液体を構成する分子に覆われたカーボンナノ材料と水溶性高分子とが分散する第2の分散系を得る。
 第2の分散系を、生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
 なお、図9に示すように、得られた組成物を架橋する場合には架橋剤も混合することができる。これによって、得られた第2の分散系は図9に示すようなゲル状の物質である。
(2) Second Step Next, the first dispersion, polyrotaxane (“photocrosslinkable tumbling gel”, manufactured by Advanced Soft Materials Co., Ltd.) and water are mixed and stirred, and the ionic liquid is mixed. A second dispersion system is obtained in which the carbon nanomaterial covered with the constituent molecules and the water-soluble polymer are dispersed.
The step of rinsing the second dispersion with saline, ethanol, a liquid that does not break the gel, or the like may be performed to remove DEMEBF 4 that is not bound to the carbon nanotubes.
In addition, as shown in FIG. 9, when bridge | crosslinking the obtained composition, a crosslinking agent can also be mixed. Thus, the obtained second dispersion is a gel-like substance as shown in FIG.
(3)架橋工程
 次に、ポリロタキサンを架橋して、DEMEBFを構成する分子に覆われたカーボンナノチューブがポリロタキサン媒体中に分散され、該ポリロタキサンが架橋されてなる組成物(導電性材料)を得る。
 得られた組成物(導電性材料)を生理食塩水、エタノール、ゲルを破壊しない液体等によって濯ぐ工程を行って、カーボンナノチューブに結合していないDEMEBFを除去してもよい。
(3) Crosslinking step Next, the polyrotaxane is crosslinked to obtain a composition (conductive material) in which the carbon nanotubes covered with the molecules constituting the DEMEBF 4 are dispersed in the polyrotaxane medium, and the polyrotaxane is crosslinked. .
A step of rinsing the obtained composition (conductive material) with physiological saline, ethanol, a liquid that does not destroy the gel, or the like may be performed to remove DEMEBF 4 that is not bonded to the carbon nanotubes.
 以上の工程により、当該組成物(導電性材料)を得ることができる。 Through the above steps, the composition (conductive material) can be obtained.
 次に、上記第2の分散系を用いて、当該組成物(導電性材料)からなるシートや、当該組成物(導電性材料)からなる微細な線幅のラインを形成する工程の一例について説明する。 Next, an example of a process for forming a sheet made of the composition (conductive material) and a line having a fine line width made of the composition (conductive material) using the second dispersion system will be described. To do.
 図10(a)に示すように、上記第2の分散系をガラス基板にキャスト(流延)する。
次いで、図10(b)に示すように、所望の厚さ(図の例では50μm)のスペーサーシートを介してガラス基板上にカバーガラスを載せる。
As shown in FIG. 10A, the second dispersion system is cast (cast) onto a glass substrate.
Next, as shown in FIG. 10B, a cover glass is placed on the glass substrate via a spacer sheet having a desired thickness (50 μm in the illustrated example).
 次に、シートを作製する場合は、図10(c)に示すように、例えば、紫外線(365nm)露光装置を用いて露光することにより、50μm厚のシートを得ることができる。
また、微細な線幅のラインを形成する場合は、図10(d)に示すように、例えば、デジタル型の紫外線(365nm)露光装置を用いて露光することにより、例えば、50μm幅のラインを形成することができる。
Next, when producing a sheet, as shown in FIG. 10C, for example, a sheet having a thickness of 50 μm can be obtained by exposure using an ultraviolet (365 nm) exposure apparatus.
When forming a line with a fine line width, as shown in FIG. 10D, for example, by using a digital ultraviolet (365 nm) exposure apparatus, for example, a line with a width of 50 μm is formed. Can be formed.
(多点プローブアレイ)
 図12は、本発明の一実施形態に係る多点プローブアレイの一例を示す斜視図である。
 多点プローブアレイ200は、上記した多点プローブ100がベース基板30上に離間して複数立設されたものである。図5においては、多点プローブ100は6本立設することができるが、図においては便宜上、1本しか描いていない。
(Multi-point probe array)
FIG. 12 is a perspective view showing an example of a multipoint probe array according to an embodiment of the present invention.
In the multipoint probe array 200, a plurality of the multipoint probes 100 described above are provided on the base substrate 30 so as to be spaced apart from each other. In FIG. 5, six multipoint probes 100 can be erected, but in the figure, only one is drawn for convenience.
 多点プローブ100は、パッドに外部回路を接続しやすいように、電子接点シート10の他端10bの近傍を巻回しない構成としている。多点プローブ100は、芯材20の他端20cがベース基板30に設けられた溝部32に差し込むことによって立設される。
 ベース基板30の材料はジルコニア等の加工性のあるセラミクスやガラスエポキシが好適であるが、単結晶シリコン基板やガラス基板を用いることも可能である。このベース基板には多点プローブ100を精密に位置決めする溝32が複数設けられている。この溝32に多点プローブ100を嵌め込み、電子接点シート10の他端に形成されたパッドがベース基板30側に向くようにして、ベース基板30上にパッドと対応して形成された実装端子(図示せず)と位置合わせされた状態で電気的に接続する。この実装端子はベース基板30上に形成された配線を通じて、ベース基板30に固定された電気コネクタ31に電気的に接続される。
 また、ベース基板30上に配線や電気コネクタ31を形成することなく、電子接点シート10のパッドとフレキシブルケーブルと直接接続しても良い。この場合は、電子接点シート10の端部は、パッドがベース基板から上面を向くように巻回しされた状態で接着固定される。
The multipoint probe 100 is configured not to be wound around the other end 10b of the electronic contact sheet 10 so that an external circuit can be easily connected to the pad. The multipoint probe 100 is erected by inserting the other end 20 c of the core member 20 into a groove 32 provided in the base substrate 30.
The material of the base substrate 30 is preferably a workable ceramic such as zirconia or glass epoxy, but a single crystal silicon substrate or a glass substrate can also be used. The base substrate is provided with a plurality of grooves 32 for precisely positioning the multipoint probe 100. A mounting terminal (corresponding to the pad) formed on the base substrate 30 with the multipoint probe 100 fitted in the groove 32 so that the pad formed on the other end of the electronic contact sheet 10 faces the base substrate 30 side. It is electrically connected in a state of being aligned with (not shown). The mounting terminals are electrically connected to an electrical connector 31 fixed to the base substrate 30 through wiring formed on the base substrate 30.
Further, the pads of the electronic contact sheet 10 and the flexible cable may be directly connected without forming the wiring or the electrical connector 31 on the base substrate 30. In this case, the end portion of the electronic contact sheet 10 is bonded and fixed in a state where the pad is wound so that the pad faces the upper surface from the base substrate.
(多点プローブの製造方法)
 以下に、本発明の一実施形態に係る多点プローブの製造方法の一例について説明する。
 まず、所定の形状を有するシート状の絶縁基材を準備する。具体的には例えば、市販のポリイミドフィルム、またはポリエチレンナフタレートフィルムを準備する。
 次に、シート状の絶縁基材の一方の面に、公知の回路作成技術を用いて、複数の電子接点と、各電子接点に接続された複数の配線と、各配線に接続された複数のパッドとを形成する。公知の回路作成技術としては例えば、フレキシブルプリント基板作成技術が挙げられる。
 次に、回路が形成された基板に、電子接点及びパッドを露出するように第1の絶縁素材からなる層を形成する。
 次に、電子接点シートの一端を例えば、シアノアクリレート系接着剤を用いて芯材の外周面に固定して巻回を開始し、その後例えば、1周巻回するごとに例えば、エポキシ接着剤を用いて、電子接点シートのおもて面と裏面とを接着し、巻回を続け、最後に電子接点シートの他端の裏面を例えば、同じくエポキシ接着剤を用いて電子接点シートのおもて面に接着して巻回を完了する。
 次に、パリレン等の第2の絶縁素材を全体に被覆し、電子接点及びパッド上の第2の絶縁素材をレーザー等を用いて除去して、電子接点及びパッドを露出させる。
 概略以上の工程によって、多点プローブを製造することができる。
(Manufacturing method of multi-point probe)
Below, an example of the manufacturing method of the multipoint probe which concerns on one Embodiment of this invention is demonstrated.
First, a sheet-like insulating base material having a predetermined shape is prepared. Specifically, for example, a commercially available polyimide film or polyethylene naphthalate film is prepared.
Next, on one surface of the sheet-like insulating substrate, using a known circuit creation technique, a plurality of electronic contacts, a plurality of wirings connected to each electronic contact, and a plurality of wirings connected to each wiring And a pad. As a known circuit creation technique, for example, a flexible printed circuit board creation technique can be cited.
Next, a layer made of a first insulating material is formed on the substrate on which the circuit is formed so as to expose the electronic contacts and the pads.
Next, one end of the electronic contact sheet is fixed to the outer peripheral surface of the core material using, for example, a cyanoacrylate adhesive, and winding is started. Use to bond the front and back surfaces of the electronic contact sheet, continue winding, and finally use the back of the other end of the electronic contact sheet, for example, using the same epoxy adhesive Adhere to the surface and complete the winding.
Next, a second insulating material such as parylene is entirely covered, and the second insulating material on the electronic contact and the pad is removed using a laser or the like to expose the electronic contact and the pad.
A multipoint probe can be manufactured by the above-described steps.
(多点プローブアレイの製造方法)
 図13に示す製造工程のフロー図を用いて、本発明の一実施形態に係る多点プローブアレイの製造方法の一例について説明する。本製造方法の一部の工程を、多点プローブの製造方法に適用してもよいし、また、上述した多点プローブの製造方法の一部の工程を、以下の多点プローブアレイの製造方法に適用してもよい。
 まず、平坦なガラス基板等のサポート基板に、ポリイミドフィルム等のシート状の絶縁基材を貼る((a)工程)。
 次に、シート状の絶縁基材の一方の面に、例えば、CVDでパリレン等を用いた平坦化層を形成する((b)工程)。
 次に、その平坦化層の上に、マスク蒸着によって、複数の電子接点と、各電子接点に接続された複数の配線と、各配線に接続された複数のパッドとを形成して電子接点シートを作製する((c)工程)。
 次に、回路が形成された電子接点シート全体を第1の絶縁素材で被覆し((d)工程)、その後、電子接点及びパッド上の第1の絶縁素材を除去する((e)工程)。
 次に、シート状の絶縁基材(電子接点シート)を、別のサポート基板に反転して転写し((f)工程)、先のサポート基板に貼着されていた側の面の一端に例えば、シアノアクリレート系接着剤等の接着剤を塗布する((g)工程)。
 次に、電子接点シートのその接着剤を塗布した部分に芯材を固定し((h)工程)、芯材に電子接点シートを巻回し、最後に電子接点シートの他端の裏面を、同じくエポキシ接着剤を用いて電子接点シートのおもて面に接着して巻回を完了する((i)工程)。
 次に、パリレン等の第2の絶縁素材を全体に被覆し、電子接点及びパッド上の第2の絶縁素材をレーザー等で除去して、電子接点及びパッドを露出させて、多点プローブを製造する。
 次に、その多点プローブを、ベース基材の溝に固定する((j)工程)。
 次に、多点プローブのパッドをベース基材の端子に実装する((k)工程)。
 概略以上の工程によって、多点プローブアレイを製造することができる。
(Manufacturing method of multi-point probe array)
An example of a method for manufacturing a multipoint probe array according to an embodiment of the present invention will be described using the flowchart of the manufacturing process shown in FIG. A part of the manufacturing method may be applied to a method for manufacturing a multi-point probe, and a part of the manufacturing method for the multi-point probe described above may be applied to the following method for manufacturing a multi-point probe array. You may apply to.
First, a sheet-like insulating substrate such as a polyimide film is pasted on a support substrate such as a flat glass substrate (step (a)).
Next, a planarization layer using, for example, parylene or the like is formed by CVD on one surface of the sheet-like insulating base (step (b)).
Next, a plurality of electronic contacts, a plurality of wirings connected to each electronic contact, and a plurality of pads connected to each wiring are formed on the planarizing layer by mask vapor deposition to form an electronic contact sheet. (Step (c)).
Next, the entire electronic contact sheet on which the circuit is formed is covered with a first insulating material (step (d)), and then the first insulating material on the electronic contacts and the pads is removed (step (e)). .
Next, the sheet-like insulating base material (electronic contact sheet) is inverted and transferred to another support substrate (step (f)), for example, on one end of the surface that has been attached to the previous support substrate. Then, an adhesive such as a cyanoacrylate adhesive is applied (step (g)).
Next, the core material is fixed to the portion of the electronic contact sheet to which the adhesive is applied (step (h)), the electronic contact sheet is wound around the core material, and finally the back surface of the other end of the electronic contact sheet is An epoxy adhesive is used to adhere to the front surface of the electronic contact sheet to complete winding (step (i)).
Next, a second insulating material such as parylene is entirely covered, the second insulating material on the electronic contact and the pad is removed with a laser, etc., and the electronic contact and the pad are exposed to manufacture a multipoint probe. To do.
Next, the multipoint probe is fixed to the groove of the base substrate (step (j)).
Next, the pads of the multipoint probe are mounted on the terminals of the base substrate (step (k)).
A multipoint probe array can be manufactured by the above-described steps.
 以上、本発明の望ましい実施態様を説明したが、本発明はこの実施態様に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換及びその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付の特許請求の範囲によってのみ限定される。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this embodiment. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the foregoing description, but only by the appended claims.
 1 シート状の絶縁基材 1a 一方の面 1c 縁部 2 電子接点 3、3a、3b、3c 配線 4 パッド 10 電子接点シート 10a 一端 10b 他端 20 芯材 20a 外周面 20b 一端 20c 他端 30 ベース基板  100 多点プローブ 200 多点プローブアレイ 1 sheet-like insulating substrate 1a one side 1c edge 2 electronic contact 3, 3a, 3b, 3c wiring 4 pad 10 electronic contact sheet 10a one end 10b other end 20 core material 20a outer peripheral surface 20b one end 20c other end 30 base substrate 100 Multipoint probe 200 Multipoint probe array

Claims (14)

  1.  シート状の絶縁基材に、列状に離間して配設された複数の電子接点と、各電子接点に接続された複数の配線とを有する電子接点シートを、その一端から他端に向けて巻回することにより多層に積層して構成された管状の積層体からなる多点プローブであって、
     前記電子接点は前記シート状の絶縁基材で覆われることなく露出し、前記配線は、最上層の配線以外は少なくともその一部が前記シート状の絶縁基材に覆われるように積層されていることを特徴とする多点プローブ。
    An electronic contact sheet having a plurality of electronic contacts arranged in a row and spaced apart on a sheet-like insulating base and a plurality of wires connected to each electronic contact, from one end to the other end A multi-point probe composed of a tubular laminate formed by laminating multiple layers by winding,
    The electronic contacts are exposed without being covered with the sheet-like insulating base material, and the wiring is laminated so that at least a part thereof is covered with the sheet-like insulating base material except for the uppermost layer wiring. A multipoint probe characterized by that.
  2.  軸状の芯材を備え、前記電子接点シートは前記芯材の外周面に巻回されていることを特徴とする請求項1に記載の多点プローブ。 The multipoint probe according to claim 1, further comprising an axial core material, wherein the electronic contact sheet is wound around an outer peripheral surface of the core material.
  3.  前記複数の電子接点は、前記シート状の絶縁基材の一方の面において、前記電子接点シートの一端側の縁部に沿って配置されていることを特徴とする請求項1又は2のいずれかに記載の多点プローブ。 The said some electronic contact is arrange | positioned along the edge part of the one end side of the said electronic contact sheet in one surface of the said sheet-like insulation base material, Either of Claim 1 or 2 characterized by the above-mentioned. The multipoint probe described in 1.
  4.  前記シート状の絶縁基材は、前記縁部が前記管状の積層体の一端から他端に向けて後退するように形成されていることを特徴とする請求項1から3のいずれか一項に記載の多点プローブ。 4. The sheet-like insulating base material according to claim 1, wherein the edge portion is formed so as to recede from one end to the other end of the tubular laminated body. 5. The multipoint probe described.
  5.  前記複数の電子接点は、前記管状の積層体の軸線を基準として螺旋状に配置されていることを特徴とする請求項1から4のいずれか一項に記載の多点プローブ。 The multipoint probe according to any one of claims 1 to 4, wherein the plurality of electronic contacts are arranged in a spiral shape with respect to an axis of the tubular laminate.
  6.  前記複数の配線は、前記複数の電子接点を起点として所定範囲にわたり前記管状の積層体の軸線方向に沿って延在されていることを特徴とする請求項1から5のいずれか一項に記載の多点プローブ。 6. The plurality of wires are extended along the axial direction of the tubular laminated body over a predetermined range starting from the plurality of electronic contacts. 6. Multipoint probe.
  7.  各配線に接続され、外部回路に接続される複数のパッドが、前記電子接点シートの前記他端の近傍においてその他端に沿って配置されていることを特徴とする請求項1から6のいずれか一項に記載の多点プローブ。 A plurality of pads connected to each wiring and connected to an external circuit are arranged along the other end in the vicinity of the other end of the electronic contact sheet. The multipoint probe according to one item.
  8.  前記電子接点シートは、前記複数の電子接点及び前記複数のパッドが露出するように、第1の絶縁素材で被覆されていることを特徴とする請求項1から7のいずれか一項に記載の多点プローブ。 8. The electronic contact sheet is coated with a first insulating material so that the plurality of electronic contacts and the plurality of pads are exposed. 9. Multipoint probe.
  9.  前記シート状の絶縁基材において、前記配線が配設された面の他方の面に、第1のシールド導電膜が形成されていることを特徴とする請求項8に記載の多点プローブ。 The multi-point probe according to claim 8, wherein a first shield conductive film is formed on the other surface of the sheet-like insulating substrate on which the wiring is disposed.
  10.  前記シート状の絶縁基材において、前記配線が配設された面に、第2のシールド導電膜が形成されていることを特徴とする請求項1から9のいずれか一項に記載の多点プローブ。 The multipoint according to any one of claims 1 to 9, wherein a second shield conductive film is formed on a surface of the sheet-like insulating base material on which the wiring is disposed. probe.
  11.  前記シート状の絶縁基材に、前記複数の電子接点に接続された増幅器を有することを特徴とする請求項1から10のいずれか一項に記載の多点プローブ。 The multipoint probe according to any one of claims 1 to 10, wherein the sheet-like insulating base material includes an amplifier connected to the plurality of electronic contacts.
  12.  請求項1から11のいずれか一項に記載の多点プローブが、ベース基板上に離間して複数立設されていることを特徴とする多点プローブアレイ。 A multi-point probe array, wherein a plurality of the multi-point probes according to any one of claims 1 to 11 are provided on the base substrate so as to be spaced apart from each other.
  13.  請求項1から11のいずれか一項に記載の多点プローブを構成する電子接点シート。 An electronic contact sheet constituting the multipoint probe according to any one of claims 1 to 11.
  14.  請求項1から11のいずれか一項に記載の多点プローブの製造方法であって、
     前記電子接点シートを、その一端から他端に向けて、前記複数の電子接点が露出するように巻回した後に、全体に第2の絶縁素材を被覆し、その後、前記複数の電子接点及び複数のパッド上の第2の絶縁素材を除去することを特徴とする多点プローブの製造方法。
    It is a manufacturing method of the multipoint probe as described in any one of Claim 1 to 11,
    The electronic contact sheet is wound from one end to the other end so that the plurality of electronic contacts are exposed, and then entirely covered with a second insulating material, and then the plurality of electronic contacts and the plurality of electronic contacts are covered. A method of manufacturing a multipoint probe, wherein the second insulating material on the pad is removed.
PCT/JP2014/063467 2013-05-21 2014-05-21 Multi-point probe and electronic contact sheet for configuring same, multi-point probe array and multi-point probe manufacturing method WO2014189077A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/892,485 US10588525B2 (en) 2013-05-21 2014-05-21 Multi-point probe, electronic contact sheet for configuring the same, multi-point probe array, and method of manufacturing the same
EP14801868.2A EP3000389B1 (en) 2013-05-21 2014-05-21 Multi-point probe and electronic contact sheet for configuring same, multi-point probe array and multi-point probe manufacturing method
CN201480028978.7A CN105228519B (en) 2013-05-21 2014-05-21 Multipoint probe and the manufacturing method for constituting its electronic contact piece, multipoint probe array and multipoint probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-107229 2013-05-21
JP2013107229A JP6212814B2 (en) 2013-05-21 2013-05-21 Multi-point probe, electronic contact sheet constituting the same, multi-point probe array, and method for manufacturing multi-point probe

Publications (1)

Publication Number Publication Date
WO2014189077A1 true WO2014189077A1 (en) 2014-11-27

Family

ID=51933629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063467 WO2014189077A1 (en) 2013-05-21 2014-05-21 Multi-point probe and electronic contact sheet for configuring same, multi-point probe array and multi-point probe manufacturing method

Country Status (5)

Country Link
US (1) US10588525B2 (en)
EP (1) EP3000389B1 (en)
JP (1) JP6212814B2 (en)
CN (1) CN105228519B (en)
WO (1) WO2014189077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064477A1 (en) * 2015-10-14 2017-04-20 University Of Newcastle Upon Tyne Probe response signals

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105759A1 (en) * 2014-01-07 2015-07-16 The Trustees Of The University Of Pennsylvania Graphene-passivated implantable electrodes
US11357472B2 (en) * 2015-12-15 2022-06-14 Koninklijke Philips N.V. Rotation determination in an ultrasound beam
WO2018030393A1 (en) * 2016-08-12 2018-02-15 学校法人東京電機大学 Vital sign measurement sheet and vital sign measurement device
JP7329442B2 (en) * 2017-01-19 2023-08-18 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Sheath visualization
CN106768598B (en) * 2017-03-10 2020-02-21 北京航空航天大学 Cylindrical porous total pressure probe for measuring total pressure between blade rows and distributed along blade height
CA3069424A1 (en) * 2017-06-08 2018-12-13 Neuronoff, Inc. Electrode cured and manufactured in the body, and related methods and devices
US11564789B2 (en) 2017-07-31 2023-01-31 Loria Products Llc Hair implants comprising enhanced anchoring and medical safety features
KR20200037342A (en) 2017-07-31 2020-04-08 로리아 프로덕츠 엘엘씨 Hair transplant with improved fixation and medical safety
EP3530194A1 (en) * 2018-02-21 2019-08-28 Koninklijke Philips N.V. Interventional device with piezoelectric transducer
JP6960161B2 (en) 2018-03-15 2021-11-05 国立研究開発法人科学技術振興機構 Electronic functional members and electronic components
JP6989775B2 (en) * 2018-07-04 2022-01-12 日本電信電話株式会社 Manufacturing method of microelectrode
JP7065433B2 (en) * 2018-08-14 2022-05-12 日本電信電話株式会社 Electrodes, their manufacturing methods, and laminates
US11458300B2 (en) 2018-12-28 2022-10-04 Heraeus Medical Components Llc Overmolded segmented electrode
USD916290S1 (en) * 2019-03-05 2021-04-13 Loria Products Llc Hair implant
USD917050S1 (en) * 2019-08-26 2021-04-20 Loria Products Llc Hair implant
DE102019216119A1 (en) * 2019-10-18 2021-04-22 Inomed Medizintechnik Gmbh Bipolar mapping suction device
CN113038724A (en) * 2021-03-02 2021-06-25 微智医疗器械有限公司 Manufacturing method of circuit board, circuit board and electronic equipment
CN115236371B (en) * 2022-07-25 2023-03-07 东莞市竹菱铜业有限公司 Nano probe and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504333A (en) * 1992-09-25 1996-05-14 イーピー・テクノロジーズ・インコーポレーテッド Electrode-supported splines for the cardiac system
JP2004520898A (en) * 2001-01-02 2004-07-15 セラセンス インコーポレーテッド Sample monitoring apparatus and method of using the same
US20070219551A1 (en) * 2003-09-22 2007-09-20 Honour Kirk S Medical device with flexible printed circuit
WO2008024857A2 (en) * 2006-08-23 2008-02-28 The Regents Of The University Of California An apparatus and method for optimization of cardiac resynchronization therapy
US20090240249A1 (en) * 2004-11-08 2009-09-24 Cardima, Inc. System and Method for Performing Ablation and Other Medical Procedures Using An Electrode Array with Flexible Circuit
JP4406697B2 (en) 2003-01-17 2010-02-03 財団法人生産技術研究奨励会 Flexible nerve probe and manufacturing method thereof
JP2010516353A (en) * 2007-01-29 2010-05-20 サイモン フレーザー ユニバーシティー Transvascular nerve stimulation apparatus and method
WO2011051775A2 (en) * 2009-10-26 2011-05-05 Politecnico Di Torino Sensor for detection of bioelectric signals from an annular muscle, in particular for multi-channel surface electromyography
JP2012130519A (en) 2010-12-21 2012-07-12 Nationa Hospital Organization Electrode probe, electrode probe guiding grid, and method of manufacturing the electrode probe
US20130018247A1 (en) * 2010-08-31 2013-01-17 Glenn Richard A Intravascular electrodes and anchoring devices for transvascular stimulation
JP2013514146A (en) * 2009-12-16 2013-04-25 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ In vivo electrophysiology using conformal electronics

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640290A (en) 1985-04-25 1987-02-03 Westinghouse Electric Corp. Shielded, self-preparing electrode suitable for electroencephalographic mapping
US6024702A (en) * 1997-09-03 2000-02-15 Pmt Corporation Implantable electrode manufactured with flexible printed circuit
JP3660823B2 (en) 1999-02-25 2005-06-15 株式会社ルネサステクノロジ Micro electrode
US6210339B1 (en) * 1999-03-03 2001-04-03 Endosonics Corporation Flexible elongate member having one or more electrical contacts
JP2000325320A (en) 1999-05-18 2000-11-28 Tdk Corp In vivo current sensor and manufacture therefor
US20030018243A1 (en) * 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
JP2001157669A (en) 1999-12-03 2001-06-12 Hitachi Ltd Microelectrode
JP4878634B2 (en) 2003-01-17 2012-02-15 財団法人生産技術研究奨励会 Flexible nerve probe and manufacturing method thereof
JP5603071B2 (en) * 2006-06-01 2014-10-08 キャスプリント・アクチボラゲット Tubular catheter for invasive use and manufacturing method thereof
WO2008070809A2 (en) * 2006-12-06 2008-06-12 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
US20110135569A1 (en) * 2007-03-20 2011-06-09 Peak Biosciences Inc. Method for therapeutic administration of radionucleosides
CN101337110B (en) 2008-08-14 2010-07-21 上海交通大学 Multi-site stimulating electrode array for brain stimulation and electrode interface thereof, irrigation mould
ES2615826T3 (en) * 2008-11-11 2017-06-08 Shifamed Holdings, Llc Low Profile Electrode Set
JP5108810B2 (en) 2009-03-02 2012-12-26 日本電信電話株式会社 Nerve electrode device, method for producing the same, and method for using the same
JP5431057B2 (en) 2009-07-30 2014-03-05 国立大学法人 新潟大学 Reticulated bioelectrode array
US8816711B2 (en) * 2009-08-26 2014-08-26 United Technologies Corporation Electrical probe assembly
US9061134B2 (en) * 2009-09-23 2015-06-23 Ripple Llc Systems and methods for flexible electrodes
US9096877B2 (en) * 2009-10-07 2015-08-04 Macrogenics, Inc. Fc region-containing polypeptides that exhibit improved effector function due to alterations of the extent of fucosylation, and methods for their use
RU2012120108A (en) 2009-10-16 2013-11-27 Сапиенс Стиринг Брейн Стимьюлейшн Б.В. NEURO INTERFACE SYSTEM
JP5544600B2 (en) 2010-06-30 2014-07-09 独立行政法人科学技術振興機構 Biocompatible polymer substrate
CN102323857B (en) 2011-08-30 2013-06-26 中国人民解放军国防科学技术大学 Flexible array-based brain-computer interface electrode cap
CN103093856B (en) 2011-10-28 2015-07-29 清华大学 Electrode wires and apply the pacemaker of this electrode wires

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504333A (en) * 1992-09-25 1996-05-14 イーピー・テクノロジーズ・インコーポレーテッド Electrode-supported splines for the cardiac system
JP2004520898A (en) * 2001-01-02 2004-07-15 セラセンス インコーポレーテッド Sample monitoring apparatus and method of using the same
JP4406697B2 (en) 2003-01-17 2010-02-03 財団法人生産技術研究奨励会 Flexible nerve probe and manufacturing method thereof
US20070219551A1 (en) * 2003-09-22 2007-09-20 Honour Kirk S Medical device with flexible printed circuit
US20090240249A1 (en) * 2004-11-08 2009-09-24 Cardima, Inc. System and Method for Performing Ablation and Other Medical Procedures Using An Electrode Array with Flexible Circuit
WO2008024857A2 (en) * 2006-08-23 2008-02-28 The Regents Of The University Of California An apparatus and method for optimization of cardiac resynchronization therapy
JP2010516353A (en) * 2007-01-29 2010-05-20 サイモン フレーザー ユニバーシティー Transvascular nerve stimulation apparatus and method
WO2011051775A2 (en) * 2009-10-26 2011-05-05 Politecnico Di Torino Sensor for detection of bioelectric signals from an annular muscle, in particular for multi-channel surface electromyography
JP2013514146A (en) * 2009-12-16 2013-04-25 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ In vivo electrophysiology using conformal electronics
US20130018247A1 (en) * 2010-08-31 2013-01-17 Glenn Richard A Intravascular electrodes and anchoring devices for transvascular stimulation
JP2012130519A (en) 2010-12-21 2012-07-12 Nationa Hospital Organization Electrode probe, electrode probe guiding grid, and method of manufacturing the electrode probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUYOSHI SEKITANI; UTE ZSCHIESCHANG; HAGEN KLAUK; TAKAO SOMEYA: "Flexible organic transistors and circuits with extreme bending stability", NATURE MATERIAL, vol. 9, 2010, pages 1015 - 1022, XP055183900, DOI: doi:10.1038/nmat2896

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017064477A1 (en) * 2015-10-14 2017-04-20 University Of Newcastle Upon Tyne Probe response signals
US11478180B2 (en) 2015-10-14 2022-10-25 University Of Newcastle Upon Tyne Probe response signals

Also Published As

Publication number Publication date
CN105228519B (en) 2018-07-27
JP2014226257A (en) 2014-12-08
EP3000389B1 (en) 2018-12-26
US20160100768A1 (en) 2016-04-14
EP3000389A4 (en) 2017-01-11
CN105228519A (en) 2016-01-06
EP3000389A1 (en) 2016-03-30
JP6212814B2 (en) 2017-10-18
US10588525B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
JP6212814B2 (en) Multi-point probe, electronic contact sheet constituting the same, multi-point probe array, and method for manufacturing multi-point probe
JP6296530B2 (en) Biocompatible electrode structure and manufacturing method thereof, and device and manufacturing method thereof
JP6424404B2 (en) Signal detection apparatus and signal detection method
EP3104150A1 (en) Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
US8774890B2 (en) Electrode arrays and methods of making and using same
WO2014030556A1 (en) Carbon nanomaterial, composition, conductive material, and manufacturing method therefor
JP5878283B2 (en) Integrated sensor assembly and method of forming the same
US20130320273A1 (en) Nanocomposites for neural prosthetics devices
WO2020009152A1 (en) Microelectrode, method of manufacturing same, and integrated device
TWI593437B (en) Pacemaker electrode lead and pacemaker using the same
Terkan et al. Soft peripheral nerve interface made from carbon nanotubes embedded in silicone
JP2019042109A (en) Biomedical electrode and manufacturing method of the same
WO2015119208A1 (en) Electrode array and biological sensor
Li et al. Capillary assisted deposition of carbon nanotube film for strain sensing
Rajbhandari et al. Fabrication of Biomedical Electrodes Using Printing Approaches
Zhou et al. Current and emerging strategies for biocompatible materials for implantable electronics
TWI581817B (en) Pacemaker electrode lead and pacemaker using the same
KR102430741B1 (en) Carbon nanotube sensor and manufacturing method of the carbon nanotube sensor
WO2023210134A1 (en) Capacitor and method for manufacturing capacitor
TW201116293A (en) Structure of flexible probe and method of producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028978.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014801868

Country of ref document: EP