WO2014188960A1 - Transmission device, transmission method, reception device and reception method - Google Patents

Transmission device, transmission method, reception device and reception method Download PDF

Info

Publication number
WO2014188960A1
WO2014188960A1 PCT/JP2014/062991 JP2014062991W WO2014188960A1 WO 2014188960 A1 WO2014188960 A1 WO 2014188960A1 JP 2014062991 W JP2014062991 W JP 2014062991W WO 2014188960 A1 WO2014188960 A1 WO 2014188960A1
Authority
WO
WIPO (PCT)
Prior art keywords
time information
bit
bit counter
clock
packet
Prior art date
Application number
PCT/JP2014/062991
Other languages
French (fr)
Japanese (ja)
Inventor
北里 直久
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2014188960A1 publication Critical patent/WO2014188960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/242Synchronization processes, e.g. processing of PCR [Program Clock References]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0664Clock or time synchronisation among packet nodes using timestamps unidirectional timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4305Synchronising client clock from received content stream, e.g. locking decoder clock with encoder clock, extraction of the PCR packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/643Communication protocols
    • H04N21/6437Real-time Transport Protocol [RTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction

Definitions

  • the present technology relates to a transmission device, a transmission method, a reception device, and a reception method, and more particularly, to a transmission device that transmits an IP broadcast signal including transmission media such as video and audio.
  • Non-Patent Document 1 a method of transmitting by the IP method similar to the communication instead of the conventional MPEG2-TS method has been studied as a new broadcasting method (for example, see Non-Patent Document 1).
  • the purpose of this technology is to achieve good clock synchronization and presentation synchronization in a broadcast system transmitted by the IP system.
  • a clock generator for generating a 27 MHz clock synchronized with the time information acquired from the time information server;
  • a time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
  • the transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server
  • a transmission unit that transmits an IP broadcast signal including time information acquired from the transmission apparatus.
  • the clock generation unit generates a 27 MHz clock synchronized with time information acquired from an NTP (Network Time Protocol) server.
  • the time information generation unit generates time information including frequency information of the 27 MHz clock generated by the clock generation unit. This time information is synchronized with the time information acquired from the time information server.
  • the time information generation unit counts a 27 MHz clock generated by the clock generation unit and divides it by 300, and a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000. And a 32-bit counter for counting the frequency-divided output of the 17-bit counter.
  • the clock generation unit counts the voltage-controlled oscillator that outputs a 27 MHz clock, the 9-bit counter that counts the clock output of the voltage-controlled oscillator and divides it by 300, and the divided output of the 9-bit counter.
  • the 9-bit counter the 32-bit counter that counts the divided output of the 17-bit counter, and the 9-bit counter, the 17-bit counter, and the 32-bit counter.
  • Bit conversion for converting the bit output of the counter into a 32-bit output continuous to the lower order of the bit output of the 32-bit counter, and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter And 64 bits obtained by this bit converter And a comparator that provides a control signal corresponding to the difference value to the voltage-controlled oscillator, and the time information generator includes a 9-bit counter and a 17-bit counter. And a 32-bit counter.
  • the broadcast signal encapsulates the first transmission packet encapsulating the IP packet including the transmission medium and the IP packet including the time information generated by the time information generation unit or the time information acquired from the time information server.
  • the second transmission packet may be included.
  • the IP packet in the first transmission packet may further include presentation time information of the transmission medium included in the IP packet.
  • the IP packet in the first transmission packet may include an RTP packet in which the transmission medium is arranged in the payload portion.
  • the broadcast signal may have a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
  • the IP packet in the first transmission packet includes an MMT packet in which transmission media is arranged in the payload portion
  • the IP packet in the second transmission packet is an MMT packet in which presentation time information is arranged in the payload portion. May be included.
  • the broadcast signal includes the time information including the frequency information of the 27 MHz clock synchronized with the time information acquired from the time information server or the time information acquired from the time information server. Therefore, the receiving side can generate a 27 MHz clock (system clock) similar to that on the transmitting side based on this time information, and clock synchronization can be realized.
  • the presentation time information for each presentation unit of the transmission medium obtained based on the time information having the frequency information of the clock of 27 MHz synchronized with the time information acquired from the time information server is further included in the broadcast signal. It is what Therefore, on the receiving side, realization of presentation synchronization is realized based on time information including frequency information of a 27 MHz clock generated based on time information included in the transmission signal and presentation time information for each presentation unit of the transmission media. It becomes possible.
  • the broadcast signal further includes identification information indicating whether the included time information is the time information generated by the time information generation unit or the time information acquired from the time information server. , May be.
  • identification information indicating whether the included time information is the time information generated by the time information generation unit or the time information acquired from the time information server. , May be.
  • the receiving side it is possible to perform a clock generation process or the like according to the time information indicated by the identification information.
  • a receiving unit that receives an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server; Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information.
  • a time information generator A receiving apparatus comprising: a processing unit that processes transmission media included in the broadcast signal based on presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit .
  • an IP broadcast signal including a transmission medium, presentation time information for each unit of presentation of the transmission medium, and time information related to the time information acquired from the time information server is received by the reception unit.
  • a broadcast signal includes a first transmission packet encapsulating an IP packet including a transmission medium, and a second transmission packet encapsulating an IP packet including time information related to time information acquired from a time information server. You may be allowed to have
  • the IP packet in the first transmission packet may further include presentation time information of the transmission medium included in the IP packet.
  • the broadcast signal has a third transmission packet that encapsulates an IP packet including presentation time information of the transmission medium included in the IP packet in the first transmission packet. May be.
  • the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information are obtained. Including time information is generated. Then, the transmission unit included in the broadcast signal is processed by the processing unit based on the presentation time information included in the broadcast signal and the clock and time information generated by the clock / time information generation unit.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server.
  • the information generation unit counts the voltage-controlled oscillator that outputs a 27-MHz clock, the 9-bit counter that counts the clock output of the voltage-controlled oscillator and divides it by 300, and the divided output of the 9-bit counter that counts 90000 A 17-bit counter that circulates, a 32-bit counter that counts the frequency-divided output of the 17-bit counter, a 9-bit counter, a 17-bit counter, a bit output of the 32-bit counter, and a time acquired from a time information server
  • the time information related to the information is compared and the control signal is sent to the voltage controlled oscillator.
  • a comparator for obtaining an error signal supplied as, may be adapted.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is from the time information including the 27 MHz frequency information synchronized with the time information acquired from the time information server or from the time information server.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is synchronized with the time information acquired from the time information server. It further has identification information indicating whether it is first time information including frequency information or second time information that is the same as the time information acquired from the time information server.
  • Voltage-controlled oscillator that outputs a clock of 9 bits and a 9-bit count that counts the clock output of the voltage-controlled oscillator and divides it by 300
  • a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000
  • a 32-bit counter that counts the divided output of the 17-bit counter, a 9-bit counter, a 17-bit counter, and a 32-bit counter
  • a comparator that obtains an error signal to be supplied as a control signal to the voltage controlled oscillator, comparing the bit output of the signal and the time information related to the time information acquired from the time information server included in the broadcast signal
  • a selector that supplies an error signal obtained by the comparator as a control signal to the voltage controlled oscillator when indicating time information, and supplies a fixed value as a control signal to the voltage controlled oscillator when the identification information indicates second time information , May be.
  • the same 27 MHz clock (system clock) as that on the transmission side based on the time information related to the time information acquired from the time information server included in the broadcast signal, and the frequency of this 27 MHz clock Time information including information is generated.
  • the transmission medium is processed based on the clock and time information and the presentation time information for each transmission media presentation unit included in the broadcast signal. Therefore, clock synchronization and presentation synchronization can be realized.
  • PTS time stamp
  • FIG. 1 shows a configuration example of a transmission / reception system 10 as an embodiment.
  • the transmission / reception system 10 includes a broadcast transmission system 100 and a receiver 200.
  • the broadcast transmission system 100 transmits an IP (Internet Protocol) broadcast signal including transmission media such as video and audio.
  • the broadcast transmission system 100 generates time information including a 27 MHz clock (system clock) synchronized with time information acquired from an NTP (Network Time Protocol) server as a time information server and frequency information of the 27 MHz clock. To do.
  • the broadcast signal includes, together with the transmission media, presentation time information for each presentation unit of the transmission media obtained based on the generated time information, and the generated time information.
  • the receiver 200 receives the above-described IP system broadcast signal transmitted from the broadcast transmission system 100. Based on the time information included in the broadcast signal, the receiver 200 generates time information including a 27 MHz clock (system clock) synchronized with the time information and the frequency information of the 27 MHz clock. Then, the receiver 200 processes the transmission medium included in the broadcast signal based on the presentation time information included in the broadcast signal and the generated clock and time information.
  • system clock system clock
  • the broadcast transmission system 100 and the receiver 200 are configured as described above, thereby realizing clock synchronization and presentation synchronization as in the conventional MPEG2-TS system.
  • the transmission system and the reception system correspond to, for example, the broadcast transmission system 100 and the receiver 200 described above.
  • the transmission system includes a clock generation unit 11 that generates a 27 MHz system clock and a clock unit (time information generation unit) 12 that generates time information.
  • the transmission system also includes an encoding processing unit 13, a packetization / time stamp adding unit 14, and an encoding buffer 15.
  • the encoding processing unit 13 encodes transmission media such as video and audio.
  • the packetization / time stamp adding unit 14 packetizes the transmission media after encoding, and presents time information (PTS: Presentation) for each transmission media presentation unit based on the time information generated by the clock unit 12. Time Stamp) is added.
  • the packet of the transmission medium is temporarily stored in the encode buffer 15 and transmitted at an appropriate timing.
  • the receiving system includes a clock generation unit 21 that generates a 27 MHz system clock and a clock unit (time information generation unit) 22 that generates time information.
  • the receiving system also includes a decode buffer 23, a depacketization / timing adjustment unit 24, and a decode processing unit 25.
  • the decode buffer 23 temporarily stores received transmission media packets.
  • the packet of the transmission medium stored in the decode buffer 23 is taken out at the timing of the presentation time information added by referring to the time information generated by the clock unit 22, and depacketed. It becomes.
  • the decoding processing unit 25 the transmission medium obtained by depacketization is decoded to obtain a baseband transmission medium.
  • clock synchronization and presentation synchronization are realized. Details of the clock synchronization / presentation synchronization method will be described later.
  • the clock synchronization means that the frequency of the system clock generated by the clock generation unit 11 of the transmission system and the frequency of the system clock generated by the clock generation unit 21 of the reception system become the same frequency. . If clock synchronization is not realized, corruption such as frame skipping occurs while reception is continued on the receiving side.
  • the presentation synchronization means that the time information of the clock unit 12 of the transmission system and the time information of the clock unit 22 of the reception system are combined, and the presentation time information for each transmission media presentation unit is added to the packet of the transmission medium. means.
  • the time information of the clock unit 22 of the reception system is matched with the time information of the clock unit 12 of the transmission system, a transmission delay from the transmission system to the reception system is considered. If the presentation synchronization is not realized, it is impossible to synchronize the video and audio on the receiving side and appropriately present without destroying the buffer.
  • FIG. 3 shows a clock synchronization / presentation synchronization method in the conventional MPEG2-TS method.
  • the left side shows a configuration example on the broadcast transmission system side
  • the right side shows a configuration example of a receiver.
  • the broadcast transmission system includes a voltage-controlled oscillator 31 that generates a 27 MHz clock (system clock), a division period 32, a comparator 33, and a 9-bit counter 34a and a 33-bit count that constitute a clock unit (time information generation unit). 34b and a packetizing unit 35.
  • the broadcast transmission system also includes a video encoding processing unit 36, a packetization / time stamp adding unit 37, an encoding buffer 38, and a multiplexer 39.
  • the 27 MHz clock generated by the voltage controlled oscillator 31 is divided by the frequency divider 33, and a pulse is output from the frequency divider 33 with a time length of one horizontal period.
  • the output pulse of the frequency divider 32 is supplied to the comparator 33 and compared with the phase of the reference horizontal synchronizing signal (Ref. Hsync).
  • the comparison error signal output from the comparator 34 is supplied to the voltage controlled oscillator 31 as a control signal.
  • the voltage controlled oscillator 31, the frequency divider 32, and the comparator 33 constitute a PLL (Phase Locked Loop) circuit, and the voltage controlled oscillator 31 generates a 27 MHz clock synchronized with the reference horizontal synchronizing signal.
  • PLL Phase Locked Loop
  • the 27 MHz clock output from the voltage controlled oscillator 31 is counted by the 9-bit counter 34a and divided by 300.
  • the 90 KHz clock obtained by the 9-bit counter 34a is counted by the 33-bit counter 34b.
  • the bit output of (33 + 9) bits of the 9-bit counter 34a and the 33-bit counter 34b is a system time clock (STC: System Time Clock) as time information.
  • the system time clock is supplied to the packetizing unit 35.
  • the packetizing unit 35 generates a TS packet having an adaptation field including a program clock reference (PCR: Program Clock Reference) based on the system time clock.
  • the TS packets are generated at predetermined intervals and sequentially supplied to the multiplexer 39. It is recommended that the PCR appear in the TS stream at 100 ms intervals.
  • FIG. 4A shows the configuration of PCR (STC) having frequency information of 27 MHz.
  • video (video data) is encoded in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 31.
  • the packetization / time stamp addition unit 37 generates a PES packet for each picture (Picture), for example, from the encoded video elementary stream, and further generates a TS packet including the encoded video in the payload. This TS packet is supplied to the multiplexer 39 through the encode buffer 38.
  • the packetization / time stamp addition unit 37 is supplied with a 33-bit bit output output from the 33-bit counter 34b. This 33-bit bit output is time information with an accuracy of 90 kHz.
  • the packetization / time stamp adding unit 37 inserts a presentation time stamp (PTS: Presentation Time Stamp) into the header of each PES packet based on the 33-bit output.
  • FIG. 4B shows the configuration of a PTS having frequency information of 90 KHz.
  • the multiplexer 39 is supplied with TS packets including PCR and TS packets including encoded video. Although illustration is omitted, a TS packet including encoded audio and the like is generated in the same manner as a TS packet including encoded video and supplied to the multiplexer 39.
  • each TS packet is multiplexed and a TS stream is generated. This TS stream is transmitted as a broadcast signal.
  • the receiver includes a demultiplexer 41, a voltage controlled oscillator 42 that generates a 27 MHz clock (system clock), a 9-bit counter 43a and a 33-bit count 43b that constitute a clock (time information generator), and a comparator 44. Have.
  • the receiver includes a decode buffer 45, a presentation control unit 46, and a video decode processing unit 47.
  • the demultiplexer 41 is supplied with a TS stream that is a received broadcast signal.
  • the PCR is extracted from the TS packet including the PCR.
  • the 42-bit PCR received first is set as an initial value in a 42-bit counter comprising the counter 43a and the counter 44b.
  • the PCR received thereafter is supplied to the comparator 44.
  • the 27 MHz clock generated by the voltage controlled oscillator 42 is counted by the 9-bit counter 43a and divided by 300.
  • the 90 KHz clock obtained by the 9-bit counter 43a is counted by the 33-bit counter 43b.
  • the bit output of (33 + 9) bits of the 9-bit counter 43a and the 33-bit counter 43b becomes a system time clock (STC: System Time Clock) as time information.
  • STC System Time Clock
  • the system time clock is supplied to the comparator 44.
  • the comparator 44 for example, at the timing when the PCR is supplied from the demultiplexer 41, the system time clock is latched and compared with the PCR.
  • the comparison error signal output from the comparator 44 is supplied to the voltage controlled oscillator 42 as a control signal.
  • the voltage controlled oscillator 42, the counters 43a and 43b, and the comparator 44 constitute a PLL (Phase Locked Loop) circuit.
  • the voltage controlled oscillator 42 generates a 27 MHz clock synchronized with the PCR, and the counters 43a and 43b are synchronized with the PCR.
  • System time clock is generated.
  • TS packets including encoded video are extracted and temporarily stored in the decode buffer 45.
  • the 33-bit bit output output from the 33-bit counter 43 b is supplied to the presentation control unit 46.
  • the presentation control unit 46 the PTS of each PES packet stored in the decode buffer 45 is confirmed, and the PES packet to be decoded is sequentially transmitted from the decode buffer 45 to the video decode processing unit 47 with reference to the system time clock. Capture is done.
  • the PES packet is depacketized, the encoded video is further decoded, and baseband video data is obtained. Then, in the receiver, video display based on the video data is performed.
  • the demultiplexer 41 also extracts TS packets including encoded audio, and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
  • an IP broadcast signal is transmitted from the broadcast transmission system 100 to the receiver 200.
  • the IP broadcast signal is, for example, an RTP (Real-Time Transport Protocol) system or an MMT (MPEG Media Transport) system.
  • RTP Real-Time Transport Protocol
  • MMT MPEG Media Transport
  • FIG. 5 is a stack model showing a broadcast signal configuration example in the RTP system.
  • PHY physical layer
  • This physical layer includes a modulation scheme, an error correction scheme, and the like.
  • TLV Type Length Value
  • GSE GSE (Generic There is a transmission packet layer of Stream Encapsulation.
  • the IP packet is placed on the TLV or GSE transmission packet. Further, UDP (User Datagram Protocol) is placed on the IP packet. In addition, RTP used on the Internet is placed on UDP. Then, transmission media such as video, audio, and subtitles are placed on the RTP. On the other hand, a transmission control signal as signaling information is also placed on the TLV or GSE transmission packet.
  • UDP User Datagram Protocol
  • RTP Transmission Protocol used on the Internet
  • transmission media such as video, audio, and subtitles are placed on the RTP.
  • a transmission control signal as signaling information is also placed on the TLV or GSE transmission packet.
  • the IP packet basically has the same form as the Internet streaming.
  • an NTP Network Time Protocol
  • UDP User Datagram Protocol
  • FIG. 6 shows a configuration example of an RTP broadcast stream (broadcast signal).
  • FIG. 6A shows a video elementary stream (Video ES). This elementary stream of video is divided into chunks of a predetermined size and arranged in the payload portion of an RTP packet (RTP packet) as shown in FIG. There is a time stamp field in the header portion of the RTP packet, and a PTS indicating the presentation time of each picture is inserted into this field.
  • a UDP header, an IP header, and a TLV header are added to the RTP packet to generate a TLV packet (TLV packet) that constitutes an RTP broadcast stream.
  • a TLV packet includes a packet including NTP time information.
  • illustration is abbreviate
  • This RTP broadcast stream has a first transmission packet that encapsulates an IP packet that includes transmission media, and a second transmission packet that encapsulates an IP packet that includes time information.
  • FIG. 7 is a stack model showing an example of a broadcast signal configuration in the MMT system.
  • PHY physical layer
  • This physical layer includes a modulation scheme, an error correction scheme, and the like.
  • TLV Type Length Value
  • GSE GSE (Generic There is a transmission packet layer of Stream Encapsulation.
  • the IP packet is placed on the TLV or GSE transmission packet. Further, UDP (User Datagram Protocol) is placed on the IP packet. On the other hand, a transmission control signal as signaling information is also placed on the TLV or GSE transmission packet.
  • An MMT packet is placed on the UDP. The payload part of this MMT packet includes MFU ((MMT Fragment Unit)) or signaling message (Signaling Message). As shown in the figure, an NTP (Network Time Protocol) further exists on the UDP.
  • FIG. 8 shows a configuration example of the MMT broadcast stream (broadcast signal).
  • FIG. 8A shows a video elementary stream (Video ES). This elementary stream of video is divided into chunks of a predetermined size and arranged in the payload portion of the MFU as shown in FIG.
  • an MMT payload is configured by adding an MMT payload header (MMT payload) to the MFU. Then, as shown in FIG. 8 (d), an MMT header (MMTerpacket) is formed by further adding an MMT header (MMT header) to this MMT payload. There is also an MMT packet including a signaling message such as PTS indicating the presentation time of each picture in the payload portion.
  • a UDP header, an IP header, and a TLV header are added to an MMT packet to generate a TLV packet (TLV packet) that constitutes an MMT broadcast stream.
  • a TLV packet includes a packet including NTP time information.
  • the TLV packet containing the MPU packet of other transmission media, such as an audio and a caption exists further.
  • This MMT broadcast stream includes a first transmission packet encapsulating an IP packet including a transmission medium, a second transmission packet encapsulating an IP packet including time information, and a first transmission packet in the first transmission packet. It has a third transmission packet that encapsulates the IP packet including the presentation time information of the transmission medium included in the IP packet.
  • FIG. 9 shows a configuration example of the broadcast transmission system 100 by the RTP method.
  • the broadcast transmission system 100 includes a clock unit 101, a signal transmission unit 102, a video encoder 103, an audio encoder 104, a caption encoder 105, and a TLV (GSE) signaling generation unit 106.
  • the broadcast transmission system 100 includes N IP service multiplexers 107-1 to 107-N, a TLV (GSE) multiplexer 108, and a modulation / transmission unit 109.
  • the clock unit 101 generates time information synchronized with time information acquired from an NTP server (not shown), and sends an IP packet including this time information to the IP service multiplexer 107-1.
  • the signal transmission unit 102 is, for example, a studio of a TV station or a recording / reproducing device such as a VTR, and is a system that transmits baseband signals such as video, audio, and subtitles as transmission media.
  • the video encoder 103 encodes the video signal sent from the signal sending unit 102, further packetizes it, and sends an IP packet including a video RTP packet to the IP service multiplexer 107-1.
  • the audio encoder 104 encodes and further packetizes the audio signal transmitted from the signal transmission unit 102, and sends an IP packet including an audio RTP packet to the IP service multiplexer 107-1.
  • the caption encoder 105 encodes the caption signal transmitted from the signal transmission unit 102, further packetizes it, and sends an IP packet including the caption RTP packet to the IP service multiplexer 107-1.
  • PTS is added to the header part of each RTP packet of video, audio, and subtitles based on time information generated by the clock unit 101.
  • the IP service multiplexer 107-1 performs time division multiplexing of the IP packet sent from each encoder. At this time, the IP service multiplexer 107-1 adds a UDP header and a TLV header to each IP packet to form a TLV (GSE) packet.
  • GSE TLV
  • the IP service multiplexer 107-1 constitutes one channel part included in one transponder.
  • the IP service multiplexers 107-2 to 107-N have the same function as that of the IP service multiplexer 107-1, and constitute other channel portions included in one transponder.
  • the TLV (GSE) signaling generation unit 106 generates signaling (Signaling) information, and generates a TLV (GSE) packet in which the signaling (Signaling) information is arranged in the payload portion.
  • the TLV (GSE) multiplexer 108 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 107-1 to 107-N and the TLV (GSE) signaling generation unit 106 to generate an RTP broadcast stream (see FIG. 6 (c)).
  • the modulation / transmission unit 109 performs RF modulation processing on the RTP broadcast stream generated by the TLV (GSE) / multiplexer 108 and transmits the result to the RF transmission line.
  • the operation of the broadcast transmission system (RTP method) 100 shown in FIG. 9 will be briefly described.
  • time information synchronized with the time information acquired from the NTP server is generated, and an IP packet including the time information is generated.
  • This IP packet is sent to the IP service multiplexer 107-1.
  • the video signal transmitted from the signal transmission unit 102 is supplied to the video encoder 103.
  • the video signal is encoded and further packetized to generate an IP packet including a video RTP packet. This IP packet is sent to the IP service multiplexer 107-1.
  • the IP packet including the audio RTP packet generated by the audio encoder 104 is sent to the IP service multiplexer 107-1, and the IP packet including the caption RTP packet generated by the caption encoder 105 is transmitted to the IP service multiplexer 107. Sent to -1.
  • the IP service multiplexer 107-1 performs time division multiplexing of IP packets sent from each encoder. At this time, a UDP header and a TLV header are added to each IP packet to form a TLV (GSE) packet.
  • GSE TLV
  • the processing of one channel part included in one transponder is performed, and in the IP service multiplexers 107-2 to 107-N, other parts included in the one transponder are processed.
  • the channel portion is processed in the same manner.
  • TLV (GSE) packets obtained by the IP service multiplexers 107-1 to 107-N are sent to the TLV (GSE) multiplexer 108.
  • the TLV (GSE) multiplexer 108 further receives a TLV (GSE) packet in which signaling information is placed in the payload portion from the TLV (GSE) signaling generation unit 106.
  • the TLV (GSE) multiplexer 108 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 107-1 to 107-N and the TLV (GSE) signaling generation unit 106 to generate an RTP broadcast stream. Generated. This broadcast stream is sent to the modulation / transmission unit 109.
  • the modulation / transmission unit 109 performs RF modulation processing on the RTP broadcast stream, and sends the RF modulation signal to the RF transmission path.
  • FIG. 10 shows a configuration example of a broadcast transmission system 100 based on the MMT method.
  • the broadcast transmission system 100 includes a clock unit 111, a signal transmission unit 112, a video encoder 113, an audio encoder 114, a caption encoder 115, and a signaling generation unit 116.
  • the broadcast transmission system 100 includes a TLV (GSE) signaling generation unit 117, N IP service multiplexers 118-1 to 118-N, a TLV (GSE) multiplexer 119, and a modulation / transmission unit 120.
  • GSE TLV
  • the clock unit 111 generates time information (NTP time information) synchronized with time information acquired from an NTP server (not shown), and sends an IP packet including the time information to the IP service multiplexer 118-1.
  • the signal sending unit 112 is, for example, a TV station studio or a recording / playback device such as a VTR, and is a system that sends baseband signals such as video, audio, and subtitles as transmission media.
  • the video encoder 113 encodes the video signal sent from the signal sending unit 112, further packetizes it, and sends an IP packet including a video MMT packet to the IP service multiplexer 118-1.
  • the audio encoder 114 encodes and further packetizes the audio signal transmitted from the signal transmission unit 112, and sends an IP packet including an audio MMT packet to the IP service multiplexer 118-1.
  • the caption encoder 115 encodes the caption signal transmitted from the signal transmission unit 112, further packetizes it, and sends an IP packet including the caption MMT packet to the IP service multiplexer 118-1.
  • the signaling generation unit 116 generates a signaling message and sends an IP packet including an MMT packet in which the signaling message is arranged in the payload part to the IP service multiplexer 118-1.
  • This signaling message includes a PTS generated based on time information generated by the clock unit 111.
  • the IP service multiplexer 118-1 performs time division multiplexing of the IP packet sent from each encoder. At this time, the IP service multiplexer 118-1 adds a UDP header and a TLV header to each IP packet to form a TLV (GSE) packet.
  • the IP service multiplexer 118-1 constitutes one channel portion included in one transponder.
  • the IP service multiplexers 118-2 to 118-N have the same function as that of the IP service multiplexer 118-1, and constitute other channel portions included in one transponder.
  • the TLV (GSE) signaling generation unit 117 generates signaling (Signaling) information, and generates a TLV (GSE) packet in which this signaling (Signaling) information is arranged in the payload portion.
  • the TLV (GSE) multiplexer 119 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 118-1 to 118 -N and the TLV (GSE) signaling generator 117, and broadcasts the MMT system (see FIG. 8 (e)).
  • the modulation / transmission unit 120 performs RF modulation processing on the MMT broadcast stream generated by the TLV (GSE) / multiplexer 119 and sends the result to the RF transmission path.
  • the operation of the broadcast transmission system (MMT system) 100 shown in FIG. 10 will be briefly described.
  • time information synchronized with the time information acquired from the NTP server is generated, and an IP packet including the time information is generated.
  • This IP packet is sent to the IP service multiplexer 118-1.
  • the video signal sent from the signal sending unit 112 is supplied to the video encoder 113.
  • the video signal is encoded and further packetized to generate an IP packet including a video MMT packet.
  • This IP packet is sent to the IP service multiplexer 118-1.
  • the IP packet including the audio MMT packet generated by the audio encoder 114 is sent to the IP service multiplexer 118-1, and the IP packet including the caption MMT packet generated by the caption encoder 115 is transmitted to the IP service multiplexer 118. Sent to -1.
  • a signaling message (including PTS) is generated, and an IP packet including an MMT packet in which the signaling message is arranged in the payload portion is generated.
  • This IP packet is sent to the IP service multiplexer 118-1.
  • the IP service multiplexer 118-1 performs time-division multiplexing of IP packets sent from the encoders and the signaling generator 116. At this time, a UDP header and a TLV header are added to each IP packet to form a TLV (GSE) packet.
  • the IP service multiplexer 118-1 processes one channel portion included in one transponder, and the IP service multiplexers 118-2 to 118-N perform other processes included in the one transponder. The channel portion is processed in the same manner.
  • the TLV (GSE) packets obtained by the IP service multiplexers 118-1 to 118-N are sent to the TLV (GSE) multiplexer 119.
  • the TLV (GSE) / multiplexer 119 also receives a TLV (GSE) packet in which signaling information is placed in the payload portion from the TLV (GSE) signaling generation unit 117.
  • the TLV (GSE) multiplexer 119 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 118-1 to 118 -N and the TLV (GSE) signaling generation unit 117, thereby generating an MMT broadcast stream. Generated. This broadcast stream is sent to the modulation / transmission unit 120.
  • the modulation / transmission unit 120 performs RF modulation processing on the MMT broadcast stream, and sends the RF modulation signal to the RF transmission path.
  • FIG. 11 shows a configuration example of the receiver 200.
  • This receiver 200 includes a tuner / demodulator 201, a TLV (GSE) / demultiplexer 202, a clock unit 203, a video decoder 204, an audio decoder 205, a caption decoder 206, a system controller 207, Part 208.
  • GSE TLV
  • the tuner / demodulator 201 receives the RF modulation signal, performs demodulation processing, and obtains an RTP or MMT broadcast stream (see FIGS. 6C and 8E).
  • the TLV (GSE) / demultiplexer 202 performs demultiplex processing and depacketization processing on this broadcast stream to generate NTP time information, PTS, signaling information, and also video, audio, and caption encoded signals. Output.
  • the system control unit 207 controls each unit of the receiver 200 based on signaling information obtained by the TLV (GSE) / demultiplexer 202, PTS, and the like.
  • the clock unit 203 generates time information synchronized with the time information based on the NTP time information obtained by the TLV (GSE) / demultiplexer 202.
  • the video decoder 204 decodes the encoded video signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a baseband video signal.
  • the audio decoder 205 decodes the encoded audio signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a baseband audio signal.
  • the caption decoder 206 decodes the encoded subtitle signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a subtitle display signal.
  • the system control unit 207 controls the decoding timing in each decoder based on PTS (presentation time information), and adjusts the presentation timing of video, audio, and subtitles.
  • the synthesizer 208 synthesizes a subtitle display signal with the baseband video signal to obtain a video signal for video display. Note that the baseband audio signal obtained by the audio decoder 205 is an audio signal for audio output.
  • the tuner / demodulator 201 receives an RF modulated signal sent through an RF transmission path, performs demodulation processing, and broadcasts an RTP system or MMT system (see FIGS. 6C and 8E). ) Is obtained. This broadcast stream is sent to the TLV (GSE) / demultiplexer 202.
  • GSE TLV
  • TLV (GSE) / demultiplexer 202 demultiplex processing and depacketization processing are performed on this broadcast stream, and NTP time information, PTS, signaling information, as well as video, audio, and caption encoded signals. Is extracted.
  • NTP time information extracted by the TLV (GSE) / demultiplexer 202 is sent to the clock unit 203.
  • time information synchronized with the time information is generated based on the NTP time information. That is, the clock unit 203 reproduces time information that matches the time information generated by the clock units 101 and 111 of the broadcast transmission system 100.
  • the encoded video signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the video decoder 204 and decoded to obtain a baseband video signal.
  • the encoded subtitle signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the caption decoder 206 to be decoded to obtain a subtitle display signal.
  • the video signal and the caption display signal are synthesized by the synthesis unit 208 to obtain a video signal for video display.
  • the encoded audio signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the audio decoder 205 and decoded to obtain a baseband audio signal for audio output.
  • the PTS and signaling information extracted by the TLV (GSE) / demultiplexer 202 are sent to the system control unit 207.
  • the system control unit 207 controls each unit of the receiver 200 based on the signaling information, PTS, and the like. In this case, for example, the decoding timing in each decoder is adjusted based on the PTS and time information generated by the clock unit 203, and the presentation timing of video, audio, and subtitles is also adjusted.
  • NTP Network Time Protocol
  • ITU International Telecommunication Union
  • the NTP server has a hierarchy (stratum), and the smaller the number, the higher the accuracy.
  • the NTP server at level 1 (Stratum 1) is directly connected to the atomic clock, and the error in time information is less than 1 ⁇ s.
  • the time information provided by the NTP server is expressed as an accumulated number of seconds (UTC: Coordinated Universal Time) from January 1, 1900.
  • FIG. 12B shows a format of time information (NTP ⁇ time stamp format) provided by the NTP server.
  • This time information is in a 64-bit format, with the upper 32 bits indicating UTC accumulated seconds and the lower 32 bits indicating less than seconds.
  • FIG. 13 and 14 show a clock synchronization / presentation synchronization method in the RTP method.
  • FIG. 13 shows a configuration example on the broadcast transmission system 100 side.
  • FIG. 14 shows a configuration example on the receiver 200 side.
  • the broadcast transmission system 100 includes an NTP / IP interface 131 and 32-bit registers 132a and 132b.
  • the broadcast transmission system 100 also includes a voltage-controlled oscillator 133 that generates a 27 MHz clock (system clock), a 9-bit counter 134a, a 17-bit counter 134b, and a 32-bit counter 134c that form a clock unit, and a bit conversion unit 135. And a comparator 136.
  • the broadcast transmission system 100 also includes a packetizing unit 137, a video encoding processing unit 138, a packetization / time stamp adding unit 139, an encoding buffer 140, and a multiplexer 141.
  • the NTP / IP interface 131 accesses an NTP server (not shown) via the Internet at a predetermined time interval, and obtains time information in 64-bit format (see FIG. 12B).
  • the 32-bit registers 132a and 132b hold 64-bit format time information acquired by the NTP / IP interface 131.
  • the 32-bit register 132a holds upper 32 bits of bit data
  • the 32-bit register 132b holds lower 32 bits of bit data.
  • the contents held in the 32-bit registers 132a and 132b are updated each time the 64-bit format time information is acquired by the NTP / IP interface 131.
  • the configuration may remain as it is. However, if the frequency is low, the registers 132a and 132b automatically continue to operate as a counter indicating the time so as to reproduce the clock of the NTP server. It is also possible.
  • the output of the register 132b indicating the lower 32 bits of the acquired time information becomes all 0s
  • the output of the register 132a indicating the upper 32 bits of the time information is set as an initial value of the 32-bit counter 134c.
  • the 17-bit counter 134b and the 9-bit counter 134a are all set to 0. This setting operation is limited to one time when the broadcast transmission system 100 starts operation.
  • the voltage controlled oscillator 133 generates a 27 MHz clock (system clock).
  • the 9-bit counter 134a the 27 MHz clock output from the voltage controlled oscillator 133 is counted, divided by 300, and a 90 KHz clock is output.
  • the 17-bit counter 134b counts the 90 KHz clock output from the 9-bit counter 134a, divides the frequency by 90000, and outputs a 1 Hz clock.
  • the 32-bit counter 134c the 1 Hz clock output from the 17-bit counter 134b is counted, and a 32-bit bit output that is time information (Regenerated UTC) with second accuracy is obtained.
  • the 58-bit bit output of the 9-bit counter 134a, the 17-bit counter 134b, and the 32-bit counter 134c becomes a system time clock (STC: System Time) Clock) as time information by the counter operation from the initial value.
  • This system time clock is input to the bit conversion unit 135.
  • the bit conversion unit 135 for example, a conversion table is used, and the bit output of the 9-bit counter 134a and the 17-bit counter 134b is converted into a 32-bit output that is continuous with the lower bits of the bit output of the 32-bit counter 134c.
  • the This conversion is performed to correspond to the lower 32 bits of the time information in the 64-bit format obtained from the NTP server.
  • the bit conversion unit 135 obtains a 64-bit output that combines the 32-bit output converted in this way and the bit output of the 32-bit counter 134c.
  • the 64-bit bit output from the bit conversion unit 135 is latched at the timing when the held contents of the 32-bit registers 132a and 132b are updated, and the register holding contents, that is, the 64-bit format obtained from the NTP server are latched. Compared with time information. Then, a comparison error signal is supplied from the comparator 136 to the voltage controlled oscillator 133 as a control signal.
  • the voltage controlled oscillator 133, the counters 134a, 134b, and 134c, the bit converter 134, and the comparator 136 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 133 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format acquired from the NTP server.
  • the counters 134a, 134b, and 134c generate 58-bit time information that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information acquired from the NTP server.
  • the 58-bit time information is supplied to the packetizing unit 137. Based on the 58-bit time information, the packetizing unit 137 generates an IP packet including an NTP clock reference (NTP_CR: NTP Clock Reference) having 27 MHz clock frequency information.
  • NTP_CR NTP Clock Reference
  • FIG. 15A shows the configuration of this NTP clock reference.
  • the video encoding processing unit 138 encodes video (video data) in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 133.
  • the packetization / timestamp adding unit 139 divides the encoded video elementary stream into chunks of a predetermined size, and generates RTP packets (RTP packet) including each chunk in the payload portion.
  • the RTP packet is supplied to the multiplexer 141 through the encode buffer 140.
  • the packetization / time stamp addition unit 139 is supplied with the lower 15-bit bit output of the 32-bit counter 134c and the 17-bit bit output of the 17-bit counter 134b. Based on the 32-bit bit output, the packetization / time stamp addition unit 139, for example, provides presentation time information (PTS) corresponding to the encoded data of each picture of video output from the video encoding processing unit 138. A 32-bit timestamp is generated.
  • PTS presentation time information
  • the time stamp value is, for example, a value obtained by adding the fixed delay amount by the encode buffer and the decode buffer to the time information of the picture output timing from the video encoding processing unit 138.
  • the packetization / time stamp adding unit 139 inserts a time stamp (Timestamp) as the presentation time information (PTS) into the header of each RTP packet.
  • FIG. 15B shows the structure of this time stamp.
  • the multiplexer 141 is supplied with the IP packet including the NTP clock reference and the RTP packet including the encoded video. Although illustration is omitted, an RTP packet including encoded audio and the like is generated in the same manner as an RTP packet including encoded video and supplied to the multiplexer 141.
  • the multiplexer 141 further adds a necessary header to each packet and generates an RTP broadcast stream. This RTP broadcast stream is transmitted as a broadcast signal.
  • the receiver 200 includes a demultiplexer 231, a voltage controlled oscillator 232 that generates a 27 MHz clock (system clock), a 9-bit counter 233a, a 17-bit counter 233b, and a 32-bit counter 233c that constitute a clock unit, and a comparator. 234.
  • the receiver 200 includes a decode buffer 235, a depacketization unit 236, a presentation control unit 237, and a video decode processing unit 238.
  • the demultiplexer 231 is supplied with an RTP broadcast stream (see FIG. 6C) that is a received broadcast signal.
  • the demultiplexer 231 extracts the NTP_CR from the IP packet including the NTP clock reference (NTP_CR).
  • NTP_CR NTP clock reference
  • the first received 58-bit NTP_CR is set as an initial value in a 58-bit counter including the counter 233a, the counter 233b, and the counter 233c.
  • the received NTP_CR is 234.
  • the 27 MHz clock generated by the voltage controlled oscillator 232 is counted by the 9-bit counter 233a and divided by 300.
  • the 90 KHz clock obtained by the 9-bit counter 233a is counted by the 17-bit counter 233b and divided by 90000.
  • the 1 Hz clock obtained by the 17-bit counter 233b is counted by the 32-bit counter 233c.
  • the 32-bit counter 233c obtains a 32-bit bit output that is time information (Regenerated UTC) with second accuracy.
  • the 58-bit bit output of the 9-bit counter 233a, the 17-bit counter 233b, and the 32-bit counter 233c is a system time clock (STC: System Time) Clock) as time information.
  • STC System Time
  • This system time clock is supplied to the comparator 234.
  • the comparator 234 for example, at the timing when NTP_CR is supplied from the demultiplexer 231, the system time clock is latched and compared with NTP_CR.
  • the comparison error signal output from the comparator 234 is supplied to the voltage controlled oscillator 232 as a control signal.
  • the voltage controlled oscillator 232, the counters 233a, 233b, 233c and the comparator 234 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR. The frequency of the 27 MHz clock becomes equal to the frequency of the clock generated by the voltage controlled oscillator 133 of the broadcast transmission system 100 described above, and clock synchronization is realized.
  • the counters 233a, 233b, and 233c generate a system time clock synchronized with NTP_CR.
  • This system time clock matches the system time clock generated by the counters 134a, 134b, 134c of the broadcast transmission system 100 described above. For this reason, as described above, in the RTP broadcast stream, presentation synchronization is realized in combination with insertion of a time stamp as presentation time information in the header of an RTP packet including transmission media such as video and audio.
  • RTP packets including encoded video are extracted and temporarily stored in the decode buffer 235. Further, the lower 15-bit bit output of the 32-bit counter 233 c and the 17-bit bit output of the 17-bit counter 233 b are supplied to the presentation control unit 237.
  • the presentation control unit 237 confirms the time stamp as the presentation time information (PTS) inserted in the header part of each RTP packet stored in the decode buffer 235 through the depacketization unit 236. Then, the presentation control unit 237 refers to the system time clock, and sequentially takes RTP packets to be decoded from the decoding buffer 235 into the video decoding processing unit 238 through the depacketizing unit 236.
  • PTS presentation time information
  • the video decoding processing unit 238 decodes the encoded video and obtains baseband video data. Then, the receiver 200 performs video display using the video data. Although not shown in the figure, the demultiplexer 231 also extracts RTP packets including encoded audio and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
  • FIG. 16 and 17 show a clock synchronization / presentation synchronization method in the MMT method.
  • FIG. 16 shows a configuration example on the broadcast transmission system 100 side.
  • FIG. 17 illustrates a configuration example on the receiver 200 side.
  • the broadcast transmission system 100 includes an NTP / IP interface 131 and 32-bit registers 132a and 132b.
  • the broadcast transmission system 100 also includes a voltage-controlled oscillator 133 that generates a 27 MHz clock (system clock), a 9-bit counter 134a, a 17-bit counter 134b, and a 32-bit counter 134c that form a clock unit, and a bit conversion unit 135. And a comparator 136.
  • the broadcast transmission system 100 also includes a packetizing unit 137, a video encoding processing unit 138, a packetizing unit 151, a time stamp generating unit 152, a packetizing unit 153, an encoding buffer 140, and a multiplexer 141. is doing.
  • the output of the register 132b indicating the lower 32 bits of the time information acquired by the NTP / IP interface 131 becomes all 0s
  • the upper 32 bits of the time information are changed.
  • the output of the indicated register 132a is set as the initial value of the 32-bit counter 134c, and the 17-bit counter 134b and the 9-bit counter 134a are all set to 0. This setting operation is limited to one time when the broadcast transmission system 100 starts operation.
  • the voltage controlled oscillator 133, the counters 134a, 134b, 134c, the bit converter 134, and the comparator 136 constitute a PLL (Phase (Locked Loop) circuit. Therefore, the voltage controlled oscillator 133 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format acquired from the NTP server.
  • the counters 134a, 134b, and 134c generate 58-bit time information that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information acquired from the NTP server.
  • the 58-bit time information is supplied to the packet unit 137. Based on the 58-bit time information, the packetizing unit 137 generates an IP packet including an NTP clock reference (NTP_CR: NTP Clock Reference) having 27 MHz clock frequency information.
  • NTP_CR NTP Clock Reference
  • FIG. 18A shows the configuration of the NTP clock reference.
  • the video encoding processing unit 138 encodes video (video data) in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 133.
  • the packetizing unit 151 divides the encoded video elementary stream into chunks of a predetermined size, and generates MMT packets (MMT packet) including the respective chunks in the payload portion.
  • the MMT packet is supplied to the multiplexer 141 through the encode buffer 140.
  • the time stamp generator 152 is supplied with the 32-bit output of the 32-bit counter 134c and the 17-bit output of the 17-bit counter 134b, or the lower 15-bit output of the 32-bit counter 134c, and the 17-bit output of the 17-bit counter 134b. Is done.
  • time stamp generation unit 152 for example, a 49-bit or 32-bit time stamp (Timestamp) as presentation time information (PTS) corresponding to the encoded data of each picture of the video output from the video encoding processing unit 138 is provided. Generated. FIG. 18B shows the structure of this time stamp.
  • the time stamp value is, for example, a value obtained by adding the fixed delay amount by the encode buffer and the decode buffer to the time information of the picture output timing from the video encoding processing unit 138.
  • the time stamp (Timestamp) as the presentation time information (PTS) generated by the time stamp generator 152 is supplied to the packetizer 153.
  • the packetizing unit 153 generates an MMT packet including this time stamp in the payload portion.
  • the MMT packet is supplied to the multiplexer 141.
  • the multiplexer 141 is supplied with the IP packet including the NTP clock reference, the MMT packet including the encoded video, and the MMT packet including the time stamp. Although illustration is omitted, an MMT packet including encoded audio and the like is generated in the same manner as the MMT packet including encoded video and supplied to the multiplexer 141.
  • the multiplexer 141 further adds a necessary header to each packet, and generates an MMT broadcast stream. This MMT broadcast stream is transmitted as a broadcast signal.
  • the receiver 200 includes a demultiplexer 231, a voltage-controlled oscillator 232 that generates a 27 MHz clock (system clock), a 9-bit counter 233a, a 17-bit counter 233b, and a 32-bit count 233c that form a clock, and a comparator 234. have.
  • the receiver 200 also includes a decode buffer 235, a depacketization unit 251, a presentation control unit 237, and a video encoding processing unit 238.
  • the demultiplexer 231 is supplied with an MMT broadcast stream (see FIG. 8E) that is a received broadcast signal.
  • the demultiplexer 231 extracts the NTP_CR from the IP packet including the NTP clock reference (NTP_CR).
  • NTP_CR NTP clock reference
  • the first received 58-bit NTP_CR is set as an initial value in a 58-bit counter including the counter 233a, the counter 233b, and the counter 233c.
  • the received NTP_CR is 234.
  • the voltage controlled oscillator 232, the counters 233a, 233b, 233c and the comparator 234 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR. The frequency of the 27 MHz clock becomes equal to the frequency of the clock generated by the voltage controlled oscillator 133 of the broadcast transmission system 100 described above, and clock synchronization is realized.
  • the counters 233a, 233b, and 233c generate a system time clock synchronized with NTP_CR.
  • This system time clock matches the system time clock generated by the counters 134a, 134b, 134c of the broadcast transmission system 100 described above. Therefore, as described above, in the MMT broadcast stream, the presentation synchronization is coupled with the insertion of the MMT packet including the time stamp (Timestamp) as the presentation time information (PTS) of transmission media such as video and audio. Realized.
  • time stamp Timestamp
  • PTS presentation time information
  • the MMT packet including the encoded video extracted by the demultiplexer 231 is temporarily stored in the decode buffer 235.
  • the 32-bit output of the 32-bit counter 134c and the 17-bit output of the 17-bit counter 134b, or the lower-order 15-bit output of the 32-bit counter 134c, and the 17-bit output of the 17-bit counter 134b are used as a system time clock. It is supplied to the presentation control unit 237.
  • each MMT packet including the encoded video is transmitted.
  • the presentation time is confirmed.
  • the presentation control unit 237 refers to the system time clock and sequentially takes MMT packets to be decoded from the decoding buffer 235 through the depacketization unit 251 into the video decoding processing unit 238.
  • the video decoding processing unit 238 decodes the encoded video and obtains baseband video data. Then, the receiver 200 performs video display using the video data. Although not shown, the demultiplexer 231 also extracts MMT packets including encoded audio, and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
  • the 27 MHz signal synchronized with the time information acquired from the NTP server in the IP broadcast signal (for example, RTP broadcast stream, MMT broadcast stream, etc.).
  • Time information (NTP_CR) including clock frequency information is included. Therefore, on the receiving side, a 27 MHz clock (system clock) similar to that on the transmitting side can be generated based on this time information, and clock synchronization can be realized.
  • a transmission media presentation unit obtained based on time information (system time clock) synchronized with time information acquired from an NTP server in addition to an IP broadcast signal.
  • Each presentation time information (PTS) is included. Therefore, on the receiving side, time information (system time clock) including the frequency information of the 27 MHz clock generated in synchronization with the time information included in the transmission signal, and presentation time information for each transmission media presentation unit ( Presentation synchronization can be realized based on (PTS).
  • the system time clock (STC) of the broadcast transmission system 100 and the receiver 200 matches the time information of NTP. Therefore, for example, on the receiving side, one screen can be easily configured using videos obtained through a plurality of paths.
  • the IP system broadcast signal received by the receiver 200 is not the time information itself acquired from the NTP server, but the time information including the frequency information of the 27 MHz clock synchronized with the time information. It has been described as having (NTP_CR). However, there may be a case where the time information itself acquired from the NTP server is included as an IP broadcast signal received by the receiver 200.
  • FIG. 19A shows the structure of time information in 64-bit format acquired from the NTP server.
  • FIG. 19B shows the configuration of NTP_CR.
  • NTP_CR configuration of 6-bit all-zero data is added to the lower order of the 9-bit output, and the 64-bit format is formed as a whole.
  • the 64-bit format time information acquired from the NTP server has a bit configuration different from that of the NTP_CR.
  • the PLL circuit of the above-described receiver 200 does not operate normally. . Therefore, for example, in the case of the MMT system, as the signaling information, identification information for identifying whether the time information included in the broadcast signal is the time information in the 64-bit format acquired from the NTP server or NTP_CR ( Flag information). On the receiving side, based on this identification information, the operation of the PLL circuit portion can be switched to prevent malfunction.
  • FIG. 20 shows a configuration example of the receiver 200 in that case.
  • the selector 261 sends the comparison error signal output from the comparator 234 to the voltage controlled oscillator 232 as a control signal.
  • the configuration is the same as that in FIG. 17, and the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR by the PLL circuit.
  • the selector 261 sends a fixed value to the voltage controlled oscillator 232 as a control signal. In this case, the voltage controlled oscillator 232 is in a free run state.
  • the selector 263 sends the 49 bits output of the counters 233 c and 233 b to the presentation control unit 237 among the counters operated by the voltage controlled oscillator 232.
  • the selector 263 latches the received 64-bit register 261a. The upper 49 bits of the output of 261b are sent to the presentation control unit 237.
  • the time information includes the frequency information of the 27 MHz clock synchronized with the time information in the IP broadcast signal, not the time information itself in the 64-bit format acquired from the NTP server. ) Is included.
  • the receiving side includes the time information in the 64-bit format acquired from the NTP server in the IP broadcast signal, and the receiving side generates a 27 MHz clock having the same frequency as the transmitting side based on the time information. It is also conceivable to generate a system time clock that matches the system time clock.
  • FIG. 21 and 22 show an example of the clock synchronization / presentation synchronization method in that case.
  • FIG. 21 shows a configuration example on the broadcast transmission system 100 side.
  • FIG. 22 shows a configuration example on the receiver 200 side.
  • the MMT method will be described. Although the description is omitted, the same applies to the RTP method.
  • the packetizing unit 137 is supplied with time information in 64-bit format acquired from the NTP server from the registers 132a and 132b. In the packetizing unit 137, an IP packet including the time information in the 64-bit format is generated and sent to the multiplexer 141.
  • the MMT broadcast stream generated by the multiplexer 141 includes the time information in the 64-bit format acquired from the NTP server.
  • FIG. 23A shows the structure of time information in a 64-bit format.
  • FIG. 23B shows a structure of a time stamp generated by the time stamp generating unit 152. 21 is configured in the same manner as in FIG.
  • the 64-bit format time information (see FIG. 12B) extracted by the demultiplexer 231 is held in the 32-bit registers 261a and 261b.
  • the 32-bit register 261a holds upper 32-bit bit data
  • the 32-bit register 261b holds lower 32-bit bit data.
  • the contents held in the 32-bit registers 261a and 262b are updated each time 64-bit format time information is extracted by the demultiplexer 231.
  • the 58-bit bit output of the 9-bit counter 233a, the 17-bit counter 233b, and the 32-bit counter 233c is a system time clock (STC: System Time) Clock) as time information.
  • This system time clock is input to the bit conversion unit 262.
  • a conversion table is used, and the bit output of the 9-bit counter 233a and the 17-bit counter 233b is converted into a 32-bit output continuous to the lower order of the bit output of the 32-bit counter 233c.
  • the This conversion is performed to correspond to the lower 32 bits of the time information in the 64-bit format obtained from the NTP server.
  • the bit conversion unit 262 obtains a 64-bit output that combines the 32-bit output converted in this way and the bit output of the 32-bit counter 233c.
  • the comparator 234 latches the 64-bit bit output from the bit conversion unit 262 at the timing when the contents held in the 32-bit registers 261a and 261b are updated, and the 64-bit format extracted from the contents held in the register, that is, the MTT broadcast stream. Is compared with the time information. Then, a comparison error signal is supplied from the comparator 234 to the voltage controlled oscillator 232 as a control signal.
  • the voltage controlled oscillator 232, the counters 233a, 233b, 233c, the bit conversion unit 262, and the comparator 234 form a PLL (Phase Locked Loop) circuit similar to that on the transmission side. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format extracted from the MTT broadcast stream.
  • PLL Phase Locked Loop
  • the counters 233a, 233b, and 233c include 58-bit time information (system time clock) that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information extracted from the MTT broadcast stream. Generated.
  • system time clock system time clock
  • the other parts in FIG. 22 are configured in the same manner as in FIG.
  • clock synchronization and presentation synchronization can be realized in the same manner as the clock synchronization / presentation synchronization method (MMT method) in FIGS. .
  • this technique can also take the following structures.
  • a clock generation unit that generates a 27 MHz clock synchronized with the time information acquired from the time information server;
  • a time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
  • the transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server
  • a transmission unit that transmits an IP broadcast signal including time information acquired from the transmission device.
  • the broadcast signal is A first transmission packet encapsulating the IP packet including the transmission medium, and a second encapsulating the IP packet including the time information generated by the time information generation unit or the time information acquired from the time information server.
  • the transmission device according to (1) including: (3) The transmission device according to (2), wherein the IP packet in the first transmission packet further includes the presentation time information of the transmission medium included in the IP packet.
  • the broadcast signal is The transmission device according to (2), including a third transmission packet encapsulating an IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
  • the IP packet in the first transmission packet includes an MMT packet in which the transmission medium is arranged in a payload portion
  • the time information generation unit A 9-bit counter that counts the frequency of 27 MHz generated by the clock generation unit and divides it by 300, a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000, The transmission device according to any one of (1) to (6), further including a 32-bit counter that counts the divided output.
  • the clock generator A voltage controlled oscillator that outputs a 27 MHz clock; A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300; A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000; A 32-bit counter that counts the divided output of the 17-bit counter; Of the bit outputs of the 9-bit counter, the 17-bit counter, and the 32-bit counter, the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter.
  • a bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
  • a comparator that compares the 64-bit output obtained by the bit conversion unit with the time information acquired from the time information server, and provides a control signal corresponding to the difference value to the voltage controlled oscillator;
  • the time information generator is The transmission device according to any one of (1) to (7), including the 9-bit counter, the 17-bit counter, and the 32-bit counter.
  • the broadcast signal is Any one of (1) to (8) further including identification information indicating whether the time information included is the time information generated by the time information generation unit or the time information acquired from the time information server A transmitting device according to claim 1.
  • a clock generation step of generating a 27 MHz clock synchronized with the time information acquired from the time information server A time information generating step for generating time information synchronized with the time information acquired from the time information server including the frequency information of the generated 27 MHz clock; IP including transmission media, presentation time information for each presentation unit of the transmission media obtained based on the generated time information, and the generated time information or time information acquired from the time information server
  • a transmission method comprising: a transmission step of transmitting a broadcast signal of a format.
  • a receiving unit that receives an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server; Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information.
  • a time information generator, A receiving apparatus comprising: a processing unit that processes transmission media included in the broadcast signal based on presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server,
  • the clock / time information generator A voltage controlled oscillator that outputs a 27 MHz clock;
  • a 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
  • a 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
  • a 32-bit counter that counts the divided output of the 17-bit counter;
  • the bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the time information acquired from the time information server included in the broadcast signal, and as a control signal to the voltage-controlled oscillator
  • the receiving device further including a comparator that obtains an error signal to be supplied.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server or the time information.
  • Second time information that is the same as the time information acquired from the server
  • the broadcast signal is first time information in which time information related to the time information acquired from the time information server includes 27 MHz frequency information synchronized with the time information acquired from the time information server, It further has identification information indicating whether the time information is the same as the time information acquired from the time information server,
  • the clock / time information generator A voltage controlled oscillator that outputs a 27 MHz clock; A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300; A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000; A 32-bit counter that counts the divided output of the 17-bit counter; The bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the
  • the receiving device further including a selector that supplies a voltage-controlled oscillator as a control signal.
  • the time information related to the time information acquired from the time information server included in the broadcast signal is the same time information as the time information acquired from the time information server,
  • the clock / time information generator A voltage controlled oscillator that outputs a 27 MHz clock;
  • a 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
  • a 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
  • a 32-bit counter that counts the divided output of the 17-bit counter;
  • the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter.
  • a bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
  • a comparator that compares the 64-bit output obtained by the bit conversion unit with the time information obtained from the time information server and obtains an error signal to be supplied as a control signal to the voltage controlled oscillator;
  • the broadcast signal is A first transmission packet encapsulating an IP packet including the transmission medium; and a second transmission packet encapsulating an IP packet including time information related to time information acquired from the time information server.
  • the broadcast signal is The receiving device according to (15), including a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
  • Time information generation step A receiving method comprising: processing the transmission medium included in the broadcast signal based on the presentation time information included in the broadcast signal and the generated clock and time information.
  • the transmitter is A clock generator for generating a 27 MHz clock synchronized with the time information acquired from the time information server; A time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit; The transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server A transmission unit that transmits an IP broadcast signal including time information acquired from The receiving device A receiving unit for receiving the IP system broadcast signal; A clock / time information generating unit that generates time information including a 27 MHz clock and frequency information of the 27 MHz clock synchronized with the time information based on the time information included in the broadcast signal; A transmission / reception system comprising: a transmission medium included in the broadcast signal; and a processing unit that processes presentation time information included in the broadcast signal and a clock and time information generated by the
  • the main feature of this technology is that it is synchronized with the time information in 64-bit format acquired from the time information related to the time information acquired from the NTP server (time information server) in the IP broadcast signal or the time information.
  • the clock synchronization can be realized by including the time information including the frequency information of the 27 MHz clock (see FIGS. 5 and 7).
  • DESCRIPTION OF SYMBOLS 10 Transmission / reception system 11 ... Clock generation part 12 ... Clock part (time information generation part) DESCRIPTION OF SYMBOLS 13 ... Encoding process part 14 ... Packetization / time stamp addition part 15 ... Encoding buffer 21 ... Clock generation part 22 ... Clock part (Time information generation part) DESCRIPTION OF SYMBOLS 23 ... Decoding buffer 24 ... Depacketization / timing adjustment part 25 ... Decoding processing part 100 ... Broadcast transmission system 101 ... Clock part 102 ... Signal transmission part 103 ... Video encoder 104 ... Audio encoder 105 ... Caption encoder 106 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

The present invention favorably realizes clock synchronization and presentation synchronization in a broadcast method that broadcasts by an IP method. A 27MHz clock synchronized to time information obtained from a time information server is generated. Time information that includes frequency information for this 27MHz clock is generated. A broadcast signal of an IP method (such as the RTP method or MMT method) is transmitted; the IP method includes a transmission media, presentation time information for each presentation unit of the transmission media obtained on the basis of the generated time information, and generated time information or time information acquired from the time information server.

Description

送信装置、送信方法、受信装置および受信方法Transmitting apparatus, transmitting method, receiving apparatus, and receiving method
 本技術は、送信装置、送信方法、受信装置および受信方法に関し、詳しくは、ビデオ、オーディオなどの伝送メディアを含むIP方式の放送信号を送信する送信装置等に関する。 The present technology relates to a transmission device, a transmission method, a reception device, and a reception method, and more particularly, to a transmission device that transmits an IP broadcast signal including transmission media such as video and audio.
 従来、デジタル放送は世界的にMPEG2-TS方式のシステム仕様に基づいて規定され運用されてきた。運用を開始した後、10-15年経過するうちに、映像符号化の技術が進化すると共により高解像度高画質化の要求も高まってきた。また、一方で、インターネットの普及と高速化が進み、放送と同等の画質の映像信号を、通信路を経由して受信することも可能となってきた。 Conventionally, digital broadcasting has been regulated and operated worldwide based on the MPEG2-TS system specifications. Over the course of 10-15 years after the start of operation, video coding technology has evolved and the demand for higher resolution and higher image quality has increased. On the other hand, with the spread and speeding up of the Internet, it has become possible to receive a video signal having an image quality equivalent to that of a broadcast via a communication path.
 そのような状況にあって、放送と通信を統合的に利用したサービスへの期待もふくらんできており、技術的にも放送と通信の配信仕様の共通化、統合化が求められている。その結果放送システム仕様として、従来のMPEG2-TS方式ではなく、通信と同様のIP方式で伝送する方式が新たな放送方式として検討されている(例えば、非特許文献1参照)。 Under such circumstances, expectations for services that use broadcasting and communication in an integrated manner are increasing, and technically, sharing and integration of broadcasting and communication distribution specifications are required. As a result, as a broadcasting system specification, a method of transmitting by the IP method similar to the communication instead of the conventional MPEG2-TS method has been studied as a new broadcasting method (for example, see Non-Patent Document 1).
 本技術の目的は、IP方式で伝送する放送方式においてクロック同期、提示同期を良好に実現することにある。 The purpose of this technology is to achieve good clock synchronization and presentation synchronization in a broadcast system transmitted by the IP system.
 本技術の概念は、
 時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成部と、
 上記クロック生成部で生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成部と、
 伝送メディアと、上記時刻情報生成部で生成された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信部とを備える
 送信装置にある。
The concept of this technology is
A clock generator for generating a 27 MHz clock synchronized with the time information acquired from the time information server;
A time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
The transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server And a transmission unit that transmits an IP broadcast signal including time information acquired from the transmission apparatus.
 本技術において、クロック生成部により、NTP(Network Time Protocol)サーバから取得された時刻情報に同期した27MHzのクロックが生成される。時刻情報生成部により、クロック生成部で生成された27MHzのクロックの周波数情報を含む時刻情報が生成される。この時刻情報は時刻情報サーバから取得された時刻情報に同期したものである。 In this technology, the clock generation unit generates a 27 MHz clock synchronized with time information acquired from an NTP (Network Time Protocol) server. The time information generation unit generates time information including frequency information of the 27 MHz clock generated by the clock generation unit. This time information is synchronized with the time information acquired from the time information server.
 例えば、時刻情報生成部は、クロック生成部で生成された27MHzのクロックをカウントして300分周する9ビットカウンタと、この9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、この17ビットカウンタの分周出力をカウントする32ビットカウンタとを有する、ようにされてもよい。 For example, the time information generation unit counts a 27 MHz clock generated by the clock generation unit and divides it by 300, and a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000. And a 32-bit counter for counting the frequency-divided output of the 17-bit counter.
 また、例えば、クロック生成部は、27MHzのクロックを出力する電圧制御発振器と、この電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、この9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、この17ビットカウンタの分周出力をカウントする32ビットカウンタと、9ビットカウンタ、17ビットカウンタおよび32ビットカウンタのビット出力のうち、9ビットカウンタおよび17ビットカウンタのビット出力を、32ビットカウンタのビット出力の下位に連続する32ビット出力に変換して、この変換された32ビット出力と32ビットカウンタのビット出力とを合わせた64ビット出力を得るビット変換部と、このビット変換部で得られた64ビット出力と時刻情報サーバから取得された時刻情報とを比較し、差分値に対応した制御信号を上記電圧制御発振器に与える比較器とを有し、時刻情報生成部は、9ビットカウンタ、17ビットカウンタおよび32ビットカウンタにより構成される、ようにされてもよい。 For example, the clock generation unit counts the voltage-controlled oscillator that outputs a 27 MHz clock, the 9-bit counter that counts the clock output of the voltage-controlled oscillator and divides it by 300, and the divided output of the 9-bit counter. Of the 9-bit counter, the 32-bit counter that counts the divided output of the 17-bit counter, and the 9-bit counter, the 17-bit counter, and the 32-bit counter. Bit conversion for converting the bit output of the counter into a 32-bit output continuous to the lower order of the bit output of the 32-bit counter, and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter And 64 bits obtained by this bit converter And a comparator that provides a control signal corresponding to the difference value to the voltage-controlled oscillator, and the time information generator includes a 9-bit counter and a 17-bit counter. And a 32-bit counter.
 送信部により、伝送メディアと、時刻情報生成部で生成された時刻情報に基づいて得られた伝送メディアの提示単位毎の提示時刻情報と、時刻情報生成部で生成された時刻情報あるいは時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号が送信される。 Presentation time information for each presentation unit of the transmission media obtained by the transmission unit based on the transmission media and the time information generated by the time information generation unit, and the time information or time information server generated by the time information generation unit The IP system broadcast signal including the time information acquired from is transmitted.
 例えば、放送信号は、伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、時刻情報生成部で生成された時刻情報あるいは時刻情報サーバから取得された時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ、ようにされてもよい。 For example, the broadcast signal encapsulates the first transmission packet encapsulating the IP packet including the transmission medium and the IP packet including the time information generated by the time information generation unit or the time information acquired from the time information server. The second transmission packet may be included.
 この場合、第1の伝送パケット内のIPパケットは、このIPパケットに含まれている伝送メディアの提示時刻情報をさらに含む、ようにされてもよい。例えば、第1の伝送パケット内のIPパケットは、ペイロード部に上記伝送メディアが配置されたRTPパケットを含む、ようにされてもよい。 In this case, the IP packet in the first transmission packet may further include presentation time information of the transmission medium included in the IP packet. For example, the IP packet in the first transmission packet may include an RTP packet in which the transmission medium is arranged in the payload portion.
 また、この場合、放送信号は、第1の伝送パケット内のIPパケットに含まれている伝送メディアの提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ、ようにされてもよい。例えば、第1の伝送パケット内のIPパケットは、ペイロード部に伝送メディアが配置されたMMTパケットを含み、第2の伝送パケット内のIPパケットは、ペイロード部に提示時刻情報が配置されたMMTパケットを含む、ようにされてもよい。 In this case, the broadcast signal may have a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet. Good. For example, the IP packet in the first transmission packet includes an MMT packet in which transmission media is arranged in the payload portion, and the IP packet in the second transmission packet is an MMT packet in which presentation time information is arranged in the payload portion. May be included.
 このように本技術においては、放送信号に時刻情報サーバから取得された時刻情報に同期した27MHzのクロックの周波数情報を含む時刻情報あるいは時刻情報サーバから取得された時刻情報が含まれるものである。そのため、受信側では、この時刻情報に基づいて送信側と同様の27MHzのクロック(システムクロック)を生成でき、クロック同期の実現が可能となる。 As described above, in the present technology, the broadcast signal includes the time information including the frequency information of the 27 MHz clock synchronized with the time information acquired from the time information server or the time information acquired from the time information server. Therefore, the receiving side can generate a 27 MHz clock (system clock) similar to that on the transmitting side based on this time information, and clock synchronization can be realized.
 また、本技術において、放送信号にさらに時刻情報サーバから取得された時刻情報に同期した27MHzのクロックの周波数情報を持つ時刻情報に基づいて得られた伝送メディアの提示単位毎の提示時刻情報が含まれるものである。そのため、受信側では、送信信号に含まれる時刻情報に基づいて生成される27MHzのクロックの周波数情報を含む時刻情報と、伝送メディアの提示単位毎の提示時刻情報とに基づき、提示同期の実現が可能となる。 Further, in the present technology, the presentation time information for each presentation unit of the transmission medium obtained based on the time information having the frequency information of the clock of 27 MHz synchronized with the time information acquired from the time information server is further included in the broadcast signal. It is what Therefore, on the receiving side, realization of presentation synchronization is realized based on time information including frequency information of a 27 MHz clock generated based on time information included in the transmission signal and presentation time information for each presentation unit of the transmission media. It becomes possible.
 なお、本技術において、例えば、放送信号は、含まれる時刻情報が、時刻情報生成部で生成された時刻情報であるか時刻情報サーバから取得された時刻情報であるかを示す識別情報をさらに含む、ようにされてもよい。この場合、受信側においては、識別情報が示す時刻情報に応じたクロック生成処理などを行うことが可能となる。 In the present technology, for example, the broadcast signal further includes identification information indicating whether the included time information is the time information generated by the time information generation unit or the time information acquired from the time information server. , May be. In this case, on the receiving side, it is possible to perform a clock generation process or the like according to the time information indicated by the identification information.
 また、本技術の他の概念は、
 伝送メディアと、該伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号を受信する受信部と、
 上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報生成部と、
 上記放送信号に含まれる伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記クロック・時刻情報生成部で生成されたクロックおよび時刻情報に基づいて処理する処理部とを備える
 受信装置にある。
Other concepts of this technology are
A receiving unit that receives an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server;
Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information. A time information generator,
A receiving apparatus comprising: a processing unit that processes transmission media included in the broadcast signal based on presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit .
 本技術において、受信部により、伝送メディアと、この伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号が受信される。例えば、放送信号は、伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、時刻情報サーバから取得された時刻情報に関連した時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ、ようにされてもよい。 In the present technology, an IP broadcast signal including a transmission medium, presentation time information for each unit of presentation of the transmission medium, and time information related to the time information acquired from the time information server is received by the reception unit. The For example, a broadcast signal includes a first transmission packet encapsulating an IP packet including a transmission medium, and a second transmission packet encapsulating an IP packet including time information related to time information acquired from a time information server. You may be allowed to have
 この場合、例えば、第1の伝送パケット内のIPパケットは、該IPパケットに含まれている伝送メディアの提示時刻情報をさらに含む、ようにされてもよい。また、この場合、例えば、放送信号は、第1の伝送パケット内のIPパケットに含まれている伝送メディアの提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ、ようにされてもよい。 In this case, for example, the IP packet in the first transmission packet may further include presentation time information of the transmission medium included in the IP packet. In this case, for example, the broadcast signal has a third transmission packet that encapsulates an IP packet including presentation time information of the transmission medium included in the IP packet in the first transmission packet. May be.
 クロック・時刻情報生成部により、放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、この時刻情報に同期した、27MHzのクロックおよびこの27MHzのクロックの周波数情報を含む時刻情報が生成される。そして、処理部により、放送信号に含まれる伝送メディアが、放送信号に含まれる提示時刻情報と、クロック・時刻情報生成部で生成されたクロックおよび時刻情報に基づいて処理される。 Based on the time information related to the time information acquired from the time information server included in the broadcast signal by the clock / time information generation unit, the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information are obtained. Including time information is generated. Then, the transmission unit included in the broadcast signal is processed by the processing unit based on the presentation time information included in the broadcast signal and the clock and time information generated by the clock / time information generation unit.
 例えば、放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、この時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報であり、クロック・時刻情報生成部は、27MHzのクロックを出力する電圧制御発振器と、この電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、この9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、この17ビットカウンタの分周出力をカウントする32ビットカウンタと、9ビットカウンタ、17ビットカウンタおよび32ビットカウンタのビット出力と放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、電圧制御発振器に制御信号として供給する誤差信号を得る比較器とを有する、ようにされてもよい。 For example, the time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server. The information generation unit counts the voltage-controlled oscillator that outputs a 27-MHz clock, the 9-bit counter that counts the clock output of the voltage-controlled oscillator and divides it by 300, and the divided output of the 9-bit counter that counts 90000 A 17-bit counter that circulates, a 32-bit counter that counts the frequency-divided output of the 17-bit counter, a 9-bit counter, a 17-bit counter, a bit output of the 32-bit counter, and a time acquired from a time information server The time information related to the information is compared and the control signal is sent to the voltage controlled oscillator. And a comparator for obtaining an error signal supplied as, may be adapted.
 また、例えば、放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報あるいは時刻情報サーバから取得された時刻情報と同じ時刻情報であり、放送信号は、放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報が、時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む第1の時刻情報であるか、時刻情報サーバから取得された時刻情報と同じ第2の時刻情報であるかを示す識別情報をさらに有し、クロック・時刻情報発生部は、27MHzのクロックを出力する電圧制御発振器と、この電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、この9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、この17ビットカウンタの分周出力をカウントする32ビットカウンタと、9ビットカウンタ、17ビットカウンタおよび32ビットカウンタのビット出力と放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、電圧制御発振器に制御信号として供給する誤差信号を得る比較器と、識別情報が第1の時刻情報を示すとき比較器で得られる誤差信号を電圧制御発振器に制御信号として供給し、識別情報が第2の時刻情報を示すとき固定値を電圧制御発振器に制御信号として供給するセレクタとを有する、ようにされてもよい。 Further, for example, the time information related to the time information acquired from the time information server included in the broadcast signal is from the time information including the 27 MHz frequency information synchronized with the time information acquired from the time information server or from the time information server. The time information related to the time information acquired from the time information server included in the broadcast signal is synchronized with the time information acquired from the time information server. It further has identification information indicating whether it is first time information including frequency information or second time information that is the same as the time information acquired from the time information server. Voltage-controlled oscillator that outputs a clock of 9 bits and a 9-bit count that counts the clock output of the voltage-controlled oscillator and divides it by 300 A 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000, a 32-bit counter that counts the divided output of the 17-bit counter, a 9-bit counter, a 17-bit counter, and a 32-bit counter A comparator that obtains an error signal to be supplied as a control signal to the voltage controlled oscillator, comparing the bit output of the signal and the time information related to the time information acquired from the time information server included in the broadcast signal; A selector that supplies an error signal obtained by the comparator as a control signal to the voltage controlled oscillator when indicating time information, and supplies a fixed value as a control signal to the voltage controlled oscillator when the identification information indicates second time information , May be.
 このように本技術においては、放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて送信側と同様の27MHzのクロック(システムクロック)と、この27MHzのクロックの周波数情報を含む時刻情報が生成されるものである。そして、これらのクロックおよび時刻情報と、放送信号に含まれる伝送メディアの提示単位毎の提示時刻情報とに基づいて、伝送メディアが処理されるものである。そのため、クロック同期および提示同期の実現が可能となる。 Thus, in the present technology, the same 27 MHz clock (system clock) as that on the transmission side based on the time information related to the time information acquired from the time information server included in the broadcast signal, and the frequency of this 27 MHz clock Time information including information is generated. The transmission medium is processed based on the clock and time information and the presentation time information for each transmission media presentation unit included in the broadcast signal. Therefore, clock synchronization and presentation synchronization can be realized.
 本技術によれば、IP方式で伝送する放送方式においてクロック同期、提示同期を良好に実現できる。なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。 According to the present technology, it is possible to satisfactorily realize clock synchronization and presentation synchronization in a broadcast system transmitted by the IP system. Note that the effects described in the present specification are merely examples and are not limited, and may have additional effects.
実施の形態としての送受信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the transmission / reception system as embodiment. 送信・受信システムにおけるクロック同期と提示同期について説明するための図である。It is a figure for demonstrating the clock synchronization and presentation synchronization in a transmission / reception system. MPEG2-TS方式におけるクロック同期・提示同期方式を説明するための図である。It is a figure for demonstrating the clock synchronization and presentation synchronization system in MPEG2-TS system. 27MHzの周波数情報を持つPCR(STC)の構成および90KHzの周波数情報を持つPTSの構成を示す図である。It is a figure which shows the structure of PCR (STC) with frequency information of 27 MHz, and the structure of PTS with frequency information of 90 KHz. RTP方式における放送信号構成例を示すスタックモデルを示す図である。It is a figure which shows the stack model which shows the example of a broadcast signal structure in a RTP system. RTP方式放送ストリーム(放送信号)の構成を説明するための図である。It is a figure for demonstrating the structure of a RTP system broadcast stream (broadcast signal). MMT方式における放送信号構成例を示すスタックモデルを示す図である。It is a figure which shows the stack model which shows the example of a broadcast signal structure in a MMT system. MMT方式放送ストリーム(放送信号)の構成を説明するための図である。It is a figure for demonstrating the structure of a MMT system broadcast stream (broadcast signal). RTP方式による放送送出システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the broadcast transmission system by a RTP system. MMT方式による放送送出システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the broadcast transmission system by a MMT system. 受信機の構成例を示すブロック図である。It is a block diagram which shows the structural example of a receiver. NTPサーバおよびこのNTPサーバが提供する時刻情報のフォーマット(NTP time stamp format)を説明するための図である。It is a figure for demonstrating the format (NTP | time | stamp | format) of the time information which an NTP server and this NTP server provide. RTP方式におけるクロック同期・提示同期方式を説明するための放送送出システム側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the broadcast transmission system for demonstrating the clock synchronization and presentation synchronous system in a RTP system. RTP方式におけるクロック同期・提示同期方式を説明するための受信機側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the receiver for demonstrating the clock synchronization and presentation synchronous system in a RTP system. NTP・クロック・リファレンスの構成および各RTPパケットのヘッダに挿入されるタイムスタンプの構成を示す図である。It is a figure which shows the structure of the NTP clock reference, and the structure of the time stamp inserted in the header of each RTP packet. MMT方式におけるクロック同期・提示同期方式を説明するための放送送出システム側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the broadcast transmission system for demonstrating the clock synchronization and presentation synchronous system in a MMT system. MMT方式におけるクロック同期・提示同期方式を説明するための受信機側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the receiver for demonstrating the clock synchronization and presentation synchronization system in a MMT system. NTP・クロック・リファレンスの構成および49ビットあるいは32ビットのタイムスタンプの構成を示す図である。It is a figure which shows the structure of a NTP clock reference, and the structure of a 49-bit or a 32-bit time stamp. NTPサーバから取得された64ビットフォーマットの時刻情報の構成およびNTP_CRの構成を示す図である。It is a figure which shows the structure of the time information of a 64-bit format acquired from the NTP server, and the structure of NTP_CR. 受信機の他の構成例を説明するための図である。It is a figure for demonstrating the other structural example of a receiver. MMT方式における他のクロック同期・提示同期方式を説明するための放送送出システム側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the broadcast transmission system for demonstrating the other clock synchronization / presentation synchronous system in a MMT system. MMT方式における他のクロック同期・提示同期方式を説明するための受信機側の構成例を示すブロック図である。It is a block diagram which shows the structural example by the side of the receiver for demonstrating the other clock synchronization / presentation synchronous system in a MMT system. 64ビットフォーマットの時刻情報の構成およびタイムスタンプ(PTS)の構成を示す図である。It is a figure which shows the structure of the time information of a 64-bit format, and the structure of a time stamp (PTS).
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明を以下の順序で行う。
 1.実施の形態
 2.変形例
Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described. The description will be given in the following order.
1. Embodiment 2. FIG. Modified example
 <1.実施の形態>
 [送受信システムの構成例]
 図1は、実施の形態としての送受信システム10の構成例を示している。この送受信システム10は、放送送出システム100と、受信機200により構成されている。
<1. Embodiment>
[Configuration example of transmission / reception system]
FIG. 1 shows a configuration example of a transmission / reception system 10 as an embodiment. The transmission / reception system 10 includes a broadcast transmission system 100 and a receiver 200.
 放送送出システム100は、ビデオ、オーディオなどの伝送メディアを含むIP(Internet Protocol)方式の放送信号を送信する。放送送出システム100は、時刻情報サーバとしてのNTP(Network Time Protocol)サーバから取得された時刻情報に同期した、27MHzのクロック(システムクロック)と、この27MHzのクロックの周波数情報を含む時刻情報を生成する。放送信号は、伝送メディアと共に、生成された時刻情報に基づいて得られた伝送メディアの提示単位毎の提示時刻情報と、生成された時刻情報とを含む。 The broadcast transmission system 100 transmits an IP (Internet Protocol) broadcast signal including transmission media such as video and audio. The broadcast transmission system 100 generates time information including a 27 MHz clock (system clock) synchronized with time information acquired from an NTP (Network Time Protocol) server as a time information server and frequency information of the 27 MHz clock. To do. The broadcast signal includes, together with the transmission media, presentation time information for each presentation unit of the transmission media obtained based on the generated time information, and the generated time information.
 受信機200は、放送送出システム100から送られてくる上述のIP方式の放送信号を受信する。受信機200は、放送信号に含まれる時刻情報に基づいて、この時刻情報に同期した、27MHzのクロック(システムクロック)と、この27MHzのクロックの周波数情報を含む時刻情報を生成する。そして、受信機200は、放送信号に含まれる伝送メディアを、この放送信号に含まれる提示時刻情報と、生成されたクロックおよび時刻情報に基づいて処理する。 The receiver 200 receives the above-described IP system broadcast signal transmitted from the broadcast transmission system 100. Based on the time information included in the broadcast signal, the receiver 200 generates time information including a 27 MHz clock (system clock) synchronized with the time information and the frequency information of the 27 MHz clock. Then, the receiver 200 processes the transmission medium included in the broadcast signal based on the presentation time information included in the broadcast signal and the generated clock and time information.
 送受信システ10においては、放送送出システム100および受信機200を上述した構成とすることで、従来のMPEG2-TS方式と同様に、クロック同期と提示同期を実現する。 In the transmission / reception system 10, the broadcast transmission system 100 and the receiver 200 are configured as described above, thereby realizing clock synchronization and presentation synchronization as in the conventional MPEG2-TS system.
 図2を用いて、送信・受信システムにおけるクロック同期と提示同期について説明する。送信システム、受信システムは、例えば、上述の放送送出システム100、受信機200に対応する。送信システムは、27MHzのシステムクロックを生成するクロック生成部11と、時刻情報を生成する時計部(時刻情報生成部)12を有している。また、送信システムは、エンコード処理部13と、パケット化/タイムスタンプ付加部14と、エンコードバッファ15を有している。 The clock synchronization and presentation synchronization in the transmission / reception system will be described with reference to FIG. The transmission system and the reception system correspond to, for example, the broadcast transmission system 100 and the receiver 200 described above. The transmission system includes a clock generation unit 11 that generates a 27 MHz system clock and a clock unit (time information generation unit) 12 that generates time information. The transmission system also includes an encoding processing unit 13, a packetization / time stamp adding unit 14, and an encoding buffer 15.
 エンコード処理部13では、ビデオ、オーディオなどの伝送メディアが符号化される。パケット化/タイムスタンプ付加部14では、符号化後の伝送メディアのパケット化が行われると共に、時計部12で生成される時刻情報に基づいて伝送メディアの提示単位毎に提示時刻情報(PTS:Presentation Time Stamp)が付加される。そして、伝送メディアのパケットは、エンコードバッファ15に一時的に蓄積され、適宜なタイミングで送信される。 The encoding processing unit 13 encodes transmission media such as video and audio. The packetization / time stamp adding unit 14 packetizes the transmission media after encoding, and presents time information (PTS: Presentation) for each transmission media presentation unit based on the time information generated by the clock unit 12. Time Stamp) is added. The packet of the transmission medium is temporarily stored in the encode buffer 15 and transmitted at an appropriate timing.
 受信システムは、27MHzのシステムクロックを生成するクロック生成部21と、時刻情報を発生する時計部(時刻情報生成部)22を有している。また、受信システムは、デコードバッファ23と、デパケット化/タイミング調整部24と、デコード処理部25を有している。 The receiving system includes a clock generation unit 21 that generates a 27 MHz system clock and a clock unit (time information generation unit) 22 that generates time information. The receiving system also includes a decode buffer 23, a depacketization / timing adjustment unit 24, and a decode processing unit 25.
 デコードバッファ23では、受信された伝送メディアのパケットを一時的に蓄積する。デパケット化/タイミング調整部24では、デコードバッファ23に蓄積されている伝送メディアのパケットが、時計部22で生成される時刻情報が参照され、付加されている提示時刻情報のタイミングで取り出されてデパケット化される。デコード処理部25では、デパケット化により得られた伝送メディアが復号化され、ベースバンドの伝送メディアが得られる。 The decode buffer 23 temporarily stores received transmission media packets. In the depacketization / timing adjustment unit 24, the packet of the transmission medium stored in the decode buffer 23 is taken out at the timing of the presentation time information added by referring to the time information generated by the clock unit 22, and depacketed. It becomes. In the decoding processing unit 25, the transmission medium obtained by depacketization is decoded to obtain a baseband transmission medium.
 図1に示す送受信システム10においては、クロック同期および提示同期が実現されている。このクロック同期・提示同期方式の詳細については、後述する。ここで、クロック同期とは、送信システムのクロック生成部11で生成されるシステムクロックの周波数と、受信システムのクロック生成部21で生成されるシステムクロックの周波数が、同一周波数となることを意味する。クロック同期が実現されていない場合、受信側で受信を継続しているうちにフレーム飛び等が発生するなどの破たんが起きる。 In the transmission / reception system 10 shown in FIG. 1, clock synchronization and presentation synchronization are realized. Details of the clock synchronization / presentation synchronization method will be described later. Here, the clock synchronization means that the frequency of the system clock generated by the clock generation unit 11 of the transmission system and the frequency of the system clock generated by the clock generation unit 21 of the reception system become the same frequency. . If clock synchronization is not realized, corruption such as frame skipping occurs while reception is continued on the receiving side.
 また、提示同期とは、送信システムの時計部12の時刻情報と受信システムの時計部22の時刻情報を合わせ、かつ伝送メディアの提示単位毎の提示時刻情報を伝送メディアのパケットに付加することを意味する。なお、ここで、送信システムの時計部12の時刻情報に受信システムの時計部22の時刻情報を合わせる場合には、送信システムから受信システムへの伝送遅延が考慮される。提示同期が実現されていない場合、受信側でビデオ、オーディオの同期をとってバッファを破たんさせずに適切に提示するということができなくなる。 The presentation synchronization means that the time information of the clock unit 12 of the transmission system and the time information of the clock unit 22 of the reception system are combined, and the presentation time information for each transmission media presentation unit is added to the packet of the transmission medium. means. Here, when the time information of the clock unit 22 of the reception system is matched with the time information of the clock unit 12 of the transmission system, a transmission delay from the transmission system to the reception system is considered. If the presentation synchronization is not realized, it is impossible to synchronize the video and audio on the receiving side and appropriately present without destroying the buffer.
 図3は、従来のMPEG2-TS方式におけるクロック同期・提示同期方式を示している。図示において、左側は放送送出システム側の構成例を示し、その右側は受信機の構成例を示している。 FIG. 3 shows a clock synchronization / presentation synchronization method in the conventional MPEG2-TS method. In the figure, the left side shows a configuration example on the broadcast transmission system side, and the right side shows a configuration example of a receiver.
 放送送出システムは、27MHzのクロック(システムクロック)を生成する電圧制御発振器31と、分周期32と、比較器33と、時計部(時刻情報発生部)を構成する9ビットカウンタ34aおよび33ビットカウント34bと、パケット化部35を有している。また、この放送送出システムは、ビデオエンコード処理部36と、パケット化/タイムスタンプ付加部37と、エンコードバッファ38と、マルチプレクサ39を有している。 The broadcast transmission system includes a voltage-controlled oscillator 31 that generates a 27 MHz clock (system clock), a division period 32, a comparator 33, and a 9-bit counter 34a and a 33-bit count that constitute a clock unit (time information generation unit). 34b and a packetizing unit 35. The broadcast transmission system also includes a video encoding processing unit 36, a packetization / time stamp adding unit 37, an encoding buffer 38, and a multiplexer 39.
 電圧制御発振器31で生成される27MHzのクロックは分周器33で分周され、この分周器33からは1水平期間の時間長でパルスが出力される。この分周器32の出力パルスは比較器33に供給され、リファレンス水平同期信号(Ref. Hsync)の位相と比較される。この比較器34から出力される比較誤差信号は、電圧制御発振器31に制御信号として供給される。電圧制御発振器31、分周器32および比較器33はPLL(Phase Locked Loop)回路を構成し、電圧制御発振器31では、リファレンス水平同期信号に同期した27MHzのクロックが生成される。 The 27 MHz clock generated by the voltage controlled oscillator 31 is divided by the frequency divider 33, and a pulse is output from the frequency divider 33 with a time length of one horizontal period. The output pulse of the frequency divider 32 is supplied to the comparator 33 and compared with the phase of the reference horizontal synchronizing signal (Ref. Hsync). The comparison error signal output from the comparator 34 is supplied to the voltage controlled oscillator 31 as a control signal. The voltage controlled oscillator 31, the frequency divider 32, and the comparator 33 constitute a PLL (Phase Locked Loop) circuit, and the voltage controlled oscillator 31 generates a 27 MHz clock synchronized with the reference horizontal synchronizing signal.
 この電圧制御発振器31から出力される27MHzのクロックは、9ビットカウンタ34aでカウントされ、300分周される。そして、この9ビットカウンタ34aで得られる90KHzのクロックは、33ビットカウンタ34bでカウントされる。これら9ビットカウンタ34aおよび33ビットカウンタ34bの(33+9)ビットのビット出力は、時刻情報としてのシステム・タイム・クロック(STC:System Time Clock)となる。 The 27 MHz clock output from the voltage controlled oscillator 31 is counted by the 9-bit counter 34a and divided by 300. The 90 KHz clock obtained by the 9-bit counter 34a is counted by the 33-bit counter 34b. The bit output of (33 + 9) bits of the 9-bit counter 34a and the 33-bit counter 34b is a system time clock (STC: System Time Clock) as time information.
 このシステム・タイム・クロックは、パケット化部35に供給される。パケット化部35では、このシステム・タイム・クロックに基づいたプログラム・クロック・リファレンス(PCR:Program Clock Reference)を含むアダプテーションフィールドを持つTSパケットが生成される。このTSパケットは、所定の間隔で生成され、順次マルチプレクサ39に供給される。なお、PCRは、TSストリーム中に100ms間隔で出現することが推奨されている。図4(a)は、27MHzの周波数情報を持つPCR(STC)の構成を示している。 The system time clock is supplied to the packetizing unit 35. The packetizing unit 35 generates a TS packet having an adaptation field including a program clock reference (PCR: Program Clock Reference) based on the system time clock. The TS packets are generated at predetermined intervals and sequentially supplied to the multiplexer 39. It is recommended that the PCR appear in the TS stream at 100 ms intervals. FIG. 4A shows the configuration of PCR (STC) having frequency information of 27 MHz.
 ビデオエンコード処理部36では、電圧制御発振器31で得られる27MHzのクロックに同期して、ビデオ(ビデオデータ)が符号化される。パケット化/タイムスタンプ付加部37では、符号化後のビデオのエレメンタリストリームから例えばピクチャ(Picture)毎にPESパケットが生成され、さらにペイロードに符号化ビデオを含むTSパケットが生成される。このTSパケットは、エンコードバッファ38を通じてマルチプレクサ39に供給される。 In the video encoding processing unit 36, video (video data) is encoded in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 31. The packetization / time stamp addition unit 37 generates a PES packet for each picture (Picture), for example, from the encoded video elementary stream, and further generates a TS packet including the encoded video in the payload. This TS packet is supplied to the multiplexer 39 through the encode buffer 38.
 また、このパケット化/タイムスタンプ付加部37には、33ビットカウンタ34bから出力される33ビットのビット出力が供給される。この33ビットのビット出力は、90kHzの精度の時刻情報である。パケット化/タイムスタンプ付加部37では、この33ビットのビット出力に基づいて、プレゼンテーション・タイム・スタンプ(PTS:Presentation Time Stamp)が各PESパケットのヘッダに挿入される。図4(b)は、90KHzの周波数情報を持つPTSの構成を示している。 Also, the packetization / time stamp addition unit 37 is supplied with a 33-bit bit output output from the 33-bit counter 34b. This 33-bit bit output is time information with an accuracy of 90 kHz. The packetization / time stamp adding unit 37 inserts a presentation time stamp (PTS: Presentation Time Stamp) into the header of each PES packet based on the 33-bit output. FIG. 4B shows the configuration of a PTS having frequency information of 90 KHz.
 マルチプレクサ39には、上述したように、PCRを含むTSパケットおよび符号化ビデオを含むTSパケットが供給される。なお、図示は省略されているが、符号化オーディオなどを含むTSパケットも、符号化ビデオを含むTSパケットと同様に生成され、マルチプレクサ39に供給される。マルチプレクサ39では、各TSパケットが多重化されて、TSストリームが生成される。このTSストリームが放送信号として送信される。 As described above, the multiplexer 39 is supplied with TS packets including PCR and TS packets including encoded video. Although illustration is omitted, a TS packet including encoded audio and the like is generated in the same manner as a TS packet including encoded video and supplied to the multiplexer 39. In the multiplexer 39, each TS packet is multiplexed and a TS stream is generated. This TS stream is transmitted as a broadcast signal.
 受信機は、デマルチプレクサ41と、27MHzのクロック(システムクロック)を生成する電圧制御発振器42と、時計(時刻情報発生部)を構成する9ビットカウンタ43aおよび33ビットカウント43bと、比較器44を有している。また、受信機は、デコードバッファ45と、提示制御部46と、ビデオデコード処理部47を有している。 The receiver includes a demultiplexer 41, a voltage controlled oscillator 42 that generates a 27 MHz clock (system clock), a 9-bit counter 43a and a 33-bit count 43b that constitute a clock (time information generator), and a comparator 44. Have. In addition, the receiver includes a decode buffer 45, a presentation control unit 46, and a video decode processing unit 47.
 デマルチプレクサ41には、受信放送信号であるTSストリームが供給される。デマルチプレクサ41では、PCRを含むTSパケットからPCRが抽出される。選局時や電源投入時において、最初に受信した42ビットのPCRはカウンタ43aおよびカウンタ44bからなる42ビットのカウンタに初期値としてセットされる、その後に受信したPCRは、比較器44に供給される。 The demultiplexer 41 is supplied with a TS stream that is a received broadcast signal. In the demultiplexer 41, the PCR is extracted from the TS packet including the PCR. At the time of channel selection or power-on, the 42-bit PCR received first is set as an initial value in a 42-bit counter comprising the counter 43a and the counter 44b. The PCR received thereafter is supplied to the comparator 44. The
 また、電圧制御発振器42で生成される27MHzのクロックは9ビットカウンタ43aでカウントされ、300分周される。そして、この9ビットカウンタ43aで得られる90KHzのクロックは、33ビットカウンタ43bでカウントされる。これら9ビットカウンタ43aおよび33ビットカウンタ43bの(33+9)ビットのビット出力は、時刻情報としてのシステム・タイム・クロック(STC:System Time Clock)となる。 The 27 MHz clock generated by the voltage controlled oscillator 42 is counted by the 9-bit counter 43a and divided by 300. The 90 KHz clock obtained by the 9-bit counter 43a is counted by the 33-bit counter 43b. The bit output of (33 + 9) bits of the 9-bit counter 43a and the 33-bit counter 43b becomes a system time clock (STC: System Time Clock) as time information.
 このシステム・タイム・クロックは、比較器44に供給される。比較器44では、例えば、デマルチプレクサ41からPCRが供給されるタイミングで、システム・タイム・クロックがラッチされ、PCRと比較される。この比較器44から出力される比較誤差信号は、電圧制御発振器42に制御信号として供給される。電圧制御発振器42、カウンタ43a,43bおよび比較器44はPLL(Phase Locked Loop)回路を構成し、電圧制御発振器42ではPCRに同期した27MHzのクロックが生成され、またカウンタ43a,43bではPCRに同期したシステム・タイム・クロックが生成される。 The system time clock is supplied to the comparator 44. In the comparator 44, for example, at the timing when the PCR is supplied from the demultiplexer 41, the system time clock is latched and compared with the PCR. The comparison error signal output from the comparator 44 is supplied to the voltage controlled oscillator 42 as a control signal. The voltage controlled oscillator 42, the counters 43a and 43b, and the comparator 44 constitute a PLL (Phase Locked Loop) circuit. The voltage controlled oscillator 42 generates a 27 MHz clock synchronized with the PCR, and the counters 43a and 43b are synchronized with the PCR. System time clock is generated.
 また、デマルチプレクサ41では、符号化ビデオを含むTSパケットが抽出され、デコードバッファ45に一時的に蓄積される。また、33ビットカウンタ43bから出力される33ビットのビット出力は、提示制御部46に供給される。提示制御部46では、デコードバッファ45に蓄積されている各PESパケットのPTSが確認され、システム・タイム・クロックを参照し、デコード処理すべきPESパケットをデコードバッファ45からビデオデコード処理部47に順次取り込むことが行われる。 In the demultiplexer 41, TS packets including encoded video are extracted and temporarily stored in the decode buffer 45. The 33-bit bit output output from the 33-bit counter 43 b is supplied to the presentation control unit 46. In the presentation control unit 46, the PTS of each PES packet stored in the decode buffer 45 is confirmed, and the PES packet to be decoded is sequentially transmitted from the decode buffer 45 to the video decode processing unit 47 with reference to the system time clock. Capture is done.
 ビデオデコード処理部47では、PESパケットのデパケット化が行われ、さらに符号化ビデオの復号化が行われ、ベースバンドのビデオデータが得られる。そして、受信機では、このビデオデータによる映像表示が行われる。なお、図示は省略されているが、デマルチプレクサ41では、符号化オーディオを含むTSパケットも抽出され、上述のビデオの場合と同様に処理されてベースバンドのオーディオデータが得られ、音声出力が行われる。 In the video decoding processing unit 47, the PES packet is depacketized, the encoded video is further decoded, and baseband video data is obtained. Then, in the receiver, video display based on the video data is performed. Although not shown, the demultiplexer 41 also extracts TS packets including encoded audio, and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
 図1に戻って、上述したように、放送送出システム100から受信機200には、IP方式の放送信号が送信される。この実施の形態において、IP方式の放送信号は、例えば、RTP(Real-Time Transport Protocol)方式あるいはMMT(MPEG Media Transport)方式とされる。 Returning to FIG. 1, as described above, an IP broadcast signal is transmitted from the broadcast transmission system 100 to the receiver 200. In this embodiment, the IP broadcast signal is, for example, an RTP (Real-Time Transport Protocol) system or an MMT (MPEG Media Transport) system.
 図5は、RTP方式における放送信号構成例を示すスタックモデルである。下位に物理レイヤ(PHY)がある。この物理レイヤには、変調方式、誤り訂正方式などが含まれる。この物理レイヤの上に、TLV(Type Length Value)あるいはGSE(GSE(Generic
Stream Encapsulation)の伝送パケットのレイヤがある。
FIG. 5 is a stack model showing a broadcast signal configuration example in the RTP system. There is a physical layer (PHY) below. This physical layer includes a modulation scheme, an error correction scheme, and the like. On top of this physical layer, TLV (Type Length Value) or GSE (GSE (Generic
There is a transmission packet layer of Stream Encapsulation.
 これらTLVあるいはGSEの伝送パケットの上にIPパケットが載る。このIPパケットの上に、さらに、UDP(User Datagram Protocol)が載る。また、UDPの上に、インターネットで使用されているRTPが載る。そして、このRTPの上に、ビデオ、オーディオ、字幕などの伝送メディアが載る。一方、TLVあるいはGSEの伝送パケットの上に、シグナリング(Signaling)情報としての伝送制御信号も載る。 The IP packet is placed on the TLV or GSE transmission packet. Further, UDP (User Datagram Protocol) is placed on the IP packet. In addition, RTP used on the Internet is placed on UDP. Then, transmission media such as video, audio, and subtitles are placed on the RTP. On the other hand, a transmission control signal as signaling information is also placed on the TLV or GSE transmission packet.
 RTP方式における放送信号構成例の場合、IPパケットの上は、基本的に、インターネットのストリーミングと同じ形となる。なお、図示のように、UDPの上に、さらにNTP(Network Time Protocol)が存在する。 In the case of the broadcast signal configuration example in the RTP system, the IP packet basically has the same form as the Internet streaming. As shown in the figure, an NTP (Network Time Protocol) further exists on the UDP.
 図6は、RTP方式放送ストリーム(放送信号)の構成例を示している。図6(a)は、ビデオのエレメンタリストリーム(Video ES)を示している。このビデオのエレメンタリストリームは、所定の大きさの固まりに分割され、図6(b)に示すように、RTPパケット(RTP packet)のペイロード部に配置される。このRTPパケットのヘッダ部にはタイムスタンプのフィールドが存在し、このフィールドに、各ピクチャの提示時刻を示すPTSが挿入される。 FIG. 6 shows a configuration example of an RTP broadcast stream (broadcast signal). FIG. 6A shows a video elementary stream (Video ES). This elementary stream of video is divided into chunks of a predetermined size and arranged in the payload portion of an RTP packet (RTP packet) as shown in FIG. There is a time stamp field in the header portion of the RTP packet, and a PTS indicating the presentation time of each picture is inserted into this field.
 図6(c)に示すように、RTPパケットに、UDPヘッダ、IPヘッダおよびTLVヘッダが付加されて、RTP方式放送ストリームを構成するTLVパケット(TLV packet)が生成される。なお、TLVパケットには、NTPの時刻情報を含むパケットも存在する。なお、図示は省略されているが、TLVパケットとしては、さらに、オーディオ、字幕などのその他の伝送メディアのRTPパケットを含むTLVパケットも存在する。このRTP方式放送ストリームは、伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つものとなる。 As shown in FIG. 6C, a UDP header, an IP header, and a TLV header are added to the RTP packet to generate a TLV packet (TLV packet) that constitutes an RTP broadcast stream. A TLV packet includes a packet including NTP time information. In addition, although illustration is abbreviate | omitted, as a TLV packet, the TLV packet containing the RTP packet of other transmission media, such as an audio and a subtitle, exists further. This RTP broadcast stream has a first transmission packet that encapsulates an IP packet that includes transmission media, and a second transmission packet that encapsulates an IP packet that includes time information.
 図7は、MMT方式における放送信号構成例を示すスタックモデルである。下位に物理レイヤ(PHY)がある。この物理レイヤには、変調方式、誤り訂正方式などが含まれる。この物理レイヤの上に、TLV(Type Length Value)あるいはGSE(GSE(Generic
Stream Encapsulation)の伝送パケットのレイヤがある。
FIG. 7 is a stack model showing an example of a broadcast signal configuration in the MMT system. There is a physical layer (PHY) below. This physical layer includes a modulation scheme, an error correction scheme, and the like. On top of this physical layer, TLV (Type Length Value) or GSE (GSE (Generic
There is a transmission packet layer of Stream Encapsulation.
 これらTLVあるいはGSEの伝送パケットの上にIPパケットが載る。このIPパケットの上に、さらに、UDP(User Datagram Protocol)が載る。一方、TLVあるいはGSEの伝送パケットの上に、シグナリング(Signaling)情報としての伝送制御信号も載る。また、UDPの上に、MMTパケットが載る。このMMTパケットのペイロード部には、MFU((MMT Fragment Unit))あるいはシグナリングメッセージ(Signaling Message)が含まれる。なお、図示のように、UDPの上に、さらにNTP(Network Time Protocol)が存在する。 The IP packet is placed on the TLV or GSE transmission packet. Further, UDP (User Datagram Protocol) is placed on the IP packet. On the other hand, a transmission control signal as signaling information is also placed on the TLV or GSE transmission packet. An MMT packet is placed on the UDP. The payload part of this MMT packet includes MFU ((MMT Fragment Unit)) or signaling message (Signaling Message). As shown in the figure, an NTP (Network Time Protocol) further exists on the UDP.
 図8は、MMT方式放送ストリーム(放送信号)の構成例を示している。図8(a)は、ビデオのエレメンタリストリーム(Video ES)を示している。このビデオのエレメンタリストリームは、所定の大きさの固まりに分割され、図8(b)に示すように、MFUのペイロード部に配置される。 FIG. 8 shows a configuration example of the MMT broadcast stream (broadcast signal). FIG. 8A shows a video elementary stream (Video ES). This elementary stream of video is divided into chunks of a predetermined size and arranged in the payload portion of the MFU as shown in FIG.
 図8(c)に示すように、MFUにMMTペイロードヘッダ(MMT payload header)が付加されてMMTペイロード(MMT payload)が構成される。そして、図8(d)に示すように、このMMTペイロードにさらにMMTヘッダ(MMT header)が付加されて、MMTパケット(MMT packet)が構成される。なお、ペイロード部に、各ピクチャの提示時刻を示すPTSなどのシグナリングメッセージを含むMMTパケットも存在する。 As shown in FIG. 8C, an MMT payload (MMT payload) is configured by adding an MMT payload header (MMT payload) to the MFU. Then, as shown in FIG. 8 (d), an MMT header (MMTerpacket) is formed by further adding an MMT header (MMT header) to this MMT payload. There is also an MMT packet including a signaling message such as PTS indicating the presentation time of each picture in the payload portion.
 図8(e)に示すように、MMTパケットに、UDPヘッダ、IPヘッダおよびTLVヘッダが付加されて、MMT方式放送ストリームを構成するTLVパケット(TLV packet)が生成される。なお、TLVパケットには、NTPの時刻情報を含むパケットも存在する。なお、図示は省略されているが、TLVパケットとしては、さらに、オーディオ、字幕などのその他の伝送メディアのMPUパケットを含むTLVパケットも存在する。このMMT方式放送ストリームは、伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、時刻情報を含むIPパケットをカプセル化した第2の伝送パケットと、さらに、第1の伝送パケット内のIPパケットに含まれている伝送メディアの提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つものとなる。 As shown in FIG. 8 (e), a UDP header, an IP header, and a TLV header are added to an MMT packet to generate a TLV packet (TLV packet) that constitutes an MMT broadcast stream. A TLV packet includes a packet including NTP time information. In addition, although illustration is abbreviate | omitted, as a TLV packet, the TLV packet containing the MPU packet of other transmission media, such as an audio and a caption, exists further. This MMT broadcast stream includes a first transmission packet encapsulating an IP packet including a transmission medium, a second transmission packet encapsulating an IP packet including time information, and a first transmission packet in the first transmission packet. It has a third transmission packet that encapsulates the IP packet including the presentation time information of the transmission medium included in the IP packet.
 図9は、RTP方式による放送送出システム100の構成例を示している。この放送送出システム100は、時計部101と、信号送出部102と、ビデオエンコーダ103と、オーディオエンコーダ104と、キャプションエンコーダ105と、TLV(GSE)シグナリング発生部106を有している。また、この放送送出システム100は、N個のIPサービス・マルチプレクサ107-1~107-Nと、TLV(GSE)・マルチプレクサ108と、変調/送信部109を有している。 FIG. 9 shows a configuration example of the broadcast transmission system 100 by the RTP method. The broadcast transmission system 100 includes a clock unit 101, a signal transmission unit 102, a video encoder 103, an audio encoder 104, a caption encoder 105, and a TLV (GSE) signaling generation unit 106. The broadcast transmission system 100 includes N IP service multiplexers 107-1 to 107-N, a TLV (GSE) multiplexer 108, and a modulation / transmission unit 109.
 時計部101は、図示しないNTPサーバから取得された時刻情報に同期した時刻情報を生成し、この時刻情報を含むIPパケットをIPサービス・マルチプレクサ107-1に送る。信号送出部102は、例えば、TV局のスタジオとか、VTR等の記録再生機であり、伝送メディアとしてのビデオ、オーディオ、字幕などのベースバンド信号を送出するシステムである。 The clock unit 101 generates time information synchronized with time information acquired from an NTP server (not shown), and sends an IP packet including this time information to the IP service multiplexer 107-1. The signal transmission unit 102 is, for example, a studio of a TV station or a recording / reproducing device such as a VTR, and is a system that transmits baseband signals such as video, audio, and subtitles as transmission media.
 ビデオエンコーダ103は、信号送出部102から送出されるビデオ信号を符号化し、さらにパケット化して、ビデオのRTPパケットを含むIPパケットをIPサービス・マルチプレクサ107-1に送る。オーディオエンコーダ104は、信号送出部102から送出されるオーディオ信号を符号化し、さらにパケット化して、オーディオのRTPパケットを含むIPパケットをIPサービス・マルチプレクサ107-1に送る。 The video encoder 103 encodes the video signal sent from the signal sending unit 102, further packetizes it, and sends an IP packet including a video RTP packet to the IP service multiplexer 107-1. The audio encoder 104 encodes and further packetizes the audio signal transmitted from the signal transmission unit 102, and sends an IP packet including an audio RTP packet to the IP service multiplexer 107-1.
 キャプションエンコーダ105は、信号送出部102から送出される字幕信号を符号化し、さらにパケット化して、字幕のRTPパケットを含むIPパケットをIPサービス・マルチプレクサ107-1に送る。なお、ビデオ、オーディオ、字幕の各RTPパケットのヘッダ部には、時計部101で生成される時刻情報に基づいてPTSが付加される。IPサービス・マルチプレクサ107-1は、各エンコーダから送られてくるIPパケットの時分割多重化を行う。この際、IPサービス・マルチプレクサ107-1は、各IPパケットにUDPヘッダおよびTLVヘッダを付加して、TLV(GSE)パケットとする。 The caption encoder 105 encodes the caption signal transmitted from the signal transmission unit 102, further packetizes it, and sends an IP packet including the caption RTP packet to the IP service multiplexer 107-1. In addition, PTS is added to the header part of each RTP packet of video, audio, and subtitles based on time information generated by the clock unit 101. The IP service multiplexer 107-1 performs time division multiplexing of the IP packet sent from each encoder. At this time, the IP service multiplexer 107-1 adds a UDP header and a TLV header to each IP packet to form a TLV (GSE) packet.
 IPサービス・マルチプレクサ107-1は、一つのトランスポンダの中にいれる一つのチャネル部分を構成する。IPサービス・マルチプレクサ107-2~107-Nは、IPサービス・マルチプレクサ107-1と同様の機能を持ち、その一つのトランスポンダの中にいれる他のチャネル部分を構成する。 The IP service multiplexer 107-1 constitutes one channel part included in one transponder. The IP service multiplexers 107-2 to 107-N have the same function as that of the IP service multiplexer 107-1, and constitute other channel portions included in one transponder.
 TLV(GSE)シグナリング発生部106は、シグナリング(Signaling)情報を発生し、このシグナリング(Signaling)情報をペイロード部に配置するTLV(GSE)パケットを生成する。TLV(GSE)・マルチプレクサ108は、IPサービス・マルチプレクサ107-1~107-NおよびTLV(GSE)シグナリング発生部106で生成されるTLV(GSE)パケットを多重化して、RTP方式の放送ストリーム(図6(c)参照)を生成する。変調/送信部109は、TLV(GSE)・マルチプレクサ108で生成されるRTP方式の放送ストリームに対して、RF変調処理を行って、RF伝送路に送出する。 The TLV (GSE) signaling generation unit 106 generates signaling (Signaling) information, and generates a TLV (GSE) packet in which the signaling (Signaling) information is arranged in the payload portion. The TLV (GSE) multiplexer 108 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 107-1 to 107-N and the TLV (GSE) signaling generation unit 106 to generate an RTP broadcast stream (see FIG. 6 (c)). The modulation / transmission unit 109 performs RF modulation processing on the RTP broadcast stream generated by the TLV (GSE) / multiplexer 108 and transmits the result to the RF transmission line.
 図9に示す放送送出システム(RTP方式)100の動作を簡単に説明する。時計部101では、NTPサーバから取得された時刻情報に同期した時刻情報が生成され、この時刻情報を含むIPパケットが生成される。このIPパケットは、IPサービス・マルチプレクサ107-1に送られる。 The operation of the broadcast transmission system (RTP method) 100 shown in FIG. 9 will be briefly described. In the clock unit 101, time information synchronized with the time information acquired from the NTP server is generated, and an IP packet including the time information is generated. This IP packet is sent to the IP service multiplexer 107-1.
 信号送出部102から送出されるビデオ信号は、ビデオエンコーダ103に供給される。このビデオエンコーダ103では、ビデオ信号が符号化され、さらにパケット化されて、ビデオのRTPパケットを含むIPパケットが生成される。このIPパケットは、IPサービス・マルチプレクサ107-1に送られる。 The video signal transmitted from the signal transmission unit 102 is supplied to the video encoder 103. In the video encoder 103, the video signal is encoded and further packetized to generate an IP packet including a video RTP packet. This IP packet is sent to the IP service multiplexer 107-1.
 また、信号送出部102から送出されるオーディオ信号、字幕信号に対しても同様の処理が行われる。そして、オーディオエンコーダ104で生成されるオーディオのRTPパケットを含むIPパケットがIPサービス・マルチプレクサ107-1に送られ、字幕エンコーダ105で生成される字幕のRTPパケットを含むIPパケットがIPサービス・マルチプレクサ107-1に送られる。 Also, the same processing is performed on the audio signal and subtitle signal transmitted from the signal transmission unit 102. The IP packet including the audio RTP packet generated by the audio encoder 104 is sent to the IP service multiplexer 107-1, and the IP packet including the caption RTP packet generated by the caption encoder 105 is transmitted to the IP service multiplexer 107. Sent to -1.
 IPサービス・マルチプレクサ107-1では、各エンコーダから送られてくるIPパケットの時分割多重化が行われる。この際、各IPパケットにUDPヘッダおよびTLVヘッダが付加されて、TLV(GSE)パケットとされる。このIPサービス・マルチプレクサ107-1では、一つのトランスポンダの中にいれる一つのチャネル部分の処理が行われ、IPサービス・マルチプレクサ107-2~107-Nでは、その一つのトランスポンダの中にいれる他のチャネル部分の処理が同様に行われる。 The IP service multiplexer 107-1 performs time division multiplexing of IP packets sent from each encoder. At this time, a UDP header and a TLV header are added to each IP packet to form a TLV (GSE) packet. In this IP service multiplexer 107-1, the processing of one channel part included in one transponder is performed, and in the IP service multiplexers 107-2 to 107-N, other parts included in the one transponder are processed. The channel portion is processed in the same manner.
 IPサービス・マルチプレクサ107-1~107-Nで得られるTLV(GSE)パケットは、TLV(GSE)・マルチプレクサ108に送られる。このTLV(GSE)・マルチプレクサ108には、さらに、TLV(GSE)シグナリング発生部106から、シグナリング(Signaling)情報をペイロード部に配置するTLV(GSE)パケットも送られる。 TLV (GSE) packets obtained by the IP service multiplexers 107-1 to 107-N are sent to the TLV (GSE) multiplexer 108. The TLV (GSE) multiplexer 108 further receives a TLV (GSE) packet in which signaling information is placed in the payload portion from the TLV (GSE) signaling generation unit 106.
 TLV(GSE)・マルチプレクサ108では、IPサービス・マルチプレクサ107-1~107-NおよびTLV(GSE)シグナリング発生部106で生成されるTLV(GSE)パケットが多重化されて、RTP方式の放送ストリームが生成される。この放送ストリームは、変調/送信部109に送られる。変調/送信部109では、このRTP方式の放送ストリームに対してRF変調処理を行われ、そのRF変調信号がRF伝送路に送出される。 The TLV (GSE) multiplexer 108 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 107-1 to 107-N and the TLV (GSE) signaling generation unit 106 to generate an RTP broadcast stream. Generated. This broadcast stream is sent to the modulation / transmission unit 109. The modulation / transmission unit 109 performs RF modulation processing on the RTP broadcast stream, and sends the RF modulation signal to the RF transmission path.
 図10は、MMT方式による放送送出システム100の構成例を示している。この放送送出システム100は、時計部111と、信号送出部112と、ビデオエンコーダ113と、オーディオエンコーダ114と、キャプションエンコーダ115と、シグナリング発生部116を有している。また、この放送送出システム100は、TLV(GSE)シグナリング発生部117と、N個のIPサービス・マルチプレクサ118-1~118-Nと、TLV(GSE)・マルチプレクサ119と、変調/送信部120を有している。 FIG. 10 shows a configuration example of a broadcast transmission system 100 based on the MMT method. The broadcast transmission system 100 includes a clock unit 111, a signal transmission unit 112, a video encoder 113, an audio encoder 114, a caption encoder 115, and a signaling generation unit 116. Also, the broadcast transmission system 100 includes a TLV (GSE) signaling generation unit 117, N IP service multiplexers 118-1 to 118-N, a TLV (GSE) multiplexer 119, and a modulation / transmission unit 120. Have.
 時計部111は、図示しないNTPサーバから取得された時刻情報に同期した時刻情報(NTP時刻情報)を生成し、この時刻情報を含むIPパケットをIPサービス・マルチプレクサ118-1に送る。信号送出部112は、例えば、TV局のスタジオとか、VTR等の記録再生機であり、伝送メディアとしてのビデオ、オーディオ、字幕などのベースバンド信号を送出するシステムである。 The clock unit 111 generates time information (NTP time information) synchronized with time information acquired from an NTP server (not shown), and sends an IP packet including the time information to the IP service multiplexer 118-1. The signal sending unit 112 is, for example, a TV station studio or a recording / playback device such as a VTR, and is a system that sends baseband signals such as video, audio, and subtitles as transmission media.
 ビデオエンコーダ113は、信号送出部112から送出されるビデオ信号を符号化し、さらにパケット化して、ビデオのMMTパケットを含むIPパケットをIPサービス・マルチプレクサ118-1に送る。オーディオエンコーダ114は、信号送出部112から送出されるオーディオ信号を符号化し、さらにパケット化して、オーディオのMMTパケットを含むIPパケットをIPサービス・マルチプレクサ118-1に送る。 The video encoder 113 encodes the video signal sent from the signal sending unit 112, further packetizes it, and sends an IP packet including a video MMT packet to the IP service multiplexer 118-1. The audio encoder 114 encodes and further packetizes the audio signal transmitted from the signal transmission unit 112, and sends an IP packet including an audio MMT packet to the IP service multiplexer 118-1.
 キャプションエンコーダ115は、信号送出部112から送出される字幕信号を符号化し、さらにパケット化して、字幕のMMTパケットを含むIPパケットをIPサービス・マルチプレクサ118-1に送る。また、シグナリング発生部116は、シグナリングメッセージを発生し、ペイロード部にこのシグナリングメッセージが配置されたMMTパケットを含むIPパケットをIPサービス・マルチプレクサ118-1に送る。このシグナリングメッセージには、時計部111で生成される時刻情報に基づいて生成されたPTSも含まれる。 The caption encoder 115 encodes the caption signal transmitted from the signal transmission unit 112, further packetizes it, and sends an IP packet including the caption MMT packet to the IP service multiplexer 118-1. The signaling generation unit 116 generates a signaling message and sends an IP packet including an MMT packet in which the signaling message is arranged in the payload part to the IP service multiplexer 118-1. This signaling message includes a PTS generated based on time information generated by the clock unit 111.
 IPサービス・マルチプレクサ118-1は、各エンコーダから送られてくるIPパケットの時分割多重化を行う。この際、IPサービス・マルチプレクサ118-1は、各IPパケットにUDPヘッダおよびTLVヘッダを付加して、TLV(GSE)パケットとする。IPサービス・マルチプレクサ118-1は、一つのトランスポンダの中にいれる一つのチャネル部分を構成する。IPサービス・マルチプレクサ118-2~118-Nは、IPサービス・マルチプレクサ118-1と同様の機能を持ち、その一つのトランスポンダの中にいれる他のチャネル部分を構成する。 The IP service multiplexer 118-1 performs time division multiplexing of the IP packet sent from each encoder. At this time, the IP service multiplexer 118-1 adds a UDP header and a TLV header to each IP packet to form a TLV (GSE) packet. The IP service multiplexer 118-1 constitutes one channel portion included in one transponder. The IP service multiplexers 118-2 to 118-N have the same function as that of the IP service multiplexer 118-1, and constitute other channel portions included in one transponder.
 TLV(GSE)シグナリング発生部117は、シグナリング(Signaling)情報を発生し、このシグナリング(Signaling)情報をペイロード部に配置するTLV(GSE)パケットを生成する。TLV(GSE)・マルチプレクサ119は、IPサービス・マルチプレクサ118-1~118-NおよびTLV(GSE)シグナリング発生部117で生成されるTLV(GSE)パケットを多重化して、MMT方式の放送ストリーム(図8(e)参照)を生成する。変調/送信部120は、TLV(GSE)・マルチプレクサ119で生成されるMMT方式の放送ストリームに対して、RF変調処理を行って、RF伝送路に送出する。 The TLV (GSE) signaling generation unit 117 generates signaling (Signaling) information, and generates a TLV (GSE) packet in which this signaling (Signaling) information is arranged in the payload portion. The TLV (GSE) multiplexer 119 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 118-1 to 118 -N and the TLV (GSE) signaling generator 117, and broadcasts the MMT system (see FIG. 8 (e)). The modulation / transmission unit 120 performs RF modulation processing on the MMT broadcast stream generated by the TLV (GSE) / multiplexer 119 and sends the result to the RF transmission path.
 図10に示す放送送出システム(MMT方式)100の動作を簡単に説明する。時計部111では、NTPサーバから取得された時刻情報に同期した時刻情報が生成され、この時刻情報を含むIPパケットが生成される。このIPパケットは、IPサービス・マルチプレクサ118-1に送られる。 The operation of the broadcast transmission system (MMT system) 100 shown in FIG. 10 will be briefly described. In the clock unit 111, time information synchronized with the time information acquired from the NTP server is generated, and an IP packet including the time information is generated. This IP packet is sent to the IP service multiplexer 118-1.
 信号送出部112から送出されるビデオ信号は、ビデオエンコーダ113に供給される。このビデオエンコーダ113では、ビデオ信号が符号化され、さらにパケット化されて、ビデオのMMTパケットを含むIPパケットが生成される。このIPパケットは、IPサービス・マルチプレクサ118-1に送られる。 The video signal sent from the signal sending unit 112 is supplied to the video encoder 113. In this video encoder 113, the video signal is encoded and further packetized to generate an IP packet including a video MMT packet. This IP packet is sent to the IP service multiplexer 118-1.
 また、信号送出部112から送出されるオーディオ信号、字幕信号に対しても同様の処理が行われる。そして、オーディオエンコーダ114で生成されるオーディオのMMTパケットを含むIPパケットがIPサービス・マルチプレクサ118-1に送られ、字幕エンコーダ115で生成される字幕のMMTパケットを含むIPパケットがIPサービス・マルチプレクサ118-1に送られる。 Also, the same processing is performed on the audio signal and subtitle signal transmitted from the signal transmission unit 112. The IP packet including the audio MMT packet generated by the audio encoder 114 is sent to the IP service multiplexer 118-1, and the IP packet including the caption MMT packet generated by the caption encoder 115 is transmitted to the IP service multiplexer 118. Sent to -1.
 また、シグナリング発生部116では、シグナリングメッセージ(PTSも含まれる)が発生され、ペイロード部にこのシグナリングメッセージが配置されたMMTパケットを含むIPパケットが生成される。このIPパケットは、IPサービス・マルチプレクサ118-1に送られる。 In the signaling generation unit 116, a signaling message (including PTS) is generated, and an IP packet including an MMT packet in which the signaling message is arranged in the payload portion is generated. This IP packet is sent to the IP service multiplexer 118-1.
 IPサービス・マルチプレクサ118-1では、各エンコーダおよびシグナリング発生部116から送られてくるIPパケットの時分割多重化が行われる。この際、各IPパケットにUDPヘッダおよびTLVヘッダが付加されて、TLV(GSE)パケットとされる。このIPサービス・マルチプレクサ118-1では、一つのトランスポンダの中にいれる一つのチャネル部分の処理が行われ、IPサービス・マルチプレクサ118-2~118-Nでは、その一つのトランスポンダの中にいれる他のチャネル部分の処理が同様に行われる。 The IP service multiplexer 118-1 performs time-division multiplexing of IP packets sent from the encoders and the signaling generator 116. At this time, a UDP header and a TLV header are added to each IP packet to form a TLV (GSE) packet. The IP service multiplexer 118-1 processes one channel portion included in one transponder, and the IP service multiplexers 118-2 to 118-N perform other processes included in the one transponder. The channel portion is processed in the same manner.
 IPサービス・マルチプレクサ118-1~118-Nで得られるTLV(GSE)パケットは、TLV(GSE)・マルチプレクサ119に送られる。このTLV(GSE)・マルチプレクサ119には、さらに、TLV(GSE)シグナリング発生部117から、シグナリング(Signaling)情報をペイロード部に配置するTLV(GSE)パケットも送られる。 The TLV (GSE) packets obtained by the IP service multiplexers 118-1 to 118-N are sent to the TLV (GSE) multiplexer 119. The TLV (GSE) / multiplexer 119 also receives a TLV (GSE) packet in which signaling information is placed in the payload portion from the TLV (GSE) signaling generation unit 117.
 TLV(GSE)・マルチプレクサ119では、IPサービス・マルチプレクサ118-1~118-NおよびTLV(GSE)シグナリング発生部117で生成されるTLV(GSE)パケットが多重化されて、MMT方式の放送ストリームが生成される。この放送ストリームは、変調/送信部120に送られる。変調/送信部120では、このMMT方式の放送ストリームに対してRF変調処理を行われ、そのRF変調信号がRF伝送路に送出される。 The TLV (GSE) multiplexer 119 multiplexes the TLV (GSE) packets generated by the IP service multiplexers 118-1 to 118 -N and the TLV (GSE) signaling generation unit 117, thereby generating an MMT broadcast stream. Generated. This broadcast stream is sent to the modulation / transmission unit 120. The modulation / transmission unit 120 performs RF modulation processing on the MMT broadcast stream, and sends the RF modulation signal to the RF transmission path.
 図11は、受信機200の構成例を示している。この受信機200は、チューナ/復調部201と、TLV(GSE)・デマルチプレクサ202と、時計部203と、ビデオデコーダ204と、オーディオデコーダ205と、キャプションデコーダ206と、システム制御部207と、合成部208を有している。 FIG. 11 shows a configuration example of the receiver 200. This receiver 200 includes a tuner / demodulator 201, a TLV (GSE) / demultiplexer 202, a clock unit 203, a video decoder 204, an audio decoder 205, a caption decoder 206, a system controller 207, Part 208.
 チューナ/復調部201は、RF変調信号を受信し、復調処理を行って、RTP方式あるいはMMT方式の放送ストリーム(図6(c)、図8(e)参照)を得る。TLV(GSE)・デマルチプレクサ202は、この放送ストリームに対して、デマルチプレクス処理およびデパケット化処理を行って、NTP時刻情報、PTS、シグナリング情報、さらにはビデオ、オーディオ、キャプションの符号化信号を出力する。 The tuner / demodulator 201 receives the RF modulation signal, performs demodulation processing, and obtains an RTP or MMT broadcast stream (see FIGS. 6C and 8E). The TLV (GSE) / demultiplexer 202 performs demultiplex processing and depacketization processing on this broadcast stream to generate NTP time information, PTS, signaling information, and also video, audio, and caption encoded signals. Output.
 システム制御部207は、TLV(GSE)・デマルチプレクサ202で得られるシグナリング情報、PTSなどに基づき、受信機200の各部を制御する。時計部203は、TLV(GSE)・デマルチプレクサ202で得られるNTP時刻情報に基づき、この時刻情報に同期した時刻情報を発生する。 The system control unit 207 controls each unit of the receiver 200 based on signaling information obtained by the TLV (GSE) / demultiplexer 202, PTS, and the like. The clock unit 203 generates time information synchronized with the time information based on the NTP time information obtained by the TLV (GSE) / demultiplexer 202.
 ビデオデコーダ204は、TLV(GSE)・デマルチプレクサ202で得られる符号化ビデオ信号の復号化を行ってベースバンドのビデオ信号を得る。オーディオデコーダ205は、TLV(GSE)・デマルチプレクサ202で得られる符号化オーディオ信号の復号化を行ってベースバンドのオーディオ信号を得る。さらに、キャプションデコーダ206は、TLV(GSE)・デマルチプレクサ202で得られる符号化字幕信号の復号化を行って、字幕の表示信号を得る。 The video decoder 204 decodes the encoded video signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a baseband video signal. The audio decoder 205 decodes the encoded audio signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a baseband audio signal. Further, the caption decoder 206 decodes the encoded subtitle signal obtained by the TLV (GSE) / demultiplexer 202 to obtain a subtitle display signal.
 システム制御部207は、各デコーダにおけるデコードタイミングをPTS(提示時刻情報)に基づいて制御し、ビデオ、オーディオ、字幕の提示タイミングを調整する。合成部208は、ベースバンドのビデオ信号に字幕の表示信号を合成し、映像表示用のビデオ信号を得る。なお、オーディオデコーダ205で得られるベースバンドのオーディオ信号は、音声出力用のオーディオ信号となる。 The system control unit 207 controls the decoding timing in each decoder based on PTS (presentation time information), and adjusts the presentation timing of video, audio, and subtitles. The synthesizer 208 synthesizes a subtitle display signal with the baseband video signal to obtain a video signal for video display. Note that the baseband audio signal obtained by the audio decoder 205 is an audio signal for audio output.
 図11に示す受信機200の動作を簡単に説明する。チューナ/復調部201では、RF伝送路を通じて送られてくるRF変調信号が受信され、復調処理が行われて、RTP方式あるいはMMT方式の放送ストリーム(図6(c)、図8(e)参照)が得られる。この放送ストリームは、TLV(GSE)・デマルチプレクサ202に送られる。 The operation of the receiver 200 shown in FIG. 11 will be briefly described. The tuner / demodulator 201 receives an RF modulated signal sent through an RF transmission path, performs demodulation processing, and broadcasts an RTP system or MMT system (see FIGS. 6C and 8E). ) Is obtained. This broadcast stream is sent to the TLV (GSE) / demultiplexer 202.
 このTLV(GSE)・デマルチプレクサ202では、この放送ストリームに対して、デマルチプレクス処理およびデパケット化処理が行われ、NTP時刻情報、PTS、シグナリング情報、さらにはビデオ、オーディオ、キャプションの符号化信号が抽出される。 In this TLV (GSE) / demultiplexer 202, demultiplex processing and depacketization processing are performed on this broadcast stream, and NTP time information, PTS, signaling information, as well as video, audio, and caption encoded signals. Is extracted.
 TLV(GSE)・デマルチプレクサ202で抽出されるNTP時刻情報は、時計部203に送られる。この時計部203では、このNTP時刻情報に基づき、この時刻情報に同期した時刻情報が生成される。つまり、この時計部203では、放送送出システム100の時計部101,111で生成される時刻情報に合った時刻情報が再生される。 NTP time information extracted by the TLV (GSE) / demultiplexer 202 is sent to the clock unit 203. In the clock unit 203, time information synchronized with the time information is generated based on the NTP time information. That is, the clock unit 203 reproduces time information that matches the time information generated by the clock units 101 and 111 of the broadcast transmission system 100.
 TLV(GSE)・デマルチプレクサ202で抽出される符号化ビデオ信号はビデオデコーダ204に送られて復号化され、ベースバンドのビデオ信号が得られる。また、TLV(GSE)・デマルチプレクサ202で抽出される符号化字幕信号はキャプションデコーダ206に送られて復号化され、字幕表示信号が得られる。そして、これらのビデオ信号および字幕表示信号が合成部208で合成され、映像表示用のビデオ信号が得られる。
また、TLV(GSE)・デマルチプレクサ202で抽出される符号化オーディオ信号はオーディオデコーダ205に送られて復号化され、音声出力用のベースバンドのオーディオ信号が得られる。
The encoded video signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the video decoder 204 and decoded to obtain a baseband video signal. The encoded subtitle signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the caption decoder 206 to be decoded to obtain a subtitle display signal. Then, the video signal and the caption display signal are synthesized by the synthesis unit 208 to obtain a video signal for video display.
Also, the encoded audio signal extracted by the TLV (GSE) / demultiplexer 202 is sent to the audio decoder 205 and decoded to obtain a baseband audio signal for audio output.
 また、TLV(GSE)・デマルチプレクサ202で抽出されるPTSやシグナリング情報は、システム制御部207に送られる。システム制御部207では、このシグナリング情報、PTSなどに基づき、受信機200の各部を制御することが行われる。この場合、例えば、PTSと、時計部203で発生される時刻情報に基づいて、各デコーダにおけるデコードタイミングが調整され、ビデオ、オーディオ、字幕の提示タイミングも調整される。 Also, the PTS and signaling information extracted by the TLV (GSE) / demultiplexer 202 are sent to the system control unit 207. The system control unit 207 controls each unit of the receiver 200 based on the signaling information, PTS, and the like. In this case, for example, the decoding timing in each decoder is adjusted based on the PTS and time information generated by the clock unit 203, and the presentation timing of video, audio, and subtitles is also adjusted.
 ここで、NTP(Network Time Protocol)について説明する。NTPは、ITU(International Telecommunication Union)でインターネットの標準として規定されているプロトコルである。パーソナルコンピュータ、スマートフォンなどのクライアントからNTPプロトコルによりNTPサーバにアクセスすることで、時刻情報を得ることができる。 Here, NTP (Network Time Protocol) will be described. NTP is a protocol defined as an Internet standard by ITU (International Telecommunication Union). Time information can be obtained by accessing an NTP server by a NTP protocol from a client such as a personal computer or a smartphone.
 図12(a)に示すように、NTPサーバには、階層(Stratum)が存在し、番号が若いほど高精度となっている。例えば、階層1(Stratum 1)のNTPサーバは原子時計と直結していて、時刻情報の誤差は1μs未満である。NTPサーバが提供する時刻情報は、1900年1月1日からの積算秒数(UTC:Coordinated Universal Time)で表現されている。 As shown in FIG. 12A, the NTP server has a hierarchy (stratum), and the smaller the number, the higher the accuracy. For example, the NTP server at level 1 (Stratum 1) is directly connected to the atomic clock, and the error in time information is less than 1 μs. The time information provided by the NTP server is expressed as an accumulated number of seconds (UTC: Coordinated Universal Time) from January 1, 1900.
 図12(b)は、NTPサーバが提供する時刻情報のフォーマット(NTP time stamp format)を示している。この時刻情報は、64ビットフォーマットであり、上位32ビットはUTCの積算秒数を示し、下位32ビットは秒未満を示している。 FIG. 12B shows a format of time information (NTP 提供 time stamp format) provided by the NTP server. This time information is in a 64-bit format, with the upper 32 bits indicating UTC accumulated seconds and the lower 32 bits indicating less than seconds.
 パーソナルコンピュータ、スマートフォンなどのクライアントからNTPプロトコルでNTPサーバにアクセスして時刻情報を取得するときには、どの階層のNTPサーバにサクセスするか不明である。そのため、複数のNTPサーバに同期アクセスして平均値を取ることで、ばらつきを抑え、より正確な時刻情報を得るようになされる。 When accessing the NTP server with the NTP protocol from a client such as a personal computer or a smartphone to acquire time information, it is unknown which NTP server to access. Therefore, by synchronously accessing a plurality of NTP servers and taking an average value, variation can be suppressed and more accurate time information can be obtained.
 図13、図14は、RTP方式におけるクロック同期・提示同期方式を示している。図13は、放送送出システム100側の構成例を示している。図14は、受信機200側の構成例を示している。 13 and 14 show a clock synchronization / presentation synchronization method in the RTP method. FIG. 13 shows a configuration example on the broadcast transmission system 100 side. FIG. 14 shows a configuration example on the receiver 200 side.
 最初に、図13を参照して、放送送出システム100側の構成例を説明する。この放送送出システム100は、NTP/IPインタフェース131と、32ビットレジスタ132a,132bを有している。また、この放送送出システム100は、27MHzのクロック(システムクロック)を生成する電圧制御発振器133と、時計部を構成する9ビットカウンタ134a、17ビットカウンタ134bおよび32ビットカウンタ134cと、ビット変換部135と、比較器136を有している。また、この放送送出システム100は、パケット化部137と、ビデオエンコード処理部138と、パケット化/タイムスタンプ付加部139と、エンコードバッファ140と、マルチプレクサ141を有している。 First, a configuration example on the broadcast transmission system 100 side will be described with reference to FIG. The broadcast transmission system 100 includes an NTP / IP interface 131 and 32- bit registers 132a and 132b. The broadcast transmission system 100 also includes a voltage-controlled oscillator 133 that generates a 27 MHz clock (system clock), a 9-bit counter 134a, a 17-bit counter 134b, and a 32-bit counter 134c that form a clock unit, and a bit conversion unit 135. And a comparator 136. The broadcast transmission system 100 also includes a packetizing unit 137, a video encoding processing unit 138, a packetization / time stamp adding unit 139, an encoding buffer 140, and a multiplexer 141.
 NTP/IPインタフェース131により、インターネット経由で図示しないNTPサーバに所定の時間間隔でアクセスされ、64ビットフォーマットの時刻情報(図12(b)参照)が取得される。32ビットレジスタ132a,132bでは、NTP/IPインタフェース131で取得される64ビットフォーマットの時刻情報が保持される。32ビットレジスタ132aには上位32ビットのビットデータが保持され、32ビットレジスタ132bには下位32ビットのビットデータが保持される。32ビットレジスタ132a,132bの保持内容は、NTP/IPインタフェース131で64ビットフォーマットの時刻情報を取得する毎に更新される。 The NTP / IP interface 131 accesses an NTP server (not shown) via the Internet at a predetermined time interval, and obtains time information in 64-bit format (see FIG. 12B). The 32- bit registers 132a and 132b hold 64-bit format time information acquired by the NTP / IP interface 131. The 32-bit register 132a holds upper 32 bits of bit data, and the 32-bit register 132b holds lower 32 bits of bit data. The contents held in the 32- bit registers 132a and 132b are updated each time the 64-bit format time information is acquired by the NTP / IP interface 131.
 ここで時刻情報を取得する頻度が十分高い場合にはこのままの構成でよいが、低い場合にはレジスタ132a,132bはNTPサーバの時計を再現するように自動的に時刻を示すカウンタとして継続動作することも考えられる。ここで、取得した時刻情報の下位32ビットを示すレジスタ132bの出力がオール0となった時点で、時刻情報の上位32ビットを示すレジスタ132aの出力を32ビットカウンタ134cの初期値としてセットし、かつ17ビットカウンタ134bと9ビットカウンタ134aをそれぞれオール0にセットする。この設定動作は放送送出システム100が動作開始する1回のみに限定される。 If the frequency of acquiring the time information is sufficiently high, the configuration may remain as it is. However, if the frequency is low, the registers 132a and 132b automatically continue to operate as a counter indicating the time so as to reproduce the clock of the NTP server. It is also possible. Here, when the output of the register 132b indicating the lower 32 bits of the acquired time information becomes all 0s, the output of the register 132a indicating the upper 32 bits of the time information is set as an initial value of the 32-bit counter 134c. The 17-bit counter 134b and the 9-bit counter 134a are all set to 0. This setting operation is limited to one time when the broadcast transmission system 100 starts operation.
 電圧制御発振器133では、27MHzのクロック(システムクロック)が発生される。9ビットカウンタ134aでは、電圧制御発振器133から出力される27MHzのクロックがカウントされて、300分周され、90KHzのクロックが出力される。17ビットカウンタ134bでは、9ビットカウンタ134aから出力される90KHzのクロックがカウントされて、90000分周されて、1Hzのクロックが出力される。32ビットカウンタ134cでは、17ビットカウンタ134bから出力される1Hzのクロックがカウントされて、秒精度の時刻情報(Regenerated UTC)である32ビットのビット出力が得られる。 The voltage controlled oscillator 133 generates a 27 MHz clock (system clock). In the 9-bit counter 134a, the 27 MHz clock output from the voltage controlled oscillator 133 is counted, divided by 300, and a 90 KHz clock is output. The 17-bit counter 134b counts the 90 KHz clock output from the 9-bit counter 134a, divides the frequency by 90000, and outputs a 1 Hz clock. In the 32-bit counter 134c, the 1 Hz clock output from the 17-bit counter 134b is counted, and a 32-bit bit output that is time information (Regenerated UTC) with second accuracy is obtained.
 9ビットカウンタ134a、17ビットカウンタ134bおよび32ビットカウンタ134cの58ビットのビット出力は、初期値からの上記カウンタ動作により、時刻情報としてのシステム・タイム・クロック(STC:System Time Clock)となる。このシステム・タイム・クロックはビット変換部135に入力される。このビット変換部135では、例えば変換テーブルが使用されるなどして、9ビットカウンタ134aおよび17ビットカウンタ134bのビット出力が、32ビットカウンタ134cのビット出力の下位に連続する32ビット出力に変換される。この変換は、NTPサーバから取得される64ビットフォーマットの時刻情報の下位32ビットのビット出力に対応させるために行われる。ビット変換部135では、このように変換された32ビット出力と32ビットカウンタ134cのビット出力とを合わせた64ビット出力が得られる。 The 58-bit bit output of the 9-bit counter 134a, the 17-bit counter 134b, and the 32-bit counter 134c becomes a system time clock (STC: System Time) Clock) as time information by the counter operation from the initial value. This system time clock is input to the bit conversion unit 135. In the bit conversion unit 135, for example, a conversion table is used, and the bit output of the 9-bit counter 134a and the 17-bit counter 134b is converted into a 32-bit output that is continuous with the lower bits of the bit output of the 32-bit counter 134c. The This conversion is performed to correspond to the lower 32 bits of the time information in the 64-bit format obtained from the NTP server. The bit conversion unit 135 obtains a 64-bit output that combines the 32-bit output converted in this way and the bit output of the 32-bit counter 134c.
 比較器136では、32ビットレジスタ132a,132bの保持内容が更新されるタイミングでビット変換部135からの64ビットのビット出力がラッチされ、レジスタ保持内容、つまりNTPサーバから取得された64ビットフォーマットの時刻情報と比較される。そして、比較器136から電圧制御発振器133に、比較誤差信号が制御信号として供給される。 In the comparator 136, the 64-bit bit output from the bit conversion unit 135 is latched at the timing when the held contents of the 32- bit registers 132a and 132b are updated, and the register holding contents, that is, the 64-bit format obtained from the NTP server are latched. Compared with time information. Then, a comparison error signal is supplied from the comparator 136 to the voltage controlled oscillator 133 as a control signal.
 ここで、電圧制御発振器133、カウンタ134a,134b,134c、ビット変換部134および比較器136により、PLL(Phase Locked Loop)回路が構成される。そのため、電圧制御発振器133では、NTPサーバから取得された64ビットフォーマットの時刻情報に同期した27MHzのクロック(システムクロック)が生成される。また、カウンタ134a,134b,134cでは、この27MHzのクロックの周波数情報を含み、NTPサーバから取得された64ビットフォーマットの時刻情報に同期した、58ビットの時刻情報が生成される。 Here, the voltage controlled oscillator 133, the counters 134a, 134b, and 134c, the bit converter 134, and the comparator 136 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 133 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format acquired from the NTP server. The counters 134a, 134b, and 134c generate 58-bit time information that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information acquired from the NTP server.
 この58ビットの時刻情報は、パケット化部137に供給される。パケット化部137では、この58ビットの時刻情報に基づき、27MHzのクロックの周波数情報を持つNTP・クロック・リファレンス(NTP_CR:NTP Clock Reference)を含むIPパケットが生成される。図15(a)は、このNTP・クロック・リファレンスの構成を示している。 The 58-bit time information is supplied to the packetizing unit 137. Based on the 58-bit time information, the packetizing unit 137 generates an IP packet including an NTP clock reference (NTP_CR: NTP Clock Reference) having 27 MHz clock frequency information. FIG. 15A shows the configuration of this NTP clock reference.
 ビデオエンコード処理部138では、電圧制御発振器133で得られる27MHzのクロックに同期して、ビデオ(ビデオデータ)が符号化される。パケット化/タイムスタンプ付加部139では、符号化後のビデオのエレメンタリストリームが所定の大きさの固まりに分割され、それぞれの固まりをペイロード部に含むRTPパケット(RTP packet)が生成される。このRTPパケットは、エンコードバッファ140を通じてマルチプレクサ141に供給される。 The video encoding processing unit 138 encodes video (video data) in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 133. The packetization / timestamp adding unit 139 divides the encoded video elementary stream into chunks of a predetermined size, and generates RTP packets (RTP packet) including each chunk in the payload portion. The RTP packet is supplied to the multiplexer 141 through the encode buffer 140.
 このパケット化/タイムスタンプ付加部139には、32ビットカウンタ134cの下位15ビットのビット出力と、17ビットカウンタ134bの17ビットのビット出力が供給される。パケット化/タイムスタンプ付加部139では、この32ビットのビット出力に基づいて、例えば、ビデオエンコード処理部138から出力されるビデオの各ピクチャの符号化データに対応させて提示時刻情報(PTS)としての32ビットのタイムスタンプ(Timestamp)を発生される。 The packetization / time stamp addition unit 139 is supplied with the lower 15-bit bit output of the 32-bit counter 134c and the 17-bit bit output of the 17-bit counter 134b. Based on the 32-bit bit output, the packetization / time stamp addition unit 139, for example, provides presentation time information (PTS) corresponding to the encoded data of each picture of video output from the video encoding processing unit 138. A 32-bit timestamp is generated.
 このタイムスタンプの値は、例えば、ビデオエンコード処理部138からのピクチャ出力タイミングの時刻情報に、エンコードバッファおよびデコードバッファによる固定遅延量を加算した値とされる。パケット化/タイムスタンプ付加部139では、この提示時刻情報(PTS)としてのタイムスタンプ(Timestamp)が各RTPパケットのヘッダに挿入される。図15(b)は、このタイムスタンプの構成を示している。 The time stamp value is, for example, a value obtained by adding the fixed delay amount by the encode buffer and the decode buffer to the time information of the picture output timing from the video encoding processing unit 138. The packetization / time stamp adding unit 139 inserts a time stamp (Timestamp) as the presentation time information (PTS) into the header of each RTP packet. FIG. 15B shows the structure of this time stamp.
 マルチプレクサ141には、上述したように、NTP・クロック・リファレンスを含むIPパケットおよび符号化ビデオを含むRTPパケットが供給される。なお、図示は省略されているが、符号化オーディオなどを含むRTPパケットも、符号化ビデオを含むRTPパケットと同様に生成され、マルチプレクサ141に供給される。マルチプレクサ141では、各パケットにさらに必要なヘッダが付加され、RTP方式の放送ストリームが生成される。このRTP方式の放送ストリームが放送信号として送信される。 As described above, the multiplexer 141 is supplied with the IP packet including the NTP clock reference and the RTP packet including the encoded video. Although illustration is omitted, an RTP packet including encoded audio and the like is generated in the same manner as an RTP packet including encoded video and supplied to the multiplexer 141. The multiplexer 141 further adds a necessary header to each packet and generates an RTP broadcast stream. This RTP broadcast stream is transmitted as a broadcast signal.
 次に、図14を参照して、受信機200側の構成例を説明する。この受信機200は、デマルチプレクサ231と、27MHzのクロック(システムクロック)を生成する電圧制御発振器232と、時計部を構成する9ビットカウンタ233a、17ビットカウンタ233bおよび32ビットカウンタ233cと、比較器234を有している。また、この受信機200は、デコードバッファ235と、デパケット化部236と、提示制御部237と、ビデオデコード処理部238を有している。 Next, a configuration example on the receiver 200 side will be described with reference to FIG. The receiver 200 includes a demultiplexer 231, a voltage controlled oscillator 232 that generates a 27 MHz clock (system clock), a 9-bit counter 233a, a 17-bit counter 233b, and a 32-bit counter 233c that constitute a clock unit, and a comparator. 234. In addition, the receiver 200 includes a decode buffer 235, a depacketization unit 236, a presentation control unit 237, and a video decode processing unit 238.
 デマルチプレクサ231には、受信放送信号であるRTP方式の放送ストリーム(図6(c)参照)が供給される。デマルチプレクサ231では、NTP・クロック・リファレンス(NTP_CR)を含むIPパケットからNTP_CRが抽出される。選局時や電源投入時において、最初に受信した58ビットのNTP_CR はカウンタ233a、カウンタ233bおよびカウンタ233cからなる58ビットのカウンタに初期値としてセットされる、その後に受信したこのNTP_CRは、比較器234に供給される。 The demultiplexer 231 is supplied with an RTP broadcast stream (see FIG. 6C) that is a received broadcast signal. The demultiplexer 231 extracts the NTP_CR from the IP packet including the NTP clock reference (NTP_CR). At the time of channel selection or power-on, the first received 58-bit NTP_CR is set as an initial value in a 58-bit counter including the counter 233a, the counter 233b, and the counter 233c. The received NTP_CR is 234.
 また、電圧制御発振器232で生成される27MHzのクロックは9ビットカウンタ233aでカウントされ、300分周される。この9ビットカウンタ233aで得られる90KHzのクロックは17ビットカウンタ233bでカウントされ、90000分周される。そして、この17ビットカウンタ233bで得られる1Hzのクロックは32ビットカウンタ233cでカウントされる。32ビットカウンタ233cでは、秒精度の時刻情報(Regenerated UTC)である32ビットのビット出力が得られる。 The 27 MHz clock generated by the voltage controlled oscillator 232 is counted by the 9-bit counter 233a and divided by 300. The 90 KHz clock obtained by the 9-bit counter 233a is counted by the 17-bit counter 233b and divided by 90000. The 1 Hz clock obtained by the 17-bit counter 233b is counted by the 32-bit counter 233c. The 32-bit counter 233c obtains a 32-bit bit output that is time information (Regenerated UTC) with second accuracy.
 9ビットカウンタ233a、17ビットカウンタ233bおよび32ビットカウンタ233cの58ビットのビット出力は、時刻情報としてのシステム・タイム・クロック(STC:System Time Clock)となる。このシステム・タイム・クロックは、比較器234に供給される。比較器234では、例えば、デマルチプレクサ231からNTP_CRが供給されるタイミングで、システム・タイム・クロックがラッチされ、NTP_CRと比較される。 The 58-bit bit output of the 9-bit counter 233a, the 17-bit counter 233b, and the 32-bit counter 233c is a system time clock (STC: System Time) Clock) as time information. This system time clock is supplied to the comparator 234. In the comparator 234, for example, at the timing when NTP_CR is supplied from the demultiplexer 231, the system time clock is latched and compared with NTP_CR.
 この比較器234から出力される比較誤差信号は、電圧制御発振器232に制御信号として供給される。ここで、電圧制御発振器232、カウンタ233a,233b,233cおよび比較器234により、PLL(Phase Locked Loop)回路が構成される。そのため、電圧制御発振器232ではNTP_CRに同期した27MHzのクロックが生成される。この27MHzのクロックの周波数は、上述し放送送出システム100の電圧制御発振器133で生成されるクロックの周波数と等しくなり、クロック同期が実現される。 The comparison error signal output from the comparator 234 is supplied to the voltage controlled oscillator 232 as a control signal. Here, the voltage controlled oscillator 232, the counters 233a, 233b, 233c and the comparator 234 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR. The frequency of the 27 MHz clock becomes equal to the frequency of the clock generated by the voltage controlled oscillator 133 of the broadcast transmission system 100 described above, and clock synchronization is realized.
 また、カウンタ233a,233b,233cでは、NTP_CRに同期したシステム・タイム・クロックが生成される。このシステム・タイム・クロックは、上述した放送送出システム100のカウンタ134a,134b,134cで生成されるシステム・タイム・クロックと合ったものとなる。そのため、上述したように、RTP方式の放送ストリームではビデオ、オーディオなどの伝送メディアを含むRTPパケットのヘッダに提示時刻情報としてのタイムスタンプが挿入されていることと相まって、提示同期が実現される。 Further, the counters 233a, 233b, and 233c generate a system time clock synchronized with NTP_CR. This system time clock matches the system time clock generated by the counters 134a, 134b, 134c of the broadcast transmission system 100 described above. For this reason, as described above, in the RTP broadcast stream, presentation synchronization is realized in combination with insertion of a time stamp as presentation time information in the header of an RTP packet including transmission media such as video and audio.
 また、デマルチプレクサ231では、符号化ビデオを含むRTPパケットが抽出され、デコードバッファ235に一時的に蓄積される。また、32ビットカウンタ233cの下位15ビットのビット出力と、17ビットカウンタ233bの17ビットのビット出力が、提示制御部237に供給される。 In the demultiplexer 231, RTP packets including encoded video are extracted and temporarily stored in the decode buffer 235. Further, the lower 15-bit bit output of the 32-bit counter 233 c and the 17-bit bit output of the 17-bit counter 233 b are supplied to the presentation control unit 237.
 提示制御部237では、デパケット化部236を通じて、デコードバッファ235に蓄積されている各RTPパケットのヘッダ部に挿入されている提示時刻情報(PTS)としてのタイムスタンプが確認される。そして、提示制御部237では、システム・タイム・クロックを参照し、デコード処理すべきRTPパケットをデコードバッファ235からデパケット化部236を通じてビデオデコード処理部238に順次取り込むことが行われる。 The presentation control unit 237 confirms the time stamp as the presentation time information (PTS) inserted in the header part of each RTP packet stored in the decode buffer 235 through the depacketization unit 236. Then, the presentation control unit 237 refers to the system time clock, and sequentially takes RTP packets to be decoded from the decoding buffer 235 into the video decoding processing unit 238 through the depacketizing unit 236.
 ビデオデコード処理部238では、符号化ビデオの復号化が行われ、ベースバンドのビデオデータが得られる。そして、受信機200では、このビデオデータによる映像表示が行われる。なお、図示は省略されているが、デマルチプレクサ231では、符号化オーディオを含むRTPパケットも抽出され、上述のビデオの場合と同様に処理されてベースバンドのオーディオデータが得られ、音声出力が行われる。 The video decoding processing unit 238 decodes the encoded video and obtains baseband video data. Then, the receiver 200 performs video display using the video data. Although not shown in the figure, the demultiplexer 231 also extracts RTP packets including encoded audio and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
 図16、図17は、MMT方式におけるクロック同期・提示同期方式を示している。図16は、放送送出システム100側の構成例を示している。図17は、受信機200側の構成例を示している。 16 and 17 show a clock synchronization / presentation synchronization method in the MMT method. FIG. 16 shows a configuration example on the broadcast transmission system 100 side. FIG. 17 illustrates a configuration example on the receiver 200 side.
 最初に、図16を参照して、放送送出システム100側の構成例を説明する。この図16において、図13と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。この放送送出システム100は、NTP/IPインタフェース131と、32ビットレジスタ132a,132bを有している。また、この放送送出システム100は、27MHzのクロック(システムクロック)を生成する電圧制御発振器133と、時計部を構成する9ビットカウンタ134a、17ビットカウンタ134bおよび32ビットカウンタ134cと、ビット変換部135と、比較器136を有している。また、この放送送出システム100は、パケット化部137と、ビデオエンコード処理部138と、パケット化部151と、タイムスタンプ発生部152と、パケット化部153と、エンコードバッファ140と、マルチプレクサ141を有している。 First, a configuration example on the broadcast transmission system 100 side will be described with reference to FIG. In FIG. 16, parts corresponding to those in FIG. 13 are denoted by the same reference numerals, and detailed description thereof will be omitted as appropriate. The broadcast transmission system 100 includes an NTP / IP interface 131 and 32- bit registers 132a and 132b. The broadcast transmission system 100 also includes a voltage-controlled oscillator 133 that generates a 27 MHz clock (system clock), a 9-bit counter 134a, a 17-bit counter 134b, and a 32-bit counter 134c that form a clock unit, and a bit conversion unit 135. And a comparator 136. The broadcast transmission system 100 also includes a packetizing unit 137, a video encoding processing unit 138, a packetizing unit 151, a time stamp generating unit 152, a packetizing unit 153, an encoding buffer 140, and a multiplexer 141. is doing.
 上述の図13に示す放送送出システム100と同様に、NTP/IPインタフェース131で取得した時刻情報の下位32ビットを示すレジスタ132bの出力がオール0となった時点で、時刻情報の上位32ビットを示すレジスタ132aの出力を32ビットカウンタ134cの初期値としてセットし、かつ17ビットカウンタ134bと9ビットカウンタ134aをそれぞれオール0にセットする。この設定動作は放送送出システム100が動作開始する1回のみに限定される。 Similarly to the broadcast transmission system 100 shown in FIG. 13 described above, when the output of the register 132b indicating the lower 32 bits of the time information acquired by the NTP / IP interface 131 becomes all 0s, the upper 32 bits of the time information are changed. The output of the indicated register 132a is set as the initial value of the 32-bit counter 134c, and the 17-bit counter 134b and the 9-bit counter 134a are all set to 0. This setting operation is limited to one time when the broadcast transmission system 100 starts operation.
 電圧制御発振器133、カウンタ134a,134b,134c、ビット変換部134および比較器136により、PLL(Phase Locked Loop)回路が構成される。そのため、電圧制御発振器133では、NTPサーバから取得された64ビットフォーマットの時刻情報に同期した27MHzのクロック(システムクロック)が生成される。また、カウンタ134a,134b,134cでは、この27MHzのクロックの周波数情報を含み、NTPサーバから取得された64ビットフォーマットの時刻情報に同期した、58ビットの時刻情報が生成される。 The voltage controlled oscillator 133, the counters 134a, 134b, 134c, the bit converter 134, and the comparator 136 constitute a PLL (Phase (Locked Loop) circuit. Therefore, the voltage controlled oscillator 133 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format acquired from the NTP server. The counters 134a, 134b, and 134c generate 58-bit time information that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information acquired from the NTP server.
 この58ビットの時刻情報は、パケット部137に供給される。パケット化部137では、この58ビットの時刻情報に基づき、27MHzのクロックの周波数情報を持つNTP・クロック・リファレンス(NTP_CR:NTP Clock Reference)を含むIPパケットが生成される。図18(a)は、このNTP・クロック・リファレンスの構成を示している。 The 58-bit time information is supplied to the packet unit 137. Based on the 58-bit time information, the packetizing unit 137 generates an IP packet including an NTP clock reference (NTP_CR: NTP Clock Reference) having 27 MHz clock frequency information. FIG. 18A shows the configuration of the NTP clock reference.
 ビデオエンコード処理部138では、電圧制御発振器133で得られる27MHzのクロックに同期して、ビデオ(ビデオデータ)が符号化される。パケット化部151では、符号化後のビデオのエレメンタリストリームが所定の大きさの固まりに分割され、それぞれの固まりをペイロード部に含むMMTパケット(MMT packet)が生成される。このMMTパケットは、エンコードバッファ140を通じてマルチプレクサ141に供給される。 The video encoding processing unit 138 encodes video (video data) in synchronization with the 27 MHz clock obtained by the voltage controlled oscillator 133. The packetizing unit 151 divides the encoded video elementary stream into chunks of a predetermined size, and generates MMT packets (MMT packet) including the respective chunks in the payload portion. The MMT packet is supplied to the multiplexer 141 through the encode buffer 140.
 タイムスタンプ発生部152には、32ビットカウンタ134cの32ビット出力と17ビットカウンタ134bの17ビット出力、あるいは32ビットカウンタ134cの下位15ビットのビット出力と、17ビットカウンタ134bの17ビット出力が供給される。 The time stamp generator 152 is supplied with the 32-bit output of the 32-bit counter 134c and the 17-bit output of the 17-bit counter 134b, or the lower 15-bit output of the 32-bit counter 134c, and the 17-bit output of the 17-bit counter 134b. Is done.
 タイムスタンプ発生部152では、例えば、ビデオエンコード処理部138から出力されるビデオの各ピクチャの符号化データに対応させて提示時刻情報(PTS)としての49ビットあるいは32ビットのタイムスタンプ(Timestamp)を発生される。図18(b)は、このタイムスタンプの構成を示している。このタイムスタンプの値は、例えば、ビデオエンコード処理部138からのピクチャ出力タイミングの時刻情報に、エンコードバッファおよびデコードバッファによる固定遅延量を加算した値とされる。 In the time stamp generation unit 152, for example, a 49-bit or 32-bit time stamp (Timestamp) as presentation time information (PTS) corresponding to the encoded data of each picture of the video output from the video encoding processing unit 138 is provided. Generated. FIG. 18B shows the structure of this time stamp. The time stamp value is, for example, a value obtained by adding the fixed delay amount by the encode buffer and the decode buffer to the time information of the picture output timing from the video encoding processing unit 138.
 タイムスタンプ発生部152で発生される提示時刻情報(PTS)としてのタイムスタンプ(Timestamp)は、パケット化部153に供給される。パケット化部153では、このタイムスタンプをペイロード部に含むMMTパケットが生成される。このMMTパケットは、マルチプレクサ141に供給される。 The time stamp (Timestamp) as the presentation time information (PTS) generated by the time stamp generator 152 is supplied to the packetizer 153. The packetizing unit 153 generates an MMT packet including this time stamp in the payload portion. The MMT packet is supplied to the multiplexer 141.
 マルチプレクサ141には、上述したように、NTP・クロック・リファレンスを含むIPパケット、符号化ビデオを含むMMTパケットおよびタイムスタンプ(Timestamp)を含むMMTパケットが供給される。なお、図示は省略されているが、符号化オーディオなどを含むMMTパケットも、符号化ビデオを含むMMTパケットと同様に生成され、マルチプレクサ141に供給される。マルチプレクサ141では、各パケットにさらに必要なヘッダが付加され、MMT方式の放送ストリームが生成される。このMMT方式の放送ストリームが放送信号として送信される。 As described above, the multiplexer 141 is supplied with the IP packet including the NTP clock reference, the MMT packet including the encoded video, and the MMT packet including the time stamp. Although illustration is omitted, an MMT packet including encoded audio and the like is generated in the same manner as the MMT packet including encoded video and supplied to the multiplexer 141. The multiplexer 141 further adds a necessary header to each packet, and generates an MMT broadcast stream. This MMT broadcast stream is transmitted as a broadcast signal.
 次に、図17を参照して、受信機200側の構成例を説明する。この図17において、図14と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。この受信機200は、デマルチプレクサ231と、27MHzのクロック(システムクロック)を生成する電圧制御発振器232と、時計を構成する9ビットカウンタ233a、17ビットカウンタ233bおよび32ビットカウント233cと、比較器234を有している。また、この受信機200は、デコードバッファ235と、デパケット化部251と、提示制御部237と、ビデオエンコード処理部238を有している。 Next, a configuration example on the receiver 200 side will be described with reference to FIG. In FIG. 17, portions corresponding to those in FIG. 14 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate. The receiver 200 includes a demultiplexer 231, a voltage-controlled oscillator 232 that generates a 27 MHz clock (system clock), a 9-bit counter 233a, a 17-bit counter 233b, and a 32-bit count 233c that form a clock, and a comparator 234. have. The receiver 200 also includes a decode buffer 235, a depacketization unit 251, a presentation control unit 237, and a video encoding processing unit 238.
 デマルチプレクサ231には、受信放送信号であるMMT方式の放送ストリーム(図8(e)参照)が供給される。デマルチプレクサ231では、NTP・クロック・リファレンス(NTP_CR)を含むIPパケットからNTP_CRが抽出される。選局時や電源投入時において、最初に受信した58ビットのNTP_CR はカウンタ233a、カウンタ233bおよびカウンタ233cからなる58ビットのカウンタに初期値としてセットされる、その後に受信したこのNTP_CRは、比較器234に供給される。 The demultiplexer 231 is supplied with an MMT broadcast stream (see FIG. 8E) that is a received broadcast signal. The demultiplexer 231 extracts the NTP_CR from the IP packet including the NTP clock reference (NTP_CR). At the time of channel selection or power-on, the first received 58-bit NTP_CR is set as an initial value in a 58-bit counter including the counter 233a, the counter 233b, and the counter 233c. The received NTP_CR is 234.
 電圧制御発振器232、カウンタ233a,233b,233cおよび比較器234により、PLL(Phase Locked Loop)回路が構成される。そのため、電圧制御発振器232ではNTP_CRに同期した27MHzのクロックが生成される。この27MHzのクロックの周波数は、上述し放送送出システム100の電圧制御発振器133で生成されるクロックの周波数と等しくなり、クロック同期が実現される。 The voltage controlled oscillator 232, the counters 233a, 233b, 233c and the comparator 234 constitute a PLL (Phase Locked Loop) circuit. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR. The frequency of the 27 MHz clock becomes equal to the frequency of the clock generated by the voltage controlled oscillator 133 of the broadcast transmission system 100 described above, and clock synchronization is realized.
 また、カウンタ233a,233b,233cでは、NTP_CRに同期したシステム・タイム・クロックが生成される。このシステム・タイむ・クロックは、上述した放送送出システム100のカウンタ134a,134b,134cで生成されるシステム・タイム・クロックと合ったものとなる。そのため、上述したように、MMT方式の放送ストリームではビデオ、オーディオなどの伝送メディアの提示時刻情報(PTS)としてのタイムスタンプ(Timestamp)を含むMMTパケットが挿入されていることと相まって、提示同期が実現される。 Further, the counters 233a, 233b, and 233c generate a system time clock synchronized with NTP_CR. This system time clock matches the system time clock generated by the counters 134a, 134b, 134c of the broadcast transmission system 100 described above. Therefore, as described above, in the MMT broadcast stream, the presentation synchronization is coupled with the insertion of the MMT packet including the time stamp (Timestamp) as the presentation time information (PTS) of transmission media such as video and audio. Realized.
 デマルチプレクサ231で抽出される符号化ビデオを含むMMTパケットは、デコードバッファ235に一時的に蓄積される。また、32ビットカウンタ134cの32ビット出力と17ビットカウンタ134bの17ビット出力、あるいは32ビットカウンタ134cの下位15ビットのビット出力と、17ビットカウンタ134bの17ビット出力が、システム・タイム・クロックとして提示制御部237に供給される。 The MMT packet including the encoded video extracted by the demultiplexer 231 is temporarily stored in the decode buffer 235. The 32-bit output of the 32-bit counter 134c and the 17-bit output of the 17-bit counter 134b, or the lower-order 15-bit output of the 32-bit counter 134c, and the 17-bit output of the 17-bit counter 134b are used as a system time clock. It is supplied to the presentation control unit 237.
 提示制御部237では、デパケット化部251を通じて、デコードバッファ235に蓄積されている提示時刻情報(PTS)としてのタイムスタンプ(Timestamp)を含むMMTパケットに基づいて、符号化ビデオを含む各MMTパケットの提示時刻が確認される。提示制御部237では、システム・タイム・クロックを参照し、デコード処理すべきMMTパケットをデコードバッファ235からデパケット化部251を通じてビデオデコード処理部238に順次取り込むことが行われる。 In the presentation control unit 237, through the depacketization unit 251, based on the MMT packet including the time stamp (Timestamp) as the presentation time information (PTS) accumulated in the decode buffer 235, each MMT packet including the encoded video is transmitted. The presentation time is confirmed. The presentation control unit 237 refers to the system time clock and sequentially takes MMT packets to be decoded from the decoding buffer 235 through the depacketization unit 251 into the video decoding processing unit 238.
 ビデオデコード処理部238では、符号化ビデオの復号化が行われ、ベースバンドのビデオデータが得られる。そして、受信機200では、このビデオデータによる映像表示が行われる。なお、図示は省略されているが、デマルチプレクサ231では、符号化オーディオを含むMMTパケットも抽出され、上述のビデオの場合と同様に処理されてベースバンドのオーディオデータが得られ、音声出力が行われる。 The video decoding processing unit 238 decodes the encoded video and obtains baseband video data. Then, the receiver 200 performs video display using the video data. Although not shown, the demultiplexer 231 also extracts MMT packets including encoded audio, and processes them in the same manner as in the case of the video described above to obtain baseband audio data. Is called.
 上述したように、図1に示す送受信システム10においては、IP方式の放送信号(例えば、RTP方式の放送ストリーム、MMT方式の放送ストリームなど)にNTPサーバから取得された時刻情報に同期した27MHzのクロックの周波数情報を含む時刻情報(NTP_CR)が含まれるものである。そのため、受信側では、この時刻情報に基づいて送信側と同様の27MHzのクロック(システムクロック)を生成でき、クロック同期を実現できる。 As described above, in the transmission / reception system 10 shown in FIG. 1, the 27 MHz signal synchronized with the time information acquired from the NTP server in the IP broadcast signal (for example, RTP broadcast stream, MMT broadcast stream, etc.). Time information (NTP_CR) including clock frequency information is included. Therefore, on the receiving side, a 27 MHz clock (system clock) similar to that on the transmitting side can be generated based on this time information, and clock synchronization can be realized.
 また、図1に示す送受信システム10においては、IP方式の放送信号にさらにNTPサーバから取得された時刻情報に同期した時刻情報(システム・タイム・クロック)に基づいて得られた伝送メディアの提示単位毎の提示時刻情報(PTS)が含まれるものである。そのため、受信側では、送信信号に含まれる時刻情報に同期して生成された27MHzのクロックの周波数情報を含む時刻情報(システム・タイム・クロック)と、伝送メディアの提示単位毎の提示時刻情報(PTS)とに基づき、提示同期を実現できる。 Further, in the transmission / reception system 10 shown in FIG. 1, a transmission media presentation unit obtained based on time information (system time clock) synchronized with time information acquired from an NTP server in addition to an IP broadcast signal. Each presentation time information (PTS) is included. Therefore, on the receiving side, time information (system time clock) including the frequency information of the 27 MHz clock generated in synchronization with the time information included in the transmission signal, and presentation time information for each transmission media presentation unit ( Presentation synchronization can be realized based on (PTS).
 また、図1に示す送受信システム10においては、放送送出システム100および受信機200のシステム・タイム・クロック(STC)は、NTPの時刻情報に合ったものとなる。そのため、例えば、受信側において、複数の経路を通って得られたビデオを用いて1つの画面を構成することなどをたやすく行い得るようになる。 Further, in the transmission / reception system 10 shown in FIG. 1, the system time clock (STC) of the broadcast transmission system 100 and the receiver 200 matches the time information of NTP. Therefore, for example, on the receiving side, one screen can be easily configured using videos obtained through a plurality of paths.
 <2.変形例>
 なお、上述実施の形態において、受信機200で受信されるIP方式の放送信号は、NTPサーバから取得された時刻情報そのものではなく、その時刻情報に同期した27MHzのクロックの周波数情報を含む時刻情報(NTP_CR)を有するものとして説明した。しかし、受信機200で受信されるIP方式の放送信号として、NTPサーバから取得された時刻情報そのものを含む場合も考えられる。
<2. Modification>
In the above embodiment, the IP system broadcast signal received by the receiver 200 is not the time information itself acquired from the NTP server, but the time information including the frequency information of the 27 MHz clock synchronized with the time information. It has been described as having (NTP_CR). However, there may be a case where the time information itself acquired from the NTP server is included as an IP broadcast signal received by the receiver 200.
 図19(a)は、NTPサーバから取得された64ビットフォーマットの時刻情報の構成を示している。また、図19(b)は、NTP_CRの構成を示している。なお、このNTP_CRの構成では、9ビット出力の下位に6ビットのオール0のデータが付加され、全体として64ビットフォーマットとされている。このように、NTPサーバから取得された64ビットフォーマットの時刻情報は、NTP_CRとは、異なるビット構成となっている。 FIG. 19A shows the structure of time information in 64-bit format acquired from the NTP server. FIG. 19B shows the configuration of NTP_CR. In this NTP_CR configuration, 6-bit all-zero data is added to the lower order of the 9-bit output, and the 64-bit format is formed as a whole. Thus, the 64-bit format time information acquired from the NTP server has a bit configuration different from that of the NTP_CR.
 そのため、IP方式の放送信号に時刻情報としてNTPサーバから取得された64ビットフォーマットの時刻情報が含まれる場合、上述した受信機200(図14、図17参照)のPLL回路は正常に動作しなくなる。そこで、例えば、MMT方式の場合には、シグナリング情報として、放送信号に含まれる時刻情報がNTPサーバから取得された64ビットフォーマットの時刻情報であるか、あるいはNTP_CRであるかを識別する識別情報(フラグ情報)を含めることができる。そして、受信側では、この識別情報に基づいて、PLL回路部分の動作を切り替えて、誤動作の防止を図ることが可能となる。 Therefore, when the time information in the 64-bit format acquired from the NTP server is included as time information in the IP broadcast signal, the PLL circuit of the above-described receiver 200 (see FIGS. 14 and 17) does not operate normally. . Therefore, for example, in the case of the MMT system, as the signaling information, identification information for identifying whether the time information included in the broadcast signal is the time information in the 64-bit format acquired from the NTP server or NTP_CR ( Flag information). On the receiving side, based on this identification information, the operation of the PLL circuit portion can be switched to prevent malfunction.
 図20は、その場合における受信機200の構成例を示している。この図20において、図17と対応する部分には同一符号を付して示している。セレクタ261は、識別情報がNTP_CRであることを示す場合、比較器234から出力される比較誤差信号を電圧制御発振器232に制御信号として送る。この場合には、図17と同様の構成となり、電圧制御発振器232はPLL回路によりNTP_CRに同期した27MHzのクロックを生成するようになる。一方、識別情報がNTPサーバから取得された64ビットフォーマットの時刻情報であることを示す場合、セレクタ261は、固定値を電圧制御発振器232に制御信号として送る。この場合、電圧制御発振器232はフリーラン状態となる。 FIG. 20 shows a configuration example of the receiver 200 in that case. In FIG. 20, portions corresponding to those in FIG. 17 are denoted by the same reference numerals. When the identification information indicates that the identification information is NTP_CR, the selector 261 sends the comparison error signal output from the comparator 234 to the voltage controlled oscillator 232 as a control signal. In this case, the configuration is the same as that in FIG. 17, and the voltage controlled oscillator 232 generates a 27 MHz clock synchronized with NTP_CR by the PLL circuit. On the other hand, when the identification information indicates that the time information is in 64-bit format acquired from the NTP server, the selector 261 sends a fixed value to the voltage controlled oscillator 232 as a control signal. In this case, the voltage controlled oscillator 232 is in a free run state.
 また、セレクタ263は、識別情報がNTP_CRであることを示す場合、電圧制御発振器232により動作するカウンタのうち、カウンタ233c,233bの出力49ビットを提示制御部237へ送る。一方、セレクタ263は、識別情報がNTPサーバから取得された64ビットフォーマットの時刻情報であることを示す場合、受信したNTPデータをラッチした64ビットレジスタ261a.261bの出力のうち上位49ビットを提示制御部237へ送る。 In addition, when the identification information indicates that the identification information is NTP_CR, the selector 263 sends the 49 bits output of the counters 233 c and 233 b to the presentation control unit 237 among the counters operated by the voltage controlled oscillator 232. On the other hand, when the identification information indicates that the identification information is time information in 64-bit format acquired from the NTP server, the selector 263 latches the received 64-bit register 261a. The upper 49 bits of the output of 261b are sent to the presentation control unit 237.
 この変形例においては、カウンタ233a、カウンタ233b、233cの初期値を与える場合、選局時や電源投入時において、受信した図19(a),(b)の64ビットのNTPデータのうち下位32ビットの出力がオール0となった時点で、時刻情報の上位32ビットの出力を32ビットカウンタ233cの初期値としてセットし、かつ17ビットカウンタ233bと9ビットカウンタ233aをそれぞれオール0にセットする。 In this modification, when the initial values of the counter 233a, the counter 233b, and 233c are given, at the time of channel selection and power-on, the lower 32 bits of the 64-bit NTP data shown in FIGS. 19A and 19B are received. When the bit output becomes all 0s, the upper 32 bits output of the time information is set as the initial value of the 32-bit counter 233c, and the 17-bit counter 233b and the 9-bit counter 233a are all set to 0, respectively.
 また、上述実施の形態においては、IP方式の放送信号に、NTPサーバから取得された64ビットフォーマットの時刻情報そのものではなく、その時刻情報に同期した27MHzのクロックの周波数情報を含む時刻情報(NTP_CR)が含まれる場合を示している。しかし、IP方式の放送信号にNTPサーバから取得された64ビットフォーマットの時刻情報を含め、受信側では、その時刻情報に基づいて、送信側と同じ周波数の27MHzのクロックを生成すると共に、送信側のシステム・タイム・クロックに合ったシステム・タイム・クロックを生成することも考えられる。 In the above embodiment, the time information (NTP_CR) includes the frequency information of the 27 MHz clock synchronized with the time information in the IP broadcast signal, not the time information itself in the 64-bit format acquired from the NTP server. ) Is included. However, the receiving side includes the time information in the 64-bit format acquired from the NTP server in the IP broadcast signal, and the receiving side generates a 27 MHz clock having the same frequency as the transmitting side based on the time information. It is also conceivable to generate a system time clock that matches the system time clock.
 図21、図22は、その場合におけるクロック同期・提示同期方式の一例を示している。図21は、放送送出システム100側の構成例を示している。図22は、受信機200側の構成例を示している。なお、ここでは、MMT方式について説明する。説明は省略するが、RTP方式においても同様である。 21 and 22 show an example of the clock synchronization / presentation synchronization method in that case. FIG. 21 shows a configuration example on the broadcast transmission system 100 side. FIG. 22 shows a configuration example on the receiver 200 side. Here, the MMT method will be described. Although the description is omitted, the same applies to the RTP method.
 最初に、図21を参照して、放送送出システム100側の構成例を説明する。この図21において、図16と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。この放送送出システム100では、パケット化部137に、レジスタ132a,132bより、NTPサーバから取得された64ビットフォーマットの時刻情報が供給される。パケット化部137では、この64ビットフォーマットの時刻情報を含むIPパケットが生成され、マルチプレクサ141に送られる。 First, a configuration example on the broadcast transmission system 100 side will be described with reference to FIG. In FIG. 21, portions corresponding to those in FIG. 16 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate. In this broadcast transmission system 100, the packetizing unit 137 is supplied with time information in 64-bit format acquired from the NTP server from the registers 132a and 132b. In the packetizing unit 137, an IP packet including the time information in the 64-bit format is generated and sent to the multiplexer 141.
 これにより、マルチプレクサ141で生成されるMMT方式放送ストリームは、NTPサーバから取得された64ビットフォーマットの時刻情報を含むものとなる。図23(a)は、64ビットフォーマットの時刻情報の構成を示している。図23(b)は、タイムスタンプ発生部152で発生されるタイムスタンプの構成を示している。なお、図21のその他の部分は、図16と同様に構成される。 Thereby, the MMT broadcast stream generated by the multiplexer 141 includes the time information in the 64-bit format acquired from the NTP server. FIG. 23A shows the structure of time information in a 64-bit format. FIG. 23B shows a structure of a time stamp generated by the time stamp generating unit 152. 21 is configured in the same manner as in FIG.
 次に、図22を参照して、受信機200側の構成例を説明する。この図22において、図17と対応する部分には同一符号を付し、適宜、その詳細説明は省略する。デマルチプレクサ231で抽出される64ビットフォーマットの時刻情報(図12(b)参照)は、32ビットレジスタ261a,261bで保持される。32ビットレジスタ261aには上位32ビットのビットデータが保持され、32ビットレジスタ261bには下位32ビットのビットデータが保持される。32ビットレジスタ261a,262bの保持内容は、デマルチプレクサ231で64ビットフォーマットの時刻情報が抽出される毎に更新される。 Next, a configuration example on the receiver 200 side will be described with reference to FIG. In FIG. 22, parts corresponding to those in FIG. 17 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate. The 64-bit format time information (see FIG. 12B) extracted by the demultiplexer 231 is held in the 32- bit registers 261a and 261b. The 32-bit register 261a holds upper 32-bit bit data, and the 32-bit register 261b holds lower 32-bit bit data. The contents held in the 32-bit registers 261a and 262b are updated each time 64-bit format time information is extracted by the demultiplexer 231.
 9ビットカウンタ233a、17ビットカウンタ233bおよび32ビットカウンタ233cの58ビットのビット出力は、時刻情報としてのシステム・タイム・クロック(STC:System Time Clock)となる。このシステム・タイム・クロックはビット変換部262に入力される。このビット変換部262では、例えば変換テーブルが使用されるなどして、9ビットカウンタ233aおよび17ビットカウンタ233bのビット出力が、32ビットカウンタ233cのビット出力の下位に連続する32ビット出力に変換される。この変換は、NTPサーバから取得される64ビットフォーマットの時刻情報の下位32ビットのビット出力に対応させるために行われる。ビット変換部262では、このように変換された32ビット出力と32ビットカウンタ233cのビット出力とを合わせた64ビット出力が得られる。 The 58-bit bit output of the 9-bit counter 233a, the 17-bit counter 233b, and the 32-bit counter 233c is a system time clock (STC: System Time) Clock) as time information. This system time clock is input to the bit conversion unit 262. In the bit conversion unit 262, for example, a conversion table is used, and the bit output of the 9-bit counter 233a and the 17-bit counter 233b is converted into a 32-bit output continuous to the lower order of the bit output of the 32-bit counter 233c. The This conversion is performed to correspond to the lower 32 bits of the time information in the 64-bit format obtained from the NTP server. The bit conversion unit 262 obtains a 64-bit output that combines the 32-bit output converted in this way and the bit output of the 32-bit counter 233c.
 比較器234では、32ビットレジスタ261a,261bの保持内容が更新されるタイミングでビット変換部262からの64ビットのビット出力がラッチされ、レジスタ保持内容、つまりMTT放送ストリームから抽出された64ビットフォーマットの時刻情報と比較される。そして、比較器234から電圧制御発振器232に、比較誤差信号が制御信号として供給される。 The comparator 234 latches the 64-bit bit output from the bit conversion unit 262 at the timing when the contents held in the 32- bit registers 261a and 261b are updated, and the 64-bit format extracted from the contents held in the register, that is, the MTT broadcast stream. Is compared with the time information. Then, a comparison error signal is supplied from the comparator 234 to the voltage controlled oscillator 232 as a control signal.
 ここで、電圧制御発振器232、カウンタ233a,233b,233c、ビット変換部262および比較器234により、送信側と同様のPLL(Phase Locked Loop)回路が構成される。そのため、電圧制御発振器232では、MTT放送ストリームから抽出された64ビットフォーマットの時刻情報に同期した27MHzのクロック(システムクロック)が生成される。 Here, the voltage controlled oscillator 232, the counters 233a, 233b, 233c, the bit conversion unit 262, and the comparator 234 form a PLL (Phase Locked Loop) circuit similar to that on the transmission side. Therefore, the voltage controlled oscillator 232 generates a 27 MHz clock (system clock) synchronized with the time information in the 64-bit format extracted from the MTT broadcast stream.
 この変形例においては、カウンタ233a、カウンタ233b、カウンタ233cの初期値を与える場合、選局時や電源投入時において、受信した図19(a)の64ビットのNTPデータのうち下位32ビットを示すレジスタ261bの出力がオール0となった時点で、時刻情報の上位32ビットを示すレジスタ261aの出力を32ビットカウンタ233cの初期値としてセットし、かつ17ビットカウンタ233bと9ビットカウンタ233aをそれぞれオール0にセットする。 In this modification, when the initial values of the counter 233a, the counter 233b, and the counter 233c are given, the lower 32 bits of the received 64-bit NTP data in FIG. When the output of the register 261b becomes all 0s, the output of the register 261a indicating the upper 32 bits of the time information is set as the initial value of the 32-bit counter 233c, and the 17-bit counter 233b and the 9-bit counter 233a are all set. Set to 0.
 また、カウンタ233a、233b,233cでは、この27MHzのクロックの周波数情報を含み、MTT放送ストリームから抽出された64ビットフォーマットの時刻情報に同期した、58ビットの時刻情報(システム・タイム・クロック)が生成される。なお、図22のその他の部分は、図17と同様に構成される。 The counters 233a, 233b, and 233c include 58-bit time information (system time clock) that includes the 27-MHz clock frequency information and is synchronized with the 64-bit format time information extracted from the MTT broadcast stream. Generated. The other parts in FIG. 22 are configured in the same manner as in FIG.
 図21、図22に示すクロック同期・提示同期方式(MMT方式)にあっても、図16、図17にクロック同期・提示同期方式(MMT方式)と同様に、クロック同期および提示同期を実現できる。 Even in the clock synchronization / presentation synchronization method (MMT method) shown in FIGS. 21 and 22, clock synchronization and presentation synchronization can be realized in the same manner as the clock synchronization / presentation synchronization method (MMT method) in FIGS. .
 また、本技術は、以下のような構成を取ることもできる。
 (1)時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成部と、
 上記クロック生成部で生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成部と、
 伝送メディアと、上記時刻情報生成部で生成された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信部とを備える
 送信装置。
 (2)上記放送信号は、
 上記伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ
 前記(1)に記載の送信装置。
 (3)上記第1の伝送パケット内のIPパケットは、該IPパケットに含まれている伝送メディアの上記提示時刻情報をさらに含む
 前記(2)に記載の送信装置。
 (4)上記第1の伝送パケット内のIPパケットは、ペイロード部に上記伝送メディアが配置されたRTPパケットを含む
 前記(3)に記載の送信装置。
 (5)上記放送信号は、
 上記第1の伝送パケット内のIPパケットに含まれている伝送メディアの上記提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ
 前記(2)に記載の送信装置。
 (6)上記第1の伝送パケット内のIPパケットは、ペイロード部に上記伝送メディアが配置されたMMTパケットを含み、
 上記第2の伝送パケット内のIPパケットは、ペイロード部に上記提示時刻情報が配置されたMMTパケットを含む
 前記(5)に記載の送信装置。
 (7)上記時刻情報生成部は、
 上記クロック生成部で生成された27MHzのクロックをカウントして300分周する9ビットカウンタと、該9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、該17ビットカウンタの分周出力をカウントする32ビットカウンタとを有する
 前記(1)から(6)のいずれかに記載の送信装置。
 (8)上記クロック生成部は、
 27MHzのクロックを出力する電圧制御発振器と、
 上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
 上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
 上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
 上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力のうち、上記9ビットカウンタおよび上記17ビットカウンタのビット出力を、上記32ビットカウンタのビット出力の下位に連続する32ビット出力に変換して、該変換された32ビット出力と上記32ビットカウンタのビット出力とを合わせた64ビット出力を得るビット変換部と、
 上記ビット変換部で得られた64ビット出力と上記時刻情報サーバから取得された時刻情報とを比較し、差分値に対応した制御信号を上記電圧制御発振器に与える比較器とを有し、
 上記時刻情報生成部は、
 上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタにより構成される
 前記(1)から(7)のいずれかに記載の送信装置。
 (9)上記放送信号は、
 含まれる時刻情報が、上記時刻情報生成部で生成された時刻情報であるか上記時刻情報サーバから取得された時刻情報であるかを示す識別情報をさらに含む
 前記(1)から(8)のいずれかに記載の送信装置。
 (10)時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成ステップと、
 上記生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成ステップと、
 伝送メディアと、上記発生された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信ステップとを備える
 送信方法。
 (11)伝送メディアと、該伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号を受信する受信部と、
 上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報生成部と、
 上記放送信号に含まれる伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記クロック・時刻情報生成部で生成されたクロックおよび時刻情報に基づいて処理する処理部とを備える
 受信装置。
 (12)上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、該時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報であり、
 上記クロック・時刻情報生成部は、
 27MHzのクロックを出力する電圧制御発振器と、
 上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
 上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
 上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
 上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力と上記放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器とを有する
 前記(11)に記載の受信装置。
 (13)上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、上記時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報あるいは上記時刻情報サーバから取得された時刻情報と同じ第2の時刻情報であり、
 上記放送信号は、上記時刻情報サーバから取得された時刻情報に関連した時刻情報が、該時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む第1の時刻情報であるか、該時刻情報サーバから取得された時刻情報と同じ時刻情報であるかを示す識別情報をさらに有し、
 上記クロック・時刻情報生成部は、
 27MHzのクロックを出力する電圧制御発振器と、
 上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
 上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
 上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
 上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力と上記放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器と、
 上記識別情報が上記第1の時刻情報を示すとき上記比較器で得られる誤差信号を上記電圧制御発振器に制御信号として供給し、上記識別情報が上記第2の時刻情報を示すとき固定値を上記電圧制御発振器に制御信号として供給するセレクタとを有する
 前記(11)に記載の受信装置。
 (14)上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、該時刻情報サーバから取得された時刻情報と同じ時刻情報であり、
 上記クロック・時刻情報生成部は、
 27MHzのクロックを出力する電圧制御発振器と、
 上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
 上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
 上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
 上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力のうち、上記9ビットカウンタおよび上記17ビットカウンタのビット出力を、上記32ビットカウンタのビット出力の下位に連続する32ビット出力に変換して、該変換された32ビット出力と上記32ビットカウンタのビット出力とを合わせた64ビット出力を得るビット変換部と、
 上記ビット変換部で得られた64ビット出力と上記時刻情報サーバから取得された時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器とを有する
 前記(11)に記載の受信装置。
 (15)上記放送信号は、
 上記伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、上記時刻情報サーバから取得された時刻情報に関連した時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ
 前記(11)から(14)のいずれかに記載の受信装置。
 (16)上記第1の伝送パケット内のIPパケットは、該IPパケットに含まれている伝送メディアの上記提示時刻情報をさらに含む
 前記(15)に記載の受信装置。
 (17)上記放送信号は、
 上記第1の伝送パケット内のIPパケットに含まれている伝送メディアの上記提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ
 前記(15)に記載の受信装置。
 (18)伝送メディアと、該伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号を受信する受信ステップと、
 上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報発生ステップと、
 上記放送信号に含まれる上記伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記生成されたクロックおよび時刻情報に基づいて処理する処理ステップとを備える
 受信方法。
 (19)送信装置と受信装置とからなり、
 送信装置は、
 時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成部と、
 上記クロック生成部で生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成部と、
 伝送メディアと、上記時刻情報生成部で生成された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信部とを備え、
 受信装置は、
 上記IP方式の放送信号を受信する受信部と、
 上記放送信号に含まれる時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報生成部と、
 上記放送信号に含まれる伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記クロック・時刻情報生成部で生成されたクロックおよび時刻情報に基づいて処理する処理部とを備える
 送受信システム。
Moreover, this technique can also take the following structures.
(1) a clock generation unit that generates a 27 MHz clock synchronized with the time information acquired from the time information server;
A time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
The transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server A transmission unit that transmits an IP broadcast signal including time information acquired from the transmission device.
(2) The broadcast signal is
A first transmission packet encapsulating the IP packet including the transmission medium, and a second encapsulating the IP packet including the time information generated by the time information generation unit or the time information acquired from the time information server. The transmission device according to (1), including:
(3) The transmission device according to (2), wherein the IP packet in the first transmission packet further includes the presentation time information of the transmission medium included in the IP packet.
(4) The transmission device according to (3), wherein the IP packet in the first transmission packet includes an RTP packet in which the transmission medium is arranged in a payload portion.
(5) The broadcast signal is
The transmission device according to (2), including a third transmission packet encapsulating an IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
(6) The IP packet in the first transmission packet includes an MMT packet in which the transmission medium is arranged in a payload portion,
The transmission device according to (5), wherein the IP packet in the second transmission packet includes an MMT packet in which the presentation time information is arranged in a payload portion.
(7) The time information generation unit
A 9-bit counter that counts the frequency of 27 MHz generated by the clock generation unit and divides it by 300, a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000, The transmission device according to any one of (1) to (6), further including a 32-bit counter that counts the divided output.
(8) The clock generator
A voltage controlled oscillator that outputs a 27 MHz clock;
A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
A 32-bit counter that counts the divided output of the 17-bit counter;
Of the bit outputs of the 9-bit counter, the 17-bit counter, and the 32-bit counter, the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter. A bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
A comparator that compares the 64-bit output obtained by the bit conversion unit with the time information acquired from the time information server, and provides a control signal corresponding to the difference value to the voltage controlled oscillator;
The time information generator is
The transmission device according to any one of (1) to (7), including the 9-bit counter, the 17-bit counter, and the 32-bit counter.
(9) The broadcast signal is
Any one of (1) to (8) further including identification information indicating whether the time information included is the time information generated by the time information generation unit or the time information acquired from the time information server A transmitting device according to claim 1.
(10) a clock generation step of generating a 27 MHz clock synchronized with the time information acquired from the time information server;
A time information generating step for generating time information synchronized with the time information acquired from the time information server including the frequency information of the generated 27 MHz clock;
IP including transmission media, presentation time information for each presentation unit of the transmission media obtained based on the generated time information, and the generated time information or time information acquired from the time information server A transmission method comprising: a transmission step of transmitting a broadcast signal of a format.
(11) A receiving unit that receives an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server;
Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information. A time information generator,
A receiving apparatus comprising: a processing unit that processes transmission media included in the broadcast signal based on presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit.
(12) The time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server,
The clock / time information generator
A voltage controlled oscillator that outputs a 27 MHz clock;
A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
A 32-bit counter that counts the divided output of the 17-bit counter;
The bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the time information acquired from the time information server included in the broadcast signal, and as a control signal to the voltage-controlled oscillator The receiving device according to (11), further including a comparator that obtains an error signal to be supplied.
(13) The time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server or the time information. Second time information that is the same as the time information acquired from the server,
The broadcast signal is first time information in which time information related to the time information acquired from the time information server includes 27 MHz frequency information synchronized with the time information acquired from the time information server, It further has identification information indicating whether the time information is the same as the time information acquired from the time information server,
The clock / time information generator
A voltage controlled oscillator that outputs a 27 MHz clock;
A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
A 32-bit counter that counts the divided output of the 17-bit counter;
The bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the time information acquired from the time information server included in the broadcast signal, and as a control signal to the voltage-controlled oscillator A comparator for obtaining an error signal to be supplied;
When the identification information indicates the first time information, an error signal obtained by the comparator is supplied as a control signal to the voltage controlled oscillator, and when the identification information indicates the second time information, a fixed value is set. The receiving device according to (11), further including a selector that supplies a voltage-controlled oscillator as a control signal.
(14) The time information related to the time information acquired from the time information server included in the broadcast signal is the same time information as the time information acquired from the time information server,
The clock / time information generator
A voltage controlled oscillator that outputs a 27 MHz clock;
A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
A 32-bit counter that counts the divided output of the 17-bit counter;
Of the bit outputs of the 9-bit counter, the 17-bit counter, and the 32-bit counter, the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter. A bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
A comparator that compares the 64-bit output obtained by the bit conversion unit with the time information obtained from the time information server and obtains an error signal to be supplied as a control signal to the voltage controlled oscillator; The receiving device described in 1.
(15) The broadcast signal is
A first transmission packet encapsulating an IP packet including the transmission medium; and a second transmission packet encapsulating an IP packet including time information related to time information acquired from the time information server. (11) The receiving device according to any one of (14).
(16) The receiving device according to (15), wherein the IP packet in the first transmission packet further includes the presentation time information of the transmission medium included in the IP packet.
(17) The broadcast signal is
The receiving device according to (15), including a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
(18) A reception step of receiving an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server;
Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information.・ Time information generation step,
A receiving method comprising: processing the transmission medium included in the broadcast signal based on the presentation time information included in the broadcast signal and the generated clock and time information.
(19) It consists of a transmitting device and a receiving device,
The transmitter is
A clock generator for generating a 27 MHz clock synchronized with the time information acquired from the time information server;
A time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
The transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server A transmission unit that transmits an IP broadcast signal including time information acquired from
The receiving device
A receiving unit for receiving the IP system broadcast signal;
A clock / time information generating unit that generates time information including a 27 MHz clock and frequency information of the 27 MHz clock synchronized with the time information based on the time information included in the broadcast signal;
A transmission / reception system comprising: a transmission medium included in the broadcast signal; and a processing unit that processes presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit.
 本技術の主な特徴は、IP方式の放送信号にNTPサーバ(時刻情報サーバ)から取得された時刻情報に関連した時刻情報から取得された64ビットフォーマットの時刻情報、あるいはその時刻情報に同期した27MHzのクロックの周波数情報を含む時刻情報)を含めることで、クロック同期を実現可能としたことである(図5、図7参照)。 The main feature of this technology is that it is synchronized with the time information in 64-bit format acquired from the time information related to the time information acquired from the NTP server (time information server) in the IP broadcast signal or the time information. The clock synchronization can be realized by including the time information including the frequency information of the 27 MHz clock (see FIGS. 5 and 7).
 10・・・送受信システム
 11・・・クロック生成部
 12・・・時計部(時刻情報発生部)
 13・・・エンコード処理部
 14・・・パケット化/タイムスタンプ付加部
 15・・・エンコードバッファ
 21・・・クロック生成部
 22・・・時計部(時刻情報発生部)
 23・・・デコードバッファ
 24・・・デパケット化/タイミング調整部
 25・・・デコード処理部
 100・・・放送送出システム
 101・・・時計部
 102・・・信号送出部
 103・・・ビデオエンコーダ
 104・・・オーディオエンコーダ
 105・・・キャプションエンコーダ
 106・・・TLV(GSE)シグナリング発生部
 107-1~107-N・・・IPサービス・マルチプレクサ
 108・・・TLV(GSE)・マルチプレクサ
 109・・・変調/送信部
 111・・・時計部
 112・・・信号送出部
 113・・・ビデオエンコーダ
 114・・・オーディオエンコーダ
 115・・・キャプションエンコーダ
 116・・・シグナリング発生部
 117・・・TLV(GSE)シグナリング発生部
 118-1~118-N・・・IPサービス・マルチプレクサ
 119・・・マルチプレクサ
 120・・・変調/送信部
 131・・・NTP/IPインタフェース
 132a,132b・・・32ビットレジスタ
 133・・・電圧制御発振器
 134a・・・9ビットカウンタ
 134b・・・17ビットカウンタ
 134c・・・32ビットカウンタ
 135・・・ビット変換部
 136・・・比較器
 137・・・パケット化部
 138・・・ビデオエンコード処理部
 139・・・パケット化/タイムスタンプ付加部
 140・・・エンコードバッファ
 141・・・マルチプレクサ
 151・・・パケット化部
 152・・・タイムスタンプ発生部
 153・・・パケット化部
 200・・・受信機
 201・・・チューナ/復調部
 202・・・TLV(GSE)・デマルチプレクサ
 203・・・時計部
 204・・・ビデオデコーダ
 205・・・オーディオデコーダ
 206・・・キャプションデコーダ
 207・・・システム制御部
 208・・・合成部
 231・・・デマルチプレクサ
 232・・・電圧制御発振器
 233a・・・9ビットカウンタ
 233b・・・17ビットカウンタ
 233c・・・32ビットカウンタ
 234・・・比較器
 235・・・デコードバッファ
 236・・・デパケット化部
 237・・・提示制御部
 238・・・ビデオデコード処理部
 251・・・デパケット化部
 261・・・セレクタ
 262・・・ビット変換部
 263・・・セレクタ
DESCRIPTION OF SYMBOLS 10 ... Transmission / reception system 11 ... Clock generation part 12 ... Clock part (time information generation part)
DESCRIPTION OF SYMBOLS 13 ... Encoding process part 14 ... Packetization / time stamp addition part 15 ... Encoding buffer 21 ... Clock generation part 22 ... Clock part (Time information generation part)
DESCRIPTION OF SYMBOLS 23 ... Decoding buffer 24 ... Depacketization / timing adjustment part 25 ... Decoding processing part 100 ... Broadcast transmission system 101 ... Clock part 102 ... Signal transmission part 103 ... Video encoder 104 ... Audio encoder 105 ... Caption encoder 106 ... TLV (GSE) signaling generator 107-1 to 107-N ... IP service multiplexer 108 ... TLV (GSE) multiplexer 109 ... Modulation / transmission unit 111 ... clock unit 112 ... signal transmission unit 113 ... video encoder 114 ... audio encoder 115 ... caption encoder 116 ... signaling generation unit 117 ... TLV (GSE) Signaling generator 118-1 to 118-N ... IP server Screw multiplexer 119 ... Multiplexer 120 ... Modulation / transmission unit 131 ... NTP / IP interface 132a, 132b ... 32 bit register 133 ... Voltage controlled oscillator 134a ... 9 bit counter 134b ... 17-bit counter 134c ... 32-bit counter 135 ... bit converter 136 ... comparator 137 ... packetizer 138 ... video encode processor 139 ... packetization / timestamp adder 140 ... Encode buffer 141 ... Multiplexer 151 ... Packetization unit 152 ... Time stamp generation unit 153 ... Packetization unit 200 ... Receiver 201 ... Tuner / demodulation unit 202 ... · TLV (GSE) · Demultiplexer 203 · · · Total unit 204 ... Video decoder 205 ... Audio decoder 206 ... Caption decoder 207 ... System control unit 208 ... Synthesis unit 231 ... Demultiplexer 232 ... Voltage controlled oscillator 233a ... 9-bit counter 233b ... 17-bit counter 233c ... 32-bit counter 234 ... comparator 235 ... decode buffer 236 ... depacketizer 237 ... presentation controller 238 ... video decode processing Unit 251 ... depacketization unit 261 ... selector 262 ... bit conversion unit 263 ... selector

Claims (18)

  1.  時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成部と、
     上記クロック生成部で生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成部と、
     伝送メディアと、上記時刻情報生成部で生成された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信部とを備える
     送信装置。
    A clock generator for generating a 27 MHz clock synchronized with the time information acquired from the time information server;
    A time information generation unit that generates time information synchronized with the time information acquired from the time information server including the frequency information of the 27 MHz clock generated by the clock generation unit;
    The transmission media, the presentation time information for each presentation unit of the transmission media obtained based on the time information generated by the time information generation unit, and the time information generated by the time information generation unit or the time information server A transmission unit that transmits an IP broadcast signal including time information acquired from the transmission device.
  2.  上記放送信号は、
     上記伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、上記時刻情報生成部で生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ
     請求項1に記載の送信装置。
    The broadcast signal is
    A first transmission packet encapsulating the IP packet including the transmission medium, and a second encapsulating the IP packet including the time information generated by the time information generation unit or the time information acquired from the time information server. The transmission apparatus according to claim 1, further comprising:
  3.  上記第1の伝送パケット内のIPパケットは、該IPパケットに含まれている伝送メディアの上記提示時刻情報をさらに含む
     請求項2に記載の送信装置。
    The transmission device according to claim 2, wherein an IP packet in the first transmission packet further includes the presentation time information of a transmission medium included in the IP packet.
  4.  上記第1の伝送パケット内のIPパケットは、ペイロード部に上記伝送メディアが配置されたRTPパケットを含む
     請求項3に記載の送信装置。
    The transmission device according to claim 3, wherein the IP packet in the first transmission packet includes an RTP packet in which the transmission medium is arranged in a payload portion.
  5.  上記放送信号は、
     上記第1の伝送パケット内のIPパケットに含まれている伝送メディアの上記提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ
     請求項2に記載の送信装置。
    The broadcast signal is
    The transmission apparatus according to claim 2, further comprising: a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
  6.  上記第1の伝送パケット内のIPパケットは、ペイロード部に上記伝送メディアが配置されたMMTパケットを含み、
     上記第2の伝送パケット内のIPパケットは、ペイロード部に上記提示時刻情報が配置されたMMTパケットを含む
     請求項5に記載の送信装置。
    The IP packet in the first transmission packet includes an MMT packet in which the transmission medium is arranged in a payload portion,
    The transmission device according to claim 5, wherein the IP packet in the second transmission packet includes an MMT packet in which the presentation time information is arranged in a payload portion.
  7.  上記時刻情報生成部は、
     上記クロック生成部で生成された27MHzのクロックをカウントして300分周する9ビットカウンタと、該9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、該17ビットカウンタの分周出力をカウントする32ビットカウンタとを有する
     請求項1に記載の送信装置。
    The time information generator is
    A 9-bit counter that counts the frequency of 27 MHz generated by the clock generation unit and divides it by 300, a 17-bit counter that counts the divided output of the 9-bit counter and divides it by 90000, The transmission device according to claim 1, further comprising a 32-bit counter that counts the divided output.
  8.  上記クロック生成部は、
     27MHzのクロックを出力する電圧制御発振器と、
     上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
     上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
     上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
     上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力のうち、上記9ビットカウンタおよび上記17ビットカウンタのビット出力を、上記32ビットカウンタのビット出力の下位に連続する32ビット出力に変換して、該変換された32ビット出力と上記32ビットカウンタのビット出力とを合わせた64ビット出力を得るビット変換部と、
     上記ビット変換部で得られた64ビット出力と上記時刻情報サーバから取得された時刻情報とを比較し、差分値に対応した制御信号を上記電圧制御発振器に与える比較器とを有し、
     上記時刻情報生成部は、
     上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタにより構成される
     請求項1に記載の送信装置。
    The clock generator
    A voltage controlled oscillator that outputs a 27 MHz clock;
    A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
    A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
    A 32-bit counter that counts the divided output of the 17-bit counter;
    Of the bit outputs of the 9-bit counter, the 17-bit counter, and the 32-bit counter, the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter. A bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
    A comparator that compares the 64-bit output obtained by the bit conversion unit with the time information acquired from the time information server, and provides a control signal corresponding to the difference value to the voltage controlled oscillator;
    The time information generator is
    The transmission device according to claim 1, comprising the 9-bit counter, the 17-bit counter, and the 32-bit counter.
  9.  上記放送信号は、
     含まれる時刻情報が、上記時刻情報生成部で生成された時刻情報であるか上記時刻情報サーバから取得された時刻情報であるかを示す識別情報をさらに含む
     請求項1に記載の送信装置。
    The broadcast signal is
    The transmission device according to claim 1, further comprising identification information indicating whether the time information included is time information generated by the time information generation unit or time information acquired from the time information server.
  10.  時刻情報サーバから取得された時刻情報に同期した27MHzのクロックを生成するクロック生成ステップと、
     上記生成された27MHzのクロックの周波数情報を含む上記時刻情報サーバから取得された時刻情報に同期した時刻情報を生成する時刻情報生成ステップと、
     伝送メディアと、上記発生された時刻情報に基づいて得られた該伝送メディアの提示単位毎の提示時刻情報と、上記生成された時刻情報あるいは上記時刻情報サーバから取得された時刻情報とを含むIP方式の放送信号を送信する送信ステップとを備える
     送信方法。
    A clock generation step of generating a 27 MHz clock synchronized with the time information acquired from the time information server;
    A time information generating step for generating time information synchronized with the time information acquired from the time information server including the frequency information of the generated 27 MHz clock;
    IP including transmission media, presentation time information for each presentation unit of the transmission media obtained based on the generated time information, and the generated time information or time information acquired from the time information server A transmission method comprising: a transmission step of transmitting a broadcast signal of a format.
  11.  伝送メディアと、該伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号を受信する受信部と、
     上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報生成部と、
     上記放送信号に含まれる伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記クロック・時刻情報生成部で生成されたクロックおよび時刻情報に基づいて処理する処理部とを備える
     受信装置。
    A receiving unit that receives an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server;
    Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information. A time information generator,
    A receiving apparatus comprising: a processing unit that processes transmission media included in the broadcast signal based on presentation time information included in the broadcast signal and a clock and time information generated by the clock / time information generation unit.
  12.  上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、該時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報であり、
     上記クロック・時刻情報生成部は、
     27MHzのクロックを出力する電圧制御発振器と、
     上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
     上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
     上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
     上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力と上記放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器とを有する
     請求項11に記載の受信装置。
    The time information related to the time information acquired from the time information server included in the broadcast signal is time information including 27 MHz frequency information synchronized with the time information acquired from the time information server,
    The clock / time information generator
    A voltage controlled oscillator that outputs a 27 MHz clock;
    A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
    A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
    A 32-bit counter that counts the divided output of the 17-bit counter;
    The bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the time information acquired from the time information server included in the broadcast signal, and as a control signal to the voltage-controlled oscillator The receiving device according to claim 11, further comprising a comparator that obtains an error signal to be supplied.
  13.  上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、上記時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む時刻情報あるいは上記時刻情報サーバから取得された時刻情報と同じ時刻情報であり、
     上記放送信号は、上記時刻情報サーバから取得された時刻情報に関連した時刻情報が、該時刻情報サーバから取得された時刻情報に同期した27MHzの周波数情報を含む第1の時刻情報であるか、該時刻情報サーバから取得された時刻情報と同じ第2の時刻情報であるかを示す識別情報をさらに有し、
     上記クロック・時刻情報生成部は、
     27MHzのクロックを出力する電圧制御発振器と、
     上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
     上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
     上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
     上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力と上記放送信号が有する時刻情報サーバから取得された時刻情報に関連した時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器と、
     上記識別情報が上記第1の時刻情報を示すとき上記比較器で得られる誤差信号を上記電圧制御発振器に制御信号として供給し、上記識別情報が上記第2の時刻情報を示すとき固定値を上記電圧制御発振器に制御信号として供給するセレクタとを有する
     請求項11記載の受信装置。
    The time information related to the time information acquired from the time information server included in the broadcast signal is acquired from the time information including the 27 MHz frequency information synchronized with the time information acquired from the time information server or from the time information server. Is the same time information as
    The broadcast signal is first time information in which time information related to the time information acquired from the time information server includes 27 MHz frequency information synchronized with the time information acquired from the time information server, It further has identification information indicating whether the second time information is the same as the time information acquired from the time information server,
    The clock / time information generator
    A voltage controlled oscillator that outputs a 27 MHz clock;
    A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
    A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
    A 32-bit counter that counts the divided output of the 17-bit counter;
    The bit output of the 9-bit counter, the 17-bit counter, and the 32-bit counter is compared with the time information related to the time information acquired from the time information server included in the broadcast signal, and as a control signal to the voltage-controlled oscillator A comparator for obtaining an error signal to be supplied;
    When the identification information indicates the first time information, an error signal obtained by the comparator is supplied as a control signal to the voltage controlled oscillator, and when the identification information indicates the second time information, a fixed value is set. The receiving device according to claim 11, further comprising a selector that supplies the voltage controlled oscillator as a control signal.
  14.  上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報は、該時刻情報サーバから取得された時刻情報と同じ時刻情報であり、
     上記クロック・時刻情報生成部は、
     27MHzのクロックを出力する電圧制御発振器と、
     上記電圧制御発振器のクロック出力をカウントして300分周する9ビットカウンタと、
     上記9ビットカウンタの分周出力をカウントして90000分周する17ビットカウンタと、
     上記17ビットカウンタの分周出力をカウントする32ビットカウンタと、
     上記9ビットカウンタ、上記17ビットカウンタおよび上記32ビットカウンタのビット出力のうち、上記9ビットカウンタおよび上記17ビットカウンタのビット出力を、上記32ビットカウンタのビット出力の下位に連続する32ビット出力に変換して、該変換された32ビット出力と上記32ビットカウンタのビット出力とを合わせた64ビット出力を得るビット変換部と、
     上記ビット変換部で得られた64ビット出力と上記時刻情報サーバから取得された時刻情報とを比較し、上記電圧制御発振器に制御信号として供給する誤差信号を得る比較器とを有する
     請求項11に記載の受信装置。
    The time information related to the time information acquired from the time information server included in the broadcast signal is the same time information as the time information acquired from the time information server,
    The clock / time information generator
    A voltage controlled oscillator that outputs a 27 MHz clock;
    A 9-bit counter that counts and divides the clock output of the voltage controlled oscillator by 300;
    A 17-bit counter that counts the divided output of the 9-bit counter and divides the frequency by 90000;
    A 32-bit counter that counts the divided output of the 17-bit counter;
    Of the bit outputs of the 9-bit counter, the 17-bit counter, and the 32-bit counter, the bit outputs of the 9-bit counter and the 17-bit counter are converted into 32-bit outputs that are consecutively lower than the bit outputs of the 32-bit counter. A bit conversion unit for converting and obtaining a 64-bit output by combining the converted 32-bit output and the bit output of the 32-bit counter;
    A comparator that compares the 64-bit output obtained by the bit conversion unit with time information acquired from the time information server and obtains an error signal to be supplied as a control signal to the voltage controlled oscillator. The receiving device described.
  15.  上記放送信号は、
     上記伝送メディアを含むIPパケットをカプセル化した第1の伝送パケットと、上記時刻情報サーバから取得された時刻情報に関連した時刻情報を含むIPパケットをカプセル化した第2の伝送パケットとを持つ
     請求項11に記載の受信装置。
    The broadcast signal is
    A first transmission packet encapsulating the IP packet including the transmission medium, and a second transmission packet encapsulating the IP packet including time information related to the time information acquired from the time information server. Item 12. The receiving device according to Item 11.
  16.  上記第1の伝送パケット内のIPパケットは、該IPパケットに含まれている伝送メディアの上記提示時刻情報をさらに含む
     請求項15に記載の受信装置。
    The receiving apparatus according to claim 15, wherein an IP packet in the first transmission packet further includes the presentation time information of a transmission medium included in the IP packet.
  17.  上記放送信号は、
     上記第1の伝送パケット内のIPパケットに含まれている伝送メディアの上記提示時刻情報を含むIPパケットをカプセル化した第3の伝送パケットを持つ
     請求項15に記載の受信装置。
    The broadcast signal is
    The receiving device according to claim 15, further comprising a third transmission packet encapsulating the IP packet including the presentation time information of the transmission medium included in the IP packet in the first transmission packet.
  18.  伝送メディアと、該伝送メディアの提示単位毎の提示時刻情報と、時刻情報サーバから取得された時刻情報に関連した時刻情報とを含むIP方式の放送信号を受信する受信ステップと、
     上記放送信号に含まれる時刻情報サーバから取得された時刻情報に関連した時刻情報に基づいて、該時刻情報に同期した、27MHzのクロックおよび該27MHzのクロックの周波数情報を含む時刻情報を生成するクロック・時刻情報発生ステップと、
     上記放送信号に含まれる上記伝送メディアを、上記放送信号に含まれる提示時刻情報と、上記生成されたクロックおよび時刻情報に基づいて処理する処理ステップとを備える
     受信方法。
    A reception step of receiving an IP broadcast signal including a transmission medium, presentation time information for each presentation unit of the transmission medium, and time information related to the time information acquired from the time information server;
    Based on the time information related to the time information acquired from the time information server included in the broadcast signal, a clock for generating time information including the 27 MHz clock and the frequency information of the 27 MHz clock synchronized with the time information.・ Time information generation step,
    A receiving method comprising: processing the transmission medium included in the broadcast signal based on the presentation time information included in the broadcast signal and the generated clock and time information.
PCT/JP2014/062991 2013-05-23 2014-05-15 Transmission device, transmission method, reception device and reception method WO2014188960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109174 2013-05-23
JP2013109174A JP2014230154A (en) 2013-05-23 2013-05-23 Transmission apparatus, transmission method, reception apparatus, and reception method

Publications (1)

Publication Number Publication Date
WO2014188960A1 true WO2014188960A1 (en) 2014-11-27

Family

ID=51933518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062991 WO2014188960A1 (en) 2013-05-23 2014-05-15 Transmission device, transmission method, reception device and reception method

Country Status (2)

Country Link
JP (1) JP2014230154A (en)
WO (1) WO2014188960A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068352A1 (en) * 2013-11-08 2015-05-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Transmission method, reception method, transmission apparatus, and reception apparatus
WO2015115171A1 (en) * 2014-01-31 2015-08-06 ソニー株式会社 Transmission device, transmission method, reception device, and reception method
JP2016032236A (en) * 2014-07-30 2016-03-07 ソニー株式会社 Transmitter, transmission method, receiver and reception method
WO2017026248A1 (en) * 2015-08-07 2017-02-16 ソニー株式会社 Receiving device and data processing method
WO2017026249A1 (en) * 2015-08-07 2017-02-16 ソニー株式会社 Reception device and data processing method
US9992550B2 (en) 2013-11-08 2018-06-05 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
JP2020174404A (en) * 2014-08-27 2020-10-22 パナソニックIpマネジメント株式会社 Decoding device and decoding method
US11252215B2 (en) * 2018-12-28 2022-02-15 Kabushiki Kaisha Toshiba Broadcasting system, encoder, multiplexing apparatus, multiplexing method, system switching apparatus, and synchronization control apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506009B2 (en) * 2013-11-22 2019-04-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmission method, reception method, transmission apparatus, and reception apparatus
JP6692057B2 (en) * 2014-12-10 2020-05-13 パナソニックIpマネジメント株式会社 Transmission method, reception method, transmission device, and reception device
WO2017195668A1 (en) 2016-05-13 2017-11-16 ソニー株式会社 Reception device and data processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163691A (en) * 2001-11-28 2003-06-06 Sony Corp Data communication system, data transmitter, data receiver, method therefor and computer program
JP2007158879A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Video server, and receiver
JP2010532605A (en) * 2007-07-02 2010-10-07 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Apparatus and method for storing and retrieving files having media data containers and metadata containers
JP2012520648A (en) * 2009-03-16 2012-09-06 コニンクリジケ ケーピーエヌ エヌブィー Modified stream synchronization
JP2013042361A (en) * 2011-08-16 2013-02-28 Nippon Hoso Kyokai <Nhk> Transmission device, clock corresponding information distribution apparatus, content providing system, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163691A (en) * 2001-11-28 2003-06-06 Sony Corp Data communication system, data transmitter, data receiver, method therefor and computer program
JP2007158879A (en) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd Video server, and receiver
JP2010532605A (en) * 2007-07-02 2010-10-07 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン Apparatus and method for storing and retrieving files having media data containers and metadata containers
JP2012520648A (en) * 2009-03-16 2012-09-06 コニンクリジケ ケーピーエヌ エヌブィー Modified stream synchronization
JP2013042361A (en) * 2011-08-16 2013-02-28 Nippon Hoso Kyokai <Nhk> Transmission device, clock corresponding information distribution apparatus, content providing system, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KYUNGMO PARK ET AL.: "Study of ISO/IEC CD 23008- 1 MPEG Media Transport", ISO/IEC JTC1/SC29/WG11 MPEG/N13089, October 2012 (2012-10-01), SHANGHAI, CHINA, pages 38 - 44,63-64,69-74, Retrieved from the Internet <URL:http://mpeg.chiariglione.org/standards/mpeg-h/mpeg-media-transport/study-isoiec-cd-23008-1-mpeg-media-transport> *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10440442B2 (en) 2013-11-08 2019-10-08 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
WO2015068352A1 (en) * 2013-11-08 2015-05-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Transmission method, reception method, transmission apparatus, and reception apparatus
US11523191B2 (en) 2013-11-08 2022-12-06 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
US11128928B2 (en) 2013-11-08 2021-09-21 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
US11800196B1 (en) 2013-11-08 2023-10-24 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
US9992550B2 (en) 2013-11-08 2018-06-05 Panasonic Intellectual Property Corporation Of America Transmission method, reception method, transmission apparatus, and reception apparatus
WO2015115171A1 (en) * 2014-01-31 2015-08-06 ソニー株式会社 Transmission device, transmission method, reception device, and reception method
US10231007B2 (en) 2014-01-31 2019-03-12 Saturn Licensing Llc Transmission device, transmitting method, reception device, and receiving method
JPWO2015115171A1 (en) * 2014-01-31 2017-03-23 ソニー株式会社 Transmitting apparatus, transmitting method, receiving apparatus, and receiving method
JP2016032236A (en) * 2014-07-30 2016-03-07 ソニー株式会社 Transmitter, transmission method, receiver and reception method
JP2022059047A (en) * 2014-08-27 2022-04-12 パナソニックIpマネジメント株式会社 Demultiplexing device and demultiplexing method
JP7257648B2 (en) 2014-08-27 2023-04-14 パナソニックIpマネジメント株式会社 Demultiplexing device and demultiplexing method
JP2020174404A (en) * 2014-08-27 2020-10-22 パナソニックIpマネジメント株式会社 Decoding device and decoding method
JP7450197B2 (en) 2014-08-27 2024-03-15 パナソニックIpマネジメント株式会社 Receiving device and receiving method
JP7038311B2 (en) 2014-08-27 2022-03-18 パナソニックIpマネジメント株式会社 Decoding device and decoding method
US10785525B2 (en) 2015-08-07 2020-09-22 Saturn Licensing Llc Reception apparatus and data processing method
US10225030B2 (en) 2015-08-07 2019-03-05 Sony Corporation Reception apparatus and data processing method
WO2017026249A1 (en) * 2015-08-07 2017-02-16 ソニー株式会社 Reception device and data processing method
WO2017026248A1 (en) * 2015-08-07 2017-02-16 ソニー株式会社 Receiving device and data processing method
US20220094735A1 (en) * 2018-12-28 2022-03-24 Kabushiki Kaisha Toshiba Broadcasting system, encoder, multiplexing apparatus, multiplexing method, system switching apparatus, and synchronization control apparatus
US11252215B2 (en) * 2018-12-28 2022-02-15 Kabushiki Kaisha Toshiba Broadcasting system, encoder, multiplexing apparatus, multiplexing method, system switching apparatus, and synchronization control apparatus
US11606410B2 (en) 2018-12-28 2023-03-14 Kabushiki Kaisha Toshiba Broadcasting system, encoder, multiplexing apparatus, multiplexing method, system switching apparatus, and synchronization control apparatus
US11936713B2 (en) 2018-12-28 2024-03-19 Kabushiki Kaisha Toshiba Broadcasting system, encoder, multiplexing apparatus, multiplexing method, system switching apparatus, and synchronization control apparatus

Also Published As

Publication number Publication date
JP2014230154A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
WO2014188960A1 (en) Transmission device, transmission method, reception device and reception method
JP6330681B2 (en) Transmitting apparatus, transmitting method, receiving apparatus, and receiving method
JP6302274B2 (en) Transmitting apparatus and receiving apparatus
JP7279767B2 (en) Transmission method and transmission device
EP2728858B1 (en) Receiving apparatus and receiving method thereof
KR102171652B1 (en) Transmission device, transmission method, reception device, and reception method
JP2013192148A (en) Reception device, clock restoration method, and program
JP2018182677A (en) Information processing apparatus, information processing method, program, and recording medium manufacturing method
JP6318953B2 (en) Transmitting apparatus, transmitting method, receiving apparatus, and receiving method
JP3906712B2 (en) Data stream processing device
WO2017082059A1 (en) Information processing device, information processing method, and program
JP2018182617A (en) Information processing apparatus, information processing method, program, and recording medium manufacturing method
JP6908170B2 (en) Sending method
JP7371734B2 (en) How to send
JP6504294B2 (en) Transmission apparatus, transmission method, reception apparatus and reception method
JP6743931B2 (en) Transmission device, transmission method, reception device, and reception method
WO2015151781A1 (en) Transmission device, transmission method, reception device, and reception method
JP6515741B2 (en) Content transmission system, transmission apparatus, transmission method, transmission program
JP2014150335A (en) Information processing apparatus, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800693

Country of ref document: EP

Kind code of ref document: A1