WO2014188795A1 - Diagnostic medical imaging system and radiography apparatus - Google Patents

Diagnostic medical imaging system and radiography apparatus Download PDF

Info

Publication number
WO2014188795A1
WO2014188795A1 PCT/JP2014/059738 JP2014059738W WO2014188795A1 WO 2014188795 A1 WO2014188795 A1 WO 2014188795A1 JP 2014059738 W JP2014059738 W JP 2014059738W WO 2014188795 A1 WO2014188795 A1 WO 2014188795A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
imaging
fpd
image data
time
Prior art date
Application number
PCT/JP2014/059738
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 西島
智紀 儀同
修吾 石阪
孝夫 椎橋
志行 金子
陽 廣重
兼六 生方
幸大 贄川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013109880A external-priority patent/JP2016144481A/en
Priority claimed from JP2013135685A external-priority patent/JP2016144482A/en
Priority claimed from JP2013207343A external-priority patent/JP2016146513A/en
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014188795A1 publication Critical patent/WO2014188795A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to a diagnostic providing medical image system and a radiographic imaging apparatus that generate a diagnostic providing medical image based on image data read by a radiographic imaging apparatus.
  • a plurality of radiation detection elements 7 are arranged in a two-dimensional form (matrix form) on the detection part P4 of the sensor panel SP, and each radiation detection element is detected.
  • Each element 7 is configured by being connected to a switch element formed by a thin film transistor (Thin Film Transistor, hereinafter referred to as TFT) 8.
  • TFT Thin Film Transistor
  • the “predetermined time” set for accumulating charges in each radiation detection element 7 is referred to as an accumulation time ⁇ .
  • a state in which all TFTs 8 are turned off and charges are accumulated in each radiation detection element 7 is referred to as a charge accumulation state. That is, the accumulation time ⁇ means the duration of this charge accumulation state.
  • the reading process of the image data D from each radiation detection element 7 is performed.
  • an ON voltage is sequentially applied from the gate driver 15b to each of the lines L1 to Lx of the scanning line 5 so that the TFTs 8 are sequentially turned on, and are generated and accumulated in each radiation detecting element 7 by radiation irradiation.
  • the charges are sequentially discharged to the signal lines 6 and read out as image data D by the readout circuits 17, respectively.
  • each TFT 8 which is a switching element of the FPD is in an OFF state.
  • imaging is performed while synchronizing between the radiation generation apparatus and the FPD.
  • Such a photographing method is hereinafter referred to as a synchronous method.
  • the FPD receives a wake-up signal (also referred to as a wake up signal) from a console 58 (see FIGS. 3 and 4 described later) or an exposure described later from the radiation generator.
  • a wake-up signal also referred to as a wake up signal
  • the FPD receives a signal indicating that the first-stage operation of the shooting switch 56 (ie, a so-called half-pressing operation) has been received, etc.
  • reset processing of each radiation detection element 7 for removing the charge remaining in each radiation detection element 7 To start.
  • the reset processing of each radiation detection element 7 is performed, for example, as shown in the left part of FIG. 28, an ON voltage is applied to each line L1 to Lx of the scanning line 5 from the gate driver 15b (see FIG. 2 described later).
  • It may be configured to be applied sequentially, and although not shown, it may be configured to apply the on-voltage to the lines L1 to Lx of the scanning line 5 from the gate driver 15b all at once. Is possible. Further, Tac in FIG. 28 will be described later.
  • an irradiation start signal is transmitted from the radiation generator to the FPD.
  • the FPD receives the irradiation start signal, as shown in FIG. 28, the reset processing of each radiation detection element 7 is ended and an interlock release signal is transmitted to the radiation generation apparatus.
  • a radiation generator irradiates radiation at the time of receiving an interlock release signal.
  • the FPD transmits the interlock release signal as described above, and at the same time, turns off the TFT 8 and shifts to the charge accumulation state.
  • the FPD sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b as described above, so that the image data D from each radiation detection element 7 is transferred. It is configured to perform a read process.
  • an X-ray detection means such as an X-ray sensor is attached to the FPD (see Patent Document 2), or predetermined radiation detection among the radiation detection elements 7 arranged in a two-dimensional manner as described above.
  • the element 7 is configured to be used as a sensor (see Patent Document 3), or the current detection means is provided on a bias line 9 (see FIG. 2 and the like described later) connected to each radiation detection element 7. Is also possible (see Patent Document 4).
  • the readout circuit 17 is caused to perform a readout operation in a state in which each TFT 8 is turned off by applying an off voltage to all the scanning lines 5 from the gate driver 15b of the scanning drive unit 15.
  • the values of the leak data dleak read out as described above and the image data d for irradiation start detection are as follows: It becomes much larger than before the start of irradiation. For this reason, it is possible to detect the start of radiation irradiation when, for example, the read leak data dleak or image data d for detection of irradiation start is equal to or greater than a threshold value. Even if any of the above detection methods in the asynchronous method is employed, when the FPD detects the start of irradiation of radiation from the radiation generator, all the TFTs 8 are turned off and the charge accumulation state is entered. Then, after the accumulation time ⁇ elapses, the image data D is read from each radiation detection element 7 as described above.
  • each radiation detection element 7 so-called dark charges (also referred to as dark current) are constantly generated due to thermal excitation or the like due to heat (temperature) of the radiation detection element 7 itself.
  • the TFT 8 serving as the switch element is turned off, the dark charge continues to accumulate in the radiation detection element 7.
  • the reading process of the image data D as the main image is performed according to the processing sequence shown in FIG. 28, the reading of the image data D is performed after the on-voltage is applied in the reset process before the reading process. Until the on-voltage is applied during processing, the TFT 8 is in an off state, and thus dark charges generated in each radiation detection element 7 during that time are accumulated in each radiation detection element 7.
  • the image data D has a voltage applied in the read process of the image data D after the voltage applied in the reset process before the read process is switched from the on voltage to the off voltage.
  • the offset data O reading process for reading the offset o due to the dark charge as the offset data O is normally performed after photographing.
  • the amount of dark charge accumulated in each radiation detection element 7, that is, the offset o due to the dark charge superimposed on the image data D changes according to the length of the effective accumulation time Tac. Further, if the length of the effective accumulation time Tac is the same, the value of the offset o due to the dark charge is the same. Therefore, in the offset data O reading process, the effective accumulation time Tac for each of the lines L1 to Lx of the scanning line 5 is set to the same time interval as the effective accumulation time Tac (see FIG. 28) in the image data D reading process.
  • the offset data O and the offset o due to the dark charge superimposed on the image data D can be made the same size.
  • O o
  • the offset data O reading process is often configured to repeat the same processing sequence as the processing sequence up to the image data D reading process shown in FIG.
  • the timing of applying the ON voltage to each of the lines L1 to Lx of the scanning line 5 is the case of the reading process of the image data D and the case of the reading process of the offset data O
  • the effective accumulation time Tac becomes the same time interval for each of the lines L1 to Lx of the scanning line 5.
  • the offset data O is read out in a state in which the FPD is not irradiated with radiation.
  • the accumulation time ⁇ (see FIG. 28), which is the duration of the charge accumulation state before the image data D reading process, and the accumulation time ⁇ before the offset data O reading process (see FIG. 29) are also completely different. Set to the same time interval.
  • the offset data O is read out by repeating the same processing sequence as the processing sequence up to the reading processing of the image data D (see FIG. 28), the reading processing of the image data D is performed.
  • the effective accumulation time Tac and the effective accumulation time Tac at the time of the reading process of the offset data O are the same time interval, and the offset o due to the dark charge superimposed on the image data D and the offset data O have the same size. . Therefore, when the image processing is performed, the offset amount o due to the dark charge superimposed on the image data D and the offset data O are canceled by performing the calculation of the above equation (2), so that the true image data D * Can be calculated accurately.
  • the offset data O is read out as described above, and the read offset data O and image data D are substituted into the above equation (2). It has been found that when the image data D * is calculated, the offset o due to the dark charge superimposed on the image data D and the offset data O may not be offset. In such a situation, the reading process of the image data D and the reading process of the offset data O are performed as described above, and a true image is obtained according to the above equation (2) based on the read image data D and the offset data O. When the data D * is calculated, the image quality of the diagnostic-provided medical image generated based on the calculated true image data D * may be deteriorated.
  • the FPD has a photographing mode including at least a control unit 22, a scanning drive unit 15, and a readout IC 16 ( (See FIG. 2 to be described later) and the like, a power is supplied to each functional unit such as a wake up mode in which imaging can be performed, and power is supplied only to necessary functional units such as the communication unit 30 to perform imaging. It has been found that the above phenomenon appears when it is configured to be able to transition to a sleep mode that cannot be performed.
  • the present invention has been made in view of the above-described problems, and is generated even when imaging is performed using an FPD (radiation imaging apparatus) capable of changing the imaging mode from the sleep mode to the awakening mode. It is an object of the present invention to provide a diagnostic providing medical image system and a radiographic imaging apparatus capable of accurately preventing deterioration of the image quality of a diagnostic providing medical image.
  • FPD radiation imaging apparatus
  • a medical image system for diagnosis provision and a radiographic imaging apparatus of the present invention include: A plurality of scanning lines and a plurality of signal lines; A plurality of radiation detection elements arranged two-dimensionally; Scanning drive means for switching a voltage applied to each scanning line between an on-voltage and an off-voltage, A switch element connected to each of the scanning lines, and discharging a charge accumulated in the radiation detection element to the signal line when an on-voltage is applied; A readout circuit for reading out the electric charge emitted to the signal line as image data; Control means for controlling at least the scanning drive means and the readout circuit to perform the readout processing of the image data; A radiographic imaging device comprising: A radiation generator for irradiating the radiation imaging apparatus with radiation through a subject; and A notification device; With The radiographic image capturing apparatus supplies an imaging mode, an awakening mode capable of performing imaging by supplying power to each functional unit including at least the control unit, and supplying power only to necessary functional units to perform imaging.
  • the control means of the radiographic image capturing apparatus includes: At the time of imaging, after performing reset processing of each radiation detection element, the scanning drive means applies an off voltage to each scanning line, and the switch element is turned off by irradiation of radiation.
  • the charge accumulation state in which charges generated in each radiation detection element are accumulated in each radiation detection element is continued for a set accumulation time, and then at least the scanning drive unit and the readout circuit are controlled to Have the image data read out, Read offset data to read offset data instead of the image data by repeating the same processing sequence as the processing sequence from the reset processing of each radiation detection element to the reading processing of the image data in a state where no radiation is irradiated after imaging.
  • the notification device is configured to notify that it is possible to perform imaging by irradiating radiation from the radiation generation device when receiving the signal from the radiographic imaging device,
  • the waiting time is switched according to the accumulation time.
  • imaging is performed in a short time after the imaging mode of the radiographic imaging apparatus (FPD) is changed from the sleep mode to the awakening mode. Even when the image data D is read by the FPD and the offset data O is subsequently read out, the read image data D and the offset can be changed by appropriately switching the waiting time according to the set accumulation time. It is possible to accurately prevent deterioration in the image quality of the medical image for diagnosis providing generated based on the data O.
  • FPD radiographic imaging apparatus
  • FIG. 5 It is a perspective view which shows the external appearance of FPD. It is a block diagram showing the equivalent circuit of FPD. It is a figure which shows the structural example of the medical image system for diagnosis provision constructed
  • FIG. 8 is a graph showing an example of the state which the electric charge amount per unit time which generate
  • FIG. 8 is a graph for explaining that an offset amount o and offset data O due to dark charges superimposed on image data D in the example of FIG. 7 are respectively expressed as areas of hatched areas.
  • FIG. 8 is a graph for explaining that the amount of charge per unit time generated in each radiation detection element becomes a constant value and the offset amount o and the offset data O become equal after the time has elapsed in the example of FIG. 7. It is a timing chart explaining transmitting a signal to an alarm device etc. when the elapsed time after changing to a wake-up mode passes only waiting time.
  • FIG. 8 is a graph for explaining that an offset amount o and offset data O due to dark charges superimposed on image data D in the example of FIG. 7 are respectively expressed as areas of hatched areas.
  • FIG. 8 is a graph for explaining that the amount of charge per unit time
  • FIG. 8 is a graph for explaining a difference ⁇ between an offset amount o due to dark charges superimposed on image data D and offset data O in the example of FIG.
  • FIG. 12 is a graph for explaining that the difference ⁇ becomes larger than the case of FIG. 11 when the effective accumulation time Tac becomes longer in the example of FIG. 7.
  • 13 is a graph for explaining that the difference ⁇ is reduced by increasing the waiting time in the case of FIG. 12. It is a figure showing an example of the screen displayed on the display part of a console. It is a figure showing an example of the screen comprised so that the accumulation
  • FIG. 6 is a diagram for explaining an example of a method for extracting preview image data from image data D.
  • FIG. It is a figure showing the state which displays a preview image in a wipe. It is a figure showing the state which displays a preview image in a wipe. It is a figure showing the state which displays a preview image in a wipe.
  • FIG. 22 is a diagram illustrating that a preview image is displayed at a position of an icon I2 on the screen of FIG. It is a figure showing an example of the symbol showing that FPD is reading offset data. It is a figure showing an example of the table which matches the set accumulation
  • FIG. 29 is a timing chart showing that offset data reading processing is performed by repeating the processing sequence shown in FIG. 28.
  • the radiographic imaging device is also referred to as FPD.
  • a so-called indirect FPD that includes a scintillator or the like as an FPD used in a medical image system for diagnosis provision and obtains image data by converting emitted radiation into electromagnetic waves of other wavelengths such as visible light.
  • the present invention can also be applied to a so-called direct FPD in which radiation is directly detected by a radiation detection element without using a scintillator or the like.
  • the present invention can also be applied to a so-called dedicated type FPD formed integrally with a support base or the like.
  • FIG. 1 is a perspective view showing the appearance of the FPD.
  • the FPD 1 is configured by housing a sensor panel (not shown) in a housing 2 formed of a carbon plate or the like. On one side surface of the housing 2, a power switch 25, a changeover switch 26, a connector 27, an indicator 28, and the like are arranged.
  • an antenna device 29 (see FIG. 2 to be described later) for performing wireless communication with the outside is provided on, for example, the opposite side surface of the housing 2. Note that the FPD 1 uses the antenna device 29 when communicating with the outside in a wireless manner, and communicates by connecting a cable (not shown) to the connector 27 when communicating with the outside in a wired manner. It has become.
  • FIG. 2 is a block diagram showing an equivalent circuit of FPD.
  • a plurality of radiation detection elements 7 are arranged in a two-dimensional shape (matrix shape) on a sensor substrate (not shown).
  • Each of the radiation detection elements 7 generates charges in accordance with radiation irradiated from a radiation source 52 (see FIGS. 3 and 4) of a radiation generator 55 (described later) and transmitted through a subject (not shown).
  • Each radiation detection element 7 is connected to a bias line 9, and the bias line 9 is connected to a bias power supply 14 through a connection 10.
  • a reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7 via the bias line 9 and the like.
  • Each radiation detecting element 7 is connected to a thin film transistor (hereinafter referred to as TFT) 8 as a switching element, and the TFT 8 is connected to the signal line 6.
  • TFT thin film transistor
  • an ON voltage and an OFF voltage are supplied from the power supply circuit 15a to the gate driver 15b via the wiring 15c, and applied to each line L1 to Lx of the scanning line 5 by the gate driver 15b.
  • the voltage is switched between an on voltage and an off voltage.
  • Each TFT 8 is turned on when an on-voltage is applied via the scanning line 5, and the radiation detection element 7 and the signal line 6 are brought into conduction, and the charge in the radiation detection element 7 is read out. . Further, each TFT 8 is turned off when an off voltage is applied via the scanning line 5, and the conduction between the radiation detection element 7 and the signal line 6 is cut off.
  • the control means 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), etc. ing. It may be configured by a dedicated control circuit.
  • the control means 22 is connected to a storage means 23 composed of SRAM (Static RAM), SDRAM (Synchronous DRAM) or the like, and performs an antenna device 29 for wireless communication with the outside or wired communication.
  • a communication unit 30 to which a connector 27 is connected is connected.
  • a battery 24 that supplies necessary power to each functional unit such as the scanning drive unit 15, the readout circuit 17, the storage unit 23, and the bias power supply 14 is connected to the control unit 22.
  • the control unit 22 sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b (see FIG. 2) when the image data D is read out.
  • Each TFT 8 connected to the scanning line 5 is turned on.
  • each radiation detection element 7 and each signal line 6 are electrically connected, and the electric charge discharged from each radiation detection element 7 to the signal line 6 is read out in each readout IC 16. Read by the circuit 17.
  • a voltage value is output from the amplification circuit 17 in accordance with the amount of charge flowing from the radiation detection element 7 to the amplification circuit 18 of the readout circuit 17.
  • the correlated double sampling circuit (described as “CDS” in FIG. 2) 19 converts the difference between the voltage values output from the amplifier circuit 18 before and after the charge flows from each radiation detection element 7 into an analog value.
  • the image data D is output downstream.
  • the output image data D is sequentially transmitted to the A / D converter 20 via the analog multiplexer 21, and is sequentially converted into digital image data D by the A / D converter 20, and is output to the storage means 23. Are stored sequentially.
  • the FPD 1 can perform shooting by supplying power to at least the functional units such as the reading IC 16 including the control unit 22, the scanning drive unit 15, and the reading circuit 17 in the shooting mode.
  • Awake mode also referred to as a shootable mode
  • a sleep mode in which power is supplied only to necessary functional units such as the communication unit 30 that communicates with the outside, and imaging cannot be performed. Can be transitioned between.
  • the FPD 1 may be configured such that, for example, the shooting mode is set to the awakening mode when the power switch 25 is turned on, and the shooting mode is set to the sleep mode when the power switch 25 is turned on. It may be configured. Further, for example, when a wake-up signal is received from a console 58 (described later, see FIGS. 3 and 4), the photographing mode is changed from the sleep mode to the wake-up mode. In the present embodiment, the FPD 1 changes the shooting mode to the sleep mode when the shooting mode is changed to the awakening mode and no shooting is performed even after a predetermined time has elapsed.
  • FIG. 3 is a diagram illustrating a configuration example of the medical image system 50 for providing diagnosis according to the present embodiment.
  • FIG. 3 shows a case where the diagnostic providing medical image system 50 is constructed in the imaging room R1 or the like.
  • a bucky device 51 is installed, and the bucky device 51 can be used by loading the FPD 1 into a cassette holding portion (also referred to as a cassette holder) 51a.
  • FIG. 3 shows a case where a bucky device 51A for standing position shooting and a bucky device 51B for standing position shooting are installed as the bucky device 51.
  • the imaging room R1 is provided with at least one radiation source 52A of a radiation generator 55 that irradiates the FPD 1 loaded in the Bucky device 51 via a subject.
  • the photography room R1 is provided with a repeater 54 for relaying communication between each device in the photography room R1 and each device outside the photography room R1. I have.
  • the relay 54 is connected to the radiation generator 55 and the console 58.
  • the relay 54 is connected to a signal for LAN (Local Area Network) communication transmitted from the FPD 1 or the console 58 to the radiation generator 55. Is converted into a signal or the like for the radiation generator 55, and vice versa.
  • LAN Local Area Network
  • the front room (also referred to as an operation room) R2 is provided with an operation console 57 of the radiation generating device 55.
  • the operation panel 57 is operated by an operator such as a radiation engineer.
  • An exposure switch 56 is provided for instructing the generator 55 to start radiation irradiation.
  • the exposure switch 56 is provided with a button (not shown).
  • the radiation generator 55 activates the radiation source 52. To be ready for radiation. Then, when the operator performs the second-stage operation (that is, so-called full-press operation) on the button of the exposure switch 56, the radiation generator 55 starts from the FPD 1 in the synchronous method as described above. When the interlock release signal is transmitted, the radiation source 52 emits radiation. Further, when imaging is performed in an asynchronous manner, the radiation generator 55 irradiates the radiation from the radiation source 52 when the operator performs the second stage operation on the exposure switch 56. The radiation generator 55 performs various controls such as setting a tube current and an irradiation time for the radiation source 52 so that an appropriate dose of radiation is emitted from the radiation source 52. .
  • a console 58 formed of a computer or the like is provided in the front room R2.
  • the console 58 can be configured to be provided outside the imaging room R1 and the front room R2, in a separate room, and the like, and is installed in an appropriate place.
  • the console 58 is provided with a display unit 58a configured to include a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or the like, and also includes input means such as a mouse and a keyboard (not shown). Yes.
  • the console 58 is connected to or has a built-in storage means 59 composed of an HDD (Hard DiskDrive) or the like.
  • the console 58 is connected to the console 58 via a network such as a LAN, HIS (Hospital Information System), RIS (Radiology Information System), PACS (Picture Archiving and Communication). System) etc. are connected.
  • FIG. 4 is a diagram illustrating a configuration example of the diagnostic providing medical image system 50 constructed on the round-trip wheel 60.
  • the FPD 1 and the round-trip car 60 are moved to the patient room R3 as shown in FIG. It can be brought in and inserted between the bed B and the body of the patient H or applied to the body of the patient H.
  • the radiation generator 55 is mounted on the round-trip wheel 60 and installed in the hospital room R3 as shown in FIG. 4 instead of the radiation generator 55 installed in the imaging room R1 described above. Brought in. Further, in this case, the roundabout wheel 60 is equipped with a portable radiation 52P that can appropriately change the radiation direction and the like. The roundabout wheel 60 is also equipped with a console 58 and the like. Although not shown in FIG. 4, the roundabout wheel 60 is configured to include the access point 53, the repeater 54, and the like shown in FIG. 3.
  • the operator E such as a radiologist carries the portable terminal 70 having the display unit 71 and the console.
  • the image displayed on the 58 display units 58 a can also be configured to be displayed on the display unit 71 of the mobile terminal 70. If comprised in this way, it will become possible for operators, such as a radiographer, to confirm an image on the display part 71 of the portable terminal 70 which he carries, without going to the console 58 one by one. Therefore, it is convenient for the operator.
  • the console 58 transmits an awakening signal to the FPD 1 used for imaging, and changes the imaging mode of the FPD 1 to the awakening mode.
  • the FPD 1 starts a reset process for each radiation detection element 7 that removes the charge remaining in each radiation detection element 7 as a pre-process for imaging.
  • the operator such as a radiologist completes positioning of the FPD 1 and the patient H as the subject, the operator moves to the exposure switch 56 of the radiation generator 55 and operates the exposure switch 56 to generate radiation. Radiation is emitted from the radiation source 52 of the device 55.
  • a wake-up signal is transmitted from the console 58 to the FPD 1 so that the photographing mode of the FPD 1 is changed from the sleep mode to the wake-up mode.
  • a wake-up signal is transmitted from the console 58 to the FPD 1 by using the first button operation of the exposure switch 56 as a trigger.
  • the photographing mode is changed from the sleep mode to the awakening mode.
  • the FPD 1 sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b, and performs a process of reading the image data D from each radiation detection element 7. Configured as follows.
  • the FPD 1 When imaging is performed in an asynchronous manner, the FPD 1 resets each radiation detection element 7 as imaging pre-processing as described above when the imaging mode is changed to the awakening mode as described above.
  • the FPD 1 After performing the above, as described above, in order to detect the start of the radiation irradiation by itself, it is configured to perform a radiation irradiation start detection process. For example, as described in Patent Document 5 described above, the leak data dleak is read before radiation irradiation, and the radiation irradiation start is detected based on the read leak data dleak. Is possible.
  • the off-voltage is applied to all the scanning lines 5 from the gate driver 15b (see FIG. 2) of the FPD 1 so that each TFT 8 is turned off.
  • Leak data dleak is read by performing a read operation.
  • the TFTs 8 are kept in the OFF state, dark charges are continuously accumulated in the respective radiation detection elements 7 as described above. Therefore, as shown on the left side of FIG.
  • the dleak read process see “L” in FIG. 5) and the reset process of each radiation detection element 7 (see “R” in FIG. 5) are alternately performed.
  • the FPD 1 sets, for example, the leak data dleak read in a certain read process.
  • the start of radiation irradiation is detected when the threshold value is exceeded (see “Detection” in FIG. 5).
  • the control means 22 of the FPD 1 applies an off voltage to each scanning line 5 from the gate driver 15b, and keeps all the TFTs 8 for a predetermined time, that is, the accumulation time ⁇ described above.
  • the electric charge generated in each radiation detection element 7 by irradiation of radiation is accumulated in each radiation detection element 7.
  • the image data D is read out from each radiation detection element 7.
  • the application of the on-voltage is started from the first line L1 of the scanning line 5, and the on-voltage is sequentially applied to the lines L1 to Lx of the scanning line 5 from the gate driver 15b. It is also possible to configure to perform processing.
  • the control means 22 of the FPD 1 extracts the preview image data Dp from the read image data D and transmits it to the console 58.
  • a preview image p # pre may be generated based on the preview image data Dp or the like and displayed on the display unit 58a or the display unit 71 of the mobile terminal 70. .
  • the control means 22 of the FPD 1 completes the reading process of the image data D (see FIGS. 5 and 28) as described above, and then performs the reading process of the offset data O as shown in FIGS.
  • the reset process of each radiation detection element 7 is started.
  • FIG. 29 and FIG. 29 the same processing sequence as the processing up to the reading processing of the image data D shown in FIG. 5 and FIG. 28 is repeated, and the reading processing of the offset data O is performed.
  • the control unit 22 of the FPD 1 performs the offset data O reading process as described above, the read image data D and the offset data O are transmitted to the console 58 (see FIGS. 3 and 4).
  • the console 58 calculates the true image data D * according to the above equation (2) based on the transmitted image data D and offset data O, and performs gain correction and defective pixels based on the true image data D *.
  • the medical image p for diagnosis provision is generated by performing precise image processing such as correction and gradation processing according to the imaging region.
  • the console 58 determines the generated diagnostic providing medical image p, and information on the confirmed diagnostic providing medical image p is displayed. Etc. are configured to be transmitted to a necessary location such as the PACS described above.
  • FIG. 7 is a graph showing the relationship between the elapsed time t from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode and the charge amount dQ per unit time generated in each radiation detection element 7. It is. Note that FIG. 7 does not include charges generated in each radiation detection element 7 due to radiation irradiation (that is, charges corresponding to true image data D * (see the above equation (1))).
  • each radiation detection element 7 As time t elapses, the amount of charge dQ per unit time generated in each radiation detection element 7 gradually decreases, and finally becomes constant equal to the amount of dark charge generated per unit time described above. Settling down in value. Then, in such a situation, as shown in FIG. 5 and FIG. 28, reset processing of each radiation detecting element 7 before imaging is performed (in the case of FIG. 5, readout processing of leak data dleak is performed alternately with reset processing). ) Each TFT 8 is turned off to be in a charge accumulation state (radiation is irradiated during this period), and after the accumulation time ⁇ has elapsed, the reading process of the image data D is performed. Then, after the image data D reading process, as shown in FIGS. 6 and 29, the same processing sequence as the image data D reading process shown in FIGS. O reading processing is performed.
  • the offset o due to the dark charge superimposed on the image data D and the offset data O are respectively during the effective accumulation time Tac (see FIGS. 5 and 28) before the image data D read processing, and Calculated as an integral value of the charge amount dQ (see FIG. 7) per unit time generated in each radiation detection element 7 during the effective accumulation time Tac (see FIGS. 6 and 29) before the offset data O reading process. Is done. Therefore, the offset o due to the dark charge superimposed on the image data D and the offset data O are values represented as the area of the region indicated by hatching, as shown in FIG.
  • the charge amount dQ per unit time generated in each radiation detection element 7 is reduced as described above, and the above-described Since the constant value is equal to the amount of dark charge generated per unit time, the offset amount o and the offset data O due to the dark charge superimposed on the image data D are equal to each other as shown in FIG. Therefore, as described above, when the calculation process for subtracting the offset data O from the image data D is performed as shown in the above equation (2), the offset o and offset data due to the dark charge superimposed on the image data D are obtained. It is possible to calculate true image data D * resulting from only the electric charges generated in each radiation detection element 7 by irradiation of radiation by offsetting O.
  • the calculated true image data D * is a large value only original true image data D * that is, the equation (4) (i.e., (5)) true image data to be calculated by D * difference ⁇ than. That is, when the true image data D * is calculated according to the above equation (2) as in normal image processing, the calculated true image data D * is the above equation (4) (ie, the equation (5). ), The original true image data D * to be calculated is a value in which the offset due to the dark charge is superimposed by the difference ⁇ .
  • the image data D is superimposed on the image data D.
  • a positive difference ⁇ significantly different from 0 is generated between the offset o due to the dark charge and the offset data O.
  • the image quality of the generated diagnostic-providing medical image p is dark charge by the difference ⁇ from the true image data D *. Therefore, the amount of offset due to the superimposition deteriorates.
  • a wake-up signal is transmitted from the console 58 to the FPD 1 by using the first button operation of the exposure switch 56 as a trigger.
  • the photographing mode is changed from the sleep mode to the awakening mode, it is likely to be deteriorated.
  • the amount of charge dQ per unit time generated in each radiation detection element 7 changes with time.
  • a non-zero positive difference ⁇ between the offset o and the offset data O due to the dark charge superimposed on D causes the image quality of the generated diagnostic-provided medical image p to deteriorate. ing.
  • the difference ⁇ increases, the degree of deterioration of the image quality of the generated diagnostic providing medical image p increases.
  • the generated diagnostic providing use If the degree of deterioration of the image quality of the medical image p is reduced and the difference ⁇ is made sufficiently small, it is possible to prevent the image quality of the generated medical image p for diagnosis providing from being deteriorated. That is, as shown in FIG. 9, the offset o and offset data due to the dark charge superimposed on the image data D after a sufficient amount of time has elapsed since the shooting mode of the FPD 1 was changed from the sleep mode to the awakening mode.
  • the medical image p for diagnosis providing is generated based on the image data D and the offset data O read out in a state equal to O, the high quality diagnostic providing medical image p is generated. If it can be made smaller, it is possible to generate a medical image p for diagnosis providing with a picture quality as high as this.
  • a predetermined time (hereinafter, this time is referred to as a waiting time WT) has elapsed since the imaging mode of the FPD 1 was changed from the sleep mode to the awakening mode. Shooting is allowed after the difference ⁇ is sufficiently small.
  • the control means 22 of the FPD 1 counts the elapsed time t after the shooting mode is changed from the sleep mode to the awake mode, and the elapsed time t is When the waiting time WT of elapses, a signal is transmitted to the notification device.
  • the notification device is configured to notify an operator such as a radiologist that radiation can be emitted from the radiation generation device 55 when receiving the above signal from the FPD 1. Yes.
  • the console 58 (see FIG. 3 and FIG. 4) functions as the above notification device.
  • the console 58 (hereinafter referred to as the notification device 58) as the notification device receives the above signal from the FPD 1, for example, the console 58 displays “Shooting can be performed” or the like on the display unit 58a or utters a voice. For example, it can be configured to notify that it is possible to perform imaging by irradiating radiation from the radiation generating device 55. Further, as the notification device, for example, the portable terminal 70 shown in FIG. 4 may be used, and the notification device may be configured as a separate device from the console 58. In addition, a plurality of devices including the console 58 can be configured to function as a notification device.
  • the “detection process” in FIG. 10 is as described above after the FPD 1 transitions to the awake mode and performs the reset process of each radiation detection element 7 when imaging is performed in an asynchronous manner. This represents a transition to detection processing of the start of irradiation with various radiations.
  • the reset process of each radiation detection element 7 is repeatedly performed after the FPD 1 transitions to the awakening mode. For example, a predetermined number of times for power saving or the like. It is also possible to configure such that the reset process is temporarily stopped after the reset process is performed and the reset process is restarted before the waiting time WT elapses.
  • the control means 22 of FPD1 will transmit a signal to the alerting
  • an operator such as a radiologist who has confirmed the notification by the notification device 58 operates the exposure switch 56 to irradiate radiation from the radiation generation device 55 and performs imaging. Therefore, as shown in FIG.
  • the offset o due to the dark charge superimposed on the image data D read out in this way, and the offset read out in the subsequent read-out process It is possible to make the difference ⁇ with the data O sufficiently small. Then, by reducing the difference ⁇ , the degree of deterioration of the image quality of the diagnostic providing medical image p generated by the subsequent image processing is sufficiently reduced, and the generated diagnostic providing medical image p is actually reduced. It is possible to prevent the image quality from deteriorating. In other words, in the waiting time WT, the difference ⁇ is sufficiently small, and the image quality of the medical image p for diagnosis providing generated based on the read image data D and offset data O is high. In practice, the time is set so that it does not appear to have deteriorated.
  • the difference ⁇ that is, the difference ⁇ between the offset o due to the dark charge superimposed on the image data D and the offset data O increases as the effective accumulation time Tac (see FIGS. 5 and 28, etc.) changes. Changes. Therefore, as shown in FIG. 12, for example, the notification device 58 can take a picture when the same waiting time WT as the waiting time WT shown in FIG. 11 has elapsed after the shooting mode of the FPD 1 is changed from the sleep mode to the awakening mode. Even if it is notified that, as shown in FIG. 12, if the effective accumulation time Tac becomes longer, the difference ⁇ becomes larger than the case shown in FIG. Therefore, if the diagnostic providing medical image p is generated based on the image data D and the offset data O read in such a state, the image quality of the diagnostic providing medical image p may be deteriorated.
  • the waiting time WT in order to prevent the image quality of the medical image p for diagnosis providing from deteriorating, it is necessary to change the waiting time WT according to the effective accumulation time Tac. That is, when the effective accumulation time Tac is long, it is necessary to lengthen the waiting time WT as shown in FIG. 13, for example, in order to sufficiently reduce the difference ⁇ .
  • the FPD 1 is configured such that the irradiation of radiation to the FPD 1 is allowed after the waiting time WT has elapsed since the imaging mode of the FPD 1 has been changed from the sleep mode to the awakening mode, the image on the FPD 1 It is necessary to switch the waiting time WT according to the effective accumulation time Tac in the data D reading process or the offset data O reading process.
  • the waiting time WT is set to be different according to the effective accumulation time Tac in the FPD 1, and the waiting time WT is switched according to the set effective accumulation time Tac. Yes.
  • the effective storage time Tac is often set by the storage time ⁇ (see FIG. 5, FIG. 28, etc.) that is the duration of the charge storage state.
  • the timing for sequentially applying the ON voltage to each scanning line 5 in the reset processing of each radiation detecting element 7 before the charge accumulation state (that is, the ON voltage is applied to a certain scanning line 5).
  • the time interval from the application to the application of the ON voltage to the next scanning line 5 (the same applies hereinafter) is determined in advance.
  • the timing at which the ON voltage is sequentially applied to each scanning line 5 in the reading process of the image data D performed after the charge accumulation state is also determined in advance. Therefore, if the accumulation time ⁇ is set, the effective accumulation time Tac is automatically determined. Also, for example, in the case of the asynchronous method shown in FIG.
  • the on-voltage is sequentially applied to each scanning line 5 in the reset processing of each radiation detection element 7 that is alternately performed with the reading processing of the leak data dleak before the charge accumulation state.
  • the application timing is determined in advance.
  • the timing at which the ON voltage is sequentially applied to each scanning line 5 in the reading process of the image data D performed after the charge accumulation state is also determined in advance. Therefore, even in the case of the asynchronous method, the effective accumulation time Tac is automatically determined by setting the accumulation time ⁇ .
  • setting the accumulation time ⁇ is synonymous with determining the length of the effective accumulation time Tac.
  • the accumulation time ⁇ is set to The effective accumulation time Tac is determined by setting.
  • the waiting time WT is set to a different time according to the accumulation time ⁇ in the FPD 1. Specifically, as shown in FIG. 11 and FIG.
  • the waiting time WT is set so that the waiting time WT becomes longer as the set accumulation time ⁇ (that is, the effective accumulation time Tac) is longer.
  • the waiting time WT is switched according to the set accumulation time ⁇ .
  • the accumulation time ⁇ can be set at any time interval, and what waiting time WT is associated with each set accumulation time ⁇ is the performance of the FPD 1, that is, FIG.
  • the dose rate of the irradiated radiation that is, the dose per unit time
  • the dose rate of the irradiated radiation instantaneously rises to a prescribed dose rate, and when the irradiation ends.
  • there is an irradiation characteristic such that the dose rate of irradiated radiation falls instantaneously.
  • the accumulation time ⁇ it is not necessary to set the accumulation time ⁇ to a time longer than necessary.
  • the dose rate of the irradiated radiation is It may take a long time to rise slowly and reach a prescribed dose rate, and may have an irradiation characteristic that the dose rate of the irradiated radiation gradually falls at the end of irradiation.
  • the accumulation time ⁇ can be set at any time interval, and what waiting time WT is associated with each set accumulation time ⁇ is determined by irradiating the FPD 1 with radiation. It can also vary depending on the irradiation characteristics of the radiation source 52 of the radiation generator 55.
  • the imaging region of the patient which is the subject, the imaging method for the subject, etc.
  • the accumulation time ⁇ can be set as a discrete time interval, or can be set as a time interval that can be continuously changed.
  • the waiting time WT may be set in advance as a function of the accumulation time ⁇ .
  • the waiting time WT is set in advance according to the accumulation time ⁇ as described above. Keep it.
  • the waiting time WT is configured to be switched according to the accumulation time ⁇ .
  • the waiting time WT is a time from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode until irradiation of the radiation to the FPD 1 is permitted.
  • the difference ⁇ between the offset o due to the dark charge superimposed on the image data D and the offset data O becomes sufficiently small, and based on such image data D and offset data O.
  • the time is set so that the image quality of the medical image p for diagnosis providing generated in this way can be prevented from deteriorating.
  • the control means 22 of the FPD 1 counts an elapsed time t after the transition to the awakening mode. Then, when the elapsed time t has elapsed by the waiting time WT, a signal is transmitted to the notification device 58 (console 58 in the present embodiment), and the notification device 58 notifies the operator such as a radiologist to the radiation generation device 55. It is informed that it is possible to shoot with radiation. Then, an operator such as a radiologist who has confirmed the notification by the notification device 58 operates the exposure switch 56 to irradiate the FPD 1 with radiation from the radiation source 52 of the radiation generation device 55 through the subject to perform imaging.
  • the shooting mode of the FPD 1 is changed from the sleep mode to the awakening mode, shooting is performed in a short time, the image data D is read by the FPD 1, and the offset data O reading process is subsequently performed. Even in this case, it is possible to accurately prevent the image quality of the medical image p for diagnosis providing generated based on the image data D and the offset data O read out in this way from being deteriorated. .
  • the offset data O reading process repeats the same processing sequence up to the image data D reading process illustrated in FIG. 5. Done. Therefore, the accumulation time ⁇ is set to the same time interval in the charge accumulation state before the image data D reading process (see FIG. 5) and the charge accumulation state before the offset data O reading process (see FIG. 6). Therefore, in this embodiment, by setting the accumulation time ⁇ (see FIG. 5 and FIG. 28) in the charge accumulation state before the reading process of the image data D, the charge accumulation before the offset data O reading process is automatically performed. The storage time ⁇ in the state (see FIG. 6 and FIG. 29) is set.
  • an operator such as a radiographer can input the accumulation time ⁇ to the console 58 and transmit it from the console 58 to the FPD 1 to set it. It is.
  • the center of the screen H1 displayed on the display unit 58a of the console 58, there is a display space S in which the preview image p # pre generated by the console 58, the medical image p for providing diagnosis, and the like are displayed. Is provided.
  • an icon I corresponding to the imaging order information selected by the operator such as a radiographer from the imaging order information obtained by the console 58 from the RIS or the like (see FIG.
  • a button icon for designating the size of the FPD 1 to be used and designating how to display the preview image p # pre, the medical image for diagnosis p, etc. in the display space S, etc. BI etc. are displayed.
  • a screen H2 as shown in FIG. 15 is displayed on the display unit 58a of the console 58. It has become.
  • “AP (front)”, “PA (back)”, “LAT (side)”, etc. are taken with respect to an imaging region such as “Chest” or “Abdomen”.
  • the direction can be specified.
  • a normal accumulation time ⁇ such as 1 second or a long accumulation time ⁇ such as 10 seconds can be set. .
  • the button icon BI without “LONG” is a button icon for setting the normal accumulation time ⁇ simultaneously with the imaging region and imaging direction, and “LONG” is added.
  • the button icon BI is a button icon for setting an accumulation time ⁇ of a longer time simultaneously with an imaging region and an imaging direction.
  • a button icon shown on the right side of the screen H1 Each button icon BI * representing a normal accumulation time ⁇ and a long accumulation time ⁇ may be displayed in the BI group or the like, and the accumulation time ⁇ may be set on the screen H1.
  • the accumulation time ⁇ is set as a time interval that can be continuously changed.
  • an operator such as a radiographer can be configured by displaying information on the set accumulation time ⁇ on the display space S in the center of the screen H1 shown in FIGS. Is preferable because it is possible to easily check the length of the set accumulation time ⁇ by looking at the display space S of the screen H1. Further, as described above, the waiting time WT elapses after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, and a signal is transmitted from the FPD 1 to the console 58 that is a notification device.
  • the console 58 when the accumulation time ⁇ is set, the console 58 is configured to transmit and set information on the set accumulation time ⁇ to the FPD 1. At that time, if the wake-up signal is not yet transmitted to the FPD 1, the console 58 transmits the wake-up signal to the FPD 1 as described above to change the photographing mode of the FPD 1 from the sleep mode to the wake-up mode. It is possible to configure the storage time ⁇ to be transmitted to the FPD 1. If the wake-up signal is already transmitted to the FPD 1, the console 58 transmits the information on the accumulation time ⁇ set to the FPD 1 when the accumulation time ⁇ is set as described above. Configured to set.
  • the FPD 1 is configured in advance to include a table that associates the accumulation time ⁇ with the waiting time WT, a function that associates the waiting time WT as a function of the accumulation time ⁇ , and the like.
  • the control means 22 of the FPD 1 starts counting the elapsed time t. Further, the control means 22 of the FPD 1 calculates the waiting time WT from the above table, function, etc. based on the information of the accumulation time ⁇ obtained from the console 58.
  • a signal is transmitted to the notification device 58 when the elapsed time t has elapsed by the determined waiting time WT.
  • the control means 22 of the FPD 1 stores the accumulated time ⁇ transmitted from the console 58. Only the charge accumulation state is continued, and the image data D is read or the offset data O is read.
  • the console 58 instead of configuring the console 58 to transmit the storage time ⁇ information to the FPD 1, it is possible to configure the console 58 to transmit the waiting time WT information to the FPD 1.
  • the console 58 is input by an operator such as a radiographer or specified in the imaging order information obtained from the RIS or the like.
  • the waiting time WT is determined based on information such as the generation device 55 and the imaging conditions such as the imaging region and imaging method, and the information of the determined waiting time WT is transmitted to the FPD 1 and set.
  • the control means 22 of the FPD 1 calculates the accumulation time ⁇ from a table or function (or its inverse function) provided in advance based on the information.
  • the second process is still performed.
  • the long waiting time WT2 corresponding to the long accumulation time ⁇ 2 in photographing has not elapsed.
  • the control means 22 of the FPD 1 As shown in FIG. 17, when the offset data O reading process ends, a signal is transmitted to the notification device 58 when the waiting time WT2 in the second and subsequent shootings has elapsed, and the notification device 58 is notified. It is comprised so that it may alert
  • the difference ⁇ between the offset o due to the charge and the offset data O can be set to a sufficiently small value, and is generated based on the read image data D and offset data O in the second and subsequent shootings. It is possible to accurately prevent the image quality of the diagnostic providing medical image p to be deteriorated.
  • the present invention is not limited to the above-described embodiment and the like, and can be appropriately changed without departing from the gist of the present invention.
  • the imaging mode is set to the sleep mode when the patient who is the subject is positioned, and the stage where the positioning is completed (ie, radiation)
  • the stage where the positioning is completed ie, radiation
  • a method of changing the photographing mode of the FPD 1 from the sleep mode to the awakening mode is effective.
  • a wake-up signal is transmitted from the console 58 to the FPD 1 to change the imaging mode of the FPD 1 from the sleep mode to the wake-up mode.
  • triggering first button operation of exposure switch 56 as trigger sending wake-up signal from radiation generator 55 to FPD1 via console 58, wakes up FPD1 shooting mode from sleep mode It may be configured to transition to a mode.
  • the FPD 1 since the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode immediately before actual radiation irradiation, the FPD 1 is irradiated with radiation after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode. Elapsed time t is likely to be shortened.
  • the radiation generating device 55 is operated in the same manner as in the synchronous manner when the second stage operation of the exposure switch 56 is performed by an operator such as a radiation technician. Rather than irradiating the radiation for the first time after receiving the interlock release signal from the FPD 1, radiation irradiation can be started immediately when the second stage operation is performed.
  • the elapsed time t from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode until the radiation is applied to the FPD 1 is likely to be shorter, and the above-described problem of deterioration in the image quality of the medical image p for diagnosis provision Is more likely to occur.
  • the waiting time until the interlock release signal is transmitted after the operator performs the second-stage operation on the button of the exposure switch 56 becomes longer. (That is, it becomes longer by the waiting time WT set in accordance with the accumulation time ⁇ ), and irradiation of radiation is not started until the interlock release signal is transmitted, so that the imaging mode of the FPD 1 is awakened from the sleep mode.
  • the elapsed time t from when the mode is changed to when the FPD 1 is irradiated with radiation can be made sufficiently long, and there is no problem of deterioration of the image quality of the medical image p for diagnosis provision.
  • the notification device is configured to accurately notify an operator such as a radiologist. It is preferable to do.
  • the display unit 58a displays that it is possible to shoot and informs that it is possible to shoot with sound such as a beep sound (that is, the second-stage button operation on the exposure switch 56 is possible). It is preferable to configure.
  • the photographing mode of the FPD 1 is the sleep mode
  • the reason why such a phenomenon occurs is considered as follows. That is, when the imaging mode of the FPD 1 is the awakening mode, as described above, for example, ⁇ 5 [V] or the like is supplied to each radiation detection element 7 from the bias power source 14 (see FIG. 2 etc.) via the bias line 9. A reverse bias voltage is applied. When the imaging mode of the FPD 1 transitions from the awakening mode to the sleep mode, the application of the reverse bias voltage to each radiation detection element 7 is stopped. However, at that time, as shown in FIG. 18, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is actually 0 [V] instantaneously from the reverse bias voltage of the predetermined voltage value Vbias. However, it changes so as to gradually approach 0 [V] in a state having a predetermined time constant. In FIG. 18, Mw represents the period of the awakening mode, and Ms represents the period of the sleep mode.
  • the panel unit is energized for a predetermined time at certain time intervals, and the reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7.
  • Vbias the voltage Vb that has gradually increased toward 0 [V] as shown in FIG. 18 decreases to a reverse bias Vbias such as ⁇ 5 [V].
  • Vbias the reverse bias voltage
  • the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is gradually increased. Change to approach 0 [V].
  • the voltage Vb applied to each radiation detection element 7 from the bias power supply 14 is returned to 0 [V] by repeatedly energizing the panel unit for a predetermined time at certain time intervals. Instead, the state of taking a negative voltage value between the reverse bias voltage Vbias and a predetermined negative voltage is maintained.
  • each radiation detection is performed from the bias power source 14 during the sleep mode.
  • the voltage Vb applied to the element 7 does not return to 0 [V], and takes a negative voltage value between the reverse bias voltage Vbias and a predetermined negative voltage as described above. Therefore, the change amount of the voltage Vb applied to each radiation detection element 7 at the time of transition to the awakening mode is a change amount smaller than the above 5 [V].
  • the magnitude of the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode is This is determined depending on the amount of change in the voltage Vb applied to each radiation detection element 7 at the time of transition to the awakening mode. That is, the magnitude of the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awake mode is the detection of each radiation at the transition to the awake mode. If the change amount of the voltage Vb applied to the element 7 is large, the charge amount dQ increases, and if the change amount of the voltage Vb is small, the charge amount dQ also decreases.
  • the FPD 1 shooting mode is awakened from the sleep mode by energizing the panel unit for a predetermined time at certain time intervals.
  • the control means 22 can be configured to energize the panel unit for a predetermined time at predetermined time intervals when the photographing mode of the FPD 1 is in the sleep mode.
  • the imaging mode of the FPD 1 is the sleep mode
  • the imaging mode of the FPD 1 Is in the sleep mode
  • the bias power supply 14 applies a predetermined voltage value to each radiation detection element 7 for a predetermined time. It is also possible to apply a reverse bias voltage Vbias.
  • the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is predetermined.
  • the reverse bias voltage of the voltage value Vbias is not instantaneously 0 [V], but gradually approaches 0 [V] in a state having a predetermined time constant.
  • the control unit 22 is configured to monitor the voltage Vb applied to each radiation detection element 7 from the bias power supply 14, and the voltage Vb increases as shown in FIG.
  • a threshold not shown
  • a reverse bias voltage having a predetermined voltage value Vbias is applied from the bias power supply 14 to each radiation detection element 7 for a predetermined time. Then, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 falls to the reverse bias voltage of the predetermined voltage value Vbias.
  • the application of the reverse bias voltage of the predetermined voltage value Vbias is stopped. Then, when a predetermined time elapses, the application of the reverse bias voltage of the predetermined voltage value Vbias is stopped. Then, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 increases, and when the voltage Vb reaches a threshold value, the bias power supply 14 applies a predetermined voltage value to each radiation detection element 7 for a predetermined time. A reverse bias voltage of Vbias is applied.
  • the reverse bias of the predetermined voltage value Vbias from the bias power supply 14 to each radiation detection element 7 for a predetermined time is also possible to configure to apply a voltage.
  • the imaging of the FPD 1 is performed as in the case where the reverse power supply voltage Vbias is periodically applied to each radiation detection element 7 from the bias power supply 14 in the sleep mode.
  • the panel portion of the FPD 1 is energized for a predetermined time at regular time intervals, and the reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7 during that period.
  • Vbias or by applying a reverse bias voltage Vbias from the bias power supply 14 to each radiation detection element 7 every time the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 rises and reaches a threshold value.
  • the reverse bias voltage Vbias is applied from the bias power supply 14 to each radiation detection element 7 via the bias line 9, but after the imaging mode is switched to the sleep mode.
  • the reverse bias voltage Vbias can be continuously applied from the bias power source 14 to each radiation detection element 7.
  • the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode can be further reduced. It is possible to further reduce the waiting time WT set in accordance with the accumulation time ⁇ described above. Therefore, it is possible to perform imaging by irradiating the FPD 1 with radiation more quickly after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode.
  • the offset data O and the offset data O are configured to have substantially the same size.
  • the offset amount o due to the dark charge superimposed on the image data D and the offset data O are offset, It is possible to calculate the true image data D * resulting from the electric charge generated in each radiation detection element 7 due to the irradiation of radiation, and the image quality of the medical image p for diagnosis providing generated based on this is deteriorated. It becomes possible to prevent accurately.
  • the image data D is read out and the offset data O is read out as described above, and the read offset data O and the image data D are read out as described above.
  • the true image data D * is calculated by substituting into the equation (2), and the diagnostic providing medical image is generated based on the calculated true image data D * , the generated diagnostic providing medical image (so-called definite image) ) It has been found that artifacts may appear inside.
  • the medical image system 50 for diagnosis providing constructed in the imaging room R1 and the front room R2 as shown in FIG. 3, the patient as the subject collides with the Bucky device 51 loaded with the FPD1, and the like, the offset data. There is a possibility that a vibration or the like is applied to the FPD 1 during the O reading process. Such a situation occurs in the medical image system 50 for providing diagnosis constructed on the round wheel 60 as shown in FIG. Since it is easy, below, the case where the medical image system 50 for diagnosis provision constructed
  • the imaging order information includes “patient ID” P2, “patient name” P3, “sex” P4, “age” P5, “clinical department” P6, and imaging conditions as patient information. "Imaging part” P7, "imaging direction” P8, and the like. Then, the “shooting order ID” P1 is automatically assigned to each shooting order information in the order in which the shooting orders are received. Further, the imaging order information further includes a “modality ID” P9 indicating modality identification information such as the used Bucky device 51 (see FIG. 3) and the roundabout car 60 (see FIG. 4), and the “cassette ID” of the cassette to be used. "Items such as P10 are provided.
  • the console 58 When the console 58 obtains the shooting order information as described above, the console 58 displays a list of each shooting order information in a list format on the selection screen H3 of the display unit 58a as shown in FIG.
  • the selection screen H3 is provided with a shooting order information display field h11 for displaying a list of each shooting order information. On the left side of the shooting order information display field h11, shooting order information scheduled to be shot is displayed.
  • a selection button h12 for selecting is provided. Further, an enter button h13 and a return button h14 are provided below the shooting order information display field h11. Then, the operator clicks the selection button h12 to select one or a plurality of shooting order information, and clicks the decision button h13.
  • photography order information with respect to the same patient as the said order information can also be comprised so that it can select automatically.
  • the console 58 is displayed on the display unit 58a.
  • a screen H4 as shown in FIG. 21 is displayed.
  • the screen H4 is the same screen as the screen H1 described above (see FIG. 14 and FIG. 16), and FIG. It is also possible to configure as shown in FIG.
  • each icon I corresponding to each shooting order information is displayed.
  • the icon I has a schematic diagram indicating the modality.
  • the perspective view of the FPD described in each icon I in FIG. 21 shows that the FPD 1 is not loaded into the Bucky device. It shows that it is used in a single state.
  • the operator can set the tube voltage and tube current set by the radiation irradiation device 55 to the radiation source 52, The photographing conditions such as the irradiation time can be finely adjusted and set.
  • the human body model Ib is shown so that the imaging part P7 (see FIGS. 19 and 20) designated by the imaging order information corresponding to the icon I displayed in focus can be seen. Is displayed.
  • the console 58 automatically selects one of the icons I1 to I4 displayed on the screen H4 (the icon I2 in the case of FIG. 21) so that the selected icon I stands out. Display in focus. Then, photographing based on photographing order information corresponding to the focused icon I is performed. When the operator wants to perform shooting based on different shooting order information, the focus can be changed by clicking and selecting another icon I corresponding to the shooting order information. .
  • the console 58 selects and focuses on the icon I2 corresponding to the next shooting, the “cassette ID” P10 (specified in the shooting order information corresponding to the icon I2)
  • a wake-up signal is transmitted to the FPD 1 in FIGS. 19 and 20, and the photographing mode of the FPD 1 is switched to the wake-up mode.
  • an operator such as a radiographer loads the FPD 1 having the cassette ID “FPD-001” (see FIG. 19 and FIG. 20) on the round wheel 60 in advance, and the patient room R3 (see FIG. 4) together with the round wheel 60. It is carried in.
  • the first-stage operation of the exposure switch 56 ie, so-called half-press
  • the timing at which the signal indicating that the operation is performed may be received, and the timing for switching the imaging mode of the FPD 1 to the awakening mode is appropriately determined.
  • the FPD 1 When the imaging mode is switched to the awakening mode, the FPD 1 starts a reset process for each radiation detection element 7 as a pre-process for imaging as described above. Then, an operator such as a radiologist positions the FPD 1 with respect to the patient H who is the subject, then moves to the round wheel 60 and operates the exposure switch 56 to operate the radiation source 52P of the radiation generator 55. Radiation. In the case of the asynchronous system, as described above, the FPD 1 detects the start of radiation irradiation based on, for example, the read leak data dleak, image data d for detection of irradiation start (see FIG. 5 and the like).
  • the FPD 1 sets, for example, the leak data dleak read in a certain read process.
  • the radiation start is detected when the threshold value is exceeded (see “detection” in FIG. 5 described above).
  • the gate driver 15b applies an off voltage to each scanning line 5 to turn off all the TFTs 8 during the accumulation time ⁇ .
  • the charge generated in each radiation detection element 7 due to radiation irradiation is accumulated in each radiation detection element 7, and after the accumulation time ⁇ has elapsed, the image data D is read from each radiation detection element 7. Then, the image data D is read out.
  • the control unit 22 of the FPD 1 performs the reading process of the image data D as described above, the preview image data Dp is extracted from the read image data D at a predetermined ratio and extracted as described above.
  • the preview image data Dp is transmitted to the console 58.
  • the extraction process of the preview image data Dp is performed as shown in FIG. 22, for example.
  • image data D read from the radiation detection elements 7 (n, m) in the n-th row and the m-th column among the radiation detection elements 7 arranged in a two-dimensional form of the FPD 1 is represented by D. If represented by (n, m), the control means 22 of the FPD 1 predetermines a predetermined number (FIG.
  • image data D (n, m) read out from each radiation detection element 7 connected to the designated scanning line 5 is extracted for every four scanning lines 5.
  • the preview image data is Dp.
  • the control means 22 of the FPD 1 extracts the preview image data Dp and transmits it to the console 58.
  • the console 58 When the preview image data Dp is transmitted from the FPD 1 as described above, the console 58 generates a preview image p # pre based on the transmitted data.
  • the console 58 generates the preview image p # pre as described above every time the preview image data Dp is transmitted from the FPD 1, and the original icon of the screen H4 displayed on the display unit 58a.
  • the preview image p # pre generated as shown in FIGS. 23A to 23C is wiped on I2.
  • FIG. 23A when imaging is performed using the FPD 1 having a size of 17 ⁇ 17 inches, if an operator such as a radiographer misplaces the FPD 1 vertically or horizontally when positioning the FPD 1, for example, FIG. 23A to FIG. As shown in 23C, a preview image p # pre or the like that is shifted by 90 ° from the original position is generated.
  • the imaging region the chest in this case
  • FIG. 23C As shown in FIG.
  • the preview image p # pre that has been rotated by 90 ° is rotated and corrected to the original display direction (that is, the direction used by the doctor for interpretation), as shown in FIG. Overwrite display. If the positioning of the FPD 1 is normal, the display direction does not change before and after the execution of the automatic part recognition process.
  • the console 58 determines that the “NG” button icon is not clicked. (The same applies to a case where the mobile terminal 70 can be operated.) It is determined that the preview image p # pre has been approved by the operator. When the operator who has viewed the preview image p # pre clicks the “NG” button icon during the predetermined time, the console 58 displays the preview image data Dp transmitted from the FPD 1 so far. The FPD 1 is instructed to stop the processing being performed at that time and to start preprocessing such as reset processing of each radiation detection element 7 for re-imaging.
  • the console 58 When the console 58 is configured to function as an image processing apparatus, the console 58 receives the remaining image data D, offset data O, or true image data D * from the FPD 1 as will be described later. When transmitted, precise image processing such as gain correction, defective pixel correction, and gradation processing according to the imaging region is performed based on these, and the diagnostic providing medical image p is generated. When an image processing apparatus separate from the console 58 is provided, the image processing apparatus performs the image processing described above. And although illustration is abbreviate
  • the console 58 displays information on the generated diagnostic providing medical image p or the like.
  • the imaging order information corresponding to the imaging that is, imaging order information corresponding to the icon I2
  • the confirmed medical image p for diagnosis providing and the imaging order information are transmitted to the necessary places such as the PACS described above. To do.
  • the control means 22 of the FPD 1 extracts the preview image data Dp from the read image data D as described above and transmits it to the console 58, that is, the read processing of the image data D (see FIG. 5). At the same time as the process ends, the reading process of the offset data O is started. This point is as described above. When the reading process of the offset data O is completed, the control unit 22 of the FPD 1 transmits the read image data D and the offset data O to the console 58.
  • the exposure switch 56 (see FIGS. 3 and 4) of the radiation generating device 55 to irradiate the subject and the FPD 1 with radiation
  • the display unit 58a and the display unit 71 of the mobile terminal 70 are viewed, and the process waits for the preview image p # pre to be displayed.
  • the preview image p # pre is generated only when the preview image data Dp is transmitted from the FPD 1 to the console 58 after the image data D reading process (see FIG. 5).
  • an operator such as a radiologist does not move the FPD 1 until at least the preview image p # pre is displayed. Therefore, unless the patient as a subject moves greatly, the image data D is read out. No vibration or the like is applied to the FPD 1 until the processing.
  • An operator such as a radiologist wipes the preview image p # pre on the display unit 58a of the console 58 (or the display unit 71 of the portable terminal 70; the same applies hereinafter) (see FIGS. 23A to 23C), or When the preview image p # pre whose rotation is corrected (see FIG. 24) is displayed, it is determined whether or not re-shooting is necessary.
  • the operation of positioning the FPD 1 with respect to the body of the patient H for example, see FIG. 4) as the subject is started. Also, even in the radiographing in the radiographing room R1 (see FIG.
  • the time required for the O reading process is determined by the duration of the charge accumulation state, that is, the accumulation time ⁇ . Therefore, for example, after the imaging, the FPD 1 keeps the charge accumulation state for a predetermined time, that is, accumulation so that an operator such as a radiographer does not move the FPD 1 while the FPD 1 performs the reading process of the offset data O.
  • the time ⁇ see FIGS.
  • the preview image p # pre is displayed on the display unit 58 a of the console 58 (including the case where it is displayed on the display unit 71 of the portable terminal 70. It is possible to configure to change the content of the display process when displaying.
  • the accumulation time ⁇ is set to a long time
  • an operator such as a radiologist moves the FPD 1 while the FPD 1 is performing the reading process of the offset data O after imaging. It becomes possible not to be.
  • the console 58 can display the preview image p # pre on the display unit 58a by the normal display processing procedure described in the normal processing procedure at the time of shooting or the like. is there. That is, the console 58 generates a preview image p # pre based on the preview image data Dp transmitted from the FPD 1, and as shown in FIG. 23A to FIG. 23C and FIG. The generated preview image p # pre is displayed in the normal display processing procedure by wiping or correcting the rotation.
  • the offset data is already stored in the FPD1. This is because since the O reading process has been completed, artifacts due to microphonic phenomena do not appear in the offset data O even if the FPD 1 is moved.
  • the accumulation time ⁇ is set to a long time such as 2 seconds or more
  • an operator such as a radiologist re-photographs by looking at the preview image p # pre displayed on the display unit 58a of the console 58.
  • the FPD 1 is determined to be unnecessary and the FPD 1 is moved, there is a possibility that the reading process of the offset data O has not yet been completed in the FPD 1.
  • the operator re-photographs by looking at the preview image p # pre. It is necessary to change the content of the display process so as to delay the timing for determining that it is unnecessary.
  • the console 58 changes the order in which the preview image p # pre is displayed on the display unit 58a. It is possible to configure.
  • the console 58 does not perform the wipe display of the preview image p # pre as shown in FIGS. 23A to 23C, and during that time, for example, at the position of the icon I2, the original icon I2 shown in FIG. It can be configured to continue to display. Then, after a certain amount of time has elapsed, a preview image p # pre that has been rotationally corrected is displayed in the state shown in FIG. That is, the display on the display unit 58a of the console 58 suddenly switches to the state shown in FIG. 24 when a certain amount of time has elapsed from the state shown in FIG.
  • the console 58 has a long accumulation time ⁇ such as 2 seconds or more.
  • the timing for starting the wipe display of the preview image p # pre may be changed.
  • the console 58 In the normal processing procedure at the time of shooting or the like, the console 58 generates a preview image p # pre as needed based on the transmitted preview image data Dp every time the preview image data Dp is transmitted from the FPD 1. Each time the preview image p # pre is generated, the portion of the preview image p # pre to be displayed is increased, and the preview image p # pre is wiped and displayed. That is, in a normal processing procedure at the time of shooting or the like, transmission of the preview image data Dp from the FPD 1 to the console 58 and wipe display of the preview image p # pre on the display unit 58a of the console 58 are performed almost simultaneously. .
  • the preview image data Dp is transmitted from the FPD 1 to the console 58.
  • the console 58 can be configured to display the preview image p # pre generated for that portion, instead of immediately displaying it on the display unit 58a, by delaying it by a predetermined timing.
  • a time width for delaying the display of the preview image p # pre is set in the console 58 in advance.
  • the timing for starting the wipe display of the preview image p # pre on the display unit 58a of the console 58 is delayed, so that an operator such as a radiologist can delay the preview image p # displayed by the wipe display. Only after pre sees whether or not re-shooting is necessary. For this reason, the timing at which the operator views the preview image p # pre and determines that re-shooting is unnecessary is delayed, and the timing at which the FPD 1 is moved toward the next shooting is delayed. The reading process is completed.
  • the console 58 displays the preview image p # pre on the display unit 58a by wiping the preview image p # pre (see FIGS. 23A to 23C) or rotating the image according to the normal processing procedure at the time of shooting. (See FIG. 24), for example, until the FPD1 finishes reading the offset data O, the display unit 58a displays that the FPD1 is in the process of reading offset data. It is also possible to change the content of the display process displayed on the display unit 58a. In this case as well, it is possible to configure whether or not to perform the above display depending on whether the accumulation time ⁇ is set to a short time or a long time.
  • the offset is set when the FPD 1 is moved toward the next imaging by an operator such as a radiologist. Since the reading process of the data O is completed, the console 58 does not need to display on the display unit 58a that the FPD 1 is in the process of reading the offset data as described above. Therefore, when the accumulation time ⁇ is set to a short time, the console 58 does not display as described above.
  • the console 58 displays on the screen H4 shown in FIG. 24 on the wiped preview image p # pre or in the vicinity thereof or on the right side of the screen H4 for setting the shooting conditions. For example, as shown in FIG.
  • a prominent symbol indicating that the FPD 1 is in the process of reading offset data can be displayed on any part of the screen H4 such as the part Ia.
  • a display such as “data is being read. Do not move the cassette” can be configured to be displayed in a manner that is easy for a radiographer or other operator to understand. is there. Further, when the operator is looking at another screen, it is also possible to configure the display as described above on the screen.
  • the display as described above is performed on the display unit 58a of the console 58, so an operator such as a radiologist moves the FPD 1 This can be prevented.
  • the display as described above disappears from the display unit 58a. Therefore, after the offset data O reading process is completed, the operator performs FPD1 for the next shooting. Will move. Therefore, it is possible to prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O to be read from including artifacts, so that the diagnostic providing medical image p is included. It becomes possible to accurately prevent the appearance of artifacts.
  • the accumulation time ⁇ (that is, the duration of the charge accumulation state)
  • the offset data O reading process is performed by repeating the same processing sequence as the processing sequence up to the image data D reading process illustrated in FIG. 5. Therefore, the accumulation time ⁇ is set to the same time interval in the charge accumulation state before the image data D reading process (see FIG. 5) and the charge accumulation state before the offset data O reading process (see FIG. 6). Therefore, by setting the accumulation time ⁇ (see FIG. 5) in the charge accumulation state before the reading process of the image data D, the accumulation time ⁇ (see FIG. 6) in the charge accumulation state before the reading process of the offset data O is automatically performed. Reference) is set.
  • the accumulation time ⁇ can be set, for example, by an operator such as a radiologist on the console 58 or automatically by the console 58.
  • the console 58 is comprised so that the content of the display process displayed on the display part 58a as mentioned above may be changed according to the set accumulation
  • the console 58 has a table (for example, see FIG. 26) instructing how to change the content of the display process displayed on the display unit 58a according to the set accumulation time ⁇ .
  • the display processing content displayed on the display unit 58a can be changed based on the table.
  • the console 58 sets the accumulation time ⁇ to be slightly longer than the radiation irradiation time set in the radiation generator 55.
  • a long time can be set. Therefore, the accumulation time ⁇ is generally a short time interval, and at least the accumulation time ⁇ need not be set longer than necessary.
  • the dose rate of the irradiated radiation rises slowly, and it takes time to reach a prescribed dose rate.
  • one radiation source 52 is usually associated with one modality. That is, when the modality is the rounding wheel 60 (see FIG. 4), the rounding wheel 60 is normally equipped with one radiation source 52P. Even when the modality is the bucky device 51 (see FIG. 3), the bucky device 51 is usually associated with one radiation source 52A for irradiating the FPD 1 loaded therein with radiation. For example, in FIG. 3, by changing the irradiation direction of one radiation source 52A, it is possible to irradiate both the standing-up imaging device 51A and the standing-up imaging device 51B. Even in such a case, one radiation source 52A is associated with the standing-up imaging device 51A, and the same radiation source 52A is used. One radiation source 52A is also associated with the bucky device 51B for position photographing.
  • the console 58 is configured to include a table or the like that associates “modality ID” that is identification information of each modality with the identification information of the radiation source 52, and the radiation irradiation characteristics of each radiation source 52. Accordingly, the accumulation time ⁇ to be set is set in advance for each radiation source 52.
  • the console 58 focuses and displays the icon I (see FIG. 21) corresponding to the next shooting on the screen H4 as described above, the “58” of the shooting order corresponding to the icon I is displayed.
  • the modality ID “P9” see FIGS. 19 and 20
  • the radiation source 52 corresponding to the modality is specified based on the above table.
  • an accumulation time ⁇ set in advance for the specified radiation source 52 is determined. Then, it is possible to transmit the calculated accumulation time ⁇ to the FPD 1 or to change the content of the display process to be displayed on the display unit 58a based on the table as shown in FIG. In addition, you may comprise so that ID etc. of the radiation source 52 used by the said imaging
  • the radiation source 52 information can be notified from the FPD 1 to the console 58. That is, when the FPD 1 is brought into the radiographing room R1 (see FIG. 3) or mounted in the roundabout car 60 (see FIG. 4), the access point 53 of the radiographing room R1 or the roundabout car 60 (in FIG. 4). In order to be able to communicate with the access points 53 of the roundabout car 60, the SSIDs of these access points 53 are acquired. In many cases, the radiation room 52 is usually provided in the radiographing room R1 and the round-trip wheel 60.
  • the FPD 1 acquires the SSID of the access point 53 as described above, information such as identification information of the radiation source 52A installed in the imaging room R1 and the radiation source 52 provided in the round-the-wheel 60 In addition, it is configured so that it is also acquired.
  • the acquired information such as the identification information of the radiation source 52 can be notified from the FPD 1 to the console 58.
  • the console 58 calculates a preset accumulation time ⁇ for the radiation source 52 based on the information of the radiation source 52 notified from the FPD 1. Then, it is possible to transmit the calculated accumulation time ⁇ to the FPD 1 or change the content of the display process to be displayed on the display unit 58a based on the table as shown in FIG.
  • the control unit 22 of the FPD 1 performs the reading process of the offset data O by repeating the same processing sequence as the processing sequence from the reset process of each radiation detection element to the reading process of the image data D. If the content of the display process displayed on the display unit 58a is changed in accordance with a predetermined time during which the charge accumulation state is continued in the FPD 1, that is, the accumulation time ⁇ , the preview image displayed on the display unit 58a of the console 58 is displayed. Even if an operator such as a radiologist who judges that re-imaging is unnecessary by looking at an image such as p # pre moves the FPD 1 for the next imaging, the FPD 1 has already finished reading the offset data O. Since it is in a state, artifacts due to microphonic phenomenon appear in the offset data O It becomes possible to accurately prevent.
  • FIG. 3 shows a case where only one shooting room R1 is provided.
  • the above-described configuration can be applied to a case where a plurality of shooting rooms R1 are provided.
  • a different modality ID is assigned to each Buckie device 51 installed in each imaging room R1, and a radiation source 52 is provided for each imaging room R1. Therefore, for example, if the ID of the bucky device 51 is specified as the modality ID in the imaging order information, the radiation source 52 in the imaging room R1 in which the bucky device 51 is provided can be specified.
  • the modality ID in the imaging order information, it is possible to specify the identification information of the radiation source 52 of the radiation generator 55 used for imaging. Further, it is also possible to configure so that the identification information of the photographing room R1 used for photographing is designated by the photographing order information.
  • the image data D reading process is started immediately, the image data D reading process can be started earlier, and the offset data O reading process is also started earlier. Is possible.
  • the offset data O reading process is performed by repeating the same processing sequence as the processing sequence up to the image data D reading process shown in FIG. 5. If the accumulation time ⁇ in the reading process of the image data D is shortened, the accumulation time ⁇ in the reading process of the offset data O can also be shortened.
  • the time required for the offset data O reading process can be shortened, and the timing for starting the offset data O reading process can be advanced as described above. Therefore, it becomes possible to advance the timing at which the operator such as a radiologist can move the FPD 1 for the next imaging, and the operator can perform a series of imaging more quickly.
  • the medical image system 50 for providing diagnosis is configured to perform imaging in the above-described synchronization method, for example, radiation that has fully pressed the button of the exposure switch 56 of the radiation generator 55
  • An operator such as an engineer (radiation is being irradiated in this state) gives a signal representing that the button of the exposure switch 56 has been fully pressed (in this state, radiation irradiation ends).
  • the generation device 55 notifies the FPD 1.
  • the control means 22 of the FPD 1 receives this signal, the processing content can be switched from the charge accumulation state (see FIG. 28) to the reading processing of the image data D.
  • the control means 22 of the FPD 1 The count of the duration of the charge accumulation state is started at the time when the state of resetting each radiation detection element 7 is shifted to the charge accumulation state before the D reading process, and the time ⁇ real when the charge accumulation state is actually continued is calculated. Configured to measure. In this case, the control means 22 of the FPD 1 does not measure the set accumulation time ⁇ but the measured actual duration ⁇ real in the charge accumulation state after the image data D readout process and before the offset data O readout process. Only after the charge accumulation state is continued, the offset data O is read out.
  • the diagnosis providing medical image system 50 is configured to perform imaging by the asynchronous method described above, for example, as described above, the image data D is promptly obtained when the irradiation of the radiation to the FPD 1 is completed.
  • the control means 22 of the FPD 1 it is necessary for the control means 22 of the FPD 1 to recognize that the irradiation of radiation from the radiation generating device 55 to the FPD 1 has been completed by some method.
  • a device capable of detecting that the button of the exposure switch 56 of the radiation generating device 55 is pressed or released is described, as described in JP 2010-104398 A.
  • the exposure switch 56 can be externally attached, and the FPD 1 can be configured to receive a signal from the apparatus indicating that the operator has depressed the button of the exposure switch 56.
  • the FPD 1 is configured to read out the leak data dleak while the charge accumulation state is continued. For example, when the read out leak data dleak becomes less than a set threshold value, radiation is emitted. It is also possible to configure so as to detect the end of irradiation.
  • it can be configured to detect the end of radiation irradiation when the output value from the X-ray sensor has decreased, and can be configured to detect the end of radiation irradiation by various methods. Is possible.
  • the content of the display process displayed on the display unit 58a of the console 58 is changed according to the length of the accumulation time ⁇ that is the duration of the charge accumulation state in the FPD 1.
  • the accumulation time ⁇ is long, the content of the display process is changed so that an operator such as a radiographer delays the timing for moving the FPD 1 for the next imaging.
  • the FPD 1 is prevented from being subjected to vibration while the offset data O is being read out (including the charge storage state immediately before, and the same applies hereinafter), and the offset data O to be read is free from artifacts. .
  • the FPD 1 transmits a completion signal to the console 58 when the reading process of the offset data O is completed, and the console 58 displays the preview image p # pre and the like on the display unit 58 a for the first time when the completion signal is received from the FPD 1. It is possible to make it constitute.
  • the console 58 receives a completion signal from the FPD 1, an operator such as a radiographer such as the preview image p # pre determines whether or not re-imaging is necessary on the display unit 58 a.
  • the possible images are not displayed.
  • the FPD 1 is in the process of reading the offset data as shown in FIG. 25 until the preview image p # pre is displayed on the display unit 58a after the completion signal is received. It can be configured to display a symbol indicating that it is, or to display a wording such as “Data is being read. Do not move the cassette”.
  • the preview image p # pre or the like is not displayed on the display unit 58a of the console 58 until the FPD 1 completes the reading process of the offset data O.
  • the necessity of re-shooting cannot be determined.
  • the operator does not move the FPD 1. Therefore, it is possible to accurately prevent an operator such as a radiologist from moving the FPD 1 while the FPD 1 is performing the offset data O reading process.
  • each of the above configurations has been described on the premise that the offset data O is read out by the FPD 1 after imaging (that is, after irradiation of radiation).
  • the offset data O can be read out before photographing.
  • the offset data O can be read at various timings as to which timing before imaging is performed by irradiating the FPD 1 with radiation.
  • the offset data O can be read out at the timing in each of the above-described configurations, that is, the timing immediately after the reading processing of the image data D is completed.
  • the reading process of the image data D and the reading process of the offset data O immediately after that relate to the same shooting (see “ D1 ”and“ O1 ”,“ D2 ”and“ O2 ”), and when the offset data O is read before shooting as described above, as shown in FIG. 27B, the image data D
  • the read processing of the offset data O performed immediately after the read processing is performed is the read processing of reading the offset data O for the next shooting performed thereafter (“D1” and “D” in FIG. 27B). O2 ").
  • “D” represents the reading process of the image data D
  • “O” represents the reading process of the offset data O
  • “1” and “2” represent the first and second imaging, respectively. Represents that
  • the reading process of the offset data O is not the reading process of the image data D performed immediately before, but the reading process of the image data D in the next photographing performed after the reading process of the offset data O. It is comprised so that it may be performed by the process sequence of. Therefore, the accumulation time ⁇ in the offset data O readout process in this case is set to the same time as the accumulation time ⁇ in the subsequent readout process of the image data D in the next shooting.
  • the present configuration is different from the above-described configurations, but other points can be configured in the same manner as the above-described configurations. That is, the content of the display process displayed on the display unit 58a of the console 58 is changed according to the accumulation time ⁇ in the next reading process of the offset data O for photographing, or the FPD 1 performs the offset data O reading process.
  • a completion signal is transmitted to the console 58.
  • the console 58 does not display the preview image p # pre or the like on the display unit 58a until the completion signal is received from the FPD1, and the completion signal is received from the FPD1.
  • the preview image p # pre or the like can be displayed on the display unit 58a for the first time when it is received.
  • the offset data O read processing performed before imaging is performed by, for example, the first operation (that is, half-pressing) and the second operation (ie, half-pressing) on the exposure switch 56 of the radiation generating device 55 by an operator such as the above-described radiographer.
  • it can be configured to be performed during the full press). That is, in this case, when the medical image system 50 for providing diagnosis is configured to perform imaging in the synchronous method described above, for example, when the first operation is performed on the exposure switch 56.
  • the radiation generator 55 is configured to transmit a signal indicating that the first operation on the exposure switch 56 has been performed to the FPD 1.
  • diagnosis providing medical image system 50 is configured to perform imaging in, for example, the asynchronous method described above, for example, it is detected that the button of the exposure switch 56 described above has been pressed.
  • the apparatus that has detected that the first operation has been performed is connected to the console 58.
  • a signal indicating that the first operation on the exposure switch 56 has been performed is transmitted from the console 58 that has received the signal to the FPD 1.
  • the control means 22 of the FPD 1 receives the above signal when the first stage operation is performed on the exposure switch 56, as described above, after performing reset processing of each radiation detection element, the charge accumulation state Is continued for a predetermined time, that is, the accumulation time ⁇ , and then the offset data O is read (see FIG. 6 and FIG. 29). Then, the same processing sequence is repeated again to reset each radiation detection element 7 and then shift to the charge accumulation state. Then, while the FPD 1 continues in the charge accumulation state, a second operation is performed on the exposure switch 56 by an operator such as a radiologist, and the FPD 1 is irradiated with radiation through the subject.
  • the FPD 1 is configured to perform the reading process of the image data D after continuing the charge accumulation state for the accumulation time ⁇ .
  • the medical image system 50 for providing diagnosis is configured to perform imaging in the synchronous method described above, for example, during the process of reading the offset data O by the FPD 1, for example.
  • the FPD 1 is configured to transmit an interlock release signal from the FPD 1 to the radiation generator 55 when the offset data O reading process is completed, so that the FPD 1 can perform the offset data O reading process. It is possible to accurately prevent the radiation from being irradiated.
  • the medical image system 50 for providing diagnosis is configured to perform imaging by the asynchronous method described above, for example, the radiation generator 55 is not interlocked, so that the offset data O is read by the FPD 1.
  • the FPD 1 is irradiated with radiation by performing a second operation on the exposure switch 56 during the processing.
  • the diagnosis providing medical image system 50 is configured to perform imaging in an asynchronous manner, when configured as described above, for example, an operator such as a radiologist is exposed to the radiation generator 55.
  • the console 58 At the same time as transmitting a signal to the FPD 1, it may be configured to alert an operator such as a radiographer not to perform the second operation on the exposure switch 56 by uttering sound or playing music. Is possible.
  • the console 58 stops voice utterance and music playback. Then, an operator such as a radiologist confirms that the voice utterance has been stopped and performs the second operation on the exposure switch 56 of the radiation generator 55. At the same time as the voice utterance or the like, it is possible to display on the display unit 58a of the console 58 a content for calling attention so as not to perform the second operation on the exposure switch 56.
  • diagnosis providing medical image system 50 is configured as described above, it is possible to accurately prevent vibrations and the like from being applied to the FPD 1 during the reading process of the offset data O, and the offset data O to be read does not include artifacts. As a result, it is possible to accurately prevent an artifact from appearing in the medical image p for providing diagnosis.
  • the accumulation time ⁇ is long. It is understood that the FPD 1 is not moved immediately, but the preview image p # pre may want to be confirmed early. In such a case, even if the accumulation time ⁇ is long, the content of the display process for displaying the preview image p # pre on the display unit 58a of the console 58 is not changed, that is, according to the present invention. It is configured so that the preview image p # pre can be displayed as usual (ie, as shown in FIGS. 23A to 23C, FIG. 24, etc.) by performing a cancel process so as not to change the contents of the display process. It is also possible to do.
  • the preview image data Dp is transmitted from the FPD 1, the preview image p # pre is wiped and displayed at the same time as usual, and the preview image p # pre is quickly displayed.
  • an operator who can perform the canceling process is designated in advance according to the level of the skill, and the console 58 performs the canceling process based on the input operator ID of the operator, for example. It is also possible to configure so that the cancel process is accepted only when the operator is permitted to perform the operation.
  • It may be used in the field of radiographic imaging (especially in the medical field).

Abstract

Provided is a diagnostic medical imaging system capable of accurately preventing the occurrence of deterioration in image quality of diagnostic medical images generated even when imaging is performed using a radiography apparatus capable of transitioning the imaging mode from a sleep mode to a wake-up mode. In the diagnostic medical imaging system (50), the control means (22) of the radiography apparatus (1): performs, after imaging, an offset data (O) read-out processing, which repeats the same processing sequence as the processing sequence of resetting each radiation detecting element (7), continuing the charge accumulation state for an accumulation time (τ) and performing image data (D) read-out processing; and when the time (t) elapsed from when the imaging mode transitions to the wake-up mode reaches a waiting time (WT), transmits a signal to a notification device (58). When a signal is received, the notification device (58) issues a notice that radiation can be irradiated from the radiation-generating device (55) and imaging can be performed. The waiting time (WT) can be changed according to the accumulation time (τ).

Description

診断提供用医用画像システムおよび放射線画像撮影装置Medical imaging system for providing diagnosis and radiographic imaging apparatus
 本発明は、放射線画像撮影装置が読み出した画像データに基づいて診断提供用医用画像を生成する診断提供用医用画像システムおよび放射線画像撮影装置に関する。 The present invention relates to a diagnostic providing medical image system and a radiographic imaging apparatus that generate a diagnostic providing medical image based on image data read by a radiographic imaging apparatus.
 X線撮影の分野では、従来のスクリーン/フィルムを用いた銀塩写真方式から輝尽性蛍光体シート等を用いたCR(computed radiography)カセッテへの移行によって、アナログによる撮影方法からのデジタル化が図られている。そして、近年、放射線発生装置から照射され被写体を透過した放射線に応じて電荷(電子正孔対)を発生させる放射線検出素子が二次元状に配列された放射線画像撮影装置(Flat Panel Detector。以下、FPDという。)が種々開発されており、病院等の医療現場で診断提供用医用画像の撮影に用いられるようになっている。そして、近年、放射線検出素子等が形成されたセンサーパネル等を筐体内に収納し、持ち運び可能とした可搬型のFPDが開発され、実用化されている(例えば特許文献1参照)。 In the field of X-ray photography, the shift from the conventional silver salt photography method using screens / films to CR (computed radiography) cassettes using photostimulable phosphor sheets, etc. has made digitization from analog photography methods possible. It is illustrated. In recent years, a radiation imaging device (Flat Panel Detector, hereinafter) in which radiation detection elements that generate charges (electron-hole pairs) in accordance with radiation irradiated from a radiation generator and transmitted through a subject are arranged in a two-dimensional manner. Various types of FPDs) have been developed and are used for taking medical images for diagnosis provision in medical sites such as hospitals. In recent years, a portable FPD in which a sensor panel or the like on which a radiation detection element or the like is formed is housed in a casing and can be carried has been developed and put into practical use (for example, see Patent Document 1).
 このようなFPDでは、例えば後述する図2等に示すように、通常、複数の放射線検出素子7が、センサーパネルSPの検出部P4上に二次元状(マトリクス状)に配列され、各放射線検出素子7にそれぞれ薄膜トランジスター(Thin Film Transistor。以下、TFTという。)8で形成されたスイッチ素子が接続されて構成される。そして、放射線発生装置から被写体を介してFPDに放射線を照射して撮影が行われる際には、全てのTFT8を所定時間の間オフ状態にして、放射線の照射により各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させる。なお、以下、この各放射線検出素子7内に電荷を蓄積させるために設定される「所定時間」を、蓄積時間τという。また、全TFT8をオフ状態にして各放射線検出素子7内に電荷を蓄積させる状態を、電荷蓄積状態という。すなわち、蓄積時間τとは、この電荷蓄積状態の継続時間のことを意味する。 In such an FPD, for example, as shown in FIG. 2 and the like to be described later, normally, a plurality of radiation detection elements 7 are arranged in a two-dimensional form (matrix form) on the detection part P4 of the sensor panel SP, and each radiation detection element is detected. Each element 7 is configured by being connected to a switch element formed by a thin film transistor (Thin Film Transistor, hereinafter referred to as TFT) 8. When imaging is performed by irradiating the FPD with radiation from the radiation generator through the subject, all the TFTs 8 are turned off for a predetermined time and generated in each radiation detection element 7 by radiation irradiation. The charged charges are accumulated in each radiation detection element 7. Hereinafter, the “predetermined time” set for accumulating charges in each radiation detection element 7 is referred to as an accumulation time τ. A state in which all TFTs 8 are turned off and charges are accumulated in each radiation detection element 7 is referred to as a charge accumulation state. That is, the accumulation time τ means the duration of this charge accumulation state.
 そして、蓄積時間τの経過後、各放射線検出素子7からの画像データDの読み出し処理が行われる。読み出し処理では、ゲートドライバー15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して、各TFT8を順次オン状態として、放射線の照射により各放射線検出素子7内で発生して蓄積された電荷を各信号線6に順次放出させて、各読み出し回路17で画像データDとしてそれぞれ読み出すように構成される。 Then, after the accumulation time τ elapses, the reading process of the image data D from each radiation detection element 7 is performed. In the reading process, an ON voltage is sequentially applied from the gate driver 15b to each of the lines L1 to Lx of the scanning line 5 so that the TFTs 8 are sequentially turned on, and are generated and accumulated in each radiation detecting element 7 by radiation irradiation. The charges are sequentially discharged to the signal lines 6 and read out as image data D by the readout circuits 17, respectively.
 ところで、上記のように、放射線の照射により発生した電荷を各放射線検出素子7内に的確に蓄積させるようにするためには、放射線発生装置からFPDに対する放射線の照射が開始されると同時、或いは開始される前に、FPDのスイッチ素子である各TFT8がオフ状態になっていることが必要である。それを実現するための1つの方法として、例えば、放射線発生装置とFPDとの間で同期を取りながら撮影を行うように構成される場合がある。なお、このような撮影方式を、以下、同期方式という。 By the way, as described above, in order to accurately accumulate the charges generated by the irradiation of radiation in each of the radiation detection elements 7, at the same time as the irradiation of the radiation to the FPD is started from the radiation generating apparatus, or Before starting, it is necessary that each TFT 8 which is a switching element of the FPD is in an OFF state. As one method for realizing this, for example, there is a case where imaging is performed while synchronizing between the radiation generation apparatus and the FPD. Such a photographing method is hereinafter referred to as a synchronous method.
 この同期方式の場合、例えば、FPDは、後述するコンソール58(後述する図3や図4参照)から覚醒信号(wake up信号等ともいう。)を受信したり、或いは放射線発生装置から後述する曝射スイッチ56の1段目の操作(すなわちいわゆる半押し操作)がなされたことを表す信号を受信する等すると、各放射線検出素子7内に残存する電荷を除去する各放射線検出素子7のリセット処理を開始する。なお、各放射線検出素子7のリセット処理を行う際、例えば図28の左側の部分に示すように、ゲートドライバー15b(後述する図2参照)から走査線5の各ラインL1~Lxにオン電圧を順次印加して行うように構成してもよく、また、図示を省略するが、ゲートドライバー15bから走査線5の各ラインL1~Lxに一斉にオン電圧を印加して行うように構成することも可能である。また、図28中のTacについては後で説明する。 In the case of this synchronization method, for example, the FPD receives a wake-up signal (also referred to as a wake up signal) from a console 58 (see FIGS. 3 and 4 described later) or an exposure described later from the radiation generator. When a signal indicating that the first-stage operation of the shooting switch 56 (ie, a so-called half-pressing operation) has been received, etc., reset processing of each radiation detection element 7 for removing the charge remaining in each radiation detection element 7 To start. When the reset processing of each radiation detection element 7 is performed, for example, as shown in the left part of FIG. 28, an ON voltage is applied to each line L1 to Lx of the scanning line 5 from the gate driver 15b (see FIG. 2 described later). It may be configured to be applied sequentially, and although not shown, it may be configured to apply the on-voltage to the lines L1 to Lx of the scanning line 5 from the gate driver 15b all at once. Is possible. Further, Tac in FIG. 28 will be described later.
 そして、放射線技師等の操作者により曝射スイッチ56の2段目の操作(すなわちいわゆる全押し操作)がなされると、放射線発生装置からFPDに対して照射開始信号が送信される。そして、FPDは照射開始信号を受信すると、図28に示すように、各放射線検出素子7のリセット処理を終了させて、放射線発生装置にインターロック解除信号を送信する。そして、放射線発生装置は、インターロック解除信号を受信した時点で、放射線を照射する。また、FPDは、各放射線検出素子7のリセット処理を終了させると、上記のようにインターロック解除信号を送信すると同時に、TFT8をオフ状態にして電荷蓄積状態に移行する。そして、蓄積時間τの間に放射線が照射される。なお、図28における斜線部分が、放射線発生装置から放射線が照射されている期間を表す。そして、FPDは、蓄積時間τが経過した後、上記のようにゲートドライバー15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して、各放射線検出素子7からの画像データDの読み出し処理を行うように構成される。 Then, when an operator such as a radiologist performs the second stage operation of the exposure switch 56 (that is, a so-called full-press operation), an irradiation start signal is transmitted from the radiation generator to the FPD. Then, when the FPD receives the irradiation start signal, as shown in FIG. 28, the reset processing of each radiation detection element 7 is ended and an interlock release signal is transmitted to the radiation generation apparatus. And a radiation generator irradiates radiation at the time of receiving an interlock release signal. Further, when the reset process of each radiation detection element 7 is finished, the FPD transmits the interlock release signal as described above, and at the same time, turns off the TFT 8 and shifts to the charge accumulation state. Then, radiation is irradiated during the accumulation time τ. Note that the hatched portion in FIG. 28 represents a period during which radiation is applied from the radiation generation apparatus. Then, after the accumulation time τ elapses, the FPD sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b as described above, so that the image data D from each radiation detection element 7 is transferred. It is configured to perform a read process.
 一方、FPDと放射線発生装置との製造元が互いに異なるような場合には、両者の間でインターフェースを構築することができない場合もある。このように、FPDと放射線発生装置とが同期を取らずに行う撮影方式を、以下、非同期方式という。この非同期方式の場合も、放射線発生装置からFPDに対する放射線の照射が開始される時点で、FPDのスイッチ素子である各TFT8をオフ状態にすることが必要になる。そのため、非同期方式で撮影を行う場合には、通常、放射線発生装置との信号のやり取りを行わず、FPD自体で放射線が照射されたことを検出するように構成される。 On the other hand, when the manufacturers of the FPD and the radiation generator are different from each other, there is a case where an interface cannot be constructed between the two. Such an imaging method performed without synchronizing the FPD and the radiation generating apparatus is hereinafter referred to as an asynchronous method. Also in this asynchronous system, it is necessary to turn off each TFT 8 that is a switching element of the FPD when radiation irradiation to the FPD is started from the radiation generating device. For this reason, when imaging is performed in an asynchronous manner, normally, the FPD itself detects that radiation has been emitted without exchanging signals with the radiation generator.
 これを実現するために、FPDにX線センサー等のX線検知手段を取り付けたり(特許文献2参照)、上記のように二次元状に配列された放射線検出素子7のうちの所定の放射線検出素子7をセンサーとして用いるように構成したり(特許文献3参照)、各放射線検出素子7に接続されているバイアス線9(後述する図2等参照)に電流検出手段を設けるように構成することも可能である(特許文献4参照)。また、放射線の照射開始前から、走査駆動手段15のゲートドライバー15bから全ての走査線5にオフ電圧を印加して各TFT8をオフ状態とした状態で読み出し回路17に読み出し動作を行わせ、TFT8を介して放射線検出素子7からリークした電荷をリークデータdleakとして読み出すリークデータdleakの読み出し処理を行うように構成することも可能である(特許文献5参照)。さらに、特許文献6等に記載されているように、放射線の照射開始前から、画像データの読み出し処理を行うように構成することも可能である。なお、この場合に読み出される画像データを、上記のようにして撮影後に読み出される本画像としての画像データDと区別して、以下、照射開始検出用の画像データdという。 In order to realize this, an X-ray detection means such as an X-ray sensor is attached to the FPD (see Patent Document 2), or predetermined radiation detection among the radiation detection elements 7 arranged in a two-dimensional manner as described above. The element 7 is configured to be used as a sensor (see Patent Document 3), or the current detection means is provided on a bias line 9 (see FIG. 2 and the like described later) connected to each radiation detection element 7. Is also possible (see Patent Document 4). In addition, before the start of radiation irradiation, the readout circuit 17 is caused to perform a readout operation in a state in which each TFT 8 is turned off by applying an off voltage to all the scanning lines 5 from the gate driver 15b of the scanning drive unit 15. It is also possible to perform a read process of the leak data dleak that reads out the charges leaked from the radiation detection element 7 as leak data dleak via the (see Patent Document 5). Furthermore, as described in Patent Document 6 and the like, it is also possible to perform a configuration in which image data reading processing is performed before the start of radiation irradiation. In this case, the image data read out in this case is referred to as image data d for irradiation start detection, in distinction from the image data D as the main image read out after photographing as described above.
 特許文献5、6等に記載された発明を採用すれば、FPDに対する放射線の照射が開始されると、上記のようにして読み出されるリークデータdleakや照射開始検出用の画像データdの値が、放射線の照射開始前よりも格段に大きくなる。そのため、それを利用し、例えば読み出されたリークデータdleakや照射開始検出用の画像データdが閾値以上になった時点で放射線の照射が開始されたことを検出することが可能となる。そして、非同期方式における上記のいずれの検出方法を採用するとしても、FPDは、放射線発生装置からの放射線の照射開始を検出すると、全てのTFT8をオフ状態にして電荷蓄積状態に移行する。そして、蓄積時間τが経過した後で、上記のようにして各放射線検出素子7からの画像データDの読み出し処理を行うように構成される。 If the inventions described in Patent Documents 5 and 6 are employed, when radiation irradiation to the FPD is started, the values of the leak data dleak read out as described above and the image data d for irradiation start detection are as follows: It becomes much larger than before the start of irradiation. For this reason, it is possible to detect the start of radiation irradiation when, for example, the read leak data dleak or image data d for detection of irradiation start is equal to or greater than a threshold value. Even if any of the above detection methods in the asynchronous method is employed, when the FPD detects the start of irradiation of radiation from the radiation generator, all the TFTs 8 are turned off and the charge accumulation state is entered. Then, after the accumulation time τ elapses, the image data D is read from each radiation detection element 7 as described above.
特開平6-342099号公報Japanese Patent Laid-Open No. 6-342099 特開2007-151761号公報JP 2007-151761 A 特開2011-174908号公報JP 2011-174908 A 特開2009-219538号公報JP 2009-219538 A 国際公開第2011/135917号パンフレットInternational Publication No. 2011/13517 Pamphlet 国際公開第2011/152093号パンフレットInternational Publication No. 2011-152093 Pamphlet
 ところで、各放射線検出素子7内では、放射線検出素子7自体の熱(温度)による熱励起等によりいわゆる暗電荷(暗電流等ともいう。)が常時発生している。そのため、スイッチ素子であるTFT8をオフ状態にしておくと、放射線検出素子7内に暗電荷が溜まり続ける状態になる。そして、例えば図28に示したような処理シーケンスに従って本画像としての画像データDの読み出し処理を行う場合、読み出し処理の前のリセット処理の際にオン電圧が印加されてから、画像データDの読み出し処理の際にオン電圧が印加されるまでの間、TFT8がオフ状態になっているため、その間に各放射線検出素子7内で発生した暗電荷がそれぞれ各放射線検出素子7内に蓄積される。 Incidentally, in each radiation detection element 7, so-called dark charges (also referred to as dark current) are constantly generated due to thermal excitation or the like due to heat (temperature) of the radiation detection element 7 itself. For this reason, when the TFT 8 serving as the switch element is turned off, the dark charge continues to accumulate in the radiation detection element 7. For example, when the reading process of the image data D as the main image is performed according to the processing sequence shown in FIG. 28, the reading of the image data D is performed after the on-voltage is applied in the reset process before the reading process. Until the on-voltage is applied during processing, the TFT 8 is in an off state, and thus dark charges generated in each radiation detection element 7 during that time are accumulated in each radiation detection element 7.
 そのため、読み出し処理で読み出される画像データDには、上記のように放射線の照射により発生した電荷に起因するデータ(すなわちいわゆる真の画像データD*)に暗電荷によるオフセット分oが重畳されたデータになっている。より正確に言うと、画像データDには、読み出し処理の前のリセット処理の際に印加された電圧がオン電圧からオフ電圧に切り替えられてから、画像データDの読み出し処理において印加された電圧がオン電圧からオフ電圧に切り替えられるまでの時間Tac(以下、この時間Tacを実効蓄積時間Tacという。)の間に各放射線検出素子7内で発生した暗電荷によるオフセット分oが重畳されている。すなわち、画像データDと真の画像データD*と暗電荷によるオフセット分oの間には、
  D=D*+o  …(1)
の関係が成り立っている。
Therefore, in the image data D read out by the reading process, as described above, the data resulting from the charge generated by the irradiation of radiation (that is, the so-called true image data D * ) is superimposed with the offset o due to the dark charge. It has become. More precisely, the image data D has a voltage applied in the read process of the image data D after the voltage applied in the reset process before the read process is switched from the on voltage to the off voltage. An offset o due to dark charges generated in each radiation detection element 7 is superimposed during a time Tac (hereinafter, this time Tac is referred to as an effective accumulation time Tac) until switching from the on voltage to the off voltage. That is, between the image data D, the true image data D *, and the offset o due to the dark charge,
D = D * + o (1)
The relationship is established.
 そして、この暗電荷によるオフセット分oをオフセットデータOとして読み出すオフセットデータOの読み出し処理が、通常、撮影後に行われる。各放射線検出素子7内に蓄積される暗電荷の量、すなわち画像データDに重畳されている暗電荷によるオフセット分oは、上記の実効蓄積時間Tacの長さに応じて変わる。また、実効蓄積時間Tacの長さが同じであれば、暗電荷によるオフセット分oの値は同じになる。そこで、オフセットデータOの読み出し処理において、走査線5の各ラインL1~Lxごとの実効蓄積時間Tacをそれぞれ画像データDの読み出し処理における実効蓄積時間Tac(図28参照)と同じ時間間隔にすれば、オフセットデータOと、画像データDに重畳されている暗電荷によるオフセット分oとを同じ大きさにすることができる。そして、この場合、O=oとなるため、これを上記(1)式に代入して変形すれば、
  D*=D-o
   =D-O  …(2)
となり、画像データDの読み出し処理で読み出された画像データDから、オフセットデータOの読み出し処理で読み出されたオフセットデータOを減算することで、各放射線検出素子7ごとに、放射線の照射により発生した電荷のみに起因する真の画像データD*を容易かつ的確に算出することが可能となる。
Then, the offset data O reading process for reading the offset o due to the dark charge as the offset data O is normally performed after photographing. The amount of dark charge accumulated in each radiation detection element 7, that is, the offset o due to the dark charge superimposed on the image data D changes according to the length of the effective accumulation time Tac. Further, if the length of the effective accumulation time Tac is the same, the value of the offset o due to the dark charge is the same. Therefore, in the offset data O reading process, the effective accumulation time Tac for each of the lines L1 to Lx of the scanning line 5 is set to the same time interval as the effective accumulation time Tac (see FIG. 28) in the image data D reading process. The offset data O and the offset o due to the dark charge superimposed on the image data D can be made the same size. In this case, since O = o, if this is substituted into the above equation (1) and transformed,
D * = D−o
= DO (2)
Thus, by subtracting the offset data O read by the offset data O reading process from the image data D read by the image data D reading process, each radiation detecting element 7 is irradiated with radiation. It is possible to easily and accurately calculate true image data D * resulting from only the generated charges.
 そして、これを実現するためには、上記のように、オフセットデータOの読み出し処理における実効蓄積時間Tacを、画像データDの読み出し処理における実効蓄積時間Tacとを同じ時間間隔にすることが必要になる。そのため、例えば図29に示すように、オフセットデータOの読み出し処理では、図28に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返すように構成されることが多い。このように同じ処理シーケンスを繰り返すように構成することで、走査線5の各ラインL1~Lxにオン電圧を印加するタイミング等が画像データDの読み出し処理の場合とオフセットデータOの読み出し処理の場合とで同じになり、走査線5の各ラインL1~Lxごとに実効蓄積時間Tacが同じ時間間隔になる。なお、オフセットデータOの読み出し処理は、FPDに放射線が照射されない状態で行われる。また、この場合、画像データDの読み出し処理前の電荷蓄積状態の継続時間である蓄積時間τ(図28参照)と、オフセットデータOの読み出し処理前の蓄積時間τ(図29参照)も、全く同じ時間間隔に設定される。 In order to realize this, as described above, it is necessary to set the effective accumulation time Tac in the reading process of the offset data O to the same time interval as the effective accumulation time Tac in the reading process of the image data D. Become. Therefore, for example, as shown in FIG. 29, the offset data O reading process is often configured to repeat the same processing sequence as the processing sequence up to the image data D reading process shown in FIG. By configuring so that the same processing sequence is repeated in this way, the timing of applying the ON voltage to each of the lines L1 to Lx of the scanning line 5 is the case of the reading process of the image data D and the case of the reading process of the offset data O The effective accumulation time Tac becomes the same time interval for each of the lines L1 to Lx of the scanning line 5. Note that the offset data O is read out in a state in which the FPD is not irradiated with radiation. In this case, the accumulation time τ (see FIG. 28), which is the duration of the charge accumulation state before the image data D reading process, and the accumulation time τ before the offset data O reading process (see FIG. 29) are also completely different. Set to the same time interval.
 このように、オフセットデータOの読み出し処理を、画像データDの読み出し処理までの処理シーケンス(図28参照)と同じ処理シーケンスを繰り返して行うように構成すれば、画像データDの読み出し処理の際の実効蓄積時間TacとオフセットデータOの読み出し処理の際の実効蓄積時間Tacが同じ時間間隔になり、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが同じ大きさになる。そのため、画像処理の際に、上記(2)式の演算を行うことで、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺されるため、真の画像データD*を的確に算出することが可能となる。 In this way, if the offset data O is read out by repeating the same processing sequence as the processing sequence up to the reading processing of the image data D (see FIG. 28), the reading processing of the image data D is performed. The effective accumulation time Tac and the effective accumulation time Tac at the time of the reading process of the offset data O are the same time interval, and the offset o due to the dark charge superimposed on the image data D and the offset data O have the same size. . Therefore, when the image processing is performed, the offset amount o due to the dark charge superimposed on the image data D and the offset data O are canceled by performing the calculation of the above equation (2), so that the true image data D * Can be calculated accurately.
 しかし、理屈上では上記のようになるはずだが、実際に、上記のようにしてオフセットデータOの読み出し処理を行い、読み出したオフセットデータOと画像データDを上記(2)式に代入して真の画像データD*を算出するように構成した場合、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺されない場合があることが分かってきた。このような状況で、上記のようにして画像データDの読み出し処理やオフセットデータOの読み出し処理を行い、読み出された画像データDやオフセットデータOに基づいて上記(2)式に従って真の画像データD*を算出すると、算出した真の画像データD*に基づいて生成される診断提供用医用画像の画質が劣化してしまう場合がある。 However, in theory, it should be as described above, but actually, the offset data O is read out as described above, and the read offset data O and image data D are substituted into the above equation (2). It has been found that when the image data D * is calculated, the offset o due to the dark charge superimposed on the image data D and the offset data O may not be offset. In such a situation, the reading process of the image data D and the reading process of the offset data O are performed as described above, and a true image is obtained according to the above equation (2) based on the read image data D and the offset data O. When the data D * is calculated, the image quality of the diagnostic-provided medical image generated based on the calculated true image data D * may be deteriorated.
 そして、本発明者らが上記のような現象が現れる原因について研究を重ねた結果、特に、FPDが、撮影モードを、少なくとも、制御手段22や走査駆動手段15、読み出し回路17を含む読み出しIC16(後述する図2参照)等の各機能部に電力を供給して撮影を行うことが可能な覚醒(wake up)モードと、通信部30等の必要な機能部にのみ電力を供給し、撮影を行うことができないスリープ(sleep)モードとの間で遷移させることができるように構成されている場合に、上記のような現象が現れることが分かってきた。 As a result of the inventors' researches on the cause of the phenomenon as described above, in particular, the FPD has a photographing mode including at least a control unit 22, a scanning drive unit 15, and a readout IC 16 ( (See FIG. 2 to be described later) and the like, a power is supplied to each functional unit such as a wake up mode in which imaging can be performed, and power is supplied only to necessary functional units such as the communication unit 30 to perform imaging. It has been found that the above phenomenon appears when it is configured to be able to transition to a sleep mode that cannot be performed.
 本発明は、上記の問題点を鑑みてなされたものであり、撮影モードをスリープモードから覚醒モードに遷移させることが可能なFPD(放射線画像撮影装置)を用いて撮影を行っても、生成される診断提供用医用画像の画質に劣化が生じることを的確に防止することが可能な診断提供用医用画像システムおよび放射線画像撮影装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and is generated even when imaging is performed using an FPD (radiation imaging apparatus) capable of changing the imaging mode from the sleep mode to the awakening mode. It is an object of the present invention to provide a diagnostic providing medical image system and a radiographic imaging apparatus capable of accurately preventing deterioration of the image quality of a diagnostic providing medical image.
 前記の問題を解決するために、本発明の診断提供用医用画像システムおよび放射線画像撮影装置は、
 複数の走査線および複数の信号線と、
 二次元状に配列された複数の放射線検出素子と、
 前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替える走査駆動手段と、
 前記各走査線に接続され、オン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させるスイッチ素子と、
 前記信号線に放出された前記電荷を画像データとして読み出す読み出し回路と、
 少なくとも前記走査駆動手段と前記読み出し回路とを制御して、前記画像データの読み出し処理を行わせる制御手段と、
を備える放射線画像撮影装置と、
 被写体を介して前記放射線画像撮影装置に放射線を照射する放射線発生装置と、
 報知装置と、
を備え、
 前記放射線画像撮影装置は、撮影モードを、少なくとも、前記制御手段を含む各機能部に電力を供給して撮影を行うことが可能な覚醒モードと、必要な機能部にのみ電力を供給し、撮影を行うことができないスリープモードとの間で遷移させることができるように構成されており、
 前記放射線画像撮影装置の前記制御手段は、
 撮影の際には、前記各放射線検出素子のリセット処理を行った後、前記走査駆動手段から前記各走査線にオフ電圧を印加して前記スイッチ素子をオフ状態とした状態で放射線の照射により前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させる電荷蓄積状態を、設定された蓄積時間だけ継続させ、その後、少なくとも前記走査駆動手段と前記読み出し回路とを制御して前記画像データの読み出し処理を行わせ、
 撮影後に、放射線が照射されない状態で、前記各放射線検出素子のリセット処理から前記画像データの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して前記画像データの代わりにオフセットデータを読み出すオフセットデータの読み出し処理を行うとともに、
 前記撮影モードが前記スリープモードから前記覚醒モードに遷移されてからの経過時間をカウントし、前記経過時間が、待ち時間だけ経過した時点で、前記報知装置に信号を送信し、
 前記報知装置は、前記放射線画像撮影装置から前記信号を受信すると、前記放射線発生装置から放射線を照射して撮影を行うことが可能であることを報知するように構成されており、
 前記待ち時間は、前記蓄積時間に応じて切り替えられることを特徴とする。
In order to solve the above problems, a medical image system for diagnosis provision and a radiographic imaging apparatus of the present invention include:
A plurality of scanning lines and a plurality of signal lines;
A plurality of radiation detection elements arranged two-dimensionally;
Scanning drive means for switching a voltage applied to each scanning line between an on-voltage and an off-voltage,
A switch element connected to each of the scanning lines, and discharging a charge accumulated in the radiation detection element to the signal line when an on-voltage is applied;
A readout circuit for reading out the electric charge emitted to the signal line as image data;
Control means for controlling at least the scanning drive means and the readout circuit to perform the readout processing of the image data;
A radiographic imaging device comprising:
A radiation generator for irradiating the radiation imaging apparatus with radiation through a subject; and
A notification device;
With
The radiographic image capturing apparatus supplies an imaging mode, an awakening mode capable of performing imaging by supplying power to each functional unit including at least the control unit, and supplying power only to necessary functional units to perform imaging. Is configured to be able to transition between sleep modes that cannot be performed,
The control means of the radiographic image capturing apparatus includes:
At the time of imaging, after performing reset processing of each radiation detection element, the scanning drive means applies an off voltage to each scanning line, and the switch element is turned off by irradiation of radiation. The charge accumulation state in which charges generated in each radiation detection element are accumulated in each radiation detection element is continued for a set accumulation time, and then at least the scanning drive unit and the readout circuit are controlled to Have the image data read out,
Read offset data to read offset data instead of the image data by repeating the same processing sequence as the processing sequence from the reset processing of each radiation detection element to the reading processing of the image data in a state where no radiation is irradiated after imaging. As well as processing
Counting the elapsed time since the shooting mode is changed from the sleep mode to the wake-up mode, and when the elapsed time has elapsed by a waiting time, a signal is sent to the notification device,
The notification device is configured to notify that it is possible to perform imaging by irradiating radiation from the radiation generation device when receiving the signal from the radiographic imaging device,
The waiting time is switched according to the accumulation time.
 本発明のような方式の診断提供用医用画像システムおよび放射線画像撮影装置によれば、放射線画像撮影装置(FPD)の撮影モードをスリープモードから覚醒モードに遷移させてから時間をおかずに撮影を行ってFPDで画像データDを読み出し、引き続きオフセットデータOの読み出し処理を行う場合であっても、設定された蓄積時間に応じて待ち時間を適切に切り替えることで、読み出された画像データDやオフセットデータOに基づいて生成される診断提供用医用画像の画質に劣化が生じることを的確に防止することが可能となる。 According to the medical imaging system for diagnosis providing and the radiographic imaging apparatus of the system as in the present invention, imaging is performed in a short time after the imaging mode of the radiographic imaging apparatus (FPD) is changed from the sleep mode to the awakening mode. Even when the image data D is read by the FPD and the offset data O is subsequently read out, the read image data D and the offset can be changed by appropriately switching the waiting time according to the set accumulation time. It is possible to accurately prevent deterioration in the image quality of the medical image for diagnosis providing generated based on the data O.
FPDの外観を示す斜視図である。It is a perspective view which shows the external appearance of FPD. FPDの等価回路を表すブロック図である。It is a block diagram showing the equivalent circuit of FPD. 撮影室等に構築された診断提供用医用画像システムの構成例を示す図である。It is a figure which shows the structural example of the medical image system for diagnosis provision constructed | assembled in the imaging | photography room etc. 回診車上に構築された診断提供用医用画像システムの構成例、および操作者が携帯する携帯端末を表す図である。It is a figure showing the structural example of the medical image system for diagnosis provision constructed | assembled on the round-trip vehicle, and the portable terminal which an operator carries. リークデータに基づいて放射線の照射開始を検出する場合に各走査線にオン電圧を印加するタイミング等を説明するタイミングチャートである。It is a timing chart explaining the timing etc. which apply an ON voltage to each scanning line, when detecting the irradiation start of radiation based on leak data. 図5に示した処理シーケンスが繰り返されてオフセットデータの読み出し処理が行われることを表すタイミングチャートである。6 is a timing chart showing that offset data reading processing is performed by repeating the processing sequence shown in FIG. 5. 時間が経過するに従って放射線検出素子内で発生する単位時間当たりの電荷量が次第に減っていく状態の一例を表すグラフである。It is a graph showing an example of the state which the electric charge amount per unit time which generate | occur | produces in a radiation detection element reduces gradually as time passes. 図7の例において画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとがそれぞれ斜線を付して示す領域の面積として表されることを説明するグラフである。FIG. 8 is a graph for explaining that an offset amount o and offset data O due to dark charges superimposed on image data D in the example of FIG. 7 are respectively expressed as areas of hatched areas. 図7の例において時間が経過した後は各放射線検出素子内で発生する単位時間当たりの電荷量が一定値になりオフセット分oとオフセットデータOが等しい値になることを説明するグラフである。FIG. 8 is a graph for explaining that the amount of charge per unit time generated in each radiation detection element becomes a constant value and the offset amount o and the offset data O become equal after the time has elapsed in the example of FIG. 7. 覚醒モードに遷移されてからの経過時間が待ち時間だけ経過した時点で報知装置に信号を送信すること等を説明するタイミングチャートである。It is a timing chart explaining transmitting a signal to an alarm device etc. when the elapsed time after changing to a wake-up mode passes only waiting time. 図7の例において画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間の差分Δ等を説明するグラフである。FIG. 8 is a graph for explaining a difference Δ between an offset amount o due to dark charges superimposed on image data D and offset data O in the example of FIG. 図7の例において実効蓄積時間Tacが長くなると図11の場合よりも差分Δが大きくなることを説明するグラフである。FIG. 12 is a graph for explaining that the difference Δ becomes larger than the case of FIG. 11 when the effective accumulation time Tac becomes longer in the example of FIG. 7. 図12の場合に待ち時間を長くすることで差分Δが小さくなることを説明するグラフである。13 is a graph for explaining that the difference Δ is reduced by increasing the waiting time in the case of FIG. 12. コンソールの表示部に表示される画面の一例を表す図である。It is a figure showing an example of the screen displayed on the display part of a console. 撮影部位や撮影方向を設定すると同時に蓄積時間を設定できるように構成された画面の一例を表す図である。It is a figure showing an example of the screen comprised so that the accumulation | storage time can be set simultaneously with setting an imaging | photography site | part and an imaging | photography direction. 図14に示した画面上で蓄積時間を設定できるように構成した場合の画面の一例を表す図である。It is a figure showing an example of the screen at the time of comprising so that accumulation time can be set on the screen shown in FIG. 覚醒モードに遷移されてから短い待ち時間の経過後に1回目の撮影が行われ、続けて長い待ち時間の経過後に2回目の撮影が行われる場合の例におけるタイミングチャートである。It is a timing chart in an example in which the first shooting is performed after a short waiting time has elapsed since the transition to the awakening mode, and then the second shooting is performed after a long waiting time has elapsed. バイアス電源から各放射線検出素子に印加される電圧Vbが覚醒モードへの遷移時から徐々に0[V]に近づいていくように変化することを説明するグラフである。It is a graph explaining that the voltage Vb applied to each radiation detection element from a bias power supply changes so that it may approach 0 [V] gradually from the time of the transition to an awakening mode. 撮影オーダー情報の一例を示す図である。It is a figure which shows an example of imaging | photography order information. 撮影オーダー情報を表示する選択画面の一例を示す図である。It is a figure which shows an example of the selection screen which displays imaging | photography order information. 各撮影オーダー情報に対応する各アイコン等を表示する画面の一例を示す図である。It is a figure which shows an example of the screen which displays each icon etc. corresponding to each imaging | photography order information. 画像データDの中からプレビュー画像用データを抽出する仕方の例を説明する図である。6 is a diagram for explaining an example of a method for extracting preview image data from image data D. FIG. プレビュー画像をワイプ表示する状態を表す図である。It is a figure showing the state which displays a preview image in a wipe. プレビュー画像をワイプ表示する状態を表す図である。It is a figure showing the state which displays a preview image in a wipe. プレビュー画像をワイプ表示する状態を表す図である。It is a figure showing the state which displays a preview image in a wipe. 図21の画面上のアイコンI2の位置にプレビュー画像が表示されること等を表す図である。FIG. 22 is a diagram illustrating that a preview image is displayed at a position of an icon I2 on the screen of FIG. FPDがオフセットデータの読み出し処理中であることを表す図柄の一例を表す図である。It is a figure showing an example of the symbol showing that FPD is reading offset data. 設定された蓄積時間と表示部に表示させる表示処理の内容とを対応付けるテーブルの一例を表す図である。It is a figure showing an example of the table which matches the set accumulation | storage time and the content of the display process displayed on a display part. 撮影後にオフセットデータの読み出し処理を行う場合の、画像データの読み出し処理とオフセットデータの読み出し処理との処理の順序を説明する図である。It is a figure explaining the order of processing of image data reading processing and offset data reading processing when performing offset data reading processing after shooting. 撮影前にオフセットデータの読み出し処理を行う場合の、画像データの読み出し処理とオフセットデータの読み出し処理との処理の順序を説明する図である。It is a figure explaining the order of the process of the reading process of image data, and the reading process of offset data in the case of performing the reading process of offset data before imaging | photography. 同期方式で撮影を行う場合に各走査線にオン電圧を印加するタイミング等を説明するタイミングチャートである。6 is a timing chart for explaining the timing of applying an ON voltage to each scanning line when shooting is performed in a synchronous manner. 図28に示した処理シーケンスが繰り返されてオフセットデータの読み出し処理が行われることを表すタイミングチャートである。FIG. 29 is a timing chart showing that offset data reading processing is performed by repeating the processing sequence shown in FIG. 28.
 以下、本発明に係る診断提供用医用画像システムおよび放射線画像撮影装置の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of a medical image system for diagnosis provision and a radiographic imaging apparatus according to the present invention will be described with reference to the drawings.
 なお、以下においても、放射線画像撮影装置をFPDという。また、以下では、診断提供用医用画像システムで用いられるFPDとして、シンチレーター等を備え、放射された放射線を可視光等の他の波長の電磁波に変換して画像データを得るいわゆる間接型のFPDについて説明するが、本発明は、シンチレーター等を介さずに放射線を放射線検出素子で直接検出する、いわゆる直接型のFPDに対しても適用することができる。また、FPDがいわゆる可搬型である場合について説明するが、支持台等と一体的に形成された、いわゆる専用機型のFPDに対しても、本発明を適用することが可能である。 In the following, the radiographic imaging device is also referred to as FPD. In the following, a so-called indirect FPD that includes a scintillator or the like as an FPD used in a medical image system for diagnosis provision and obtains image data by converting emitted radiation into electromagnetic waves of other wavelengths such as visible light. As will be described, the present invention can also be applied to a so-called direct FPD in which radiation is directly detected by a radiation detection element without using a scintillator or the like. Although the case where the FPD is a so-called portable type will be described, the present invention can also be applied to a so-called dedicated type FPD formed integrally with a support base or the like.
[FPDについて]
 ここで、本発明に係る診断提供用医用画像システムについて説明する前に、診断提供用医用画像システムで用いられるFPD1について説明する。図1は、FPDの外観を示す斜視図である。
[About FPD]
Here, before explaining the medical image system for diagnosis provision according to the present invention, the FPD 1 used in the medical image system for diagnosis provision will be described. FIG. 1 is a perspective view showing the appearance of the FPD.
 本実施形態では、FPD1は、図示しないセンサーパネルがカーボン板等で形成された筐体2内に収納されて構成されている。そして、筐体2の一方の側面には、電源スイッチ25や切替スイッチ26、コネクター27、インジケーター28等が配置されている。また、図示を省略するが、本実施形態では、筐体2の例えば反対側の側面等に、外部と無線通信を行うためのアンテナ装置29(後述する図2参照)が設けられている。なお、FPD1は、外部と無線方式で通信を行う場合にはアンテナ装置29を用い、また、外部と有線方式で通信を行う場合には、コネクター27に図示しないケーブルを接続させて通信するようになっている。 In this embodiment, the FPD 1 is configured by housing a sensor panel (not shown) in a housing 2 formed of a carbon plate or the like. On one side surface of the housing 2, a power switch 25, a changeover switch 26, a connector 27, an indicator 28, and the like are arranged. Although not shown, in the present embodiment, an antenna device 29 (see FIG. 2 to be described later) for performing wireless communication with the outside is provided on, for example, the opposite side surface of the housing 2. Note that the FPD 1 uses the antenna device 29 when communicating with the outside in a wireless manner, and communicates by connecting a cable (not shown) to the connector 27 when communicating with the outside in a wired manner. It has become.
 図2は、FPDの等価回路を表すブロック図である。図2に示すように、FPD1には、図示しないセンサー基板上に複数の放射線検出素子7が二次元状(マトリクス状)に配列されている。各放射線検出素子7は、後述する放射線発生装置55の放射線源52(図3や図4参照)から照射され図示しない被写体を透過した放射線に応じて電荷を発生させるようになっている。各放射線検出素子7には、バイアス線9が接続されており、バイアス線9は結線10を介してバイアス電源14に接続されている。そして、バイアス電源14からバイアス線9等を介して各放射線検出素子7に逆バイアス電圧が印加されるようになっている。各放射線検出素子7には、スイッチ素子として薄膜トランジスター(Thin Film Transistor。以下、TFTという。)8が接続されており、TFT8は信号線6に接続されている。 FIG. 2 is a block diagram showing an equivalent circuit of FPD. As shown in FIG. 2, in the FPD 1, a plurality of radiation detection elements 7 are arranged in a two-dimensional shape (matrix shape) on a sensor substrate (not shown). Each of the radiation detection elements 7 generates charges in accordance with radiation irradiated from a radiation source 52 (see FIGS. 3 and 4) of a radiation generator 55 (described later) and transmitted through a subject (not shown). Each radiation detection element 7 is connected to a bias line 9, and the bias line 9 is connected to a bias power supply 14 through a connection 10. A reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7 via the bias line 9 and the like. Each radiation detecting element 7 is connected to a thin film transistor (hereinafter referred to as TFT) 8 as a switching element, and the TFT 8 is connected to the signal line 6.
 走査駆動手段15では、配線15cを介して電源回路15aからゲートドライバー15bにオン電圧とオフ電圧が供給されるようになっており、ゲートドライバー15bで走査線5の各ラインL1~Lxに印加する電圧をオン電圧とオフ電圧との間でそれぞれ切り替えるようになっている。そして、各TFT8は、走査線5を介してオン電圧が印加されるとオン状態になって、放射線検出素子7と信号線6とが導通する状態になり放射線検出素子7内の電荷が読み出される。また、各TFT8は、走査線5を介してオフ電圧が印加されるとオフ状態になって、放射線検出素子7と信号線6との導通を遮断するようになっている。 In the scanning drive means 15, an ON voltage and an OFF voltage are supplied from the power supply circuit 15a to the gate driver 15b via the wiring 15c, and applied to each line L1 to Lx of the scanning line 5 by the gate driver 15b. The voltage is switched between an on voltage and an off voltage. Each TFT 8 is turned on when an on-voltage is applied via the scanning line 5, and the radiation detection element 7 and the signal line 6 are brought into conduction, and the charge in the radiation detection element 7 is read out. . Further, each TFT 8 is turned off when an off voltage is applied via the scanning line 5, and the conduction between the radiation detection element 7 and the signal line 6 is cut off.
 制御手段22は、図示しないCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(RandomAccessMemory)、入出力インターフェース等がバスに接続されたコンピューターや、FPGA(Field Programmable Gate Array)等で構成されている。専用の制御回路で構成されていてもよい。そして、制御手段22には、SRAM(Static RAM)やSDRAM(Synchronous DRAM)等で構成される記憶手段23が接続されており、また、外部と無線通信するためのアンテナ装置29や有線通信を行うためのコネクター27が接続された通信部30が接続されている。さらに、制御手段22には、走査駆動手段15や読み出し回路17、記憶手段23、バイアス電源14等の各機能部に必要な電力を供給するバッテリー24が接続されている。 The control means 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output interface connected to the bus, an FPGA (Field Programmable Gate Array), etc. ing. It may be configured by a dedicated control circuit. The control means 22 is connected to a storage means 23 composed of SRAM (Static RAM), SDRAM (Synchronous DRAM) or the like, and performs an antenna device 29 for wireless communication with the outside or wired communication. A communication unit 30 to which a connector 27 is connected is connected. Further, a battery 24 that supplies necessary power to each functional unit such as the scanning drive unit 15, the readout circuit 17, the storage unit 23, and the bias power supply 14 is connected to the control unit 22.
 制御手段22は、画像データDの読み出し処理の際には、例えば図28に示したように、ゲートドライバー15b(図2参照)から走査線5の各ラインL1~Lxにオン電圧を順次印加させ、走査線5に接続されている各TFT8をオン状態にする。そして、各TFT8がオン状態になると、各放射線検出素子7と各信号線6とが導通し、各放射線検出素子7から信号線6に放出された電荷が、読み出しIC16内に設けられた各読み出し回路17で読み出される。 For example, as shown in FIG. 28, the control unit 22 sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b (see FIG. 2) when the image data D is read out. Each TFT 8 connected to the scanning line 5 is turned on. When each TFT 8 is turned on, each radiation detection element 7 and each signal line 6 are electrically connected, and the electric charge discharged from each radiation detection element 7 to the signal line 6 is read out in each readout IC 16. Read by the circuit 17.
 具体的には、放射線検出素子7から読み出し回路17の増幅回路18に流れ込んだ電荷の量に応じて増幅回路17から電圧値が出力される。そして、相関二重サンプリング回路(図2では「CDS」と記載されている。)19は、各放射線検出素子7から電荷が流れ込む前後に増幅回路18から出力された電圧値の差分をアナログ値の画像データDとして下流側に出力する。そして、出力された画像データDはアナログマルチプレクサー21を介してA/D変換器20に順次送信され、A/D変換器20でデジタル値の画像データDに順次変換され、記憶手段23に出力されて順次保存されるようになっている。 Specifically, a voltage value is output from the amplification circuit 17 in accordance with the amount of charge flowing from the radiation detection element 7 to the amplification circuit 18 of the readout circuit 17. Then, the correlated double sampling circuit (described as “CDS” in FIG. 2) 19 converts the difference between the voltage values output from the amplifier circuit 18 before and after the charge flows from each radiation detection element 7 into an analog value. The image data D is output downstream. The output image data D is sequentially transmitted to the A / D converter 20 via the analog multiplexer 21, and is sequentially converted into digital image data D by the A / D converter 20, and is output to the storage means 23. Are stored sequentially.
 また、本実施形態では、FPD1は、撮影モードを、少なくとも、制御手段22や走査駆動手段15、読み出し回路17を含む読み出しIC16等の各機能部に電力を供給して撮影を行うことが可能な覚醒(wake up)モード(撮影可能モード等ともいう。)と、外部との通信を行う通信部30等の必要な機能部にのみ電力を供給し、撮影を行うことができないスリープ(sleep)モードとの間で遷移させることができるようになっている。 In the present embodiment, the FPD 1 can perform shooting by supplying power to at least the functional units such as the reading IC 16 including the control unit 22, the scanning drive unit 15, and the reading circuit 17 in the shooting mode. Awake mode (also referred to as a shootable mode) and a sleep mode in which power is supplied only to necessary functional units such as the communication unit 30 that communicates with the outside, and imaging cannot be performed. Can be transitioned between.
 そして、FPD1は、例えば電源スイッチ25がオンされた時点で撮影モードを覚醒モードとするように構成してもよく、また、電源スイッチ25がオンされた時点では撮影モードをスリープモードとするように構成してもよい。また、例えば、後述するコンソール58(後述する図3や図4参照)から覚醒信号を受信すると、撮影モードを、スリープモードから覚醒モードに遷移させるようになっている。また、本実施形態では、FPD1は、撮影モードを覚醒モードに遷移させた後、所定時間が経過しても撮影が行われない場合は、撮影モードをスリープモードに遷移させるようになっている。 The FPD 1 may be configured such that, for example, the shooting mode is set to the awakening mode when the power switch 25 is turned on, and the shooting mode is set to the sleep mode when the power switch 25 is turned on. It may be configured. Further, for example, when a wake-up signal is received from a console 58 (described later, see FIGS. 3 and 4), the photographing mode is changed from the sleep mode to the wake-up mode. In the present embodiment, the FPD 1 changes the shooting mode to the sleep mode when the shooting mode is changed to the awakening mode and no shooting is performed even after a predetermined time has elapsed.
[診断提供用医用画像システム]
 次に、本実施形態に係る診断提供用医用画像システム50の構成等について説明する。図3は、本実施形態に係る診断提供用医用画像システム50の構成例を示す図である。図3では、診断提供用医用画像システム50が撮影室R1内等に構築されている場合が示されている。
[Medical imaging system for diagnosis provision]
Next, the configuration and the like of the diagnostic providing medical image system 50 according to the present embodiment will be described. FIG. 3 is a diagram illustrating a configuration example of the medical image system 50 for providing diagnosis according to the present embodiment. FIG. 3 shows a case where the diagnostic providing medical image system 50 is constructed in the imaging room R1 or the like.
 撮影室R1には、ブッキー装置51が設置されており、ブッキー装置51は、そのカセッテ保持部(カセッテホルダーともいう。)51aに上記のFPD1を装填して用いることができるようになっている。なお、図3では、ブッキー装置51として、立位撮影用のブッキー装置51Aと臥位撮影用のブッキー装置51Bが設置されている場合が示されているが、例えば一方のブッキー装置51のみが設けられていてもよい。また、図3に示すように、撮影室R1には、被写体を介してブッキー装置51に装填されたFPD1に放射線を照射する放射線発生装置55の放射線源52Aが少なくとも1つ設けられている。 In the photographing room R1, a bucky device 51 is installed, and the bucky device 51 can be used by loading the FPD 1 into a cassette holding portion (also referred to as a cassette holder) 51a. FIG. 3 shows a case where a bucky device 51A for standing position shooting and a bucky device 51B for standing position shooting are installed as the bucky device 51. For example, only one of the bucky devices 51 is provided. It may be done. In addition, as shown in FIG. 3, the imaging room R1 is provided with at least one radiation source 52A of a radiation generator 55 that irradiates the FPD 1 loaded in the Bucky device 51 via a subject.
 撮影室R1には、撮影室R1内の各装置等や撮影室R1外の各装置等の間の通信等を中継するための中継器54が設けられており、中継器54はアクセスポイント53を備えている。また、中継器54は、放射線発生装置55やコンソール58と接続されており、中継器54には、FPD1やコンソール58等から放射線発生装置55に送信するLAN(Local Area Network)通信用の信号等を放射線発生装置55用の信号等に変換し、また、その逆の変換も行う図示しない変換器が内蔵されている。 The photography room R1 is provided with a repeater 54 for relaying communication between each device in the photography room R1 and each device outside the photography room R1. I have. The relay 54 is connected to the radiation generator 55 and the console 58. The relay 54 is connected to a signal for LAN (Local Area Network) communication transmitted from the FPD 1 or the console 58 to the radiation generator 55. Is converted into a signal or the like for the radiation generator 55, and vice versa.
 前室(操作室等ともいう。)R2には、本実施形態では、放射線発生装置55の操作卓57が設けられており、操作卓57には、放射線技師等の操作者が操作して放射線発生装置55に対して放射線の照射開始等を指示するための曝射スイッチ56が設けられている。
曝射スイッチ56には、図示しないボタンが設けられている。
In the present embodiment, the front room (also referred to as an operation room) R2 is provided with an operation console 57 of the radiation generating device 55. The operation panel 57 is operated by an operator such as a radiation engineer. An exposure switch 56 is provided for instructing the generator 55 to start radiation irradiation.
The exposure switch 56 is provided with a button (not shown).
 そして、前述したように、放射線技師等の操作者が曝射スイッチ56のボタンに対して1段目の操作(すなわちいわゆる半押し操作)を行うと、放射線発生装置55は放射線源52を起動させて放射線を照射することができる状態にする。そして、操作者が曝射スイッチ56のボタンに対して2段目の操作(すなわちいわゆる全押し操作)を行うと、放射線発生装置55は、前述したように、同期方式の場合には、FPD1からインターロック解除信号が送信されてきた時点で放射線源52から放射線を照射させる。また、撮影が非同期方式で行われる場合等には、放射線発生装置55は、操作者により曝射スイッチ56に対する2段目の操作が行われた時点で放射線源52から放射線を照射させる。なお、放射線発生装置55は、放射線源52から適切な線量の放射線が照射されるように、放射線源52に対して管電流や照射時間等を設定するなど種々の制御を行うようになっている。 As described above, when an operator such as a radiologist performs the first-stage operation (that is, so-called half-press operation) on the button of the exposure switch 56, the radiation generator 55 activates the radiation source 52. To be ready for radiation. Then, when the operator performs the second-stage operation (that is, so-called full-press operation) on the button of the exposure switch 56, the radiation generator 55 starts from the FPD 1 in the synchronous method as described above. When the interlock release signal is transmitted, the radiation source 52 emits radiation. Further, when imaging is performed in an asynchronous manner, the radiation generator 55 irradiates the radiation from the radiation source 52 when the operator performs the second stage operation on the exposure switch 56. The radiation generator 55 performs various controls such as setting a tube current and an irradiation time for the radiation source 52 so that an appropriate dose of radiation is emitted from the radiation source 52. .
 図3に示すように、本実施形態では、コンピューター等で構成されたコンソール58が前室R2に設けられている。なお、コンソール58を撮影室R1や前室R2の外側や別室等に設けるように構成することも可能であり、適宜の場所に設置される。また、コンソール58には、CRT(Cathode Ray Tube)やLCD(Liquid Crystal Display)等を備えて構成される表示部58aが設けられており、また、図示しないマウスやキーボード等の入力手段を備えている。また、コンソール58には、HDD(Hard DiskDrive)等で構成された記憶手段59が接続され、或いは内蔵されている。また、図示を省略するが、コンソール58には、LAN等のネットワーク等を介してHIS(Hospital Information System;病院情報システム)やRIS(Radiology Information System;放射線科情報システム)、PACS(Picture Archiving and Communication System)等が接続されている。 As shown in FIG. 3, in the present embodiment, a console 58 formed of a computer or the like is provided in the front room R2. The console 58 can be configured to be provided outside the imaging room R1 and the front room R2, in a separate room, and the like, and is installed in an appropriate place. In addition, the console 58 is provided with a display unit 58a configured to include a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), or the like, and also includes input means such as a mouse and a keyboard (not shown). Yes. In addition, the console 58 is connected to or has a built-in storage means 59 composed of an HDD (Hard DiskDrive) or the like. Although not shown, the console 58 is connected to the console 58 via a network such as a LAN, HIS (Hospital Information System), RIS (Radiology Information System), PACS (Picture Archiving and Communication). System) etc. are connected.
 一方、FPD1は、図4に示すように、ブッキー装置51には装填されずに、いわば単独の状態で用いることもできるようになっている。図4は、回診車60上に構築された診断提供用医用画像システム50の構成例を示す図である。例えば、患者Hが病室R3のベッドBから起き上がれず、図3に示したような撮影室R1に行くことができないような場合には、図4に示すように、FPD1や回診車60を病室R3内に持ち込み、ベッドBと患者Hの身体との間に差し込んだり患者Hの身体にあてがったりして用いることができる。また、FPD1を病室R3等で用いる場合、前述した撮影室R1に据え付けられた放射線発生装置55に代えて、図4に示すように、放射線発生装置55が回診車60に搭載されて病室R3に持ち込まれる。また、この場合、回診車60には、放射線の照射方向等を適切に変えることができるポータブルの放射線52Pが搭載される。また、回診車60には、コンソール58等も搭載されている。なお、図4では図示を省略したが、回診車60には、図3に示したアクセスポイント53や中継器54等も搭載されるように構成される。 On the other hand, as shown in FIG. 4, the FPD 1 can be used in a so-called state without being loaded into the bucky device 51. FIG. 4 is a diagram illustrating a configuration example of the diagnostic providing medical image system 50 constructed on the round-trip wheel 60. For example, when the patient H cannot get up from the bed B of the patient room R3 and cannot go to the radiographing room R1 as shown in FIG. 3, the FPD 1 and the round-trip car 60 are moved to the patient room R3 as shown in FIG. It can be brought in and inserted between the bed B and the body of the patient H or applied to the body of the patient H. Further, when the FPD 1 is used in the hospital room R3 or the like, the radiation generator 55 is mounted on the round-trip wheel 60 and installed in the hospital room R3 as shown in FIG. 4 instead of the radiation generator 55 installed in the imaging room R1 described above. Brought in. Further, in this case, the roundabout wheel 60 is equipped with a portable radiation 52P that can appropriately change the radiation direction and the like. The roundabout wheel 60 is also equipped with a console 58 and the like. Although not shown in FIG. 4, the roundabout wheel 60 is configured to include the access point 53, the repeater 54, and the like shown in FIG. 3.
 なお、図3に示した撮影室R1で撮影を行う場合も同様であるが、例えば図4に示すように、放射線技師等の操作者Eに表示部71を有する携帯端末70を携帯させ、コンソール58の表示部58a上に表示させる画像を、携帯端末70の表示部71上にも表示させるように構成することも可能である。このように構成すれば、放射線技師等の操作者が、いちいちコンソール58の所に行かなくても、自分が携帯している携帯端末70の表示部71上で画像を確認することが可能となるため、操作者にとって使い勝手がよいものとなる。 The same applies to the case where the photographing is performed in the photographing room R1 shown in FIG. 3. For example, as shown in FIG. 4, the operator E such as a radiologist carries the portable terminal 70 having the display unit 71 and the console. The image displayed on the 58 display units 58 a can also be configured to be displayed on the display unit 71 of the mobile terminal 70. If comprised in this way, it will become possible for operators, such as a radiographer, to confirm an image on the display part 71 of the portable terminal 70 which he carries, without going to the console 58 one by one. Therefore, it is convenient for the operator.
[撮影時における通常の処理について]
 次に、FPD1の制御手段22やコンソール58の、撮影時等における通常の処理について説明する。コンソール58は、撮影前に、例えば放射線技師等の操作者により指示が入力される等すると、撮影に使用されるFPD1に覚醒信号を送信して、当該FPD1の撮影モードを覚醒モードに遷移させる。FPD1は、撮影モードを覚醒モードに遷移させると、撮影の前処理として、各放射線検出素子7内に残存する電荷を除去する各放射線検出素子7のリセット処理を開始する。そして、放射線技師等の操作者は、FPD1と被写体である患者Hとのポジショニングを済ませると、放射線発生装置55の曝射スイッチ56の所に移動して、曝射スイッチ56を操作して放射線発生装置55の放射線源52から放射線を照射させる。
[Regarding normal processing during shooting]
Next, normal processing of the FPD 1 control means 22 and console 58 during shooting will be described. For example, when an instruction is input by an operator such as a radiographer before imaging, the console 58 transmits an awakening signal to the FPD 1 used for imaging, and changes the imaging mode of the FPD 1 to the awakening mode. When the imaging mode is changed to the awakening mode, the FPD 1 starts a reset process for each radiation detection element 7 that removes the charge remaining in each radiation detection element 7 as a pre-process for imaging. Then, when the operator such as a radiologist completes positioning of the FPD 1 and the patient H as the subject, the operator moves to the exposure switch 56 of the radiation generator 55 and operates the exposure switch 56 to generate radiation. Radiation is emitted from the radiation source 52 of the device 55.
 なお、FPD1と被写体である患者Hとのポジショニングを済ませた後、コンソール58からFPD1に覚醒信号を送信して、FPD1の撮影モードをスリープモードから覚醒モードに遷移させるように構成される場合もある。また、FPD1のバッテリー24(図2等参照)の消耗を避けるため、曝射スイッチ56の1段目のボタン操作が行われるのをトリガーとして、コンソール58からFPD1に覚醒信号を送信して、FPD1の撮影モードをスリープモードから覚醒モードに遷移させるように構成される場合もある。 In some cases, after the positioning of the FPD 1 and the patient H who is the subject is completed, a wake-up signal is transmitted from the console 58 to the FPD 1 so that the photographing mode of the FPD 1 is changed from the sleep mode to the wake-up mode. . In order to avoid exhaustion of the battery 24 of the FPD 1 (see FIG. 2 and the like), a wake-up signal is transmitted from the console 58 to the FPD 1 by using the first button operation of the exposure switch 56 as a trigger. In some cases, the photographing mode is changed from the sleep mode to the awakening mode.
 そして、撮影が同期方式で行われる場合には、曝射スイッチ56の2段目の操作(すなわちいわゆる全押し操作)がなされると、前述したように、放射線発生装置55からFPD1に対して照射開始信号が送信される。そして、図28に示したように、各放射線検出素子7のリセット処理を終了させたFPD1から放射線発生装置55にインターロック解除信号を送信する。そして、放射線発生装置55は、インターロック解除信号を受信した時点で、放射線を照射する。また、図28に示したように、FPD1は、上記のようにインターロック解除信号を送信すると同時に、TFT8をオフ状態にして電荷蓄積状態に移行する。そして、蓄積時間τの間に放射線が照射される。そして、FPD1は、蓄積時間τが経過した後、ゲートドライバー15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して、各放射線検出素子7からの画像データDの読み出し処理を行うように構成される。 When imaging is performed in a synchronous manner, when the second-stage operation of the exposure switch 56 (that is, a so-called full-press operation) is performed, as described above, irradiation from the radiation generator 55 to the FPD 1 is performed. A start signal is transmitted. Then, as shown in FIG. 28, an interlock release signal is transmitted from the FPD 1 that has completed the reset process of each radiation detection element 7 to the radiation generator 55. And the radiation generator 55 irradiates radiation at the time of receiving the interlock release signal. As shown in FIG. 28, the FPD 1 transmits the interlock release signal as described above, and at the same time, turns off the TFT 8 and shifts to the charge accumulation state. Then, radiation is irradiated during the accumulation time τ. Then, after the accumulation time τ has elapsed, the FPD 1 sequentially applies on-voltages to the lines L1 to Lx of the scanning line 5 from the gate driver 15b, and performs a process of reading the image data D from each radiation detection element 7. Configured as follows.
 また、撮影が非同期方式で撮影が行われる場合には、FPD1は、上記のようにして撮影モードを覚醒モードに遷移させると、上記のように撮影の前処理として各放射線検出素子7のリセット処理を行った後、前述したように、放射線の照射が開始されたことを自ら検出するために、放射線の照射開始の検出処理を行うように構成される。例えば、前述した特許文献5等に記載されているように放射線の照射前からリークデータdleakを読み出すように構成し、読み出したリークデータdleakに基づいて放射線の照射開始を検出するように構成することが可能である。 When imaging is performed in an asynchronous manner, the FPD 1 resets each radiation detection element 7 as imaging pre-processing as described above when the imaging mode is changed to the awakening mode as described above. After performing the above, as described above, in order to detect the start of the radiation irradiation by itself, it is configured to perform a radiation irradiation start detection process. For example, as described in Patent Document 5 described above, the leak data dleak is read before radiation irradiation, and the radiation irradiation start is detected based on the read leak data dleak. Is possible.
 なお、リークデータdleakを読み出す場合、前述したように、FPD1のゲートドライバー15b(図2参照)から全ての走査線5にオフ電圧を印加して各TFT8をオフ状態とした状態で読み出し回路17に読み出し動作を行わせることにより、リークデータdleakが読み出される。しかし、各TFT8をオフ状態としたままとすると、上記のように、各放射線検出素子7内に暗電荷が蓄積され続ける状態になるため、通常、例えば図5の左側に示すように、リークデータdleakの読み出し処理(図5の「L」参照)と、各放射線検出素子7のリセット処理(図5の「R」参照)とを交互に行うように構成される。 In addition, when reading the leak data dleak, as described above, the off-voltage is applied to all the scanning lines 5 from the gate driver 15b (see FIG. 2) of the FPD 1 so that each TFT 8 is turned off. Leak data dleak is read by performing a read operation. However, if the TFTs 8 are kept in the OFF state, dark charges are continuously accumulated in the respective radiation detection elements 7 as described above. Therefore, as shown on the left side of FIG. The dleak read process (see “L” in FIG. 5) and the reset process of each radiation detection element 7 (see “R” in FIG. 5) are alternately performed.
 そして、上記のように放射線技師等の操作者が曝射スイッチ56を操作して放射線源52Pから放射線を照射させると、FPD1では、ある回の読み出し処理で読み出されたリークデータdleakが例えば設定された閾値以上になる等して放射線の照射開始が検出される(図5の「検出」参照)。そして、このようにして放射線の照射開始を検出すると、FPD1の制御手段22は、ゲートドライバー15bから各走査線5にオフ電圧を印加させて全てのTFT8を所定時間の間すなわち前述した蓄積時間τの間、オフ状態にして、放射線の照射により各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させる。そして、同期方式の場合と同様に、蓄積時間τの経過後、各放射線検出素子7からの画像データDの読み出し処理が行われるように構成される。 When an operator such as a radiologist operates the exposure switch 56 to irradiate radiation from the radiation source 52P as described above, the FPD 1 sets, for example, the leak data dleak read in a certain read process. The start of radiation irradiation is detected when the threshold value is exceeded (see “Detection” in FIG. 5). Then, when the start of radiation irradiation is detected in this way, the control means 22 of the FPD 1 applies an off voltage to each scanning line 5 from the gate driver 15b, and keeps all the TFTs 8 for a predetermined time, that is, the accumulation time τ described above. In the meantime, the electric charge generated in each radiation detection element 7 by irradiation of radiation is accumulated in each radiation detection element 7. As in the case of the synchronous method, after the accumulation time τ elapses, the image data D is read out from each radiation detection element 7.
 なお、図5では、走査線5の各ラインL1~Lxにおける実効蓄積時間Tacが同じ時間になるようにするために、画像データDの読み出し処理では、放射線の照射開始が検出された時点或いはその直前にオン電圧が印加された走査線5(図5の場合は走査線5のラインL4)の次にオン電圧を印加すべき走査線5(図5の場合は走査線5のラインL5)からオン電圧の印加を開始し、ゲートドライバー15bから走査線5の各ラインL5~Lx、L1~L4にオン電圧を順次印加して読み出し処理を行うように構成された場合が示されている。しかし、例えば図28に示したように、走査線5の最初のラインL1からオン電圧の印加を開始し、ゲートドライバー15bから走査線5の各ラインL1~Lxにオン電圧を順次印加して読み出し処理を行うように構成することも可能である。 In FIG. 5, in order to ensure that the effective accumulation time Tac in each of the lines L1 to Lx of the scanning line 5 is the same time, in the reading process of the image data D, the time when the start of radiation irradiation is detected or From the scanning line 5 to which the ON voltage is to be applied next (the line L5 of the scanning line 5 in the case of FIG. 5) to the scanning line 5 to which the ON voltage is applied immediately before (the line L4 of the scanning line 5 in the case of FIG. 5). The case where the application of the on-voltage is started and the on-voltage is sequentially applied from the gate driver 15b to each of the lines L5 to Lx and L1 to L4 of the scanning line 5 to perform the reading process is shown. However, for example, as shown in FIG. 28, the application of the on-voltage is started from the first line L1 of the scanning line 5, and the on-voltage is sequentially applied to the lines L1 to Lx of the scanning line 5 from the gate driver 15b. It is also possible to configure to perform processing.
 また、上記のようにして画像データDの読み出し処理を行った時点で、例えば、FPD1の制御手段22が、読み出した画像データDからプレビュー画像用データDpを抽出してコンソール58に送信し、コンソール58で、プレビュー画像用データDp等に基づいてプレビュー画像p#preを生成して、表示部58a上や携帯端末70の表示部71上に表示する等の処理を行うように構成してもよい。 Further, when the image data D is read out as described above, for example, the control means 22 of the FPD 1 extracts the preview image data Dp from the read image data D and transmits it to the console 58. 58, a preview image p # pre may be generated based on the preview image data Dp or the like and displayed on the display unit 58a or the display unit 71 of the mobile terminal 70. .
 一方、FPD1の制御手段22は、上記のようにして、画像データDの読み出し処理(図5や図28参照)を終了すると、図6や図29に示すように、オフセットデータOの読み出し処理に向けて各放射線検出素子7のリセット処理を開始する。そして、前述したように、各走査線5ごとの実効蓄積時間Tac(図5参照)を画像データDの読み出し処理時とオフセットデータOの読み出し処理時とで同じ時間間隔にするために、図6や図29に示すように、図5や図28に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスが繰り返されて、オフセットデータOの読み出し処理が行われるように構成される。FPD1の制御手段22は、上記のようにして、オフセットデータOの読み出し処理を行うと、読み出した画像データDとオフセットデータOとをコンソール58(図3や図4参照)に送信する。 On the other hand, the control means 22 of the FPD 1 completes the reading process of the image data D (see FIGS. 5 and 28) as described above, and then performs the reading process of the offset data O as shown in FIGS. The reset process of each radiation detection element 7 is started. Then, as described above, in order to set the effective accumulation time Tac (see FIG. 5) for each scanning line 5 to the same time interval between the reading process of the image data D and the reading process of the offset data O, FIG. As shown in FIG. 29 and FIG. 29, the same processing sequence as the processing up to the reading processing of the image data D shown in FIG. 5 and FIG. 28 is repeated, and the reading processing of the offset data O is performed. When the control unit 22 of the FPD 1 performs the offset data O reading process as described above, the read image data D and the offset data O are transmitted to the console 58 (see FIGS. 3 and 4).
 そして、コンソール58で、送信されてきた画像データDやオフセットデータOに基づいて上記(2)式に従って真の画像データD*が算出され、真の画像データD*に基づいてゲイン補正や欠陥画素補正、撮影部位に応じた階調処理等の精密な画像処理を行って、診断提供用医用画像pを生成するように構成される。なお、生成された診断提供用医用画像pが放射線技師等の操作者により承認されると、コンソール58は、生成した診断提供用医用画像pを確定し、確定した診断提供用医用画像pの情報等を前述したPACS等の必要な箇所に送信するように構成される。 The console 58 calculates the true image data D * according to the above equation (2) based on the transmitted image data D and offset data O, and performs gain correction and defective pixels based on the true image data D *. The medical image p for diagnosis provision is generated by performing precise image processing such as correction and gradation processing according to the imaging region. When the generated diagnostic providing medical image p is approved by an operator such as a radiographer, the console 58 determines the generated diagnostic providing medical image p, and information on the confirmed diagnostic providing medical image p is displayed. Etc. are configured to be transmitted to a necessary location such as the PACS described above.
[通常の処理において発生し得る現象について]
 図6や図29に示したように、オフセットデータOの読み出し処理を、画像データDの読み出し処理までの処理シーケンス(図5や図28参照)と同じ処理シーケンスを繰り返して行うように構成すれば、画像処理の際に、前述したように上記(2)式の演算を行うことで、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺され、真の画像データD*が的確に算出されるはずであるが、実際には、前述したように、上記のようにして真の画像データD*を算出しても、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺されない場合がある。そして、暗電荷によるオフセット分oとオフセットデータOとが相殺されない状態で算出した真の画像データD*に基づいて診断提供用医用画像pを生成すると、生成された診断提供用医用画像pの画質が劣化してしまう場合がある。
[Phenomenon that can occur in normal processing]
As shown in FIGS. 6 and 29, if the offset data O is read out, the same processing sequence as the processing sequence up to the reading processing of the image data D (see FIGS. 5 and 28) is repeated. In the image processing, by performing the calculation of the above equation (2) as described above, the offset o due to the dark charge superimposed on the image data D and the offset data O are offset, and the true image data D * should be calculated accurately, but in reality, as described above, even if the true image data D * is calculated as described above, it depends on the dark charge superimposed on the image data D. The offset o and the offset data O may not be offset. Then, when the diagnostic providing medical image p is generated based on the true image data D * calculated in a state where the offset o due to the dark charge and the offset data O are not offset, the image quality of the generated diagnostic providing medical image p May deteriorate.
 本発明者らがこのような現象が現れる原因について研究を重ねた結果、特に、前述したようにFPD1の撮影モードをスリープモードから覚醒モードに遷移された直後に撮影やオフセットデータOの読み出し処理を行うと、上記のような現象が現れることが分かってきた。そして、このような現象が現れる大きな原因は、以下のように、放射線検出素子7内で発生する単位時間当たりの電荷量dQが、FPD1の撮影モードがスリープモードから覚醒モードに遷移された直後に大きく変化することにあると考えられている。 As a result of repeated researches on the cause of the occurrence of such a phenomenon by the present inventors, in particular, as described above, immediately after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, the imaging and reading of the offset data O are performed. It has been found that the above phenomenon appears when done. The major cause of such a phenomenon is that the charge amount dQ per unit time generated in the radiation detection element 7 immediately after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode as follows. It is thought to be a major change.
 例えば、FPD1の撮影モードをスリープモードから覚醒モードに遷移させると、図7に示すように、覚醒モードに遷移した時点(図7におけるt=0の時点参照)では放射線検出素子7内で発生する単位時間当たりの電荷量dQが大きな値になり、そこから、時間tが経過するに従って、放射線検出素子7内で発生する単位時間当たりの電荷量dQが次第に減っていく状態になる。なお、図7は、FPD1の撮影モードがスリープモードから覚醒モードに遷移された時点からの経過時間tと、各放射線検出素子7内で発生する単位時間当たりの電荷量dQとの関係を表すグラフである。なお、図7では、放射線の照射により各放射線検出素子7内で発生する電荷(すなわち真の画像データD*(上記(1)式等参照)に相当する電荷)は含まれていない。 For example, when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, as shown in FIG. 7, it occurs in the radiation detection element 7 at the time of the transition to the awakening mode (see the time point t = 0 in FIG. 7). The charge amount dQ per unit time becomes a large value, and from this point, the charge amount dQ per unit time generated in the radiation detection element 7 gradually decreases as time t elapses. FIG. 7 is a graph showing the relationship between the elapsed time t from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode and the charge amount dQ per unit time generated in each radiation detection element 7. It is. Note that FIG. 7 does not include charges generated in each radiation detection element 7 due to radiation irradiation (that is, charges corresponding to true image data D * (see the above equation (1))).
 また、時間tが経過するにつれて各放射線検出素子7内で発生する単位時間当たりの電荷量dQは次第に減少していき、最終的には、前述した暗電荷の単位時間当たりの発生量に等しい一定値に落ち着いていく。そして、このような状況で、図5や図28に示したように撮影前の各放射線検出素子7のリセット処理を行い(図5の場合はリセット処理と交互にリークデータdleakの読み出し処理を行い)、各TFT8をオフ状態にして電荷蓄積状態とし(この間に放射線が照射される。)、蓄積時間τが経過した後、画像データDの読み出し処理が行われる。そして、画像データDの読み出し処理後に、図6や図29に示したように、図5や図28に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスが繰り返されて、オフセットデータOの読み出し処理が行われる。 Further, as time t elapses, the amount of charge dQ per unit time generated in each radiation detection element 7 gradually decreases, and finally becomes constant equal to the amount of dark charge generated per unit time described above. Settling down in value. Then, in such a situation, as shown in FIG. 5 and FIG. 28, reset processing of each radiation detecting element 7 before imaging is performed (in the case of FIG. 5, readout processing of leak data dleak is performed alternately with reset processing). ) Each TFT 8 is turned off to be in a charge accumulation state (radiation is irradiated during this period), and after the accumulation time τ has elapsed, the reading process of the image data D is performed. Then, after the image data D reading process, as shown in FIGS. 6 and 29, the same processing sequence as the image data D reading process shown in FIGS. O reading processing is performed.
 この場合、画像データDに重畳されている暗電荷によるオフセット分oと、オフセットデータOとは、それぞれ画像データDの読み出し処理前の実効蓄積時間Tac(図5や図28参照)の間、およびオフセットデータOの読み出し処理前の実効蓄積時間Tac(図6や図29参照)の間の、各放射線検出素子7内で発生する単位時間当たりの電荷量dQ(図7参照)の積分値として算出される。そのため、画像データDに重畳されている暗電荷によるオフセット分oと、オフセットデータOとは、図8に示すように、それぞれ斜線を付して示す領域の面積として表される値になる。 In this case, the offset o due to the dark charge superimposed on the image data D and the offset data O are respectively during the effective accumulation time Tac (see FIGS. 5 and 28) before the image data D read processing, and Calculated as an integral value of the charge amount dQ (see FIG. 7) per unit time generated in each radiation detection element 7 during the effective accumulation time Tac (see FIGS. 6 and 29) before the offset data O reading process. Is done. Therefore, the offset o due to the dark charge superimposed on the image data D and the offset data O are values represented as the area of the region indicated by hatching, as shown in FIG.
 FPD1の撮影モードがスリープモードから覚醒モードに遷移されてから時間が経過した後では、上記のように、各放射線検出素子7内で発生する単位時間当たりの電荷量dQが低下して、前述した暗電荷の単位時間当たりの発生量に等しい一定値になるため、図9に示すように、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが等しい値になる。そのため、前述したように、上記(2)式に示したように画像データDからオフセットデータOを減算する演算処理を行うと、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺されて、放射線の照射により各放射線検出素子7内で発生した電荷のみに起因する真の画像データD*を算出することができる。 After a lapse of time after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, the charge amount dQ per unit time generated in each radiation detection element 7 is reduced as described above, and the above-described Since the constant value is equal to the amount of dark charge generated per unit time, the offset amount o and the offset data O due to the dark charge superimposed on the image data D are equal to each other as shown in FIG. Therefore, as described above, when the calculation process for subtracting the offset data O from the image data D is performed as shown in the above equation (2), the offset o and offset data due to the dark charge superimposed on the image data D are obtained. It is possible to calculate true image data D * resulting from only the electric charges generated in each radiation detection element 7 by irradiation of radiation by offsetting O.
 しかし、図8に示すように、FPD1の撮影モードがスリープモードから覚醒モードに遷移された直後では、各放射線検出素子7内で発生する単位時間当たりの電荷量dQは、時間tが経過するにつれて減少していく状態になっている。そのため、この状態で上記のようにして画像データDの読み出し処理やオフセットデータOの読み出し処理を行うと、図8に示すように、画像データDに重畳されている暗電荷によるオフセット分oの方が、オフセットデータOより大きな値になる。すなわち、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間の差分をΔとすると、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間には、
  o=O+Δ  …(3)
の関係があることになるが、図8の場合、すなわちFPD1の撮影モードがスリープモードから覚醒モードに遷移された直後の状態では、この差分Δが0ではない正の値をとることになる。そして、上記(1)式を変形して得られる
  D*=D-o  …(4)
に、上記(3)式を代入すると、
  D*=D-O-Δ  …(5)
が得られる。
However, as shown in FIG. 8, immediately after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, the charge amount dQ per unit time generated in each radiation detection element 7 increases as the time t elapses. It is in a state of decreasing. Therefore, when the reading process of the image data D and the reading process of the offset data O are performed as described above in this state, the offset o due to the dark charge superimposed on the image data D is displayed as shown in FIG. Is larger than the offset data O. That is, if the difference between the offset o due to the dark charge superimposed on the image data D and the offset data O is Δ, the offset o due to the dark charge superimposed on the image data D and the offset data O In between
o = O + Δ (3)
However, in the case of FIG. 8, that is, in a state immediately after the photographing mode of the FPD 1 is changed from the sleep mode to the awakening mode, the difference Δ takes a positive value that is not zero. Then, D * = D−o (4) obtained by modifying the above equation (1).
If the above equation (3) is substituted,
D * = D−O−Δ (5)
Is obtained.
 これと、上記(2)式、すなわち、
  D*=D-O  …(2)
とを比較して分かるように、診断提供用医用画像pを生成するための画像処理で、上記(2)式に従って画像データDからオフセットデータOを減算すると、算出される真の画像データD*は、本来の真の画像データD*すなわち上記(4)式(すなわち(5)式)で算出されるべき真の画像データD*よりも差分Δだけ大きな値になる。すなわち、通常の画像処理で行われるように、上記(2)式に従って真の画像データD*を算出すると、算出される真の画像データD*は、上記(4)式(すなわち(5)式)で算出されるべき本来の真の画像データD*に、暗電荷に起因するオフセット分が差分Δ分だけ重畳された値になる。
This and the above equation (2), that is,
D * = DO (2)
As can be seen from the above, when the offset data O is subtracted from the image data D in accordance with the above equation (2) in the image processing for generating the medical image p for diagnosis provision, the calculated true image data D * is a large value only original true image data D * that is, the equation (4) (i.e., (5)) true image data to be calculated by D * difference Δ than. That is, when the true image data D * is calculated according to the above equation (2) as in normal image processing, the calculated true image data D * is the above equation (4) (ie, the equation (5). ), The original true image data D * to be calculated is a value in which the offset due to the dark charge is superimposed by the difference Δ.
 以上のように、FPD1の撮影モードがスリープモードから覚醒モードに遷移された直後に画像データDの読み出し処理やオフセットデータOの読み出し処理を行うと(図8参照)、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間に0とは有意に異なる正の差分Δが生じる。そして、後の画像処理の際に、上記(2)式に従って真の画像データD*を算出すると、算出された真の画像データD*、すなわち暗電荷によるオフセット分を一切含まないはずの真の画像データD*が、上記の差分Δ分だけ暗電荷に起因するオフセット分が重畳された値になってしまう。そのため、このような真の画像データD*に基づいて診断提供用医用画像pを生成すると、生成された診断提供用医用画像pの画質が、真の画像データD*に差分Δ分だけ暗電荷に起因するオフセット分が重畳されてしまう分だけ劣化してしまうのである。 As described above, when the reading process of the image data D or the reading process of the offset data O is performed immediately after the photographing mode of the FPD 1 is changed from the sleep mode to the awakening mode (see FIG. 8), the image data D is superimposed on the image data D. A positive difference Δ significantly different from 0 is generated between the offset o due to the dark charge and the offset data O. Then, during the subsequent image processing, (2) calculating the true image data D * in accordance with equation was calculated true image data D *, i.e. dark charge true that should not contain any offset by The image data D * has a value in which the offset due to the dark charge is superimposed by the difference Δ. Therefore, when the diagnostic-providing medical image p is generated based on such true image data D * , the image quality of the generated diagnostic-providing medical image p is dark charge by the difference Δ from the true image data D *. Therefore, the amount of offset due to the superimposition deteriorates.
 特に、バッテリー24(図2等参照)の消耗を避けるために、曝射スイッチ56の1段目のボタン操作が行われるのをトリガーとして、コンソール58からFPD1に覚醒信号を送信して、FPD1の撮影モードをスリープモードから覚醒モードに遷移させるように構成される場合には劣化を受け易くなる。 In particular, in order to avoid depletion of the battery 24 (see FIG. 2 and the like), a wake-up signal is transmitted from the console 58 to the FPD 1 by using the first button operation of the exposure switch 56 as a trigger. In the case where the photographing mode is changed from the sleep mode to the awakening mode, it is likely to be deteriorated.
[本発明に特有の構成等について]
 次に、本実施形態に係る診断提供用医用画像システム50やFPD1における本発明に特有の構成等について説明する。また、本発明に係る診断提供用医用画像システム50やFPD1の作用についてもあわせて説明する。
[Configurations Specific to the Present Invention]
Next, a configuration unique to the present invention in the medical image system 50 for diagnosis provision and the FPD 1 according to the present embodiment will be described. The operation of the diagnostic providing medical image system 50 and the FPD 1 according to the present invention will also be described.
 上記のように、FPD1の撮影モードがスリープモードから覚醒モードに遷移された直後の状態では、各放射線検出素子7内で発生する単位時間当たりの電荷量dQが時間的に変化するため、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間に0でない正の差分Δが生じてしまうことが、生成される診断提供用医用画像pの画質が劣化する原因になっている。そして、上記の差分Δが大きくなればなるほど、生成された診断提供用医用画像pの画質の劣化の程度が大きくなるが、逆に、上記の差分Δが小さくなれば、生成された診断提供用医用画像pの画質の劣化の程度が小さくなり、差分Δを十分小さくすれば、生成された診断提供用医用画像pの画質が劣化しないようにすることが可能となる。すなわち、図9に示したように、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてから時間が十分に経過して、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOと等しくなる状態で読み出された画像データDやオフセットデータOに基づいて診断提供用医用画像pを生成すると高画質の診断提供用医用画像pが生成されるが、上記の差分Δを十分小さくすることができれば、これと同程度に高い画質の診断提供用医用画像pを生成することが可能となる。 As described above, in the state immediately after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, the amount of charge dQ per unit time generated in each radiation detection element 7 changes with time. A non-zero positive difference Δ between the offset o and the offset data O due to the dark charge superimposed on D causes the image quality of the generated diagnostic-provided medical image p to deteriorate. ing. As the difference Δ increases, the degree of deterioration of the image quality of the generated diagnostic providing medical image p increases. Conversely, if the difference Δ decreases, the generated diagnostic providing use If the degree of deterioration of the image quality of the medical image p is reduced and the difference Δ is made sufficiently small, it is possible to prevent the image quality of the generated medical image p for diagnosis providing from being deteriorated. That is, as shown in FIG. 9, the offset o and offset data due to the dark charge superimposed on the image data D after a sufficient amount of time has elapsed since the shooting mode of the FPD 1 was changed from the sleep mode to the awakening mode. When the medical image p for diagnosis providing is generated based on the image data D and the offset data O read out in a state equal to O, the high quality diagnostic providing medical image p is generated. If it can be made smaller, it is possible to generate a medical image p for diagnosis providing with a picture quality as high as this.
 そこで、本実施形態に係る診断提供用医用画像システム50では、FPD1の撮影モードをスリープモードから覚醒モードに遷移させてから所定の時間(以下、この時間を待ち時間WTという。)が経過して上記の差分Δが十分に小さくなる状態になってから、撮影が許容されるようになっている。 Therefore, in the diagnostic providing medical image system 50 according to the present embodiment, a predetermined time (hereinafter, this time is referred to as a waiting time WT) has elapsed since the imaging mode of the FPD 1 was changed from the sleep mode to the awakening mode. Shooting is allowed after the difference Δ is sufficiently small.
 具体的には、本実施形態では、図10に示すように、FPD1の制御手段22は、撮影モードがスリープモードから覚醒モードに遷移されてから経過時間tをカウントし、経過時間tが、上記の待ち時間WTだけ経過した時点で、報知装置に信号を送信する。そして、報知装置は、FPD1から上記の信号を受信すると、放射線技師等の操作者に、放射線発生装置55から放射線を照射して撮影を行うことが可能であることを報知するように構成されている。本実施形態では、コンソール58(図3や図4参照)が上記の報知装置として機能するようになっている。そして、報知装置としてのコンソール58(以下、報知装置58という。)は、FPD1から上記の信号を受信すると、例えば表示部58a上に「撮影できます。」等の表示を行ったり、音声を発声させる等して、放射線発生装置55から放射線を照射して撮影を行うことが可能であることを報知するように構成することが可能である。また、報知装置として、例えば図4に示した携帯端末70を用いるように構成する等して、コンソール58とは別体の装置として構成することも可能である。また、コンソール58を含む複数の装置を報知装置として機能させるように構成することも可能である。 Specifically, in the present embodiment, as shown in FIG. 10, the control means 22 of the FPD 1 counts the elapsed time t after the shooting mode is changed from the sleep mode to the awake mode, and the elapsed time t is When the waiting time WT of elapses, a signal is transmitted to the notification device. The notification device is configured to notify an operator such as a radiologist that radiation can be emitted from the radiation generation device 55 when receiving the above signal from the FPD 1. Yes. In the present embodiment, the console 58 (see FIG. 3 and FIG. 4) functions as the above notification device. When the console 58 (hereinafter referred to as the notification device 58) as the notification device receives the above signal from the FPD 1, for example, the console 58 displays “Shooting can be performed” or the like on the display unit 58a or utters a voice. For example, it can be configured to notify that it is possible to perform imaging by irradiating radiation from the radiation generating device 55. Further, as the notification device, for example, the portable terminal 70 shown in FIG. 4 may be used, and the notification device may be configured as a separate device from the console 58. In addition, a plurality of devices including the console 58 can be configured to function as a notification device.
 なお、図10における「検出処理」は、前述したように、撮影が非同期方式で行われる場合に、FPD1が覚醒モードに遷移して各放射線検出素子7のリセット処理を行った後で上記のような放射線の照射開始の検出処理に移行することを表している。また、撮影が同期方式で行われる場合には、FPD1が覚醒モードに遷移した後、各放射線検出素子7のリセット処理が繰り返し行われる状態になるが、例えば、省電力等のために、所定回数のリセット処理を行った後で一旦リセット処理を中止し、待ち時間WTが経過する前にリセット処理を再開するように構成することも可能である。 As described above, the “detection process” in FIG. 10 is as described above after the FPD 1 transitions to the awake mode and performs the reset process of each radiation detection element 7 when imaging is performed in an asynchronous manner. This represents a transition to detection processing of the start of irradiation with various radiations. In addition, when the imaging is performed in a synchronous manner, the reset process of each radiation detection element 7 is repeatedly performed after the FPD 1 transitions to the awakening mode. For example, a predetermined number of times for power saving or the like. It is also possible to configure such that the reset process is temporarily stopped after the reset process is performed and the reset process is restarted before the waiting time WT elapses.
 上記のように構成すると、FPD1の制御手段22は、撮影モードがスリープモードから覚醒モードに遷移されてから上記の待ち時間WTだけ経過した時点で、報知装置58に信号を送信し、報知装置58が、放射線発生装置55から放射線を照射して撮影を行うことが可能であることを報知する。そして、報知装置58による報知を確認した放射線技師等の操作者が、曝射スイッチ56を操作して放射線発生装置55から放射線を照射させて撮影を行う。そのため、図11に示すように、このようにして行われた撮影で読み出された画像データDに重畳されている暗電荷によるオフセット分oと、その後で行われる読み出し処理で読み出されたオフセットデータOとの間の差分Δを十分に小さな値にすることが可能となる。そして、差分Δを小さくすることで、後の画像処理で生成された診断提供用医用画像pの画質の劣化の程度を十分に小さくして、実際上、生成された診断提供用医用画像pの画質が劣化しないようにすることが可能となる。逆の言い方をすれば、上記の待ち時間WTは、上記の差分Δが十分に小さくなり、読み出された画像データDやオフセットデータOに基づいて生成される診断提供用医用画像pの画質が、実際上、劣化したようには見えなくなるような時間に設定される。 If comprised as mentioned above, the control means 22 of FPD1 will transmit a signal to the alerting | reporting apparatus 58, and only the said waiting time WT will pass after imaging | photography mode is changed from sleep mode to awakening mode, and the alerting | reporting apparatus 58 However, it is notified that it is possible to perform imaging by irradiating radiation from the radiation generating device 55. Then, an operator such as a radiologist who has confirmed the notification by the notification device 58 operates the exposure switch 56 to irradiate radiation from the radiation generation device 55 and performs imaging. Therefore, as shown in FIG. 11, the offset o due to the dark charge superimposed on the image data D read out in this way, and the offset read out in the subsequent read-out process It is possible to make the difference Δ with the data O sufficiently small. Then, by reducing the difference Δ, the degree of deterioration of the image quality of the diagnostic providing medical image p generated by the subsequent image processing is sufficiently reduced, and the generated diagnostic providing medical image p is actually reduced. It is possible to prevent the image quality from deteriorating. In other words, in the waiting time WT, the difference Δ is sufficiently small, and the image quality of the medical image p for diagnosis providing generated based on the read image data D and offset data O is high. In practice, the time is set so that it does not appear to have deteriorated.
 一方、上記の差分Δ、すなわち画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの差分Δは、実効蓄積時間Tac(図5や図28等参照)が変化するとその大きさが変わる。そのため、例えば図12に示すように、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてから図11に示した待ち時間WTと同じ待ち時間WTだけ経過した時点で、報知装置58で撮影可能であることを報知したとしても、図12に示すように実効蓄積時間Tacが長くなると、図11に示した場合に比べて上記の差分Δが大きくなる。そのため、このような状態で読み出された画像データDやオフセットデータOに基づいて診断提供用医用画像pを生成すると、診断提供用医用画像pの画質が劣化する可能性がある。 On the other hand, the difference Δ, that is, the difference Δ between the offset o due to the dark charge superimposed on the image data D and the offset data O increases as the effective accumulation time Tac (see FIGS. 5 and 28, etc.) changes. Changes. Therefore, as shown in FIG. 12, for example, the notification device 58 can take a picture when the same waiting time WT as the waiting time WT shown in FIG. 11 has elapsed after the shooting mode of the FPD 1 is changed from the sleep mode to the awakening mode. Even if it is notified that, as shown in FIG. 12, if the effective accumulation time Tac becomes longer, the difference Δ becomes larger than the case shown in FIG. Therefore, if the diagnostic providing medical image p is generated based on the image data D and the offset data O read in such a state, the image quality of the diagnostic providing medical image p may be deteriorated.
 すなわち、診断提供用医用画像pの画質が劣化しないようにするためには、実効蓄積時間Tacに応じて上記の待ち時間WTを変えることが必要になる。すなわち、実効蓄積時間Tacが長くなる場合には、差分Δを十分に小さくするために、例えば図13に示すように待ち時間WTを長くすることが必要になる。このように、上記のようにFPD1の撮影モードがスリープモードから覚醒モードに遷移されてから待ち時間WTだけ経過した時点でFPD1に対する放射線の照射が許容されるように構成する場合、FPD1での画像データDの読み出し処理やオフセットデータOの読み出し処理における実効蓄積時間Tacに応じて上記の待ち時間WTを切り替えることが必要になる。 That is, in order to prevent the image quality of the medical image p for diagnosis providing from deteriorating, it is necessary to change the waiting time WT according to the effective accumulation time Tac. That is, when the effective accumulation time Tac is long, it is necessary to lengthen the waiting time WT as shown in FIG. 13, for example, in order to sufficiently reduce the difference Δ. As described above, when the FPD 1 is configured such that the irradiation of radiation to the FPD 1 is allowed after the waiting time WT has elapsed since the imaging mode of the FPD 1 has been changed from the sleep mode to the awakening mode, the image on the FPD 1 It is necessary to switch the waiting time WT according to the effective accumulation time Tac in the data D reading process or the offset data O reading process.
 そこで、上記の待ち時間WTは、FPD1における実効蓄積時間Tacに応じて異なる時間が設定されるようになっており、設定される実効蓄積時間Tacに応じて待ち時間WTが切り替えられるようになっている。しかし、FPD1での実際の制御においては、実効蓄積時間Tacは、電荷蓄積状態の継続時間である蓄積時間τ(図5や図28等参照)によってその長さが設定される場合が多い。 Therefore, the waiting time WT is set to be different according to the effective accumulation time Tac in the FPD 1, and the waiting time WT is switched according to the set effective accumulation time Tac. Yes. However, in actual control in the FPD 1, the effective storage time Tac is often set by the storage time τ (see FIG. 5, FIG. 28, etc.) that is the duration of the charge storage state.
 すなわち、例えば図28に示した同期方式の場合、電荷蓄積状態の前の各放射線検出素子7のリセット処理において各走査線5にオン電圧を順次印加するタイミング(すなわちある走査線5にオン電圧を印加してから次の走査線5にオン電圧を印加するまでの時間間隔。以下同じ。)は予め決められている。また、電荷蓄積状態の後に行われる画像データDの読み出し処理において各走査線5にオン電圧を順次印加するタイミングも予め決められている。そのため、蓄積時間τを設定すれば、実効蓄積時間Tacが自動的に決まる。また、例えば図5に示した非同期方式の場合も、電荷蓄積状態の前に、リークデータdleakの読み出し処理と交互に行われる各放射線検出素子7のリセット処理において各走査線5にオン電圧を順次印加するタイミングは予め決められている。また、電荷蓄積状態の後に行われる画像データDの読み出し処理において各走査線5にオン電圧を順次印加するタイミングも予め決められている。そのため、非同期方式の場合も、蓄積時間τを設定すれば、実効蓄積時間Tacが自動的に決まる。このように、蓄積時間τを設定することと、実効蓄積時間Tacの長さを決めることは同義であり、本実施形態では、上記のように、FPD1での実際の制御では、蓄積時間τを設定することによって実効蓄積時間Tacを決めるように構成されている。 That is, for example, in the case of the synchronous method shown in FIG. 28, the timing for sequentially applying the ON voltage to each scanning line 5 in the reset processing of each radiation detecting element 7 before the charge accumulation state (that is, the ON voltage is applied to a certain scanning line 5). The time interval from the application to the application of the ON voltage to the next scanning line 5 (the same applies hereinafter) is determined in advance. In addition, the timing at which the ON voltage is sequentially applied to each scanning line 5 in the reading process of the image data D performed after the charge accumulation state is also determined in advance. Therefore, if the accumulation time τ is set, the effective accumulation time Tac is automatically determined. Also, for example, in the case of the asynchronous method shown in FIG. 5, the on-voltage is sequentially applied to each scanning line 5 in the reset processing of each radiation detection element 7 that is alternately performed with the reading processing of the leak data dleak before the charge accumulation state. The application timing is determined in advance. In addition, the timing at which the ON voltage is sequentially applied to each scanning line 5 in the reading process of the image data D performed after the charge accumulation state is also determined in advance. Therefore, even in the case of the asynchronous method, the effective accumulation time Tac is automatically determined by setting the accumulation time τ. Thus, setting the accumulation time τ is synonymous with determining the length of the effective accumulation time Tac. In this embodiment, as described above, in the actual control in the FPD 1, the accumulation time τ is set to The effective accumulation time Tac is determined by setting.
 そのため、本実施形態では、上記の待ち時間WTは、FPD1における蓄積時間τに応じて異なる時間が設定されるようになっており、具体的には、図11や図13等に示したように、設定される蓄積時間τ(すなわち実効蓄積時間Tac)が長いほど待ち時間WTが長くなるように待ち時間WTが設定される。そして、設定される蓄積時間τに応じて待ち時間WTが切り替えられるように構成されている。 Therefore, in the present embodiment, the waiting time WT is set to a different time according to the accumulation time τ in the FPD 1. Specifically, as shown in FIG. 11 and FIG. The waiting time WT is set so that the waiting time WT becomes longer as the set accumulation time τ (that is, the effective accumulation time Tac) is longer. The waiting time WT is switched according to the set accumulation time τ.
 なお、蓄積時間τをどのような長さの時間間隔に設定することができ、設定される各蓄積時間τに対してそれぞれどのような待ち時間WTを対応付けるかは、FPD1の性能、すなわち図7に示した放射線検出素子7内で発生する単位時間当たりの電荷量dQがどのような傾向になるか等によって変わる。また、例えば、放射線発生装置55の放射線源52が、放射線を照射する際、照射する放射線の線量率(すなわち単位時間あたりの線量)が規定の線量率に瞬時に立ち上がり、また、照射終了の際には、照射される放射線の線量率が瞬時に立ち下がるような照射特性を有している場合がある。このような放射線源52の場合には、蓄積時間τを必要以上に長い時間に設定する必要はないが、例えば、放射線源52が、放射線を照射する際に、照射される放射線の線量率がだらだらと立ち上がり、規定の線量率に達するまでに時間がかかり、また、照射終了の際には、照射される放射線の線量率がだらだらと立ち下がるような照射特性を有している場合もある。そして、このような場合には、放射線源52から照射される放射線を無駄にしないようにするために、蓄積時間τが長くなるように設定する必要がある。このように、蓄積時間τをどのような長さの時間間隔に設定することができ、設定される各蓄積時間τに対してそれぞれどのような待ち時間WTを対応付けるかは、FPD1に放射線を照射する放射線発生装置55の放射線源52の照射特性等によっても変わり得る。 It should be noted that the accumulation time τ can be set at any time interval, and what waiting time WT is associated with each set accumulation time τ is the performance of the FPD 1, that is, FIG. The charge amount dQ per unit time generated in the radiation detection element 7 shown in FIG. Further, for example, when the radiation source 52 of the radiation generating device 55 irradiates radiation, the dose rate of the irradiated radiation (that is, the dose per unit time) instantaneously rises to a prescribed dose rate, and when the irradiation ends. In some cases, there is an irradiation characteristic such that the dose rate of irradiated radiation falls instantaneously. In the case of such a radiation source 52, it is not necessary to set the accumulation time τ to a time longer than necessary. For example, when the radiation source 52 emits radiation, the dose rate of the irradiated radiation is It may take a long time to rise slowly and reach a prescribed dose rate, and may have an irradiation characteristic that the dose rate of the irradiated radiation gradually falls at the end of irradiation. In such a case, it is necessary to set the accumulation time τ to be long so as not to waste the radiation emitted from the radiation source 52. In this way, the accumulation time τ can be set at any time interval, and what waiting time WT is associated with each set accumulation time τ is determined by irradiating the FPD 1 with radiation. It can also vary depending on the irradiation characteristics of the radiation source 52 of the radiation generator 55.
 また、被写体である患者の撮影部位や被写体に対する撮影方法等によっては、放射線発生装置55から、通常の場合よりも長い時間、放射線を照射して撮影を行うことが必要になる場合がある。そのため、そのような撮影部位や撮影方法で撮影を行う場合には、蓄積時間τを長く設定することが必要になる。そのため、FPD1の仕様や、FPD1が使用される診断提供用医用画像システム50の仕様、或いは撮影部位や撮影方法を含む撮影条件等に基づいて、設定可能な蓄積時間τや、各蓄積時間τにそれぞれ対応付けられる待ち時間WTの長さが予め適宜決められる。そして、その場合、蓄積時間τを、離散的な時間間隔として設定することも可能であり、連続的に変化し得る時間間隔として設定することも可能である。そして、例えば、蓄積時間τを連続的に変化し得る時間間隔として設定する場合、待ち時間WTを蓄積時間τの関数として予め設定しておくように構成することも可能である。 Also, depending on the imaging region of the patient, which is the subject, the imaging method for the subject, etc., it may be necessary to perform imaging by irradiating the radiation from the radiation generator 55 for a longer time than usual. Therefore, when imaging is performed with such an imaging region or imaging method, it is necessary to set the accumulation time τ to be long. Therefore, based on the specifications of the FPD 1, the specifications of the diagnostic providing medical image system 50 in which the FPD 1 is used, the imaging conditions including the imaging region and the imaging method, etc., the settable accumulation time τ and each accumulation time τ The length of the waiting time WT associated with each is determined in advance as appropriate. In this case, the accumulation time τ can be set as a discrete time interval, or can be set as a time interval that can be continuously changed. For example, when the accumulation time τ is set as a time interval that can be continuously changed, the waiting time WT may be set in advance as a function of the accumulation time τ.
[効果]
 以上のように、本実施形態に係る診断提供用医用画像システム50やFPD(すなわち放射線画像撮影装置)1によれば、上記のようにして、予め待ち時間WTを蓄積時間τに応じて設定しておく。そして、待ち時間WTが蓄積時間τに応じて切り替えられるように構成する。その際、待ち時間WTは、FPD1の撮影モードがスリープモードから覚醒モードに遷移してからFPD1に対する放射線の照射が許容されるまでの時間であり、待ち時間WTが経過した後でFPD1に放射線を照射して撮影を行えば、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間の差分Δが十分に小さくなり、そのような画像データDやオフセットデータOに基づいて生成された診断提供用医用画像pの画質が劣化しないようにすることができる時間に設定される。
[effect]
As described above, according to the diagnostic providing medical image system 50 and the FPD (ie, radiographic imaging apparatus) 1 according to the present embodiment, the waiting time WT is set in advance according to the accumulation time τ as described above. Keep it. The waiting time WT is configured to be switched according to the accumulation time τ. At that time, the waiting time WT is a time from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode until irradiation of the radiation to the FPD 1 is permitted. When shooting is performed with irradiation, the difference Δ between the offset o due to the dark charge superimposed on the image data D and the offset data O becomes sufficiently small, and based on such image data D and offset data O. The time is set so that the image quality of the medical image p for diagnosis providing generated in this way can be prevented from deteriorating.
 そして、FPD1の制御手段22は、コンソール58から覚醒信号を受信する等して、撮影モードがスリープモードから覚醒モードに遷移されると、覚醒モードに遷移されてからの経過時間tをカウントする。そして、経過時間tが、待ち時間WTだけ経過した時点で、報知装置58(本実施形態ではコンソール58)に信号を送信し、報知装置58は、放射線技師等の操作者に、放射線発生装置55から放射線を照射して撮影を行うことが可能であることを報知する。そして、報知装置58による報知を確認した放射線技師等の操作者が、曝射スイッチ56を操作し、放射線発生装置55の放射線源52から被写体を介してFPD1に放射線を照射させて撮影を行う。 Then, when the imaging mode is changed from the sleep mode to the awakening mode by receiving an awakening signal from the console 58 or the like, the control means 22 of the FPD 1 counts an elapsed time t after the transition to the awakening mode. Then, when the elapsed time t has elapsed by the waiting time WT, a signal is transmitted to the notification device 58 (console 58 in the present embodiment), and the notification device 58 notifies the operator such as a radiologist to the radiation generation device 55. It is informed that it is possible to shoot with radiation. Then, an operator such as a radiologist who has confirmed the notification by the notification device 58 operates the exposure switch 56 to irradiate the FPD 1 with radiation from the radiation source 52 of the radiation generation device 55 through the subject to perform imaging.
 そのため、操作者が被写体を介してFPD1に放射線を照射させる際には、そのようにして撮影を行って画像データDを読み出し、その後、引き続き画像データDの読み出し処理までの処理シーケンスを繰り返してオフセットデータOの読み出し処理を行ってオフセットデータOを読み出し、読み出した画像データDやオフセットデータOに基づいて診断提供用医用画像pを生成すると、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間の差分Δが十分に小さくなっているため、生成された診断提供用医用画像pの画質に劣化が生じることが的確に防止される。 Therefore, when the operator irradiates the FPD 1 with radiation through the subject, imaging is performed in this way, the image data D is read out, and then the processing sequence until the reading processing of the image data D is repeated to offset. When the data O is read to read the offset data O, and the medical image p for diagnosis providing is generated based on the read image data D or the offset data O, the offset o due to the dark charge superimposed on the image data D is generated. And the offset data O are sufficiently small, the deterioration of the image quality of the generated diagnostic-provided medical image p is accurately prevented.
 本実施形態では、このようにして、FPD1の撮影モードをスリープモードから覚醒モードに遷移させてから時間をおかずに撮影を行ってFPD1で画像データDを読み出し、引き続きオフセットデータOの読み出し処理を行う場合であっても、そのようにして読み出された画像データDやオフセットデータOに基づいて生成される診断提供用医用画像pの画質に劣化が生じることを的確に防止することが可能となる。 In the present embodiment, in this way, after the shooting mode of the FPD 1 is changed from the sleep mode to the awakening mode, shooting is performed in a short time, the image data D is read by the FPD 1, and the offset data O reading process is subsequently performed. Even in this case, it is possible to accurately prevent the image quality of the medical image p for diagnosis providing generated based on the image data D and the offset data O read out in this way from being deteriorated. .
[蓄積時間等をFPDに設定する方法等について]
 次に、蓄積時間τのFPD1への設定の仕方について説明する。なお、本実施形態では、上記のように、例えば図6に示したように、オフセットデータOの読み出し処理は、図5に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して行われる。そのため、画像データDの読み出し処理前の電荷蓄積状態(図5参照)と、オフセットデータOの読み出し処理前の電荷蓄積状態(図6参照)では蓄積時間τが同じ時間間隔に設定される。そのため、本実施形態では、画像データDの読み出し処理前の電荷蓄積状態における蓄積時間τ(図5や図28参照)を設定することで、自動的に、オフセットデータOの読み出し処理前の電荷蓄積状態における蓄積時間τ(図6や図29参照)が設定されるようになっている。
[How to set storage time etc. in FPD]
Next, how to set the accumulation time τ in the FPD 1 will be described. In the present embodiment, as described above, for example, as illustrated in FIG. 6, the offset data O reading process repeats the same processing sequence up to the image data D reading process illustrated in FIG. 5. Done. Therefore, the accumulation time τ is set to the same time interval in the charge accumulation state before the image data D reading process (see FIG. 5) and the charge accumulation state before the offset data O reading process (see FIG. 6). Therefore, in this embodiment, by setting the accumulation time τ (see FIG. 5 and FIG. 28) in the charge accumulation state before the reading process of the image data D, the charge accumulation before the offset data O reading process is automatically performed. The storage time τ in the state (see FIG. 6 and FIG. 29) is set.
 蓄積時間τのFPD1への設定の仕方としては、例えば、放射線技師等の操作者が、蓄積時間τをコンソール58に入力し、コンソール58からFPD1に送信して設定するように構成することも可能である。例えば、コンソール58の表示部58aに表示される画面H1(図14参照)の中央には、コンソール58が生成したプレビュー画像p#preや診断提供用医用画像p等が表示される表示スペースSが設けられている。また、画面H1の左側には、コンソール58がRIS等から入手した撮影オーダー情報(後述する図19等参照)の中から放射線技師等の操作者が選択した撮影オーダー情報に対応するアイコンIが表示されるようになっている。また、画面H1の右側には、使用するFPD1のサイズを指定したり、表示スペースSへのプレビュー画像p#preや診断提供用医用画像p等の表示のさせ方等を指定するためのボタンアイコンBI等が表示されるようになっている。 As a method of setting the accumulation time τ to the FPD 1, for example, an operator such as a radiographer can input the accumulation time τ to the console 58 and transmit it from the console 58 to the FPD 1 to set it. It is. For example, in the center of the screen H1 (see FIG. 14) displayed on the display unit 58a of the console 58, there is a display space S in which the preview image p # pre generated by the console 58, the medical image p for providing diagnosis, and the like are displayed. Is provided. On the left side of the screen H1, an icon I corresponding to the imaging order information selected by the operator such as a radiographer from the imaging order information obtained by the console 58 from the RIS or the like (see FIG. 19 to be described later) is displayed. It has come to be. On the right side of the screen H1, a button icon for designating the size of the FPD 1 to be used and designating how to display the preview image p # pre, the medical image for diagnosis p, etc. in the display space S, etc. BI etc. are displayed.
 そして、例えば、画面H1上の所定のアイコンをクリックしたり、画面H1上でマウスを右クリックする等すると、コンソール58の表示部58aに、図15に示すような画面H2が表示されるようになっている。例えば、画面H2では、「Chest(胸部)」や「Abdomen(腹部)」等の撮影部位に対して、「AP(正面)」、「PA(背面)」、「LAT(側面)」等の撮影方向を指定することができるようになっている。そして、図15に示した例では、各撮影部位の各撮影方向について、それぞれ1秒等の通常の蓄積時間τと、10秒等の長い蓄積時間τのいずれかが設定できるようになっている。 For example, when a predetermined icon on the screen H1 is clicked or a mouse is right-clicked on the screen H1, a screen H2 as shown in FIG. 15 is displayed on the display unit 58a of the console 58. It has become. For example, on the screen H <b> 2, “AP (front)”, “PA (back)”, “LAT (side)”, etc. are taken with respect to an imaging region such as “Chest” or “Abdomen”. The direction can be specified. In the example shown in FIG. 15, for each imaging direction of each imaging region, either a normal accumulation time τ such as 1 second or a long accumulation time τ such as 10 seconds can be set. .
 なお、図15に示した例では、「LONG」が付記されていないボタンアイコンBIが、撮影部位や撮影方向と同時に通常の蓄積時間τを設定するためのボタンアイコンであり、「LONG」が付記されているボタンアイコンBIが、撮影部位や撮影方向と同時により長い時間の蓄積時間τを設定するためのボタンアイコンである。また、上記のように、画面H1(図14参照)から画面H2(図15参照)に切り替えて蓄積時間τを設定する代わりに、図16に示すように、例えば画面H1の右側に示すボタンアイコンBI群の中等に、通常の蓄積時間τと長い蓄積時間τとを表す各ボタンアイコンBI*を表示し、画面H1上で蓄積時間τを設定するように構成することも可能である。さらに、図15や図16に示した例では、蓄積時間τとして、通常の蓄積時間とより長い蓄積時間のいずれかしか設定できない場合が示されている。しかし、表示するボタンアイコンBIをさらに増やして、設定できる蓄積時間τの種類を3種類以上に増やしたり、或いは、前述したように蓄積時間τを連続的に変化し得る時間間隔として設定する場合には、放射線技師等の操作者が画面H1上や画面H2上で蓄積時間τをキーボード等で入力して設定するように構成することも可能である。 In the example shown in FIG. 15, the button icon BI without “LONG” is a button icon for setting the normal accumulation time τ simultaneously with the imaging region and imaging direction, and “LONG” is added. The button icon BI is a button icon for setting an accumulation time τ of a longer time simultaneously with an imaging region and an imaging direction. Further, as described above, instead of switching from the screen H1 (see FIG. 14) to the screen H2 (see FIG. 15) and setting the accumulation time τ, as shown in FIG. 16, for example, a button icon shown on the right side of the screen H1 Each button icon BI * representing a normal accumulation time τ and a long accumulation time τ may be displayed in the BI group or the like, and the accumulation time τ may be set on the screen H1. Further, in the examples shown in FIG. 15 and FIG. 16, a case is shown in which only one of a normal accumulation time and a longer accumulation time can be set as the accumulation time τ. However, when the button icons BI to be displayed are further increased to increase the number of accumulation times τ that can be set to three or more, or as described above, the accumulation time τ is set as a time interval that can be continuously changed. Can be configured such that an operator such as a radiologist inputs and sets the accumulation time τ on the screen H1 or the screen H2 using a keyboard or the like.
 また、図示を省略するが、図14や図16に示した画面H1の中央の表示スペースS上に、設定された蓄積時間τの情報を表示するように構成すれば、放射線技師等の操作者が画面H1の表示スペースSを見て、設定されている蓄積時間τがどの長さの蓄積時間であるかを容易に確認することが可能となり好ましい。また、前述したように、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてから待ち時間WTが経過し、FPD1から報知装置であるコンソール58に信号が送信されて、コンソール58が、放射線技師等の操作者に、放射線発生装置55から放射線を照射して撮影を行うことが可能であることを報知する場合、例えば、画面H1の表示スペースS上に、前述したように「撮影できます。」等の表示を行う等して報知するように構成することが可能である。また、上記の待ち時間WTが経過するまでの間、例えば、画面H1の表示スペースS上に「起動中」や「準備中」等の表示を行って、FPD1が起動中や準備中であり、まだ撮影を行うことができる状態にはないことを放射線技師等の操作者に報知するように構成することも可能である。 Although not shown in the drawings, an operator such as a radiographer can be configured by displaying information on the set accumulation time τ on the display space S in the center of the screen H1 shown in FIGS. Is preferable because it is possible to easily check the length of the set accumulation time τ by looking at the display space S of the screen H1. Further, as described above, the waiting time WT elapses after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode, and a signal is transmitted from the FPD 1 to the console 58 that is a notification device. To notify the operator that radiation can be performed from the radiation generation device 55, for example, as described above, on the display space S of the screen H1 "can be photographed." It is possible to make a notification such as by displaying “ Also, until the above-described waiting time WT elapses, for example, “Starting” or “Preparing” is displayed on the display space S of the screen H1, and the FPD 1 is starting or preparing. It is also possible to configure so as to notify an operator such as a radiologist that the imaging is not yet possible.
 以上のようにして、蓄積時間τが設定されると、コンソール58は、設定された蓄積時間τの情報をFPD1に送信して設定するように構成される。その際、まだFPD1に覚醒信号を送信していなければ、コンソール58は、上記のようにFPD1に対して覚醒信号を送信してFPD1の撮影モードをスリープモードから覚醒モードに遷移させるとともに、同時に、蓄積時間τの情報をFPD1に送信するように構成することが可能である。また、すでにFPD1に覚醒信号を送信している場合には、コンソール58は、上記のようにして蓄積時間τが設定された時点でFPD1に対して設定された蓄積時間τの情報を送信して設定するように構成される。 As described above, when the accumulation time τ is set, the console 58 is configured to transmit and set information on the set accumulation time τ to the FPD 1. At that time, if the wake-up signal is not yet transmitted to the FPD 1, the console 58 transmits the wake-up signal to the FPD 1 as described above to change the photographing mode of the FPD 1 from the sleep mode to the wake-up mode. It is possible to configure the storage time τ to be transmitted to the FPD 1. If the wake-up signal is already transmitted to the FPD 1, the console 58 transmits the information on the accumulation time τ set to the FPD 1 when the accumulation time τ is set as described above. Configured to set.
 上記のように構成する場合、FPD1は、予め、蓄積時間τと待ち時間WTとを対応付けるテーブルや、待ち時間WTを蓄積時間τの関数として対応付ける関数等を備えておくように構成される。そして、覚醒信号を受信してFPD1の撮影モードがスリープモードから覚醒モードに遷移されると、FPD1の制御手段22は経過時間tのカウントを開始する。また、FPD1の制御手段22は、コンソール58から入手した蓄積時間τの情報に基づいて上記のテーブルや関数等から待ち時間WTを割り出す。そして、経過時間tが、割り出した待ち時間WTだけ経過した時点で報知装置58に信号を送信する。そして、放射線技師等の操作者が曝射スイッチ56を操作して放射線発生装置55に放射線を照射させて撮影が行われると、FPD1の制御手段22は、コンソール58から送信されてきた蓄積時間τだけ電荷蓄積状態を継続させて画像データDを読み出したりオフセットデータOを読み出したりする。 When configured as described above, the FPD 1 is configured in advance to include a table that associates the accumulation time τ with the waiting time WT, a function that associates the waiting time WT as a function of the accumulation time τ, and the like. When the wake-up signal is received and the photographing mode of the FPD 1 is changed from the sleep mode to the wake-up mode, the control means 22 of the FPD 1 starts counting the elapsed time t. Further, the control means 22 of the FPD 1 calculates the waiting time WT from the above table, function, etc. based on the information of the accumulation time τ obtained from the console 58. A signal is transmitted to the notification device 58 when the elapsed time t has elapsed by the determined waiting time WT. When an operator such as a radiologist operates the exposure switch 56 to irradiate the radiation generating device 55 with radiation, the control means 22 of the FPD 1 stores the accumulated time τ transmitted from the console 58. Only the charge accumulation state is continued, and the image data D is read or the offset data O is read.
 このようにして、コンソール58からFPD1に蓄積時間τの情報を送信するように構成することで、上記の実施形態における有益な効果を的確に発揮することが可能となる。なお、上記のように、コンソール58からFPD1に蓄積時間τの情報を送信するように構成する代わりに、コンソール58からFPD1に待ち時間WTの情報を送信するように構成することも可能である。そして、このように構成する場合には、例えば、コンソール58は、放射線技師等の操作者が入力したり、RIS等から入手した撮影オーダー情報に指定されている、撮影に使用されるFPD1や放射線発生装置55等の情報や撮影部位や撮影方法等の撮影条件等に基づいて待ち時間WTを割り出し、割り出した待ち時間WTの情報をFPD1に送信して設定する。そして、FPD1の制御手段22は、コンソール58から待ち時間WTの情報が送信されてくると、その情報に基づいて、予め備えているテーブルや関数(或いはその逆関数)から蓄積時間τを割り出す。このようにして、コンソール58からFPD1に待ち時間WTの情報を送信するように構成しても、本実施形態における上記の有益な効果を的確に発揮することが可能となる。 In this way, by configuring the console 58 to transmit the information of the accumulation time τ to the FPD 1, it is possible to accurately exhibit the beneficial effects in the above embodiment. As described above, instead of configuring the console 58 to transmit the storage time τ information to the FPD 1, it is possible to configure the console 58 to transmit the waiting time WT information to the FPD 1. In the case of such a configuration, for example, the console 58 is input by an operator such as a radiographer or specified in the imaging order information obtained from the RIS or the like. The waiting time WT is determined based on information such as the generation device 55 and the imaging conditions such as the imaging region and imaging method, and the information of the determined waiting time WT is transmitted to the FPD 1 and set. Then, when information on the waiting time WT is transmitted from the console 58, the control means 22 of the FPD 1 calculates the accumulation time τ from a table or function (or its inverse function) provided in advance based on the information. Thus, even if it is configured to transmit the waiting time WT information from the console 58 to the FPD 1, it is possible to accurately exhibit the beneficial effects described above in the present embodiment.
[2回目以降の撮影について]
 ここで、例えば図17に示すように、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてから短い待ち時間WT1の経過後、速やかに1回目の撮影が短い蓄積時間τ1の下で行われ、続けて、長い待ち時間WT2の経過後、2回目の撮影を長い蓄積時間τ2の下で行うような場合を考える。なお、図17において「D」は画像データDの読み出し処理、「O」はオフセットデータOの読み出し処理、「R」は各放射線検出素子7のリセット処理(非同期方式の場合は放射線の照射開始の検出処理を含む。)を表す。
[Second and subsequent shots]
Here, for example, as shown in FIG. 17, after the short waiting time WT1 has elapsed since the shooting mode of the FPD 1 was changed from the sleep mode to the awakening mode, the first shooting is immediately performed under a short accumulation time τ1. Next, consider a case where the second imaging is performed under the long accumulation time τ2 after the long waiting time WT2 elapses. In FIG. 17, “D” is a process for reading image data D, “O” is a process for reading offset data O, and “R” is a reset process for each radiation detection element 7 (in the case of the asynchronous method, radiation irradiation start is performed). Including detection processing).
 このような場合、図17に示すように、1回目の撮影で画像データDの読み出し処理が行われ、続けてオフセットデータOの読み出し処理が行われて終了した時点t*では、まだ2回目の撮影における長い蓄積時間τ2に対応する長い待ち時間WT2が経過していない場合がある。このように、FPD1の撮影モードがスリープモードから覚醒モードに遷移された後、1回目の撮影に引き続き2回目以降の撮影を行う際、2回目以降の撮影において、撮影モードがスリープモードから覚醒モードに遷移されてからの経過時間tが、当該2回目以降の撮影における蓄積時間τ2に応じて切り替えられる待ち時間WT2だけ経過していない場合には、FPD1の制御手段22は、1回目の撮影におけるオフセットデータOの読み出し処理が終了した時点ではなく、図17に示すように、当該2回目以降の撮影における待ち時間WT2が経過した時点で、報知装置58に信号を送信して、報知装置58に撮影可能であることを報知させるように構成される。 In such a case, as shown in FIG. 17, at the time t * when the reading process of the image data D is performed in the first shooting and the reading process of the offset data O is subsequently performed, the second process is still performed. There is a case where the long waiting time WT2 corresponding to the long accumulation time τ2 in photographing has not elapsed. As described above, after the shooting mode of the FPD 1 is changed from the sleep mode to the awakening mode, when the second and subsequent shootings are performed following the first shooting, the shooting mode is changed from the sleep mode to the awakening mode in the second and subsequent shootings. If the elapsed time t since the transition to is not the waiting time WT2 switched according to the accumulation time τ2 in the second and subsequent shootings, the control means 22 of the FPD 1 As shown in FIG. 17, when the offset data O reading process ends, a signal is transmitted to the notification device 58 when the waiting time WT2 in the second and subsequent shootings has elapsed, and the notification device 58 is notified. It is comprised so that it may alert | report that imaging | photography is possible.
 このように構成することで、2回目以降の撮影において待ち時間WT2が十分に経過してから撮影可能とすることが可能となり、2回目以降の撮影においても、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの間の差分Δを十分に小さな値にすることが可能となり、2回目以降の撮影においても、読み出された画像データDやオフセットデータOに基づいて生成される診断提供用医用画像pの画質に劣化が生じることを的確に防止することが可能となる。 With this configuration, it is possible to enable shooting after a sufficient waiting time WT2 has elapsed in the second and subsequent shootings, and the darkness superimposed on the image data D also in the second and subsequent shootings. The difference Δ between the offset o due to the charge and the offset data O can be set to a sufficiently small value, and is generated based on the read image data D and offset data O in the second and subsequent shootings. It is possible to accurately prevent the image quality of the diagnostic providing medical image p to be deteriorated.
 なお、本発明が上記の実施形態等に限定されず、本発明の趣旨を逸脱しない限り、適宜変更可能であることは言うまでもない。例えば、FPD1に内蔵されるバッテリー24(図2等参照)の省エネ(長寿命化)のためには、被写体である患者のポジショング時には撮影モードをスリープモードとし、ポジショニングが完了した段階(すなわち放射線の照射が可能となった段階)で、FPD1の撮影モードをスリープモードから覚醒モードに遷移させる方式が有効である。従って、FPD1と患者Hとのポジショニングを済ませた後、コンソール58からFPD1に覚醒信号を送信して、FPD1の撮影モードをスリープモードから覚醒モードに遷移させるように構成される場合や、更なる省エネ効果を狙い、曝射スイッチ56の1段目のボタン操作が行われるのをトリガーとして、放射線発生装置55からコンソール58経由でFPD1に覚醒信号を送信して、FPD1の撮影モードをスリープモードから覚醒モードに遷移させるように構成される場合もある。 Needless to say, the present invention is not limited to the above-described embodiment and the like, and can be appropriately changed without departing from the gist of the present invention. For example, in order to save energy (longer life) of the battery 24 (see FIG. 2 etc.) built in the FPD 1, the imaging mode is set to the sleep mode when the patient who is the subject is positioned, and the stage where the positioning is completed (ie, radiation) At the stage when the irradiation of the FPD 1 becomes possible, a method of changing the photographing mode of the FPD 1 from the sleep mode to the awakening mode is effective. Therefore, after the positioning of the FPD 1 and the patient H is completed, a wake-up signal is transmitted from the console 58 to the FPD 1 to change the imaging mode of the FPD 1 from the sleep mode to the wake-up mode. Aiming at effect, triggering first button operation of exposure switch 56 as trigger, sending wake-up signal from radiation generator 55 to FPD1 via console 58, wakes up FPD1 shooting mode from sleep mode It may be configured to transition to a mode.
 上記の構成では、実際の放射線照射の直前にFPD1の撮影モードがスリープモードから覚醒モードに遷移されるため、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてからFPD1に放射線が照射されるまでの経過時間tが短くなり易い。また、その際、FPD1が非同期方式で制御される場合には、放射線発生装置55は、放射線技師等の操作者による曝射スイッチ56の2段目の操作があると、同期方式の場合のようにFPD1からのインターロック解除信号を受信して初めて放射線を照射するのではなく、2段目の操作があった時点ですぐに放射線の照射を開始することができる。そのため、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてからFPD1に放射線が照射されるまでの経過時間tがより短くなり易くなり、前述した診断提供用医用画像pの画質の劣化の問題がより生じ易くなる。 In the above configuration, since the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode immediately before actual radiation irradiation, the FPD 1 is irradiated with radiation after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode. Elapsed time t is likely to be shortened. At this time, when the FPD 1 is controlled in an asynchronous manner, the radiation generating device 55 is operated in the same manner as in the synchronous manner when the second stage operation of the exposure switch 56 is performed by an operator such as a radiation technician. Rather than irradiating the radiation for the first time after receiving the interlock release signal from the FPD 1, radiation irradiation can be started immediately when the second stage operation is performed. Therefore, the elapsed time t from when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode until the radiation is applied to the FPD 1 is likely to be shorter, and the above-described problem of deterioration in the image quality of the medical image p for diagnosis provision Is more likely to occur.
 一方、FPD1が同期方式で制御される場合には、操作者が曝射スイッチ56のボタンに対して2段目の操作を行ってからインターロック解除信号が送信されるまでの待ち時間が長くなる(すなわち蓄積時間τに応じて設定される待ち時間WT分だけ長くなる)だけであり、インターロック解除信号が送信されるまでは放射線の照射は開始されないため、FPD1の撮影モードがスリープモードから覚醒モードに遷移されてからFPD1に放射線が照射されるまでの経過時間tを十分に長くすることが可能となり、診断提供用医用画像pの画質の劣化の問題は生じない。従って、非同期方式FPD1を用いる場合には、放射線技師等の操作者が1段目のボタン操作に続いて2段目のボタン操作を直ちに行わないようにするために、換言すると、操作者が待ち時間WTが経過した後に2段目のボタン操作を行うようにするために、上記の実施形態で説明したように、報知装置により、放射線技師等の操作者への報知を的確に行うように構成することが好ましい。 On the other hand, when the FPD 1 is controlled in a synchronous manner, the waiting time until the interlock release signal is transmitted after the operator performs the second-stage operation on the button of the exposure switch 56 becomes longer. (That is, it becomes longer by the waiting time WT set in accordance with the accumulation time τ), and irradiation of radiation is not started until the interlock release signal is transmitted, so that the imaging mode of the FPD 1 is awakened from the sleep mode. The elapsed time t from when the mode is changed to when the FPD 1 is irradiated with radiation can be made sufficiently long, and there is no problem of deterioration of the image quality of the medical image p for diagnosis provision. Therefore, when the asynchronous FPD 1 is used, in order to prevent an operator such as a radiologist from performing the second button operation immediately after the first button operation, in other words, the operator waits. In order to perform the button operation of the second stage after the time WT has elapsed, as described in the above embodiment, the notification device is configured to accurately notify an operator such as a radiologist. It is preferable to do.
 その際、放射線技師等の操作者は、曝射スイッチ56の近辺に存在し、コンソール58の表示部58aに表示された画面を視認できないことも想定されるため、上記のように、コンソール58の表示部58a上に撮影可能であることを表示するとともに、ビープ音等の音声等で撮影可能であること(すなわち曝射スイッチ56に対する2段目のボタン操作が可能であること)を報知するように構成することが好ましい。 At this time, an operator such as a radiologist is present in the vicinity of the exposure switch 56, and it is assumed that the screen displayed on the display unit 58a of the console 58 cannot be visually recognized. The display unit 58a displays that it is possible to shoot and informs that it is possible to shoot with sound such as a beep sound (that is, the second-stage button operation on the exposure switch 56 is possible). It is preferable to configure.
[放射線検出素子内で発生する単位時間当たりの電荷量dQを低減させるための構成等について]
 ところで、本実施形態の診断提供用医用画像システム50において、蓄積時間τに応じて待ち時間WTを切り替えるように構成した理由は、例えば図7に示したように、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)で、放射線検出素子7内で発生する単位時間当たりの電荷量dQが大きな値になり、そこから、時間tが経過するに従って、放射線検出素子7内で発生する単位時間当たりの電荷量dQが次第に減っていく状態になるためであった。そのため、放射線検出素子7内で発生する単位時間当たりの電荷量dQをより低減させることができれば、蓄積時間τに応じて設定される待ち時間WTをより短縮することが可能となる。
[Configuration for Reducing Charge Quantity dQ per Unit Time Generated in Radiation Detecting Element]
By the way, the reason why the waiting time WT is switched according to the accumulation time τ in the medical image system for diagnosis providing 50 according to the present embodiment is that the imaging mode of the FPD 1 is changed from the sleep mode as shown in FIG. At the time of transition to the awakening mode (see the time t = 0 in FIG. 7), the charge amount dQ per unit time generated in the radiation detection element 7 becomes a large value, and as time t elapses from there. This is because the charge amount dQ per unit time generated in the radiation detection element 7 gradually decreases. Therefore, if the charge amount dQ per unit time generated in the radiation detection element 7 can be further reduced, the waiting time WT set according to the accumulation time τ can be further shortened.
 本発明者らがこの点について研究を重ねたところ、FPD1の撮影モードがスリープモードである場合に、ある一定の時間間隔ごとに、前述した走査線5や信号線6、放射線検出素子7、TFT8等が形成されたパネル部に、所定時間だけ通電すると、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)で、放射線検出素子7内で発生する単位時間当たりの電荷量dQをより小さな値にすることが可能となることが分かった。 As a result of repeated studies by the present inventors, when the photographing mode of the FPD 1 is the sleep mode, the scanning line 5, the signal line 6, the radiation detection element 7, and the TFT 8 described above are set at certain time intervals. Is generated in the radiation detection element 7 when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode (refer to the time t = 0 in FIG. 7). It has been found that the charge amount dQ per unit time can be made smaller.
 このような現象が生じる理由は、以下のように考えられている。すなわち、FPD1の撮影モードが覚醒モードである場合には、前述したように、各放射線検出素子7にバイアス線9を介してバイアス電源14(図2等参照)から例えば-5[V]等の逆バイアス電圧が印加されている。そして、FPD1の撮影モードが覚醒モードからスリープモードに遷移する際、各放射線検出素子7への逆バイアス電圧の印加が停止される。しかし、その際、図18に示すように、バイアス電源14から各放射線検出素子7に印加される電圧Vbは、実際には、所定の電圧値Vbiasの逆バイアス電圧から瞬時に0[V]にはならず、所定の時定数を有する状態で徐々に0[V]に近づいていくように変化する。なお、図18で、Mwは覚醒モードの期間を表し、Msはスリープモードの期間を表す。 The reason why such a phenomenon occurs is considered as follows. That is, when the imaging mode of the FPD 1 is the awakening mode, as described above, for example, −5 [V] or the like is supplied to each radiation detection element 7 from the bias power source 14 (see FIG. 2 etc.) via the bias line 9. A reverse bias voltage is applied. When the imaging mode of the FPD 1 transitions from the awakening mode to the sleep mode, the application of the reverse bias voltage to each radiation detection element 7 is stopped. However, at that time, as shown in FIG. 18, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is actually 0 [V] instantaneously from the reverse bias voltage of the predetermined voltage value Vbias. However, it changes so as to gradually approach 0 [V] in a state having a predetermined time constant. In FIG. 18, Mw represents the period of the awakening mode, and Ms represents the period of the sleep mode.
 スリープモードにおいて上記のような現象が生じている中で、上記のように、ある一定の時間間隔ごとにパネル部に所定時間だけ通電して、バイアス電源14から各放射線検出素子7に逆バイアス電圧Vbiasが印加されると、図18に示したように徐々に0[V]に向かって上昇していた電圧Vbが、また、例えば-5[V]等の逆バイアスVbiasに低下する。そして、所定時間が経過後、バイアス電源14から各放射線検出素子7への逆バイアス電圧Vbiasの印加が停止されると、また、バイアス電源14から各放射線検出素子7に印加される電圧Vbが徐々に0[V]に近づいていくように変化する。そのため、上記のように、ある一定の時間間隔ごとにパネル部に所定時間だけ通電することを繰り返すことにより、バイアス電源14から各放射線検出素子7に印加される電圧Vbは0[V]まで戻らず、逆バイアス電圧Vbiasから所定の負の電圧までの間の負の電圧値をとる状態が維持される。 While the above phenomenon occurs in the sleep mode, as described above, the panel unit is energized for a predetermined time at certain time intervals, and the reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7. When Vbias is applied, the voltage Vb that has gradually increased toward 0 [V] as shown in FIG. 18 decreases to a reverse bias Vbias such as −5 [V]. When the application of the reverse bias voltage Vbias from the bias power supply 14 to each radiation detection element 7 is stopped after a predetermined time has elapsed, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is gradually increased. Change to approach 0 [V]. Therefore, as described above, the voltage Vb applied to each radiation detection element 7 from the bias power supply 14 is returned to 0 [V] by repeatedly energizing the panel unit for a predetermined time at certain time intervals. Instead, the state of taking a negative voltage value between the reverse bias voltage Vbias and a predetermined negative voltage is maintained.
 一方、スリープモードにあるFPD1のバイアス電源14から各放射線検出素子7に印加される電圧Vbが上記のような状況にある状態で、放射線技師等の操作者が、撮影に向けて、コンソール58からFPD1に覚醒信号を送信する等して、FPD1の撮影モードがスリープモードから覚醒モードに遷移された場合を考える。すると、スリープモードにおける上記のような操作を行わない場合には、スリープモードの間にバイアス電源14から各放射線検出素子7に印加される電圧Vbは0[V]に戻っているため、覚醒モードへの遷移時に、各放射線検出素子7に印加される電圧Vbは、0[V]から例えば-5[V]等の所定の逆バイアス電圧Vbiasまで低下する。すなわち、この場合の各放射線検出素子7に印加される電圧Vbの変化量は、例えば5[V]分ということになる。 On the other hand, in a state where the voltage Vb applied to each radiation detection element 7 from the bias power supply 14 of the FPD 1 in the sleep mode is in the above-described state, an operator such as a radiographer takes an image from the console 58 for imaging. Consider a case where the shooting mode of the FPD 1 is changed from the sleep mode to the awake mode by transmitting a wake-up signal to the FPD 1. Then, when the operation as described above in the sleep mode is not performed, the voltage Vb applied to each radiation detection element 7 from the bias power supply 14 during the sleep mode returns to 0 [V]. At the time of transition, the voltage Vb applied to each radiation detection element 7 decreases from 0 [V] to a predetermined reverse bias voltage Vbias such as −5 [V]. That is, the change amount of the voltage Vb applied to each radiation detection element 7 in this case is, for example, 5 [V].
 それに対し、スリープモードにおいて上記のようにある一定の時間間隔ごとにFPD1のパネル部に所定時間だけ通電する操作を行うように構成した場合には、スリープモードの間にバイアス電源14から各放射線検出素子7に印加される電圧Vbは0[V]に戻らず、上記のように逆バイアス電圧Vbiasから所定の負の電圧までの間の負の電圧値をとる状態になっている。そのため、覚醒モードへの遷移時の各放射線検出素子7に印加される電圧Vbの変化量は、上記の5[V]分よりも小さい変化量になる。 On the other hand, in the sleep mode, when the operation of energizing the panel portion of the FPD 1 for a predetermined time is performed at certain time intervals as described above, each radiation detection is performed from the bias power source 14 during the sleep mode. The voltage Vb applied to the element 7 does not return to 0 [V], and takes a negative voltage value between the reverse bias voltage Vbias and a predetermined negative voltage as described above. Therefore, the change amount of the voltage Vb applied to each radiation detection element 7 at the time of transition to the awakening mode is a change amount smaller than the above 5 [V].
 そして、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)での、放射線検出素子7内で発生する単位時間当たりの電荷量dQの大きさは、この覚醒モードへの遷移時の各放射線検出素子7に印加される電圧Vbの変化量に依存して決まる。すなわち、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点での、放射線検出素子7内で発生する単位時間当たりの電荷量dQの大きさは、覚醒モードへの遷移時の各放射線検出素子7に印加される電圧Vbの変化量が大きければ電荷量dQの大きさが大きくなり、電圧Vbの変化量が小さければ電荷量dQの大きさも小さくなる関係にある。 The magnitude of the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode (see the time t = 0 in FIG. 7) is This is determined depending on the amount of change in the voltage Vb applied to each radiation detection element 7 at the time of transition to the awakening mode. That is, the magnitude of the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awake mode is the detection of each radiation at the transition to the awake mode. If the change amount of the voltage Vb applied to the element 7 is large, the charge amount dQ increases, and if the change amount of the voltage Vb is small, the charge amount dQ also decreases.
 そのため、上記のように、FPD1の撮影モードがスリープモードである場合に、ある一定の時間間隔ごとにパネル部に所定時間だけ通電するように構成することで、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)で放射線検出素子7内で発生する単位時間当たりの電荷量dQをより小さな値にすることが可能となるのである。 Therefore, as described above, when the shooting mode of the FPD 1 is the sleep mode, the FPD 1 shooting mode is awakened from the sleep mode by energizing the panel unit for a predetermined time at certain time intervals. The amount of charge dQ per unit time generated in the radiation detection element 7 at the time of transition to the mode (refer to the time t = 0 in FIG. 7) can be made smaller.
 そこで、FPD1において、制御手段22は、FPD1の撮影モードがスリープモードにある場合に、予め定められた時間間隔ごとに、パネル部に所定時間だけ通電するように構成することが可能である。このように構成することで、上記のように、放射線検出素子7内で発生する単位時間当たりの電荷量dQを、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)での大きさを小さくすることが可能となる。そして、覚醒モードに遷移させた時点での大きさを小さくすることで、その後の単位時間当たりの電荷量dQも小さくすることが可能となる。 Therefore, in the FPD 1, the control means 22 can be configured to energize the panel unit for a predetermined time at predetermined time intervals when the photographing mode of the FPD 1 is in the sleep mode. With this configuration, as described above, the amount of charge dQ per unit time generated in the radiation detection element 7 is changed to the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode (t in FIG. 7). It is possible to reduce the size at = 0). Then, by reducing the size at the time of transition to the awakening mode, the subsequent charge amount dQ per unit time can be reduced.
 すなわち、上記のように構成していない場合の図7等に比べて、各時刻tにおける放射線検出素子7内で発生する単位時間当たりの電荷量dQをより低減させることが可能となり、結局、上記のように構成することで、放射線検出素子7内で発生する単位時間当たりの電荷量dQを全体的に低減させることが可能となる。そのため、例えば図7のグラフに基づいて待ち時間WTを設定する図13に示した場合に比べて、待ち時間WTをより短くしても、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとの差分Δを十分に小さくすることが可能となる。そのため、上記のように構成して、放射線検出素子7内で発生する単位時間当たりの電荷量dQをより低減させることで、前述した蓄積時間τに応じて設定される待ち時間WTをより短縮することが可能となる。 That is, it is possible to further reduce the amount of charge dQ per unit time generated in the radiation detection element 7 at each time t as compared with FIG. 7 or the like when not configured as described above. With this configuration, the charge amount dQ per unit time generated in the radiation detection element 7 can be reduced as a whole. Therefore, for example, compared with the case shown in FIG. 13 in which the waiting time WT is set based on the graph of FIG. 7, even if the waiting time WT is made shorter, the offset o due to the dark charge superimposed on the image data D is obtained. And the difference Δ between the offset data O and the offset data O can be sufficiently reduced. Therefore, by configuring as described above and further reducing the charge amount dQ per unit time generated in the radiation detection element 7, the waiting time WT set according to the above-described accumulation time τ is further shortened. It becomes possible.
 また、上記のように、FPD1の撮影モードがスリープモードである場合に、バイアス電源14から各放射線検出素子7に定期的に逆バイアス電圧Vbiasを印加するように構成する代わりに、FPD1の撮影モードがスリープモードにある場合に、バイアス電源14から各放射線検出素子7に印加される電圧が上昇して閾値に達するごとに、バイアス電源14から各放射線検出素子7に所定時間だけ所定の電圧値の逆バイアス電圧Vbiasを印加させるように構成することも可能である。 Further, as described above, when the imaging mode of the FPD 1 is the sleep mode, instead of the configuration in which the reverse bias voltage Vbias is periodically applied from the bias power source 14 to each radiation detection element 7, the imaging mode of the FPD 1 Is in the sleep mode, every time the voltage applied from the bias power supply 14 to each radiation detection element 7 rises and reaches a threshold value, the bias power supply 14 applies a predetermined voltage value to each radiation detection element 7 for a predetermined time. It is also possible to apply a reverse bias voltage Vbias.
 すなわち、図18に示したように、覚醒モードでバイアス電源14から各放射線検出素子7に逆バイアス電圧Vbiasを印加した後、バイアス電源14から各放射線検出素子7に印加される電圧Vbは、所定の電圧値Vbiasの逆バイアス電圧から瞬時に0[V]にはならず、所定の時定数を有する状態で徐々に0[V]に近づいていく状態になる。 That is, as shown in FIG. 18, after the reverse bias voltage Vbias is applied from the bias power supply 14 to each radiation detection element 7 in the awakening mode, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 is predetermined. The reverse bias voltage of the voltage value Vbias is not instantaneously 0 [V], but gradually approaches 0 [V] in a state having a predetermined time constant.
 そこで、スリープモードにおいても、制御手段22で、バイアス電源14から各放射線検出素子7に印加される電圧Vbを監視するように構成し、電圧Vbが図18に示したように上昇していき、図示しない閾値に達すると、バイアス電源14から各放射線検出素子7に所定時間だけ所定の電圧値Vbiasの逆バイアス電圧を印加させる。すると、バイアス電源14から各放射線検出素子7に印加する電圧Vbは所定の電圧値Vbiasの逆バイアス電圧まで下がる。 Therefore, even in the sleep mode, the control unit 22 is configured to monitor the voltage Vb applied to each radiation detection element 7 from the bias power supply 14, and the voltage Vb increases as shown in FIG. When a threshold (not shown) is reached, a reverse bias voltage having a predetermined voltage value Vbias is applied from the bias power supply 14 to each radiation detection element 7 for a predetermined time. Then, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 falls to the reverse bias voltage of the predetermined voltage value Vbias.
 そして、所定時間が経過すると、所定の電圧値Vbiasの逆バイアス電圧の印加を停止させる。すると、また、バイアス電源14から各放射線検出素子7に印加される電圧Vbが上昇していき、電圧Vbが閾値に達すると、バイアス電源14から各放射線検出素子7に所定時間だけ所定の電圧値Vbiasの逆バイアス電圧を印加させる。 Then, when a predetermined time elapses, the application of the reverse bias voltage of the predetermined voltage value Vbias is stopped. Then, the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 increases, and when the voltage Vb reaches a threshold value, the bias power supply 14 applies a predetermined voltage value to each radiation detection element 7 for a predetermined time. A reverse bias voltage of Vbias is applied.
 このように、バイアス電源14から各放射線検出素子7に印加される電圧Vbが上昇して閾値に達するごとに、バイアス電源14から各放射線検出素子7に所定時間だけ所定の電圧値Vbiasの逆バイアス電圧を印加させるように構成することも可能である。そして、このように構成することで、上記のように、スリープモードにおいてバイアス電源14から定期的に各放射線検出素子7に逆バイアス電圧Vbiasを印加するように構成する場合と同様に、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)で放射線検出素子7内で発生する単位時間当たりの電荷量dQをより小さな値にすることが可能となる。 Thus, every time the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 rises and reaches a threshold value, the reverse bias of the predetermined voltage value Vbias from the bias power supply 14 to each radiation detection element 7 for a predetermined time. It is also possible to configure to apply a voltage. With this configuration, as described above, the imaging of the FPD 1 is performed as in the case where the reverse power supply voltage Vbias is periodically applied to each radiation detection element 7 from the bias power supply 14 in the sleep mode. The charge amount dQ per unit time generated in the radiation detection element 7 at the time when the mode is changed from the sleep mode to the awakening mode (refer to the time t = 0 in FIG. 7) can be set to a smaller value. .
 一方、上記のように、FPD1の撮影モードがスリープモードである際に一定の時間間隔ごとにFPD1のパネル部に所定時間だけ通電し、その間にバイアス電源14から各放射線検出素子7に逆バイアス電圧Vbiasを印加したり、或いはバイアス電源14から各放射線検出素子7に印加される電圧Vbが上昇して閾値に達するごとにバイアス電源14から各放射線検出素子7に逆バイアス電圧Vbiasを印加することで、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7におけるt=0の時点参照)での放射線検出素子7内で発生する単位時間当たりの電荷量dQをより小さな値にすることができるのであれば、それをさらに一歩進めて、FPD1の撮影モードがスリープモードである間も、バイアス電源14から各放射線検出素子7に継続して逆バイアス電圧Vbiasを印加し続けるように構成することも可能である。 On the other hand, as described above, when the imaging mode of the FPD 1 is the sleep mode, the panel portion of the FPD 1 is energized for a predetermined time at regular time intervals, and the reverse bias voltage is applied from the bias power source 14 to each radiation detection element 7 during that period. By applying Vbias or by applying a reverse bias voltage Vbias from the bias power supply 14 to each radiation detection element 7 every time the voltage Vb applied from the bias power supply 14 to each radiation detection element 7 rises and reaches a threshold value. The charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode (refer to the time t = 0 in FIG. 7) is set to a smaller value. If it can, the bias power supply 14 can be advanced one step further while the shooting mode of the FPD 1 is in the sleep mode. It is also possible to configure to continue to apply a continuously to reverse-bias voltage Vbias Luo each radiation detection element 7.
 すなわち、FPD1の撮影モードが覚醒モードである場合にはバイアス電源14から各放射線検出素子7にバイアス線9を介して逆バイアス電圧Vbiasが印加されるが、撮影モードがスリープモードに切り替えられた後も継続してバイアス電源14から各放射線検出素子7に逆バイアス電圧Vbiasを印加し続けるように構成することが可能である。 That is, when the imaging mode of the FPD 1 is the awakening mode, the reverse bias voltage Vbias is applied from the bias power supply 14 to each radiation detection element 7 via the bias line 9, but after the imaging mode is switched to the sleep mode. Alternatively, the reverse bias voltage Vbias can be continuously applied from the bias power source 14 to each radiation detection element 7.
 このように構成すれば、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点での放射線検出素子7内で発生する単位時間当たりの電荷量dQをさらに小さな値にすることが可能となり、前述した蓄積時間τに応じて設定される待ち時間WTをさらに短縮することが可能となる。そのため、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた後より速やかにFPD1に放射線を照射して撮影を行うことが可能となる。 With this configuration, the charge amount dQ per unit time generated in the radiation detection element 7 at the time when the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode can be further reduced. It is possible to further reduce the waiting time WT set in accordance with the accumulation time τ described above. Therefore, it is possible to perform imaging by irradiating the FPD 1 with radiation more quickly after the imaging mode of the FPD 1 is changed from the sleep mode to the awakening mode.
[FPDに加わる振動等の影響について]
 ところで、上記の実施形態等では、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが同じ大きさとする(すなわちo=O)ために、撮影後に、放射線が照射されない状態で、撮影時における各放射線検出素子7のリセット処理から画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返してオフセットデータOの読み出し処理を行う。しかし、図7に示したように、放射線検出素子7内で発生する単位時間当たりの電荷量dQが、FPD1の撮影モードをスリープモードから覚醒モードに遷移させた時点(図7等におけるt=0の時点)では大きな値になり、その後、時間tが経過するに従って次第に減少していく現象が生じるため、撮影モードを覚醒モードに遷移させた直後に撮影を行い、オフセットデータOの読み出し処理を行うと、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが同じ大きさにならない。そのため、FPD1の撮影モードをスリープモードから覚醒モードに遷移させてからの待ち時間WTを電荷蓄積状態における蓄積時間τに応じて切り替えることで、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとがほぼ同じ大きさになるように構成することについて説明した。
[Effects of vibration, etc. applied to FPD]
By the way, in the above-described embodiment and the like, since the offset o due to the dark charge superimposed on the image data D and the offset data O have the same size (that is, o = O), no radiation is irradiated after imaging. Thus, the offset data O is read out by repeating the same processing sequence as the processing sequence from the reset process of each radiation detection element 7 to the readout process of the image data D at the time of imaging. However, as shown in FIG. 7, when the charge amount dQ per unit time generated in the radiation detection element 7 changes the imaging mode of the FPD 1 from the sleep mode to the awakening mode (t = 0 in FIG. 7 and the like). Since the phenomenon becomes a large value at the time of (3) and then gradually decreases as the time t elapses, imaging is performed immediately after the imaging mode is changed to the awakening mode, and the offset data O is read out. The offset o due to the dark charge superimposed on the image data D and the offset data O are not the same size. Therefore, by switching the waiting time WT after changing the photographing mode of the FPD 1 from the sleep mode to the awakening mode according to the accumulation time τ in the charge accumulation state, the offset o due to the dark charge superimposed on the image data D is obtained. As described above, the offset data O and the offset data O are configured to have substantially the same size.
 そして、このように構成し、後の画像処理で、画像データDからオフセットデータOを減算することで、画像データDに重畳されている暗電荷によるオフセット分oとオフセットデータOとが相殺され、放射線の照射により各放射線検出素子7内で発生した電荷に起因する真の画像データD*を算出することが可能となり、それに基づいて生成した診断提供用医用画像pの画質に劣化が生じることを的確に防止することが可能となる。 In this way, by subtracting the offset data O from the image data D in the subsequent image processing, the offset amount o due to the dark charge superimposed on the image data D and the offset data O are offset, It is possible to calculate the true image data D * resulting from the electric charge generated in each radiation detection element 7 due to the irradiation of radiation, and the image quality of the medical image p for diagnosis providing generated based on this is deteriorated. It becomes possible to prevent accurately.
 しかし、本発明者らがさらに研究を重ねたところ、上記のようにして撮影を行って画像データDの読み出し処理やオフセットデータOの読み出し処理を行い、読み出したオフセットデータOと画像データDを上記(2)式に代入して真の画像データD*を算出し、算出した真の画像データD*に基づいて診断提供用医用画像を生成すると、生成された診断提供用医用画像(いわゆる確定画像)中にアーチファクトが現れる場合があることが分かってきた。 However, as a result of further research by the present inventors, the image data D is read out and the offset data O is read out as described above, and the read offset data O and the image data D are read out as described above. When the true image data D * is calculated by substituting into the equation (2), and the diagnostic providing medical image is generated based on the calculated true image data D * , the generated diagnostic providing medical image (so-called definite image) ) It has been found that artifacts may appear inside.
 そして、本発明者らがこのような現象が現れる原因について研究を重ねた結果、特に、オフセットデータOの読み出し処理中にFPDに衝撃や振動等が加わることよって生じる、いわゆるマイクロフォニック現象(例えば米国特許第6707881号明細書等参照)によって、読み出されるオフセットデータO中にアーチファクトが現れてしまう。そのため、画像データDにはアーチファクトが現れていなくても、上記(2)式の演算を行うことで、算出される真の画像データD*にオフセットデータO中のアーチファクトの成分が残存してしまい、真の画像データD*に基づいて生成された診断提供用医用画像中にアーチファクトが現れてしまうことが分かってきた。 As a result of repeated researches on the cause of the occurrence of such a phenomenon by the present inventors, in particular, a so-called microphonic phenomenon (for example, the United States) caused by an impact or vibration applied to the FPD during the offset data O reading process. (See Japanese Patent No. 6707818, for example), artifacts appear in the offset data O to be read. Therefore, even if no artifact appears in the image data D, the artifact component in the offset data O remains in the calculated true image data D * by performing the calculation of the above equation (2). It has been found that artifacts appear in the diagnostic-provided medical image generated based on the true image data D * .
 このような問題点を鑑み、以下、オフセットデータOの読み出し処理時にFPDに振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能な診断提供用医用画像システムについて説明する。 In view of such a problem, a diagnosis capable of accurately preventing vibrations and the like from being applied to the FPD during the offset data O reading process and preventing the offset data O to be read from including artifacts will be described below. The providing medical image system will be described.
 なお、図3に示したような撮影室R1や前室R2内に構築された診断提供用医用画像システム50でも、被写体である患者がFPD1が装填されたブッキー装置51にぶつかる等してオフセットデータOの読み出し処理時にFPD1に振動等が加わる事態が生じる可能性があるが、このような事態は、図4に示したような回診車60上に構築された診断提供用医用画像システム50で生じ易いため、以下では、回診車60上に構築された診断提供用医用画像システム50を病室R3に持ち込んで撮影を行う場合について説明する。また、この場合、FPD1と放射線発生装置55との間にインターフェースを構築して、同期方式で撮影を行うように構成することも可能であるが、以下では、非同期方式で撮影が行われる場合について説明する。なお、撮影室R1等に構築された診断提供用医用画像システム50の場合や同期方式で撮影が行われる場合も同様に説明される。 Even in the medical image system 50 for diagnosis providing constructed in the imaging room R1 and the front room R2 as shown in FIG. 3, the patient as the subject collides with the Bucky device 51 loaded with the FPD1, and the like, the offset data. There is a possibility that a vibration or the like is applied to the FPD 1 during the O reading process. Such a situation occurs in the medical image system 50 for providing diagnosis constructed on the round wheel 60 as shown in FIG. Since it is easy, below, the case where the medical image system 50 for diagnosis provision constructed | assembled on the round-wheel 60 is brought in to the hospital room R3 and imaging | photography is demonstrated. In this case, it is possible to construct an interface between the FPD 1 and the radiation generator 55 and perform imaging in a synchronous manner, but in the following, a case in which imaging is performed in an asynchronous manner. explain. The same applies to the case of the diagnostic providing medical image system 50 constructed in the imaging room R1 or the like or the case where imaging is performed in a synchronous manner.
[撮影時等における通常の処理手順について]
 ここで、まず、FPD1の制御手段22やコンソール58の、撮影時等における通常の処理手順について簡単に説明する。
[Regarding normal processing procedures during shooting]
Here, first, a normal processing procedure of the control means 22 of the FPD 1 and the console 58 at the time of shooting will be briefly described.
 放射線技師等の操作者は、撮影に先立って、コンソール58を操作して、前述したRIS等から、例えばこれから行う撮影に関する撮影オーダー情報を入手する。撮影オーダー情報は、例えば図19に例示するように、患者情報としての「患者ID」P2、「患者氏名」P3、「性別」P4、「年齢」P5、「診療科」P6、および撮影条件としての「撮影部位」P7、「撮影方向」P8等で構成されるようになっている。そして、撮影オーダーを受け付けた順に、各撮影オーダー情報に対して「撮影オーダーID」P1が自動的に割り当てられる。また、撮影オーダー情報には、さらに、使用するブッキー装置51(図3参照)や回診車60(図4参照)等のモダリティーの識別情報を表す「モダリティーID」P9や使用するカセッテの「カセッテID」P10等の項目が設けられている。 Prior to imaging, an operator such as a radiographer operates the console 58 and obtains imaging order information relating to imaging to be performed, for example, from the RIS described above. For example, as illustrated in FIG. 19, the imaging order information includes “patient ID” P2, “patient name” P3, “sex” P4, “age” P5, “clinical department” P6, and imaging conditions as patient information. "Imaging part" P7, "imaging direction" P8, and the like. Then, the “shooting order ID” P1 is automatically assigned to each shooting order information in the order in which the shooting orders are received. Further, the imaging order information further includes a “modality ID” P9 indicating modality identification information such as the used Bucky device 51 (see FIG. 3) and the roundabout car 60 (see FIG. 4), and the “cassette ID” of the cassette to be used. "Items such as P10 are provided.
 コンソール58は、上記のようにして、撮影オーダー情報を入手すると、図20に示すように、表示部58aの選択画面H3上に各撮影オーダー情報の一覧をリスト形式で表示する。選択画面H3には、各撮影オーダー情報の一覧を表示するための撮影オーダー情報表示欄h11が設けられており、撮影オーダー情報表示欄h11の左側には、これから撮影を行う予定の撮影オーダー情報を選択するための選択ボタンh12が設けられている。また、撮影オーダー情報表示欄h11の下側には、決定ボタンh13および戻るボタンh14が設けられている。そして、操作者は、選択ボタンh12をクリックして撮影オーダー情報を単数または複数選択し、決定ボタンh13をクリックする。なお、1つのオーダー情報を選択すると、当該オーダー情報と同一の患者に対する他の撮影オーダー情報全てを自動的に選択することができるように構成することも可能である。 When the console 58 obtains the shooting order information as described above, the console 58 displays a list of each shooting order information in a list format on the selection screen H3 of the display unit 58a as shown in FIG. The selection screen H3 is provided with a shooting order information display field h11 for displaying a list of each shooting order information. On the left side of the shooting order information display field h11, shooting order information scheduled to be shot is displayed. A selection button h12 for selecting is provided. Further, an enter button h13 and a return button h14 are provided below the shooting order information display field h11. Then, the operator clicks the selection button h12 to select one or a plurality of shooting order information, and clicks the decision button h13. In addition, when one order information is selected, all the other imaging | photography order information with respect to the same patient as the said order information can also be comprised so that it can select automatically.
 そして、例えば、放射線技師等の操作者が図20の撮影オーダー情報の中から「A」という患者に関する4つの撮影オーダー情報を選択して決定ボタンh13をクリックすると、コンソール58は、表示部58a上に図21に示すような画面H4を表示する。なお、以下では、画面H4を図21等に示したように構成する場合について説明するが、画面H4は、前述した画面H1(図14や図16参照)と同様の画面であり、図14等に示したように構成することも可能である。 Then, for example, when an operator such as a radiologist selects four pieces of imaging order information regarding the patient “A” from the imaging order information of FIG. 20 and clicks the decision button h13, the console 58 is displayed on the display unit 58a. A screen H4 as shown in FIG. 21 is displayed. In the following, the case where the screen H4 is configured as shown in FIG. 21 and the like will be described. However, the screen H4 is the same screen as the screen H1 described above (see FIG. 14 and FIG. 16), and FIG. It is also possible to configure as shown in FIG.
 画面H4には、図21に示すように、各撮影オーダー情報に対応する各アイコンIが表示される。なお、アイコンIには、モダリティーを表す略図が記載されるようになっており、図21の各アイコンIに記載されているFPDの斜視図状の略図は、FPD1がブッキー装置に装填されずに単独の状態で用いられることを表している。また、画面H4の右側に表示されている撮影条件の設定用の表示Ia上の各ボタンをクリックすることで、操作者が、放射線照射装置55が放射線源52に設定する管電圧や管電流、照射時間等の撮影条件を微調整して設定することができるようになっている。また、画面H4の左側には、フォーカスして表示されているアイコンIに対応する撮影オーダー情報で指定された撮影部位P7(図19や図20参照)が分かるように表した人体モデルIb上に表示される。 In the screen H4, as shown in FIG. 21, each icon I corresponding to each shooting order information is displayed. Note that the icon I has a schematic diagram indicating the modality. The perspective view of the FPD described in each icon I in FIG. 21 shows that the FPD 1 is not loaded into the Bucky device. It shows that it is used in a single state. In addition, by clicking each button on the display Ia for setting the imaging condition displayed on the right side of the screen H4, the operator can set the tube voltage and tube current set by the radiation irradiation device 55 to the radiation source 52, The photographing conditions such as the irradiation time can be finely adjusted and set. Further, on the left side of the screen H4, the human body model Ib is shown so that the imaging part P7 (see FIGS. 19 and 20) designated by the imaging order information corresponding to the icon I displayed in focus can be seen. Is displayed.
 コンソール58は、画面H4上に表示された各アイコンI1~I4のうち、何れか1つのアイコンI(図21の場合はアイコンI2)を自動的に選択して、選択したアイコンIを目立つようにフォーカスして表示する。そして、フォーカスされているアイコンIに対応する撮影オーダー情報に基づく撮影が行われる。なお、操作者が、別の撮影オーダー情報に基づく撮影を行いたい場合には、その撮影オーダー情報に対応する他のアイコンIをクリックする等して選択することにより、フォーカスを遷移させることができる。 The console 58 automatically selects one of the icons I1 to I4 displayed on the screen H4 (the icon I2 in the case of FIG. 21) so that the selected icon I stands out. Display in focus. Then, photographing based on photographing order information corresponding to the focused icon I is performed. When the operator wants to perform shooting based on different shooting order information, the focus can be changed by clicking and selecting another icon I corresponding to the shooting order information. .
 一方、コンソール58は、例えば図21に示すように、次の撮影に対応するアイコンI2を選択してフォーカス表示すると、当該アイコンI2に対応する撮影オーダー情報に指定されている「カセッテID」P10(図19や図20参照)のFPD1に覚醒信号を送信して、当該FPD1の撮影モードを覚醒モードに切り替える。この場合、放射線技師等の操作者は、予めカセッテIDが「FPD-001」(図19や図20参照)のFPD1を回診車60に搭載して、回診車60とともに病室R3(図4参照)に搬入している。なお、前述したように、コンソール58からFPD1に覚醒信号を送信するタイミングを上記の時点とする代わりに、例えば、放射線発生装置55から、曝射スイッチ56の1段目の操作(すなわちいわゆる半押し操作)がなされたことを表す信号を受信した時点等とすることも可能であり、FPD1の撮影モードを覚醒モードに切り替えるタイミングは適宜決められる。 On the other hand, as shown in FIG. 21, for example, when the console 58 selects and focuses on the icon I2 corresponding to the next shooting, the “cassette ID” P10 (specified in the shooting order information corresponding to the icon I2) A wake-up signal is transmitted to the FPD 1 in FIGS. 19 and 20, and the photographing mode of the FPD 1 is switched to the wake-up mode. In this case, an operator such as a radiographer loads the FPD 1 having the cassette ID “FPD-001” (see FIG. 19 and FIG. 20) on the round wheel 60 in advance, and the patient room R3 (see FIG. 4) together with the round wheel 60. It is carried in. Note that, as described above, instead of setting the timing at which the wake-up signal is transmitted from the console 58 to the FPD 1 as described above, for example, from the radiation generator 55, the first-stage operation of the exposure switch 56 (ie, so-called half-press The timing at which the signal indicating that the operation is performed may be received, and the timing for switching the imaging mode of the FPD 1 to the awakening mode is appropriately determined.
 FPD1は、撮影モードを覚醒モードに切り替えると、前述したように、撮影の前処理として、各放射線検出素子7のリセット処理を開始する。そして、放射線技師等の操作者は、FPD1を被写体である患者Hに対してポジショニングした後、回診車60の所に移動して、曝射スイッチ56を操作して放射線発生装置55の放射線源52Pから放射線を照射させる。非同期方式の場合、前述したように、FPD1は、例えば読み出したリークデータdleakや照射開始検出用の画像データd等に基づいて放射線の照射開始を検出する(図5等参照)。 When the imaging mode is switched to the awakening mode, the FPD 1 starts a reset process for each radiation detection element 7 as a pre-process for imaging as described above. Then, an operator such as a radiologist positions the FPD 1 with respect to the patient H who is the subject, then moves to the round wheel 60 and operates the exposure switch 56 to operate the radiation source 52P of the radiation generator 55. Radiation. In the case of the asynchronous system, as described above, the FPD 1 detects the start of radiation irradiation based on, for example, the read leak data dleak, image data d for detection of irradiation start (see FIG. 5 and the like).
 そして、上記のように放射線技師等の操作者が曝射スイッチ56を操作して放射線源52Pから放射線を照射させると、FPD1では、ある回の読み出し処理で読み出されたリークデータdleakが例えば設定された閾値以上になる等して放射線の照射開始が検出される(前述した図5の「検出」参照)。そして、FPD1の制御手段22は、放射線の照射開始を検出すると、前述したように、ゲートドライバー15bから各走査線5にオフ電圧を印加させて全てのTFT8を蓄積時間τの間、オフ状態にして、放射線の照射により各放射線検出素子7内で発生した電荷を各放射線検出素子7内に蓄積させ、蓄積時間τの経過後、各放射線検出素子7からの画像データDの読み出し処理を行う。そして、画像データDの読み出し処理を行う。 When an operator such as a radiologist operates the exposure switch 56 to irradiate radiation from the radiation source 52P as described above, the FPD 1 sets, for example, the leak data dleak read in a certain read process. The radiation start is detected when the threshold value is exceeded (see “detection” in FIG. 5 described above). Then, when the control means 22 of the FPD 1 detects the start of radiation irradiation, as described above, the gate driver 15b applies an off voltage to each scanning line 5 to turn off all the TFTs 8 during the accumulation time τ. Thus, the charge generated in each radiation detection element 7 due to radiation irradiation is accumulated in each radiation detection element 7, and after the accumulation time τ has elapsed, the image data D is read from each radiation detection element 7. Then, the image data D is read out.
 FPD1の制御手段22は、続いて、このようにして画像データDの読み出し処理を行うと、前述したように、読み出した画像データDから所定の割合でプレビュー画像用データDpを抽出し、抽出したプレビュー画像用データDpをコンソール58に送信する。プレビュー画像用データDpの抽出処理は、例えば図22に示すようにして行われる。図22に示すように、FPD1の二次元状に配列された各放射線検出素子7のうち、n行、m列目の放射線検出素子7(n,m)から読み出された画像データDをD(n,m)で表すとすると、FPD1の制御手段22は、読み出した画像データD(n,m)の中から、例えば図22に斜線を付して示すように、予め所定本数(図22の場合は4本)の走査線5ごとに1本の割合で指定された走査線5に接続されている各放射線検出素子7から読み出された画像データD(n,m)を抽出して、プレビュー画像用データDpとする。 Subsequently, when the control unit 22 of the FPD 1 performs the reading process of the image data D as described above, the preview image data Dp is extracted from the read image data D at a predetermined ratio and extracted as described above. The preview image data Dp is transmitted to the console 58. The extraction process of the preview image data Dp is performed as shown in FIG. 22, for example. As shown in FIG. 22, image data D read from the radiation detection elements 7 (n, m) in the n-th row and the m-th column among the radiation detection elements 7 arranged in a two-dimensional form of the FPD 1 is represented by D. If represented by (n, m), the control means 22 of the FPD 1 predetermines a predetermined number (FIG. 22) from the read image data D (n, m), for example, as shown by hatching in FIG. In this case, image data D (n, m) read out from each radiation detection element 7 connected to the designated scanning line 5 is extracted for every four scanning lines 5. The preview image data is Dp.
 そして、FPD1の制御手段22は、プレビュー画像用データDpを抽出すると、それをコンソール58に送信する。コンソール58は、上記のようにして、FPD1からプレビュー画像用データDpが送信されてくると、それに基づいてプレビュー画像p#preを生成する。そして、コンソール58は、FPD1からプレビュー画像用データDpが送信されてくるごとに上記のようにしてプレビュー画像p#preの生成処理を行い、表示部58aに表示している画面H4の元のアイコンI2上に、図23A~図23Cに示すように生成したプレビュー画像p#preをワイプ表示する。 Then, the control means 22 of the FPD 1 extracts the preview image data Dp and transmits it to the console 58. When the preview image data Dp is transmitted from the FPD 1 as described above, the console 58 generates a preview image p # pre based on the transmitted data. The console 58 generates the preview image p # pre as described above every time the preview image data Dp is transmitted from the FPD 1, and the original icon of the screen H4 displayed on the display unit 58a. The preview image p # pre generated as shown in FIGS. 23A to 23C is wiped on I2.
 なお、例えば17×17インチの大きさのFPD1を用いて撮影を行うような場合、放射線技師等の操作者がFPD1のポジショニングを行う際にFPD1の縦横の配置を誤ると、例えば図23A~図23Cに示すように本来のポジションから90°ずれたプレビュー画像p#pre等が生成される。しかし、このような場合には、例えば図23Cに示すプレビュー画像p#preの各画素の輝度分布等から撮影部位(同図の場合は胸部)を自動的に認識し、例えば図23Cに示すように90°回転してしまっているプレビュー画像p#preを、図24に示すように、本来表示されるべき向き(すなわち医師が読影に使用する向き)に回転修正してプレビュー画像p#preを上書き表示する。なお、FPD1のポジショニングが正常である場合には、上記の自動部位認識処理の実行前後で、表示方向は変わらない。 For example, when imaging is performed using the FPD 1 having a size of 17 × 17 inches, if an operator such as a radiographer misplaces the FPD 1 vertically or horizontally when positioning the FPD 1, for example, FIG. 23A to FIG. As shown in 23C, a preview image p # pre or the like that is shifted by 90 ° from the original position is generated. However, in such a case, for example, the imaging region (the chest in this case) is automatically recognized from the luminance distribution of each pixel of the preview image p # pre shown in FIG. 23C, for example, as shown in FIG. 23C. As shown in FIG. 24, the preview image p # pre that has been rotated by 90 ° is rotated and corrected to the original display direction (that is, the direction used by the doctor for interpretation), as shown in FIG. Overwrite display. If the positioning of the FPD 1 is normal, the display direction does not change before and after the execution of the automatic part recognition process.
 そして、コンソール58は、プレビュー画像p#preを見た操作者が「OK」ボタンアイコンをクリックしたり、或いは、プレビュー画像p#preを所定時間表示する間に「NG」ボタンアイコンがクリックされない場合(携帯端末70上でも操作できるように構成する場合も同様。)には、操作者によりプレビュー画像p#preが承認されたと判断する。なお、プレビュー画像p#preを見た操作者が上記の所定時間の間に「NG」ボタンアイコンをクリックした場合には、コンソール58は、それまでにFPD1から送信されてきたプレビュー画像用データDp等のデータを破棄するとともに、FPD1にその時点で行っている処理を停止させて、再撮影に向けて各放射線検出素子7のリセット処理等の前処理を開始するように指示する。 When the operator who has viewed the preview image p # pre clicks the “OK” button icon or displays the preview image p # pre for a predetermined time, the console 58 determines that the “NG” button icon is not clicked. (The same applies to a case where the mobile terminal 70 can be operated.) It is determined that the preview image p # pre has been approved by the operator. When the operator who has viewed the preview image p # pre clicks the “NG” button icon during the predetermined time, the console 58 displays the preview image data Dp transmitted from the FPD 1 so far. The FPD 1 is instructed to stop the processing being performed at that time and to start preprocessing such as reset processing of each radiation detection element 7 for re-imaging.
 また、コンソール58が画像処理装置として機能するように構成されている場合、コンソール58は、FPD1から、後述するように、残りの画像データDやオフセットデータO、或いは真の画像データD*等が送信されてくると、それらに基づいてゲイン補正や欠陥画素補正、撮影部位に応じた階調処理等の精密な画像処理を行って、診断提供用医用画像pを生成する。コンソール58とは別体の画像処理装置が設けられている場合は、その画像処理装置が上記の画像処理を行う。そして、図示を省略するが、コンソール58は、診断提供用医用画像pを生成すると、例えば図24に示した画面H4上で元のアイコンI2の位置に表示されているプレビュー画像p#pre上に、生成した診断提供用医用画像pを上書きして表示する。 When the console 58 is configured to function as an image processing apparatus, the console 58 receives the remaining image data D, offset data O, or true image data D * from the FPD 1 as will be described later. When transmitted, precise image processing such as gain correction, defective pixel correction, and gradation processing according to the imaging region is performed based on these, and the diagnostic providing medical image p is generated. When an image processing apparatus separate from the console 58 is provided, the image processing apparatus performs the image processing described above. And although illustration is abbreviate | omitted, when the console 58 produces | generates the medical image p for diagnosis provision, it will display on the preview image p # pre currently displayed on the position of the original icon I2 on the screen H4 shown, for example in FIG. The generated diagnostic-provided medical image p is overwritten and displayed.
 そして、放射線技師等の操作者が「OK」ボタンアイコンをクリックする等して診断提供用医用画像pが承認された場合には、コンソール58は、生成した診断提供用医用画像pの情報等を、当該撮影に対応する撮影オーダー情報(すなわちアイコンI2に対応する撮影オーダー情報)に対応付けて確定し、確定した診断提供用医用画像pと撮影オーダー情報を前述したPACS等の必要な箇所に送信する。 When the diagnostic providing medical image p is approved by an operator such as a radiologist clicking the “OK” button icon or the like, the console 58 displays information on the generated diagnostic providing medical image p or the like. The imaging order information corresponding to the imaging (that is, imaging order information corresponding to the icon I2) is determined and confirmed, and the confirmed medical image p for diagnosis providing and the imaging order information are transmitted to the necessary places such as the PACS described above. To do.
 一方、FPD1の制御手段22は、上記のようにして、読み出した画像データDからのプレビュー画像用データDpを抽出してコンソール58に送信すると同時に、すなわち画像データDの読み出し処理(図5参照)を終了すると同時に、オフセットデータOの読み出し処理を開始するが、この点については前述した通りである。そして、オフセットデータOの読み出し処理を終了すると、FPD1の制御手段22は、読み出した画像データDとオフセットデータOとをコンソール58に送信する。 On the other hand, the control means 22 of the FPD 1 extracts the preview image data Dp from the read image data D as described above and transmits it to the console 58, that is, the read processing of the image data D (see FIG. 5). At the same time as the process ends, the reading process of the offset data O is started. This point is as described above. When the reading process of the offset data O is completed, the control unit 22 of the FPD 1 transmits the read image data D and the offset data O to the console 58.
[オフセットデータOの読み出し処理時にFPDに振動等が加わらないようにするための構成等について]
 次に、オフセットデータOの読み出し処理時にFPDに振動等が加わらないようにするための構成等について、以下、いくつかの構成例を挙げて説明する。
[Configuration etc. to prevent vibrations and the like from being applied to FPD during offset data O read processing]
Next, a configuration for preventing vibration or the like from being applied to the FPD during the offset data O reading process will be described below with some configuration examples.
[構成例1]
 前述したように、オフセットデータOの読み出し処理中にFPDに衝撃や振動等が加わると、マイクロフォニック現象によって、読み出されるオフセットデータO中にアーチファクトが現れる場合がある。そして、この状態で上記(2)式の演算を行うと、算出される真の画像データD*にオフセットデータO中のアーチファクトの成分が残存してしまい、真の画像データD*に基づいて生成された診断提供用医用画像中にアーチファクトが現れてしまう。
[Configuration example 1]
As described above, if an impact or vibration is applied to the FPD during the reading process of the offset data O, an artifact may appear in the read offset data O due to a microphonic phenomenon. Then, when the operation in this state of the above equation (2) will be components of artifacts in the offset data O to the true image data D * calculated remains and generated based on the true image data D * Artifacts appear in the diagnosis-provided medical image.
 一方、放射線技師等の操作者は、放射線発生装置55の曝射スイッチ56(図3や図4参照)を操作して放射線源52から被写体やFPD1に対して放射線を照射させると、コンソール58の表示部58aや携帯端末70の表示部71を見て、プレビュー画像p#preが表示されるのを待つ。そして、プレビュー画像p#preは、画像データDの読み出し処理(図5参照)後にFPD1からコンソール58にプレビュー画像用データDpが送信されて初めて生成される。そして、上記のように、放射線技師等の操作者は、少なくともプレビュー画像p#preが表示されるまでFPD1を動かすことはないため、被写体である患者が大きく動いたりしない限り、画像データDの読み出し処理までの間にFPD1に振動等が加わることはない。 On the other hand, when an operator such as a radiologist operates the exposure switch 56 (see FIGS. 3 and 4) of the radiation generating device 55 to irradiate the subject and the FPD 1 with radiation, The display unit 58a and the display unit 71 of the mobile terminal 70 are viewed, and the process waits for the preview image p # pre to be displayed. The preview image p # pre is generated only when the preview image data Dp is transmitted from the FPD 1 to the console 58 after the image data D reading process (see FIG. 5). As described above, an operator such as a radiologist does not move the FPD 1 until at least the preview image p # pre is displayed. Therefore, unless the patient as a subject moves greatly, the image data D is read out. No vibration or the like is applied to the FPD 1 until the processing.
 そして、放射線技師等の操作者は、コンソール58の表示部58a(或いは携帯端末70の表示部71。以下同じ)にプレビュー画像p#preがワイプ表示されたり(図23A~図23C参照)、或いは回転修正されたプレビュー画像p#pre(図24参照)が表示された時点で、再撮影が必要であるか否かを判断し、再撮影が不要であると判断した場合には、すぐに次の撮影に向けて、被写体である患者H(例えば図4参照)の身体に対するFPD1のポジショニングの作業に移る。また、撮影室R1(図3参照)での撮影でも、放射線技師等の操作者は、プレビュー画像p#preを見て再撮影が不要であると判断すると、すぐに次の撮影に向けて、FPD1をブッキー装置51から引き抜いたり、FPD1を次の撮影で使用するブッキー装置51に装填する等の作業を行う。 An operator such as a radiologist wipes the preview image p # pre on the display unit 58a of the console 58 (or the display unit 71 of the portable terminal 70; the same applies hereinafter) (see FIGS. 23A to 23C), or When the preview image p # pre whose rotation is corrected (see FIG. 24) is displayed, it is determined whether or not re-shooting is necessary. In preparation for the imaging, the operation of positioning the FPD 1 with respect to the body of the patient H (for example, see FIG. 4) as the subject is started. Also, even in the radiographing in the radiographing room R1 (see FIG. 3), when an operator such as a radiographer determines that re-imaging is unnecessary by looking at the preview image p # pre, the operator immediately proceeds to the next radiographing. The FPD 1 is pulled out from the Bucky device 51, and the FPD 1 is loaded into the Bucky device 51 used for the next shooting.
 以上のような状況から、コンソール58の表示部58a上にプレビュー画像p#preが表示される前に、FPD1で行われるオフセットデータOの読み出し処理(図6参照)が終了していれば、その後、上記のように放射線技師等の操作者がFPD1のポジショニングの作業を行ったり、FPD1をブッキー装置51から引き抜いたり次の撮影で使用するブッキー装置51に装填する等の作業を行ってFPD1に振動等が加わっても、オフセットデータOにアーチファクトが現れることはなく、診断提供用医用画像p中にアーチファクトが現れることがないと考えられる。 From the above situation, if the offset data O reading process (see FIG. 6) performed in the FPD 1 is completed before the preview image p # pre is displayed on the display unit 58a of the console 58, then As described above, an operator such as a radiologist performs positioning work of the FPD 1, pulls out the FPD 1 from the Bucky device 51, or loads it into the Bucky device 51 used for the next photographing, and vibrates the FPD 1. Etc., it is considered that no artifacts appear in the offset data O, and no artifacts appear in the diagnosis providing medical image p.
 そして、前述したように、画像データDの読み出し処理(図5や図28参照)を終了してからオフセットデータOの読み出し処理(図6や図29参照)が終了するまでの時間、すなわちオフセットデータOの読み出し処理に要する時間は、図6や図29に示したように、電荷蓄積状態の継続時間すなわち蓄積時間τによって決まる。そこで、例えば、撮影後、FPD1がオフセットデータOの読み出し処理を行っている間に放射線技師等の操作者がFPD1を動かさないようにするために、FPD1において電荷蓄積状態を継続させる所定時間すなわち蓄積時間τ(図5や図6、図28、図29参照)に応じて、コンソール58の表示部58a(携帯端末70の表示部71に表示する場合を含む。以下同じ)にプレビュー画像p#pre等を表示する際の表示処理の内容を変更するように構成することが可能である。 As described above, the time from the end of the image data D reading process (see FIGS. 5 and 28) to the end of the offset data O reading process (see FIGS. 6 and 29), that is, offset data. As shown in FIGS. 6 and 29, the time required for the O reading process is determined by the duration of the charge accumulation state, that is, the accumulation time τ. Therefore, for example, after the imaging, the FPD 1 keeps the charge accumulation state for a predetermined time, that is, accumulation so that an operator such as a radiographer does not move the FPD 1 while the FPD 1 performs the reading process of the offset data O. Depending on the time τ (see FIGS. 5, 6, 28, and 29), the preview image p # pre is displayed on the display unit 58 a of the console 58 (including the case where it is displayed on the display unit 71 of the portable terminal 70. It is possible to configure to change the content of the display process when displaying.
 そして、特に蓄積時間τが長い時間に設定される場合に、放射線技師等の操作者がコンソール58の表示部58a上に表示されるプレビュー画像p#preを見て再撮影が不要と判断するタイミングを遅らせるようにコンソール58の表示部58aに表示させる表示処理の内容を変更することで、撮影後、FPD1がオフセットデータOの読み出し処理を行っている間に放射線技師等の操作者がFPD1を動かさないようにすることが可能となる。 In particular, when the accumulation time τ is set to a long time, a timing when an operator such as a radiographer determines that re-imaging is unnecessary by looking at the preview image p # pre displayed on the display unit 58a of the console 58 By changing the content of the display process displayed on the display unit 58a of the console 58 so as to delay the operation, an operator such as a radiologist moves the FPD 1 while the FPD 1 is performing the reading process of the offset data O after imaging. It becomes possible not to be.
[表示処理の内容の変更方法1]
 例えば、蓄積時間τが1秒等の短い時間に設定された場合に、上記のように、オフセットデータOの読み出し処理が終了するまでに放射線技師等の操作者によりFPD1が動かされる可能性がないのであれば、この場合は、コンソール58は、上記の撮影時等における通常の処理手順で説明した通常通りの表示処理の手順で、表示部58aにプレビュー画像p#preを表示することが可能である。すなわち、コンソール58は、FPD1から送信されてきたプレビュー画像用データDpに基づいてプレビュー画像p#preを生成して、図23A~図23Cや図24に示したように、表示部58a上に、生成したプレビュー画像p#preをワイプ表示したり回転修正したりして通常通りの表示処理の手順で表示する。
[How to change the contents of display processing 1]
For example, when the accumulation time τ is set to a short time such as 1 second, as described above, there is no possibility that the FPD 1 is moved by an operator such as a radiologist before the offset data O reading process is completed. In this case, in this case, the console 58 can display the preview image p # pre on the display unit 58a by the normal display processing procedure described in the normal processing procedure at the time of shooting or the like. is there. That is, the console 58 generates a preview image p # pre based on the preview image data Dp transmitted from the FPD 1, and as shown in FIG. 23A to FIG. 23C and FIG. The generated preview image p # pre is displayed in the normal display processing procedure by wiping or correcting the rotation.
 このように、通常通りの処理手順で表示部58aにプレビュー画像p#preを表示し、それを見た操作者が次の撮影に向けてFPD1を動かしても、その時点では既にFPD1でオフセットデータOの読み出し処理が終了しているため、FPD1を動かしてもオフセットデータO中にマイクロフォニック現象によるアーチファクトが現れないためである。 In this way, even if the operator who viewed the preview image p # pre displays the preview image p # pre in the normal processing procedure and moves the FPD1 for the next photographing, the offset data is already stored in the FPD1. This is because since the O reading process has been completed, artifacts due to microphonic phenomena do not appear in the offset data O even if the FPD 1 is moved.
 また、蓄積時間τが例えば2秒以上等の長い時間に設定される場合には、放射線技師等の操作者がコンソール58の表示部58a上に表示されるプレビュー画像p#preを見て再撮影が不要と判断してFPD1を動かす時点で、FPD1ではまだオフセットデータOの読み出し処理が終了していない可能性があるため、この場合は、操作者がプレビュー画像p#preを見て再撮影が不要と判断するタイミングを遅らせるように表示処理の内容を変更することが必要になる。これを実現するために、例えば、コンソール58は、蓄積時間τが例えば2秒以上等の長い時間に設定される場合には、プレビュー画像p#preを表示部58aに表示させる順番を変更するように構成することが可能である。 When the accumulation time τ is set to a long time such as 2 seconds or more, an operator such as a radiologist re-photographs by looking at the preview image p # pre displayed on the display unit 58a of the console 58. When the FPD 1 is determined to be unnecessary and the FPD 1 is moved, there is a possibility that the reading process of the offset data O has not yet been completed in the FPD 1. In this case, the operator re-photographs by looking at the preview image p # pre. It is necessary to change the content of the display process so as to delay the timing for determining that it is unnecessary. In order to realize this, for example, when the accumulation time τ is set to a long time such as 2 seconds or more, the console 58 changes the order in which the preview image p # pre is displayed on the display unit 58a. It is possible to configure.
 具体的には、コンソール58は、図23A~図23Cに示したようなプレビュー画像p#preのワイプ表示を行わず、その間、例えばアイコンI2の位置に、図21に示した元のアイコンI2の表示をし続けるように構成することが可能である。そして、ある程度時間が経過した後で、回転修正される等したプレビュー画像p#preが図24に示した状態に表示される。すなわち、コンソール58の表示部58a上の表示が、図21に示した状態からある程度時間が経過した時点で急に図24に示した状態に切り替わる状態になる。 Specifically, the console 58 does not perform the wipe display of the preview image p # pre as shown in FIGS. 23A to 23C, and during that time, for example, at the position of the icon I2, the original icon I2 shown in FIG. It can be configured to continue to display. Then, after a certain amount of time has elapsed, a preview image p # pre that has been rotationally corrected is displayed in the state shown in FIG. That is, the display on the display unit 58a of the console 58 suddenly switches to the state shown in FIG. 24 when a certain amount of time has elapsed from the state shown in FIG.
 このように構成すれば、放射線技師等の操作者は、ワイプ表示されるプレビュー画像p#preを見ることができず、ある程度時間が経過した後で図24に示した状態に表示されるプレビュー画像p#preを見て初めて再撮影の要否を判断することになる。そのため、操作者がプレビュー画像p#preを見て再撮影が不要と判断するタイミングが遅れ、次の撮影に向けてFPD1を動かすタイミングが遅くなるため、FPD1を動かした時点では、既にオフセットデータOの読み出し処理が終了している状態になる。 With this configuration, an operator such as a radiologist cannot see the preview image p # pre displayed in wipe, and the preview image displayed in the state shown in FIG. 24 after a certain amount of time has passed. Only when p # pre is seen, the necessity of re-shooting is judged. For this reason, the timing at which the operator views the preview image p # pre and determines that re-shooting is unnecessary is delayed, and the timing at which the FPD 1 is moved toward the next shooting is delayed. The reading process is completed.
[表示処理の内容の変更方法2]
 また、放射線技師等の操作者がプレビュー画像p#preを見て再撮影が不要と判断するタイミングを遅らせるようにするために、例えば、コンソール58は、蓄積時間τが例えば2秒以上等の長い時間に設定される場合には、プレビュー画像p#preのワイプ表示を開始するタイミングを変更するように構成することも可能である。
[How to change the contents of display processing 2]
Further, in order to delay the timing at which an operator such as a radiologist views the preview image p # pre and determines that re-imaging is unnecessary, for example, the console 58 has a long accumulation time τ such as 2 seconds or more. When the time is set, the timing for starting the wipe display of the preview image p # pre may be changed.
 上記の撮影時等における通常の処理手順では、コンソール58は、FPD1からプレビュー画像用データDpが送信されてくるごとに、送信されてきたプレビュー画像用データDpに基づいて随時プレビュー画像p#preを生成していき、プレビュー画像p#preを生成するごとに表示するプレビュー画像p#preの部分を増やしていくようにして、プレビュー画像p#preをワイプ表示する。すなわち、撮影時等における通常の処理手順では、FPD1からコンソール58へのプレビュー画像用データDpの送信と、コンソール58の表示部58a上でのプレビュー画像p#preのワイプ表示とがほぼ同時に行われる。 In the normal processing procedure at the time of shooting or the like, the console 58 generates a preview image p # pre as needed based on the transmitted preview image data Dp every time the preview image data Dp is transmitted from the FPD 1. Each time the preview image p # pre is generated, the portion of the preview image p # pre to be displayed is increased, and the preview image p # pre is wiped and displayed. That is, in a normal processing procedure at the time of shooting or the like, transmission of the preview image data Dp from the FPD 1 to the console 58 and wipe display of the preview image p # pre on the display unit 58a of the console 58 are performed almost simultaneously. .
 そして、放射線技師等の操作者がプレビュー画像p#preを見て再撮影が不要と判断するタイミングを遅らせるようにするために、FPD1からコンソール58にプレビュー画像用データDpが送信されてくると、コンソール58は、その部分について生成したプレビュー画像p#preを、表示部58aにすぐに表示するのではなく、所定のタイミングだけ遅らせて表示するように構成することが可能である。プレビュー画像p#preの表示を遅延させる時間幅は、予めコンソール58に設定される。 Then, in order to delay the timing at which an operator such as a radiologist views the preview image p # pre and determines that re-imaging is unnecessary, the preview image data Dp is transmitted from the FPD 1 to the console 58. The console 58 can be configured to display the preview image p # pre generated for that portion, instead of immediately displaying it on the display unit 58a, by delaying it by a predetermined timing. A time width for delaying the display of the preview image p # pre is set in the console 58 in advance.
 このように構成すれば、コンソール58の表示部58a上でのプレビュー画像p#preのワイプ表示の開始のタイミングが遅れるため、放射線技師等の操作者は、遅れてワイプ表示されるプレビュー画像p#preを見て初めて再撮影の要否を判断することになる。そのため、操作者がプレビュー画像p#preを見て再撮影が不要と判断するタイミングが遅れ、次の撮影に向けてFPD1を動かすタイミングが遅くなるため、FPD1を動かした時点では、既にオフセットデータOの読み出し処理が終了している状態になる。 With this configuration, the timing for starting the wipe display of the preview image p # pre on the display unit 58a of the console 58 is delayed, so that an operator such as a radiologist can delay the preview image p # displayed by the wipe display. Only after pre sees whether or not re-shooting is necessary. For this reason, the timing at which the operator views the preview image p # pre and determines that re-shooting is unnecessary is delayed, and the timing at which the FPD 1 is moved toward the next shooting is delayed. The reading process is completed.
 そして、上記の表示処理の内容の変更方法1や変更方法2、或いは、変更方法1、2を組み合わせた方法を採用すれば、プレビュー画像p#preを見て再撮影が不要と判断した操作者が、次の撮影に向けてFPD1を動かしても、既にオフセットデータOの読み出し処理が終了しているため、オフセットデータO中にマイクロフォニック現象によるアーチファクトが現れることを的確に防止することが可能となる。そのため、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 Then, if the method 1 or 2 for changing the contents of the display processing described above or a method combining the methods 1 and 2 is adopted, the operator who has determined that re-photographing is unnecessary by looking at the preview image p # pre However, even if the FPD 1 is moved for the next shooting, since the offset data O reading process has already been completed, it is possible to accurately prevent the occurrence of artifacts due to the microphonic phenomenon in the offset data O. Become. Therefore, it is possible to prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O to be read from including artifacts, so that the diagnostic providing medical image p is included. It becomes possible to accurately prevent the appearance of artifacts.
[表示処理の内容の変更方法3]
 また、コンソール58は、上記の撮影時等における通常の処理手順に従ってプレビュー画像p#preをワイプ表示(図23A~図23C参照)したり回転修正する等してプレビュー画像p#preを表示部58aに表示するが(図24参照)、例えば、FPD1がオフセットデータOの読み出し処理を終了するまでの間、表示部58a上に、FPD1がオフセットデータの読み出し処理中であることを表示するように、表示部58aに表示させる表示処理の内容を変更することも可能である。そして、この場合も、蓄積時間τが短い時間に設定されたか、長い時間に設定されたかに応じて、上記の表示を行うか否かを切り替えるように構成することが可能である。
[How to change the contents of display processing 3]
In addition, the console 58 displays the preview image p # pre on the display unit 58a by wiping the preview image p # pre (see FIGS. 23A to 23C) or rotating the image according to the normal processing procedure at the time of shooting. (See FIG. 24), for example, until the FPD1 finishes reading the offset data O, the display unit 58a displays that the FPD1 is in the process of reading offset data. It is also possible to change the content of the display process displayed on the display unit 58a. In this case as well, it is possible to configure whether or not to perform the above display depending on whether the accumulation time τ is set to a short time or a long time.
 具体的には、例えば、蓄積時間τが1秒等の短い時間に設定された場合には、上記のように、放射線技師等の操作者により次の撮影に向けてFPD1が動かされる時点でオフセットデータOの読み出し処理が終了しているため、コンソール58は、表示部58a上に、上記のようなFPD1がオフセットデータの読み出し処理中であることを表す表示を行う必要はない。そのため、蓄積時間τが短い時間に設定された場合には、コンソール58は、上記のような表示は行わない。 Specifically, for example, when the accumulation time τ is set to a short time such as 1 second, as described above, the offset is set when the FPD 1 is moved toward the next imaging by an operator such as a radiologist. Since the reading process of the data O is completed, the console 58 does not need to display on the display unit 58a that the FPD 1 is in the process of reading the offset data as described above. Therefore, when the accumulation time τ is set to a short time, the console 58 does not display as described above.
 一方、蓄積時間τが例えば2秒以上等の長い時間に設定される場合には、放射線技師等の操作者がコンソール58の表示部58a上に表示されるプレビュー画像p#preを見て再撮影が不要と判断してFPD1を動かす時点で、FPD1ではまだオフセットデータOの読み出し処理が終了していない可能性がある。そのため、この場合は、コンソール58は、例えば図24に示した画面H4の、ワイプ表示されているプレビュー画像p#pre上やその近傍の部分や、画面H4の右側の撮影条件の設定用の表示Iaの部分など画面H4のいずれかの部分に、例えば図25に示すような、FPD1がオフセットデータの読み出し処理中であることを表す目立つ図柄を表示するように構成することが可能である。或いは、画面H4上に、例えば「データ読み取り中です。カセッテを動かさないでください。」等の表示を、放射線技師等の操作者に分かり易い表示の仕方で表示するように構成することも可能である。また、操作者が別の画面を見ている場合には、その画面上に上記のような表示を行うように構成することも可能である。 On the other hand, when the accumulation time τ is set to a long time such as 2 seconds or more, an operator such as a radiologist re-photographs the preview image p # pre displayed on the display unit 58a of the console 58. When the FPD 1 is determined to be unnecessary and the FPD 1 is moved, there is a possibility that the FPD 1 has not yet finished reading the offset data O. Therefore, in this case, for example, the console 58 displays on the screen H4 shown in FIG. 24 on the wiped preview image p # pre or in the vicinity thereof or on the right side of the screen H4 for setting the shooting conditions. For example, as shown in FIG. 25, a prominent symbol indicating that the FPD 1 is in the process of reading offset data can be displayed on any part of the screen H4 such as the part Ia. Alternatively, on the screen H4, for example, a display such as “data is being read. Do not move the cassette” can be configured to be displayed in a manner that is easy for a radiographer or other operator to understand. is there. Further, when the operator is looking at another screen, it is also possible to configure the display as described above on the screen.
 このように構成すれば、FPD1がオフセットデータOの読み出し処理を行っている間は、コンソール58の表示部58a上に上記のような表示がなされるため、放射線技師等の操作者がFPD1を動かすことを防止することが可能となる。そして、オフセットデータOの読み出し処理が終了すれば、上記のような表示は表示部58a上から消えるため、操作者が、オフセットデータOの読み出し処理が終了した後で、次の撮影に向けてFPD1を動かすようになる。そのため、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 With this configuration, while the FPD 1 is reading the offset data O, the display as described above is performed on the display unit 58a of the console 58, so an operator such as a radiologist moves the FPD 1 This can be prevented. When the offset data O reading process is completed, the display as described above disappears from the display unit 58a. Therefore, after the offset data O reading process is completed, the operator performs FPD1 for the next shooting. Will move. Therefore, it is possible to prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O to be read from including artifacts, so that the diagnostic providing medical image p is included. It becomes possible to accurately prevent the appearance of artifacts.
[蓄積時間τの設定について]
 次に、蓄積時間τ(すなわち電荷蓄積状態の継続時間)の設定の仕方について説明する。上記のように、例えば図6に示したように、オフセットデータOの読み出し処理は、図5に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して行われる。そのため、画像データDの読み出し処理前の電荷蓄積状態(図5参照)と、オフセットデータOの読み出し処理前の電荷蓄積状態(図6参照)では蓄積時間τが同じ時間間隔に設定される。そのため、画像データDの読み出し処理前の電荷蓄積状態における蓄積時間τ(図5参照)を設定することで、自動的に、オフセットデータOの読み出し処理前の電荷蓄積状態における蓄積時間τ(図6参照)が設定される。
[Setting of accumulation time τ]
Next, how to set the accumulation time τ (that is, the duration of the charge accumulation state) will be described. As described above, for example, as illustrated in FIG. 6, the offset data O reading process is performed by repeating the same processing sequence as the processing sequence up to the image data D reading process illustrated in FIG. 5. Therefore, the accumulation time τ is set to the same time interval in the charge accumulation state before the image data D reading process (see FIG. 5) and the charge accumulation state before the offset data O reading process (see FIG. 6). Therefore, by setting the accumulation time τ (see FIG. 5) in the charge accumulation state before the reading process of the image data D, the accumulation time τ (see FIG. 6) in the charge accumulation state before the reading process of the offset data O is automatically performed. Reference) is set.
 そして、前述したように、蓄積時間τの設定は、例えばコンソール58上で放射線技師等の操作者が入力したり、或いはコンソール58が自動的に行うように構成することが可能である。そして、コンソール58は、設定された蓄積時間τに応じて、上記のように表示部58aに表示させる表示処理の内容を変更するように構成される。なお、コンソール58は、例えば、設定された蓄積時間τに応じて表示部58aに表示させる表示処理の内容をどのように変更するかを指示するテーブル(例えば図26参照)を予め有しており、蓄積時間τが設定されると、表示部58aに表示させる表示処理の内容をテーブルに基づいて変更するように構成することも可能である。 As described above, the accumulation time τ can be set, for example, by an operator such as a radiologist on the console 58 or automatically by the console 58. And the console 58 is comprised so that the content of the display process displayed on the display part 58a as mentioned above may be changed according to the set accumulation | storage time (tau). Note that the console 58 has a table (for example, see FIG. 26) instructing how to change the content of the display process displayed on the display unit 58a according to the set accumulation time τ. When the accumulation time τ is set, the display processing content displayed on the display unit 58a can be changed based on the table.
[蓄積時間τの設定要件1]
 蓄積時間τを長く設定することが必要になる要因の1つとして、例えば、放射線発生装置55からFPD1への放射線の照射時間が長くなるような撮影であることが挙げられる。そして、この場合、コンソール58は、例えば、放射線発生装置55に設定される照射時間を参照することで、放射線の照射時間を認識することができる。そこで、例えば、コンソール58は、上記のようにして、画面H4上で、次に行う撮影に対応するアイコンI(図21参照)をフォーカスして表示した時点で、当該アイコンIに対応する撮影において放射線発生装置55に設定される照射時間を参照して(図21中の各アイコンIの「300ms」等の表示参照)、蓄積時間τを長くすることが必要か否か、および蓄積時間τを長くする場合、どの程度長くするかを判断して設定するように構成することが可能である。
[Requirement 1 for setting accumulation time τ]
One of the factors that makes it necessary to set the accumulation time τ to be long is, for example, imaging in which the irradiation time of radiation from the radiation generation device 55 to the FPD 1 becomes long. In this case, the console 58 can recognize the irradiation time of radiation by referring to the irradiation time set in the radiation generator 55, for example. Therefore, for example, the console 58 performs the shooting corresponding to the icon I when the icon I corresponding to the next shooting to be performed (see FIG. 21) is focused on the screen H4 as described above. With reference to the irradiation time set in the radiation generator 55 (see display of each icon I in FIG. 21 such as “300 ms”), whether or not it is necessary to increase the accumulation time τ, and the accumulation time τ In the case of lengthening, it is possible to determine and set how long the length is.
[蓄積時間τの設定要件2-1]
 蓄積時間τを長く設定することが必要になる2つ目の要因として、例えば、FPD1に放射線を照射する放射線発生装置55の放射線源52(図3や図4参照)の放射線の照射特性を挙げることができる。すなわち、例えば、放射線源52が、放射線を照射する際には、照射される放射線の線量率(すなわち単位時間あたりの線量)が規定の線量率に瞬時に立ち上がり、また、照射終了の際には、照射される放射線の線量率が瞬時に立ち下がるような照射特性を有している場合がある。そして、コンソール58は、次の撮影がこのような放射線の照射特性を有する放射線源52を用いて行われる場合には、蓄積時間τを、放射線発生装置55に設定される放射線の照射時間より多少長い時間に設定すればよい。そのため、蓄積時間τは概して短い時間間隔になり、少なくとも蓄積時間τを必要以上に長い時間に設定する必要はなくなる。
[Requirement 2-1 for setting accumulation time τ]
As a second factor that makes it necessary to set the accumulation time τ to be long, for example, radiation irradiation characteristics of the radiation source 52 (see FIGS. 3 and 4) of the radiation generator 55 that irradiates the FPD 1 with radiation. be able to. That is, for example, when the radiation source 52 emits radiation, the dose rate of the irradiated radiation (that is, the dose per unit time) instantaneously rises to a prescribed dose rate, and at the end of irradiation In some cases, there is an irradiation characteristic such that the dose rate of the irradiated radiation falls instantaneously. When the next imaging is performed using the radiation source 52 having such radiation irradiation characteristics, the console 58 sets the accumulation time τ to be slightly longer than the radiation irradiation time set in the radiation generator 55. A long time can be set. Therefore, the accumulation time τ is generally a short time interval, and at least the accumulation time τ need not be set longer than necessary.
 それに対し、例えば、放射線源52が、放射線を照射する際に、照射される放射線の線量率がだらだらと立ち上がり、規定の線量率に達するまでに時間がかかり、また、照射終了の際には、照射される放射線の線量率がだらだらと立ち下がり、照射される放射線の線量率が0、或いは所定の線量率まで低下するまでに時間がかかるような照射特性を有している場合もある。従って、被写体に対する放射線の照射を無駄にせず、放射線画像情報に有効変換するためには、放射線源の特性に鑑みた蓄積時間τの設定(すなわち比較的長めの蓄積時間τの設定)が必要となる。 On the other hand, for example, when the radiation source 52 emits radiation, the dose rate of the irradiated radiation rises slowly, and it takes time to reach a prescribed dose rate. There may be an irradiation characteristic in which the dose rate of the irradiated radiation gradually falls and it takes time until the dose rate of the irradiated radiation is reduced to 0 or a predetermined dose rate. Accordingly, in order to effectively convert radiation image information without wasting radiation on the subject, it is necessary to set the accumulation time τ in consideration of the characteristics of the radiation source (that is, to set a relatively long accumulation time τ). Become.
 また、1つのモダリティーには、通常、1つの放射線源52が対応付けられている。すなわち、モダリティーが回診車60(図4参照)である場合、回診車60は、通常、1つの放射線源52Pを搭載している。また、モダリティーがブッキー装置51(図3参照)である場合にも、ブッキー装置51には、通常、それに装填されたFPD1に放射線を照射するための1つの放射線源52Aが対応付けられている。なお、例えば図3では、1つの放射線源52Aの照射方向を替えることで、立位撮影用のブッキー装置51Aにも臥位撮影用のブッキー装置51Bにも放射線を照射することができるように構成されている場合が示されているが、このような場合でも、立位撮影用のブッキー装置51Aには1つの放射線源52Aが対応付けられており、また、同じ放射線源52Aではあるが、臥位撮影用のブッキー装置51Bにも1つの放射線源52Aが対応付けられていることになる。 In addition, one radiation source 52 is usually associated with one modality. That is, when the modality is the rounding wheel 60 (see FIG. 4), the rounding wheel 60 is normally equipped with one radiation source 52P. Even when the modality is the bucky device 51 (see FIG. 3), the bucky device 51 is usually associated with one radiation source 52A for irradiating the FPD 1 loaded therein with radiation. For example, in FIG. 3, by changing the irradiation direction of one radiation source 52A, it is possible to irradiate both the standing-up imaging device 51A and the standing-up imaging device 51B. Even in such a case, one radiation source 52A is associated with the standing-up imaging device 51A, and the same radiation source 52A is used. One radiation source 52A is also associated with the bucky device 51B for position photographing.
 このように、1つのモダリティーに、1つの放射線源52が対応付けられている場合が多い。そこで、例えば、コンソール58は、各モダリティーの識別情報である「モダリティーID」と放射線源52の識別情報とを対応付けるテーブル等を予め備えるように構成し、また、各放射線源52の放射線の照射特性に応じて、放射線源52ごとに、設定する蓄積時間τを予め設定しておく。そして、コンソール58は、上記のようにして、画面H4上で、次に行う撮影に対応するアイコンI(図21参照)をフォーカスして表示した時点で、当該アイコンIに対応する撮影オーダーの「モダリティーID」P9(図19や図20参照)を参照し、上記のテーブルに基づいて当該モダリティーに対応する放射線源52を特定する。そして、特定した放射線源52について予め設定された蓄積時間τを割り出す。そして、割り出した蓄積時間τをFPD1に送信したり、また、図26に示したようなテーブルに基づいて表示部58aに表示させる表示処理の内容を変更するように構成することが可能である。なお、撮影オーダー情報に、当該撮影で使用する放射線源52のID等を予め指定するように構成してもよい。このように構成すれば、コンソール58が、撮影オーダー中の放射線源52のIDを参照することで、当該放射線源52について予め設定された蓄積時間τを割り出すことが可能となる。 Thus, in many cases, one radiation source 52 is associated with one modality. Therefore, for example, the console 58 is configured to include a table or the like that associates “modality ID” that is identification information of each modality with the identification information of the radiation source 52, and the radiation irradiation characteristics of each radiation source 52. Accordingly, the accumulation time τ to be set is set in advance for each radiation source 52. When the console 58 focuses and displays the icon I (see FIG. 21) corresponding to the next shooting on the screen H4 as described above, the “58” of the shooting order corresponding to the icon I is displayed. With reference to the modality ID “P9” (see FIGS. 19 and 20), the radiation source 52 corresponding to the modality is specified based on the above table. Then, an accumulation time τ set in advance for the specified radiation source 52 is determined. Then, it is possible to transmit the calculated accumulation time τ to the FPD 1 or to change the content of the display process to be displayed on the display unit 58a based on the table as shown in FIG. In addition, you may comprise so that ID etc. of the radiation source 52 used by the said imaging | photography may be previously specified to imaging | photography order information. If comprised in this way, it will become possible for the console 58 to calculate the preset accumulation time τ for the radiation source 52 by referring to the ID of the radiation source 52 in the imaging order.
[蓄積時間τの設定要件2-2]
 また、この場合、FPD1から放射線源52の情報をコンソール58に通知するように構成することも可能である。すなわち、FPD1は、撮影室R1(図3参照)に持ち込まれたり、回診車60(図4参照)に搭載される際に、撮影室R1や回診車60のアクセスポイント53(なお、図4では回診車60のアクセスポイント53については図示が省略されている。)と通信を行うことができるようにするために、それらのアクセスポイント53のSSIDを取得するように構成される。そして、撮影室R1や回診車60には、通常、1つの放射線源52が設けられている場合が多い。
[Requirement 2-2 for setting accumulation time τ]
In this case, the radiation source 52 information can be notified from the FPD 1 to the console 58. That is, when the FPD 1 is brought into the radiographing room R1 (see FIG. 3) or mounted in the roundabout car 60 (see FIG. 4), the access point 53 of the radiographing room R1 or the roundabout car 60 (in FIG. 4). In order to be able to communicate with the access points 53 of the roundabout car 60, the SSIDs of these access points 53 are acquired. In many cases, the radiation room 52 is usually provided in the radiographing room R1 and the round-trip wheel 60.
 そこで、上記のようにFPD1がアクセスポイント53のSSIDを取得する際に、当該撮影室R1に設置されている放射線源52Aや当該回診車60に設けられている放射線源52の識別情報等の情報もあわせて取得するように構成する。そして、取得した放射線源52の識別情報等の情報をFPD1からコンソール58に通知するように構成することが可能である。この場合、コンソール58は、FPD1から通知された放射線源52の情報に基づいて、当該放射線源52について予め設定された蓄積時間τを割り出す。そして、割り出した蓄積時間τをFPD1に送信したり、また、図26に示したようなテーブルに基づいて表示部58aに表示させる表示処理の内容を変更することが可能となる。 Therefore, when the FPD 1 acquires the SSID of the access point 53 as described above, information such as identification information of the radiation source 52A installed in the imaging room R1 and the radiation source 52 provided in the round-the-wheel 60 In addition, it is configured so that it is also acquired. The acquired information such as the identification information of the radiation source 52 can be notified from the FPD 1 to the console 58. In this case, the console 58 calculates a preset accumulation time τ for the radiation source 52 based on the information of the radiation source 52 notified from the FPD 1. Then, it is possible to transmit the calculated accumulation time τ to the FPD 1 or change the content of the display process to be displayed on the display unit 58a based on the table as shown in FIG.
[蓄積時間τの設定要件2-2の変形例]
 なお、上記の[蓄積時間τの設定要件2-2]の場合、例えば、FPD1がアクセスポイント53のSSIDを取得する等して時点で、FPD1自身が、アクセスポイント53のSSIDから放射線源52の識別情報等を判別し、蓄積時間τの設定を行うように構成することも可能である。この場合、FPD1からコンソール58に、設定した蓄積時間τが通知される。
[Variation of setting requirement 2-2 for accumulation time τ]
In the case of [accumulation time τ setting requirement 2-2] described above, for example, when the FPD 1 acquires the SSID of the access point 53, the FPD 1 itself determines the radiation source 52 from the SSID of the access point 53. It is also possible to determine the identification information and set the accumulation time τ. In this case, the set accumulation time τ is notified from the FPD 1 to the console 58.
 以上のように、FPD1の制御手段22は、各放射線検出素子のリセット処理から画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返してオフセットデータOの読み出し処理を行い、コンソール58は、FPD1において電荷蓄積状態を継続させる所定時間すなわち蓄積時間τに応じて、表示部58aに表示させる表示処理の内容を変更するように構成すれば、コンソール58の表示部58a上に表示されたプレビュー画像p#pre等の画像を見て再撮影が不要と判断した放射線技師等の操作者が、次の撮影に向けてFPD1を動かしても、FPD1では既にオフセットデータOの読み出し処理が終了している状態になっているため、オフセットデータO中にマイクロフォニック現象によるアーチファクトが現れることを的確に防止することが可能となる。 As described above, the control unit 22 of the FPD 1 performs the reading process of the offset data O by repeating the same processing sequence as the processing sequence from the reset process of each radiation detection element to the reading process of the image data D. If the content of the display process displayed on the display unit 58a is changed in accordance with a predetermined time during which the charge accumulation state is continued in the FPD 1, that is, the accumulation time τ, the preview image displayed on the display unit 58a of the console 58 is displayed. Even if an operator such as a radiologist who judges that re-imaging is unnecessary by looking at an image such as p # pre moves the FPD 1 for the next imaging, the FPD 1 has already finished reading the offset data O. Since it is in a state, artifacts due to microphonic phenomenon appear in the offset data O It becomes possible to accurately prevent.
 そのため、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 Therefore, it is possible to prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O to be read from including artifacts, so that the diagnostic providing medical image p is included. It becomes possible to accurately prevent the appearance of artifacts.
 なお、図3では、撮影室R1が1つだけ設けられている場合が示されているが、例えば、撮影室R1が複数設けられている場合にも上記の構成を適用することが可能である。この場合、各撮影室R1内に設置されている各ブッキー装置51にはそれぞれ別のモダリティーIDが割り当てられており、撮影室R1ごとに放射線源52が設けられている。そのため、例えば撮影オーダー情報でモダリティーIDとしてブッキー装置51のIDを指定すれば、そのブッキー装置51が設けられている撮影室R1の放射線源52を特定することが可能となる。 FIG. 3 shows a case where only one shooting room R1 is provided. However, for example, the above-described configuration can be applied to a case where a plurality of shooting rooms R1 are provided. . In this case, a different modality ID is assigned to each Buckie device 51 installed in each imaging room R1, and a radiation source 52 is provided for each imaging room R1. Therefore, for example, if the ID of the bucky device 51 is specified as the modality ID in the imaging order information, the radiation source 52 in the imaging room R1 in which the bucky device 51 is provided can be specified.
 また、この場合、撮影オーダー情報でモダリティーIDを指定する代わりに、撮影に用いる放射線発生装置55の放射線源52の識別情報等を指定するように構成することも可能である。また、撮影オーダー情報で、撮影に使用する撮影室R1の識別情報等を指定するように構成することも可能である。 In this case, instead of specifying the modality ID in the imaging order information, it is possible to specify the identification information of the radiation source 52 of the radiation generator 55 used for imaging. Further, it is also possible to configure so that the identification information of the photographing room R1 used for photographing is designated by the photographing order information.
 一方、下記の各構成においても同様であるが、上記の構成では、蓄積時間τを一旦設定したら、その蓄積時間τを変更しないことを前提として説明した。しかし、放射線発生装置55からFPD1への放射線の照射が終了した後も、設定された蓄積時間τが経過するまで電荷蓄積状態を継続するよりも、蓄積時間τを短縮して放射線の照射が終了した時点で速やかに画像データDの読み出し処理を開始した方が、より早く画像データDの読み出し処理を開始することが可能となり、また、その分、オフセットデータOの読み出し処理もより早く開始することが可能となる。そして、例えば図6に示したように、図5に示した画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返してオフセットデータOの読み出し処理が行われるように構成されているため、画像データDの読み出し処理における蓄積時間τを短縮すれば、オフセットデータOの読み出し処理における蓄積時間τも短縮することができる。 On the other hand, the same applies to each of the following configurations, but in the above configuration, the description has been made on the assumption that once the accumulation time τ is set, the accumulation time τ is not changed. However, even after the irradiation of radiation from the radiation generator 55 to the FPD 1 is completed, the irradiation time is completed by shortening the accumulation time τ rather than continuing the charge accumulation state until the set accumulation time τ elapses. When the image data D reading process is started immediately, the image data D reading process can be started earlier, and the offset data O reading process is also started earlier. Is possible. For example, as shown in FIG. 6, the offset data O reading process is performed by repeating the same processing sequence as the processing sequence up to the image data D reading process shown in FIG. 5. If the accumulation time τ in the reading process of the image data D is shortened, the accumulation time τ in the reading process of the offset data O can also be shortened.
 そのため、オフセットデータOの読み出し処理に要する時間を短縮することが可能となり、しかも、上記のようにオフセットデータOの読み出し処理を開始するタイミングをも早めることが可能となる。そのため、放射線技師等の操作者が次の撮影に向けて、FPD1を動かすことが可能となるタイミングをより早めることが可能となり、操作者が一連の撮影をより速やかに行うことが可能となる。 Therefore, the time required for the offset data O reading process can be shortened, and the timing for starting the offset data O reading process can be advanced as described above. Therefore, it becomes possible to advance the timing at which the operator such as a radiologist can move the FPD 1 for the next imaging, and the operator can perform a series of imaging more quickly.
 例えば、以下のように構成すれば、FPD1への放射線の照射が終了した時点で速やかに画像データDの読み出し処理を開始するように構成することが可能となる。すなわち、診断提供用医用画像システム50が、例えば前述した同期方式で撮影を行うように構成されている場合には、例えば、放射線発生装置55の曝射スイッチ56のボタンを全押ししている放射線技師等の操作者(この状態では放射線が照射されている。)が、曝射スイッチ56のボタンの全押しを解除したこと(この状態で放射線の照射が終了する。)を表す信号を、放射線発生装置55からFPD1に通知する。そして、FPD1の制御手段22が、この信号を受信した時点で、処理内容を、電荷蓄積状態(図28参照)から画像データDの読み出し処理に切り替えるように構成することが可能である。 For example, if configured as follows, it is possible to configure to start reading processing of the image data D promptly when radiation irradiation to the FPD 1 is completed. That is, when the medical image system 50 for providing diagnosis is configured to perform imaging in the above-described synchronization method, for example, radiation that has fully pressed the button of the exposure switch 56 of the radiation generator 55 An operator such as an engineer (radiation is being irradiated in this state) gives a signal representing that the button of the exposure switch 56 has been fully pressed (in this state, radiation irradiation ends). The generation device 55 notifies the FPD 1. Then, when the control means 22 of the FPD 1 receives this signal, the processing content can be switched from the charge accumulation state (see FIG. 28) to the reading processing of the image data D.
 なお、その後のオフセットデータOの読み出し処理では、画像データDの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して行うことが必要になるため、上記の場合、FPD1の制御手段22は、画像データDの読み出し処理前に各放射線検出素子7のリセット処理を行う状態から電荷蓄積状態に移行した時点で電荷蓄積状態の継続時間のカウントを開始し、実際に電荷蓄積状態が継続された時間τrealを計測するように構成される。そして、この場合、FPD1の制御手段22は、画像データDの読み出し処理後の、オフセットデータOの読み出し処理前の電荷蓄積状態では、設定された蓄積時間τではなく、計測した実際の継続時間τrealだけ電荷蓄積状態を継続させた後、オフセットデータOの読み出し処理を行うように構成される。 In the subsequent offset data O reading process, it is necessary to repeat the same processing sequence as that until the image data D reading process. In this case, the control means 22 of the FPD 1 The count of the duration of the charge accumulation state is started at the time when the state of resetting each radiation detection element 7 is shifted to the charge accumulation state before the D reading process, and the time τreal when the charge accumulation state is actually continued is calculated. Configured to measure. In this case, the control means 22 of the FPD 1 does not measure the set accumulation time τ but the measured actual duration τreal in the charge accumulation state after the image data D readout process and before the offset data O readout process. Only after the charge accumulation state is continued, the offset data O is read out.
 また、診断提供用医用画像システム50が、例えば前述した非同期方式で撮影を行うように構成されている場合において、上記のように、FPD1への放射線の照射が終了した時点で速やかに画像データDの読み出し処理を開始するように構成するためには、FPD1の制御手段22が、何らかの方法で、放射線発生装置55からFPD1への放射線の照射が終了したことを認識することが必要になる。そのために、例えば特開2010-104398号公報に記載されているような、放射線発生装置55の曝射スイッチ56のボタンが押下されたことや押下が解除されたことを検出することができる装置を曝射スイッチ56に外付けし、FPD1がその装置から、操作者による曝射スイッチ56のボタンの押下が解除されたことを表す信号を受信するように構成することが可能である。 Further, in the case where the diagnosis providing medical image system 50 is configured to perform imaging by the asynchronous method described above, for example, as described above, the image data D is promptly obtained when the irradiation of the radiation to the FPD 1 is completed. In order to configure to start the reading process, it is necessary for the control means 22 of the FPD 1 to recognize that the irradiation of radiation from the radiation generating device 55 to the FPD 1 has been completed by some method. For this purpose, for example, a device capable of detecting that the button of the exposure switch 56 of the radiation generating device 55 is pressed or released is described, as described in JP 2010-104398 A. The exposure switch 56 can be externally attached, and the FPD 1 can be configured to receive a signal from the apparatus indicating that the operator has depressed the button of the exposure switch 56.
 また、例えば前述した特許文献5等の記載されているように、画像データDの読み出し処理前の電荷蓄積状態(例えば図5参照)においてリークデータdleakの読み出し処理を行うように構成すると、放射線の照射が終了した時点で読み出されるリークデータdleakの値が減少する。そのため、この現象を利用して、FPD1で、電荷蓄積状態の継続中にリークデータdleakの読み出し処理を行うように構成し、例えば読み出したリークデータdleakが設定された閾値未満になった時点で放射線の照射が終了したことを検出するように構成することも可能である。 Further, as described in, for example, Patent Document 5 described above, if the read processing of the leak data dleak is performed in the charge accumulation state before the read processing of the image data D (see, for example, FIG. 5), The value of leak data dleak read out at the time when irradiation ends is decreased. Therefore, by using this phenomenon, the FPD 1 is configured to read out the leak data dleak while the charge accumulation state is continued. For example, when the read out leak data dleak becomes less than a set threshold value, radiation is emitted. It is also possible to configure so as to detect the end of irradiation.
 また、その他、X線センサーからの出力値が低下したことをもって放射線の照射が終了したことを検出するように構成することも可能であり、放射線の照射終了を種々の方法で検出するように構成することが可能である。 In addition, it can be configured to detect the end of radiation irradiation when the output value from the X-ray sensor has decreased, and can be configured to detect the end of radiation irradiation by various methods. Is possible.
 ところで、上記の構成では、FPD1における電荷蓄積状態の継続時間である蓄積時間τの長さに応じて、コンソール58の表示部58aに表示させる表示処理の内容を変更することについて説明した。そして、このように構成することで、蓄積時間τが長い場合には、表示処理の内容を変更して、放射線技師等の操作者が次の撮影に向けてFPD1を動かすタイミングを遅らせるようにして、オフセットデータOの読み出し処理(その直前の電荷蓄積状態を含む。以下同じ)を行っている間にFPD1に振動等が加わらないようにし、読み出されるオフセットデータOにアーチファクトが現れないように構成した。 By the way, in the above configuration, it has been described that the content of the display process displayed on the display unit 58a of the console 58 is changed according to the length of the accumulation time τ that is the duration of the charge accumulation state in the FPD 1. With this configuration, when the accumulation time τ is long, the content of the display process is changed so that an operator such as a radiographer delays the timing for moving the FPD 1 for the next imaging. The FPD 1 is prevented from being subjected to vibration while the offset data O is being read out (including the charge storage state immediately before, and the same applies hereinafter), and the offset data O to be read is free from artifacts. .
 しかし、FPD1がオフセットデータOの読み出し処理(その直前の電荷蓄積状態を含む。)を行っている間に放射線技師等の操作者がFPD1を動かさないようにするのであれば、例えば、端的に、FPD1はオフセットデータOの読み出し処理を完了した時点でコンソール58に完了信号を送信し、コンソール58は、FPD1からのこの完了信号を受信した時点で初めてプレビュー画像p#pre等を表示部58aに表示させるように構成することが可能である。 However, if the operator such as a radiologist does not move the FPD 1 while the FPD 1 is performing the offset data O reading process (including the charge accumulation state immediately before), for example, The FPD 1 transmits a completion signal to the console 58 when the reading process of the offset data O is completed, and the console 58 displays the preview image p # pre and the like on the display unit 58 a for the first time when the completion signal is received from the FPD 1. It is possible to make it constitute.
 そして、この場合、コンソール58は、FPD1から完了信号を受信するまでは、表示部58a上に、プレビュー画像p#pre等の、放射線技師等の操作者が再撮影の要否を判断することを可能とする画像の表示は行わない。なお、完了信号を受信してプレビュー画像p#pre等を表示部58aに表示させるまでの間に、例えば、表示部58a上に、図25に示したような、FPD1がオフセットデータの読み出し処理中であることを表す図柄を表示したり、或いは、「データ読み取り中です。カセッテを動かさないでください。」等の文言等を表示するように構成することは可能である。 In this case, until the console 58 receives a completion signal from the FPD 1, an operator such as a radiographer such as the preview image p # pre determines whether or not re-imaging is necessary on the display unit 58 a. The possible images are not displayed. Note that, for example, on the display unit 58a, the FPD 1 is in the process of reading the offset data as shown in FIG. 25 until the preview image p # pre is displayed on the display unit 58a after the completion signal is received. It can be configured to display a symbol indicating that it is, or to display a wording such as “Data is being read. Do not move the cassette”.
 このように構成すれば、FPD1がオフセットデータOの読み出し処理を完了するまでの間は、コンソール58の表示部58a上にはプレビュー画像p#pre等が表示されず、放射線技師等の操作者は再撮影の要否を判断することができない。そして、再撮影が必要になる可能性があるため、操作者はFPD1を動かすことがない。そのため、FPD1がオフセットデータOの読み出し処理を行っている間に放射線技師等の操作者がFPD1を動かしてしまうことを的確に防止することが可能となる。 With this configuration, the preview image p # pre or the like is not displayed on the display unit 58a of the console 58 until the FPD 1 completes the reading process of the offset data O. The necessity of re-shooting cannot be determined. Then, since there is a possibility that re-photographing is necessary, the operator does not move the FPD 1. Therefore, it is possible to accurately prevent an operator such as a radiologist from moving the FPD 1 while the FPD 1 is performing the offset data O reading process.
 そのため、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 Therefore, it is possible to prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O to be read from including artifacts, so that the diagnostic providing medical image p is included. It becomes possible to accurately prevent the appearance of artifacts.
 一方、上記の各構成では、主に、FPD1で、オフセットデータOの読み出し処理を撮影後(すなわち放射線の照射後)に行うことを前提として説明した。しかし、オフセットデータOの読み出し処理を、撮影前に行うように構成することも可能である。そして、この場合、オフセットデータOの読み出し処理を、FPD1に放射線を照射して行われる撮影前のどのタイミングで行うかについては、種々のタイミングで行うように構成することが可能である。 On the other hand, each of the above configurations has been described on the premise that the offset data O is read out by the FPD 1 after imaging (that is, after irradiation of radiation). However, the offset data O can be read out before photographing. In this case, the offset data O can be read at various timings as to which timing before imaging is performed by irradiating the FPD 1 with radiation.
 例えば、上記の各構成におけるタイミング、すなわち画像データDの読み出し処理が終了した直後のタイミングでオフセットデータOの読み出し処理を行うように構成することも可能である。しかし、この場合、上記の各構成では、図27Aに示すように画像データDの読み出し処理とその直後のオフセットデータOの読み出し処理は、同じ回の撮影に関するものであったが(図27Aの「D1」と「O1」、「D2」と「O2」参照)、上記のようにオフセットデータOの読み出し処理を撮影前に行うように構成する場合には、図27Bに示すように、画像データDの読み出し処理を行った直後に行われるオフセットデータOの読み出し処理は、その後に行われる次回の撮影用のオフセットデータOを読み出す読み出し処理ということになる(図27(B)の「D1」と「O2」参照)。なお、図27A、図27Bで、「D」は画像データDの読み出し処理を、「O」はオフセットデータOの読み出し処理をそれぞれ表し、「1」、「2」は1回目および2回目の撮影に関するものであることを表す。 For example, the offset data O can be read out at the timing in each of the above-described configurations, that is, the timing immediately after the reading processing of the image data D is completed. In this case, however, in each of the above-described configurations, as shown in FIG. 27A, the reading process of the image data D and the reading process of the offset data O immediately after that relate to the same shooting (see “ D1 ”and“ O1 ”,“ D2 ”and“ O2 ”), and when the offset data O is read before shooting as described above, as shown in FIG. 27B, the image data D The read processing of the offset data O performed immediately after the read processing is performed is the read processing of reading the offset data O for the next shooting performed thereafter (“D1” and “D” in FIG. 27B). O2 "). In FIG. 27A and FIG. 27B, “D” represents the reading process of the image data D, “O” represents the reading process of the offset data O, and “1” and “2” represent the first and second imaging, respectively. Represents that
 そして、この場合、オフセットデータOの読み出し処理は、その直前に行われる画像データDの読み出し処理ではなく、このオフセットデータOの読み出し処理の後に行われる次回の撮影での画像データDの読み出し処理までの処理シーケンスで行われるように構成される。そのため、この場合のオフセットデータOの読み出し処理における蓄積時間τは、その後に行われる次回の撮影での画像データDの読み出し処理における蓄積時間τと同じ時間が設定されることになる。 In this case, the reading process of the offset data O is not the reading process of the image data D performed immediately before, but the reading process of the image data D in the next photographing performed after the reading process of the offset data O. It is comprised so that it may be performed by the process sequence of. Therefore, the accumulation time τ in the offset data O readout process in this case is set to the same time as the accumulation time τ in the subsequent readout process of the image data D in the next shooting.
 この点で、本構成は、上記の各構成とは異なっているが、他の点は、上記の各構成と同様に構成することが可能である。すなわち、次回の撮影用のオフセットデータOの読み出し処理における蓄積時間τに応じて、コンソール58の表示部58aに表示させる表示処理の内容を変更したり、或いは、FPD1がオフセットデータOの読み出し処理を完了した時点でコンソール58に完了信号を送信し、コンソール58は、FPD1から完了信号を受信するまでは、表示部58a上に、プレビュー画像p#pre等の表示を行わず、FPD1から完了信号を受信した時点で初めてプレビュー画像p#pre等を表示部58aに表示させるように構成することが可能である。 In this respect, the present configuration is different from the above-described configurations, but other points can be configured in the same manner as the above-described configurations. That is, the content of the display process displayed on the display unit 58a of the console 58 is changed according to the accumulation time τ in the next reading process of the offset data O for photographing, or the FPD 1 performs the offset data O reading process. When the completion is completed, a completion signal is transmitted to the console 58. The console 58 does not display the preview image p # pre or the like on the display unit 58a until the completion signal is received from the FPD1, and the completion signal is received from the FPD1. The preview image p # pre or the like can be displayed on the display unit 58a for the first time when it is received.
 このように構成すれば、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 With this configuration, it is possible to accurately prevent vibrations and the like from being applied to the FPD 1 during the offset data O reading process, and to prevent the offset data O being read from including artifacts. It is possible to accurately prevent an artifact from appearing in the medical image p.
 また、撮影前に行うオフセットデータOの読み出し処理を、例えば、前述した放射線技師等の操作者による放射線発生装置55の曝射スイッチ56に対する1回目の操作(すなわち半押し)と2回目の操作(すなわち全押し)の間に行うように構成することも可能である。すなわち、この場合、診断提供用医用画像システム50が、例えば前述した同期方式で撮影を行うように構成されている場合には、曝射スイッチ56に対して1回目の操作が行われた時点で、放射線発生装置55からFPD1に、曝射スイッチ56に対する1回目の操作が行われた旨を表す信号を送信するように構成される。 In addition, the offset data O read processing performed before imaging is performed by, for example, the first operation (that is, half-pressing) and the second operation (ie, half-pressing) on the exposure switch 56 of the radiation generating device 55 by an operator such as the above-described radiographer. In other words, it can be configured to be performed during the full press). That is, in this case, when the medical image system 50 for providing diagnosis is configured to perform imaging in the synchronous method described above, for example, when the first operation is performed on the exposure switch 56. The radiation generator 55 is configured to transmit a signal indicating that the first operation on the exposure switch 56 has been performed to the FPD 1.
 また、診断提供用医用画像システム50が、例えば前述した非同期方式で撮影を行うように構成されている場合には、例えば、前述した、曝射スイッチ56のボタンが押下されたことを検出することができる装置を曝射スイッチ56に外付けし、曝射スイッチ56に対して1回目の操作が行われた時点で、1回目の操作が行われたことを検出した当該装置からコンソール58にその旨を表す信号を送信し、当該信号を受信したコンソール58からFPD1に、曝射スイッチ56に対する1回目の操作が行われた旨を表す信号を送信するように構成される。 Further, when the diagnosis providing medical image system 50 is configured to perform imaging in, for example, the asynchronous method described above, for example, it is detected that the button of the exposure switch 56 described above has been pressed. When the first operation is performed on the exposure switch 56, the apparatus that has detected that the first operation has been performed is connected to the console 58. A signal indicating that the first operation on the exposure switch 56 has been performed is transmitted from the console 58 that has received the signal to the FPD 1.
 FPD1の制御手段22は、曝射スイッチ56に対する1段目の操作が行われた時点で上記の信号を受信すると、前述したように、各放射線検出素子のリセット処理を行った後、電荷蓄積状態を所定時間すなわち蓄積時間τだけ継続させ、その後、オフセットデータOの読み出し処理を行わせる(図6や図29参照)。そして、再度、同じ処理シーケンスを繰り返して、各放射線検出素子7のリセット処理を行った後、電荷蓄積状態に移行する。そして、FPD1が電荷蓄積状態を継続している間に、放射線技師等の操作者により曝射スイッチ56に対する2回目の操作が行われて、被写体を介してFPD1に放射線が照射される。そして、FPD1は、蓄積時間τだけ電荷蓄積状態を継続させた後、画像データDの読み出し処理を行うように構成される。 When the control means 22 of the FPD 1 receives the above signal when the first stage operation is performed on the exposure switch 56, as described above, after performing reset processing of each radiation detection element, the charge accumulation state Is continued for a predetermined time, that is, the accumulation time τ, and then the offset data O is read (see FIG. 6 and FIG. 29). Then, the same processing sequence is repeated again to reset each radiation detection element 7 and then shift to the charge accumulation state. Then, while the FPD 1 continues in the charge accumulation state, a second operation is performed on the exposure switch 56 by an operator such as a radiologist, and the FPD 1 is irradiated with radiation through the subject. The FPD 1 is configured to perform the reading process of the image data D after continuing the charge accumulation state for the accumulation time τ.
 このように構成することによって、放射線技師等の操作者が放射線発生装置55の曝射スイッチ56を操作する間に、オフセットデータOを読み出すことが可能となる。また、放射線技師等の操作者が、このように、曝射スイッチ56を操作している間はFPD1を動かすことがないため、その間に行われるオフセットデータOの読み出し処理の最中にFPD1に振動等が加わることを的確に防止することが可能となる。 With this configuration, it is possible to read the offset data O while an operator such as a radiologist operates the exposure switch 56 of the radiation generator 55. Further, since an operator such as a radiologist does not move the FPD 1 while operating the exposure switch 56 in this way, the FPD 1 vibrates during the reading process of the offset data O performed during that time. It becomes possible to prevent the addition of etc. accurately.
 なお、この場合、診断提供用医用画像システム50が、例えば前述した同期方式で撮影を行うように構成されている場合には、例えば、FPD1でオフセットデータOの読み出し処理を行っている最中に曝射スイッチ56に対する2回目の操作が行われても、前述したように、FPD1から放射線発生装置55に対してインターロック解除信号が送信されない限り放射線源52から放射線が照射されることはない。そのため、オフセットデータOの読み出し処理が終了した時点で、FPD1から放射線発生装置55にインターロック解除信号を送信するように構成することで、オフセットデータOの読み出し処理を行っている最中にFPD1に放射線が照射されてしまうことを的確に防止することが可能となる。 In this case, when the medical image system 50 for providing diagnosis is configured to perform imaging in the synchronous method described above, for example, during the process of reading the offset data O by the FPD 1, for example. Even if the second operation is performed on the exposure switch 56, radiation is not irradiated from the radiation source 52 unless an interlock release signal is transmitted from the FPD 1 to the radiation generator 55 as described above. For this reason, the FPD 1 is configured to transmit an interlock release signal from the FPD 1 to the radiation generator 55 when the offset data O reading process is completed, so that the FPD 1 can perform the offset data O reading process. It is possible to accurately prevent the radiation from being irradiated.
 一方、診断提供用医用画像システム50が、例えば前述した非同期方式で撮影を行うように構成されている場合には、放射線発生装置55に対してインターロックがかからないため、FPD1でオフセットデータOの読み出し処理を行っている最中に曝射スイッチ56に対する2回目の操作が行われてFPD1に放射線が照射されてしまう可能性がある。 On the other hand, when the medical image system 50 for providing diagnosis is configured to perform imaging by the asynchronous method described above, for example, the radiation generator 55 is not interlocked, so that the offset data O is read by the FPD 1. There is a possibility that the FPD 1 is irradiated with radiation by performing a second operation on the exposure switch 56 during the processing.
 そこで、診断提供用医用画像システム50が非同期方式で撮影を行うように構成されている場合に上記のように構成する場合には、例えば、放射線技師等の操作者が、放射線発生装置55の曝射スイッチ56に対して1回目の操作を行い、1回目の操作が行われたことを検出した当該装置からコンソール58にその旨を表す信号を送信した時点で、コンソール58が、上記のようにFPD1に信号を送信すると同時に、音声を発声したり音楽を流す等して、放射線技師等の操作者に曝射スイッチ56に対する2回目の操作を行わないように注意喚起するように構成することが可能である。 Therefore, when the diagnosis providing medical image system 50 is configured to perform imaging in an asynchronous manner, when configured as described above, for example, an operator such as a radiologist is exposed to the radiation generator 55. When the first operation is performed on the shooting switch 56 and a signal indicating that is transmitted from the device that has detected that the first operation has been performed to the console 58, the console 58 At the same time as transmitting a signal to the FPD 1, it may be configured to alert an operator such as a radiographer not to perform the second operation on the exposure switch 56 by uttering sound or playing music. Is possible.
 そして、FPD1からオフセットデータOの読み出し処理を終了した旨を表す信号を受信した時点で、コンソール58は、音声の発声や音楽を流すこと等を停止する。そして、放射線技師等の操作者は、音声の発声等が停止されたことを確認して、放射線発生装置55の曝射スイッチ56に対する2回目の操作を行う。なお、音声の発声等と同時に、コンソール58の表示部58a上に、曝射スイッチ56に対する2回目の操作を行わないように注意喚起する内容を表示するように構成することも可能である。 At the time of receiving a signal indicating that the offset data O reading process has been completed from the FPD 1, the console 58 stops voice utterance and music playback. Then, an operator such as a radiologist confirms that the voice utterance has been stopped and performs the second operation on the exposure switch 56 of the radiation generator 55. At the same time as the voice utterance or the like, it is possible to display on the display unit 58a of the console 58 a content for calling attention so as not to perform the second operation on the exposure switch 56.
 このように構成すれば、放射線技師等の操作者は、曝射スイッチ56を操作している間は、FPD1を動かすことがない。そのため、その間にオフセットデータOの読み出し処理を行うように構成することで、オフセットデータOの読み出し処理を行っている最中にFPD1に振動等が加わることを的確に防止することが可能となる。 With this configuration, an operator such as a radiologist does not move the FPD 1 while operating the exposure switch 56. For this reason, it is possible to accurately prevent the FPD 1 from being vibrated during the process of reading the offset data O by performing the process of reading the offset data O during that time.
 そのため、診断提供用医用画像システム50を上記のように構成すれば、オフセットデータOの読み出し処理時にFPD1に振動等が加わることを的確に防止して、読み出されるオフセットデータOにアーチファクトが含まれないようにすることが可能となり、診断提供用医用画像p中にアーチファクトが現れることを的確に防止することが可能となる。 Therefore, if the diagnosis providing medical image system 50 is configured as described above, it is possible to accurately prevent vibrations and the like from being applied to the FPD 1 during the reading process of the offset data O, and the offset data O to be read does not include artifacts. As a result, it is possible to accurately prevent an artifact from appearing in the medical image p for providing diagnosis.
 なお、例えば、放射線技師等の操作者が技師長等であり、FPD1の特性やシステム構成を理解しているようなレベルの高い放射線技師である場合には、例えば蓄積時間τが長くなっていることを理解しているため、すぐにはFPD1を動かさないが、プレビュー画像p#preは早く確認したいと思う場合もあり得る。そして、このような場合は、蓄積時間τが長くなる場合であっても、コンソール58の表示部58aにプレビュー画像p#preを表示させる表示処理の内容を変更せずに、すなわち本発明に係る表示処理の内容変更を行わないようにキャンセル処理をして、通常通りに(すなわち図23A~図23Cや図24等に示したように)プレビュー画像p#preを表示させることができるように構成することも可能である。 For example, when the operator such as a radiographer is a chief engineer or the like and is a high-level radiographer who understands the characteristics and system configuration of the FPD 1, for example, the accumulation time τ is long. It is understood that the FPD 1 is not moved immediately, but the preview image p # pre may want to be confirmed early. In such a case, even if the accumulation time τ is long, the content of the display process for displaying the preview image p # pre on the display unit 58a of the console 58 is not changed, that is, according to the present invention. It is configured so that the preview image p # pre can be displayed as usual (ie, as shown in FIGS. 23A to 23C, FIG. 24, etc.) by performing a cancel process so as not to change the contents of the display process. It is also possible to do.
 すなわち、この場合、FPD1からプレビュー画像用データDpが送信されると、通常通り、それと同時にプレビュー画像p#preがワイプ表示され、プレビュー画像p#preが速やかに表示される。そして、この場合、例えば、キャンセル処理を行うことが可能な操作者を、その技量のレベル等に応じて予め指定しておき、コンソール58は、例えば入力された操作者の技師ID等からキャンセル処理を行うことが許された操作者である場合にのみ、キャンセル処理を受け付けるように構成することも可能である。 That is, in this case, when the preview image data Dp is transmitted from the FPD 1, the preview image p # pre is wiped and displayed at the same time as usual, and the preview image p # pre is quickly displayed. In this case, for example, an operator who can perform the canceling process is designated in advance according to the level of the skill, and the console 58 performs the canceling process based on the input operator ID of the operator, for example. It is also possible to configure so that the cancel process is accepted only when the operator is permitted to perform the operation.
 放射線画像撮影を行う分野(特に医療分野)において利用可能性がある。 It may be used in the field of radiographic imaging (especially in the medical field).
1 FPD(放射線画像撮影装置)
5 走査線
6 信号線
7 放射線検出素子
8 TFT(スイッチ素子)
15 走査駆動手段
17 読み出し回路
22 制御手段
50 診断提供用医用画像システム
52 放射線源
55 放射線発生装置
56 曝射スイッチ
58 コンソール(コンソール、報知装置)
58a 表示部
D 画像データ
* 真の画像データ
Dp プレビュー画像用データ(抽出された画像データ)
H 患者(被写体)
O オフセットデータ
p#pre プレビュー画像(画像)
t 経過時間
WT 待ち時間
τ 蓄積時間(所定時間)
1 FPD (radiological imaging equipment)
5 Scanning line 6 Signal line 7 Radiation detection element 8 TFT (switch element)
DESCRIPTION OF SYMBOLS 15 Scan drive means 17 Read-out circuit 22 Control means 50 Medical image system 52 for diagnosis provision Radiation source 55 Radiation generator 56 Exposure switch 58 Console (console, alerting | reporting apparatus)
58a Display unit D Image data D * True image data Dp Preview image data (extracted image data)
H Patient (subject)
O Offset data p # pre Preview image (image)
t Elapsed time WT Wait time τ Accumulation time (predetermined time)

Claims (14)

  1.  複数の走査線および複数の信号線と、
     二次元状に配列された複数の放射線検出素子と、
     前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替える走査駆動手段と、
     前記各走査線に接続され、オン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させるスイッチ素子と、
     前記信号線に放出された前記電荷を画像データとして読み出す読み出し回路と、
     少なくとも前記走査駆動手段と前記読み出し回路とを制御して、前記画像データの読み出し処理を行わせる制御手段と、
    を備える放射線画像撮影装置と、
     被写体を介して前記放射線画像撮影装置に放射線を照射する放射線発生装置と、
     報知装置と、
    を備え、
     前記放射線画像撮影装置は、撮影モードを、少なくとも、前記制御手段を含む各機能部に電力を供給して撮影を行うことが可能な覚醒モードと、必要な機能部にのみ電力を供給し、撮影を行うことができないスリープモードとの間で遷移させることができるように構成されており、
     前記放射線画像撮影装置の前記制御手段は、
     撮影の際には、前記各放射線検出素子のリセット処理を行った後、前記走査駆動手段から前記各走査線にオフ電圧を印加して前記スイッチ素子をオフ状態とした状態で放射線の照射により前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させる電荷蓄積状態を、設定された蓄積時間だけ継続させ、その後、少なくとも前記走査駆動手段と前記読み出し回路とを制御して前記画像データの読み出し処理を行わせ、
     撮影後に、放射線が照射されない状態で、前記各放射線検出素子のリセット処理から前記画像データの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して前記画像データの代わりにオフセットデータを読み出すオフセットデータの読み出し処理を行うとともに、
     前記撮影モードが前記スリープモードから前記覚醒モードに遷移されてからの経過時間をカウントし、前記経過時間が、待ち時間だけ経過した時点で、前記報知装置に信号を送信し、
     前記報知装置は、前記放射線画像撮影装置から前記信号を受信すると、前記放射線発生装置から放射線を照射して撮影を行うことが可能であることを報知するように構成されており、
     前記待ち時間は、前記蓄積時間に応じて切り替えられることを特徴とする診断提供用医用画像システム。
    A plurality of scanning lines and a plurality of signal lines;
    A plurality of radiation detection elements arranged two-dimensionally;
    Scanning drive means for switching a voltage applied to each scanning line between an on-voltage and an off-voltage,
    A switch element connected to each of the scanning lines, and discharging a charge accumulated in the radiation detection element to the signal line when an on-voltage is applied;
    A readout circuit for reading out the electric charge emitted to the signal line as image data;
    Control means for controlling at least the scanning drive means and the readout circuit to perform the readout processing of the image data;
    A radiographic imaging device comprising:
    A radiation generator for irradiating the radiation imaging apparatus with radiation through a subject; and
    A notification device;
    With
    The radiographic image capturing apparatus supplies an imaging mode, an awakening mode capable of performing imaging by supplying power to each functional unit including at least the control unit, and supplying power only to necessary functional units to perform imaging. Is configured to be able to transition between sleep modes that cannot be performed,
    The control means of the radiographic image capturing apparatus includes:
    At the time of imaging, after performing reset processing of each radiation detection element, the scanning drive means applies an off voltage to each scanning line, and the switch element is turned off by irradiation of radiation. The charge accumulation state in which charges generated in each radiation detection element are accumulated in each radiation detection element is continued for a set accumulation time, and then at least the scanning drive unit and the readout circuit are controlled to Have the image data read out,
    Read offset data to read offset data instead of the image data by repeating the same processing sequence as the processing sequence from the reset processing of each radiation detection element to the reading processing of the image data in a state where no radiation is irradiated after imaging. As well as processing
    Counting the elapsed time since the shooting mode is changed from the sleep mode to the wake-up mode, and when the elapsed time has elapsed by a waiting time, a signal is sent to the notification device,
    The notification device is configured to notify that it is possible to perform imaging by irradiating radiation from the radiation generation device when receiving the signal from the radiographic imaging device,
    The medical image system for diagnosis provision, wherein the waiting time is switched according to the accumulation time.
  2.  前記放射線画像撮影装置の前記制御手段は、前記撮影モードが前記スリープモードから前記覚醒モードに遷移された後、1回目の撮影に引き続き行われる2回目以降の撮影において、前記撮影モードが前記スリープモードから前記覚醒モードに遷移されてからの前記経過時間が、当該2回目以降の撮影における前記蓄積時間に応じて切り替えられる前記待ち時間だけ経過していなければ、当該2回目以降の撮影における前記待ち時間が経過した時点で、前記報知装置に信号を送信することを特徴とする請求項1に記載の診断提供用医用画像システム。 The control means of the radiographic image capturing apparatus may be configured such that, in the second and subsequent imaging performed following the first imaging after the imaging mode is changed from the sleep mode to the awakening mode, the imaging mode is the sleep mode. If the elapsed time from the transition to the awakening mode is not the waiting time switched according to the accumulation time in the second and subsequent shootings, the waiting time in the second and subsequent shootings 2. The medical image system for providing diagnosis according to claim 1, wherein a signal is transmitted to the notification device at the time when elapses.
  3.  表示部を備え、少なくとも前記放射線画像撮影装置から送信された前記抽出された画像データに基づいて画像を生成して前記表示部に表示するコンソールを備え、
     前記コンソールは、前記放射線画像撮影装置において前記電荷蓄積状態を継続させる前記蓄積時間に応じて、前記表示部に表示させる表示処理の内容を変更することを特徴とする請求項1または請求項2に記載の診断提供用医用画像システム。
    A display unit, a console that generates an image based on at least the extracted image data transmitted from the radiographic imaging device and displays the image on the display unit;
    The said console changes the content of the display process displayed on the said display part according to the said accumulation time which continues the said electric charge accumulation state in the said radiographic imaging apparatus, The Claim 1 or Claim 2 characterized by the above-mentioned. The medical image system for providing diagnosis as described.
  4.  前記コンソールは、前記放射線画像撮影装置において前記電荷蓄積状態を継続させる前記蓄積時間に応じて、前記画像を前記表示部に表示させる順番を変更することを特徴とする請求項3に記載の診断提供用医用画像システム。 4. The diagnosis provision according to claim 3, wherein the console changes an order in which the image is displayed on the display unit according to the accumulation time during which the charge accumulation state is continued in the radiographic imaging device. Medical imaging system.
  5.  前記コンソールは、前記放射線画像撮影装置において前記電荷蓄積状態を継続させる前記蓄積時間に応じて、前記画像を前記表示部に表示させるタイミングを変更することを特徴とする請求項3または請求項4記載の診断提供用医用画像システム。 The said console changes the timing which displays the said image on the said display part according to the said accumulation time which continues the said charge accumulation state in the said radiographic imaging apparatus. Medical imaging system for providing diagnosis.
  6.  前記コンソールは、前記放射線画像撮影装置において前記電荷蓄積状態を継続させる前記蓄積時間に応じて、前記表示部に、前記放射線画像撮影装置がオフセットデータの読み出し処理中であることを表示するか否かを切り替えることを特徴とする請求項3から請求項5のいずれか一項に記載の診断提供用医用画像システム。 Whether the console displays on the display unit that the radiographic image capturing apparatus is in the process of reading offset data, according to the accumulation time during which the charge accumulation state is continued in the radiographic image capturing apparatus. 6. The medical image system for providing diagnosis according to any one of claims 3 to 5, characterized in that:
  7.  表示部を備え、少なくとも前記放射線画像撮影装置から送信された前記抽出された画像データに基づいて画像を生成して前記表示部に表示するコンソールを備え、
     前記放射線画像撮影装置の前記制御手段は、前記オフセットデータの読み出し処理を完了すると、前記コンソールに完了信号を送信するように構成されており、
     前記コンソールは、前記放射線画像撮影装置からの前記完了信号を受信すると、前記画像を前記表示部に表示させることを特徴とする請求項1から請求項4のいずれか一項に記載の診断提供用医用画像システム。
    A display unit, a console that generates an image based on at least the extracted image data transmitted from the radiographic imaging device and displays the image on the display unit;
    The control means of the radiographic imaging device is configured to transmit a completion signal to the console when the offset data reading process is completed,
    5. The diagnosis providing device according to claim 1, wherein the console displays the image on the display unit when the completion signal is received from the radiographic imaging device. 6. Medical imaging system.
  8.  表示部を備え、少なくとも前記放射線画像撮影装置から送信された前記抽出された画像データに基づいて画像を生成して前記表示部に表示するコンソールを備え、
     前記放射線発生装置は、被写体を介して前記放射線画像撮影装置に放射線を照射する放射線源と、放射線の照射開始を指示する曝射スイッチとを備え、前記曝射スイッチに対して1段目の操作が行われると前記放射線源を起動させ、前記曝射スイッチに対して2段目の操作が行われると前記放射線源から放射線を照射させるように構成されており、
     前記放射線画像撮影装置の前記制御手段は、
     前記放射線発生装置の前記曝射スイッチに対する1段目の操作が行われると、前記各放射線検出素子のリセット処理を行い、放射線が照射されない状態で、前記走査駆動手段から前記各走査線にオフ電圧を印加して前記スイッチ素子をオフ状態とした状態で前記各放射線検出素子内に電荷を蓄積させる電荷蓄積状態を前記蓄積時間だけ継続させ、その後、少なくとも前記走査駆動手段と前記読み出し回路とを制御してオフセットデータの読み出し処理を行わせ、
     前記各放射線検出素子のリセット処理から前記電荷蓄積状態を経て前記オフセットデータの読み出し処理に至るまでの処理シーケンスと同じ処理シーケンスを繰り返し、前記電荷蓄積状態の間に、前記放射線発生装置の前記曝射スイッチに対する2段目の操作が行われて前記放射線発生装置の前記放射線源から照射されたことにより前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させた後、少なくとも前記走査駆動手段と前記読み出し回路とを制御して前記オフセットデータの代わりに前記画像データを読み出す前記画像データの読み出し処理を行うように構成されていることを特徴とする請求項1から請求項4のいずれか一項に記載の診断提供用医用画像システム。
    A display unit, a console that generates an image based on at least the extracted image data transmitted from the radiographic imaging device and displays the image on the display unit;
    The radiation generation apparatus includes a radiation source that irradiates the radiation imaging apparatus with radiation through a subject, and an exposure switch that instructs the start of radiation irradiation. Is activated, the radiation source is activated, and the radiation switch is configured to emit radiation when a second stage operation is performed on the exposure switch,
    The control means of the radiographic image capturing apparatus includes:
    When the first stage operation is performed on the exposure switch of the radiation generating device, the radiation detection elements are reset, and the off-voltage is applied to the scanning lines from the scanning driving unit in a state where no radiation is irradiated. The charge accumulation state in which charges are accumulated in each radiation detection element is continued for the accumulation time in a state where the switch element is in an OFF state by applying N, and then at least the scanning drive means and the readout circuit are controlled. To perform the offset data read process,
    The same processing sequence as the processing sequence from the reset processing of each radiation detection element to the readout processing of the offset data through the charge accumulation state is repeated, and the exposure of the radiation generating device is performed during the charge accumulation state. After accumulating charges generated in each radiation detection element by being operated from the radiation source of the radiation generation device by performing a second stage operation on the switch, at least the 5. The image data reading process for reading the image data instead of the offset data by controlling a scanning drive unit and the reading circuit is performed. The medical image system for diagnosis provision according to any one of the above.
  9.  前記放射線画像撮影装置の前記制御手段は、前記オフセットデータの読み出し処理の終了後、前記画像データから前記オフセットデータを減算して真の画像データを算出する処理を前記各放射線検出素子ごとに行い、算出した前記真の画像データを前記コンソールに送信することを特徴とする請求項3から請求項8のいずれか一項に記載の診断提供用医用画像システム。 The control means of the radiographic imaging apparatus performs a process of calculating true image data by subtracting the offset data from the image data for each of the radiation detection elements after completion of the offset data reading process, The medical image system for providing diagnosis according to any one of claims 3 to 8, wherein the calculated true image data is transmitted to the console.
  10.  複数の走査線および複数の信号線と、
     二次元状に配列された複数の放射線検出素子と、
     前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替える走査駆動手段と、
     前記各走査線に接続され、オン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させるスイッチ素子と、
     前記信号線に放出された前記電荷を画像データとして読み出す読み出し回路と、
     少なくとも前記走査駆動手段と前記読み出し回路とを制御して、前記画像データの読み出し処理を行わせ、読み出した前記画像データの中から所定の前記画像データを抽出してコンソールに送信する制御手段と、
    を備える放射線画像撮影装置と、
     被写体を介して前記放射線画像撮影装置に放射線を照射する放射線発生装置と、
     表示部を備え、少なくとも前記放射線画像撮影装置から送信された前記抽出された画像データに基づいて画像を生成して前記表示部に表示する前記コンソールと、
    を備え、
     前記放射線画像撮影装置の前記制御手段は、
     撮影の際には、前記各放射線検出素子のリセット処理を行った後、前記走査駆動手段から前記各走査線にオフ電圧を印加して前記スイッチ素子をオフ状態とした状態で放射線の照射により前記各放射線検出素子内で発生した電荷を前記各放射線検出素子内に蓄積させる電荷蓄積状態を所定時間だけ継続させ、その後、少なくとも前記走査駆動手段と前記読み出し回路とを制御して前記画像データの読み出し処理を行わせ、
     撮影の前または後に、放射線が照射されない状態で、前記各放射線検出素子のリセット処理から前記画像データの読み出し処理までの処理シーケンスと同じ処理シーケンスを繰り返して前記画像データの代わりにオフセットデータを読み出すオフセットデータの読み出し処理を行うように構成されており、
     前記コンソールは、前記放射線画像撮影装置において前記電荷蓄積状態を継続させる前記所定時間に応じて、前記表示部に表示させる表示処理の内容を変更することを特徴とする診断提供用医用画像システム。
    A plurality of scanning lines and a plurality of signal lines;
    A plurality of radiation detection elements arranged two-dimensionally;
    Scanning drive means for switching a voltage applied to each scanning line between an on-voltage and an off-voltage,
    A switch element connected to each of the scanning lines, and discharging a charge accumulated in the radiation detection element to the signal line when an on-voltage is applied;
    A readout circuit for reading out the electric charge emitted to the signal line as image data;
    Control means for controlling at least the scanning drive means and the readout circuit to perform readout processing of the image data, extracting predetermined image data from the read image data, and transmitting the image data to a console;
    A radiographic imaging device comprising:
    A radiation generator for irradiating the radiation imaging apparatus with radiation through a subject; and
    A console that includes a display unit, generates an image based on at least the extracted image data transmitted from the radiographic imaging device, and displays the image on the display unit;
    With
    The control means of the radiographic image capturing apparatus includes:
    At the time of imaging, after performing reset processing of each radiation detection element, the scanning drive means applies an off voltage to each scanning line, and the switch element is turned off by irradiation of radiation. The charge accumulation state in which the charges generated in each radiation detection element are accumulated in each radiation detection element is continued for a predetermined time, and thereafter, at least the scanning drive unit and the readout circuit are controlled to read out the image data. Let the process do
    An offset for reading offset data instead of the image data by repeating the same processing sequence as the processing sequence from the reset processing of each radiation detection element to the reading processing of the image data in a state where radiation is not irradiated before or after imaging. It is configured to perform data read processing,
    The diagnostic providing medical image system, wherein the console changes a content of display processing displayed on the display unit according to the predetermined time during which the charge accumulation state is continued in the radiographic imaging apparatus.
  11.  複数の走査線および複数の信号線と、
     二次元状に配列された複数の放射線検出素子と、
     前記各走査線に印加する電圧をオン電圧とオフ電圧との間で切り替える走査駆動手段と、
     前記各走査線に接続され、オン電圧が印加されると前記放射線検出素子に蓄積された電荷を前記信号線に放出させるスイッチ素子と、
     前記信号線に放出された前記電荷を画像データとして読み出す読み出し回路と、
     少なくとも前記走査駆動手段と前記読み出し回路とを制御して、前記画像データの読み出し処理を行わせる制御手段と、
     バイアス線を介して前記放射線検出素子に逆バイアス電圧を印加するバイアス電源と、
    を備え、
     撮影モードを、少なくとも、前記制御手段を含む各機能部に電力を供給して撮影を行うことが可能な覚醒モードと、必要な機能部にのみ電力を供給し、撮影を行うことができないスリープモードとの間で遷移させることができるように構成されており、
     前記制御手段は、前記撮影モードが前記スリープモードにある場合に、前記バイアス電源から前記各放射線検出素子に逆バイアス電圧を印加させることを特徴とする放射線画像撮影装置。
    A plurality of scanning lines and a plurality of signal lines;
    A plurality of radiation detection elements arranged two-dimensionally;
    Scanning drive means for switching a voltage applied to each scanning line between an on-voltage and an off-voltage,
    A switch element connected to each of the scanning lines, and discharging a charge accumulated in the radiation detection element to the signal line when an on-voltage is applied;
    A readout circuit for reading out the electric charge emitted to the signal line as image data;
    Control means for controlling at least the scanning drive means and the readout circuit to perform the readout processing of the image data;
    A bias power supply for applying a reverse bias voltage to the radiation detection element via a bias line;
    With
    The shooting mode includes at least an awakening mode in which power can be supplied to each function unit including the control means and a sleep mode in which power is supplied only to the necessary function unit and shooting cannot be performed. And can be transitioned between and
    The radiographic imaging apparatus characterized in that the control means applies a reverse bias voltage from the bias power source to each of the radiation detection elements when the imaging mode is the sleep mode.
  12.  前記制御手段は、前記撮影モードが前記スリープモードにある場合に、予め定められた時間間隔ごとに、前記バイアス電源から前記各放射線検出素子に所定時間だけ逆バイアス電圧を印加させることを特徴とする請求項11に記載の放射線画像撮影装置。 The control means applies a reverse bias voltage from the bias power source to each radiation detection element for a predetermined time at predetermined time intervals when the imaging mode is the sleep mode. The radiographic imaging apparatus according to claim 11.
  13.  前記制御手段は、前記撮影モードが前記スリープモードにある間も継続して前記バイアス電源から前記各放射線検出素子に逆バイアス電圧を印加させることを特徴とする請求項11に記載の放射線画像撮影装置。 The radiographic imaging apparatus according to claim 11, wherein the control unit continuously applies a reverse bias voltage from the bias power source to the radiation detection elements while the imaging mode is the sleep mode. .
  14.  前記制御手段は、前記撮影モードが前記スリープモードにある場合に、前記バイアス電源から前記各放射線検出素子に印加される電圧が上昇して、設定された閾値に達するごとに、前記バイアス電源から前記各放射線検出素子に所定時間だけ所定の電圧値の逆バイアス電圧を印加させることを特徴とする請求項11に記載の放射線画像撮影装置。 When the imaging mode is the sleep mode, the control means increases the voltage applied to each radiation detection element from the bias power source and reaches the set threshold value from the bias power source. The radiographic imaging apparatus according to claim 11, wherein a reverse bias voltage having a predetermined voltage value is applied to each radiation detection element for a predetermined time.
PCT/JP2014/059738 2013-05-24 2014-04-02 Diagnostic medical imaging system and radiography apparatus WO2014188795A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013109880A JP2016144481A (en) 2013-05-24 2013-05-24 Medical image system for providing diagnosis
JP2013-109880 2013-05-24
JP2013-135685 2013-06-28
JP2013135685A JP2016144482A (en) 2013-06-28 2013-06-28 Medical image system for providing diagnosis and radiography apparatus
JP2013207343A JP2016146513A (en) 2013-10-02 2013-10-02 Medical image system for diagnosis service
JP2013-207343 2013-10-02

Publications (1)

Publication Number Publication Date
WO2014188795A1 true WO2014188795A1 (en) 2014-11-27

Family

ID=51933361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059738 WO2014188795A1 (en) 2013-05-24 2014-04-02 Diagnostic medical imaging system and radiography apparatus

Country Status (1)

Country Link
WO (1) WO2014188795A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369084A (en) * 2001-06-05 2002-12-20 Canon Inc Imaging device and method, radiographic device and method, storage medium, and program
JP2005118347A (en) * 2003-10-17 2005-05-12 Canon Inc Digital x-ray image photographing apparatus, and drive control program of the same
JP2006162619A (en) * 1996-02-26 2006-06-22 Canon Inc Radiation detection system and operation method
JP2012084958A (en) * 2010-10-07 2012-04-26 Konica Minolta Medical & Graphic Inc Radiation image photographing system and radiation image photographing device
JP2012183241A (en) * 2011-03-07 2012-09-27 Canon Inc Radiation imaging apparatus, and method for controlling the same
JP2012189485A (en) * 2011-03-11 2012-10-04 Konica Minolta Medical & Graphic Inc Radiographic image capturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162619A (en) * 1996-02-26 2006-06-22 Canon Inc Radiation detection system and operation method
JP2002369084A (en) * 2001-06-05 2002-12-20 Canon Inc Imaging device and method, radiographic device and method, storage medium, and program
JP2005118347A (en) * 2003-10-17 2005-05-12 Canon Inc Digital x-ray image photographing apparatus, and drive control program of the same
JP2012084958A (en) * 2010-10-07 2012-04-26 Konica Minolta Medical & Graphic Inc Radiation image photographing system and radiation image photographing device
JP2012183241A (en) * 2011-03-07 2012-09-27 Canon Inc Radiation imaging apparatus, and method for controlling the same
JP2012189485A (en) * 2011-03-11 2012-10-04 Konica Minolta Medical & Graphic Inc Radiographic image capturing device

Similar Documents

Publication Publication Date Title
JP6413534B2 (en) Radiation imaging system
JP5602198B2 (en) Radiation imaging apparatus, radiographic image detection apparatus used therefor, and operating method thereof
JP6662385B2 (en) Radiation imaging apparatus and radiation imaging system
JP2013104826A (en) Radiographic image detection device and radiographic system
JP6890443B2 (en) Radiation imaging system, radiography method, and program
JP2010212741A (en) Radio ray image detection device
JP2018149047A (en) Radiographic imaging system
JP2013141484A (en) Radiographic imaging system
JP2013078410A (en) Radiation image capturing system and radiation image capturing apparatus
JP6848407B2 (en) Radiation imaging system
JP6708032B2 (en) Radiography system
JP2018038547A (en) Radiation imaging apparatus, control method thereof, radiation imaging system, and program
JP2012152477A (en) Radiation imaging system and radiation imaging apparatus
JP2020031961A (en) Radiographic system
JP6455337B2 (en) Radiographic imaging system and radiographic imaging device
JP2015213546A (en) Radiation imaging apparatus and radiation imaging system
WO2014188795A1 (en) Diagnostic medical imaging system and radiography apparatus
JP2016146513A (en) Medical image system for diagnosis service
JP2014036776A (en) Radiographic imaging system and radiographic imaging apparatus
JP5790659B2 (en) Radiation imaging equipment
JP2017217171A (en) Radiographic imaging apparatus and radiographic imaging system
JP5471340B2 (en) Radiation imaging system
JP2016043153A (en) Portable radiographic imaging apparatus and radiographic imaging system
JP2016144482A (en) Medical image system for providing diagnosis and radiography apparatus
JPWO2015064149A1 (en) Radiation imaging apparatus and information processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP