WO2014185543A1 - Apparatus for mounting electronic component - Google Patents

Apparatus for mounting electronic component Download PDF

Info

Publication number
WO2014185543A1
WO2014185543A1 PCT/JP2014/063140 JP2014063140W WO2014185543A1 WO 2014185543 A1 WO2014185543 A1 WO 2014185543A1 JP 2014063140 W JP2014063140 W JP 2014063140W WO 2014185543 A1 WO2014185543 A1 WO 2014185543A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
solder
mounting
electronic
electronic element
Prior art date
Application number
PCT/JP2014/063140
Other languages
French (fr)
Japanese (ja)
Inventor
佳久 角田
恒平 池田
冨田 秀司
岸田 晃
Original Assignee
日清紡メカトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社 filed Critical 日清紡メカトロニクス株式会社
Priority to CN201480028375.7A priority Critical patent/CN105230137A/en
Publication of WO2014185543A1 publication Critical patent/WO2014185543A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/041Solder preforms in the shape of solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1581Treating the backside of the PCB, e.g. for heating during soldering or providing a liquid coating on the backside
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns

Definitions

  • the present invention relates to an electronic element mounting apparatus, an electronic component manufacturing method, and a method of manufacturing LED lighting including steps of the manufacturing method for mounting an electronic element on a printed wiring board to manufacture an electronic component.
  • a main method for soldering the electronic element to the printed wiring board is a reflow method. This is because electronic elements are mounted on the wiring pattern on the surface of the printed wiring board via solder, and then the printed wiring board is transported into a reflow furnace and hot air at a predetermined temperature is blown to the printed wiring board in the reflow furnace. By soldering, the solder paste is melted and the electronic element is soldered to the printed wiring board.
  • the temperature in the reflow furnace is about 250 ° C. to 260 ° C.
  • the reflow method requires a high temperature as described above and heats not only the solder but also the entire substrate and the electronic element. For this reason, the substrate is distorted and the quality is affected, the electronic element is adversely affected by heat, or in the case of a long substrate, a long reflow furnace is required, and the installation space of the device becomes too wide. It was. As an adverse effect on the electronic element, if the electronic element is an LED element, the fluorescent agent in the LED element portion deteriorates when exposed to heat in a reflow furnace for a long time, and as a result, sufficient luminance cannot be obtained. There was also a problem.
  • solder is locally heated by a laser to solder an electronic element to a printed wiring board.
  • the solder 404 is directly irradiated with light from the surface side of the printed wiring board 422.
  • a method is known in which solder is melted and an electronic element is soldered to a printed wiring board.
  • Patent Document 1 describes a method of irradiating light with a laser from the back side of a printed wiring board on which an electronic component is placed via solder, melting the solder, and soldering the electronic element to the printed wiring board. Has been. In this method, as shown in FIG.
  • an electronic element 508 is placed on a wiring pattern 522B of a printed wiring board 522 composed of a flexible substrate 522A mainly composed of polyimide resin and a wiring pattern 522B through solder 504. Then, light is irradiated from the back surface 524 side of the printed wiring board by a YAG laser or the like. In this method, the laser beam does not pass through the substrate 522A, and the substrate 522A absorbs the laser beam. As a result, the substrate 522A is heated, and the heat is transferred from the substrate 522A to the solder 504, thereby melting the solder.
  • Patent Document 2 an opening is provided in the substrate, a conductive member and solder on the conductive member are disposed in the opening, and the conductive member is irradiated with light from the back surface side of the substrate. A method of heating solder indirectly through a conductive member is described. JP 2001-111207 A JP 2006-278385 A
  • the conventional soldering method using a laser has the following problems.
  • An object of the present invention is to provide an electronic component mounting apparatus and an electronic component manufacturing method together with an LED illumination manufacturing method including the manufacturing method.
  • An electronic element mounting apparatus is an electronic element mounting apparatus for mounting an electronic element on a flexible printed circuit board and a printed wiring board having a wiring pattern on the printed circuit board.
  • a supply device for supplying solder, a mounting device for mounting the electronic element on the solder, and a light having an emission center wavelength in a near-infrared light region toward the solder on which the electronic element is mounted Irradiating from the back side of the printed wiring board, and the light passes through the substrate to reach the wiring pattern, heats the wiring pattern, melts the solder, and The element is soldered to the printed wiring board.
  • the electronic device mounting apparatus of the first aspect of the invention the electronic device is soldered to the printed wiring board in a shorter time than before, and the electronic device is prevented from being damaged, the solder is scattered, and the substrate is damaged. An element can be mounted.
  • the electronic device mounting apparatus according to the first aspect, wherein a plurality of the supply device, the mounting device, or the laser are provided.
  • a plurality of solder supply devices, electronic device mounting devices, or soldering lasers are provided.
  • a plurality of supply devices are provided, if there are a plurality of electronic element mounting portions (soldering portions), it is possible to supply solder simultaneously. Since a plurality of electronic element mounting devices are provided, when adjacent electronic elements are close to each other and cannot be mounted at the same time, the first electronic element is first mounted and then the substrate is run. The electronic element can be placed at an adjacent position by another placement device without being moved.
  • By providing a plurality of lasers it is possible to cope with mounting of various types of electronic elements. Since a plurality of lasers are provided, if there are a plurality of electronic element mounting portions (soldering portions), it is possible to perform laser irradiation and soldering simultaneously.
  • the electronic element mounting apparatus of the second invention a plurality of electronic elements are simultaneously mounted on the flexible substrate, and the plurality of solder supply devices and the plurality of lasers cooperate to mount the plurality of electronic elements. be able to. Therefore, the electronic element can be mounted on the flexible substrate at a much higher speed than conventional. Further, by adding an axis moving device to the supply device, the mounting device, or the laser, it is possible to easily cope with the change or increase in the mounting location of the electronic element.
  • the electronic device mounting apparatus according to the first or second aspect, wherein the transmittance of the substrate at the emission center wavelength of the light irradiated from the back surface of the printed wiring board is 20% or more. It is said.
  • the laser beam transmittance of the flexible substrate is 20% or more, and the laser beam transmitted through the substrate can be heated in a short time without damaging the electronic device.
  • An electronic element can be mounted by soldering.
  • the electronic device mounting apparatus according to a fourth aspect of the present invention is the electronic device mounting apparatus according to any one of the first to third aspects, wherein the printed wiring board is stretched between a pair of reels, and the printed wiring board is moved between the reels. A plurality of the electronic elements are continuously mounted on the printed wiring board.
  • the solder is supplied by the supply device, the nozzle at the tip thereof is separated from the flexible substrate by a certain distance, so that the flexible substrate is continuously moved and moved.
  • the effects of the first invention and the second invention are also synergistic, and the electronic element can be mounted on the substrate in a short time (high speed).
  • the flexible board wound around the reel is supplied while being pulled out, and the board on which the electronic elements have been mounted is wound around the reel for storage.
  • the length can be about 1/10. Therefore, the electronic device mounting apparatus according to the fourth aspect of the present invention can mount electronic devices at a much higher speed and higher efficiency than the conventional one, and can further reduce the installation space.
  • a reflow furnace is used. Therefore, in order to manufacture a long mounting board, a plurality of short mounting boards are used.
  • the mounting apparatus of the present invention uses a flexible substrate, any long mounting substrate can be manufactured.
  • the mounting of electronic elements can be made highly efficient.
  • the electronic device mounting apparatus according to any one of the first to fourth aspects, wherein the output of the laser is within a range of 15 to 250 W per irradiation spot having an irradiation diameter of 1 mm on the substrate surface of the laser. It is a feature.
  • the laser beam is within a range of 15 to 250 W per irradiation spot with a diameter of 1 mm on the surface of the substrate, can be soldered in a short time without heating the electronic element, and passes through the substrate. It is possible to mount the electronic element by soldering in a short time without heating and damaging the electronic element.
  • the electronic device mounting apparatus is characterized in that, in any one of the first to fifth aspects, the laser irradiation time is 1 second or less. According to the sixth invention, the laser light irradiation time is 1 second or less, soldering is possible in a short time without heating the electronic element, and the electronic element can be mounted at high speed and high efficiency. it can.
  • the electronic device mounting apparatus according to any one of the first to sixth aspects, wherein the electronic device is an LED device.
  • the electronic device is an LED device, and a mounting substrate for an LED lighting device can be manufactured at high speed and high efficiency.
  • An electronic element mounting apparatus according to an eighth aspect of the present invention is the electronic device mounting apparatus according to the seventh aspect, wherein the flexible substrate is white. According to the electronic device mounting apparatus of the eighth aspect of the invention, it is possible to manufacture an LED illumination device having a white flexible substrate and a high emission brightness of the LED illumination device at high speed and high efficiency.
  • FIG. 1 is a schematic diagram showing an electronic device mounting apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view showing a portion to be soldered by laser irradiation in the apparatus shown in FIG.
  • FIG. 3 is a schematic perspective view of the LED illumination obtained by the LED illumination manufacturing method according to the present invention.
  • FIG. 4 is an enlarged schematic view showing a soldering portion by laser irradiation in a conventional electronic component mounting apparatus.
  • FIG. 5 is an enlarged schematic view showing a soldering portion by laser irradiation in another conventional electronic component mounting apparatus.
  • FIG. 6 is an explanatory diagram of a configuration of a supply device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an electronic device mounting apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged schematic view showing a portion to be soldered by laser irradiation in the apparatus shown in FIG.
  • FIG. 7 is an explanatory diagram of the configuration of the supply device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of the configuration of the mounting device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of the configuration of the mounting device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of a configuration of a laser used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of a laser configuration used in the electronic device mounting apparatus according to the second embodiment of the present invention.
  • the mounting apparatus 100 mounts an electronic element 108 on a printed wiring board 122 having a substrate 122A and a wiring pattern 122B on the substrate, and manufactures an electronic component 112.
  • the “printed wiring board” includes a substrate and a wiring pattern formed on the substrate, and does not include an electronic element to be mounted.
  • the printed wiring board 122 is a flexible substrate. Details will be described later.
  • the mounting apparatus 100 includes a supply apparatus 102 that supplies the solder 104 onto the wiring pattern 122B of the printed wiring board.
  • the supply device 102 is not particularly limited, but is preferably a non-contact dispenser.
  • the non-contact dispenser connects a tank for containing solder, a discharge nozzle for discharging the solder to the printed wiring board from a position separated from the printed wiring board, and a discharge nozzle from the tank.
  • a predetermined amount of solder can be supplied from a position separated from the printed wiring board.
  • the mounting apparatus 100 includes a mounting device 106 that mounts the electronic element 108 on the solder 104.
  • the mounting device 106 is not particularly limited, and a conventionally known mounting device such as a chip mounter can be used.
  • the mounting apparatus 100 includes a laser 110. As a characteristic configuration of the present invention, as shown in FIG.
  • the laser 110 emits light having a light emission center wavelength in the near infrared region toward the solder 104 on which the electronic element 108 is mounted. Irradiate from 124 side. The irradiated light passes through the substrate 122A and reaches the wiring pattern 122B, heats the wiring pattern 122B, and the solder 104 melts. Thus, the electronic element 108 is soldered to the printed wiring board 122.
  • the emitted light preferably has an emission center wavelength in the range of 800 nm to 1100 nm.
  • the mounting apparatus 100 If a laser that emits light having a light emission center wavelength in a specific range from the back side of the printed wiring board is used as the mounting apparatus 100, by appropriately selecting the board on which the electronic element is mounted by the apparatus, Instead of melting the solder by heat transfer, a new solder heating mechanism is adopted that heats the solder more directly by heat transfer from the wiring pattern.
  • the laser 110 is not particularly limited as long as the emission center wavelength can be set in the above range, and a semiconductor laser having an emission center wavelength of 920 nm, an Nd-YAG laser of 1064 nm, or the like can be used.
  • the “emission center wavelength” means a wavelength showing the highest light amount in the spectrum of light emitted from the laser.
  • the back surface of the printed wiring board means that the back surface of the pair of main surfaces of the printed wiring board when the surface on which the electronic element is mounted is the front surface, that is, the electronic device is mounted. It means the surface that does not.
  • the mounting apparatus 100 may have an inspection apparatus 114. For example, when an LED is used as the electronic element 108, an actual spot check device can be used.
  • the method for inserting the printed wiring board into the mounting apparatus is not particularly limited, as shown in FIG. 1, the printed wiring board 122 is stretched between a pair of reels 118 and 120, and the printed wiring board 122 runs between both reels.
  • a reel-to-reel system in which a plurality of electronic elements 108 are continuously mounted on the printed wiring board 122 while being moved can be employed.
  • the overall length of the apparatus can be reduced to about one-tenth of that of the conventional apparatus, and the installation space for the mounting apparatus of the present invention can be greatly reduced. it can.
  • This mounting method includes a step of supplying the solder 104 onto the wiring pattern 122B of the printed wiring board 122, a step of placing the electronic element 108 on the solder 104, and a step toward the solder 104 on which the electronic element 108 is placed. Irradiating light having an emission center wavelength in the near-infrared region with a laser from the back surface 124 side of the printed wiring board 122, and the light passes through the substrate 122A and reaches the wiring pattern 122B. The wiring pattern 122B is heated to melt the solder 104, and the electronic element 108 is soldered to the printed wiring board 122.
  • the present inventors when irradiated with laser light having a light emission center wavelength in the near infrared region from the back side of the printed wiring board including a substrate made of a predetermined material, it has been found that the wiring pattern can be heated while suppressing damage to the substrate.
  • the wiring pattern 122B is heated by the light transmitted through the substrate 122A, and heat is transferred from the wiring pattern 122B having good heat conduction efficiency to the solder 104, so that soldering can be performed in a shorter time than before. It becomes.
  • the laser beam has a very high energy, there is a high probability that the solder 104 will be scattered if the laser beam is directly applied to the solder 104.
  • near infrared light is emitted from the back side of the printed wiring board.
  • the wiring pattern 122B plays a role of a buffer material that prevents bumping of the solvent component in the solder 104, scattering of the solder 104 can be suppressed.
  • an electronic element is not damaged.
  • the light output from the laser and reaching the substrate mainly passes through the substrate and heats the wiring pattern.
  • the other light is reflected from the back surface of the substrate or slightly absorbed by the substrate. That is, the present invention solders using light transmitted through the substrate, and does not directly use the heat transmitted from the substrate.
  • the mounting apparatus of the present invention places a very light burden on the board. Further, when transferring heat from the substrate, it is necessary to use a laser having a low energy density in order to reduce damage to the substrate during heating of the substrate. However, in the present invention, soldering is performed using a laser having a high energy density. be able to. Therefore, the mounting apparatus of the present invention can perform soldering in a shorter time compared to the prior art. Further, a material that is not so strong against heat that has not been considered for use as a mounting substrate until now can also be used as a mounting substrate for electronic devices.
  • the laser beam used in the present invention has an emission center wavelength in the near infrared region.
  • the substrate may be damaged.
  • the emission center wavelength is preferably in the range of 800 nm to 1100 nm. In this mounting method, it is desirable that the transmittance of the substrate at the emission center wavelength of light irradiated from the back surface of the printed wiring board is high from the viewpoint of energy efficiency.
  • a substrate having a transmittance of 20% or more at the light emission center wavelength it is preferable to select a substrate having a transmittance of 20% or more at the light emission center wavelength. If the transmittance of the substrate is less than 20%, it may take time to melt the solder.
  • a material for the substrate 122A polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or the like is preferable. Production volume is very large and inexpensive.
  • PET and / or PEN is hydrolyzed by heat in the conventional reflow method, but according to the present invention, it can be used without being melted or being burnt. In this mounting method, a flexible substrate having a predetermined thickness or less of a flexible material is used as the substrate 122A.
  • the flexible substrate is vulnerable to heat, use in a reflow method or a method of heating a substrate as disclosed in Patent Document 1 is not practical. Since the load due to heat is small, a flexible substrate can be preferably used. By using a flexible substrate, the above-described reel-to-reel mounting device can be obtained. Thereby, productivity of an electronic component can be improved.
  • the output of the laser can be made higher than in the conventional method in which soldering is performed by heat transfer from the substrate. The laser output should be low enough that solder does not scatter and high enough that soldering does not take too long.
  • the substrate may be damaged and solder may be scattered.
  • the irradiation diameter of the laser beam is desirably about the same as the size of the wiring pattern on the substrate surface. If the pattern size is 20% or less, the substrate may be damaged by excessive energy per unit area, and if it is 100% or more, the electronic device on the upper surface may be damaged.
  • the electronic element 108 is preferably an LED element.
  • the soldering by the conventional reflow method cannot obtain a sufficient life as described above.
  • the soldering according to the present invention it is possible to manufacture an LED component having a longer life than the conventional one. it can.
  • LED lighting manufacturing method further includes a step of manufacturing the LED lighting from the LED component. That is, the mounting method of the electronic element by the mounting apparatus of the present invention is very useful for manufacturing the fluorescent lamp type LED.
  • the temperature distribution is uneven within a long reflow furnace, so that even if a printed wiring board of about 1.2 m is introduced into the reflow furnace, the substrate is distorted and the quality is affected. For this reason, for example, by mounting a plurality of LED elements on a short printed wiring board of about 30 cm to form an LED component of this length, and connecting the four LED components to a connector, the currently popular 1.2 m Produced long fluorescent lamp type LED lighting. This takes time and labor to connect, and causes problems such as half insertion of the connector and pin misalignment.
  • it is possible to manufacture LED components having a desired length by continuously mounting a plurality of LED elements on a printed wiring board having a desired length.
  • FIG. 3 is a schematic perspective view of the LED illumination obtained by the LED illumination manufacturing method according to the present invention.
  • the LED component 204 is fixed with a heat conductive adhesive 208 on the aluminum base 210 in the diffusion cover 202, and the heat generated from the LED component 204 is heat conduction. The heat is dissipated from the aluminum base 210 by being conducted to the aluminum base 210 through the adhesive 208.
  • the substrate 206 is white, it functions as a reflective film for light emitted from the LED component, so that the brightness can be improved.
  • Example 1 A substrate made of PET was used in Example 1 (1), and a substrate made of PEN was used in Example 1 (2).
  • a wiring pattern was formed on each substrate by etching a copper foil by a known method, and a printed wiring board was produced.
  • Each of the substrates used in Examples 1 and 2 has a thickness of 50 ⁇ m and has flexibility.
  • the LED elements were mounted while winding the substrate from one reel to the other reel by the reel-to-reel electronic element mounting apparatus of the present invention shown in FIG.
  • Cream solder was supplied onto the wiring pattern on the printed wiring board using a non-contact jet dispenser (Musano Engineering Co., Ltd .: Jet Master).
  • the LED element was mounted on the cream solder using a mounter (Okuhara Electric Co., Ltd .: tabletop mounter).
  • a semiconductor laser having an emission center wavelength of 920 nm manufactured by Hamamatsu Photonics Co., Ltd .: LD irradiation device 15W type
  • the laser output is adjusted to 12.5 W
  • the irradiation diameter on the substrate surface is 0.4 mm
  • the printed wiring board The solder was applied by irradiating light toward the solder on which the LED element was placed from the back side of the substrate.
  • substrate in the light emission center wavelength in each test example was 75%, when it measured previously using the spectrometer (the Hamamatsu Photonics company make: model number C10082MD).
  • the irradiated light passes through the substrate and reaches the wiring pattern, the wiring pattern is heated to melt the solder, and the LED is used as a printed wiring board. It was possible to solder.
  • ⁇ 4-2> Evaluation of Damage to Substrate The presence or absence of scratches on the substrate after mounting and scratches on the melt was visually evaluated. In Examples 1 (1) and 1 (2), no substrate damage was observed.
  • the electronic device mounting apparatus according to the second embodiment will be described with reference to FIGS.
  • the present embodiment is a mounting apparatus for mounting and soldering a plurality of electronic elements when the traveling movement of the flexible substrate is stopped. Therefore, the mounting apparatus according to the second embodiment is configured by providing a plurality of supply apparatuses 102, mounting apparatuses 106, or lasers 110.
  • a case where two supply devices, two placement devices, and two lasers are provided will be described. However, this quantity is not limited to two and can be increased as appropriate.
  • the configuration of the solder supply apparatus 102 of this embodiment will be described with reference to FIG.
  • FIG. 6A is a view of the flexible substrate as viewed from the traveling direction.
  • FIG. 6A is a view of the flexible substrate as viewed from the traveling direction.
  • FIG. 6B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate.
  • the left side is the supply reel 118 side
  • the right side is the take-up reel 120 side.
  • two supply devices are arranged in the traveling direction of the substrate (A and B in the figure). If the pitch at which the two electronic elements are placed is the same as the position interval of the nozzle 102N at the tip of the supply device, the nozzles 102N of the two supply devices move down to a certain distance from the substrate and supply an appropriate amount of solder (dropping). ) Then, it moves in the arrow direction (X direction) in FIG.
  • the nozzle A and the nozzle B are configured to move together.
  • solder for mounting two electronic elements is supplied, and then two supply devices run the substrate. It moves in the moving direction and supplies solder for mounting the remaining two electronic elements. Further, when the mounting interval between the two electronic elements is different from the interval between the nozzles of the two supply devices, the solder A is supplied by operating the nozzles A and B of the supply device one by one as shown in FIG. In this case, as shown in FIG. 7, first, solder is supplied by operating the nozzle A in the order of FIGS. 7A and 7B to the mounting position of the first electronic element, and then FIG. The nozzle is moved in the X direction of a), operated in the order of FIGS.
  • each supply device can be configured to be independent and movable in the traveling movement direction (X direction) of the substrate and in a direction perpendicular to the traveling movement direction (Y direction).
  • the configuration of the electronic device mounting apparatus 106 according to this embodiment will be described with reference to FIG.
  • FIG. 8A is a view of the flexible substrate as viewed from the traveling direction.
  • FIG. 8B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate.
  • the left side is the supply reel 118 side, and the right side is the take-up reel 120 side.
  • two placement devices are arranged in the direction of travel of the substrate (A and B in the figure). If the pitch at which the two electronic elements are placed is the same as the position interval of the suction nozzle 106N at the tip of the placement device, the supply device places the electronic elements on the solder supplied to the substrate as it is.
  • the suction nozzle A and the suction nozzle B are configured to move together.
  • the electronic elements are mounted one by one in the same manner as the operation of the nozzle of the supply device shown in FIG.
  • the suction nozzles A and B of the placement device operate in the order of FIGS. 9A, 9B, 9C, and 9D, and two electronic elements are placed.
  • the mounting device can be configured to be independent and movable in the traveling movement direction (X direction) of the substrate and in a direction perpendicular to the traveling movement direction (Y direction).
  • the configuration of the soldering laser 110 of this embodiment will be described with reference to FIG. Fig.10 (a) is the figure seen from the traveling direction of the flexible substrate.
  • FIG. Fig.10 (a) is the figure seen from the traveling direction of the flexible substrate.
  • 10B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate.
  • the left side is the supply reel 118 side
  • the right side is the take-up reel 120 side.
  • two lasers are arranged in the direction of travel of the substrate (A and B in the figure). If the pitch for mounting (soldering) two electronic elements is the same as the position interval of the laser 110, the two lasers are simultaneously irradiated with light to solder the electronic elements. Thereafter, the laser 110 moves in the direction of the arrow (X direction) in FIG. 10A and irradiates the laser beam at a predetermined position to perform soldering.
  • Laser A and laser B are configured to move together.
  • the lasers A and B shown in FIG. 11 are operated one by one to mount (solder) the electronic elements.
  • the first electronic element is soldered by operating the laser A as shown in FIG. 11A, and then the laser in the X direction of FIG. 10A.
  • the second electronic element is soldered by operating the laser B as shown in FIG. 11 (b) and irradiating the laser beam, and then moves the laser in the X direction of FIG. 10 (a).
  • the laser B is operated again to solder the electronic element.
  • each laser can be configured to be independent and movable in a traveling movement direction (X direction) of the substrate and a direction (Y direction) perpendicular to the traveling movement direction.
  • the mounting device of the present invention can increase the occupation area without increasing the occupied area.
  • a configuration in which a plurality of electronic elements are simultaneously mounted and mounted can be employed.
  • different types of electronic elements can be simultaneously mounted and mounted. Therefore, by using the mounting apparatus of the present invention, the efficiency of mounting the electronic element is remarkably improved, and the usage application of the mounting apparatus of the present invention is greatly expanded.
  • the electronic device can be soldered to the printed wiring board in a shorter time than in the past by suppressing the damage of the electronic device, the scattering of the solder, and the damage of the substrate. Moreover, it is possible to provide a mounting apparatus and a method for manufacturing an electronic component capable of mounting various types of electronic elements, together with a method for manufacturing LED lighting including the manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided is an apparatus for mounting an electronic element, the apparatus being capable of suppressing the damage to the electronic element, the scattering of solder, and the damage to a substrate, and enabling soldering of the electronic element to a printed circuit board in a shorter amount of time than in the past. This apparatus (100) for mounting an electronic component (112) mounts an electronic element (108) on a printed circuit board (122) having a flexible substrate (122A) and a wiring pattern (122B) on the substrate, the apparatus for mounting an electronic component having: a supply device (102) for supplying solder (104) onto the wiring pattern (122B) of the printed circuit board (122); a placement device (106) for placing the electronic element (108) on the solder (104); and a laser (110) for directing light having a light-emission center wavelength within a range of 700-1100 nm from the back-surface (124) side of the printed circuit board toward the solder (104) on which the electronic element (108) is placed, the light passing through the substrate (122A) and reaching the wiring pattern (122B), heating the wiring pattern (122B) and causing the solder (104) to melt, and soldering the electronic element (108) to the printed circuit board (122).

Description

電子部品実装装置Electronic component mounting equipment
 本発明は、電子素子をプリント配線板に実装して電子部品を製造するための、電子素子の実装装置、電子部品の製造方法、および該製造方法の工程を含むLED照明の製造方法に関する。 The present invention relates to an electronic element mounting apparatus, an electronic component manufacturing method, and a method of manufacturing LED lighting including steps of the manufacturing method for mounting an electronic element on a printed wiring board to manufacture an electronic component.
 基板およびこの基板上の配線パターンを有するプリント配線板に電子素子を実装して電子部品を得る際、電子素子をプリント配線板にハンダ付けする主流な方法は、リフロー方式である。これは、プリント配線板の表面の配線パターン上にハンダを介して電子素子を搭載し、その後プリント配線板をリフロー炉内に搬送して、リフロー炉内でプリント配線板に所定温度の熱風を吹きつけることで、ハンダペーストを融解させ、電子素子をプリント配線板にハンダ付けするものである。リフロー炉内の温度は250℃~260℃程度となる。
 リフロー方式は上記のような高温を要するうえに、ハンダのみを加熱するものではなく、基板および電子素子の全体をも加熱してしまう。そのため、基板がゆがんで品質に影響が出る、電子素子に熱による悪影響が及ぶ、あるいは長尺基板の場合は長大なリフロー炉が必要になり、装置の設置スペースが広くなりすぎるなどの問題があった。電子素子への悪影響として、電子素子がLED素子であった場合には、長時間リフロー炉の熱に曝されると、LED素子部分の蛍光剤が劣化し、その結果十分な輝度が得られないという問題もあった。
 そこで近年、レーザによってハンダを局所的に加熱して、電子素子をプリント配線板にハンダ付けする手法が注目され始めている。
 まず図4に示すように、プリント配線板422上にハンダ404を介して電子素子408を載置したのち、プリント配線板422の表面側からハンダ404に対して直接レーザにより光を照射して、ハンダを融解させ、電子素子をプリント配線板にハンダ付けする方法が知られている。
 また特許文献1には、ハンダを介して電子部品を載置したプリント配線板の裏面側からレーザにより光を照射して、ハンダを融解させ、電子素子をプリント配線板にハンダ付けする方法が記載されている。この方法では、図5に示すように、ポリイミド樹脂を主成分とした可撓性基板522Aおよび配線パターン522Bからなるプリント配線板522の配線パターン522B上にハンダ504を介して電子素子508を載置し、プリント配線板の裏面524側からYAGレーザ等により光を照射する。この方法では、レーザ光は基板522Aを透過せず、基板522Aにレーザ光が吸収される結果、基板522Aが加熱され、その熱が基板522Aからハンダ504へと伝わることによって、ハンダが融解する。
 さらに特許文献2には、基板に開口部を設け、この開口部内に導電部材と該導電部材上のハンダを配置し、基板の裏面側から導電部材に対してレーザにより光を照射することで、導電部材を介して間接的にハンダを加熱する方法が記載されている。
特開2001−111207号公報 特開2006−278385号公報
When an electronic element is mounted on a printed circuit board having a wiring pattern on the board and the printed circuit board to obtain an electronic component, a main method for soldering the electronic element to the printed wiring board is a reflow method. This is because electronic elements are mounted on the wiring pattern on the surface of the printed wiring board via solder, and then the printed wiring board is transported into a reflow furnace and hot air at a predetermined temperature is blown to the printed wiring board in the reflow furnace. By soldering, the solder paste is melted and the electronic element is soldered to the printed wiring board. The temperature in the reflow furnace is about 250 ° C. to 260 ° C.
The reflow method requires a high temperature as described above and heats not only the solder but also the entire substrate and the electronic element. For this reason, the substrate is distorted and the quality is affected, the electronic element is adversely affected by heat, or in the case of a long substrate, a long reflow furnace is required, and the installation space of the device becomes too wide. It was. As an adverse effect on the electronic element, if the electronic element is an LED element, the fluorescent agent in the LED element portion deteriorates when exposed to heat in a reflow furnace for a long time, and as a result, sufficient luminance cannot be obtained. There was also a problem.
Therefore, in recent years, attention has been given to a technique in which solder is locally heated by a laser to solder an electronic element to a printed wiring board.
First, as shown in FIG. 4, after the electronic element 408 is placed on the printed wiring board 422 via the solder 404, the solder 404 is directly irradiated with light from the surface side of the printed wiring board 422. A method is known in which solder is melted and an electronic element is soldered to a printed wiring board.
Patent Document 1 describes a method of irradiating light with a laser from the back side of a printed wiring board on which an electronic component is placed via solder, melting the solder, and soldering the electronic element to the printed wiring board. Has been. In this method, as shown in FIG. 5, an electronic element 508 is placed on a wiring pattern 522B of a printed wiring board 522 composed of a flexible substrate 522A mainly composed of polyimide resin and a wiring pattern 522B through solder 504. Then, light is irradiated from the back surface 524 side of the printed wiring board by a YAG laser or the like. In this method, the laser beam does not pass through the substrate 522A, and the substrate 522A absorbs the laser beam. As a result, the substrate 522A is heated, and the heat is transferred from the substrate 522A to the solder 504, thereby melting the solder.
Furthermore, in Patent Document 2, an opening is provided in the substrate, a conductive member and solder on the conductive member are disposed in the opening, and the conductive member is irradiated with light from the back surface side of the substrate. A method of heating solder indirectly through a conductive member is described.
JP 2001-111207 A JP 2006-278385 A
 しかしながら、レーザによる従来のハンダ付け方法には、以下のような問題があった。まず、図4に示した方法では、プリント配線板の表面側からレーザ光を照射するため、光が電子素子408に当たり、電子素子を傷つけてしまうおそれがあった。また、ハンダにレーザ光が直接照射されるため、ハンダペーストに含まれる溶剤成分が突沸することによりハンダが飛び散り、基板上に多数のハンダボールが形成されるという問題があった。この場合、ハンダボールによる短絡が電子部品の性能に悪影響を及ぼすため好ましくない。
 また、特許文献1に記載の方法では、基板522Aからハンダ504への伝熱によってハンダ504を加熱するため、加熱効率が悪く、十分にハンダを加熱することができないか、ハンダ付けに非常に時間がかかるという問題があった。また、本発明者らがこの方法をさらに検討したところ、基板の光照射部位が溶けたり、焦げたりするなど損傷することが判明した。さらに、この方法ではポリイミド以外の可撓性基板を用いることはできなかった。
 さらに特許文献2に記載の方法は、基板に開口部を設けるものであり、実用的でない。
 よって、レーザによってハンダを局所的に加熱して、電子素子をプリント配線板にハンダ付けする、好適かつ実用的な手法が求められているものの、未だ存在しない状況であった。
 そこで本発明は、上記課題に鑑み、電子素子の損傷、ハンダの飛び散り、および基板の損傷を抑制して、従来よりも短時間で電子素子をプリント配線板に対してハンダ付けすることが可能な、電子部品の実装装置および電子部品の製造方法を、該製造方法を含むLED照明の製造方法とともに提供することを目的とする。
However, the conventional soldering method using a laser has the following problems. First, in the method shown in FIG. 4, since laser light is irradiated from the surface side of the printed wiring board, there is a possibility that the light hits the electronic element 408 and damages the electronic element. Further, since the solder is directly irradiated with laser light, the solvent component contained in the solder paste bumps and solder scatters, resulting in a problem that a large number of solder balls are formed on the substrate. In this case, a short circuit caused by a solder ball is not preferable because it adversely affects the performance of the electronic component.
In the method described in Patent Document 1, since the solder 504 is heated by heat transfer from the substrate 522A to the solder 504, the heating efficiency is low and the solder cannot be sufficiently heated, or the soldering is very time consuming. There was a problem that it took. Further, when the present inventors further studied this method, it was found that the light irradiation site of the substrate was damaged, such as melting or scorching. Further, this method cannot use a flexible substrate other than polyimide.
Furthermore, the method described in Patent Document 2 is not practical because an opening is provided in the substrate.
Therefore, although a suitable and practical technique for locally heating the solder with a laser and soldering the electronic element to the printed wiring board is required, it has not yet existed.
Therefore, in view of the above problems, the present invention can suppress electronic element damage, solder scattering, and substrate damage, and can solder an electronic element to a printed wiring board in a shorter time than before. An object of the present invention is to provide an electronic component mounting apparatus and an electronic component manufacturing method together with an LED illumination manufacturing method including the manufacturing method.
 上記の目的を達成するべく本発明者が鋭意検討した結果、特定の波長のレーザ光をプリント配線板の裏面から照射することによって、プリント配線板裏面から入射した光が直接配線パターンを加熱するという新たなハンダ加熱メカニズムを実現することができ、その結果、上記目的を達成することができることを見出し、本発明を完成するに至った。本発明は、上記の知見および検討に基づくものであり、その要旨構成は以下の通りである。
 第1発明の電子素子の実装装置は、可撓性基板および該基板上の配線パターンを有するプリント配線板に電子素子を実装する電子素子の実装装置であって、前記プリント配線板の配線パターン上にハンダを供給する供給装置と、前記ハンダ上に前記電子素子を載置する載置装置と、前記電子素子を載置した前記ハンダに向けて、近赤外光領域に発光中心波長を有する光を前記プリント配線板の裏面側から照射するレーザと、を有し、前記光は前記基板中を透過して前記配線パターンに到達し、前記配線パターンを加熱して前記ハンダを融解させ、前記電子素子を前記プリント配線板にハンダ付けすることを特徴とする。
 第1発明の電子素子の実装装置によれば、電子素子の損傷、ハンダの飛び散り、および基板の損傷を抑制して、従来よりも短時間で電子素子をプリント配線板に対してハンダ付けし電子素子を実装することができる。またリフロー炉を使用していないので、プリント配線板が長時間加熱することが無いので、耐熱性の無い安価な材料をプリント配線板の材料として使用することができる。
 第2発明の電子素子の実装装置は、第1発明において、前記供給装置、前記載置装置または前記レーザを複数個設けたことを特徴とする。
 第2発明の電子素子の実装装置によれば、ハンダの供給装置、電子素子の載置装置、またはハンダ付け用のレーザを複数個設けているので、本発明の電子素子の実装装置を以下のように使用することが可能となり、装置の使用用途が大幅に拡大する。
 ハンダの供給装置を複数個設けることにより、多種類の電子素子の実装に対応することができる。供給装置を複数個設けているので電子素子の実装部分(ハンダ付け部分)が複数個所あれば、同時にハンダを供給することが可能となる。
 電子素子の載置装置を複数個設けているので、隣り合う電子素子が接近していて同時に載置することができない場合は、最初まず1個目の電子素子を載置しその後、基板を走行移動させることなく、別の載置装置で隣接位置に電子素子を載置することができる。
 レーザを複数個設けることにより、多種類の電子素子の実装に対応することができる。レーザを複数個設けているので電子素子の実装部分(ハンダ付け部分)が複数個所あれば、同時にレーザ照射しハンダ付けすることが可能となる。
 第2発明の電子素子の実装装置によれば、複数の電子素子を同時に可撓性基板上に載置し、複数のハンダ供給装置および複数のレーザが協働し、複数の電子素子を実装することができる。従って電子素子を可撓性基板に従来に比較して格段に高速で実装することができる。
 また供給装置、載置装置、またはレーザに軸移動装置を付加することにより電子素子の実装箇所の変更や増加に容易に対応することができる。
 第3発明の電子素子の実装装置は、第1発明または第2発明において、前記プリント配線板の裏面から照射した光の前記発光中心波長における前記基板の透過率が20%以上であることを特徴としている。
 第3発明の電子素子の実装装置によれば、可撓性基板のレーザ光の透過率が20%以上であり、基板を透過したレーザ光が電子素子を加熱して損傷させることなく短時間でハンダ付けし電子素子を実装することができる。
 第4発明の電子素子の実装装置は、第1発明から第3発明のいずれかにおいて、前記プリント配線板が一対のリール間に張り渡され、前記プリント配線板を両リール間で走行移動させ、前記プリント配線板に複数の前記電子素子を連続的に実装することを特徴とする。
 第4発明の電子素子の実装装置は、ハンダを供給装置にて供給する際に、その先端のノズルは可撓性基板と一定距離離れているので、連続して可撓性基板を走行移動させることがでる。また第1発明と第2発明の効果も相乗し短時間(高速)で電子素子を基板上に実装させることができる。
 またリールに巻きつけた可撓性基板を引き出しながら供給し、電子素子が実装完了した基板をリールに巻きつけて収納する構成となっているので、装置の全長を従来の装置に比較して約10分の1程度の長さとすることができる。従って、第4発明の電子素子の実装装置は、従来に比較して格段に高速・高効率で電子素子の実装が可能であり、しかもその設置スペースは格段に小さくすることができる。
 従来の構成の装置であれば、長尺のLED照明装置用の実装基板を製造する場合、リフロー炉を使用しているので、長尺の実装基板を製造するために短尺の実装基板を複数個製造し、それらを電気的に接続する方法で製造していた。ところが本発明の実装装置であれば、可撓性基板を使用しているので、どのような長尺の実装基板でも製造することできる。電子素子の実装を高効率化することができる。
 第5発明の電子素子の実装装置は、第1発明から第4発明のいずれかにおいて、前記レーザの出力がレーザの基板表面における照射径1mmの照射スポットあたり15~250Wの範囲内であることを特徴としている。
 第5発明によれば、レーザ光の基板表面における照射径1mmの照射スポットあたり15~250Wの範囲内であり、電子素子を加熱することなく短時間で、ハンダ付けが可能であり、基板を透過したレーザ光が電子素子を加熱して損傷させることなく短時間でハンダ付けし電子素子を実装することができる。
 第6発明の電子素子の実装装置は、第1発明から第5発明のいずれかにおいて、前記レーザの照射時間が1秒以下であることを特徴とする。
 第6発明によれば、レーザ光の照射時間が1秒以下であり、電子素子を加熱することなく短時間で、ハンダ付けが可能であり、高速・高効率で電子素子の実装を行うことができる。
 第7発明の電子素子の実装装置は、第1発明から第6発明のいずれかにおいて、前記電子素子がLED素子であることを特徴とする。
 第7発明の電子素子の実装装置によれば、電子素子はLED素子であり、LED照明装置用の実装基板を高速・高効率で製造することができる。
 第8発明の電子素子の実装装置は、第7発明において、前記可撓性基板が白色であることを特徴とする。
 第8発明の電子素子の実装装置によれば、可撓性基板が白色であり、LED照明装置の発光明度が高いLED照明装置を高速・高効率で製造することができる。
As a result of intensive studies by the inventor in order to achieve the above object, the light incident from the back surface of the printed wiring board directly heats the wiring pattern by irradiating laser light of a specific wavelength from the back surface of the printed wiring board. It has been found that a new solder heating mechanism can be realized and, as a result, the above object can be achieved, and the present invention has been completed. This invention is based on said knowledge and examination, The summary structure is as follows.
An electronic element mounting apparatus according to a first aspect of the present invention is an electronic element mounting apparatus for mounting an electronic element on a flexible printed circuit board and a printed wiring board having a wiring pattern on the printed circuit board. A supply device for supplying solder, a mounting device for mounting the electronic element on the solder, and a light having an emission center wavelength in a near-infrared light region toward the solder on which the electronic element is mounted Irradiating from the back side of the printed wiring board, and the light passes through the substrate to reach the wiring pattern, heats the wiring pattern, melts the solder, and The element is soldered to the printed wiring board.
According to the electronic device mounting apparatus of the first aspect of the invention, the electronic device is soldered to the printed wiring board in a shorter time than before, and the electronic device is prevented from being damaged, the solder is scattered, and the substrate is damaged. An element can be mounted. Moreover, since the reflow furnace is not used, the printed wiring board is not heated for a long time, so that an inexpensive material having no heat resistance can be used as the material of the printed wiring board.
According to a second aspect of the present invention, there is provided the electronic device mounting apparatus according to the first aspect, wherein a plurality of the supply device, the mounting device, or the laser are provided.
According to the electronic device mounting apparatus of the second invention, a plurality of solder supply devices, electronic device mounting devices, or soldering lasers are provided. Thus, the usage of the apparatus can be greatly expanded.
By providing a plurality of solder supply devices, it is possible to cope with mounting of various types of electronic elements. Since a plurality of supply devices are provided, if there are a plurality of electronic element mounting portions (soldering portions), it is possible to supply solder simultaneously.
Since a plurality of electronic element mounting devices are provided, when adjacent electronic elements are close to each other and cannot be mounted at the same time, the first electronic element is first mounted and then the substrate is run. The electronic element can be placed at an adjacent position by another placement device without being moved.
By providing a plurality of lasers, it is possible to cope with mounting of various types of electronic elements. Since a plurality of lasers are provided, if there are a plurality of electronic element mounting portions (soldering portions), it is possible to perform laser irradiation and soldering simultaneously.
According to the electronic element mounting apparatus of the second invention, a plurality of electronic elements are simultaneously mounted on the flexible substrate, and the plurality of solder supply devices and the plurality of lasers cooperate to mount the plurality of electronic elements. be able to. Therefore, the electronic element can be mounted on the flexible substrate at a much higher speed than conventional.
Further, by adding an axis moving device to the supply device, the mounting device, or the laser, it is possible to easily cope with the change or increase in the mounting location of the electronic element.
According to a third aspect of the present invention, there is provided the electronic device mounting apparatus according to the first or second aspect, wherein the transmittance of the substrate at the emission center wavelength of the light irradiated from the back surface of the printed wiring board is 20% or more. It is said.
According to the electronic device mounting apparatus of the third invention, the laser beam transmittance of the flexible substrate is 20% or more, and the laser beam transmitted through the substrate can be heated in a short time without damaging the electronic device. An electronic element can be mounted by soldering.
The electronic device mounting apparatus according to a fourth aspect of the present invention is the electronic device mounting apparatus according to any one of the first to third aspects, wherein the printed wiring board is stretched between a pair of reels, and the printed wiring board is moved between the reels. A plurality of the electronic elements are continuously mounted on the printed wiring board.
In the electronic device mounting apparatus according to the fourth aspect of the invention, when the solder is supplied by the supply device, the nozzle at the tip thereof is separated from the flexible substrate by a certain distance, so that the flexible substrate is continuously moved and moved. It comes out. Further, the effects of the first invention and the second invention are also synergistic, and the electronic element can be mounted on the substrate in a short time (high speed).
In addition, the flexible board wound around the reel is supplied while being pulled out, and the board on which the electronic elements have been mounted is wound around the reel for storage. The length can be about 1/10. Therefore, the electronic device mounting apparatus according to the fourth aspect of the present invention can mount electronic devices at a much higher speed and higher efficiency than the conventional one, and can further reduce the installation space.
In the case of an apparatus having a conventional configuration, when manufacturing a mounting board for a long LED lighting device, a reflow furnace is used. Therefore, in order to manufacture a long mounting board, a plurality of short mounting boards are used. It was manufactured by a method of manufacturing and electrically connecting them. However, since the mounting apparatus of the present invention uses a flexible substrate, any long mounting substrate can be manufactured. The mounting of electronic elements can be made highly efficient.
According to a fifth aspect of the present invention, there is provided the electronic device mounting apparatus according to any one of the first to fourth aspects, wherein the output of the laser is within a range of 15 to 250 W per irradiation spot having an irradiation diameter of 1 mm on the substrate surface of the laser. It is a feature.
According to the fifth aspect of the invention, the laser beam is within a range of 15 to 250 W per irradiation spot with a diameter of 1 mm on the surface of the substrate, can be soldered in a short time without heating the electronic element, and passes through the substrate. It is possible to mount the electronic element by soldering in a short time without heating and damaging the electronic element.
The electronic device mounting apparatus according to a sixth aspect of the present invention is characterized in that, in any one of the first to fifth aspects, the laser irradiation time is 1 second or less.
According to the sixth invention, the laser light irradiation time is 1 second or less, soldering is possible in a short time without heating the electronic element, and the electronic element can be mounted at high speed and high efficiency. it can.
According to a seventh aspect of the present invention, there is provided the electronic device mounting apparatus according to any one of the first to sixth aspects, wherein the electronic device is an LED device.
According to the electronic device mounting apparatus of the seventh aspect of the invention, the electronic device is an LED device, and a mounting substrate for an LED lighting device can be manufactured at high speed and high efficiency.
An electronic element mounting apparatus according to an eighth aspect of the present invention is the electronic device mounting apparatus according to the seventh aspect, wherein the flexible substrate is white.
According to the electronic device mounting apparatus of the eighth aspect of the invention, it is possible to manufacture an LED illumination device having a white flexible substrate and a high emission brightness of the LED illumination device at high speed and high efficiency.
 図1は、本発明に従う実施例1の電子素子の実装装置を示す模式図である。
 図2は、図1に示す装置内で、レーザ照射によるハンダ付けの部分を拡大して示す模式図である。
 図3は、本発明に従うLED照明の製造方法により得たLED照明の模式斜視図である。
 図4は、従来の電子部品の実装装置内で、レーザ照射によるハンダ付けの部分を拡大して示す模式図である。
 図5は、従来の別の電子部品の実装装置内で、レーザ照射によるハンダ付けの部分を拡大して示す模式図である。
 図6は、本発明に従う実施例2の電子素子の実装装置で使用する供給装置の構成の説明図である。
 図7は、本発明に従う実施例2の電子素子の実装装置で使用する供給装置の構成の説明図である。
 図8は、本発明に従う実施例2の電子素子の実装装置で使用する載置装置の構成の説明図である。
 図9は、本発明に従う実施例2の電子素子の実装装置で使用する載置装置の構成の説明図である。
 図10は、本発明に従う実施例2の電子素子の実装装置で使用するレーザの構成の説明図である。
 図11は、本発明に従う実施例2の電子素子の実装装置で使用するレーザの構成の説明図である。
FIG. 1 is a schematic diagram showing an electronic device mounting apparatus according to a first embodiment of the present invention.
FIG. 2 is an enlarged schematic view showing a portion to be soldered by laser irradiation in the apparatus shown in FIG.
FIG. 3 is a schematic perspective view of the LED illumination obtained by the LED illumination manufacturing method according to the present invention.
FIG. 4 is an enlarged schematic view showing a soldering portion by laser irradiation in a conventional electronic component mounting apparatus.
FIG. 5 is an enlarged schematic view showing a soldering portion by laser irradiation in another conventional electronic component mounting apparatus.
FIG. 6 is an explanatory diagram of a configuration of a supply device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
FIG. 7 is an explanatory diagram of the configuration of the supply device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
FIG. 8 is an explanatory diagram of the configuration of the mounting device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
FIG. 9 is an explanatory diagram of the configuration of the mounting device used in the electronic device mounting apparatus according to the second embodiment of the present invention.
FIG. 10 is an explanatory diagram of a configuration of a laser used in the electronic device mounting apparatus according to the second embodiment of the present invention.
FIG. 11 is an explanatory diagram of a laser configuration used in the electronic device mounting apparatus according to the second embodiment of the present invention.
 100  電子素子の実装装置
 102  供給装置
 104  ハンダ
 106  載置装置
 108  電子素子
 110  レーザ
 112  電子部品
 114  検査装置
 116  ライン
 118  リール(供給側)
 120  リール(巻取側)
 122  プリント配線板
 122A 基板
 122B 配線パターン
 124  プリント配線板の裏面
 200  LED照明
 202  拡散カバー
 204  LED
 206  基板
 208  導電性接着剤
 210  アルミ基台
 212  端子
 214  端子
DESCRIPTION OF SYMBOLS 100 Electronic element mounting apparatus 102 Supply apparatus 104 Solder 106 Mounting apparatus 108 Electronic element 110 Laser 112 Electronic component 114 Inspection apparatus 116 Line 118 Reel (supply side)
120 reel (winding side)
122 printed wiring board 122A substrate 122B wiring pattern 124 back surface of printed wiring board 200 LED illumination 202 diffusion cover 204 LED
206 Substrate 208 Conductive adhesive 210 Aluminum base 212 Terminal 214 Terminal
 以下、図面を参照しつつ本発明の実施形態をより詳細に説明する。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings.
<1>電子素子の実装装置
 図1および図2を参照して、本発明の実施例1の電子素子の実装装置100を説明する。この実装装置100は、基板122Aおよびこの基板上の配線パターン122Bを有するプリント配線板122に電子素子108を実装し、電子部品112を製造する。なお、本明細書では、JISC5603およびIEC60914に従い、「プリント配線板」は、基板と、基板上に形成される配線パターンとを含み、実装する電子素子は含まない。またプリント配線板122は、可撓性性を有する基板である。詳細は、後述する。
 まず、実装装置100は、プリント配線板の配線パターン122B上にハンダ104を供給する供給装置102を有する。供給装置102は、特に限定されないが、非接触ディスペンサとすることが好ましい。非接触ディスペンサは、詳細は図示しないが、ハンダを収容するタンクと、ハンダをプリント配線板と離間した位置からプリント配線板に対して吐出する吐出ノズルと、タンクから吐出ノズルとを連結し、タンクから吐出ノズルへとハンダを供給するための連結部と、これらを制御する制御部と、を有する。この供給装置102によれば、所定量のハンダをプリント配線板に対して離間した位置から供給することができる。そのため、プリント配線板と吐出ノズルとが接触した状態でハンダを供給する装置に比べて、ハンダの持ち帰りを抑制し、また吐出ヘッドの上下動によるタイムロスも抑えることができる。また、ハンダの破棄量が少ないので環境面からも好ましい。
 次に、実装装置100は、ハンダ104上に電子素子108を載置する載置装置106を有する。載置装置106は、特に限定されず、例えばチップマウンターなどの従来公知の載置装置を用いることができる。
 次に、実装装置100はレーザ110を有する。本発明の特徴的構成として、このレーザ110は、図2に示すように、電子素子108を載置したハンダ104に向けて、近赤外領域に発光中心波長を有する光をプリント配線板の裏面124側から照射するものである。照射した光は、基板122A中を透過して配線パターン122Bに到達し、配線パターン122Bを加熱し、ハンダ104が融解する。こうして電子素子108はプリント配線板122にハンダ付けされる。ここで、照射する光は発光中心波長が800nm~1100nmの範囲内であることが好ましい。
 実装装置100として、特定の範囲に発光中心波長を有する光をプリント配線板の裏面側から照射するレーザを用いれば、該装置で電子素子を実装する基板を適切に選択することによって、基板からの伝熱によるハンダの融解ではなく、配線パターンからの伝熱でハンダをより直接的に加熱する新たなハンダ加熱のメカニズムを採用している。
 レーザ110は、発光中心波長を上記範囲に設定できるものであれば特に限定されないが、発光中心波長が920nmの半導体レーザ、1064nmのNd−YAGレーザなどを使用することができる。ここで本明細書において、「発光中心波長」とは、レーザが発する光のスペクトルにおいて、最も高い光量を示す波長を意味する。また、本明細書において「プリント配線板の裏面」とは、プリント配線板の一対の主面のうち、電子素子を実装する面を表面とした際の、その裏の面、すなわち電子素子を実装しない面を意味する。
 実装装置100中には検査装置114を有してもよい。例えば、LEDを電子素子108として用いる場合に実点燈検査用装置を用いることができる。
 実装装置へのプリント配線板の挿入方法は、特に限定しないが、図1に示すようにプリント配線板122が一対のリール118,120間に張り渡され、プリント配線板122を両リール間で走行移動させながら、プリント配線板122に複数の電子素子108を連続的に実装するリールトゥリール方式とすることができる。このような方式とすることにより、装置の全体長さを従来の装置に比較して10分の1程度にすることができ、本発明の実装装置の設置スペースを格段に省スペースとすることができる。
<2>電子素子の実装方法(実装装置の使用方法)
 次に、図1および図2を参照して、本発明の実施例1の電子素子の実装装置による電子素子の実装方法を説明する。この実装方法は、プリント配線板122の配線パターン122B上にハンダ104を供給する工程と、このハンダ104上に電子素子108を載置する工程と、この電子素子108を載置したハンダ104に向けて、近赤外領域に発光中心波長を有する光をプリント配線板122の裏面124側からレーザで照射する工程とを有し、その光は基板122A中を透過して配線パターン122Bに到達し、配線パターン122Bを加熱してハンダ104を融解させ、電子素子108をプリント配線板122にハンダ付けする。
 以下、本発明の上記特徴的工程を採用したことの技術的意義を、作用効果とともに具体例で説明する。詳細な工程は実施例で後述するが、本発明者らは、近赤外領域に発光中心波長を有するレーザ光を、所定の素材からなる基板を含むプリント配線板の裏面側から照射したところ、基板の損傷を抑制しつつ配線パターンを加熱することができることを見出した。これを利用すれば、基板122Aを透過した光により配線パターン122Bを加熱し、熱伝導効率のよい配線パターン122Bからハンダ104に伝熱させることにより、従来よりも短時間でハンダ付けすることが可能となる。
 さらに、レーザ光は非常にエネルギーが高いため、レーザ光をハンダ104に直接照射すればハンダ104が飛散してしまう確率が高いところ、本発明では、近赤外光をプリント配線板の裏面側から照射することによって、配線パターン122Bがハンダ104中の溶剤成分の突沸を防ぐ緩衝材の役割を果たすため、ハンダ104の飛び散りを抑制することができる。そして、プリント配線板の裏面側から照射することから電子素子を損傷することもない。
 この実装方法では、レーザから出力し基板に到達した光は主に基板中を透過し配線パターンを加熱させる。そして、その他の光は基板の裏面で反射するか、わずかに基板に吸収される。つまり、本発明は基板を透過する光を利用してハンダ付けするものであって、基板から伝わる熱を直接利用するものではない。このため、本発明の実装装置は、基板への負担は非常に軽い。また、基板から伝熱させる場合には基板加熱時における基板の損傷を低減させるため、低いエネルギー密度のレーザを使用する必要があったが、本発明ではエネルギー密度の高いレーザを用いてハンダ付けすることができる。よって、本発明の実装装置は、従来技術に比べて短時間でハンダ付けを行うことが可能である。また、これまで実装基板としての使用は考えられなかったような、熱にそれほど強くない材料を電子素子の実装基板として用いることもできる。
 本発明に用いるレーザ光は、近赤外領域に発光中心波長を有する。発光中心波長が近赤外領域よりも短い場合、基板を損傷させるおそれがある。また、発光中心波長が近赤外領域よりも長い場合、エネルギーが非常に低いためハンダを融解するのに時間がかかってしまい、短時間でのハンダ付けが可能という本発明の効果を十分に発揮できなくなるおそれがある。この観点から、発光中心波長が800nm~1100nmの範囲内であることが好ましい。
 本実装方法において、プリント配線板の裏面から照射した光の発光中心波長における基板の透過率はエネルギー効率の観点から高い方が望ましい。具体的には、光の発光中心波長における透過率が、20%以上である基板を選択することが好ましい。基板の透過率が20%より小さいとハンダを融解させるために時間がかかってしまうおそれがある。
 基板122Aの素材としては、ポリエチレンテレフタレート(PET) 、ポリエチレンナフタレート(PEN)などが好ましい。生産量も非常に多く、安価である。PETおよび/またはPENを含む基板は、従来のリフロー方式では熱で加水分解を起こしてしまうが、本発明によれば、加水分解することもなく、溶かしたり焦がしたりすることなく用いることができる。
 本実装方法では、可撓性材料を所定以下の厚みとした可撓性基板を基板122Aとして使用している。可撓性基板は、熱に対して脆弱性を有するため、リフロー方式や特許文献1に開示されるような基板を加熱する方法への使用が現実的ではなかったが、本発明は基板への熱による負荷が小さいため、可撓性基板を好適に用いることができる。可撓性基板を用いることで、既述のリールトゥリール方式の実装装置とすることができる。これにより、電子部品の生産性を向上させることができる。
 本実装装置および実装方法では、基板からの伝熱でハンダ付けする従来方法よりもレーザの出力を高くすることができる。レーザの出力としては、ハンダが飛び散らない程度に低く、ハンダ付けに時間がかかり過ぎない程度に高ければよい。具体的には、レーザの基板表面における照射径1mmの照射スポットあたり15~250Wの範囲内であることが好ましい。15Wよりも小さいと、ハンダを融解するために時間がかかり、短時間でのハンダ付けが可能という本発明の効果を十分に発揮できなくなるおそれがある。また、250Wを超えると、基板に損傷を与えると共に、ハンダの飛び散りが発生するおそれがある。
 また、レーザ光の照射径は基板表面において配線パターンのサイズと同等程度が望ましい。パターンサイズの20%以下の場合には、単位面積あたりの過剰なエネルギーにより基板に損傷を与え、100%以上の場合には上面の電子素子に損傷を与える可能性がある。
 本実装装置および実装方法では、基板からの伝熱で、ハンダ付けする従来方法よりも短時間で、ハンダ付けを行うことができ、具体的には、レーザの照射時間を1秒以下とすることができる。このため、生産性を非常に向上させることができる。
 本発明において、電子素子108をLED素子とすることが好ましい。この場合には、従来のリフロー方式でのハンダ付けでは既述の通りに十分な寿命が得られなくなるが、本発明によるハンダ付けによれば、従来よりも寿命の長いLED部品を製造することができる。ただし、実装する電子素子としてはLEDに限られず、チップコンデンサ、チップ抵抗器、CCD(電荷結合素子)等のセンサー部品、一般半導体部品のBGA(ball grid array)、QFP(Quad Flat Package)、CSP(Chip size package)などでもよい。
<3>LED照明装置の製造方法
 次に、本発明の実装装置を使用したLED照明の製造方法を説明する。このLED照明の製造方法は、上記のLED部品の製造方法における工程に加えて、このLED部品からLED照明を製造する工程をさらに有する。
 すなわち、本発明の実装装置による電子素子の実装方法は、蛍光灯型LEDを製造するのに非常に有益である。リフロー方式の場合、長いリフロー炉の内部では温度分布にムラがあるため、例えば1.2m程度のプリント配線板でもリフロー炉内に導入すると、基板が歪み、品質に影響を及ぼす。そのため、例えば、30cm程度の短いプリント配線板に複数のLED素子を実装し、この長さのLED部品としたのち、4個のLED部品をコネクタ接続することで、現在普及している1.2m長の蛍光灯型LED照明を製造していた。これでは接続する手間もかかる上に、コネクタの半差しやピンずれなどの不良を引き起こしていた。しかしながら、本発明によれば、所望の長さのプリント配線板に連続的に複数のLED素子を実装して、所望の長さのLED部品を製造することができる。
 本発明に用いる電子素子がLEDである場合、基板が白色であることが好ましい。図3は、本発明に従うLED照明の製造方法により得たLED照明の模式斜視図である。図3に示すように、LED照明200は、拡散カバー202の中においてアルミ基台210の上に導熱性接着剤208でLED部品204を固定しており、LED部品204から発せられた熱は導熱性接着剤208を通じて、アルミ基台210へ導熱される事によりアルミ基台210から放熱している。基板206が白色であればLED部品から発した光の反射膜として機能するため、明るさを向上できる。
<4>本発明の実装装置により得られたLED部品の評価
 本発明の効果をさらに明確にするため、以下に説明する実施例・比較例の実験を行った比較評価について説明する。
<4−1>LED部品の製造
 実施例1(1)にはPETからなる基板を用い、実施例1(2)にはPENからなる基板を用いた。まず、各基板上に、公知の方法により銅箔をエッチングすることで配線パターンを形成し、プリント配線板を作製した。実施例1および2に用いる基板はいずれも50μmの厚みであり、可撓性を有する。
 次に図1に示す本発明のリールトゥリール方式の電子素子の実装装置により片方のリールから他方のリールに基板を巻き取りながら、LED素子の実装を行った。プリント配線板上の配線パターンの上に非接触ジェットディスペンサ(武蔵野エンジニアリング社製:ジェットマスター)を用いて、クリームハンダを供給した。次に、マウンター(奥原電気社製:卓上マウンター)を用いてクリームハンダ上にLED素子を載置した。次に、発光中心波長が920nmの半導体レーザ(浜松ホトニクス社製:LD照射装置15Wタイプ)を用いて、レーザ出力を12.5Wに調節し、基板表面における照射径0.4mmで、プリント配線板の裏面側からLED素子の載置されたハンダに向けて光を照射し、ハンダ付けをした。各試験例での発光中心波長における基板の透過率は、事前に分光器(浜松ホトニクス社製:型番C10082MD)を用いて測定したところ、各々75%であった。
 この条件下において、実施例1(1),1(2)では照射した光が基板中を透過して配線パターンに到達し、配線パターンを加熱してハンダを融解させ、LEDをプリント配線板にハンダ付けすることができていた。
<4−2>基板の損傷評価
 実装後の基板の焼け跡や融解跡の傷の有無を目視により評価した。実施例1(1),1(2)では基板の損傷は見られなかった。
<4−3>ハンダ付けにかかる時間の評価
 ハンダフィレットが正しく形成されるまでの時間を測定した。実施例1(1),1(2)では基板を透過した光によってハンダ付けができたため、0.4秒というごく短時間でハンダ付けができた。
<4−4>ハンダ付けの評価
 ハンダの突沸によるハンダボールの発生の有無を目視により評価したところ、いずれもハンダの飛び散りは発生しなかった。
 なお、いずれの実施例もレーザをプリント配線板の表側から照射するものではないため、LEDの損傷は見られなかった。
<1> Electronic Device Mounting Device An electronic device mounting device 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. The mounting apparatus 100 mounts an electronic element 108 on a printed wiring board 122 having a substrate 122A and a wiring pattern 122B on the substrate, and manufactures an electronic component 112. In this specification, in accordance with JISC5603 and IEC60914, the “printed wiring board” includes a substrate and a wiring pattern formed on the substrate, and does not include an electronic element to be mounted. The printed wiring board 122 is a flexible substrate. Details will be described later.
First, the mounting apparatus 100 includes a supply apparatus 102 that supplies the solder 104 onto the wiring pattern 122B of the printed wiring board. The supply device 102 is not particularly limited, but is preferably a non-contact dispenser. Although not shown in detail, the non-contact dispenser connects a tank for containing solder, a discharge nozzle for discharging the solder to the printed wiring board from a position separated from the printed wiring board, and a discharge nozzle from the tank. A connecting portion for supplying solder from the discharge nozzle to the discharge nozzle, and a control portion for controlling them. According to the supply device 102, a predetermined amount of solder can be supplied from a position separated from the printed wiring board. Therefore, compared with a device that supplies solder in a state where the printed wiring board and the discharge nozzle are in contact with each other, it is possible to suppress the take-out of the solder and to suppress time loss due to the vertical movement of the discharge head. Further, since the amount of discarded solder is small, it is preferable from the viewpoint of environment.
Next, the mounting apparatus 100 includes a mounting device 106 that mounts the electronic element 108 on the solder 104. The mounting device 106 is not particularly limited, and a conventionally known mounting device such as a chip mounter can be used.
Next, the mounting apparatus 100 includes a laser 110. As a characteristic configuration of the present invention, as shown in FIG. 2, the laser 110 emits light having a light emission center wavelength in the near infrared region toward the solder 104 on which the electronic element 108 is mounted. Irradiate from 124 side. The irradiated light passes through the substrate 122A and reaches the wiring pattern 122B, heats the wiring pattern 122B, and the solder 104 melts. Thus, the electronic element 108 is soldered to the printed wiring board 122. Here, the emitted light preferably has an emission center wavelength in the range of 800 nm to 1100 nm.
If a laser that emits light having a light emission center wavelength in a specific range from the back side of the printed wiring board is used as the mounting apparatus 100, by appropriately selecting the board on which the electronic element is mounted by the apparatus, Instead of melting the solder by heat transfer, a new solder heating mechanism is adopted that heats the solder more directly by heat transfer from the wiring pattern.
The laser 110 is not particularly limited as long as the emission center wavelength can be set in the above range, and a semiconductor laser having an emission center wavelength of 920 nm, an Nd-YAG laser of 1064 nm, or the like can be used. Here, in this specification, the “emission center wavelength” means a wavelength showing the highest light amount in the spectrum of light emitted from the laser. In addition, in this specification, “the back surface of the printed wiring board” means that the back surface of the pair of main surfaces of the printed wiring board when the surface on which the electronic element is mounted is the front surface, that is, the electronic device is mounted. It means the surface that does not.
The mounting apparatus 100 may have an inspection apparatus 114. For example, when an LED is used as the electronic element 108, an actual spot check device can be used.
Although the method for inserting the printed wiring board into the mounting apparatus is not particularly limited, as shown in FIG. 1, the printed wiring board 122 is stretched between a pair of reels 118 and 120, and the printed wiring board 122 runs between both reels. A reel-to-reel system in which a plurality of electronic elements 108 are continuously mounted on the printed wiring board 122 while being moved can be employed. By adopting such a system, the overall length of the apparatus can be reduced to about one-tenth of that of the conventional apparatus, and the installation space for the mounting apparatus of the present invention can be greatly reduced. it can.
<2> Mounting method of electronic elements (Using mounting device)
Next, with reference to FIG. 1 and FIG. 2, the electronic element mounting method by the electronic element mounting apparatus of Example 1 of the present invention will be described. This mounting method includes a step of supplying the solder 104 onto the wiring pattern 122B of the printed wiring board 122, a step of placing the electronic element 108 on the solder 104, and a step toward the solder 104 on which the electronic element 108 is placed. Irradiating light having an emission center wavelength in the near-infrared region with a laser from the back surface 124 side of the printed wiring board 122, and the light passes through the substrate 122A and reaches the wiring pattern 122B. The wiring pattern 122B is heated to melt the solder 104, and the electronic element 108 is soldered to the printed wiring board 122.
Hereinafter, the technical significance of adopting the above characteristic steps of the present invention will be described with specific examples together with the effects. Detailed processes will be described later in the Examples, the present inventors, when irradiated with laser light having a light emission center wavelength in the near infrared region from the back side of the printed wiring board including a substrate made of a predetermined material, It has been found that the wiring pattern can be heated while suppressing damage to the substrate. By using this, the wiring pattern 122B is heated by the light transmitted through the substrate 122A, and heat is transferred from the wiring pattern 122B having good heat conduction efficiency to the solder 104, so that soldering can be performed in a shorter time than before. It becomes.
Furthermore, since the laser beam has a very high energy, there is a high probability that the solder 104 will be scattered if the laser beam is directly applied to the solder 104. In the present invention, near infrared light is emitted from the back side of the printed wiring board. By irradiating, since the wiring pattern 122B plays a role of a buffer material that prevents bumping of the solvent component in the solder 104, scattering of the solder 104 can be suppressed. And since it irradiates from the back surface side of a printed wiring board, an electronic element is not damaged.
In this mounting method, the light output from the laser and reaching the substrate mainly passes through the substrate and heats the wiring pattern. The other light is reflected from the back surface of the substrate or slightly absorbed by the substrate. That is, the present invention solders using light transmitted through the substrate, and does not directly use the heat transmitted from the substrate. For this reason, the mounting apparatus of the present invention places a very light burden on the board. Further, when transferring heat from the substrate, it is necessary to use a laser having a low energy density in order to reduce damage to the substrate during heating of the substrate. However, in the present invention, soldering is performed using a laser having a high energy density. be able to. Therefore, the mounting apparatus of the present invention can perform soldering in a shorter time compared to the prior art. Further, a material that is not so strong against heat that has not been considered for use as a mounting substrate until now can also be used as a mounting substrate for electronic devices.
The laser beam used in the present invention has an emission center wavelength in the near infrared region. If the emission center wavelength is shorter than the near infrared region, the substrate may be damaged. In addition, when the emission center wavelength is longer than the near-infrared region, the energy is very low, so it takes time to melt the solder, and the effect of the present invention that the soldering in a short time is possible is sufficiently exhibited. There is a risk that it will not be possible. From this viewpoint, the emission center wavelength is preferably in the range of 800 nm to 1100 nm.
In this mounting method, it is desirable that the transmittance of the substrate at the emission center wavelength of light irradiated from the back surface of the printed wiring board is high from the viewpoint of energy efficiency. Specifically, it is preferable to select a substrate having a transmittance of 20% or more at the light emission center wavelength. If the transmittance of the substrate is less than 20%, it may take time to melt the solder.
As a material for the substrate 122A, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or the like is preferable. Production volume is very large and inexpensive. A substrate containing PET and / or PEN is hydrolyzed by heat in the conventional reflow method, but according to the present invention, it can be used without being melted or being burnt.
In this mounting method, a flexible substrate having a predetermined thickness or less of a flexible material is used as the substrate 122A. Since the flexible substrate is vulnerable to heat, use in a reflow method or a method of heating a substrate as disclosed in Patent Document 1 is not practical. Since the load due to heat is small, a flexible substrate can be preferably used. By using a flexible substrate, the above-described reel-to-reel mounting device can be obtained. Thereby, productivity of an electronic component can be improved.
In this mounting apparatus and mounting method, the output of the laser can be made higher than in the conventional method in which soldering is performed by heat transfer from the substrate. The laser output should be low enough that solder does not scatter and high enough that soldering does not take too long. Specifically, it is preferably within the range of 15 to 250 W per irradiation spot with an irradiation diameter of 1 mm on the substrate surface of the laser. If it is smaller than 15 W, it takes time to melt the solder, and there is a possibility that the effect of the present invention that soldering in a short time is possible cannot be sufficiently exhibited. If it exceeds 250 W, the substrate may be damaged and solder may be scattered.
The irradiation diameter of the laser beam is desirably about the same as the size of the wiring pattern on the substrate surface. If the pattern size is 20% or less, the substrate may be damaged by excessive energy per unit area, and if it is 100% or more, the electronic device on the upper surface may be damaged.
In this mounting apparatus and mounting method, it is possible to perform soldering in a shorter time than the conventional method of soldering by heat transfer from the substrate. Specifically, the laser irradiation time should be 1 second or less. Can do. For this reason, productivity can be improved greatly.
In the present invention, the electronic element 108 is preferably an LED element. In this case, the soldering by the conventional reflow method cannot obtain a sufficient life as described above. However, according to the soldering according to the present invention, it is possible to manufacture an LED component having a longer life than the conventional one. it can. However, electronic devices to be mounted are not limited to LEDs, but include chip capacitors, chip resistors, CCD (charge coupled device) sensor parts, general semiconductor parts BGA (ball grid array), QFP (Quad Flat Package), CSP. (Chip size package) may be used.
<3> Manufacturing Method of LED Lighting Device Next, a manufacturing method of LED lighting using the mounting device of the present invention will be described. In addition to the steps in the above LED component manufacturing method, the LED lighting manufacturing method further includes a step of manufacturing the LED lighting from the LED component.
That is, the mounting method of the electronic element by the mounting apparatus of the present invention is very useful for manufacturing the fluorescent lamp type LED. In the case of the reflow method, the temperature distribution is uneven within a long reflow furnace, so that even if a printed wiring board of about 1.2 m is introduced into the reflow furnace, the substrate is distorted and the quality is affected. For this reason, for example, by mounting a plurality of LED elements on a short printed wiring board of about 30 cm to form an LED component of this length, and connecting the four LED components to a connector, the currently popular 1.2 m Produced long fluorescent lamp type LED lighting. This takes time and labor to connect, and causes problems such as half insertion of the connector and pin misalignment. However, according to the present invention, it is possible to manufacture LED components having a desired length by continuously mounting a plurality of LED elements on a printed wiring board having a desired length.
When the electronic element used for this invention is LED, it is preferable that a board | substrate is white. FIG. 3 is a schematic perspective view of the LED illumination obtained by the LED illumination manufacturing method according to the present invention. As shown in FIG. 3, in the LED lighting 200, the LED component 204 is fixed with a heat conductive adhesive 208 on the aluminum base 210 in the diffusion cover 202, and the heat generated from the LED component 204 is heat conduction. The heat is dissipated from the aluminum base 210 by being conducted to the aluminum base 210 through the adhesive 208. If the substrate 206 is white, it functions as a reflective film for light emitted from the LED component, so that the brightness can be improved.
<4> Evaluation of LED parts obtained by mounting apparatus of the present invention In order to further clarify the effects of the present invention, comparative evaluations in which experiments of Examples and Comparative Examples described below were conducted will be described.
<4-1> Manufacture of LED components A substrate made of PET was used in Example 1 (1), and a substrate made of PEN was used in Example 1 (2). First, a wiring pattern was formed on each substrate by etching a copper foil by a known method, and a printed wiring board was produced. Each of the substrates used in Examples 1 and 2 has a thickness of 50 μm and has flexibility.
Next, the LED elements were mounted while winding the substrate from one reel to the other reel by the reel-to-reel electronic element mounting apparatus of the present invention shown in FIG. Cream solder was supplied onto the wiring pattern on the printed wiring board using a non-contact jet dispenser (Musano Engineering Co., Ltd .: Jet Master). Next, the LED element was mounted on the cream solder using a mounter (Okuhara Electric Co., Ltd .: tabletop mounter). Next, by using a semiconductor laser having an emission center wavelength of 920 nm (manufactured by Hamamatsu Photonics Co., Ltd .: LD irradiation device 15W type), the laser output is adjusted to 12.5 W, the irradiation diameter on the substrate surface is 0.4 mm, and the printed wiring board The solder was applied by irradiating light toward the solder on which the LED element was placed from the back side of the substrate. The transmittance | permeability of the board | substrate in the light emission center wavelength in each test example was 75%, when it measured previously using the spectrometer (the Hamamatsu Photonics company make: model number C10082MD).
Under these conditions, in Examples 1 (1) and 1 (2), the irradiated light passes through the substrate and reaches the wiring pattern, the wiring pattern is heated to melt the solder, and the LED is used as a printed wiring board. It was possible to solder.
<4-2> Evaluation of Damage to Substrate The presence or absence of scratches on the substrate after mounting and scratches on the melt was visually evaluated. In Examples 1 (1) and 1 (2), no substrate damage was observed.
<4-3> Evaluation of time required for soldering The time until solder fillets were correctly formed was measured. In Examples 1 (1) and 1 (2), since soldering was possible by light transmitted through the substrate, soldering was possible in a very short time of 0.4 seconds.
<4-4> Evaluation of soldering When the presence or absence of solder balls due to bumping of solder was visually evaluated, no solder scattering occurred.
In any of the examples, since the laser was not irradiated from the front side of the printed wiring board, the LED was not damaged.
 図6から図11を用いて実施例2の電子素子の実装装置について説明する。本実施例は、可撓性基板の走行移動が停止している際に、複数の電子素子を載置しハンダ付けする実装装置である。従って実施例2の実装装置は、供給装置102、載置装置106、またはレーザ110を複数個設けて構成されている。本実施例では、供給装置、載置装置及びレーザを各2個設けた場合で説明する。但しこの数量については2個に限定されるものではなく、適宜増やすことができる。
 本実施例のハンダの供給装置102の構成について図6により説明する。図6(a)は、可撓性基板の走行移動方向から見た図である。図6(b)は、可撓性基板の走行移動方向と直角な方向から見た図であり、向かって左側が供給リール118側であり、向かって右側が巻取リール120側である。図6(b)から分かるように、供給装置は基板の走行移動方向に2個配置されている(図中AとB)。電子素子2個の載置するピッチが供給装置先端のノズル102Nの位置間隔と同一であれば、そのまま2個の供給装置のノズル102Nが基板からある一定距離まで下降接近しハンダを適量供給(滴下)する。その後、図6(a)の矢印方向(X方向)に移動し所定の箇所にハンダを適量供給する。ノズルAとノズルBは、一緒に移動する構成となっている。
 また4個の電子素子を載置する場合は、図6(c)に示すように、電子素子2個分を載置するためのハンダを供給し、その後に2個の供給装置が基板の走行移動方向に移動し、残り2個の電子素子を載置するためのハンダを供給する。
 また電子素子2個の載置間隔と2個の供給装置のノズルの間隔が異なる場合は、図7に示すように供給装置のノズルA、Bを1個ずつ動作させてハンダを供給する。この場合、図7に示すように、まず1つ目の電子素子の載置位置に対して、図7(a)(b)の順にノズルAを動作させてハンダを供給し、その後図6(a)のX方向にノズルを移動させ、図7(a)(b)の順に動作させて再度ノズルAにてハンダを供給する。次に2つ目の電子素子の載置位置に対して、図7(c)(d)の順にノズルBを動作させてハンダを供給し、その後図6(a)のX方向にノズルを移動させ、図7(c)(d)の順に動作させて再度ノズルBにてハンダを供給する。
 さらに各供給装置は、独立していて基板の走行移動方向(X方向)と走行移動方向と直角な方向(Y方向)へ移動可能な構成とすることもできる。
 本実施例の電子素子の載置装置106の構成について図8により説明する。図8(a)は、可撓性基板の走行移動方向から見た図である。図8(b)は、可撓性基板の走行移動方向と直角な方向から見た図であり、向かって左側が供給リール118側であり、向かって右側が巻取リール120側である。図8(b)から分かるように、載置装置は基板の走行移動方向に2個配置されている(図中AとB)。電子素子2個の載置するピッチが載置装置先端の吸着ノズル106Nの位置間隔と同一であれば、そのまま供給装置が基板に供給したハンダ上に電子素子を載置する。吸着ノズルAと吸着ノズルBは、一緒に移動する構成となっている。
 また電子素子2個の載置間隔と載置装置の吸着ノズルの間隔が異なる場合は、図9に示す供給装置のノズルの動作と同様に1個ずつ動作させて電子素子を載置する。この場合、図9(a)(b)(c)(d)の順に載置装置の吸着ノズルAとBは動作し、2個の電子素子が載置される。
 また載置装置は、独立していて基板の走行移動方向(X方向)と走行移動方向と直角な方向(Y方向)へ移動可能な構成とすることもできる。
 本実施例のハンダ付け用レーザ110の構成について図10により説明する。図10(a)は、可撓性基板の走行移動方向から見た図である。図10(b)は、可撓性基板の走行移動方向と直角な方向から見た図であり、向かって左側が供給リール118側であり、向かって右側が巻取リール120側である。図10(b)から分かるように、レーザは基板の走行移動方向に2個配置されている(図中AとB)。電子素子2個の実装(ハンダ付け)するピッチがレーザ110の位置間隔と同一であれば、そのまま2個のレーザから同時に光を照射し電子素子のハンダ付けを行なう。その後、レーザ110は、図10(a)の矢印方向(X方向)に移動し所定の位置でレーザ光を照射しハンダ付けを行う。レーザAとレーザBは、一緒に移動する構成となっている。
 また電子素子2個の載置間隔とレーザの間隔が異なる場合は、図11に示すレーザA、Bを1個ずつ動作させて電子素子を実装(ハンダ付け)する。この場合、図11に示すように、まず1つ目の電子素子に対して、図11(a)のようにレーザAを動作させてハンダ付けし、その後図10(a)のX方向にレーザを移動させて図11(a)のようにレーザAを再度動作させて電子素子をハンダ付けする。次に2つ目の電子素子に対して、図11(b)に示すようにレーザBを動作させてレーザ光を照射してハンダ付けし、その後図10(a)のX方向にレーザを移動させて図11(b)にように再度レーザBを動作させて電子素子をハンダ付けする。
 また各レーザは、独立していて基板の走行移動方向(X方向)と走行移動方向と直角な方向(Y方向)へ移動可能な構成とすることもできる。
 本実施例に記載したように、供給装置、載置装置、及びレーザを基板の走行移動方向に各複数個を配置することにより、本発明の実装装置は、その占有面積を拡大することなく、可撓性基板の走行移動が停止した際に、複数個の電子素子を同時に載置し実装する構成とすることができる。また可撓性基板の走行移動が停止した際に、それぞれ異なる種類の電子素子を同時に載置し実装することもできる。従って本発明の実装装置を使用するこよにより、電子素子を実装する効率が格段に向上するとともに、本発明の実装装置の使用用途が大幅に拡大する。
The electronic device mounting apparatus according to the second embodiment will be described with reference to FIGS. The present embodiment is a mounting apparatus for mounting and soldering a plurality of electronic elements when the traveling movement of the flexible substrate is stopped. Therefore, the mounting apparatus according to the second embodiment is configured by providing a plurality of supply apparatuses 102, mounting apparatuses 106, or lasers 110. In this embodiment, a case where two supply devices, two placement devices, and two lasers are provided will be described. However, this quantity is not limited to two and can be increased as appropriate.
The configuration of the solder supply apparatus 102 of this embodiment will be described with reference to FIG. FIG. 6A is a view of the flexible substrate as viewed from the traveling direction. FIG. 6B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate. The left side is the supply reel 118 side, and the right side is the take-up reel 120 side. As can be seen from FIG. 6B, two supply devices are arranged in the traveling direction of the substrate (A and B in the figure). If the pitch at which the two electronic elements are placed is the same as the position interval of the nozzle 102N at the tip of the supply device, the nozzles 102N of the two supply devices move down to a certain distance from the substrate and supply an appropriate amount of solder (dropping). ) Then, it moves in the arrow direction (X direction) in FIG. The nozzle A and the nozzle B are configured to move together.
When four electronic elements are mounted, as shown in FIG. 6 (c), solder for mounting two electronic elements is supplied, and then two supply devices run the substrate. It moves in the moving direction and supplies solder for mounting the remaining two electronic elements.
Further, when the mounting interval between the two electronic elements is different from the interval between the nozzles of the two supply devices, the solder A is supplied by operating the nozzles A and B of the supply device one by one as shown in FIG. In this case, as shown in FIG. 7, first, solder is supplied by operating the nozzle A in the order of FIGS. 7A and 7B to the mounting position of the first electronic element, and then FIG. The nozzle is moved in the X direction of a), operated in the order of FIGS. 7A and 7B, and the solder is supplied again by the nozzle A. Next, with respect to the mounting position of the second electronic element, the nozzle B is operated in the order of FIGS. 7C and 7D to supply solder, and then the nozzle is moved in the X direction of FIG. 6A. 7C and 7D, the solder is supplied again by the nozzle B.
Furthermore, each supply device can be configured to be independent and movable in the traveling movement direction (X direction) of the substrate and in a direction perpendicular to the traveling movement direction (Y direction).
The configuration of the electronic device mounting apparatus 106 according to this embodiment will be described with reference to FIG. FIG. 8A is a view of the flexible substrate as viewed from the traveling direction. FIG. 8B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate. The left side is the supply reel 118 side, and the right side is the take-up reel 120 side. As can be seen from FIG. 8B, two placement devices are arranged in the direction of travel of the substrate (A and B in the figure). If the pitch at which the two electronic elements are placed is the same as the position interval of the suction nozzle 106N at the tip of the placement device, the supply device places the electronic elements on the solder supplied to the substrate as it is. The suction nozzle A and the suction nozzle B are configured to move together.
Further, when the mounting interval between the two electronic elements is different from the spacing between the suction nozzles of the mounting device, the electronic elements are mounted one by one in the same manner as the operation of the nozzle of the supply device shown in FIG. In this case, the suction nozzles A and B of the placement device operate in the order of FIGS. 9A, 9B, 9C, and 9D, and two electronic elements are placed.
Further, the mounting device can be configured to be independent and movable in the traveling movement direction (X direction) of the substrate and in a direction perpendicular to the traveling movement direction (Y direction).
The configuration of the soldering laser 110 of this embodiment will be described with reference to FIG. Fig.10 (a) is the figure seen from the traveling direction of the flexible substrate. FIG. 10B is a view as seen from a direction perpendicular to the traveling direction of the flexible substrate. The left side is the supply reel 118 side, and the right side is the take-up reel 120 side. As can be seen from FIG. 10B, two lasers are arranged in the direction of travel of the substrate (A and B in the figure). If the pitch for mounting (soldering) two electronic elements is the same as the position interval of the laser 110, the two lasers are simultaneously irradiated with light to solder the electronic elements. Thereafter, the laser 110 moves in the direction of the arrow (X direction) in FIG. 10A and irradiates the laser beam at a predetermined position to perform soldering. Laser A and laser B are configured to move together.
When the mounting interval between the two electronic elements is different from the laser interval, the lasers A and B shown in FIG. 11 are operated one by one to mount (solder) the electronic elements. In this case, as shown in FIG. 11, first, the first electronic element is soldered by operating the laser A as shown in FIG. 11A, and then the laser in the X direction of FIG. 10A. To move the laser A again and solder the electronic element as shown in FIG. Next, the second electronic element is soldered by operating the laser B as shown in FIG. 11 (b) and irradiating the laser beam, and then moves the laser in the X direction of FIG. 10 (a). Then, as shown in FIG. 11B, the laser B is operated again to solder the electronic element.
In addition, each laser can be configured to be independent and movable in a traveling movement direction (X direction) of the substrate and a direction (Y direction) perpendicular to the traveling movement direction.
As described in the present embodiment, by arranging a plurality of supply devices, mounting devices, and lasers in the traveling movement direction of the substrate, the mounting device of the present invention can increase the occupation area without increasing the occupied area. When the traveling movement of the flexible substrate stops, a configuration in which a plurality of electronic elements are simultaneously mounted and mounted can be employed. Further, when the traveling movement of the flexible substrate stops, different types of electronic elements can be simultaneously mounted and mounted. Therefore, by using the mounting apparatus of the present invention, the efficiency of mounting the electronic element is remarkably improved, and the usage application of the mounting apparatus of the present invention is greatly expanded.
 本発明によれば、電子素子の損傷、ハンダの飛び散り、および基板の損傷を抑制して、従来よりも短時間で電子素子をプリント配線板に対してハンダ付けすることが可能な、省スペースでしかも多種類の電子素子の実装が可能な実装装置および電子部品の製造方法を、該製造方法を含むLED照明の製造方法とともに提供することができる。 According to the present invention, the electronic device can be soldered to the printed wiring board in a shorter time than in the past by suppressing the damage of the electronic device, the scattering of the solder, and the damage of the substrate. Moreover, it is possible to provide a mounting apparatus and a method for manufacturing an electronic component capable of mounting various types of electronic elements, together with a method for manufacturing LED lighting including the manufacturing method.

Claims (8)

  1.  可撓性基板および該基板上に配線パターンを有するプリント配線板に電子素子を実装する電子素子の実装装置であって、
     前記プリント配線板の配線パターン上にハンダを供給する供給装置と、
     前記ハンダ上に前記電子素子を載置する載置装置と、
     前記電子素子を載置した前記ハンダに向けて、近赤外光領域に発光中心波長を有する光を前記プリント配線板の裏面側から照射するレーザと、を有し、
     前記光は前記基板中を透過して前記配線パターンに到達し、前記配線パターンを加熱して前記ハンダを融解させ、前記電子素子を前記プリント配線板にハンダ付けすることを特徴とする電子素子の実装装置。
    An electronic element mounting apparatus for mounting an electronic element on a flexible substrate and a printed wiring board having a wiring pattern on the substrate,
    A supply device for supplying solder onto the wiring pattern of the printed wiring board;
    A mounting device for mounting the electronic element on the solder;
    A laser that irradiates light having an emission center wavelength in a near infrared light region from the back side of the printed wiring board toward the solder on which the electronic element is mounted,
    The light is transmitted through the substrate to reach the wiring pattern, the wiring pattern is heated to melt the solder, and the electronic element is soldered to the printed wiring board. Mounting device.
  2.  前記供給装置、前記載置装置、または前記レーザを複数個設けたことを特徴とする請求項1に記載の電子素子の実装装置。 2. The electronic device mounting apparatus according to claim 1, wherein a plurality of the supply device, the mounting device, or the laser are provided.
  3.  前記プリント配線板の裏面から照射した光の前記発光中心波長における前記基板の透過率が20%以上である、請求項1または請求項2に記載の電子素子の実装装置。 The electronic device mounting apparatus according to claim 1 or 2, wherein the transmittance of the substrate at the emission center wavelength of light irradiated from the back surface of the printed wiring board is 20% or more.
  4.  前記プリント配線板が一対のリール間に張り渡され、前記プリント配線板を両リール間て走行移動させ、前記プリント配線板に複数の前記電子素子を連続的に実装する、請求項1から請求項3のいずれか1項に記載の電子素子の実装装置。 The printed wiring board is stretched between a pair of reels, the printed wiring board is moved between both reels, and the plurality of electronic elements are continuously mounted on the printed wiring board. 4. The electronic device mounting apparatus according to any one of 3 above.
  5.  前記レーザの出力がレーザの基板表面における照射径1mmの照射スポットあたり15~250Wの範囲内である、請求項1~請求項4のいずれか1項に記載の電子素子の実装装置。 5. The electronic element mounting apparatus according to claim 1, wherein the output of the laser is within a range of 15 to 250 W per irradiation spot having an irradiation diameter of 1 mm on the laser substrate surface.
  6.  前記レーザの照射時間が1秒以下である、請求項1~請求項5のいずれか1項に記載の電子素子の実装装置。 6. The electronic device mounting apparatus according to claim 1, wherein the laser irradiation time is 1 second or less.
  7.  前記電子素子がLED素子である、請求項1~請求項6のいずれか1項に記載の電子素子の実装装置。 The electronic device mounting apparatus according to any one of claims 1 to 6, wherein the electronic device is an LED device.
  8.  前記基板が白色である、請求項7に記載の電子素子の実装装置。 The electronic element mounting apparatus according to claim 7, wherein the substrate is white.
PCT/JP2014/063140 2013-05-17 2014-05-14 Apparatus for mounting electronic component WO2014185543A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480028375.7A CN105230137A (en) 2013-05-17 2014-05-14 Electronic component mounting equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013104615A JP2014225586A (en) 2013-05-17 2013-05-17 Electronic component mounting apparatus
JP2013-104615 2013-05-17

Publications (1)

Publication Number Publication Date
WO2014185543A1 true WO2014185543A1 (en) 2014-11-20

Family

ID=51898513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063140 WO2014185543A1 (en) 2013-05-17 2014-05-14 Apparatus for mounting electronic component

Country Status (4)

Country Link
JP (1) JP2014225586A (en)
CN (1) CN105230137A (en)
TW (1) TW201513760A (en)
WO (1) WO2014185543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646088A (en) * 2015-06-02 2018-01-30 密克罗奇普技术公司 The integrated circuit of sensor with original position printing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106304673B (en) * 2015-05-14 2019-04-02 江苏华志珹智能科技有限公司 A kind of placement head of the high-precision with flight identification function
JP6554014B2 (en) 2015-10-20 2019-07-31 日本航空電子工業株式会社 Fixing structure and fixing method
EP3561870A4 (en) 2016-12-23 2020-11-25 Lumens Co., Ltd. Micro led module and manufacturing method therefor
JP6366799B1 (en) 2017-02-10 2018-08-01 ルーメンス カンパニー リミテッド Micro LED module and manufacturing method thereof
JP6232633B1 (en) * 2017-03-03 2017-11-22 山栄化学株式会社 Component mounting method
KR20190019745A (en) 2017-08-18 2019-02-27 주식회사 루멘스 light emitting element and method for making the same
JP6351004B1 (en) * 2017-09-29 2018-07-04 山栄化学株式会社 Active resin composition, cream solder, and printed wiring board
JP7289744B2 (en) 2019-07-11 2023-06-12 株式会社ジャパンディスプレイ Display device and manufacturing method thereof
JP7346190B2 (en) * 2019-09-17 2023-09-19 キオクシア株式会社 semiconductor manufacturing equipment
CN112638058B (en) * 2019-10-09 2022-07-29 苏州松下生产科技有限公司 Component mounting device and component mounting method
CN114120847A (en) * 2020-08-26 2022-03-01 东捷科技股份有限公司 Self-luminous pixel device
TWI777684B (en) * 2021-05-06 2022-09-11 斯託克精密科技股份有限公司 Method for transferring electronic device
CN114473122A (en) * 2022-03-21 2022-05-13 解淑华 LED lamp processing system and processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350169U (en) * 1986-09-19 1988-04-05
JP2002353595A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Electronic circuit component and manufacturing method therefor
JP2006237320A (en) * 2005-02-25 2006-09-07 Toshiba Matsushita Display Technology Co Ltd Flexible mounting substrate
JP2006303356A (en) * 2005-04-25 2006-11-02 Ricoh Microelectronics Co Ltd Packaging method of electronic component
JP2011119561A (en) * 2009-12-07 2011-06-16 Yamaha Motor Co Ltd Printed wiring board, printed circuit board and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350169U (en) * 1986-09-19 1988-04-05
JP2002353595A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Electronic circuit component and manufacturing method therefor
JP2006237320A (en) * 2005-02-25 2006-09-07 Toshiba Matsushita Display Technology Co Ltd Flexible mounting substrate
JP2006303356A (en) * 2005-04-25 2006-11-02 Ricoh Microelectronics Co Ltd Packaging method of electronic component
JP2011119561A (en) * 2009-12-07 2011-06-16 Yamaha Motor Co Ltd Printed wiring board, printed circuit board and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107646088A (en) * 2015-06-02 2018-01-30 密克罗奇普技术公司 The integrated circuit of sensor with original position printing

Also Published As

Publication number Publication date
JP2014225586A (en) 2014-12-04
TW201513760A (en) 2015-04-01
CN105230137A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2014185543A1 (en) Apparatus for mounting electronic component
WO2013065861A1 (en) Apparatus for manufacturing electronic part, method of manufacturing electronic part, and method of manufacturing led illumination
JP6263028B2 (en) Component mounting device
WO2013141392A1 (en) Method for manufacturing electronic component
JP2014017364A (en) Manufacturing system and manufacturing method of component mounting substrate
JP2016530723A (en) Position-stable soldering method
WO2014157716A1 (en) Printed wiring board and manufacturing method for mounting substrate using printed wiring board
KR101180481B1 (en) In-line reflow apparatus using a laser module
JP2006303356A (en) Packaging method of electronic component
US6583385B1 (en) Method for soldering surface mount components to a substrate using a laser
JP4675667B2 (en) Electronic component mounting method
KR20200081373A (en) LED light source module and its manufacturing method
JP2011119561A (en) Printed wiring board, printed circuit board and method of manufacturing the same
JP2014154626A (en) Printed wiring board and method of manufacturing mounting board using printed wiring board
KR102088902B1 (en) Reflow soldering apparatus and reflow soldering method
US11499688B2 (en) Light device, headlight and method
CN219598333U (en) Laser welding device and wafer repairing equipment
US20090145644A1 (en) Printed wiring board, air conditioner, and method of soldering printed wiring board
KR20130007473A (en) Led pcb substrate, pcb, led unit, lighting and its manufacture
JP4569361B2 (en) Circuit board and laser soldering method
US20120153307A1 (en) Led lighting device with excellent heat dissipation property
KR20230065752A (en) Infrared lamp assembly for soldering and printed circuit board soldering apparatus having the same
KR20240037706A (en) A Reflow Apparatus Including a LED or a LD and a Method for Reflowing with the Same
CN116275346A (en) Laser welding device and wafer repairing equipment
CN116967602A (en) Method and apparatus for soldering electronic components to circuit boards

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028375.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797234

Country of ref document: EP

Kind code of ref document: A1