WO2014185062A1 - Carbon dioxide reduction device and method for reducing carbon dioxide - Google Patents

Carbon dioxide reduction device and method for reducing carbon dioxide Download PDF

Info

Publication number
WO2014185062A1
WO2014185062A1 PCT/JP2014/002526 JP2014002526W WO2014185062A1 WO 2014185062 A1 WO2014185062 A1 WO 2014185062A1 JP 2014002526 W JP2014002526 W JP 2014002526W WO 2014185062 A1 WO2014185062 A1 WO 2014185062A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon dioxide
electrode
anode electrode
anode
Prior art date
Application number
PCT/JP2014/002526
Other languages
French (fr)
Japanese (ja)
Inventor
出口 正洋
聡史 四橋
寛 羽柴
山田 由佳
大川 和宏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015508350A priority Critical patent/JP5753641B2/en
Publication of WO2014185062A1 publication Critical patent/WO2014185062A1/en
Priority to US14/690,184 priority patent/US20150218719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron

Definitions

  • the present invention relates to a carbon dioxide reduction device that reduces carbon dioxide by light energy and a method for reducing carbon dioxide by the device.
  • Carbon dioxide is a substance that plays an important role in reserving carbon atoms in the carbon cycle on the earth. From the viewpoint of a carbon atom reservoir, CO 2 is a substance that can be a carbon source of various carbon compounds represented by organic compounds. However, since CO 2 is a material that is very stable in terms of energy, high reduction energy is required to use CO 2 as a carbon source.
  • Patent Documents 1 and 2 describe a method of using an oxide semiconductor such as titania and zirconia as a CO 2 reduction catalyst, more specifically, CO 2 in a suspension in which oxide semiconductor powder is dispersed in water. A method of irradiating light while introducing is disclosed.
  • Patent Documents 3 and 4 describe a method of using a composite compound of a semiconductor component such as a titanium compound and a metal component as a catalyst for CO 2 reduction, more specifically, dispersing the powder of the composite processed product in water. Discloses a method of irradiating light after introducing CO 2 into the suspension.
  • Patent Document 5 discloses a method of using a catalyst in which a semiconductor and a base material such as a rhenium organic complex or a ruthenium organic complex are joined so as to be able to exchange electrons with each other, more specifically, as a CO 2 reduction catalyst, A method is disclosed in which light is irradiated after CO 2 is introduced into a suspension in which the catalyst powder is dispersed in an organic solvent.
  • Patent Document 6 discloses a photochemical reaction device including an oxidation reaction electrode that oxidizes water to generate oxygen, and a reduction reaction electrode that is electrically joined to the electrode and that synthesizes a carbon compound by reducing carbon dioxide. Disclosure. Patent Document 6 also discloses titania, tungsten oxide, and tantalum oxynitride as materials for oxidation reaction electrodes, and the catalyst of Patent Document 5 as materials for reduction reaction electrodes. In the device of Patent Document 6, light is irradiated to both electrodes.
  • Patent Documents 7 and 8 disclose an electrochemical reduction device including an anode electrode made of an oxide semiconductor such as titania and a cathode electrode having a specific structure made of a specific metal, and an anode of the device A method for reducing CO 2 on a cathode electrode by irradiating the electrode with light is disclosed.
  • the devices of Patent Documents 7 and 8 require an external power source such as a solar cell or a potentiostat between the anode electrode and the cathode electrode.
  • Patent Document 9 discloses a device including an anode electrode having a nitride semiconductor region such as gallium nitride or aluminum gallium nitride on its surface and a cathode electrode made of a metal or a metal compound, and irradiating the anode electrode with light. Discloses a method for reducing CO 2 on a cathode electrode. The method of Patent Document 9 does not require an external power source between the anode electrode and the cathode electrode.
  • Patent Document 10 discloses that as an electrode of an apparatus for producing acidic water and alkaline water, the formula Al y Ga 1-xy In x N (xy ⁇ 0. 45, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1).
  • CO 2 and CO 2 is reduced without the use of external power, the efficiency of converting into carbon compounds higher than conventional, for reducing CO 2 by light energy
  • a reduction device and a method for reducing CO 2 by light energy are provided.
  • a feature of the technology disclosed herein is a CO 2 reduction device that reduces CO 2 by light energy, the device comprising: a first electrolysis containing CO 2 A cathode tank containing a liquid; an anode tank containing a second electrolytic solution connected to the cathode tank; and a first electrolytic solution disposed in a connecting portion between the anode tank and the cathode tank; A proton permeable membrane that functions as a partition between the second electrolytes and transmits hydrogen ions between the two electrolytes; and is disposed in the cathode chamber so as to be in contact with the first electrolyte A cathode electrode; and an anode electrode disposed inside the anode tank so as to be in contact with the second electrolytic solution.
  • the cathode electrode is in contact with the first electrolytic solution and has a CO 2 reduction reaction region made of a metal or a metal compound.
  • the anode electrode has a photochemical reaction region that is in contact with the second electrolytic solution and is made of a nitride semiconductor.
  • the region of the anode electrode has a stacked structure of a GaN layer and an Al x Ga 1-x N layer to which Mg is added (where 0 ⁇ x ⁇ 0.25).
  • the addition amount of Mg in the Al x Ga 1-x N layer, the Al x Ga 1-x N represents the number of Mg atoms contained per volume 1 cm 3 of the layer, 1 ⁇ 10 15 or more 1 ⁇ 10 19 It is as follows.
  • the anode electrode is disposed in the anode tank so that light can be irradiated onto the Al x Ga 1-x N layer in the photochemical reaction region.
  • the cathode electrode and the anode electrode are electrically connected to each other without an external power source.
  • the CO 2 reduction device and the method of reducing CO 2 of the present disclosure reduce CO 2 by light energy, which is more efficient than the conventional method for reducing CO 2 and converting it to a carbon compound without using an external power source. Apparatus and method.
  • FIG. 1A is a cross-sectional view schematically illustrating an example of an anode electrode provided in the CO 2 reduction device of the present disclosure.
  • FIG. 1B is a cross-sectional view schematically illustrating another example of the anode electrode provided in the CO 2 reduction device of the present disclosure.
  • FIG. 1C is a cross-sectional view schematically illustrating still another example of the anode electrode provided in the CO 2 reduction device of the present disclosure.
  • FIG. 1D is a cross-sectional view schematically showing still another example of the anode electrode provided in the CO 2 reduction device of the present disclosure.
  • FIG. 2A is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure.
  • FIG. 2B is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure.
  • FIG. 2C is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure.
  • FIG. 2D is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure.
  • FIG. 3 is a schematic diagram schematically illustrating an example of the CO 2 reduction device of the present disclosure and an example of the CO 2 reduction method of the present disclosure using the device.
  • FIG. 4 is a graph showing the amount of CO 2 reduction per unit time evaluated in Examples 1 to 3 and Comparative Example 1.
  • FIG. 5 is a graph showing the relationship between the amount of Mg atoms added to the AlGaN layer of the anode electrode and the amount of CO 2 reduction per unit time evaluated in Example 7.
  • a first aspect of the present disclosure is a CO 2 reduction device that reduces CO 2 by light energy, and includes a cathode tank that contains a first electrolytic solution containing CO 2 , and is connected to the cathode tank. 2 is disposed in a connecting portion between the anode tank and the cathode tank, and functions as a partition wall between the first electrolyte solution and the second electrolyte solution.
  • the electrode is in contact with the second electrolytic solution and has a photochemical reaction region made of a nitride semiconductor, and the region of the anode electrode includes a GaN layer and Mg-added Al x Ga 1-x N layer (where, 0 ⁇ x ⁇ 0.25) has a laminated structure of the Al x Ga 1-x amount of Mg in the N layer, the Al x Ga 1-x volume of N layers 1 cm 3 1 ⁇ 10 15 or more and 1 ⁇ 10 19 or less in terms of the number of Mg atoms contained in the area,
  • the Al addition amount of Mg in the x Ga 1-x N layer, the Mg atoms included in the volume 1cm per 3 of the Al x Ga 1-x N layer Provided is a CO 2 reduction device which is expressed by a number and is 1 ⁇ 10 16 to 1 ⁇ 10 18 inclusive.
  • a third aspect of the present disclosure provides a CO 2 reduction device in which the value of x is 0.10 or more and 0.15 or less in addition to the first or second aspect.
  • a CO 2 reduction device in which the GaN layer is composed of n-type GaN.
  • a metal oxide containing Ni is disposed on the Al x Ga 1-x N layer in the photochemical reaction region.
  • a CO 2 reduction device is provided.
  • a CO 2 reduction device in addition to the fifth aspect, a CO 2 reduction device in which the metal oxide is in the form of fine particles.
  • the metal constituting the reduction reaction region includes at least one selected from copper, gold, silver, tantalum, and indium.
  • a CO 2 reduction device is provided.
  • the first electrolyte solution is at least one selected from potassium hydrogen carbonate, sodium hydrogen carbonate, potassium chloride, and sodium chloride.
  • a CO 2 reduction device that is an aqueous solution containing the electrolyte is provided.
  • a ninth aspect of the present disclosure is a method for reducing CO 2 by a CO 2 reducing device, wherein the device is a CO 2 reducing device according to any one of the first to eighth aspects, and the method includes: The wavelength of the Al x Ga 1-x N layer in the photochemical reaction region of the anode electrode in a state where the first electrolytic solution and the second electrolytic solution are accommodated in the cathode tank and the anode tank, respectively. Irradiation with light of 365 nm or less advances the generation of electrons and hydrogen ions in the photochemical reaction region, and reduces the CO 2 contained in the first electrolyte solution in the reduction reaction region of the cathode electrode.
  • a method of reducing CO 2 comprising the steps of:
  • a method for reducing CO 2 further includes a step of introducing a gas containing carbon dioxide into the first electrolytic solution accommodated in the cathode chamber. provide.
  • An eleventh aspect of the present disclosure provides a method for reducing CO 2 , in addition to the ninth or tenth aspect, wherein the above step is performed in a state where the apparatus is placed at room temperature and atmospheric pressure.
  • the twelfth aspect of the present disclosure is selected from methanol, ethanol, acetaldehyde, formic acid, methane, ethylene, and carbon monoxide by the reaction of reducing the carbon dioxide in addition to any one of the ninth to eleventh aspects.
  • a method for reducing CO 2 produced by at least one species is provided.
  • a method for reducing CO 2 by light energy is conventionally known.
  • a method in which a semiconductor powder is dispersed in a solution containing CO 2 to form a suspension, and the powder acts as a CO 2 reduction catalyst (Reference 1-5), carriers generated in the catalyst by irradiation with light (reference 1-5) to easily recombine before electrons and holes) to reduce CO 2, it can not be achieved CO 2 reduction of high efficiency.
  • an oxidation reaction electrode anode electrode
  • a reduction reaction electrode cathode electrode
  • the amount of the reduced product generated by the reduction of CO 2 is the magnitude of the photovoltaic force generated at the anode electrode that is an electrode (photochemical electrode) that irradiates light, It depends on the amount of carrier generation obtained by photoexcitation of the electrode.
  • the suppression of carrier recombination described above increases the amount of carrier generation.
  • an anode electrode using an oxide semiconductor typified by titania the energy level of electrons excited by light is not sufficiently high with respect to the energy level required for CO 2 reduction.
  • An external power source such as a solar cell or a potentiostat is required between the electrodes.
  • the energy level of excited electrons is increased by using a nitride semiconductor for the anode electrode, so that the reduction reaction of CO 2 proceeds without potential support by an external power source. Can do.
  • the apparatus and method of the present disclosure employ a stacked structure of a GaN layer and an Al x Ga 1-x N layer (0 ⁇ x ⁇ 0.25) to which a specific amount of Mg is added. This increases the built-in potential formed at the interface between both layers, that is, the magnitude of the internal electric field. This increase further suppresses the recombination of carriers generated by photoexcitation, and increases the magnitude of the photovoltaic force and the amount of generated carriers in the anode electrode.
  • the apparatus and method of the present disclosure have a mechanism for reducing the loss of carriers excited in the anode electrode, which is a photochemical electrode, and increasing the magnitude of the photovoltaic force in the electrode.
  • a mechanism for reducing the loss of carriers excited in the anode electrode which is a photochemical electrode
  • Such a mechanism has not been disclosed conventionally.
  • the effect of this mechanism is observed, for example, as an increase in the value of current flowing from the anode electrode to the cathode electrode during light irradiation (an increase in the amount of carrier supplied from the anode electrode to the cathode electrode).
  • the effect contributes to achieving the CO 2 reduction with higher efficiency by the apparatus and method of the present disclosure.
  • Document 10 discloses an electrode using Al y Ga 1-xy In x N (xy ⁇ 0.45, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) to which Mg is added.
  • the said electrode is a cathode electrode
  • the reduction reaction of water is advanced by irradiating light to a cathode electrode.
  • an Al x Ga 1-x N layer to which Mg is added is used for the anode electrode, and the oxidation reaction of water proceeds by irradiating the anode electrode with light. Therefore, the apparatus and method according to the present disclosure are based on a technical idea that is completely different from the disclosure content of Document 10.
  • [CO 2 reduction device] (Anode electrode) 1A to 1D show examples of the anode electrode employed in the apparatus and method of the present disclosure.
  • carriers electrolyte
  • the generated electrons move to the cathode electrode that is electrically connected to the anode electrode.
  • the generated holes are used for the oxidation reaction of water at the anode electrode, and the hydrogen ions (protons) generated at that time are supplied to the anode side electrolyte solution (second electrolyte solution), the connection between the anode tank and the cathode tank.
  • this anode electrode is a photochemical electrode for CO 2 reduction. Focusing on the formation of oxygen by the oxidation reaction of water, this anode electrode is an oxygen generation electrode.
  • An anode electrode 10a shown in FIG. 1A is a laminate of an Al x Ga 1-x N layer 11, a GaN layer 12, a conductive base material 13, and an electrode layer 14 to which Mg is added.
  • the Al x Ga 1-x N layer 11 is a layer in which carriers (electrons and holes) are generated by light irradiation. In other words, in the Al x Ga 1-x N layer 11, light is absorbed, photoexcitation occurs, and carriers are generated. The generated carrier contributes to the redox reaction as described above. Holes generated in the Al x Ga 1-x N layer 11, the water surface of the anode electrode 10a, typically migrate to the surface of the Al x Ga 1-x N layer 11, in contact with the anode electrode 10a Is oxidized to produce protons and oxygen. The generated protons diffuse and move to the second electrolyte solution in contact with the anode electrode 10a, and oxygen leaves the anode electrode 10a as a gas.
  • carriers electron and holes
  • the band gap value of the Al x Ga 1-x N layer 11, that is, the width of the forbidden band is 3.4 eV or more.
  • the light with which the Al x Ga 1-x N layer 11 of the anode electrode 10a is irradiated needs to include light having a wavelength of 365 nm or less having energy equal to or higher than the energy corresponding to the band gap.
  • Al x Ga 1-x N layer 11 amount of Mg in the (doping amount) is, the Al x Ga 1-x number of N layers 11 Mg atoms contained per volume 1 cm 3 (hereinafter, "number of atoms (number of atoms) / cm 3 ”, which is 1 ⁇ 10 15 or more and 1 ⁇ 10 19 or less.
  • Al x Ga 1-x N layer 11 amount of Mg in the said Al x Ga 1-x N layer 11 shows the number of Mg atoms contained per volume 1 cm 3 of, 1 ⁇ 10 16 to 1 ⁇ 10 18 or less is preferable.
  • the effect obtained by the addition of Mg is further improved, specifically, the photovoltaic and carrier utilization efficiency in the Al x Ga 1-x N layer 11 is improved, whereby the apparatus and method of the present disclosure The efficiency of CO 2 reduction at is further increased.
  • Al x Ga 1-x N constituting the Al x Ga 1-x N layer 11 has a composition satisfying the formula 0 ⁇ x ⁇ 0.25.
  • This range of x is suitable when a readily available light source (for example, the sun and a xenon lamp) is used for irradiation with light having a wavelength of 365 nm or less.
  • the value of x is preferably 0.10 or more and 0.15 or less.
  • the preferable range of x is a particularly suitable range when a general xenon lamp is used for the light irradiation. Of course, a xenon lamp may be used as the light source even when the value of x is outside this preferable range.
  • the depth at which light having a wavelength of 365 nm or less reaches the Al x Ga 1-x N layer 11 affects the value of the band gap of Al x Ga 1-x N. However, it is about 100 nm. Further, the depth (the thickness of the light absorption region of the Al x Ga 1-x N layer 11) is parallel to the light irradiation surface of the layer 11. Considering this, the thickness of the Al x Ga 1-x N layer 11 is preferably not less than 70 nm and not more than 1000 nm, more preferably not less than 80 nm and not more than 200 nm.
  • GaN layer 12 is based on the layered structure of the Al x Ga 1-x N layer 11 is a layer for improving (i.e. at the anode electrode 10a) utilization efficiency of the carriers in the Al x Ga 1-x N layer 11 . It is estimated that the increase is due to an increase in built-in potential formed at the interface between the Al x Ga 1-x N layer 11 and the GaN layer 12.
  • Such a GaN layer 12 can function as an electron conductive layer that efficiently transports electrons out of carriers generated in the Al x Ga 1-x N layer 11 by light irradiation.
  • the light absorption layer (Al x Ga 1-x N layer 11) and the electron conductive layer (GaN layer 12) are functionally separated. The separation facilitates the extraction and transport of carriers (electrons) generated in the light absorption layer, thereby achieving higher photovoltaic power and carrier utilization efficiency.
  • the GaN layer 12 is preferably a layer having a smaller electrical resistance value than the Al x Ga 1-x N layer 11.
  • Such a GaN layer 12 is a layer formed into n-type by the addition of impurities, that is, a layer composed of n-type GaN.
  • the impurity (dope species) is, for example, silicon (Si).
  • n-type includes n + -type .
  • the anode electrode 10a is in contact with the second electrolytic solution when the CO 2 reduction device is constructed, and has a photochemical reaction region formed of a nitride semiconductor. By irradiating the Al x Ga 1-x N layer 11 in this region with light, carrier generation proceeds.
  • the configuration of the anode electrode 10 a is not limited as long as the photochemical reaction region has a laminated structure of the Al x Ga 1-x N layer 11 and the GaN layer 12.
  • the laminated structure is formed on the entire electrode 10a, and the entire one main surface of the electrode 10a can function as a photochemical reaction region.
  • the laminated structure may be formed on a part of the anode electrode 10a, that is, a part of the main surface of the anode electrode 10a may be used as a photochemical reaction region.
  • the laminated structure is formed on one main surface of the base material 13.
  • the above laminated structure may be formed on both main surfaces of the base material 13.
  • the conductive substrate 13 functions as a layer that improves the strength, shape retention, and handleability of the anode electrode 10a, and efficiently transports electrons among the carriers generated in the Al x Ga 1-x N layer 11.
  • the conductive base material 13 is made of single crystal gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), single crystal silicon (Si), silicon carbide (SiC), zinc oxide (ZnO), or zirconium boride ( ZrB 2 ).
  • the anode electrode employed by the apparatus and method of the present disclosure does not necessarily require a base material such as the conductive base material 13.
  • the apparatus can employ an anode electrode including the conductive base material 13 as necessary.
  • the electrode layer 14 is a layer composed of a conductive material, and functions as a terminal for extracting electrons from the anode electrode 10a out of carriers generated in the Al x Ga 1-x N layer 11.
  • the configuration of the electrode layer 14 is not limited as long as it functions as the terminal.
  • the electrode layer 14 is formed on the entire surface of the conductive substrate 13 opposite to the surface facing the GaN layer 12.
  • An electrode layer 14 may be formed on a part of the surface.
  • An electrode layer 14 may be formed on the surface of the conductive substrate 13 facing the GaN layer 12 so as not to overlap with the GaN layer 12, and Al x Ga 1-x N is formed on the GaN layer 12.
  • the electrode layer 14 may be formed so as not to overlap with the layer 11 (refer to FIG. 2A for the latter).
  • the electrode layer 14 is made of, for example, a metal or a metal compound.
  • the metal is, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), or an alloy thereof.
  • the electrode layer 14 may be composed of a single conductive film or a laminate of a plurality of conductive films.
  • the material constituting the conductive film is, for example, the above metal or metal compound.
  • the conductive substrate 13 is composed of a semiconductor
  • the electrode layer 14 or the conductive substrate 13 in the electrode layer 14 or the GaN layer 12 is in contact with the electrode layer 14.
  • the surface (or film) is made of a material having low interface resistance with these semiconductors.
  • the material is, for example, Ti.
  • the anode electrode employed by the apparatus and method of the present disclosure does not necessarily require the electrode layer 14.
  • the apparatus can employ an anode electrode including the electrode layer 14 as necessary.
  • the Al x Ga 1-x N layer 11 is the light irradiation surface, the efficiency of carrier generation is increased.
  • the Al x Ga 1-x N layer 11 is used as the light irradiation surface, in the anode electrode 10a, the Al x Ga 1-x N layer 11, the GaN layer 12, the conductive base material 13, and the electrode layer 14 are sequentially formed from the light irradiation surface. Are stacked.
  • a metal oxide may be disposed on the Al x Ga 1-x N layer 11 in the photochemical reaction region.
  • This metal oxide functions as a co-catalyst that increases the efficiency of oxygen generation in the photochemical reaction region of the anode electrode.
  • the metal oxide also functions as a protective layer for the Al x Ga 1-x N layer 11.
  • the metal oxide contains, for example, nickel (Ni), and preferably contains Ni as a main component.
  • the main component means a component having the largest content, and the content is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more.
  • the metal oxide may be nickel oxide (NiO x , typically NiO or Ni 2 O 3 ).
  • FIGS. 1B to 1D Examples of the anode electrode in which the metal oxide is disposed on the Al x Ga 1-x N layer 11 in the photochemical reaction region are shown in FIGS. 1B to 1D.
  • the anode electrode 10b shown in FIG. 1B is the same as that shown in FIG. 1A except that a surface coating layer 15 made of the above metal oxide is disposed on the Al x Ga 1-x N layer 11 so as to cover the layer 11. It has the same structure as the anode electrode 10a.
  • This surface coating layer 15 is a layer having transparency to at least a part of light included in a band of wavelength 365 nm or less. In order to ensure this transparency, the thickness of the surface coating layer 15 is preferably 10 nm or less.
  • the surface coating layer 15 may contain metal fine particles or metal oxide fine particles. In this case, the functions of the surface coating layer 15 as a promoter and a protective layer are promoted.
  • the metal is, for example, Ni or a Ni alloy containing Ni as a main component.
  • the metal oxide is, for example, the metal oxide described above, and may be the same as or different from the metal oxide constituting the surface coating layer 15.
  • An anode electrode 10c shown in FIG. 1C is composed of the above metal oxide on the Al x Ga 1-x N layer 11 so as to cover a part of the layer 11 (so that a part of the layer 11 is exposed).
  • the surface coating layer 15 of the anode electrode 10c is the same as the surface coating layer 15 of the anode electrode 10b in FIG. 1B except that the surface covering the surface of the Al x Ga 1-x N layer 11 is different.
  • the plurality of surface coating layers 15 having various shapes and sizes are arranged regularly or randomly, the plurality of surface coating layers 15 having the same shape and size are arranged regularly or randomly. Also good.
  • the anode electrode 10d shown in FIG. 1D has the same structure as the anode electrode 10a in FIG. 1A, except that the fine particles 16 made of the metal oxide are disposed on the Al x Ga 1-x N layer 11. .
  • the function of the metal oxide as a promoter is further improved.
  • a plurality of fine particles 16 having various shapes and sizes may be regularly or randomly arranged, or a plurality of fine particles 16 having the same shape and size may be regularly or randomly arranged.
  • Both the surface coating layer 15 and the fine particles 16 may be disposed in the Al x Ga 1-x N layer 11.
  • the method for forming the anode electrode is not limited.
  • the Al x Ga 1-x N layer 11, the GaN layer 12, and the electrode layer 14 can be formed on the base material 13 using a known thin film forming method.
  • a specific thin film forming method is not limited.
  • metal organic vapor phase epitaxy, molecular beam epitaxy, or Sputtering can be used.
  • a vacuum deposition method, an electron beam deposition method, or a sputtering method can be employed.
  • a solution containing metal oxide particles for example, the particles are dispersed.
  • a method of applying a slurry solution, heating and drying (metal particle coating method), or a method of applying a solution of an organometallic compound by spin coating and heating and decomposing the compound (metal-organic compound decomposition method) can be employed. .
  • the base material may be the conductive base material shown in FIGS. 1A to 1D, or an insulating group composed of an insulating material. It may be a material.
  • the insulating substrate functions as a layer that enhances the strength, shape retention and handling of the anode electrode. Examples of an anode electrode provided with an insulating substrate are shown in FIGS. 2A to 2D.
  • the anode electrodes 20a, 20b, 20c, and 20d shown in FIGS. 2A to 2D are made of an insulating base material 23 instead of the conductive base material 13, and the base material 23 is insulative. 1A to 1D, respectively, except that the arrangement position of the electrode layer 14 functioning as a terminal for taking out the electrons generated in the x Ga 1-x N layer 11 from the anode electrode is changed on the GaN layer 12. It has the same structure as the anode electrodes 10a, 10b, 10c and 10d.
  • the insulating substrate 23 is made of, for example, sapphire (typically single crystal sapphire) or high resistance silicon.
  • the formation method of the anode electrodes 20a to 20d including the insulating base material 23 is the same as the formation method of the anode electrodes 10a to 10d including the conductive base material 13.
  • the shape of the anode electrode is not limited, but is, for example, a plate shape.
  • the anode electrode has the photochemical reaction region where carriers (electrons and holes) are generated by light irradiation, the generated electrons can be taken out for supply to the cathode electrode, and the generated holes Any member other than those described above may be included as long as oxygen and protons are generated by the reaction between water and water in the photochemical reaction region.
  • the cathode electrode is composed of a metal or a metal compound.
  • the cathode electrode has a structure capable of receiving electrons generated by photoexcitation at the anode electrode.
  • Cathode electrode, CO 2 is contained in the first electrolytic solution, has a the electronic, the reduction area of the CO 2 which is reduced by reaction with the proton contained in the first electrolytic solution.
  • the cathode electrode has a structure capable of supplying received electrons to the reduction reaction region.
  • the structure of the cathode electrode is not limited as long as these conditions are satisfied. For example, a portion made of an insulating material may be included in the cathode electrode.
  • the metal that can constitute the cathode electrode, particularly the metal that can constitute the CO 2 reduction reaction region is at least one selected from Cu, Au, Ag, tantalum (Ta), and indium (In), for example.
  • the metal may be an alloy.
  • the metal compound that can constitute the cathode electrode, in particular, the metal compound that can constitute the CO 2 reduction reaction region is, for example, at least one selected from tantalum carbide and tantalum nitride.
  • the cathode electrode may have these metals or metal compounds only in the CO 2 reduction reaction region, for example, as all or part of the surface of the electrode. In this case, the other part of the cathode electrode is made of any conductive material and / or insulating material.
  • the said other part is a base material of a cathode electrode, for example.
  • a base material is comprised from glass and glassy carbon (glassy carbon), for example. Glassy carbon has electrical conductivity.
  • the cathode electrode may have a structure in which particles or fine particles of metal or metal compound are dispersed on the surface of the substrate. In this case, these particles or fine particles serve as a CO 2 reduction reaction region.
  • the reduction reaction region of the cathode electrode by constituting the reduction reaction region of the cathode electrode from these metals or metal compounds, as reduction products of CO 2 , hydrocarbons such as methane and ethylene, alcohols such as methanol and ethanol, formic acid At least one selected from organic acids such as aldehydes, aldehydes such as acetaldehyde, and carbon monoxide.
  • hydrocarbons such as methane and ethylene
  • alcohols such as methanol and ethanol
  • formic acid At least one selected from organic acids such as aldehydes, aldehydes such as acetaldehyde, and carbon monoxide.
  • a hydrocarbon and / or alcohol is obtained as a CO 2 reduction product by using a reduction reaction region composed of Cu.
  • a reduction reaction region composed of In formic acid is selectively obtained as a CO 2 reduction product. This is presumably because the state of adsorption of CO 2 molecules in the region varies depending on the type of metal constituting
  • the shape of the cathode electrode is not limited and is, for example, a plate. From the viewpoint of increasing the effective reaction area, a plate having fine irregularities on the surface or a porous plate is preferable.
  • the formation method of a cathode electrode is not limited, A well-known method is applicable.
  • the metal or metal compound is used only in the CO 2 reduction reaction region, for example, the region is formed on all or part of the surface of the substrate. Techniques and fine particle formation techniques can be applied.
  • FIG. 3 shows an example of the CO 2 reduction device of the present disclosure.
  • the apparatus 300 of FIG. 3 includes a cathode tank 302, an anode tank 305, and a proton permeable membrane 306.
  • the cathode tank 302 and the anode tank 305 are connected to each other through a connection portion 313.
  • the proton permeable membrane 306 is disposed in the connection part 313 between the cathode chamber 302 and the anode chamber 305.
  • the cathode tank 302 contains a first electrolytic solution 307 containing CO 2 .
  • the anode tank 305 contains a second electrolytic solution 308.
  • a cathode electrode 301 is disposed inside the cathode chamber 302 so as to be in contact with the first electrolytic solution 307.
  • An anode electrode 304 is disposed inside the anode tank 305 so as to be in contact with the second electrolytic solution 308.
  • the cathode electrode 301 has a CO 2 reduction reaction region and is the cathode electrode employed by the above-described apparatus and method of the present disclosure.
  • the anode electrode 304 is an anode electrode that has the photochemical reaction region and that is adopted by the above-described apparatus and method of the present disclosure.
  • the cathode electrode 301 is disposed inside the cathode chamber 302 so that at least a part (preferably all) of the CO 2 reduction reaction region in the electrode 301 is in contact with the first electrolytic solution 307.
  • the anode electrode 304 is disposed inside the anode tank 305 so that at least a part (preferably all) of the photochemical reaction region in the electrode 304 is in contact with the second electrolytic solution 308.
  • parts of both electrodes 301 and 304 are immersed in the electrolytic solutions 307 and 308, respectively. All of the electrodes 301 and / or 304 may be immersed in the electrolytic solution.
  • the anode electrode 304 is disposed in the anode tank 305 so that light can be irradiated to the Al x Ga 1-x N layer in the photochemical reaction region.
  • a window (not shown) is provided in a part of the anode tank 305, and light from the light source 303 is irradiated to the photochemical reaction region of the anode electrode 304 through the window.
  • the cathode electrode 301 and the anode electrode 304 are electrically connected to each other by terminals 310 and 311 of the respective electrodes and wirings 312 connecting the terminals 310 and 311.
  • An external power source such as a solar cell and a potentiostat is not connected between the cathode electrode 301 and the anode electrode 304. That is, the cathode electrode 301 and the anode electrode 304 are electrically connected to each other without using an external power source.
  • the wiring 312 functions as a path for electrons generated by photoexcitation in the photochemical reaction region of the anode electrode 304.
  • the proton permeable membrane 306 functions as a partition wall between the first electrolytic solution 307 and the second electrolytic solution 308, and separates the first and second electrolytic solutions 307 and 308 from each other. That is, in the apparatus 300, the first electrolytic solution 307 in the cathode tank 302 and the second electrolytic solution 308 in the anode tank 305 are not mixed with each other as long as the proton permeable membrane 306 functions normally.
  • the electrolyte solutions 307 and 308 and the proton permeable membrane 306 function as proton diffusion paths.
  • the apparatus 300 by irradiating light to the photochemical reaction region of the anode electrode 304 that is a photochemical electrode, carriers (electrons and holes) are generated and oxygen is generated.
  • carriers electron and holes
  • oxygen is generated.
  • the apparatus 300 can reduce CO 2 to a carbon compound with high efficiency without using an external power source.
  • this carbon compound does not include CO 2 itself. Reduction of CO 2 can produce two or more carbon compounds.
  • the electrons generated at the anode electrode 304 move to the reduction reaction region of the cathode electrode 301 and react with CO 2 in the region to reduce CO 2 .
  • the fact that the region is made of a metal or a metal compound also contributes to achieving high CO 2 reduction efficiency in the apparatus 300.
  • the shape of the cathode electrode 301 and the anode electrode 304 is not particularly limited.
  • the apparatus 300 may include two or more cathode electrodes 301 and / or anode electrodes 304.
  • the material constituting the cathode tank 302 and the anode tank 305 is not limited as long as it is not significantly corroded by the electrolyte contained in each tank.
  • the material is, for example, a metal such as stainless steel, glass, resin, and a composite material thereof.
  • the internal shapes of the cathode tank 302 and the anode tank 305 are not particularly limited.
  • the cathode tank 302 and / or the anode tank 305 may have a structure in which the inside can be sealed. Sealing the inside of the tank is realized by a valve, for example.
  • the first electrolytic solution 307 can contain CO 2 , can conduct protons, does not significantly inhibit (preferably not inhibit) the reduction reaction of CO 2 at the cathode electrode 301, and the cathode electrode 301. As long as it is not significantly corroded (preferably not corroded), there is no limitation.
  • the first electrolytic solution 307 is typically an aqueous solution.
  • the first electrolyte solution 307 is an aqueous solution containing at least one electrolyte selected from, for example, potassium bicarbonate, sodium bicarbonate, potassium chloride, and sodium chloride.
  • the type of carbon compound produced by the reduction of CO 2 and its production ratio may change.
  • the concentration of the electrolyte in the first electrolytic solution 307 is preferably 1 mol / L or more, more preferably 3 mol / L or more.
  • the upper limit of the concentration is not particularly limited and is, for example, 5 mol / L.
  • the first electrolyte 307 contains CO 2.
  • concentration of CO 2 contained is not limited.
  • the first electrolyte solution 307 is preferably acidic in a state where CO 2 is dissolved.
  • the apparatus 300 can operate in a state where CO 2 is previously contained in the first electrolytic solution 307. Further, the apparatus 300 can operate while supplying a gas containing CO 2 to the first electrolyte solution 307. In the example shown in FIG. 3, the apparatus 300 operates while a gas containing CO 2 is supplied to the first electrolyte solution 307 via the gas supply pipe 309.
  • the gas containing CO 2 may be pure CO 2 (a gas having a CO 2 content of 100%).
  • the second electrolytic solution 308 is typically an aqueous solution.
  • the second electrolytic solution 308 is, for example, a sodium hydroxide aqueous solution.
  • the concentration of the electrolyte in the second electrolytic solution 308 is preferably 1 mol / L or more, more preferably 5 mol / L or more.
  • the upper limit of the concentration is not particularly limited and is, for example, 8 mol / L.
  • the second electrolytic solution 308 is preferably strongly basic.
  • the material constituting the proton permeable membrane 306 is not limited as long as it can transmit protons and the membrane 306 can function as a partition wall between the first and second electrolytic solutions.
  • the proton permeable membrane 306 is preferably a membrane that does not allow the electrolyte contained in the electrolytes 307 and 308 to permeate.
  • the material is, for example, a proton conductive polymer material, and a specific example thereof is perfluorocarbon sulfonic acid such as Nafion (registered trademark).
  • the thickness of the proton permeable membrane 306 may be 50 to 200 ⁇ m, for example, as long as the strength that allows the membrane 306 to function as a partition between the first and second electrolytes is ensured.
  • the light source 303 emits light having energy that promotes generation of carriers by photoexcitation in the photochemical reaction region of the anode electrode 304. More specifically, the light source 303 emits light having a wavelength of 365 nm or less (light having a wavelength of 365 nm or less). The light source 303 may emit continuous light including light components with a wavelength of 365 nm or less, or may be a monochromatic light with a wavelength of 365 nm or less, for example, a laser. The light source 303 preferably emits light having a wavelength of 250 nm or more and 325 nm or less.
  • the light source 303 is, for example, a xenon lamp, a deuterium lamp, a mercury lamp, or a metal halide lamp. Sunlight can also be used as the light source 303.
  • the light irradiation method from the light source 303 to the photochemical reaction region of the anode electrode 304 is not limited.
  • the anode tank 305 needs a window that guides light emitted from the light source 303 to the inside of the tank 305.
  • the light source 303 may be disposed inside the anode tank 305.
  • Apparatus of the present disclosure the reduction of CO 2 is required, or can be applied to any application reduction of CO 2 is desirable.
  • Specific examples of such applications are the formation of carbon compounds using CO 2 as a carbon source, for example carbon monoxide and / or organic compounds such as alcohols, aldehydes, carboxylic acids, hydrocarbons, and the formation of oxygen.
  • a specific example of the application viewed from another aspect is removal of CO 2 in a sealed space and supply of oxygen to the space.
  • the apparatus of the present disclosure reduces CO 2 emissions in the atmosphere to suppress global warming (not only direct reduction, but also CO 2 emissions associated with suppression of fossil fuel consumption by using CO 2 as a carbon source. It can also be applied to oxygen generation (artificial photosynthesis) instead of plant photosynthesis.
  • the method of the present disclosure is a method for reducing CO 2 by employing the photochemical electrode described above as an anode electrode.
  • CO 2 is reduced by the apparatus of the present disclosure described above. Thereby, CO 2 can be reduced with higher efficiency than before by using light energy without using an external power source.
  • the method of the present disclosure can be performed by, for example, the CO 2 reduction device 300 illustrated in FIG. An example of the method of the present disclosure will be described with reference to FIG.
  • the N layer 11 is irradiated with light having a wavelength of 365 nm or less to advance generation of electrons and protons in the region. Protons are generated by a reaction between holes generated in the Al x Ga 1-x N layer 11 and water in the region.
  • the reaction of reducing CO 2 contained in the first electrolytic solution 307 by the electrons generated in the photochemical reaction region of the anode electrode 304 and the proton contained in the first electrolytic solution 307 is performed as the reduction reaction of the cathode electrode 301.
  • Advance in the area. Generation of electrons and protons at the anode electrode 304 and reduction of CO 2 at the cathode electrode 301 can proceed simultaneously.
  • the light to be irradiated preferably has a wavelength of 250 nm or more and 325 nm or less.
  • the method of the present disclosure may further include a step of introducing a gas containing CO 2 into the first electrolytic solution 307 accommodated in the cathode chamber 302.
  • a method for supplying a gas containing CO 2 to the first electrolytic solution 307 is not limited.
  • a gas containing CO 2 is supplied to the first electrolytic solution 307 through a gas supply pipe 309 having one end immersed in the first electrolytic solution 307.
  • This step may be performed during operation of the apparatus 300, that is, CO 2 may be reduced while supplying a gas containing CO 2 to the first electrolytic solution 307.
  • this process may be performed before the apparatus 300 is operated.
  • a gas containing CO 2 is supplied to the first electrolyte solution 307 before the device 300 is operated, and the operation of the device 300 is started in a state where the first electrolyte solution 307 contains a sufficient amount of CO 2 . To do.
  • the above reaction for reducing CO 2 is performed by, for example, alcohols such as methanol and ethanol, aldehydes such as acetaldehyde, organic acids such as formic acid, hydrocarbons such as methane and ethylene, and monoxide. At least one selected from carbon is obtained.
  • the carbon compound produced by the reduction of CO 2 can be selected depending on, for example, the configuration of the cathode electrode 301 and the type of the first electrolytic solution 307.
  • CO 2 reduction can be performed in a state where the apparatus 300 is placed at room temperature and atmospheric pressure. That is, a special environment (for example, high temperature and high pressure) for performing the method of the present disclosure is not necessarily required.
  • any process other than those described above can be performed as long as the effect of the present invention is obtained.
  • Example 1 In Example 1, a laminate of electrode layer / conductive substrate / GaN layer / Mg-added Al x Ga 1-x N layer was used as the anode electrode. On the Al x Ga 1-x N layer (on the surface of the Al x Ga 1-x N layer opposite to the surface facing the GaN layer), as shown in FIG. The metal oxide fine particles contained were dispersed and arranged.
  • the conductive substrate was a single crystal GaN substrate (thickness: about 0.4 mm) doped with a high concentration of Si.
  • the GaN layer was a Si-doped n + -type GaN layer (thickness: 3.0 ⁇ m, Si doping amount: 4.0 ⁇ 10 18 atoms / cm 3 ).
  • the thickness of the Al x Ga 1-x N layer was 100 nm, the value of x was 0.10, and the Mg doping amount was 1.0 ⁇ 10 17 atoms / cm 3 .
  • the metal oxide fine particles are nickel oxide fine particles (diameter of several tens of nm to several ⁇ m), and are dispersed and arranged on the Al x Ga 1-x N layer so as to keep a part of the layer exposed.
  • the metal oxide fine particles were arranged by applying a solution in which the Ni compound was dispersed to the surface of the Al x Ga 1-x N layer, followed by firing treatment. The number of arrangement was about 1 ⁇ 10 8 to 1 ⁇ 10 10 per 1 cm 2 area.
  • the GaN layer was formed on a single crystal GaN substrate by growing it by a metal organic vapor phase epitaxy method.
  • the Mg-added Al x Ga 1-x N layer was formed on the formed GaN layer by growing it by metal organic vapor phase epitaxy.
  • the electrode layer was a laminate of Ti / Al / Au (thickness 500 nm).
  • the electrode layer was formed by forming a laminate of conductive substrate / GaN layer / Mg-added Al x Ga 1-x N layer, and nickel oxide fine particles were arranged on the Al x Ga 1-x N layer of the structure. Later, the conductive substrate was formed on the surface opposite to the surface facing the GaN layer by electron beam evaporation. At this time, in order to increase the adhesion between the electrode layer and the single crystal GaN substrate and suppress the interface resistance, the Ti film was in contact with the conductive substrate.
  • a CO 2 reduction device shown in FIG. 3 was constructed using the anode electrode and cathode electrode thus prepared.
  • the more specific configuration and operating conditions of the constructed CO 2 reduction device are as follows.
  • Cathode tank Cathode electrode Copper plate (thickness 0.5mm)
  • First electrolyte solution A potassium hydrogen carbonate aqueous solution having a concentration of 3.0 mol / L was added to 180 cm 3.
  • Area of cathode electrode immersed in first electrolyte solution about 4 cm 2 CO 2 supply: before irradiating light to the anode electrode, via the gas inlet tube 309 shown in FIG. 3, and fed for 30 minutes of CO 2 at a flow rate of 200 mL / min in the first electrolyte.
  • the cathode chamber was sealed so that CO 2 did not flow out of the cathode chamber.
  • Anode tank Anode electrode The above prepared laminate Second electrolytic solution: 180 cm 3 of sodium hydroxide aqueous solution having a concentration of 5.0 mol / L
  • Light irradiation The anode tank was provided with a window made of quartz glass (not shown in FIG. 3) so that light could be irradiated to the Al x Ga 1-x N layer of the anode electrode from the outside of the tank.
  • the anode tank and the cathode tank were connected so that the distance between the anode electrode and the cathode electrode was about 8 cm.
  • the area of the connecting portion is about 12.5 cm 3 , and the connecting portion includes a Nafion membrane (DuPont, Nafion 117, thickness) as a proton permeable membrane that serves as a partition wall that separates the first electrolytic solution and the second electrolytic solution. About 180 ⁇ m).
  • the electrode layer of the anode electrode and the end of the copper plate as the cathode electrode are electrically connected by wiring 312 without arranging an external power source such as a battery or a potentiostat between both electrodes. Connected. However, an ammeter for detecting a current flowing between the anode electrode and the cathode electrode at the time of light irradiation was disposed between both electrodes.
  • a xenon lamp (output: 300 W, light irradiation area: about 4 cm 2 , irradiation light power: about 20 mW / cm 2 ) was used as the light source.
  • the light emitted from this light source has a broad spectrum at a wavelength of 365 nm or less.
  • the gas generated at the anode electrode was separately confirmed, it was oxygen. Further, after the light irradiation, for the carbon compound contained in the first electrolytic solution, the gas component was analyzed by gas chromatography (GC: GC-4000 manufactured by GL Science), liquid chromatography (LC: LC-2010 manufactured by Shimadzu Corporation) and When liquid components were analyzed by a head space type GC (HS-GC: Shimadzu GC-17A, Perkin Elmer HS40), carbon monoxide and formic acid were confirmed.
  • GC gas chromatography
  • LC liquid chromatography
  • HS-GC Shimadzu GC-17A, Perkin Elmer HS40
  • Example 1 The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that a layer to which Mg was not added was used as the Al x Ga 1-x N layer of the anode electrode.
  • Example 1 when the amount of current flowing between both electrodes in Example 1 and Comparative Example 1 during light irradiation was compared, the amount of current in Example 1 was about twice the amount of current in Comparative Example 1. Further, when the amounts of CO 2 reduction products (carbon monoxide and formic acid) produced in Example 1 and Comparative Example 1 were compared when the light irradiation times were the same, the production amount in Example 1 was Comparative Example 1. Was about twice as much as the amount produced.
  • CO 2 reduction products carbon monoxide and formic acid
  • Example 2 The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that nickel oxide fine particles were not arranged on the Al x Ga 1-x N layer of the anode electrode.
  • Example 2 As in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank.
  • Example 3 In Example 3, an insulating base material (single crystal sapphire base material, thickness of about 0.4 mm) was used as the base material of the anode electrode instead of the conductive base material, and the position where the electrode layer was arranged was A CO 2 reduction device was constructed in the same manner as in Example 1, except that the surface opposite to the surface facing the GaN layer was changed to the GaN layer (see FIG. 2D). The electrode layer was disposed so that the Ti film was in contact with the GaN layer in order to increase the adhesion between the electrode layer and the GaN layer and suppress the interface resistance.
  • an insulating base material single crystal sapphire base material, thickness of about 0.4 mm
  • Example 2 With respect to the constructed CO 2 reduction device, similarly to Example 1, when the Al x Ga 1-x N layer of the anode electrode was irradiated with light, the gas from the surface of the Al x Ga 1-x N layer of the anode electrode was irradiated. Generation and generation of carbon monoxide and formic acid by reduction of CO 2 contained in the first electrolyte solution of the cathode tank were confirmed.
  • Example 4 Instead of a copper plate as a cathode electrode, a state in which a part of the surface of the substrate is exposed on the surface of a glassy carbon substrate (made by Tokai Carbon, glassy carbon (registered trademark), thickness 0.5 mm) is maintained.
  • a glassy carbon substrate made by Tokai Carbon, glassy carbon (registered trademark), thickness 0.5 mm
  • the constructed CO 2 reduction device was irradiated with light in the same manner as in Example 1 except that an electrode in which copper fine particles (diameter: 20 nm to 100 nm) were dispersed and used was used.
  • the copper fine particles were disposed by applying a dispersion of a copper compound to the surface of the base material by spin coating, drying and removing the organic component, and then firing in a reducing atmosphere.
  • the number of arrangement was about 1 ⁇ 10 8 to 4 ⁇ 10 9 per 1 cm 2 of area.
  • Example 4 As in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank. Further, when the amount of current flowing between both electrodes in Examples 1 and 4 during light irradiation was compared, the amount of current in Examples 1 and 4 was almost the same.
  • Example 5 The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that an indium plate (thickness 0.5 mm) was used instead of the copper plate as the cathode electrode.
  • Example 5 as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode was confirmed by irradiating light to the Al x Ga 1-x N layer of the anode electrode. It was done. Further, when the amount of current flowing between both electrodes in Examples 1 and 5 during light irradiation was compared, the amount of current in Examples 1 and 5 was almost the same. On the other hand, when the carbon compound contained in the first electrolyte solution was analyzed by GC and LC after the light irradiation, it was confirmed that most of the carbon compound was formic acid. That is, it was confirmed that by using indium as the cathode electrode, formic acid is selectively generated as a CO 2 reduction product.
  • Example 6 The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that a potassium chloride aqueous solution (concentration: 3.0 mol / L) was used instead of the potassium hydrogen carbonate aqueous solution as the first electrolytic solution.
  • a potassium chloride aqueous solution concentration: 3.0 mol / L
  • Example 6 as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode was confirmed by irradiating light to the Al x Ga 1-x N layer of the anode electrode. It was done. Further, when the amount of current flowing between both electrodes in Examples 1 and 6 during light irradiation was compared, the amount of current in Examples 1 and 6 was almost the same. On the other hand, after light irradiation, the carbon compound contained in the first electrolytic solution was analyzed by GC and LC. In addition to the carbon monoxide and formic acid confirmed in Example 1, alcohols such as ethylene and ethanol, and Formation of acetaldehyde was confirmed.
  • Example 7 a plurality of anode electrodes having different Mg atom addition amounts (doping amounts) to the Al x Ga 1-x N layer were produced.
  • the constructed CO 2 reduction device was irradiated with light in the same manner as in Example 1 except that anode electrodes having different addition amounts were used.
  • Example 7 As in Example 1, generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank.
  • FIG. 5 shows the relationship between the Mg addition amount in the Al x Ga 1-x N layer and the CO 2 reduction amount per unit time.
  • the vertical axis of FIG. 5 shows the amount of CO 2 reduction when the added amount of Mg is zero, that is, when an Al x Ga 1-x N layer without added Mg is used as the anode electrode (CO 2 of Comparative Example 1).
  • Al x Ga 1-x N amount is 1 ⁇ 10 15 number of atoms of Mg to the layer
  • the CO 2 reduction amount started to increase rapidly.
  • the value of the current flowing between both electrodes also started to increase rapidly, similarly to the change in the CO 2 reduction amount.
  • the amount of Mg added to the Al x Ga 1-x N layer is 1 ⁇ 10 17 atoms / cm 3
  • the CO 2 reduction amount and the current value are maximized, and the Mg addition amount further increases. The amount of CO 2 reduction and the current value decreased.
  • the CO 2 reduction amount and the current value decreased rapidly. This is presumably because the addition of an excessive amount of Mg changes the characteristics of the Al x Ga 1-x N layer and affects the utilization efficiency of carriers generated by photoexcitation.
  • the amount of Mg added to the Al x Ga 1-x N layer from the viewpoint of the CO 2 reduction amount is 1 ⁇ 10 16 atoms / cm 3 or more and 1 ⁇ 10 18 atoms / cm. 3 was preferred.
  • the optimum value of the Mg addition amount (1 ⁇ 10 17 atoms / cm 3 in FIG. 5) is affected by the composition and characteristics of the Al x Ga 1-x N layer serving as the base material, It may vary depending on the value of x.
  • Example 8 In Example 8, four types of anode electrodes having different compositions of Al x Ga 1-x N layers (different values of x) were produced.
  • the constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that anode electrodes having different compositions were used.
  • the value of x was set to 0.05, 0.10, 0.15, or 0.20.
  • Example 8 as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank. In addition, the amount of CO 2 reductate produced in Example 8 when the light irradiation time is the same is almost the same as the amount of CO 2 reductant produced in Example 1 for any anode electrode. there were.
  • a nitride semiconductor having a laminated structure of a GaN layer and an Al x Ga 1-x N layer doped with Mg atoms in a specific range (doped) It was confirmed that the use of the anode electrode having a photochemical reaction region constituted by the above increases the amount of reaction current due to light irradiation to the anode electrode, and achieves high-efficiency CO 2 reduction at the cathode electrode.
  • Apparatus of the present disclosure is applicable to all industries that reduction of CO 2 is required, or the reduction of CO 2 is desirable.
  • This industry includes the space industry, and more specifically, CO 2 removal in spacecraft or extraterrestrial bases.
  • this apparatus can be widely applied to the production of substances that can be produced by reduction of CO 2 , such as alcohols, aldehydes, carboxylic acids, hydrocarbons, carbon monoxide, and oxygen.
  • the apparatus further includes, CO 2 reduction in the air for suppressing global warming, can be applied to such as oxygen generation in place of plant photosynthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

The disclosed device is a device for reducing CO2 using light. This device is equipped with a cathode tank for storing a first electrolyte containing CO2, an anode tank for storing a second electrolyte, a proton-permeable membrane positioned in the section connecting the two tanks, a cathode electrode inside the cathode tank, and an anode electrode inside the anode tank. The cathode electrode has a CO2 reduction reaction region configured from a metal or a metal compound, and the anode electrode has a photochemical reaction region configured from a nitride semiconductor. Said region of the anode electrode has a layered structure comprising a GaN layer and an Mg-added AlxGa1-xN layer (0<x≤0.25). The amount of added Mg in the AlxGa1-xN layer is, expressed in number of Mg atoms, 1×1015-1×1019cm. The anode electrode is positioned in a manner such that irradiation of the AlxGa1-xN layer with light is possible. Both electrodes are electrically connected without using an external power source.

Description

二酸化炭素還元装置および二酸化炭素を還元する方法Carbon dioxide reduction apparatus and method for reducing carbon dioxide
 本発明は、光エネルギーによって二酸化炭素を還元する二酸化炭素還元装置と、当該装置により二酸化炭素を還元する方法と、に関する。 The present invention relates to a carbon dioxide reduction device that reduces carbon dioxide by light energy and a method for reducing carbon dioxide by the device.
 二酸化炭素(CO)は、地球上の炭素循環(carbon cycle)において、炭素原子をリザーブする重要な役割を担う物質である。炭素原子のリザーバーとしての観点から見ると、COは、有機化合物に代表される種々の炭素化合物の炭素源となりうる物質である。しかし、COはエネルギー的に非常に安定な物質であるため、COを炭素源として利用するには高い還元エネルギーが必要となる。 Carbon dioxide (CO 2 ) is a substance that plays an important role in reserving carbon atoms in the carbon cycle on the earth. From the viewpoint of a carbon atom reservoir, CO 2 is a substance that can be a carbon source of various carbon compounds represented by organic compounds. However, since CO 2 is a material that is very stable in terms of energy, high reduction energy is required to use CO 2 as a carbon source.
 これとは別に、石炭、石油、天然ガスのような化石燃料の消費による大気中のCO濃度の上昇、および当該上昇による地球規模の気候変動(いわゆる地球温暖化)が懸念されている。光エネルギーによるCOの還元は、炭素源としてのCOの利用だけではなく、COから変換した炭素化合物の使用によって化石燃料の消費量を低減できることによる気候変動の抑制の観点からも注目されている。 Apart from this, there are concerns about an increase in atmospheric CO 2 concentration due to consumption of fossil fuels such as coal, oil and natural gas, and global climate change (so-called global warming) due to the increase. Reduction of CO 2 by light energy has attracted attention not only from the use of CO 2 as a carbon source, but also from the viewpoint of suppressing climate change by reducing the consumption of fossil fuels by using carbon compounds converted from CO 2. ing.
 これまで、光エネルギーによってCOを還元する種々の方法が試みられてきた。以下の各文献は、光エネルギーによってCOを還元する方法を開示している。 Until now, various methods of reducing CO 2 by light energy have been tried. The following documents disclose methods for reducing CO 2 by light energy.
 特許文献1,2は、CO還元の触媒としてチタニアおよびジルコニアのような酸化物半導体を用いる方法、より具体的には、酸化物半導体の粉末を水中に分散させた懸濁液にCOを導入しながら光を照射する方法を開示している。 Patent Documents 1 and 2 describe a method of using an oxide semiconductor such as titania and zirconia as a CO 2 reduction catalyst, more specifically, CO 2 in a suspension in which oxide semiconductor powder is dispersed in water. A method of irradiating light while introducing is disclosed.
 特許文献3,4は、CO還元の触媒として、チタン化合物のような半導体成分と、金属成分との複合化合物を用いる方法、より具体的には、当該複合加工物の粉末を水中に分散させた懸濁液にCOを導入した後、光を照射する方法を開示している。 Patent Documents 3 and 4 describe a method of using a composite compound of a semiconductor component such as a titanium compound and a metal component as a catalyst for CO 2 reduction, more specifically, dispersing the powder of the composite processed product in water. Discloses a method of irradiating light after introducing CO 2 into the suspension.
 特許文献5は、CO還元の触媒として、半導体と、レニウム有機錯体またはルテニウム有機錯体などの基材とが互いに電子の授受ができるように接合された触媒を用いる方法、より具体的には、当該触媒の粉末を有機溶媒中に分散させた懸濁液にCOを導入した後、光を照射する方法を開示している。 Patent Document 5 discloses a method of using a catalyst in which a semiconductor and a base material such as a rhenium organic complex or a ruthenium organic complex are joined so as to be able to exchange electrons with each other, more specifically, as a CO 2 reduction catalyst, A method is disclosed in which light is irradiated after CO 2 is introduced into a suspension in which the catalyst powder is dispersed in an organic solvent.
 特許文献6は、水を酸化して酸素を発生する酸化反応電極と、この電極と電気的に接合された、二酸化炭素を還元して炭素化合物を合成する還元反応電極とを備える光化学反応デバイスを開示している。特許文献6は、また、酸化反応電極の材料としてチタニア、酸化タングステンおよび酸窒化タンタルを、還元反応電極の材料として特許文献5の触媒を、それぞれ開示している。特許文献6のデバイスでは、双方の電極に光が照射される。 Patent Document 6 discloses a photochemical reaction device including an oxidation reaction electrode that oxidizes water to generate oxygen, and a reduction reaction electrode that is electrically joined to the electrode and that synthesizes a carbon compound by reducing carbon dioxide. Disclosure. Patent Document 6 also discloses titania, tungsten oxide, and tantalum oxynitride as materials for oxidation reaction electrodes, and the catalyst of Patent Document 5 as materials for reduction reaction electrodes. In the device of Patent Document 6, light is irradiated to both electrodes.
 特許文献7,8は、チタニアのような酸化物半導体から構成されるアノード電極と、特定の金属から構成された特定の構造を有するカソード電極とを備える電気化学的還元装置、および当該装置のアノード電極に光を照射してカソード電極上でCOを還元する方法を開示している。特許文献7,8の装置は、アノード電極とカソード電極との間に、太陽電池あるいはポテンショスタットのような外部電源の配置が必要である。 Patent Documents 7 and 8 disclose an electrochemical reduction device including an anode electrode made of an oxide semiconductor such as titania and a cathode electrode having a specific structure made of a specific metal, and an anode of the device A method for reducing CO 2 on a cathode electrode by irradiating the electrode with light is disclosed. The devices of Patent Documents 7 and 8 require an external power source such as a solar cell or a potentiostat between the anode electrode and the cathode electrode.
 特許文献9は、窒化ガリウムあるいは窒化アルミニウムガリウムのような窒化物半導体の領域を表面に有するアノード電極と、金属または金属化合物から構成されるカソード電極とを備える装置において、アノード電極に光を照射してカソード電極上でCOを還元する方法を開示している。特許文献9の方法は、アノード電極とカソード電極との間に外部電源を必要としない。 Patent Document 9 discloses a device including an anode electrode having a nitride semiconductor region such as gallium nitride or aluminum gallium nitride on its surface and a cathode electrode made of a metal or a metal compound, and irradiating the anode electrode with light. Discloses a method for reducing CO 2 on a cathode electrode. The method of Patent Document 9 does not require an external power source between the anode electrode and the cathode electrode.
 光エネルギーによってCOを還元する方法ではないが、特許文献10は、酸性水およびアルカリ水を製造する装置の電極として、式AlGa1-x-yInN(x-y≦0.45、0≦x≦1、0≦y≦1)で示される窒化物系の半導体光触媒を開示している。 Although it is not a method of reducing CO 2 by light energy, Patent Document 10 discloses that as an electrode of an apparatus for producing acidic water and alkaline water, the formula Al y Ga 1-xy In x N (xy ≦ 0. 45, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1).
特開昭55-105625号公報JP-A-55-105625 特許第2526396号公報Japanese Patent No. 25526396 特許第3876305号公報Japanese Patent No. 3876305 特許第4158850号公報Japanese Patent No. 4158850 特開2010-064066号公報JP 2010-066406 A 特開2011-094194号公報JP 2011-094194 A 特開平05-311476号公報Japanese Patent Laid-Open No. 05-311476 特開平07-188961号公報Japanese Unexamined Patent Publication No. 07-188961 国際公開第2012/046374号International Publication No. 2012/046374 国際公開第2006/082801号International Publication No. 2006/082801
 植物の光合成と同様に、光エネルギーの利用によってCOを還元し、炭素化合物へ変換する装置および方法が普及すれば、産業の発展にも地球環境の保持にも非常に有用である。しかし、従来の装置および方法では、外部電源を使用することなく光エネルギーによってCOを還元し、炭素化合物へと変換する効率が必ずしも十分ではない。 As in the case of plant photosynthesis, if an apparatus and method for reducing CO 2 by using light energy and converting it to a carbon compound become widespread, it is very useful for industrial development and maintenance of the global environment. However, in the conventional apparatus and method, the efficiency of reducing CO 2 by light energy without using an external power source and converting it into a carbon compound is not always sufficient.
 本開示による、限定されない例示的な一実施形態は、外部電源を使用することなくCOを還元し、炭素化合物へと変換する効率が従来よりも高い、光エネルギーによってCOを還元するCO還元装置と、光エネルギーによってCOを還元する方法と、を提供する。 According to the present disclosure is not limited one exemplary embodiment, CO 2 and CO 2 is reduced without the use of external power, the efficiency of converting into carbon compounds higher than conventional, for reducing CO 2 by light energy A reduction device and a method for reducing CO 2 by light energy are provided.
 これに加えて、開示された実施形態による更なる利益および有利な点は、明細書および図面から明らかになるであろう。当該利益および/または有利な点は、明細書および図面に開示された種々の実施形態および特徴により個別に提供され、必ずしもこれら全てが同時に提供される必要はない。 In addition, further benefits and advantages of the disclosed embodiments will become apparent from the specification and drawings. The benefits and / or advantages are individually provided by the various embodiments and features disclosed in the specification and drawings, and not all of which need to be provided simultaneously.
 一つの総合的な側面によれば、ここに開示されている技術の特徴は、光エネルギーによってCOを還元するCO還元装置であって、この装置は:COを含有する第1の電解液を収容するカソード槽と;前記カソード槽と接続された、第2の電解液を収容するアノード槽と;前記アノード槽と前記カソード槽との接続部に配置され、前記第1の電解液および第2の電解液間の隔壁として機能するとともに、双方の前記電解液の間で水素イオンを伝達するプロトン透過膜と;前記第1の電解液に接するように前記カソード槽の内部に配置されたカソード電極と;前記第2の電解液に接するように前記アノード槽の内部に配置されたアノード電極と;を備える。前記カソード電極は、前記第1の電解液に接し、かつ金属または金属化合物により構成された、COの還元反応領域を有する。前記アノード電極は、前記第2の電解液に接し、かつ窒化物半導体により構成された光化学反応領域を有する。前記アノード電極の前記領域は、GaN層と、Mgが添加されたAlGa1-xN層(ただし、0<x≦0.25)との積層構造を有する。前記AlGa1-xN層におけるMgの添加量は、前記AlGa1-xN層の体積1cmあたりに含まれるMg原子の数で示して、1×1015以上1×1019以下である。前記アノード電極は、前記光化学反応領域の前記AlGa1-xN層に光を照射可能であるように前記アノード槽内に配置されている。前記カソード電極と前記アノード電極とは、外部電源を介することなく、互いに電気的に接続されている。 According to one overall aspect, a feature of the technology disclosed herein is a CO 2 reduction device that reduces CO 2 by light energy, the device comprising: a first electrolysis containing CO 2 A cathode tank containing a liquid; an anode tank containing a second electrolytic solution connected to the cathode tank; and a first electrolytic solution disposed in a connecting portion between the anode tank and the cathode tank; A proton permeable membrane that functions as a partition between the second electrolytes and transmits hydrogen ions between the two electrolytes; and is disposed in the cathode chamber so as to be in contact with the first electrolyte A cathode electrode; and an anode electrode disposed inside the anode tank so as to be in contact with the second electrolytic solution. The cathode electrode is in contact with the first electrolytic solution and has a CO 2 reduction reaction region made of a metal or a metal compound. The anode electrode has a photochemical reaction region that is in contact with the second electrolytic solution and is made of a nitride semiconductor. The region of the anode electrode has a stacked structure of a GaN layer and an Al x Ga 1-x N layer to which Mg is added (where 0 <x ≦ 0.25). The addition amount of Mg in the Al x Ga 1-x N layer, the Al x Ga 1-x N represents the number of Mg atoms contained per volume 1 cm 3 of the layer, 1 × 10 15 or more 1 × 10 19 It is as follows. The anode electrode is disposed in the anode tank so that light can be irradiated onto the Al x Ga 1-x N layer in the photochemical reaction region. The cathode electrode and the anode electrode are electrically connected to each other without an external power source.
 これら総合的および具体的な側面は、システム、各種の方法、コンピュータープログラム、ならびにシステム、各種の方法およびコンピュータープログラムの任意の組み合わせを用いて実施されうる。 These overall and specific aspects can be implemented using systems, various methods, computer programs, and any combination of systems, various methods and computer programs.
 本開示のCO還元装置およびCOを還元する方法は、外部電源を使用することなくCOを還元し、炭素化合物へと変換する効率が従来よりも高い、光エネルギーによってCOを還元する装置および方法である。 The CO 2 reduction device and the method of reducing CO 2 of the present disclosure reduce CO 2 by light energy, which is more efficient than the conventional method for reducing CO 2 and converting it to a carbon compound without using an external power source. Apparatus and method.
図1Aは、本開示のCO還元装置が備えるアノード電極の一例を模式的に示す断面図である。FIG. 1A is a cross-sectional view schematically illustrating an example of an anode electrode provided in the CO 2 reduction device of the present disclosure. 図1Bは、本開示のCO還元装置が備えるアノード電極の別の一例を模式的に示す断面図である。FIG. 1B is a cross-sectional view schematically illustrating another example of the anode electrode provided in the CO 2 reduction device of the present disclosure. 図1Cは、本開示のCO還元装置が備えるアノード電極のまた別の一例を模式的に示す断面図である。FIG. 1C is a cross-sectional view schematically illustrating still another example of the anode electrode provided in the CO 2 reduction device of the present disclosure. 図1Dは、本開示のCO還元装置が備えるアノード電極のさらにまた別の一例を模式的に示す断面図である。FIG. 1D is a cross-sectional view schematically showing still another example of the anode electrode provided in the CO 2 reduction device of the present disclosure. 図2Aは、本開示のCO還元装置が備えるアノード電極の上記とは別の一例を模式的に示す断面図である。FIG. 2A is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure. 図2Bは、本開示のCO還元装置が備えるアノード電極の上記とは別の一例を模式的に示す断面図である。FIG. 2B is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure. 図2Cは、本開示のCO還元装置が備えるアノード電極の上記とは別の一例を模式的に示す断面図である。FIG. 2C is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure. 図2Dは、本開示のCO還元装置が備えるアノード電極の上記とは別の一例を模式的に示す断面図である。FIG. 2D is a cross-sectional view schematically illustrating another example of the anode electrode included in the CO 2 reduction device of the present disclosure. 図3は、本開示のCO還元装置の一例と、当該装置を用いた本開示のCOの還元方法の一例とを模式的に示す概略図である。FIG. 3 is a schematic diagram schematically illustrating an example of the CO 2 reduction device of the present disclosure and an example of the CO 2 reduction method of the present disclosure using the device. 図4は、実施例1~3および比較例1において評価した、各例における単位時間あたりのCO還元量を示す図である。FIG. 4 is a graph showing the amount of CO 2 reduction per unit time evaluated in Examples 1 to 3 and Comparative Example 1. 図5は、実施例7において評価した、アノード電極のAlGaN層に添加したMg原子の量と、単位時間あたりのCO還元量との関係を示す図である。FIG. 5 is a graph showing the relationship between the amount of Mg atoms added to the AlGaN layer of the anode electrode and the amount of CO 2 reduction per unit time evaluated in Example 7.
 本開示の第1態様は、光エネルギーによってCOを還元するCO還元装置であって、COを含有する第1の電解液を収容するカソード槽と、前記カソード槽と接続された、第2の電解液を収容するアノード槽と、前記アノード槽と前記カソード槽との接続部に配置され、前記第1の電解液および第2の電解液間の隔壁として機能するとともに、双方の前記電解液の間で水素イオンを伝達するプロトン透過膜と、前記第1の電解液に接するように前記カソード槽の内部に配置されたカソード電極と、前記第2の電解液に接するように前記アノード槽の内部に配置されたアノード電極と、を備え、前記カソード電極は、前記第1の電解液に接し、かつ金属または金属化合物により構成された、COの還元反応領域を有し、前記アノード電極は、前記第2の電解液に接し、かつ窒化物半導体により構成された光化学反応領域を有し、前記アノード電極の前記領域は、GaN層と、Mgが添加されたAlGa1-xN層(ただし、0<x≦0.25)との積層構造を有し、前記AlGa1-xN層におけるMgの添加量が、前記AlGa1-xN層の体積1cmあたりに含まれるMg原子の数で示して、1×1015以上1×1019以下であり、前記アノード電極は、前記光化学反応領域の前記AlGa1-xN層に光を照射可能であるように前記アノード槽内に配置され、前記カソード電極と前記アノード電極とが、外部電源を介することなく、互いに電気的に接続されている、CO還元装置を提供する。 A first aspect of the present disclosure is a CO 2 reduction device that reduces CO 2 by light energy, and includes a cathode tank that contains a first electrolytic solution containing CO 2 , and is connected to the cathode tank. 2 is disposed in a connecting portion between the anode tank and the cathode tank, and functions as a partition wall between the first electrolyte solution and the second electrolyte solution. A proton permeable membrane for transmitting hydrogen ions between the liquids; a cathode electrode disposed inside the cathode tank so as to contact the first electrolyte; and the anode tank so as to contact the second electrolyte An anode electrode disposed inside the cathode electrode, the cathode electrode being in contact with the first electrolyte and having a CO 2 reduction reaction region made of a metal or a metal compound, The electrode is in contact with the second electrolytic solution and has a photochemical reaction region made of a nitride semiconductor, and the region of the anode electrode includes a GaN layer and Mg-added Al x Ga 1-x N layer (where, 0 <x ≦ 0.25) has a laminated structure of the Al x Ga 1-x amount of Mg in the N layer, the Al x Ga 1-x volume of N layers 1 cm 3 1 × 10 15 or more and 1 × 10 19 or less in terms of the number of Mg atoms contained in the area, and the anode electrode can irradiate light to the Al x Ga 1-x N layer in the photochemical reaction region. There is provided a CO 2 reduction device that is arranged in the anode tank and in which the cathode electrode and the anode electrode are electrically connected to each other without an external power source.
 本開示の第2態様は、第1態様に加え、前記AlGa1-xN層におけるMgの添加量が、前記AlGa1-xN層の体積1cmあたりに含まれるMg原子の数で示して、1×1016以上1×1018以下であるCO還元装置を提供する。 The second aspect of the present disclosure, in addition to the first aspect, the Al addition amount of Mg in the x Ga 1-x N layer, the Mg atoms included in the volume 1cm per 3 of the Al x Ga 1-x N layer Provided is a CO 2 reduction device which is expressed by a number and is 1 × 10 16 to 1 × 10 18 inclusive.
 本開示の第3態様は、第1または第2態様に加え、前記xの値が0.10以上0.15以下であるCO還元装置を提供する。 A third aspect of the present disclosure provides a CO 2 reduction device in which the value of x is 0.10 or more and 0.15 or less in addition to the first or second aspect.
 本開示の第4態様は、第1から第3のいずれか1つの態様に加え、前記GaN層が、n形GaNにより構成されるCO還元装置を提供する。 According to a fourth aspect of the present disclosure, in addition to any one of the first to third aspects, a CO 2 reduction device in which the GaN layer is composed of n-type GaN.
 本開示の第5態様は、第1から第4のいずれか1つの態様に加え、前記光化学反応領域における前記AlGa1-xN層の上に、Niを含有する金属酸化物が配置されているCO還元装置を提供する。 In a fifth aspect of the present disclosure, in addition to any one of the first to fourth aspects, a metal oxide containing Ni is disposed on the Al x Ga 1-x N layer in the photochemical reaction region. A CO 2 reduction device is provided.
 本開示の第6態様は、第5態様に加え、前記金属酸化物が微粒子状であるCO還元装置を提供する。 According to a sixth aspect of the present disclosure, in addition to the fifth aspect, a CO 2 reduction device in which the metal oxide is in the form of fine particles.
 本開示の第7態様は、第1から第6のいずれか1つの態様に加え、前記還元反応領域を構成する前記金属が、銅、金、銀、タンタルおよびインジウムから選ばれる少なくとも1種を含むCO還元装置を提供する。 In a seventh aspect of the present disclosure, in addition to any one of the first to sixth aspects, the metal constituting the reduction reaction region includes at least one selected from copper, gold, silver, tantalum, and indium. A CO 2 reduction device is provided.
 本開示の第8態様は、第1から第7のいずれか1つの態様に加え、前記第1の電解液が、炭酸水素カリウム、炭酸水素ナトリウム、塩化カリウム、および塩化ナトリウムから選ばれる少なくとも1種の電解質を含む水溶液であるCO還元装置を提供する。 In an eighth aspect of the present disclosure, in addition to any one of the first to seventh aspects, the first electrolyte solution is at least one selected from potassium hydrogen carbonate, sodium hydrogen carbonate, potassium chloride, and sodium chloride. A CO 2 reduction device that is an aqueous solution containing the electrolyte is provided.
 本開示の第9態様は、CO還元装置によりCOを還元する方法であって、前記装置は、第1から第8のいずれか1つの態様であるCO還元装置であり、前記方法は、前記カソード槽および前記アノード槽に、それぞれ前記第1の電解液および前記第2の電解液を収容した状態で、前記アノード電極の前記光化学反応領域における前記AlGa1-xN層に波長365nm以下の光を照射して、前記光化学反応領域において電子および水素イオンの生成を進行させるとともに、前記第1の電解液に含まれるCOを還元する反応を、前記カソード電極の前記還元反応領域において進行させる工程、を含む、COを還元する方法を提供する。 A ninth aspect of the present disclosure is a method for reducing CO 2 by a CO 2 reducing device, wherein the device is a CO 2 reducing device according to any one of the first to eighth aspects, and the method includes: The wavelength of the Al x Ga 1-x N layer in the photochemical reaction region of the anode electrode in a state where the first electrolytic solution and the second electrolytic solution are accommodated in the cathode tank and the anode tank, respectively. Irradiation with light of 365 nm or less advances the generation of electrons and hydrogen ions in the photochemical reaction region, and reduces the CO 2 contained in the first electrolyte solution in the reduction reaction region of the cathode electrode. A method of reducing CO 2 comprising the steps of:
 本開示の第10態様は、第9態様に加え、前記カソード槽内に収容された前記第1の電解液に、二酸化炭素を含む気体を導入する工程をさらに含む、COを還元する方法を提供する。 According to a tenth aspect of the present disclosure, in addition to the ninth aspect, a method for reducing CO 2 further includes a step of introducing a gas containing carbon dioxide into the first electrolytic solution accommodated in the cathode chamber. provide.
 本開示の第11態様は、第9または第10態様に加え、前記装置を室温および大気圧下に置いた状態で、前記工程を実施する、COを還元する方法を提供する。 An eleventh aspect of the present disclosure provides a method for reducing CO 2 , in addition to the ninth or tenth aspect, wherein the above step is performed in a state where the apparatus is placed at room temperature and atmospheric pressure.
 本開示の第12態様は、第9から第11のいずれか1つの態様に加え、前記二酸化炭素を還元する反応により、メタノール、エタノール、アセトアルデヒド、ギ酸、メタン、エチレン、および一酸化炭素から選ばれる少なくとも1種が生成する、COを還元する方法を提供する。 The twelfth aspect of the present disclosure is selected from methanol, ethanol, acetaldehyde, formic acid, methane, ethylene, and carbon monoxide by the reaction of reducing the carbon dioxide in addition to any one of the ninth to eleventh aspects. Provided is a method for reducing CO 2 produced by at least one species.
 光エネルギーによってCOを還元する方法が従来知られている。半導体の粉末をCOを含む溶液に分散させて懸濁液を形成し、当該粉末をCOの還元触媒として働かせる方法(文献1-5)では、光の照射により触媒内で生成したキャリア(電子および正孔)がCOを還元する前に容易に再結合するため、高効率のCO還元を達成できない。一方、水を酸化して酸素を発生させる酸化反応電極(アノード電極)と、アノード電極と電気的に接続された、二酸化炭素を還元して炭素化合物を合成する還元反応電極(カソード電極)とを用いる方法(文献6-8)では、光の照射により電極で生成した電子および正孔が速やかに分離されることで再結合が抑制されるため、より高効率のCO還元が期待される。 A method for reducing CO 2 by light energy is conventionally known. In a method in which a semiconductor powder is dispersed in a solution containing CO 2 to form a suspension, and the powder acts as a CO 2 reduction catalyst (Reference 1-5), carriers generated in the catalyst by irradiation with light (reference 1-5) to easily recombine before electrons and holes) to reduce CO 2, it can not be achieved CO 2 reduction of high efficiency. Meanwhile, an oxidation reaction electrode (anode electrode) that oxidizes water to generate oxygen and a reduction reaction electrode (cathode electrode) that is electrically connected to the anode electrode and synthesizes a carbon compound by reducing carbon dioxide. In the method used (References 6-8), electrons and holes generated at the electrode by light irradiation are rapidly separated, so that recombination is suppressed. Therefore, more efficient CO 2 reduction is expected.
 ここで、光エネルギーを用いたCOの還元反応において、COの還元により生成する還元物の量は、光を照射する電極(光化学電極)であるアノード電極に生じる光起電力の大きさと、当該電極の光励起により得られるキャリア生成量とに依存する。上述したキャリアの再結合の抑制は、キャリア生成量を増大させる。しかし、チタニアに代表される酸化物半導体を用いたアノード電極では、光で励起された電子のエネルギーレベルがCOの還元に必要なエネルギー準位に対して十分に高くないため、アノード電極とカソード電極との間に、太陽電池あるいはポテンショスタットのような外部電源の配置が必要である。 Here, in the reduction reaction of CO 2 using light energy, the amount of the reduced product generated by the reduction of CO 2 is the magnitude of the photovoltaic force generated at the anode electrode that is an electrode (photochemical electrode) that irradiates light, It depends on the amount of carrier generation obtained by photoexcitation of the electrode. The suppression of carrier recombination described above increases the amount of carrier generation. However, in an anode electrode using an oxide semiconductor typified by titania, the energy level of electrons excited by light is not sufficiently high with respect to the energy level required for CO 2 reduction. An external power source such as a solar cell or a potentiostat is required between the electrodes.
 これに対して本開示の装置および方法では、窒化物半導体をアノード電極に使用することにより、励起電子のエネルギーレベルが高まるため、外部電源による電位のサポートなしにCOの還元反応を進行させることができる。これに加えて本開示の装置および方法では、GaN層と、特定量のMgが添加されたAlGa1-xN層(0<x≦0.25)との積層構造を採用する。これにより、双方の層の界面に形成されるビルトインポテンシャル、すなわち内部電界の大きさが増大する。この増大は、光励起により生成したキャリアの再結合をさらに抑制し、アノード電極における光起電力の大きさ、およびキャリア生成量を増進させる。すなわち、本開示の装置および方法は、光化学電極であるアノード電極において励起されたキャリアの損失を低減させるとともに、当該電極における光起電力の大きさを増大させる機構を有する。このような機構は、従来、開示がない。この機構による効果は、例えば、光照射時にアノード電極からカソード電極に流れる電流値の増大(アノード電極からカソード電極へのキャリア供給量の増大)として観測される。そして、当該効果は、本開示の装置および方法がより高い効率でのCO還元を達成することに寄与する。 On the other hand, in the apparatus and method of the present disclosure, the energy level of excited electrons is increased by using a nitride semiconductor for the anode electrode, so that the reduction reaction of CO 2 proceeds without potential support by an external power source. Can do. In addition, the apparatus and method of the present disclosure employ a stacked structure of a GaN layer and an Al x Ga 1-x N layer (0 <x ≦ 0.25) to which a specific amount of Mg is added. This increases the built-in potential formed at the interface between both layers, that is, the magnitude of the internal electric field. This increase further suppresses the recombination of carriers generated by photoexcitation, and increases the magnitude of the photovoltaic force and the amount of generated carriers in the anode electrode. That is, the apparatus and method of the present disclosure have a mechanism for reducing the loss of carriers excited in the anode electrode, which is a photochemical electrode, and increasing the magnitude of the photovoltaic force in the electrode. Such a mechanism has not been disclosed conventionally. The effect of this mechanism is observed, for example, as an increase in the value of current flowing from the anode electrode to the cathode electrode during light irradiation (an increase in the amount of carrier supplied from the anode electrode to the cathode electrode). The effect contributes to achieving the CO 2 reduction with higher efficiency by the apparatus and method of the present disclosure.
 なお、文献10には、Mgが添加されたAlGa1-x-yInN(x-y≦0.45、0≦x≦1、0≦y≦1)を用いた電極が開示されている。しかし、当該電極はカソード電極であり、文献10ではカソード電極に光を照射することで水の還元反応を進行させる。これに対して本開示の装置および方法では、Mgを添加したAlGa1-xN層をアノード電極に使用し、アノード電極に光を照射することで水の酸化反応を進行させる。したがって、本開示に係る装置および方法は、文献10の開示内容とは全く異なる技術的思想に基づく。 Note that Document 10 discloses an electrode using Al y Ga 1-xy In x N (xy ≦ 0.45, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) to which Mg is added. Has been. However, the said electrode is a cathode electrode, and in literature 10, the reduction reaction of water is advanced by irradiating light to a cathode electrode. On the other hand, in the apparatus and method of the present disclosure, an Al x Ga 1-x N layer to which Mg is added is used for the anode electrode, and the oxidation reaction of water proceeds by irradiating the anode electrode with light. Therefore, the apparatus and method according to the present disclosure are based on a technical idea that is completely different from the disclosure content of Document 10.
 [CO還元装置]
  (アノード電極)
 図1A~図1Dに、本開示の装置および方法で採用するアノード電極の例を示す。アノード電極では、光の照射によりキャリア(電子および正孔)が生成する。生成した電子は、アノード電極と電気的に接続されたカソード電極に移動する。生成した正孔は、アノード電極における水の酸化反応に使用され、その際生じた水素イオン(プロトン)はアノード側の電解液(第2の電解液)、アノード槽とカソード槽との接続部に配置されたプロトン透過膜、およびカソード側の電解液(第1の電解液)を介してカソード電極側に拡散移動する。カソード電極では、COと電子およびプロトンとが反応し、当該電極におけるCOの還元反応が進行する。光照射によるこのようなキャリアの生成に着目すると、このアノード電極はCO還元用光化学電極である。水の酸化反応により酸素が形成されることに着目すると、このアノード電極は酸素生成電極である。
[CO 2 reduction device]
(Anode electrode)
1A to 1D show examples of the anode electrode employed in the apparatus and method of the present disclosure. In the anode electrode, carriers (electrons and holes) are generated by light irradiation. The generated electrons move to the cathode electrode that is electrically connected to the anode electrode. The generated holes are used for the oxidation reaction of water at the anode electrode, and the hydrogen ions (protons) generated at that time are supplied to the anode side electrolyte solution (second electrolyte solution), the connection between the anode tank and the cathode tank. It diffuses and moves to the cathode electrode side through the arranged proton permeable membrane and the cathode side electrolyte (first electrolyte). At the cathode electrode, CO 2 reacts with electrons and protons, and the CO 2 reduction reaction at the electrode proceeds. Focusing on the generation of such carriers by light irradiation, this anode electrode is a photochemical electrode for CO 2 reduction. Focusing on the formation of oxygen by the oxidation reaction of water, this anode electrode is an oxygen generation electrode.
 図1Aに示すアノード電極10aは、Mgが添加されたAlGa1-xN層11、GaN層12、導電性基材13、および電極層14の積層体である。 An anode electrode 10a shown in FIG. 1A is a laminate of an Al x Ga 1-x N layer 11, a GaN layer 12, a conductive base material 13, and an electrode layer 14 to which Mg is added.
 AlGa1-xN層11は、光の照射によりキャリア(電子および正孔)が生成する層である。別の言い方をすれば、AlGa1-xN層11では、光が吸収され、光励起が生じてキャリアが生成する。生成したキャリアは、上述のように酸化還元反応に寄与する。AlGa1-xN層11内で生成した正孔は、アノード電極10aの表面、典型的にはAlGa1-xN層11の表面に移動し、アノード電極10aに接している水を酸化して、プロトンと酸素とが生成される。生成したプロトンはアノード電極10aが接している第2の電解液に拡散移動し、酸素は気体としてアノード電極10aから離れる。 The Al x Ga 1-x N layer 11 is a layer in which carriers (electrons and holes) are generated by light irradiation. In other words, in the Al x Ga 1-x N layer 11, light is absorbed, photoexcitation occurs, and carriers are generated. The generated carrier contributes to the redox reaction as described above. Holes generated in the Al x Ga 1-x N layer 11, the water surface of the anode electrode 10a, typically migrate to the surface of the Al x Ga 1-x N layer 11, in contact with the anode electrode 10a Is oxidized to produce protons and oxygen. The generated protons diffuse and move to the second electrolyte solution in contact with the anode electrode 10a, and oxygen leaves the anode electrode 10a as a gas.
 AlGa1-xN層11のバンドギャップの値、すなわち禁制帯の幅は3.4eV以上である。このため、アノード電極10aのAlGa1-xN層11に照射する光は、当該バンドギャップに対応するエネルギー以上のエネルギーを有する波長365nm以下の光を含む必要がある。 The band gap value of the Al x Ga 1-x N layer 11, that is, the width of the forbidden band is 3.4 eV or more. For this reason, the light with which the Al x Ga 1-x N layer 11 of the anode electrode 10a is irradiated needs to include light having a wavelength of 365 nm or less having energy equal to or higher than the energy corresponding to the band gap.
 AlGa1-xN層11におけるMgの添加量(ドープ量)は、当該AlGa1-xN層11の体積1cmあたりに含まれるMg原子の数(以下、「原子数(number of atoms)/cm」とも表記)で示して、1×1015以上1×1019以下である。 Al x Ga 1-x N layer 11 amount of Mg in the (doping amount) is, the Al x Ga 1-x number of N layers 11 Mg atoms contained per volume 1 cm 3 (hereinafter, "number of atoms (number of atoms) / cm 3 ”, which is 1 × 10 15 or more and 1 × 10 19 or less.
 AlGa1-xN層11におけるMgの添加量は、当該AlGa1-xN層11の体積1cmあたりに含まれるMg原子の数で示して、1×1016以上1×1018以下が好ましい。この場合、Mgの添加により得られる効果がより向上する、具体的には、AlGa1-xN層11における光起電力およびキャリアの利用効率が向上することで、本開示の装置および方法におけるCO還元の効率がさらに高くなる。 Al x Ga 1-x N layer 11 amount of Mg in the said Al x Ga 1-x N layer 11 shows the number of Mg atoms contained per volume 1 cm 3 of, 1 × 10 16 to 1 × 10 18 or less is preferable. In this case, the effect obtained by the addition of Mg is further improved, specifically, the photovoltaic and carrier utilization efficiency in the Al x Ga 1-x N layer 11 is improved, whereby the apparatus and method of the present disclosure The efficiency of CO 2 reduction at is further increased.
 AlGa1-xN層におけるMgの添加量が1×1015原子数/cm未満の場合、Mgの添加による効果が得られない。一方、AlGa1-xN層におけるMgの添加量が1×1019原子数/cmを超えると、AlGa1-xN層の特性が変化して、当該層における(すなわちアノード電極10aにおける)光起電力およびキャリアの利用効率が却って低下する。 When the added amount of Mg in the Al x Ga 1-x N layer is less than 1 × 10 15 atoms / cm 3 , the effect of adding Mg cannot be obtained. On the other hand, when the amount of Mg in the Al x Ga 1-x N layer is greater than 1 × 10 19 atoms / cm 3, Al x Ga 1 -x properties of N layer is changed, (i.e. the anode in the layer The photovoltaic and carrier utilization efficiency (in electrode 10a) is instead reduced.
 AlGa1-xN層11を構成するAlGa1-xNは、式0<x≦0.25を満たす組成を有する。このxの範囲は、波長365nm以下の光の照射に、容易に入手可能な光源(例えば、太陽およびキセノンランプ)を用いる場合に適している。xの値は好ましくは0.10以上0.15以下である。このxの好ましい範囲は、上記光の照射に一般的なキセノンランプを用いる場合に、特に適した範囲である。もちろん、xの値がこの好ましい範囲外である場合にも、光源にキセノンランプを採用して差し支えない。 Al x Ga 1-x N constituting the Al x Ga 1-x N layer 11 has a composition satisfying the formula 0 <x ≦ 0.25. This range of x is suitable when a readily available light source (for example, the sun and a xenon lamp) is used for irradiation with light having a wavelength of 365 nm or less. The value of x is preferably 0.10 or more and 0.15 or less. The preferable range of x is a particularly suitable range when a general xenon lamp is used for the light irradiation. Of course, a xenon lamp may be used as the light source even when the value of x is outside this preferable range.
 波長365nm以下の光がAlGa1-xN層11内を到達する深さ(当該層11の光照射面からの距離)は、AlGa1-xNのバンドギャップの値に影響を受けるが、概ね100nmである。また、当該深さ(AlGa1-xN層11の光吸収領域の厚さ)は、当該層11の光照射面に平行である。これを考慮すると、AlGa1-xN層11の厚さは、好ましくは70nm以上1000nm以下であり、より好ましくは80nm以上200nm以下である。 The depth at which light having a wavelength of 365 nm or less reaches the Al x Ga 1-x N layer 11 (the distance from the light irradiation surface of the layer 11) affects the value of the band gap of Al x Ga 1-x N. However, it is about 100 nm. Further, the depth (the thickness of the light absorption region of the Al x Ga 1-x N layer 11) is parallel to the light irradiation surface of the layer 11. Considering this, the thickness of the Al x Ga 1-x N layer 11 is preferably not less than 70 nm and not more than 1000 nm, more preferably not less than 80 nm and not more than 200 nm.
 GaN層12は、AlGa1-xN層11との積層構造に基づき、AlGa1-xN層11における(すなわちアノード電極10aにおける)キャリアの利用効率を向上させるための層である。この向上には、AlGa1-xN層11とGaN層12との界面に形成されるビルトインポテンシャルの増大が寄与していると推定される。 GaN layer 12 is based on the layered structure of the Al x Ga 1-x N layer 11 is a layer for improving (i.e. at the anode electrode 10a) utilization efficiency of the carriers in the Al x Ga 1-x N layer 11 . It is estimated that the increase is due to an increase in built-in potential formed at the interface between the Al x Ga 1-x N layer 11 and the GaN layer 12.
 不純物(ドープ種)の添加によって、GaN層12の電気抵抗を小さくできる。このようなGaN層12は、光照射によってAlGa1-xN層11に生成したキャリアのうち電子を効率的に輸送する電子伝導層として機能しうる。この場合、アノード電極10aの上記積層構造では、光吸収層(AlGa1-xN層11)と電子伝導層(GaN層12)とが機能的に分離される。当該分離により、光吸収層で生成したキャリア(電子)の取り出しおよび輸送が促進されることで、さらに高い光起電力およびキャリアの利用効率が達成される。 By adding an impurity (doping species), the electrical resistance of the GaN layer 12 can be reduced. Such a GaN layer 12 can function as an electron conductive layer that efficiently transports electrons out of carriers generated in the Al x Ga 1-x N layer 11 by light irradiation. In this case, in the laminated structure of the anode electrode 10a, the light absorption layer (Al x Ga 1-x N layer 11) and the electron conductive layer (GaN layer 12) are functionally separated. The separation facilitates the extraction and transport of carriers (electrons) generated in the light absorption layer, thereby achieving higher photovoltaic power and carrier utilization efficiency.
 電子伝導層としての機能を考慮すると、GaN層12は、AlGa1-xN層11よりも電気抵抗値が小さい層であることが好ましい。このようなGaN層12は、不純物の添加によりn形となった層、すなわち、n形GaNにより構成される層である。不純物(ドープ種)は、例えばシリコン(Si)である。n形には、n形が含まれる。 Considering the function as the electron conductive layer, the GaN layer 12 is preferably a layer having a smaller electrical resistance value than the Al x Ga 1-x N layer 11. Such a GaN layer 12 is a layer formed into n-type by the addition of impurities, that is, a layer composed of n-type GaN. The impurity (dope species) is, for example, silicon (Si). n-type includes n + -type .
 アノード電極10aは、CO還元装置を構築したときに第2の電解液に接するとともに、窒化物半導体により構成された光化学反応領域を有する。この領域のAlGa1-xN層11に光を照射することにより、キャリアの生成が進行する。アノード電極10aの構成は、光化学反応領域がAlGa1-xN層11およびGaN層12の積層構造を有する限り限定されない。図1Aに示すアノード電極10aでは、当該電極10aの全体に上記積層構造が形成されており、当該電極10aの一方の主面の全体が光化学反応領域として機能しうる。アノード電極10aの一部に上記積層構造が形成されていてもよく、すなわち、アノード電極10aの主面の一部を光化学反応領域としてもよい。 The anode electrode 10a is in contact with the second electrolytic solution when the CO 2 reduction device is constructed, and has a photochemical reaction region formed of a nitride semiconductor. By irradiating the Al x Ga 1-x N layer 11 in this region with light, carrier generation proceeds. The configuration of the anode electrode 10 a is not limited as long as the photochemical reaction region has a laminated structure of the Al x Ga 1-x N layer 11 and the GaN layer 12. In the anode electrode 10a shown in FIG. 1A, the laminated structure is formed on the entire electrode 10a, and the entire one main surface of the electrode 10a can function as a photochemical reaction region. The laminated structure may be formed on a part of the anode electrode 10a, that is, a part of the main surface of the anode electrode 10a may be used as a photochemical reaction region.
 図1Aに示すアノード電極10aでは、基材13の一方の主面上に上記積層構造が形成されている。本開示のCO還元装置が採用するアノード電極では、基材13の双方の主面上に上記積層構造が形成されていてもよい。 In the anode electrode 10 a shown in FIG. 1A, the laminated structure is formed on one main surface of the base material 13. In the anode electrode employed by the CO 2 reduction device of the present disclosure, the above laminated structure may be formed on both main surfaces of the base material 13.
 導電性基材13は、アノード電極10aの強度、形状保持性および取扱性を高めるとともに、AlGa1-xN層11において生成したキャリアのうち電子を効率よく輸送する層として機能する。 The conductive substrate 13 functions as a layer that improves the strength, shape retention, and handleability of the anode electrode 10a, and efficiently transports electrons among the carriers generated in the Al x Ga 1-x N layer 11.
 導電性基材13は、例えば、単結晶窒化ガリウム(GaN)、酸化ガリウム(Ga)、単結晶シリコン(Si)、炭化シリコン(SiC)、酸化亜鉛(ZnO)、またはホウ化ジルコニウム(ZrB)から構成される。 For example, the conductive base material 13 is made of single crystal gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), single crystal silicon (Si), silicon carbide (SiC), zinc oxide (ZnO), or zirconium boride ( ZrB 2 ).
 本開示の装置および方法が採用するアノード電極は、必ずしも導電性基材13のような基材を必要としない。当該装置は、必要に応じて、導電性基材13を備えるアノード電極を採用できる。 The anode electrode employed by the apparatus and method of the present disclosure does not necessarily require a base material such as the conductive base material 13. The apparatus can employ an anode electrode including the conductive base material 13 as necessary.
 電極層14は、導電性材料により構成される層であり、AlGa1-xN層11において生成したキャリアのうち電子をアノード電極10aから取り出す端子として機能する。電極層14の構成は当該端子として機能する限り限定されない。電極層14の配置位置について、図1Aに示す例では、導電性基材13におけるGaN層12に面する面とは反対側の面の全体に電極層14が形成されているが、当該反対側の面の一部に電極層14が形成されていてもよい。また、導電性基材13におけるGaN層12に面する面に、GaN層12と重複しないように電極層14が形成されていてもよいし、GaN層12上に、AlGa1-xN層11と重複しないように電極層14が形成されていてもよい(後者について図2A参照)。 The electrode layer 14 is a layer composed of a conductive material, and functions as a terminal for extracting electrons from the anode electrode 10a out of carriers generated in the Al x Ga 1-x N layer 11. The configuration of the electrode layer 14 is not limited as long as it functions as the terminal. With respect to the arrangement position of the electrode layer 14, in the example shown in FIG. 1A, the electrode layer 14 is formed on the entire surface of the conductive substrate 13 opposite to the surface facing the GaN layer 12. An electrode layer 14 may be formed on a part of the surface. An electrode layer 14 may be formed on the surface of the conductive substrate 13 facing the GaN layer 12 so as not to overlap with the GaN layer 12, and Al x Ga 1-x N is formed on the GaN layer 12. The electrode layer 14 may be formed so as not to overlap with the layer 11 (refer to FIG. 2A for the latter).
 電極層14は、例えば、金属または金属化合物により構成される。金属は、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、チタン(Ti)、またはこれらの合金である。 The electrode layer 14 is made of, for example, a metal or a metal compound. The metal is, for example, gold (Au), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), or an alloy thereof.
 電極層14は、1つの導電膜から構成されていても、複数の導電膜の積層体であってもよい。導電膜を構成する材料は、例えば、上記金属または金属化合物である。 The electrode layer 14 may be composed of a single conductive film or a laminate of a plurality of conductive films. The material constituting the conductive film is, for example, the above metal or metal compound.
 導電性基材13が半導体から構成されるとき、また、半導体であるGaN層12上に電極層14を形成する場合、電極層14または電極層14における導電性基材13もしくはGaN層12に接する面(あるいは膜)が、これら半導体との界面抵抗が小さい材料から構成されることが好ましい。当該材料は、例えば、Tiである。 When the conductive substrate 13 is composed of a semiconductor, and when the electrode layer 14 is formed on the GaN layer 12 that is a semiconductor, the electrode layer 14 or the conductive substrate 13 in the electrode layer 14 or the GaN layer 12 is in contact with the electrode layer 14. It is preferable that the surface (or film) is made of a material having low interface resistance with these semiconductors. The material is, for example, Ti.
 本開示の装置および方法が採用するアノード電極は、必ずしも電極層14を必要としない。当該装置は、必要に応じて、電極層14を備えるアノード電極を採用できる。 The anode electrode employed by the apparatus and method of the present disclosure does not necessarily require the electrode layer 14. The apparatus can employ an anode electrode including the electrode layer 14 as necessary.
 本開示の装置および方法において、光は光化学反応領域のAlGa1-xN層11に対して照射される。このためアノード電極10aでは、AlGa1-xN層11を光照射面とするとキャリア生成の効率が高くなる。AlGa1-xN層11を光照射面とする場合、アノード電極10aでは、光照射面から順にAlGa1-xN層11、GaN層12、導電性基材13および電極層14が積層されている。 In the apparatus and method of the present disclosure, light is irradiated to the Al x Ga 1-x N layer 11 in the photochemical reaction region. For this reason, in the anode electrode 10a, if the Al x Ga 1-x N layer 11 is the light irradiation surface, the efficiency of carrier generation is increased. When the Al x Ga 1-x N layer 11 is used as the light irradiation surface, in the anode electrode 10a, the Al x Ga 1-x N layer 11, the GaN layer 12, the conductive base material 13, and the electrode layer 14 are sequentially formed from the light irradiation surface. Are stacked.
 本開示の装置および方法で採用するアノード電極では、光化学反応領域におけるAlGa1-xN層11の上に、金属酸化物が配置されていてもよい。この金属酸化物は、アノード電極の光化学反応領域における酸素の生成効率を高める助触媒として機能する。また、この金属酸化物は、AlGa1-xN層11の保護層としても機能する。金属酸化物は、例えば、ニッケル(Ni)を含有し、好ましくはNiを主成分として含有する。主成分は、最も含有率が大きな成分を意味し、当該含有率は通常50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上である。金属酸化物は、酸化ニッケル(NiO、典型的にはNiOまたはNi)であってもよい。 In the anode electrode employed in the apparatus and method of the present disclosure, a metal oxide may be disposed on the Al x Ga 1-x N layer 11 in the photochemical reaction region. This metal oxide functions as a co-catalyst that increases the efficiency of oxygen generation in the photochemical reaction region of the anode electrode. The metal oxide also functions as a protective layer for the Al x Ga 1-x N layer 11. The metal oxide contains, for example, nickel (Ni), and preferably contains Ni as a main component. The main component means a component having the largest content, and the content is usually 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more. The metal oxide may be nickel oxide (NiO x , typically NiO or Ni 2 O 3 ).
 光化学反応領域におけるAlGa1-xN層11の上に金属酸化物が配置されているアノード電極の例を図1B~図1Dに示す。 Examples of the anode electrode in which the metal oxide is disposed on the Al x Ga 1-x N layer 11 in the photochemical reaction region are shown in FIGS. 1B to 1D.
 図1Bに示すアノード電極10bは、AlGa1-xN層11上に当該層11を覆うように上記金属酸化物から構成される表面被覆層15が配置されている以外は、図1Aのアノード電極10aと同じ構造を有する。この表面被覆層15は、波長365nm以下の帯域に含まれる少なくとも一部の光に対する透過性を有する層である。この透過性を確保するために、表面被覆層15の厚さは10nm以下が好ましい。表面被覆層15は、金属微粒子または金属酸化物の微粒子を含んでいてもよく、この場合、表面被覆層15の助触媒および保護層としての機能が促進される。金属は、例えば、NiまたはNiを主成分とするNi合金である。金属酸化物は、例えば上述した金属酸化物であり、表面被覆層15を構成する金属酸化物と同一であっても異なっていてもよい。 The anode electrode 10b shown in FIG. 1B is the same as that shown in FIG. 1A except that a surface coating layer 15 made of the above metal oxide is disposed on the Al x Ga 1-x N layer 11 so as to cover the layer 11. It has the same structure as the anode electrode 10a. This surface coating layer 15 is a layer having transparency to at least a part of light included in a band of wavelength 365 nm or less. In order to ensure this transparency, the thickness of the surface coating layer 15 is preferably 10 nm or less. The surface coating layer 15 may contain metal fine particles or metal oxide fine particles. In this case, the functions of the surface coating layer 15 as a promoter and a protective layer are promoted. The metal is, for example, Ni or a Ni alloy containing Ni as a main component. The metal oxide is, for example, the metal oxide described above, and may be the same as or different from the metal oxide constituting the surface coating layer 15.
 図1Cに示すアノード電極10cは、AlGa1-xN層11上に、当該層11の一部を覆うように(当該層11の一部が露出するように)上記金属酸化物から構成される表面被覆層15が配置されている以外は、図1Aのアノード電極10aと同じ構造を有する。アノード電極10cの表面被覆層15は、AlGa1-xN層11の表面を被覆する状態が異なる以外は、図1Bのアノード電極10bの表面被覆層15と同様である。アノード電極10cでは、様々な形状およびサイズを有する複数の表面被覆層15を規則的またはランダムに配置しても、同一形状およびサイズを有する複数の表面被覆層15を規則的またはランダムに配置してもよい。 An anode electrode 10c shown in FIG. 1C is composed of the above metal oxide on the Al x Ga 1-x N layer 11 so as to cover a part of the layer 11 (so that a part of the layer 11 is exposed). The same structure as the anode electrode 10a of FIG. The surface coating layer 15 of the anode electrode 10c is the same as the surface coating layer 15 of the anode electrode 10b in FIG. 1B except that the surface covering the surface of the Al x Ga 1-x N layer 11 is different. In the anode electrode 10c, even if the plurality of surface coating layers 15 having various shapes and sizes are arranged regularly or randomly, the plurality of surface coating layers 15 having the same shape and size are arranged regularly or randomly. Also good.
 図1Dに示すアノード電極10dは、AlGa1-xN層11上に、上記金属酸化物から構成される微粒子16が配置されている以外は、図1Aのアノード電極10aと同じ構造を有する。アノード電極10dでは、金属酸化物の助触媒としての機能がより向上する。アノード電極のAlGa1-xN層11上に配置する金属酸化物が微粒子状であるより具体的な説明は、本発明者らによって出願された米国特許出願13/453669の明細書を参照できる。この米国特許出願の明細書は、本明細書に引用される。 The anode electrode 10d shown in FIG. 1D has the same structure as the anode electrode 10a in FIG. 1A, except that the fine particles 16 made of the metal oxide are disposed on the Al x Ga 1-x N layer 11. . In the anode electrode 10d, the function of the metal oxide as a promoter is further improved. For a more specific description of the metal oxide disposed on the Al x Ga 1-x N layer 11 of the anode electrode being in the form of fine particles, see the specification of US patent application 13/453669 filed by the present inventors. it can. The specification of this US patent application is incorporated herein by reference.
 アノード電極10dでは、様々な形状およびサイズを有する複数の微粒子16を規則的またはランダムに配置しても、同一形状およびサイズを有する複数の微粒子16を規則的またはランダムに配置してもよい。 In the anode electrode 10d, a plurality of fine particles 16 having various shapes and sizes may be regularly or randomly arranged, or a plurality of fine particles 16 having the same shape and size may be regularly or randomly arranged.
 AlGa1-xN層11には、表面被覆層15および微粒子16の双方が配置されていてもよい。 Both the surface coating layer 15 and the fine particles 16 may be disposed in the Al x Ga 1-x N layer 11.
 アノード電極の形成方法は限定されない。AlGa1-xN層11、GaN層12、および電極層14は、公知の薄膜形成手法を用いて、基材13上に形成できる。具体的な薄膜形成手法は限定されない。基材13上へのGaN層12の形成、および形成したGaN層12上へのAlGa1-xN層11の形成には、例えば、有機金属気相エピタキシー法、分子線エピタキシー法、またはスパッタ法を採用できる。電極層14の形成には、例えば、真空蒸着法、電子ビーム蒸着法、スパッタ法を採用できる。 The method for forming the anode electrode is not limited. The Al x Ga 1-x N layer 11, the GaN layer 12, and the electrode layer 14 can be formed on the base material 13 using a known thin film forming method. A specific thin film forming method is not limited. For the formation of the GaN layer 12 on the base material 13 and the formation of the Al x Ga 1-x N layer 11 on the formed GaN layer 12, for example, metal organic vapor phase epitaxy, molecular beam epitaxy, or Sputtering can be used. For forming the electrode layer 14, for example, a vacuum deposition method, an electron beam deposition method, or a sputtering method can be employed.
 AlGa1-xN層11上への金属酸化物の配置(表面被覆層15および/または微粒子16の配置)には、例えば、金属酸化物の粒子を含む溶液、例えば当該粒子が分散したスラリー溶液を塗布し、加熱および乾燥させる方法(金属粒子塗布法)、あるいは有機金属化合物の溶液をスピンコートなどにより塗布し、当該化合物を加熱および分解させる方法(金属有機化合物分解法)を採用できる。 In the arrangement of the metal oxide (the arrangement of the surface coating layer 15 and / or the fine particles 16) on the Al x Ga 1-x N layer 11, for example, a solution containing metal oxide particles, for example, the particles are dispersed. A method of applying a slurry solution, heating and drying (metal particle coating method), or a method of applying a solution of an organometallic compound by spin coating and heating and decomposing the compound (metal-organic compound decomposition method) can be employed. .
 本開示の装置および方法で採用するアノード電極が基材を備える場合、当該基材は、図1A~1Dに示す導電性基材であってもよいし、絶縁性材料から構成される絶縁性基材であってもよい。絶縁性基材は、アノード電極の強度、形状保持性および取扱性を高める層として機能する。絶縁性基材を備えるアノード電極の例を、図2A~図2Dに示す。 When the anode electrode employed in the apparatus and method of the present disclosure includes a base material, the base material may be the conductive base material shown in FIGS. 1A to 1D, or an insulating group composed of an insulating material. It may be a material. The insulating substrate functions as a layer that enhances the strength, shape retention and handling of the anode electrode. Examples of an anode electrode provided with an insulating substrate are shown in FIGS. 2A to 2D.
 図2A~図2Dに示すアノード電極20a,20b,20cおよび20dは、導電性基材13の代わりに絶縁性基材23が使用されていること、および基材23が絶縁性であるためにAlGa1-xN層11で生成した電子をアノード電極から取り出す端子として機能する電極層14の配置位置がGaN層12上に変更されていること以外は、それぞれ、図1A~図1Dに示すアノード電極10a,10b,10cおよび10dと同様の構造を有する。 The anode electrodes 20a, 20b, 20c, and 20d shown in FIGS. 2A to 2D are made of an insulating base material 23 instead of the conductive base material 13, and the base material 23 is insulative. 1A to 1D, respectively, except that the arrangement position of the electrode layer 14 functioning as a terminal for taking out the electrons generated in the x Ga 1-x N layer 11 from the anode electrode is changed on the GaN layer 12. It has the same structure as the anode electrodes 10a, 10b, 10c and 10d.
 絶縁性基材23は、例えば、サファイア(典型的には単結晶サファイア)、または高抵抗シリコンから構成される。 The insulating substrate 23 is made of, for example, sapphire (typically single crystal sapphire) or high resistance silicon.
 絶縁性基材23を備えるアノード電極20a~20dの形成方法は、導電性基材13を備えるアノード電極10a~10dの形成方法と同様である。 The formation method of the anode electrodes 20a to 20d including the insulating base material 23 is the same as the formation method of the anode electrodes 10a to 10d including the conductive base material 13.
 アノード電極の形状は限定されないが、例えばプレート状である。 The shape of the anode electrode is not limited, but is, for example, a plate shape.
 アノード電極は、光照射によりキャリア(電子および正孔)が生成される上記光化学反応領域を有し、生成した当該電子をカソード電極への供給のために取り出すことができ、かつ生成した当該正孔と水とが光化学反応領域において反応して酸素およびプロトンが生成される限り、上述した以外の任意の部材を含んでもよい。 The anode electrode has the photochemical reaction region where carriers (electrons and holes) are generated by light irradiation, the generated electrons can be taken out for supply to the cathode electrode, and the generated holes Any member other than those described above may be included as long as oxygen and protons are generated by the reaction between water and water in the photochemical reaction region.
  (カソード電極)
 カソード電極は、金属または金属化合物により構成される。カソード電極は、アノード電極において光励起により生成した電子を受けとることができる構造を有する。カソード電極は、第1の電解液に含まれるCOが、当該電子と、第1の電解液に含まれるプロトンとの反応により還元されるCOの還元反応領域を有する。カソード電極は、受け取った電子を還元反応領域に供給できる構造を有する。これらの条件が満たされる限りカソード電極の構造は限定されず、例えば、絶縁性材料から構成される部分がカソード電極に含まれていてもよい。
(Cathode electrode)
The cathode electrode is composed of a metal or a metal compound. The cathode electrode has a structure capable of receiving electrons generated by photoexcitation at the anode electrode. Cathode electrode, CO 2 is contained in the first electrolytic solution, has a the electronic, the reduction area of the CO 2 which is reduced by reaction with the proton contained in the first electrolytic solution. The cathode electrode has a structure capable of supplying received electrons to the reduction reaction region. The structure of the cathode electrode is not limited as long as these conditions are satisfied. For example, a portion made of an insulating material may be included in the cathode electrode.
 カソード電極を構成しうる金属、特にCOの還元反応領域を構成しうる金属は、例えば、Cu、Au、Ag、タンタル(Ta)およびインジウム(In)から選ばれる少なくとも1種である。当該金属は、合金であってもよい。カソード電極を構成しうる金属化合物、特にCOの還元反応領域を構成しうる金属化合物は、例えば、炭化タンタルおよび窒化タンタルから選ばれる少なくとも1種である。カソード電極は、COの還元反応領域のみに、例えば、当該電極の表面の全部または一部として、これら金属または金属化合物を有してもよい。この場合、カソード電極の他の部分は、任意の導電性材料および/または絶縁性材料から構成される。当該他の部分は、例えば、カソード電極の基材である。基材は、例えば、ガラスおよびガラス状炭素(グラッシーカーボン)から構成される。ガラス状炭素は導電性を有する。カソード電極は、基材の表面に金属または金属化合物の粒子または微粒子が分散して配置された構造を有してもよい。この場合、これら粒子または微粒子がCOの還元反応領域となる。 The metal that can constitute the cathode electrode, particularly the metal that can constitute the CO 2 reduction reaction region is at least one selected from Cu, Au, Ag, tantalum (Ta), and indium (In), for example. The metal may be an alloy. The metal compound that can constitute the cathode electrode, in particular, the metal compound that can constitute the CO 2 reduction reaction region is, for example, at least one selected from tantalum carbide and tantalum nitride. The cathode electrode may have these metals or metal compounds only in the CO 2 reduction reaction region, for example, as all or part of the surface of the electrode. In this case, the other part of the cathode electrode is made of any conductive material and / or insulating material. The said other part is a base material of a cathode electrode, for example. A base material is comprised from glass and glassy carbon (glassy carbon), for example. Glassy carbon has electrical conductivity. The cathode electrode may have a structure in which particles or fine particles of metal or metal compound are dispersed on the surface of the substrate. In this case, these particles or fine particles serve as a CO 2 reduction reaction region.
 これに加えて、カソード電極の還元反応領域をこれらの金属または金属化合物から構成することにより、COの還元生成物として、メタンおよびエチレンのような炭化水素、メタノールおよびエタノールのようなアルコール、ギ酸のような有機酸、アセトアルデヒドのようなアルデヒド、および一酸化炭素から選ばれる少なくとも1種が得られる。金属または金属化合物の種類を選択することにより、COの還元物を選択的に生成することも可能である。例えば、Cuから構成される還元反応領域とすることにより、COの還元物として炭化水素および/またはアルコールが得られる。Inから構成される還元反応領域とすることにより、COの還元物としてギ酸が選択的に得られる。これは、還元反応領域を構成する金属の種類により、CO分子の当該領域への吸着状態が異なるためと推定される。 In addition, by constituting the reduction reaction region of the cathode electrode from these metals or metal compounds, as reduction products of CO 2 , hydrocarbons such as methane and ethylene, alcohols such as methanol and ethanol, formic acid At least one selected from organic acids such as aldehydes, aldehydes such as acetaldehyde, and carbon monoxide. By selecting the type of metal or metal compound, it is also possible to selectively produce a CO 2 reduction product. For example, a hydrocarbon and / or alcohol is obtained as a CO 2 reduction product by using a reduction reaction region composed of Cu. By using a reduction reaction region composed of In, formic acid is selectively obtained as a CO 2 reduction product. This is presumably because the state of adsorption of CO 2 molecules in the region varies depending on the type of metal constituting the reduction reaction region.
 カソード電極の形状は限定されず、例えばプレート状であり、実効的な反応面積を高める観点からは、表面に微細な凹凸を有するプレート、あるいは多孔質のプレートが好ましい。 The shape of the cathode electrode is not limited and is, for example, a plate. From the viewpoint of increasing the effective reaction area, a plate having fine irregularities on the surface or a porous plate is preferable.
 カソード電極の形成方法は限定されず、公知の方法を適用できる。COの還元反応領域のみに上記金属または金属化合物を用いる場合、例えば、基材の表面の全部または一部に当該領域を形成するが、その際の当該領域の形成には、公知の薄膜形成手法および微粒子形成手法を適用できる。 The formation method of a cathode electrode is not limited, A well-known method is applicable. When the metal or metal compound is used only in the CO 2 reduction reaction region, for example, the region is formed on all or part of the surface of the substrate. Techniques and fine particle formation techniques can be applied.
  (CO還元装置)
 図3に、本開示のCO還元装置の一例を示す。図3の装置300は、カソード槽302、アノード槽305およびプロトン透過膜306を備える。カソード槽302とアノード槽305とは、接続部313にて互いに接続されている。プロトン透過膜306は、カソード槽302とアノード槽305との接続部313に配置されている。
(CO 2 reduction device)
FIG. 3 shows an example of the CO 2 reduction device of the present disclosure. The apparatus 300 of FIG. 3 includes a cathode tank 302, an anode tank 305, and a proton permeable membrane 306. The cathode tank 302 and the anode tank 305 are connected to each other through a connection portion 313. The proton permeable membrane 306 is disposed in the connection part 313 between the cathode chamber 302 and the anode chamber 305.
 カソード槽302には、COを含有する第1の電解液307が収容されている。アノード槽305には、第2の電解液308が収容されている。カソード槽302の内部には、第1の電解液307に接するようにカソード電極301が配置されている。アノード槽305の内部には、第2の電解液308に接するようにアノード電極304が配置されている。 The cathode tank 302 contains a first electrolytic solution 307 containing CO 2 . The anode tank 305 contains a second electrolytic solution 308. A cathode electrode 301 is disposed inside the cathode chamber 302 so as to be in contact with the first electrolytic solution 307. An anode electrode 304 is disposed inside the anode tank 305 so as to be in contact with the second electrolytic solution 308.
 カソード電極301は、COの還元反応領域を有する、上記説明した、本開示の装置および方法が採用するカソード電極である。アノード電極304は、光化学反応領域を有する、上記説明した、本開示の装置および方法が採用するアノード電極である。カソード電極301は、当該電極301におけるCOの還元反応領域の少なくとも一部(好ましくは全部)が第1の電解液307に接するように、カソード槽302の内部に配置されている。アノード電極304は、当該電極304における光化学反応領域の少なくとも一部(好ましくは全部)が第2の電解液308に接するように、アノード槽305の内部に配置されている。図3に示す例では、双方の電極301,304の一部が、それぞれ電解液307,308に浸漬されている。電極301および/または304の全部が、電解液に浸漬されていてもよい。 The cathode electrode 301 has a CO 2 reduction reaction region and is the cathode electrode employed by the above-described apparatus and method of the present disclosure. The anode electrode 304 is an anode electrode that has the photochemical reaction region and that is adopted by the above-described apparatus and method of the present disclosure. The cathode electrode 301 is disposed inside the cathode chamber 302 so that at least a part (preferably all) of the CO 2 reduction reaction region in the electrode 301 is in contact with the first electrolytic solution 307. The anode electrode 304 is disposed inside the anode tank 305 so that at least a part (preferably all) of the photochemical reaction region in the electrode 304 is in contact with the second electrolytic solution 308. In the example shown in FIG. 3, parts of both electrodes 301 and 304 are immersed in the electrolytic solutions 307 and 308, respectively. All of the electrodes 301 and / or 304 may be immersed in the electrolytic solution.
 これに加えて、アノード電極304は、光化学反応領域のAlGa1-xN層に光を照射可能であるようにアノード槽305内に配置されている。図3に示す例では、アノード槽305の一部に窓(図示せず)が設けられており、当該窓を介して、光源303からの光がアノード電極304の光化学反応領域に照射される。 In addition, the anode electrode 304 is disposed in the anode tank 305 so that light can be irradiated to the Al x Ga 1-x N layer in the photochemical reaction region. In the example shown in FIG. 3, a window (not shown) is provided in a part of the anode tank 305, and light from the light source 303 is irradiated to the photochemical reaction region of the anode electrode 304 through the window.
 カソード電極301とアノード電極304とは、それぞれの電極の端子310,311と、端子310,311間を接続する配線312とによって、互いに電気的に接続されている。カソード電極301とアノード電極304との間には、太陽電池およびポテンショスタットのような外部電源は接続されていない。すなわち、カソード電極301とアノード電極304とは、外部電源を介することなく、互いに電気的に接続されている。配線312は、アノード電極304の光化学反応領域において光励起により生成した電子の経路として機能する。 The cathode electrode 301 and the anode electrode 304 are electrically connected to each other by terminals 310 and 311 of the respective electrodes and wirings 312 connecting the terminals 310 and 311. An external power source such as a solar cell and a potentiostat is not connected between the cathode electrode 301 and the anode electrode 304. That is, the cathode electrode 301 and the anode electrode 304 are electrically connected to each other without using an external power source. The wiring 312 functions as a path for electrons generated by photoexcitation in the photochemical reaction region of the anode electrode 304.
 プロトン透過膜306は、第1の電解液307と第2の電解液308との間の隔壁として機能し、第1および第2の電解液307,308を互いに分離する。すなわち、装置300では、カソード槽302内の第1の電解液307と、アノード槽305内の第2の電解液308とは、プロトン透過膜306が正常に機能している限り、互いに混合しない。電解液307,308およびプロトン透過膜306は、プロトンの拡散経路として機能する。 The proton permeable membrane 306 functions as a partition wall between the first electrolytic solution 307 and the second electrolytic solution 308, and separates the first and second electrolytic solutions 307 and 308 from each other. That is, in the apparatus 300, the first electrolytic solution 307 in the cathode tank 302 and the second electrolytic solution 308 in the anode tank 305 are not mixed with each other as long as the proton permeable membrane 306 functions normally. The electrolyte solutions 307 and 308 and the proton permeable membrane 306 function as proton diffusion paths.
 装置300では、光化学電極であるアノード電極304の光化学反応領域に光を照射することにより、キャリア(電子および正孔)が生成するとともに酸素が発生する。このとき、上述したように、当該領域が有するGaN層と特定量のMgが添加されたAlGa1-xN層との積層構造により、アノード電極304における高い光起電力および高いキャリアの利用効率が達成される。これにより装置300では、外部電源を使用することなくCOを高効率で炭素化合物に還元できる。もちろん、この炭素化合物にはCO自身は含まれない。COの還元により、2種以上の炭素化合物が生成しうる。 In the apparatus 300, by irradiating light to the photochemical reaction region of the anode electrode 304 that is a photochemical electrode, carriers (electrons and holes) are generated and oxygen is generated. At this time, as described above, due to the stacked structure of the GaN layer included in the region and the Al x Ga 1-x N layer to which a specific amount of Mg is added, high photovoltaic power and high carrier utilization in the anode electrode 304 are used. Efficiency is achieved. Thus, the apparatus 300 can reduce CO 2 to a carbon compound with high efficiency without using an external power source. Of course, this carbon compound does not include CO 2 itself. Reduction of CO 2 can produce two or more carbon compounds.
 アノード電極304で生成した電子は、生成後、カソード電極301の還元反応領域に移動し、当該領域においてCOと反応してCOが還元される。このとき、上述したように、当該領域が金属または金属化合物により構成されることも、装置300においてCOの高い還元効率が達成されることに寄与している。 After being generated, the electrons generated at the anode electrode 304 move to the reduction reaction region of the cathode electrode 301 and react with CO 2 in the region to reduce CO 2 . At this time, as described above, the fact that the region is made of a metal or a metal compound also contributes to achieving high CO 2 reduction efficiency in the apparatus 300.
 カソード電極301およびアノード電極304の形状は特に限定されない。装置300は、2以上のカソード電極301および/またはアノード電極304を備えていてもよい。 The shape of the cathode electrode 301 and the anode electrode 304 is not particularly limited. The apparatus 300 may include two or more cathode electrodes 301 and / or anode electrodes 304.
 カソード槽302およびアノード槽305を構成する材料は、各槽に収容する電解液によって著しく腐食されない限り限定されない。当該材料は、例えば、ステンレスのような金属、ガラス、樹脂およびこれらの複合材である。ただし、アノード槽305については、アノード電極304の光化学反応領域に対する光の照射を考慮する必要がある。もっとも、アノード槽305の内部に光源303を配置する場合は、この限りではない。 The material constituting the cathode tank 302 and the anode tank 305 is not limited as long as it is not significantly corroded by the electrolyte contained in each tank. The material is, for example, a metal such as stainless steel, glass, resin, and a composite material thereof. However, with respect to the anode tank 305, it is necessary to consider light irradiation to the photochemical reaction region of the anode electrode 304. However, this is not the case when the light source 303 is disposed inside the anode tank 305.
 カソード槽302およびアノード槽305の内部の形状は特に限定されない。 The internal shapes of the cathode tank 302 and the anode tank 305 are not particularly limited.
 カソード槽302および/またはアノード槽305は、その内部が密閉可能な構造を有していてもよい。槽の内部の密閉は、例えば、バルブにより実現する。 The cathode tank 302 and / or the anode tank 305 may have a structure in which the inside can be sealed. Sealing the inside of the tank is realized by a valve, for example.
 第1の電解液307は、COを含有することができ、プロトンを伝導可能であり、カソード電極301におけるCOの還元反応を著しく阻害せず(好ましくは阻害せず)、かつカソード電極301を著しく腐食しない(好ましくは腐食しない)限り、限定されない。第1の電解液307は、典型的には水溶液である。第1の電解液307は、例えば、炭酸水素カリウム、炭酸水素ナトリウム、塩化カリウム、および塩化ナトリウムから選ばれる少なくとも1種の電解質を含む水溶液である。 The first electrolytic solution 307 can contain CO 2 , can conduct protons, does not significantly inhibit (preferably not inhibit) the reduction reaction of CO 2 at the cathode electrode 301, and the cathode electrode 301. As long as it is not significantly corroded (preferably not corroded), there is no limitation. The first electrolytic solution 307 is typically an aqueous solution. The first electrolyte solution 307 is an aqueous solution containing at least one electrolyte selected from, for example, potassium bicarbonate, sodium bicarbonate, potassium chloride, and sodium chloride.
 電解質の種類により、COの還元により生成する炭素化合物の種類およびその生成比率が変化することがある。 Depending on the type of electrolyte, the type of carbon compound produced by the reduction of CO 2 and its production ratio may change.
 第1の電解液307における電解質の濃度は、好ましくは1mol/L以上であり、より好ましくは3mol/L以上である。濃度の上限は特に限定されず、例えば、5mol/Lである。 The concentration of the electrolyte in the first electrolytic solution 307 is preferably 1 mol / L or more, more preferably 3 mol / L or more. The upper limit of the concentration is not particularly limited and is, for example, 5 mol / L.
 第1の電解液307は、COを含有する。含有するCOの濃度は限定されない。第1の電解液307は、COが溶解した状態で酸性であることが好ましい。 The first electrolyte 307 contains CO 2. The concentration of CO 2 contained is not limited. The first electrolyte solution 307 is preferably acidic in a state where CO 2 is dissolved.
 装置300は、予めCOを第1の電解液307に含有させた状態で作動できる。また、装置300は、COを含む気体を第1の電解液307に供給しながら作動できる。図3に示す例では、COを含む気体がガス供給管309を介して第1の電解液307に供給されながら、装置300が作動している。COを含む気体は、純CO(COの含有率が100%の気体)であってもよい。 The apparatus 300 can operate in a state where CO 2 is previously contained in the first electrolytic solution 307. Further, the apparatus 300 can operate while supplying a gas containing CO 2 to the first electrolyte solution 307. In the example shown in FIG. 3, the apparatus 300 operates while a gas containing CO 2 is supplied to the first electrolyte solution 307 via the gas supply pipe 309. The gas containing CO 2 may be pure CO 2 (a gas having a CO 2 content of 100%).
 第2の電解液308は、プロトンを伝導可能であり、アノード電極304における光化学反応を著しく阻害せず(好ましくは阻害せず)、かつアノード電極304を著しく腐食しない(好ましくは腐食しない)限り、限定されない。第2の電解液308は、典型的には水溶液である。第2の電解液308は、例えば、水酸化ナトリウム水溶液である。 As long as the second electrolyte 308 can conduct protons, does not significantly inhibit (preferably not inhibit) the photochemical reaction in the anode electrode 304, and does not significantly corrode (preferably not corrode) the anode electrode 304, It is not limited. The second electrolytic solution 308 is typically an aqueous solution. The second electrolytic solution 308 is, for example, a sodium hydroxide aqueous solution.
 第2の電解液308における電解質の濃度は、好ましくは1mol/L以上であり、より好ましくは5mol/L以上である。濃度の上限は特に限定されず、例えば、8mol/Lである。第2の電解液308は、強塩基性が好ましい。 The concentration of the electrolyte in the second electrolytic solution 308 is preferably 1 mol / L or more, more preferably 5 mol / L or more. The upper limit of the concentration is not particularly limited and is, for example, 8 mol / L. The second electrolytic solution 308 is preferably strongly basic.
 プロトン透過膜306を構成する材料は、プロトンを透過するとともに、第1および第2の電解液間の隔壁として膜306が機能できる限り限定されない。プロトン透過膜306は、各電解液307,308に含まれる電解質が透過しない膜が好ましい。当該材料は、例えば、プロトン伝導性高分子材料であり、その具体例は、ナフィオン(登録商標)のようなパーフルオロカーボンスルホン酸である。 The material constituting the proton permeable membrane 306 is not limited as long as it can transmit protons and the membrane 306 can function as a partition wall between the first and second electrolytic solutions. The proton permeable membrane 306 is preferably a membrane that does not allow the electrolyte contained in the electrolytes 307 and 308 to permeate. The material is, for example, a proton conductive polymer material, and a specific example thereof is perfluorocarbon sulfonic acid such as Nafion (registered trademark).
 プロトン透過膜306の厚さは、膜306が第1および第2の電解液間の隔壁として機能する強度が確保されればよく、例えば、50~200μmである。 The thickness of the proton permeable membrane 306 may be 50 to 200 μm, for example, as long as the strength that allows the membrane 306 to function as a partition between the first and second electrolytes is ensured.
 光源303は、アノード電極304の光化学反応領域において光励起によるキャリアの発生を進行させるエネルギーを有する光を発する。より具体的に、光源303は、波長365nm以下の光(365nm以下の波長を有する光)を発する。光源303は、波長365nm以下の光の成分を含む連続光を発してもよいし、波長365nm以下の単色光を発する、例えばレーザーであってもよい。光源303は、波長250nm以上325nm以下の光を発することが好ましい。 The light source 303 emits light having energy that promotes generation of carriers by photoexcitation in the photochemical reaction region of the anode electrode 304. More specifically, the light source 303 emits light having a wavelength of 365 nm or less (light having a wavelength of 365 nm or less). The light source 303 may emit continuous light including light components with a wavelength of 365 nm or less, or may be a monochromatic light with a wavelength of 365 nm or less, for example, a laser. The light source 303 preferably emits light having a wavelength of 250 nm or more and 325 nm or less.
 光源303は、例えば、キセノンランプ、重水素ランプ、水銀ランプ、メタルハライドランプである。光源303として太陽光を利用することもできる。 The light source 303 is, for example, a xenon lamp, a deuterium lamp, a mercury lamp, or a metal halide lamp. Sunlight can also be used as the light source 303.
 光源303からアノード電極304の光化学反応領域への光の照射方法は限定されない。光源303がアノード槽305の外部に配置されている場合、アノード槽305には、光源303より発せられた光を当該槽305の内部に導く窓が必要である。光源303は、アノード槽305の内部に配置されていてもよい。 The light irradiation method from the light source 303 to the photochemical reaction region of the anode electrode 304 is not limited. When the light source 303 is disposed outside the anode tank 305, the anode tank 305 needs a window that guides light emitted from the light source 303 to the inside of the tank 305. The light source 303 may be disposed inside the anode tank 305.
 本開示の装置の用途は限定されない。本開示の装置は、COの還元が必要とされる、あるいはCOの還元が望まれるあらゆる用途に適用できる。当該用途の具体例は、COを炭素源とする炭素化合物、例えば一酸化炭素および/またはアルコール、アルデヒド、カルボン酸、炭化水素のような有機化合物の形成、ならびに酸素の形成である。別の側面から見た当該用途の具体例は、密閉空間におけるCOの除去、当該空間への酸素の供給である。本開示の装置は、地球温暖化を抑制するための大気中のCO削減(直接的な削減だけではなく、COを炭素源とすることによる化石燃料の消費量抑制に伴うCO排出量の削減を含む)、植物の光合成に代わる酸素生成(人工光合成)などにも適用できる。 Applications of the apparatus of the present disclosure are not limited. Apparatus of the present disclosure, the reduction of CO 2 is required, or can be applied to any application reduction of CO 2 is desirable. Specific examples of such applications are the formation of carbon compounds using CO 2 as a carbon source, for example carbon monoxide and / or organic compounds such as alcohols, aldehydes, carboxylic acids, hydrocarbons, and the formation of oxygen. A specific example of the application viewed from another aspect is removal of CO 2 in a sealed space and supply of oxygen to the space. The apparatus of the present disclosure reduces CO 2 emissions in the atmosphere to suppress global warming (not only direct reduction, but also CO 2 emissions associated with suppression of fossil fuel consumption by using CO 2 as a carbon source. It can also be applied to oxygen generation (artificial photosynthesis) instead of plant photosynthesis.
 [COの還元方法]
 本開示の方法は、上記説明した光化学電極をアノード電極に採用してCOを還元する方法である。例えば、本開示の方法では、上記説明した本開示の装置によりCOを還元する。これにより、外部電源を使用することなく光エネルギーによってCOを従来より高効率で還元できる。
[CO 2 reduction method]
The method of the present disclosure is a method for reducing CO 2 by employing the photochemical electrode described above as an anode electrode. For example, in the method of the present disclosure, CO 2 is reduced by the apparatus of the present disclosure described above. Thereby, CO 2 can be reduced with higher efficiency than before by using light energy without using an external power source.
 本開示の方法は、例えば、図3に示すCO還元装置300で実施できる。図3を参照しながら、本開示の方法の一例を説明する。 The method of the present disclosure can be performed by, for example, the CO 2 reduction device 300 illustrated in FIG. An example of the method of the present disclosure will be described with reference to FIG.
 図3に示すように、カソード槽302およびアノード槽305に、それぞれ第1の電解液307および第2の電解液308を収容した状態で、アノード電極304の光化学反応領域におけるAlGa1-xN層11に波長365nm以下の光を照射して、当該領域において電子およびプロトンの生成を進行させる。プロトンは、当該領域においてAlGa1-xN層11に生成した正孔と水との反応により生成する。これとともに、アノード電極304の光化学反応領域で生成した電子、および第1の電解液307に含まれるプロトンによって第1の電解液307に含まれるCOを還元する反応を、カソード電極301の還元反応領域において進行させる。アノード電極304における電子およびプロトンの生成と、カソード電極301におけるCOの還元とは、同時に進行しうる。 As shown in FIG. 3, Al x Ga 1-x in the photochemical reaction region of the anode electrode 304 in a state where the first electrolytic solution 307 and the second electrolytic solution 308 are accommodated in the cathode cell 302 and the anode cell 305, respectively. The N layer 11 is irradiated with light having a wavelength of 365 nm or less to advance generation of electrons and protons in the region. Protons are generated by a reaction between holes generated in the Al x Ga 1-x N layer 11 and water in the region. At the same time, the reaction of reducing CO 2 contained in the first electrolytic solution 307 by the electrons generated in the photochemical reaction region of the anode electrode 304 and the proton contained in the first electrolytic solution 307 is performed as the reduction reaction of the cathode electrode 301. Advance in the area. Generation of electrons and protons at the anode electrode 304 and reduction of CO 2 at the cathode electrode 301 can proceed simultaneously.
 照射する光は、好ましくは250nm以上325nm以下の波長を有する。 The light to be irradiated preferably has a wavelength of 250 nm or more and 325 nm or less.
 本開示の方法は、カソード槽302内に収容された第1の電解液307にCOを含む気体を導入する工程をさらに含んでいてもよい。第1の電解液307へのCOを含む気体の供給方法は限定されない。図3に示す例では、一端が第1の電解液307に浸漬されたガス供給管309を介して、COを含む気体が第1の電解液307に供給されている。当該工程は、装置300の作動中に実施してもよく、すなわち、第1の電解液307にCOを含む気体を供給しながらCOを還元してもよい。また、当該工程は、装置300を作動させる前に実施してもよい。好ましくは、装置300を作動させる前にCOを含む気体を第1の電解液307に供給して、十分な量のCOを第1の電解液307が含む状態で装置300の作動を開始する。 The method of the present disclosure may further include a step of introducing a gas containing CO 2 into the first electrolytic solution 307 accommodated in the cathode chamber 302. A method for supplying a gas containing CO 2 to the first electrolytic solution 307 is not limited. In the example shown in FIG. 3, a gas containing CO 2 is supplied to the first electrolytic solution 307 through a gas supply pipe 309 having one end immersed in the first electrolytic solution 307. This step may be performed during operation of the apparatus 300, that is, CO 2 may be reduced while supplying a gas containing CO 2 to the first electrolytic solution 307. In addition, this process may be performed before the apparatus 300 is operated. Preferably, a gas containing CO 2 is supplied to the first electrolyte solution 307 before the device 300 is operated, and the operation of the device 300 is started in a state where the first electrolyte solution 307 contains a sufficient amount of CO 2 . To do.
 本開示の方法では、COを還元する上記反応により、例えば、メタノールおよびエタノールのようなアルコール、アセトアルデヒドのようなアルデヒド、ギ酸のような有機酸、メタンおよびエチレンのような炭化水素、および一酸化炭素から選ばれる少なくとも1種を得る。COの還元により生じる炭素化合物は、例えば、カソード電極301の構成、第1の電解液307の種類などにより選択できる。 In the method of the present disclosure, the above reaction for reducing CO 2 is performed by, for example, alcohols such as methanol and ethanol, aldehydes such as acetaldehyde, organic acids such as formic acid, hydrocarbons such as methane and ethylene, and monoxide. At least one selected from carbon is obtained. The carbon compound produced by the reduction of CO 2 can be selected depending on, for example, the configuration of the cathode electrode 301 and the type of the first electrolytic solution 307.
 本開示の方法では、装置300を室温および大気圧下に配置した状態で、COの還元を実施しうる。すなわち、本開示の方法を実施する特殊な環境(例えば、高温、高圧)は必ずしも必要ではない。 In the method of the present disclosure, CO 2 reduction can be performed in a state where the apparatus 300 is placed at room temperature and atmospheric pressure. That is, a special environment (for example, high temperature and high pressure) for performing the method of the present disclosure is not necessarily required.
 本開示の方法では、本発明の効果が得られる限り、上述した以外の任意の工程を実施できる。 In the method of the present disclosure, any process other than those described above can be performed as long as the effect of the present invention is obtained.
 本開示の方法の適用範囲は限定されない。具体的な適用例は、本開示の装置の用途として例示したとおりである。 The scope of application of the method of the present disclosure is not limited. A specific application example is as illustrated as an application of the apparatus of the present disclosure.
 以下、実施例により、本開示のCO還元装置およびCOの還元方法をより詳細に説明する。本開示の装置および方法は、以下に示す実施例に限定されない。 Hereinafter, the CO 2 reduction device and the CO 2 reduction method of the present disclosure will be described in more detail by way of examples. The apparatus and method of the present disclosure are not limited to the examples shown below.
 (実施例1)
 実施例1では、アノード電極として、電極層/導電性基材/GaN層/Mg添加AlGa1-xN層の積層体を使用した。この積層体のAlGa1-xN層の上(AlGa1-xN層におけるGaN層に面する面とは反対側の面上)には、図1Dに示すように、Niを含有する金属酸化物微粒子を分散して配置した。導電性基材は、高濃度のSiをドープした単結晶GaN基材(厚さ約0.4mm)であった。GaN層は、Siドープn形GaN層(厚さ3.0μm、Siドープ量4.0×1018原子数/cm)であった。AlGa1-xN層の厚さは100nm、xの値は0.10、Mgドープ量は1.0×1017原子数/cmであった。金属酸化物微粒子は、酸化ニッケルの微粒子(直径数10nm~数μm)であり、AlGa1-xN層上に当該層の一部が露出した状態を保つように分散して配置した。金属酸化物微粒子は、Ni化合物が分散した溶液をAlGa1-xN層の表面に塗布した後、焼成処理することで配置した。その配置数は、面積1cmあたり概ね1×10~1×1010程度であった。
(Example 1)
In Example 1, a laminate of electrode layer / conductive substrate / GaN layer / Mg-added Al x Ga 1-x N layer was used as the anode electrode. On the Al x Ga 1-x N layer (on the surface of the Al x Ga 1-x N layer opposite to the surface facing the GaN layer), as shown in FIG. The metal oxide fine particles contained were dispersed and arranged. The conductive substrate was a single crystal GaN substrate (thickness: about 0.4 mm) doped with a high concentration of Si. The GaN layer was a Si-doped n + -type GaN layer (thickness: 3.0 μm, Si doping amount: 4.0 × 10 18 atoms / cm 3 ). The thickness of the Al x Ga 1-x N layer was 100 nm, the value of x was 0.10, and the Mg doping amount was 1.0 × 10 17 atoms / cm 3 . The metal oxide fine particles are nickel oxide fine particles (diameter of several tens of nm to several μm), and are dispersed and arranged on the Al x Ga 1-x N layer so as to keep a part of the layer exposed. The metal oxide fine particles were arranged by applying a solution in which the Ni compound was dispersed to the surface of the Al x Ga 1-x N layer, followed by firing treatment. The number of arrangement was about 1 × 10 8 to 1 × 10 10 per 1 cm 2 area.
 GaN層は、単結晶GaN基材上に、有機金属気相エピタキシー法により成長させて形成した。Mg添加AlGa1-xN層は、形成したGaN層の上に、有機金属気相エピタキシー法により成長させて形成した。 The GaN layer was formed on a single crystal GaN substrate by growing it by a metal organic vapor phase epitaxy method. The Mg-added Al x Ga 1-x N layer was formed on the formed GaN layer by growing it by metal organic vapor phase epitaxy.
 電極層は、Ti/Al/Auの積層体(厚さ500nm)であった。電極層は、導電性基材/GaN層/Mg添加AlGa1-xN層の積層体を形成し、当該構造体のAlGa1-xN層上に酸化ニッケルの微粒子を配置した後で、導電性基材におけるGaN層に面する面とは反対側の面に電子ビーム蒸着法により形成した。このとき、電極層と単結晶GaN基材との密着性を高めるとともに界面抵抗を抑えるため、Ti膜が導電性基材と接するようにした。 The electrode layer was a laminate of Ti / Al / Au (thickness 500 nm). The electrode layer was formed by forming a laminate of conductive substrate / GaN layer / Mg-added Al x Ga 1-x N layer, and nickel oxide fine particles were arranged on the Al x Ga 1-x N layer of the structure. Later, the conductive substrate was formed on the surface opposite to the surface facing the GaN layer by electron beam evaporation. At this time, in order to increase the adhesion between the electrode layer and the single crystal GaN substrate and suppress the interface resistance, the Ti film was in contact with the conductive substrate.
 一方、カソード電極には銅板(厚さ0.5mm)を使用した。 On the other hand, a copper plate (thickness 0.5 mm) was used for the cathode electrode.
 このように準備したアノード電極およびカソード電極を用いて、図3に示すCO還元装置を構築した。構築したCO還元装置のより具体的な構成および作動条件は、以下のとおりである。 A CO 2 reduction device shown in FIG. 3 was constructed using the anode electrode and cathode electrode thus prepared. The more specific configuration and operating conditions of the constructed CO 2 reduction device are as follows.
 ・カソード槽
  カソード電極:銅板(厚さ0.5mm)
  第1の電解液:濃度3.0mol/Lの炭酸水素カリウム水溶液を180cm
  第1の電解液に浸漬しているカソード電極の面積:約4cm
  CO供給:アノード電極に光を照射する前に、図3に示すガス導入管309を介して、第1の電解液にCOを流量200mL/分で30分間供給した。COの供給後、カソード槽を密閉し、COがカソード槽の外に流出しないようにした。
・ Cathode tank Cathode electrode: Copper plate (thickness 0.5mm)
First electrolyte solution: A potassium hydrogen carbonate aqueous solution having a concentration of 3.0 mol / L was added to 180 cm 3.
Area of cathode electrode immersed in first electrolyte solution: about 4 cm 2
CO 2 supply: before irradiating light to the anode electrode, via the gas inlet tube 309 shown in FIG. 3, and fed for 30 minutes of CO 2 at a flow rate of 200 mL / min in the first electrolyte. After supplying CO 2 , the cathode chamber was sealed so that CO 2 did not flow out of the cathode chamber.
 ・アノード槽
  アノード電極:上記準備した積層体
  第2の電解液:濃度5.0mol/Lの水酸化ナトリウム水溶液を180cm
  光照射:アノード槽には、当該槽の外部からアノード電極のAlGa1-xN層に光を照射できるように、石英ガラスからなる窓(図3に図示せず)を設けた。
Anode tank Anode electrode: The above prepared laminate Second electrolytic solution: 180 cm 3 of sodium hydroxide aqueous solution having a concentration of 5.0 mol / L
Light irradiation: The anode tank was provided with a window made of quartz glass (not shown in FIG. 3) so that light could be irradiated to the Al x Ga 1-x N layer of the anode electrode from the outside of the tank.
 ・アノード槽およびカソード槽の接続
  アノード槽およびカソード槽は、アノード電極とカソード電極との距離が約8cmとなるように接続した。接続部分の面積は約12.5cmとし、接続部分には、第1の電解液と第2の電解液とを分離する隔壁となるプロトン透過膜としてナフィオン膜(デュポン製、ナフィオン117、厚さ約180μm)を配置した。
-Connection of anode tank and cathode tank The anode tank and the cathode tank were connected so that the distance between the anode electrode and the cathode electrode was about 8 cm. The area of the connecting portion is about 12.5 cm 3 , and the connecting portion includes a Nafion membrane (DuPont, Nafion 117, thickness) as a proton permeable membrane that serves as a partition wall that separates the first electrolytic solution and the second electrolytic solution. About 180 μm).
 ・アノード電極およびカソード電極の接続
  アノード電極の電極層と、カソード電極である銅板の端部とを、電池またはポテンショスタットのような外部電源を双方の電極間に配置することなく、配線312により電気的に接続した。ただし、光照射時にアノード電極およびカソード電極間に流れる電流を検出するための電流計を、双方の電極間に配置した。
-Connection of anode electrode and cathode electrode The electrode layer of the anode electrode and the end of the copper plate as the cathode electrode are electrically connected by wiring 312 without arranging an external power source such as a battery or a potentiostat between both electrodes. Connected. However, an ammeter for detecting a current flowing between the anode electrode and the cathode electrode at the time of light irradiation was disposed between both electrodes.
 ・光源
  光源としてキセノンランプ(出力300W、光照射面積約4cm、照射光パワー約20mW/cm)を使用した。この光源から照射される光は、波長365nm以下にブロードなスペクトルを有する。
-Light source A xenon lamp (output: 300 W, light irradiation area: about 4 cm 2 , irradiation light power: about 20 mW / cm 2 ) was used as the light source. The light emitted from this light source has a broad spectrum at a wavelength of 365 nm or less.
 この還元装置において、COガスをカソード槽に供給した後、アノード電極のAlGa1-xN層に光を照射したところ、カソード電極からアノード電極に流れる電流が検出される、すなわちアノード電極からカソード電極への電子の流れが確認されるとともに、アノード電極のAlGa1-xN層の表面からの気体の発生が確認された。光照射を一時的に停止すると上記電流は検出されなくなり、気体の発生も停止したが、照射を再開すると上記電流が再び検出されるとともに気体が再び発生した。すなわち、アノード電極のAlGa1-xN層への光の照射により、何らかの化学反応がアノード電極およびカソード電極で進行することが確認された。 In this reduction device, after supplying CO 2 gas to the cathode tank, when the Al x Ga 1-x N layer of the anode electrode is irradiated with light, a current flowing from the cathode electrode to the anode electrode is detected, that is, the anode electrode The flow of electrons from the cathode to the cathode was confirmed, and the generation of gas from the surface of the Al x Ga 1-x N layer of the anode was confirmed. When the light irradiation was temporarily stopped, the current was not detected and the generation of gas was stopped. However, when the irradiation was resumed, the current was detected again and the gas was generated again. That is, it was confirmed that some chemical reaction proceeds at the anode electrode and the cathode electrode by irradiating light to the Al x Ga 1-x N layer of the anode electrode.
 次に、アノード電極で発生した気体を別途確認したところ、酸素であった。また、光照射後、第1の電解液に含まれる炭素化合物について、ガスクロマトグラフィー(GC:GLサイエンス製GC-4000)により気体成分を、液体クロマトグラフィー(LC:島津製作所製LC-2010)およびヘッドスペース型GC(HS-GC:島津製作所製GC-17A、パーキンエルマー製HS40)により液体成分を分析したところ、一酸化炭素およびギ酸が確認された。すなわち、アノード電極のAlGa1-xN層への光照射により、カソード槽の第1の電解液に含まれるCOが還元され、一酸化炭素およびギ酸が生成したことが確認された。GCおよびLCにより確認した一酸化炭素およびギ酸の生成量は、アノード電極への光の照射時間に比例して増加した。 Next, when the gas generated at the anode electrode was separately confirmed, it was oxygen. Further, after the light irradiation, for the carbon compound contained in the first electrolytic solution, the gas component was analyzed by gas chromatography (GC: GC-4000 manufactured by GL Science), liquid chromatography (LC: LC-2010 manufactured by Shimadzu Corporation) and When liquid components were analyzed by a head space type GC (HS-GC: Shimadzu GC-17A, Perkin Elmer HS40), carbon monoxide and formic acid were confirmed. That is, it was confirmed that CO 2 contained in the first electrolyte solution of the cathode tank was reduced by the light irradiation to the Al x Ga 1-x N layer of the anode electrode, and carbon monoxide and formic acid were generated. The production amounts of carbon monoxide and formic acid confirmed by GC and LC increased in proportion to the irradiation time of light to the anode electrode.
 (比較例1)
 アノード電極のAlGa1-xN層としてMgを添加していない層を用いた以外は実施例1と同様にして、構築したCO還元装置に光を照射した。
(Comparative Example 1)
The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that a layer to which Mg was not added was used as the Al x Ga 1-x N layer of the anode electrode.
 比較例1においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。 Also in Comparative Example 1, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light on the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank.
 次に、光照射時に実施例1および比較例1において双方の電極間に流れる電流量を比較したところ、実施例1の電流量は比較例1の電流量の約2倍であった。また、光の照射時間が同一のときに実施例1および比較例1で生成したCOの還元物(一酸化炭素およびギ酸)の量を比較したところ、実施例1の生成量は比較例1の生成量の約2倍であった。すなわち、Mg添加AlGa1-xN層を有するアノード電極の使用により、Mgを添加していないAlGa1-xN層を有するアノード電極を使用したときに比べて反応電流量および反応生成物量が約2倍となり、効率的にCOを還元できることが確認された。 Next, when the amount of current flowing between both electrodes in Example 1 and Comparative Example 1 during light irradiation was compared, the amount of current in Example 1 was about twice the amount of current in Comparative Example 1. Further, when the amounts of CO 2 reduction products (carbon monoxide and formic acid) produced in Example 1 and Comparative Example 1 were compared when the light irradiation times were the same, the production amount in Example 1 was Comparative Example 1. Was about twice as much as the amount produced. That is, the use of the anode electrode having Mg added Al x Ga 1-x N layer, the reaction amount of current and compared to when using an anode electrode having a Al x Ga 1-x N layer without addition of Mg reaction It was confirmed that the amount of product was approximately doubled and CO 2 could be efficiently reduced.
 (実施例2)
 アノード電極のAlGa1-xN層上に酸化ニッケルの微粒子を配置しなかった以外は実施例1と同様にして、構築したCO還元装置に光を照射した。
(Example 2)
The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that nickel oxide fine particles were not arranged on the Al x Ga 1-x N layer of the anode electrode.
 実施例2においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。 Also in Example 2, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank.
 次に、光照射時に実施例1および2において双方の電極間に流れる電流量を比較したところ、実施例1および2の電流量はほぼ同じであった。また、光の照射時間が同一のときに実施例1および2で生成したCOの還元物(一酸化炭素およびギ酸)の量を比較したところ、図4に示すように、実施例1に比べて還元物の生成量は若干低下したが、比較例1に比べると十分に大きかった。なお、図4は、比較例1で達成された単位時間あたりのCO還元量(=CO還元物の生成量)を基準とする、実施例1-3で達成された単位時間あたりのCO還元量を相対的に示す。 Next, when the amount of current flowing between both electrodes in Examples 1 and 2 during light irradiation was compared, the amount of current in Examples 1 and 2 was substantially the same. Further, when the amount of CO 2 reduction products (carbon monoxide and formic acid) produced in Examples 1 and 2 when the light irradiation time was the same, as compared with Example 1, as shown in FIG. Although the amount of reduced product produced was slightly reduced, it was sufficiently larger than that of Comparative Example 1. 4 shows the CO 2 reduction per unit time achieved in Example 1-3 based on the CO 2 reduction amount per unit time achieved in Comparative Example 1 (= the amount of CO 2 reduction product produced). 2 shows the amount of reduction relatively.
 (実施例3)
 実施例3では、アノード電極の基材として導電性基材の代わりに絶縁性基材(単結晶サファイア基材、厚さ約0.4mm)を用い、電極層を配置する位置を、基材におけるGaN層に面する面とは反対側の面からGaN層上に変更した(図2D参照)以外は、実施例1と同様にしてCO還元装置を構築した。電極層は、電極層とGaN層との密着性を高めるとともに界面抵抗を抑えるため、Ti膜がGaN層と接するよう配置した。
(Example 3)
In Example 3, an insulating base material (single crystal sapphire base material, thickness of about 0.4 mm) was used as the base material of the anode electrode instead of the conductive base material, and the position where the electrode layer was arranged was A CO 2 reduction device was constructed in the same manner as in Example 1, except that the surface opposite to the surface facing the GaN layer was changed to the GaN layer (see FIG. 2D). The electrode layer was disposed so that the Ti film was in contact with the GaN layer in order to increase the adhesion between the electrode layer and the GaN layer and suppress the interface resistance.
 構築したCO還元装置について、実施例1と同様に、アノード電極のAlGa1-xN層に光を照射したところ、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。 With respect to the constructed CO 2 reduction device, similarly to Example 1, when the Al x Ga 1-x N layer of the anode electrode was irradiated with light, the gas from the surface of the Al x Ga 1-x N layer of the anode electrode was irradiated. Generation and generation of carbon monoxide and formic acid by reduction of CO 2 contained in the first electrolyte solution of the cathode tank were confirmed.
 次に、光照射時に実施例1および3において双方の電極間に流れる電流量を比較したところ、実施例1および3の電流量はほぼ同じであった。また、光の照射時間が同一のときに実施例1および3で生成したCOの還元物(一酸化炭素およびギ酸)の量を比較したところ、図4に示すように、実施例1に比べて還元物の生成量は若干低下したが、比較例1に比べると十分に大きく、また、実施例2に比べても若干大きかった。 Next, when the amount of current flowing between both electrodes in Examples 1 and 3 during light irradiation was compared, the amount of current in Examples 1 and 3 was almost the same. Further, when the amount of CO 2 reduction products (carbon monoxide and formic acid) produced in Examples 1 and 3 when the light irradiation time was the same, as compared with Example 1, as shown in FIG. Although the amount of reduced product produced was slightly reduced, it was sufficiently larger than that of Comparative Example 1 and slightly larger than that of Example 2.
 図4に示すように、アノード電極のAlGa1-xN層にMgを添加することにより、より高い効率でのCOの還元を達成できることが確認された。 As shown in FIG. 4, it was confirmed that CO 2 reduction with higher efficiency can be achieved by adding Mg to the Al x Ga 1-x N layer of the anode electrode.
 (実施例4)
 カソード電極として銅板の代わりに、ガラス状炭素の基材(東海カーボン製、グラッシーカーボン(登録商標)、厚さ0.5mm)の表面に、当該基材の表面の一部が露出した状態を保つように銅の微粒子(直径20nm~100nm)を分散して配置した電極を使用した以外は、実施例1と同様にして、構築したCO還元装置に光を照射した。銅の微粒子は、銅化合物の分散液を基材の表面にスピンコートにより塗布し、有機物成分を乾燥して除去した後、還元雰囲気下で焼成処理することで配置した。その配置数は、面積1cmあたり概ね1×10~4×10程度であった。
Example 4
Instead of a copper plate as a cathode electrode, a state in which a part of the surface of the substrate is exposed on the surface of a glassy carbon substrate (made by Tokai Carbon, glassy carbon (registered trademark), thickness 0.5 mm) is maintained. Thus, the constructed CO 2 reduction device was irradiated with light in the same manner as in Example 1 except that an electrode in which copper fine particles (diameter: 20 nm to 100 nm) were dispersed and used was used. The copper fine particles were disposed by applying a dispersion of a copper compound to the surface of the base material by spin coating, drying and removing the organic component, and then firing in a reducing atmosphere. The number of arrangement was about 1 × 10 8 to 4 × 10 9 per 1 cm 2 of area.
 実施例4においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。また、光照射時に実施例1および4において双方の電極間に流れる電流量を比較したところ、実施例1および4の電流量はほぼ同じであった。 Also in Example 4, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank. Further, when the amount of current flowing between both electrodes in Examples 1 and 4 during light irradiation was compared, the amount of current in Examples 1 and 4 was almost the same.
 銅の微粒子の代わりに、微量のニッケル成分を含んだ銅ニッケル合金の微粒子を配置したカソード電極を用いた場合にも、銅の微粒子を配置した場合と同様の結果が得られた。 Even when a cathode electrode in which fine particles of a copper-nickel alloy containing a small amount of nickel component are used instead of fine particles of copper is used, the same result as in the case of arranging fine particles of copper is obtained.
 (実施例5)
 カソード電極として銅板の代わりにインジウム板(厚さ0.5mm)を用いた以外は実施例1と同様にして、構築したCO還元装置に光を照射した。
(Example 5)
The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that an indium plate (thickness 0.5 mm) was used instead of the copper plate as the cathode electrode.
 実施例5においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生が確認された。また、光照射時に実施例1および5において双方の電極間に流れる電流量を比較したところ、実施例1および5の電流量はほぼ同じであった。一方、光照射後、第1の電解液に含まれる炭素化合物をGCおよびLCにより分析したところ、その大部分がギ酸であることが確認された。すなわち、カソード電極としてインジウムを用いることにより、COの還元物としてギ酸が選択的に生成されることが確認された。 In Example 5, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode was confirmed by irradiating light to the Al x Ga 1-x N layer of the anode electrode. It was done. Further, when the amount of current flowing between both electrodes in Examples 1 and 5 during light irradiation was compared, the amount of current in Examples 1 and 5 was almost the same. On the other hand, when the carbon compound contained in the first electrolyte solution was analyzed by GC and LC after the light irradiation, it was confirmed that most of the carbon compound was formic acid. That is, it was confirmed that by using indium as the cathode electrode, formic acid is selectively generated as a CO 2 reduction product.
 (実施例6)
 第1の電解液として炭酸水素カリウム水溶液の代わりに塩化カリウム水溶液(濃度3.0mol/L)を用いた以外は実施例1と同様にして、構築したCO還元装置に光を照射した。
(Example 6)
The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that a potassium chloride aqueous solution (concentration: 3.0 mol / L) was used instead of the potassium hydrogen carbonate aqueous solution as the first electrolytic solution.
 実施例6においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生が確認された。また、光照射時に実施例1および6において双方の電極間に流れる電流量を比較したところ、実施例1および6の電流量はほぼ同じであった。一方、光照射後、第1の電解液に含まれる炭素化合物をGCおよびLCにより分析したところ、実施例1で確認された一酸化炭素およびギ酸に加えて、さらにエチレン、エタノールなどのアルコール、およびアセトアルデヒドの生成が確認された。 In Example 6, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode was confirmed by irradiating light to the Al x Ga 1-x N layer of the anode electrode. It was done. Further, when the amount of current flowing between both electrodes in Examples 1 and 6 during light irradiation was compared, the amount of current in Examples 1 and 6 was almost the same. On the other hand, after light irradiation, the carbon compound contained in the first electrolytic solution was analyzed by GC and LC. In addition to the carbon monoxide and formic acid confirmed in Example 1, alcohols such as ethylene and ethanol, and Formation of acetaldehyde was confirmed.
 第1の電解液として塩化ナトリウム水溶液を用いた場合も、塩化カリウム水溶液を用いた場合と同様の結果が得られた。 When a sodium chloride aqueous solution was used as the first electrolytic solution, the same result as that obtained when a potassium chloride aqueous solution was used was obtained.
 (実施例7)
 実施例7では、AlGa1-xN層へのMg原子の添加量(ドープ量)が異なるアノード電極を複数作製した。当該添加量が異なるアノード電極を用いた以外は実施例1と同様にして、構築したCO還元装置に光を照射した。
(Example 7)
In Example 7, a plurality of anode electrodes having different Mg atom addition amounts (doping amounts) to the Al x Ga 1-x N layer were produced. The constructed CO 2 reduction device was irradiated with light in the same manner as in Example 1 except that anode electrodes having different addition amounts were used.
 実施例7においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。 Also in Example 7, as in Example 1, generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank.
 一方、光の照射時間が同一のとき、実施例7で作製したアノード電極の種類(AlGa1-xN層へのMg添加量)に応じて、COの還元物(一酸化炭素およびギ酸)の生成量、すなわちCO還元量は変化した。図5に、AlGa1-xN層におけるMgの添加量と、単位時間あたりのCO還元量との関係を示す。図5の縦軸は、Mgの添加量がゼロである、すなわちMgを添加していないAlGa1-xN層をアノード電極に用いたときのCO還元量(比較例1のCO還元量)を基準(=1)とする相対値により示される。 On the other hand, when the light irradiation time is the same, depending on the type of the anode electrode prepared in Example 7 (Mg addition amount to the Al x Ga 1-x N layer), CO 2 reduction product (carbon monoxide and carbon monoxide) The amount of formic acid) produced, that is, the amount of CO 2 reduction changed. FIG. 5 shows the relationship between the Mg addition amount in the Al x Ga 1-x N layer and the CO 2 reduction amount per unit time. The vertical axis of FIG. 5 shows the amount of CO 2 reduction when the added amount of Mg is zero, that is, when an Al x Ga 1-x N layer without added Mg is used as the anode electrode (CO 2 of Comparative Example 1). (Reduction amount) is represented by a relative value with reference (= 1).
 図5に示すように、Mgを添加していないAlGa1-xN層を用いたときに比べて、AlGa1-xN層へのMgの添加量が1×1015原子数/cm以上になるとCO還元量が急激に増加を始めた。また、このとき、双方の電極間を流れる電流の値も、CO還元量の変化と同様に急激に増加を始めた。そして、AlGa1-xN層へのMgの添加量が1×1017原子数/cmのときにCO還元量および電流値が最大となり、Mgの添加量がさらに増大するにしたがってCO還元量および電流値が低下した。AlGa1-xN層へのMgの添加量が1×1019原子数/cmを超えると、CO還元量および電流値が急速に低下した。これは過剰な量のMgの添加によってAlGa1-xN層の特性が変化し、光励起によって生成したキャリアの利用効率に影響が及んだためと推定される。図5に示すように、CO還元量の観点から見たAlGa1-xN層へのMgの添加量は、1×1016原子数/cm以上1×1018原子数/cmが好ましかった。ただし、Mgの添加量の最適値(図5では1×1017原子数/cm)は、母材となるAlGa1-xN層の組成および特性に影響されるため、当該組成のxの値に応じて変動することがある。 As shown in FIG. 5, as compared with the case of using the Al x Ga 1-x N layer without added Mg, Al x Ga 1-x N amount is 1 × 10 15 number of atoms of Mg to the layer When it became more than / cm 3 , the CO 2 reduction amount started to increase rapidly. Further, at this time, the value of the current flowing between both electrodes also started to increase rapidly, similarly to the change in the CO 2 reduction amount. When the amount of Mg added to the Al x Ga 1-x N layer is 1 × 10 17 atoms / cm 3 , the CO 2 reduction amount and the current value are maximized, and the Mg addition amount further increases. The amount of CO 2 reduction and the current value decreased. When the amount of Mg added to the Al x Ga 1-x N layer exceeded 1 × 10 19 atoms / cm 3 , the CO 2 reduction amount and the current value decreased rapidly. This is presumably because the addition of an excessive amount of Mg changes the characteristics of the Al x Ga 1-x N layer and affects the utilization efficiency of carriers generated by photoexcitation. As shown in FIG. 5, the amount of Mg added to the Al x Ga 1-x N layer from the viewpoint of the CO 2 reduction amount is 1 × 10 16 atoms / cm 3 or more and 1 × 10 18 atoms / cm. 3 was preferred. However, since the optimum value of the Mg addition amount (1 × 10 17 atoms / cm 3 in FIG. 5) is affected by the composition and characteristics of the Al x Ga 1-x N layer serving as the base material, It may vary depending on the value of x.
 (実施例8)
 実施例8では、AlGa1-xN層の組成が異なる(xの値が異なる)アノード電極を4種類作製した。当該組成が異なるアノード電極を用いた以外は実施例1と同様にして、構築したCO還元装置に光を照射した。xの値は、0.05、0.10、0.15、または0.20とした。
(Example 8)
In Example 8, four types of anode electrodes having different compositions of Al x Ga 1-x N layers (different values of x) were produced. The constructed CO 2 reducing device was irradiated with light in the same manner as in Example 1 except that anode electrodes having different compositions were used. The value of x was set to 0.05, 0.10, 0.15, or 0.20.
 実施例8においても実施例1と同様に、アノード電極のAlGa1-xN層への光の照射により、アノード電極のAlGa1-xN層の表面からの気体の発生と、カソード槽の第1の電解液に含まれるCOの還元による一酸化炭素およびギ酸の生成とが確認された。また、光の照射時間が同一のときに実施例8で生成したCO還元物の量は、いずれのアノード電極の場合にも、実施例1で生成したCO還元物の量とほぼ同じであった。 Also in Example 8, as in Example 1, the generation of gas from the surface of the Al x Ga 1-x N layer of the anode electrode by irradiation of light to the Al x Ga 1-x N layer of the anode electrode, It was confirmed that carbon monoxide and formic acid were produced by reduction of CO 2 contained in the first electrolyte solution of the cathode tank. In addition, the amount of CO 2 reductate produced in Example 8 when the light irradiation time is the same is almost the same as the amount of CO 2 reductant produced in Example 1 for any anode electrode. there were.
 実施例1~8および比較例1に示すように、GaN層、および特定の範囲でMg原子が添加された(ドープされた)AlGa1-xN層の積層構造を有する、窒化物半導体により構成された光化学反応領域を有するアノード電極の使用により、アノード電極への光照射による反応電流量が増加し、カソード電極における高効率のCO還元が達成されることが確認された。 As shown in Examples 1 to 8 and Comparative Example 1, a nitride semiconductor having a laminated structure of a GaN layer and an Al x Ga 1-x N layer doped with Mg atoms in a specific range (doped) It was confirmed that the use of the anode electrode having a photochemical reaction region constituted by the above increases the amount of reaction current due to light irradiation to the anode electrode, and achieves high-efficiency CO 2 reduction at the cathode electrode.
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。 The present invention can be applied to other embodiments without departing from the intent and essential features thereof. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that fall within the meaning and scope equivalent to the claims are embraced therein.
 本開示の装置は、COの還元が必要とされる、あるいはCOの還元が望まれるあらゆる産業に適用できる。この産業には、宇宙産業、より具体的な例として宇宙船内あるいは地球外基地内のCO除去、が含まれる。また、この装置は、アルコール、アルデヒド、カルボン酸、炭化水素、一酸化炭素、酸素など、COの還元により製造可能な物質の製造に広く適用できる。さらにこの装置は、地球温暖化を抑制するための大気中のCO削減、植物の光合成に代わる酸素生成などにも適用できる。 Apparatus of the present disclosure is applicable to all industries that reduction of CO 2 is required, or the reduction of CO 2 is desirable. This industry includes the space industry, and more specifically, CO 2 removal in spacecraft or extraterrestrial bases. In addition, this apparatus can be widely applied to the production of substances that can be produced by reduction of CO 2 , such as alcohols, aldehydes, carboxylic acids, hydrocarbons, carbon monoxide, and oxygen. The apparatus further includes, CO 2 reduction in the air for suppressing global warming, can be applied to such as oxygen generation in place of plant photosynthesis.

Claims (12)

  1.  光エネルギーによって二酸化炭素を還元する二酸化炭素還元装置であって、
     二酸化炭素を含有する第1の電解液を収容するカソード槽と、
     前記カソード槽と接続された、第2の電解液を収容するアノード槽と、
     前記アノード槽と前記カソード槽との接続部に配置され、前記第1の電解液および第2の電解液間の隔壁として機能するとともに、双方の前記電解液の間で水素イオンを伝達するプロトン透過膜と、
     前記第1の電解液に接するように前記カソード槽の内部に配置されたカソード電極と、
     前記第2の電解液に接するように前記アノード槽の内部に配置されたアノード電極と、を備え、
     前記カソード電極は、前記第1の電解液に接し、かつ金属または金属化合物により構成された、二酸化炭素の還元反応領域を有し、
     前記アノード電極は、前記第2の電解液に接し、かつ窒化物半導体により構成された光化学反応領域を有し、
     前記アノード電極の前記領域は、GaN層と、Mgが添加されたAlGa1-xN層(ただし、0<x≦0.25)との積層構造を有し、
     前記AlGa1-xN層におけるMgの添加量が、前記AlGa1-xN層の体積1cmあたりに含まれるMg原子の数で示して、1×1015以上1×1019以下であり、
     前記アノード電極は、前記光化学反応領域の前記AlGa1-xN層に光を照射可能であるように前記アノード槽内に配置され、
     前記カソード電極と前記アノード電極とが、外部電源を介することなく、互いに電気的に接続されている、二酸化炭素還元装置。
    A carbon dioxide reduction device that reduces carbon dioxide by light energy,
    A cathode chamber containing a first electrolyte containing carbon dioxide;
    An anode tank containing a second electrolyte connected to the cathode tank;
    Proton permeation, which is disposed at the connection between the anode tank and the cathode tank, functions as a partition between the first electrolyte solution and the second electrolyte solution, and transmits hydrogen ions between the two electrolyte solutions. A membrane,
    A cathode electrode disposed in the cathode chamber so as to be in contact with the first electrolytic solution;
    An anode electrode disposed inside the anode tank so as to be in contact with the second electrolytic solution,
    The cathode electrode has a carbon dioxide reduction reaction region that is in contact with the first electrolytic solution and is made of a metal or a metal compound.
    The anode electrode is in contact with the second electrolytic solution and has a photochemical reaction region formed of a nitride semiconductor;
    The region of the anode electrode has a stacked structure of a GaN layer and an Al x Ga 1-x N layer to which Mg is added (where 0 <x ≦ 0.25),
    The Al x Ga 1-x N amount of Mg in layer, the Al x Ga 1-x represents the number of Mg atoms N contained per volume 1 cm 3 of the layer, 1 × 10 15 or more 1 × 10 19 And
    The anode electrode is disposed in the anode tank so that light can be applied to the Al x Ga 1-x N layer in the photochemical reaction region,
    A carbon dioxide reduction device in which the cathode electrode and the anode electrode are electrically connected to each other without an external power source.
  2.  前記AlGa1-xN層におけるMgの添加量が、前記AlGa1-xN層の体積1cmあたりに含まれるMg原子の数で示して、1×1016以上1×1018以下である、請求項1に記載の二酸化炭素還元装置。 The addition amount of Mg in the Al x Ga 1-x N layer, the Al x Ga 1-x N represents the number of Mg atoms contained per volume 1 cm 3 of the layer, 1 × 10 16 or more 1 × 10 18 The carbon dioxide reduction device according to claim 1 which is the following.
  3.  前記xの値が0.10以上0.15以下である、請求項1に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 1, wherein the value of x is 0.10 or more and 0.15 or less.
  4.  前記GaN層が、n形GaNにより構成される、請求項1に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 1, wherein the GaN layer is composed of n-type GaN.
  5.  前記光化学反応領域における前記AlGa1-xN層の上に、Niを含有する金属酸化物が配置されている、請求項1に記載の二酸化炭素還元装置。 2. The carbon dioxide reduction device according to claim 1, wherein a metal oxide containing Ni is disposed on the Al x Ga 1-x N layer in the photochemical reaction region.
  6.  前記金属酸化物が微粒子状である、請求項5に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 5, wherein the metal oxide is in the form of fine particles.
  7.  前記還元反応領域を構成する前記金属が、銅、金、銀、タンタルおよびインジウムから選ばれる少なくとも1種を含む、請求項1に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 1, wherein the metal constituting the reduction reaction region includes at least one selected from copper, gold, silver, tantalum, and indium.
  8.  前記第1の電解液が、炭酸水素カリウム、炭酸水素ナトリウム、塩化カリウム、および塩化ナトリウムから選ばれる少なくとも1種の電解質を含む水溶液である、請求項1に記載の二酸化炭素還元装置。 The carbon dioxide reduction device according to claim 1, wherein the first electrolytic solution is an aqueous solution containing at least one electrolyte selected from potassium hydrogen carbonate, sodium hydrogen carbonate, potassium chloride, and sodium chloride.
  9.  二酸化炭素還元装置により二酸化炭素を還元する方法であって、
     前記装置は、請求項1に記載の二酸化炭素還元装置であり、
     前記方法は、
      前記カソード槽および前記アノード槽に、それぞれ前記第1の電解液および前記第2の電解液を収容した状態で、前記アノード電極の前記光化学反応領域における前記AlGa1-xN層に波長365nm以下の光を照射して、前記光化学反応領域において電子および水素イオンの生成を進行させるとともに、
      前記第1の電解液に含まれる二酸化炭素を還元する反応を、前記カソード電極の前記還元反応領域において進行させる工程、を含む、
     二酸化炭素を還元する方法。
    A method of reducing carbon dioxide with a carbon dioxide reduction device,
    The apparatus is the carbon dioxide reduction apparatus according to claim 1,
    The method
    A wavelength of 365 nm is applied to the Al x Ga 1-x N layer in the photochemical reaction region of the anode electrode in a state where the first electrolytic solution and the second electrolytic solution are accommodated in the cathode tank and the anode tank, respectively. Irradiate the following light to advance the generation of electrons and hydrogen ions in the photochemical reaction region,
    A step of causing a reaction for reducing carbon dioxide contained in the first electrolytic solution to proceed in the reduction reaction region of the cathode electrode,
    A method of reducing carbon dioxide.
  10.  前記カソード槽内に収容された前記第1の電解液に、二酸化炭素を含む気体を導入する工程をさらに含む、請求項9に記載の二酸化炭素を還元する方法。 The method for reducing carbon dioxide according to claim 9, further comprising a step of introducing a gas containing carbon dioxide into the first electrolytic solution accommodated in the cathode chamber.
  11.  前記装置を室温および大気圧下に置いた状態で、前記工程を実施する、請求項9に記載の二酸化炭素を還元する方法。 The method for reducing carbon dioxide according to claim 9, wherein the step is carried out in a state where the apparatus is placed at room temperature and atmospheric pressure.
  12.  前記二酸化炭素を還元する反応により、メタノール、エタノール、アセトアルデヒド、ギ酸、メタン、エチレン、および一酸化炭素から選ばれる少なくとも1種が生成する、請求項9に記載の二酸化炭素を還元する方法。 The method for reducing carbon dioxide according to claim 9, wherein the reaction for reducing carbon dioxide produces at least one selected from methanol, ethanol, acetaldehyde, formic acid, methane, ethylene, and carbon monoxide.
PCT/JP2014/002526 2013-05-13 2014-05-13 Carbon dioxide reduction device and method for reducing carbon dioxide WO2014185062A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015508350A JP5753641B2 (en) 2013-05-13 2014-05-13 Carbon dioxide reduction apparatus and method for reducing carbon dioxide
US14/690,184 US20150218719A1 (en) 2013-05-13 2015-04-17 Carbon dioxide reduction device and method for reducing carbon dioxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013100944 2013-05-13
JP2013-100944 2013-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/690,184 Continuation US20150218719A1 (en) 2013-05-13 2015-04-17 Carbon dioxide reduction device and method for reducing carbon dioxide

Publications (1)

Publication Number Publication Date
WO2014185062A1 true WO2014185062A1 (en) 2014-11-20

Family

ID=51898052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002526 WO2014185062A1 (en) 2013-05-13 2014-05-13 Carbon dioxide reduction device and method for reducing carbon dioxide

Country Status (3)

Country Link
US (1) US20150218719A1 (en)
JP (1) JP5753641B2 (en)
WO (1) WO2014185062A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035400A (en) * 2016-08-31 2018-03-08 富士通株式会社 Photochemical electrode and oxygen generating device
JP2018090887A (en) * 2016-12-07 2018-06-14 日本電信電話株式会社 Semiconductor photoelectrode
JP2018090862A (en) * 2016-12-05 2018-06-14 日本電信電話株式会社 Semiconductor photoelectrode
CN109023415A (en) * 2018-07-31 2018-12-18 江苏大学 Surface metal copper modifies stannous chloride/foam nickel composite material preparation method and applications
JP2018204044A (en) * 2017-05-30 2018-12-27 日本電信電話株式会社 Semiconductor electrode and production method thereof
JP2019107627A (en) * 2017-12-20 2019-07-04 日本電信電話株式会社 Semiconductor photoelectrode
WO2022123644A1 (en) * 2020-12-08 2022-06-16 日本電信電話株式会社 Semiconductor photoelectrode and method for producing semiconductor photoelectrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209664A (en) * 2013-07-05 2015-12-30 松下知识产权经营株式会社 Method for reducing carbon dioxide
JP6672193B2 (en) 2017-02-02 2020-03-25 株式会社東芝 Carbon dioxide electrolysis cell and electrolyzer
CN107447229B (en) * 2017-07-14 2019-01-25 中国科学院长春应用化学研究所 A kind of method that electro-catalysis reduction carbon dioxide generates ethyl alcohol
CN107845848B (en) * 2017-11-02 2019-11-15 河北工业大学 Gallium-nitride-based devices and preparation method thereof for artificial photosynthesis
EP3868921A1 (en) 2020-02-21 2021-08-25 Université de Paris Device for solar light driven co2 reduction in water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024764A (en) * 2001-07-16 2003-01-28 Japan Science & Technology Corp Gas generator
JP2009231745A (en) * 2008-03-25 2009-10-08 Showa Denko Kk Group iii nitride semiconductor light-emitting element, method for manufacturing group iii nitride semiconductor light-emitting element, and lamp
WO2011162372A1 (en) * 2010-06-25 2011-12-29 国立大学法人京都工芸繊維大学 Photocatalyst material and photocatalyst device
WO2013031063A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024764A (en) * 2001-07-16 2003-01-28 Japan Science & Technology Corp Gas generator
JP2009231745A (en) * 2008-03-25 2009-10-08 Showa Denko Kk Group iii nitride semiconductor light-emitting element, method for manufacturing group iii nitride semiconductor light-emitting element, and lamp
WO2011162372A1 (en) * 2010-06-25 2011-12-29 国立大学法人京都工芸繊維大学 Photocatalyst material and photocatalyst device
WO2013031063A1 (en) * 2011-08-31 2013-03-07 パナソニック株式会社 Method for reducing carbon dioxide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035400A (en) * 2016-08-31 2018-03-08 富士通株式会社 Photochemical electrode and oxygen generating device
JP2018090862A (en) * 2016-12-05 2018-06-14 日本電信電話株式会社 Semiconductor photoelectrode
JP2018090887A (en) * 2016-12-07 2018-06-14 日本電信電話株式会社 Semiconductor photoelectrode
JP2018204044A (en) * 2017-05-30 2018-12-27 日本電信電話株式会社 Semiconductor electrode and production method thereof
JP2019107627A (en) * 2017-12-20 2019-07-04 日本電信電話株式会社 Semiconductor photoelectrode
CN109023415A (en) * 2018-07-31 2018-12-18 江苏大学 Surface metal copper modifies stannous chloride/foam nickel composite material preparation method and applications
WO2022123644A1 (en) * 2020-12-08 2022-06-16 日本電信電話株式会社 Semiconductor photoelectrode and method for producing semiconductor photoelectrode

Also Published As

Publication number Publication date
JP5753641B2 (en) 2015-07-22
US20150218719A1 (en) 2015-08-06
JPWO2014185062A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5753641B2 (en) Carbon dioxide reduction apparatus and method for reducing carbon dioxide
Han et al. Recent advances in electrochemical, photochemical, and photoelectrochemical reduction of CO2 to C2+ products
US10472724B2 (en) Chemical reaction device
JP5236125B1 (en) How to reduce carbon dioxide
JP5636139B2 (en) Photochemical electrode for carbon dioxide reduction, and method for reducing carbon dioxide using the photochemical electrode
JP6744242B2 (en) Chemical reaction system
JP5830527B2 (en) Semiconductor device, hydrogen production system, and methane or methanol production system
CN113518837B (en) Ammonia production device and ammonia production method
JP5885662B2 (en) Photocatalytic material and photocatalytic device
JP5236124B1 (en) How to reduce carbon dioxide
US11377747B2 (en) Solar fuels generator with pH separation
JP5641489B2 (en) How to produce alcohol
JP6474000B2 (en) Carbon dioxide reduction method and carbon dioxide reduction device
WO2015001729A1 (en) Method for reducing carbon dioxide
JP2014227563A (en) Photochemical electrode for reducing carbon dioxide, apparatus for reducing carbon dioxide, and method for reducing carbon dioxide
JP6631467B2 (en) Carbon dioxide reduction device
Amano et al. Porous Transport Photoelectrodes Fabricated on Felt Substrates and Applications to Polymer Electrolyte Photoelectrochemistry
Kim et al. MnO 2 co-catalyst effect on Photoelectrochemical Properties of GaN Photoelectrode
WO2023084683A1 (en) Electrolyte membrane
WO2023042476A1 (en) Anodic photoelectrode, anodic photoelectrode production method, and hydrogen production facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798625

Country of ref document: EP

Kind code of ref document: A1