WO2014185013A1 - Ventilation system, and control device - Google Patents

Ventilation system, and control device Download PDF

Info

Publication number
WO2014185013A1
WO2014185013A1 PCT/JP2014/002278 JP2014002278W WO2014185013A1 WO 2014185013 A1 WO2014185013 A1 WO 2014185013A1 JP 2014002278 W JP2014002278 W JP 2014002278W WO 2014185013 A1 WO2014185013 A1 WO 2014185013A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
air quality
ventilation
air
dispersion measuring
Prior art date
Application number
PCT/JP2014/002278
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 実
橋本 勝
英亮 山口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480027677.2A priority Critical patent/CN105229389B/en
Publication of WO2014185013A1 publication Critical patent/WO2014185013A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilation system and a control device, and more particularly to a ventilation system that improves the air quality in a building by ventilating the building and a control device used therefor.
  • an air purifier that returns air purified by removing odor components, dust, and the like in the indoor air to the room again (for example, see Reference 1 [Japanese Published Patent Publication No. 2008-36466].
  • the air purifier described in Literature 1 includes an air purifying unit including a prefilter, a plasma ionization unit, a photocatalytic filter, and a plasma catalytic filter, and removes foreign matters contained in the indoor air sucked from the suction port. To clean.
  • dust or the like contained in the air flow that has passed through the prefilter is charged by the plasma ionization unit and adsorbed when passing through the photocatalytic filter.
  • the ventilation facility exchanges indoor air and outdoor air, so that it may not be effective in improving the air quality in the building (indoor) depending on the situation.
  • the ventilation facility will take contaminated air from outside the building into the building. .
  • the ventilation facility wastes energy (electric power).
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a ventilation system that can improve the air quality in the building by ventilating the building without wasting energy, and a control device used therefor.
  • the ventilation system includes a ventilation facility, individual measuring devices, a plurality of distributed measuring devices, and a control device.
  • the ventilation facility is configured to ventilate a building.
  • the individual measuring instrument is configured to measure the air quality inside the building and the air quality outside the building.
  • the plurality of distributed measuring devices are configured to measure air quality at a plurality of observation points in a monitoring area including the building, respectively.
  • the control device includes a control unit that executes a normal operation of operating the ventilation facility if the air quality outside the building is better than the air quality inside the building.
  • the control device further includes a prediction unit that predicts whether an abnormality in which the air quality outside the building indicates an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring instruments. Have.
  • the control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
  • the control device includes a first acquisition unit, a second acquisition unit, a control unit, and a prediction unit.
  • the first acquisition unit is configured to acquire air quality inside the building and air quality outside the building.
  • the second acquisition unit is configured to acquire the air quality of each of a plurality of observation points in a monitoring area including the building.
  • the control unit is configured to execute a normal operation of operating a ventilation facility that ventilates the building if the air quality outside the building is better than the air quality inside the building.
  • the prediction unit is configured to predict whether or not an abnormality in which the air quality outside the building shows an abnormal value due to contaminated air occurs based on the air quality of each of the plurality of observation points. .
  • the control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
  • FIG. 1 is a schematic block diagram of a ventilation system according to Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view showing the arrangement of the dispersion measuring apparatus according to the first embodiment. It is a flowchart which shows the operation example of the ventilation system which concerns on Embodiment 1.
  • FIG. It is a schematic explanatory drawing of the ventilation system which concerns on Embodiment 2.
  • the ventilation system of this embodiment is a system that is applied to a building and improves the air quality in the building by ventilating the building.
  • the building to which the ventilation system is applied is not limited to the detached house, and may be, for example, an apartment house, a store, an office building, a factory, or the like.
  • the ventilation system 10 includes a ventilation facility 2 for ventilating a building 1, an individual measuring device 3, a control device 4, a plurality of distributed measuring devices M 1, M 2, M 3. Are not referred to as “dispersion measuring device M0”).
  • the ventilation system 10 illustrated in FIG. 1 further includes an air purifier 61 and an air conditioner (air conditioner) 62 as air conditioners.
  • the building 1 is further provided with a user terminal 71, a power meter 72, and network devices 73 and 74.
  • the control device 4 and the network devices 73 and 74 are connected to the Internet 8 via the router 75, and a management device 91 and a server 92 are connected to the Internet 8.
  • the individual measuring instrument 3 measures the air quality inside and outside the building 1.
  • the control device 4 controls the ventilation facility 2 based on the measurement result of the individual measuring instrument 3, and operates the ventilation facility 2 when the air quality outside the building 1 is better than the air quality inside the building 1.
  • a plurality of distributed measuring instruments M1, M2, M3... are connected to a plurality of observation points P1, P2, P3... In the monitoring area set around the building 1 (hereinafter referred to as “observation points P0 if they are not distinguished from each other). ”) And the air quality at each observation point P0 is measured. That is, the plurality of distributed measuring devices M0 measure the air quality at the plurality of observation points P0 in the monitoring area 100 including the building 1, respectively.
  • the air quality mentioned here is one of SOx, NOx, particulate matter (PM), volatile organic compounds (VOC) and other air pollutants, CO, CO 2 , odor, pollen, etc. Means the component concentration in the air for more than one.
  • the individual measuring instrument 3 and each of the dispersion measuring instruments M1, M2, M3... Are configured to measure information on the air environment such as temperature and humidity in addition to the air quality.
  • the volatile organic compound includes one or more of formaldehyde, benzene, toluene, xylene, styrene, and the like.
  • the control device 4 determines whether or not air whose air quality indicates an abnormal value (hereinafter referred to as “contaminated air”) reaches the building 1 based on the measurement results of the plurality of distributed measuring instruments M1, M2, M3. It has the prediction part 411 which predicts.
  • the control device 4 is configured to stop the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the prediction unit 411 predicts the arrival of contaminated air.
  • total volatile organic compounds are the indoor concentration indicating value 0.40 mg / m 3 or less.
  • total volatile organic compounds are the indoor concentration indicating value 0.40 mg / m 3 or less.
  • Chinese indoor air mass standards GB18883
  • 0.08mg / m 3 or less for the formaldehyde 0.11 mg / m 3 or less for benzene, 0.60 mg / m 3 or less for the total volatile organic compounds It is an index value.
  • air whose air quality deviates from the range indicated by these index values is treated as contaminated air whose air quality indicates an abnormal value.
  • the abnormal value of air quality is not limited to the value determined by these index values, and for example, the air quality in a state worse than the air quality in the building 1 may be used as the abnormal value. That is, the control device 4 uses the air quality in the building 1 measured by the individual measuring instrument 3 as a reference value, air that shows a higher (bad) value than the reference value, and air quality that shows an abnormal value. It may be treated as contaminated air.
  • the air purifier 61 and the air conditioner 62 are air conditioners that are provided in the building 1 separately from the ventilation facility 2 and improve the air quality in the building 1.
  • the air conditioner 62 improves air quality by, for example, removing airborne particles in the air with a filter or reducing the amount of VOC scattering by lowering the temperature.
  • the control device 4 further has a function of controlling the air conditioning equipment (the air purifier 61 and the air conditioner 62), and is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. Yes.
  • the control device 4 uses the user terminal 71 as a user interface for displaying various information and receiving operation inputs from the user.
  • the user terminal 71 is a terminal such as a smartphone or a tablet terminal that can be carried by the user and has a communication function with the control device 4.
  • the power measuring instrument 72 is configured to measure the power supplied from the system power supply (commercial power supply) for each main system and branch system. Specifically, a main breaker (not shown) and a plurality of branch breakers (not shown) are housed in a distribution board (not shown) provided in the building 1, and the power meter 72 is Power consumption is measured for each main system including the main circuit breaker and each main system including each branch breaker.
  • the power meter 72 is connected to the control device 4, and the control device 4 can display the measurement result of the power meter 72 on the user terminal 71, for example.
  • the network devices 73 and 74 are, for example, a television receiver or a network camera.
  • the control device 4 further has a function of controlling these network devices 73 and 74, and can be used to display various types of information in the same manner as the user terminal 71, for example.
  • control device 4 controls not only the ventilation facility 2 but also various devices and facilities provided in the building 1 and visualizes the power consumption measured by the power meter 72 ( Visualize).
  • control device 4 functions as a controller for HEMS (Home Energy Management System).
  • the management device 91 is composed of a computer and has a function of centrally managing the information of the monitoring area.
  • the management device 91 may be provided for each monitoring area set around the building 1, or may be provided for each wide management area including a plurality of monitoring areas.
  • the server 92 is composed of, for example, a weather forecast server, and has a function of providing at least information regarding the wind direction and wind speed of the observation point P0 to the control device 4.
  • the control device 4 further includes an acquisition unit 414 that acquires information on the wind direction and wind speed at the observation point P0 from the server 92, and the prediction unit 411 uses the information acquired by the acquisition unit 414 to perform prediction. Configured to do.
  • the server 92 provides the control device 4 with the temperature and humidity in addition to the wind direction and wind speed at the observation point P0.
  • the ventilation facility 2 has a power source such as a motor (not shown), and exchanges air between the inside and outside of the building 1 with power generated by the power source by consuming electrical energy (electric power).
  • the building 1 is ventilated by performing (replacement).
  • the ventilation facility 2 may be a duct type that ventilates using a duct that passes through the back of the ceiling, or may be a wall-mounted type that is attached to the wall of the building 1.
  • the type of ventilation of the ventilation facility 2 is type 1 ventilation, type 2 ventilation, type 3 ventilation. Any of seed ventilation may be used.
  • one or a plurality of ventilation facilities 2 may be provided for each room. In the present embodiment, it is assumed that one ventilation facility 2 is provided for one building 1. To do.
  • the ventilation facility 2 has a communication function with the control device 4 and is configured to at least switch between operation and stop according to a control signal transmitted from the control device 4. Further, the ventilation facility 2 has a function of determining the ventilation air volume (strong / weak) in accordance with a control signal from the control device 4.
  • the individual measuring instrument 3 includes one or more sensors that detect information related to air quality, such as an SOx sensor, a NOx sensor, a suspended particle sensor, a VOC sensor, a CO 2 sensor, and an odor sensor, and a temperature sensor and a humidity sensor. It is composed of multiple combinations. Since the individual measuring device 3 measures the air quality for each of the inside and outside of the building 1, the individual measuring device 3 includes the above-described sensors inside and outside the building 1.
  • a sensor provided in the building 1 is an indoor sensor 31, and a sensor provided outside the building 1 is an outdoor sensor 32.
  • the indoor sensor 31 is attached to an indoor wall or the like, and the outdoor sensor 32 is attached to an outer wall or the like of the building 1.
  • the individual measuring instrument 3 has a communication function with the control device 4 and outputs a measurement result to the control device 4 periodically or as a response to a request from the control device 4.
  • the individual measuring device 3 outputs the measurement result of the indoor sensor 31 and the measurement result of the outdoor sensor 32 each including a plurality of items as a set to the control device 4.
  • Each distributed measuring instrument M0 is one or more sensors that detect information related to air quality, such as SOx sensors, NOx sensors, suspended particle sensors, VOC sensors, CO 2 sensors, and odor sensors. And a combination of a temperature sensor and a humidity sensor.
  • a plurality of distributed measuring instruments M1, M2, M3... Arranged in the monitoring area 100 constitute a measuring instrument group 5.
  • the distributed measuring instruments M1, M2, M3,... Belonging to the group of measuring instruments 5 are each sensor nodes and operate in cooperation with each other, and information on air quality at a plurality of observation points P0 set in the monitoring area 100.
  • a sensor network that can collect data.
  • the distributed measuring instruments M1, M2, M3... Are connected to the Internet 8, and the measurement results of the distributed measuring instruments M1, M2, M3. Therefore, each distributed measuring instrument M0 has a communication function with the management apparatus 91, and outputs a measurement result to the management apparatus 91 periodically or as a response to a request from the management apparatus 91.
  • the monitoring area 100 is an area of a predetermined range set around the building 1 as shown in FIG.
  • the monitoring area 100 is set in a substantially circular range centered on the building 1 so as to include a plurality of observation points P0 located on the concentric circles C1 and C2 centered on the building 1.
  • the dispersion measuring instruments M1, M2, M3,... Are distributed at these observation points P1, P2, P3,.
  • distributed measuring instruments M1 to M8 are arranged at eight observation points P1 to P8 set at a first distance from the building 1, and are at a second distance (> first distance) from the building 1.
  • Dispersion measuring devices M9 to M16 are arranged at eight observation points P9 to P16. As an example, it is assumed that the first distance is 2 km and the second distance is 4 km.
  • the plurality of dispersion measuring instruments M0 includes a set of dispersion measuring instruments M0 in the same direction with respect to the building 1 (a plurality of sets in the present embodiment). Further, in the example of FIG. 2, the dispersion measuring instruments M1 to M16 are arranged at equiangular intervals in the eight directions of north, northeast, east, southeast, south, southwest, west, and northwest with the building 1 as the center.
  • the dispersion measuring instrument M1 and the dispersion measuring instrument M9 are north of the building 1
  • the dispersion measuring instrument M2 and the dispersion measuring instrument M10 are northeast of the building 1
  • the dispersion measuring instrument M3 and the dispersion measuring instrument M11 are east of the building 1, and the dispersion measuring is performed.
  • the instrument M4 and the dispersion measuring instrument M12 are arranged in the southeast of the building 1, respectively.
  • the dispersion measuring instrument M5 and the dispersion measuring instrument M13 are the south of the building 1
  • the dispersion measuring instrument M6 and the dispersion measuring instrument M14 are the southwest of the building 1
  • the dispersion measuring instrument M7 and the dispersion measuring instrument M15 are the west of the building 1.
  • the instrument M8 and the dispersion measuring instrument M16 are arranged in the northwest of the building 1, respectively.
  • the plurality of dispersion measuring instruments M0 includes a plurality of outer dispersion measuring instruments M1 to M8 and a plurality of inner dispersion measuring instruments M9 to M16 respectively associated with the plurality of outer dispersion measuring instruments M1 to M8. And including.
  • the plurality of outer dispersion measuring instruments M9 to M16 are on the circumference of the first circle C1 with the building 1 as the center.
  • the plurality of inner dispersion measuring instruments M1 to M8 are on the circumference of the second circle C2 with the building 1 as the center.
  • the radius of the second circle C2 is smaller than the radius of the first circle C1.
  • Each of the plurality of inner dispersion measuring instruments M1 to M8 is on a straight line connecting the building 1 with the corresponding outer dispersion measuring instrument among the plurality of outer dispersion measuring instruments M9 to M16.
  • the measuring instrument group 5 is distributed in the monitoring area 100 set around the building 1 in this manner, so that the measurement results of the plurality of distributed measuring instruments M1 to M16 are distributed. From this, it is possible to monitor the distribution of air quality in the monitoring area 100. Since the measurement results of the plurality of distributed measuring instruments M1 to M16 are centrally managed by the management device 91, the management device 91 can monitor the air quality distribution in the monitoring area 100.
  • the dispersion measuring instruments M1 to M16 may use these existing sensor devices.
  • the dispersion measuring instruments M1 to M16 may use the outdoor sensor 32 of the individual measuring instrument 3 provided in each building.
  • the management apparatus 91 Since the individual measuring instruments of each building are connected to the Internet 8 via the control device 4, even when the individual measuring instrument 3 is used for the distributed measuring instruments M1 to M16, the management apparatus 91 has a plurality of distributed measuring instruments. The measurement results of M1 to M16 can be centrally managed.
  • the air conditioning equipment (the air purifier 61 and the air conditioner 62) is a device that maintains the interior of the building 1 in a comfortable state by adjusting the temperature, humidity, cleanliness, airflow, and the like of the air in the building 1 by a method other than ventilation.
  • the air conditioning equipment may be, for example, a cooling / heating device such as floor heating, a dehumidifier, a humidifier, or a circulator.
  • the air conditioner here includes only a device that consumes energy such as electric power and gas during operation, and does not include a device that does not consume any energy during operation.
  • the air conditioning equipment consumes more power than the ventilation equipment 2.
  • the air conditioning facility has a communication function with the control device 4 and is configured to perform at least switching between operation and stop according to a control signal transmitted from the control device 4. Furthermore, the air conditioning equipment also has a function of determining the operating air volume (strong / weak) and the set temperature in accordance with a control signal from the control device 4.
  • the control device 4 includes a processing unit 41 that performs various processes, a first communication interface (hereinafter, “interface” is expressed as “I / F”) 42, and a second communication I / O. F43, a storage unit 44, and a clock unit 45 are provided.
  • the control device 4 has a computer as a main configuration, and executes the program stored in the storage unit 44 to realize the functions of the respective units.
  • the control device 4 is installed by reading the above program from a recording medium or by downloading it from a center server (not shown) via the Internet 8.
  • the first communication I / F 42 has a function of communicating with various devices and facilities provided in the building 1.
  • the first communication I / F 42 communicates bidirectionally with the ventilation facility 2, the air conditioning facility (the air purifier 61 and the air conditioner 62), the user terminal 71, and the individual measuring device 3.
  • the first communication I / F 42 is used as a first acquisition unit that acquires the air quality inside the building 1 and the air quality outside the building 1 (from the individual measuring device 3).
  • the first communication I / F 42 communicates with the ventilation facility 2 and the like by wireless communication using radio waves as a transmission medium, but between the control device 4 (first communication I / F 42) and the ventilation facility 2 and the like.
  • the communication is not limited to wireless communication but may be wired communication.
  • the second communication I / F 43 has a function of bidirectionally communicating with the management device 91 and the server 92 on the Internet 8.
  • the second communication I / F 43 is connected to the Internet 8 via the router 75 and performs communication conforming to Ethernet (registered trademark).
  • the second communication I / F 43 is used as a second acquisition unit that acquires (from the management device 91) the air quality of each of the plurality of observation points P0 in the monitoring area 100 including the building 1. Further, the second communication I / F 43 also has a communication function with the network devices 73 and 74.
  • the storage unit 44 stores various data including position information (distance and direction from the building 1) of the observation points P1 to P16 where the dispersion measuring devices M1 to M16 are arranged.
  • the position information of the observation point P0 may be expressed by latitude and longitude.
  • the storage unit 44 stores data including history of measurement results of the plurality of dispersion measuring instruments M1 to M16. That is, the memory
  • the clock unit 45 measures the current time.
  • the clock unit 45 has a calendar function and measures the date and the current time.
  • the processing unit 41 includes a ventilation control unit 412 that controls the ventilation facility 2.
  • the ventilation control unit 412 transmits the control signal from the first communication I / F 42 to the ventilation facility 2.
  • Control Further, the ventilation control unit 412 receives a monitoring signal indicating the operating state of the ventilation facility 2 (operation / stoppage, ventilation air volume, etc.) from the ventilation facility 2 by the first communication I / F 42, thereby providing the ventilation facility 2.
  • the ventilation control unit 412 As a basic operation of the ventilation control unit 412, the measurement result of the individual measuring instrument 3 is operated so that the ventilation facility 2 is operated when the air quality outside the building 1 is better than the air quality inside the building 1. Based on the above, the ventilation facility 2 is controlled. On the other hand, when the air quality outside the building 1 is better than the air quality outside the building 1, the ventilation control unit 412 is based on the measurement result of the individual measuring instrument 3 so as to stop the ventilation equipment 2. To control the ventilation facility 2. That is, the ventilation control unit 412 is configured to execute an operation (normal operation) for operating the ventilation facility 2 if the air quality outside the building 1 is better than the air quality inside the building 1.
  • an operation normal operation
  • the ventilation control unit 412 does not operate the ventilation facility 2 if the air quality outside the building 1 is worse than the air quality inside the building 1.
  • the ventilation control unit 412 acquires the measurement result of the individual measuring instrument 3 by the first communication I / F 42, and the acquired measurement.
  • the ventilation facility 2 is controlled based on the result.
  • the temperature and humidity are the same inside and outside the building 1 (temperature 22 ° C., humidity 45%), the VOC concentration is 2.2 mg / m 3 inside the building 1, and 1.0 mg outside the building 1
  • the ventilation control unit 412 operates the ventilation facility 2 to ventilate the building 1.
  • the ventilation system 10 improves the air quality in the building 1 by using the ventilation facility 2 that consumes less power than the air conditioning facility, it saves energy compared to the case where the air conditioning facility is used.
  • the ventilation control unit 412 stops the ventilation facility 2.
  • the processing unit 41 determines whether or not the polluted air whose air quality shows an abnormal value reaches the building 1 based on the measurement results of the plurality of distributed measuring instruments M1 to M16 constituting the group of measuring instruments 5. It has the prediction part 411 which predicts. That is, the predicting unit 411 predicts whether or not an abnormality in which the air quality outside the building 1 shows an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring instruments M0. It is configured.
  • the second communication I / F 43 since the second communication I / F 43 has a communication function with the management device 91, the prediction unit 411 uses the second communication I / F 43 to measure the measurement results of the plurality of distributed measuring devices M1 to M16. And whether or not contaminated air reaches the building 1 is predicted based on the acquired measurement result.
  • the measuring instrument group 5 starts with the distributed measuring instruments M9 to M9 on the far side (outside) (at a second distance from the building 1).
  • the air quality measured by any of M16 will show an abnormal value.
  • the measuring instrument group 5 performs the distributed measurement (at the first distance from the building 1) on the short distance side (inside) located between the building 1 and the dispersion measuring instruments M9 to M16 that first detect the contaminated air.
  • the air quality measured by the devices M1 to M8 shows an abnormal value.
  • the outer dispersion measuring instrument M0 and the inner dispersion measuring instrument M0 located in the same direction as viewed from the building 1 will sequentially measure abnormal values.
  • the predicting unit 411 causes the contaminated air to be in the building 1 Predicted to reach
  • the prediction unit 411 has a dispersion in which the air quality measured by a set of dispersion measuring instruments M0 (for example, a set of dispersion measuring instruments M2 and M10) during the determination time is farthest from the building 1 in the set of dispersion measuring instruments M0. If abnormal values are shown in order from the measuring instrument M0 (for example, M10) to the distributed measuring instrument M0 (for example, M2) closest to the building 1, it is predicted that an abnormality will occur. In other words, the predicting unit 41 determines that the outer dispersion measuring device M0 (for example, M10) in which the air quality shows an abnormal value within the determination time after the air quality measured by the outer dispersion measuring device M0 shows the abnormal value. If the air quality measured by the inner dispersion measuring device M0 (for example, M2) associated with () indicates the abnormal value, it is predicted that an abnormality will occur.
  • a set of dispersion measuring instruments M0 for example, a set of dispersion measuring instruments M2 and M10 during the determination time is far
  • the determination time is determined in consideration of the moving speed of the contaminated air. Even if the air quality measured with the dispersion measuring instrument M0 farthest from the building 1 shows an abnormal value, the air quality measured with the dispersion measuring instrument M0 closest to the building 1 shows an abnormal value. Otherwise, it is considered that there is no possibility that contaminated air reaches the building 1.
  • the ventilation control unit 412 has a function of controlling the ventilation facility 2 based on the prediction result of the prediction unit 411 in addition to the function of controlling the ventilation facility 2 based on the measurement result of the individual measuring device 3.
  • the ventilation control unit 412 stops the ventilation facility 2 regardless of the measurement result of the individual measuring device 3. That is, the ventilation control unit 412 is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur. In this way, the ventilation control unit 412 gives priority to the prediction result of the prediction unit 411 over the measurement result of the individual measuring device 3 and stops the ventilation facility 2 when the arrival of contaminated air is predicted by the prediction unit 411.
  • the ventilation facility 2 is controlled so that
  • the process part 41 has the air-conditioning control part 413 which controls an air-conditioning installation.
  • the air conditioning control unit 413 since the first communication I / F 42 has a communication function with the air conditioning equipment (the air purifier 61 and the air conditioner 62), the air conditioning control unit 413 transmits a control signal from the first communication I / F 42 to the air conditioning equipment. By controlling the air conditioning equipment.
  • the air-conditioning control unit 413 receives the monitoring signal indicating the operation state of the air-conditioning equipment (operation / stoppage, operating air volume, etc.) from the air-conditioning equipment through the first communication I / F 42, thereby To monitor.
  • the air conditioning control unit 413 is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. That is, the air conditioning control unit 413 operates the air conditioning equipment during a period in which the ventilation control unit 412 stops the ventilation equipment 2. That is, when the air quality outside the building 1 is better than the air quality outside the building 1 in the measurement result of the individual measuring instrument 3, and when the prediction unit 411 predicts that the contaminated air reaches the building 1 The air conditioning control unit 413 controls the air conditioning equipment to operate. Thereby, before the contaminated air reaches the building 1, the ventilation system 10 can stop the ventilation facility 2 and switch to improvement of air quality by the air conditioning facility. In addition, when operating the air cleaner 61, the air-conditioning control part 413 circulates the air in the building 1 by operating the air conditioner 62 in the air blowing mode, and improves the air quality improvement efficiency by the air cleaner 61. Also good.
  • the ventilation control unit 412 and the air conditioning control unit 413 constitute a control unit that executes an improvement operation for improving the air quality in the building 1.
  • the air conditioning control unit 413 is not essential. Therefore, only the ventilation control unit 412 may constitute the control unit.
  • the prediction unit 411 further has a function of predicting the timing when the contaminated air reaches the building 1 when the arrival of the contaminated air is predicted. It is configured to stop the ventilation facility 2 in accordance with the performed timing. That is, when the prediction unit 411 predicts that the contaminated air reaches the building 1 (that is, when it is predicted that an abnormality will occur), the timing at which the contaminated air reaches the building 1 (hereinafter referred to as “arrival timing”). Also predict.
  • the prediction unit 411 reaches the contaminated air when the outer dispersion measuring device M0 and the inner dispersion measuring device M0 located in the same direction as viewed from the building 1 sequentially measure abnormal values as described above. Predict timing. In this case, for example, the predicting unit 411 causes the contaminated air to reach the building 1 based on the time when the outer dispersion measuring device M0 measures the abnormal value and the time when the inner dispersion measuring device M0 measures the abnormal value. Time (arrival timing) is predicted. That is, when it takes five minutes from the time when the outer dispersion measuring instrument M9 measures the abnormal value to the time when the inner dispersion measuring instrument M1 measures the abnormal value, the prediction unit 411 determines that the inner dispersion measuring instrument M1 is abnormal. A further 5 minutes after measuring the value is predicted as the arrival timing. Note that the prediction unit 411 may represent the arrival timing based on the time it takes for the contaminated air to reach the building 1 instead of the time.
  • the ventilation control unit 412 stops the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the current time measured by the clock unit 45 comes before the specified time of the arrival timing predicted by the prediction unit 411.
  • the specified time is a time set in anticipation that contaminated air reaches the building 1 earlier than the arrival timing predicted by the prediction unit 411, and is arbitrarily set by the user. That is, the ventilation control unit 412 does not stop the ventilation facility 2 immediately when the prediction unit 411 predicts that the contaminated air reaches the building 1, but stops the ventilation facility 2 in accordance with the arrival timing.
  • the processing unit 41 further includes an acquisition unit 414 that acquires information regarding the wind direction and wind speed of the observation point P0, and the prediction unit 411 uses the information acquired by the acquisition unit 414 to perform prediction. Is configured to do.
  • the acquisition unit 414 acquires information on the wind direction and the wind speed at each of the plurality of observation points P0.
  • the prediction unit 411 predicts whether an abnormality will occur using the information acquired by the acquisition unit 414.
  • the acquisition unit 414 acquires information on the wind direction and the wind speed at the observation point P0 from the server 92 by the second communication I / F 43.
  • the storage unit 44 stores in advance position information (distance and direction from the building 1) of the observation points P1 to P16 where the dispersion measuring devices M1 to M16 are arranged, and the prediction unit 411
  • the moving direction and moving speed of air can be predicted based on the information acquired from the server 92. Therefore, the prediction unit 411 predicts whether or not the contaminated air reaches the building 1 based on the predicted moving direction and moving speed of the air and the measurement results of the plurality of dispersion measuring instruments M1 to M16. .
  • the predicting unit 411 predicts that the contaminated air reaches the building 1, the predicting unit 411, based on the predicted moving direction and moving speed of the air and the measurement results of the plurality of dispersion measuring instruments M1 to M16, Predict arrival timing.
  • the prediction unit 411 When the prediction unit 411 performs the prediction based on the position information of the observation point P0 and the information on the wind direction and the wind speed in this way, the dispersion measuring devices M1 to M1 in which the contaminated air is inside (at the first distance from the building 1) The timing to reach M8 can also be predicted. In other words, when the dispersion measuring instruments M9 to M16 on the outer side (at the second distance from the building 1) measure abnormal values, the prediction unit 411 not only has a timing (arrival timing) when the contaminated air reaches the building 1, The timing at which contaminated air reaches the inner dispersion measuring instruments M1 to M8 can also be predicted.
  • control device 4 learns the contaminated air diffusion pattern from the history of the measurement results of the plurality of dispersion measuring instruments M1 to M16 stored in the storage unit 44, and performs the prediction in the prediction unit 411. It is comprised so that it may be used for. That is, the prediction unit 411 is configured to predict whether or not an abnormality will occur using the polluted air diffusion pattern obtained from the history stored in the storage unit 44.
  • the storage unit 44 records the history of the measurement results of a plurality of distributed measuring instruments M1 to M16, the date (or season) at the time of measurement, the current time, and various environmental conditions (temperature, humidity, wind direction, wind speed). ) For a certain period (for example, one month).
  • the diffusion pattern of the contaminated air is not uniquely determined, and may vary greatly depending on, for example, the terrain or weather in the monitoring area. Therefore, the control device 4 predicts the diffusion pattern of the contaminated air learned from the past history by the prediction unit 411. By using this, the prediction accuracy is improved.
  • the control device 4 uses the individual measuring instrument 3 to determine the air quality outside the building 1 from the air quality inside the building 1 after a predetermined time has elapsed since the prediction unit 411 predicted the arrival of contaminated air.
  • the ventilation facility 2 is configured to restart. That is, the control unit (ventilation control unit 412) is configured to resume normal operation when a predetermined time has elapsed after the prediction unit 411 predicts that an abnormality will occur. That is, when the prediction unit 411 predicts the arrival of contaminated air, the control device 4 temporarily stops the ventilation facility 2, but the contaminated air reaches the building 1 even after a predetermined time (for example, 5 minutes) has elapsed. If not, the ventilation control unit 412 restarts the ventilation facility 2.
  • a predetermined time for example, 5 minutes
  • control device 4 further has a function as the arrival prediction unit 415 in the processing unit 41.
  • the arrival prediction unit 415 will be described later.
  • the operation of the ventilation system 10 of this embodiment will be described with reference to FIG.
  • the control device 4 operates the ventilation facility 2 based on the measurement result of the individual measuring device 3.
  • the control device 4 monitors (confirms) the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16 periodically (for example, every minute).
  • the control device 4 first starts the wind direction and the wind speed from the server 92.
  • the information regarding is acquired (S2).
  • the dispersion measuring device M16 located in the northwest of the building 1 measures an abnormal value
  • the wind direction at that time is “northwest”
  • the wind speed is “10 m / s”.
  • the control device 4 predicts whether or not the contaminated air reaches the building 1 based on the measurement results of the dispersion measuring instruments M1 to M16 and the information acquired in the process S2 (S3). When it is predicted that the contaminated air will reach the building 1 (S3: Yes), the control device 4 predicts the arrival timing of the contaminated air (S4). In the process S4, the predicting unit 411 is not only the timing when the contaminated air reaches the building 1, but also the dispersion located between the dispersion measuring instrument M16 and the building 1 (that is, the first distance from the building 1 and northwest). The timing at which contaminated air reaches the measuring instrument M8 is also predicted.
  • the prediction unit 411 determines the timing at which the contaminated air reaches the dispersion measuring instrument M8. It is predicted that 200 seconds after M16 has measured the abnormal value. Similarly, since the distance from the dispersion measuring instrument M16 to the building 1 is 4 km and the wind speed is 10 m / s, the prediction unit 411 measures the timing when the contaminated air reaches the building 1 and the dispersion measuring instrument M16 measures the abnormal value. It is predicted that 400 seconds later.
  • the control device 4 shortens the period for monitoring the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16 (for example, every minute is set to every 10 seconds), and strengthens air quality monitoring (S5). .
  • the control device 4 has only to strengthen the monitoring (shortening the monitoring cycle) for at least the individual measuring device 3 and the dispersion measuring device M8 where the arrival of contaminated air is predicted, and all the dispersion measuring devices M0. There is no need to strengthen monitoring.
  • the control device 4 when considering the diffusion (spreading) of the contaminated air, includes the dispersion measuring devices M1 and M7 around the dispersion measuring device M8 where the arrival of the contaminated air is predicted as targets for strengthening the monitoring. Also good.
  • the control device 4 detects that the contaminated air is in the building 1 in accordance with the arrival timing of the contaminated air.
  • the ventilation equipment 2 is stopped before reaching (S7), and the air conditioning equipment is operated (S8).
  • the control device 4 determines the prediction unit based on the difference between the timing when the contaminated air predicted by the prediction unit 411 reaches the dispersion measuring device M8 and the timing when the dispersion measuring device M8 actually measures the abnormal value.
  • the timing at which the contaminated air predicted at 411 reaches the building 1 is corrected.
  • control device 4 does not measure abnormal values with the outer dispersion measuring instruments M9 to M16 (S1: No), or predicts that the contaminated air does not reach the building 1 by the prediction unit 411 (S3: No). ), Return to S1 and execute the process. Further, when the abnormal value is not measured by the inner dispersion measuring instruments M1 to M8 (S6: No), the control device 4 returns to S6 and executes the process.
  • the control device 4 determines that one of the outer dispersion measuring instruments M9 to M16 has an abnormal value depending on the distance from the outer dispersion measuring instruments M9 to M16 to the building 1, the wind direction, the wind speed, or the like.
  • the ventilation facility 2 may be stopped immediately.
  • the control device 4 first stops the ventilation facility 2 before predicting whether or not contaminated air reaches the building 1.
  • the control device 4 shortens the period for monitoring the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16, and strengthens the air quality monitoring. Therefore, the control device 4 does not take much time for the contaminated air to reach the building 1 after any of the outer dispersion measuring instruments M9 to M16 has measured an abnormal value.
  • the ventilation equipment 2 can be stopped before reaching.
  • the control device 4 stops the ventilation equipment 2
  • the air conditioning equipment is operated as it is.
  • the control device 4 when the predetermined time (determination time) has passed without any of the inner dispersion measuring instruments M1 to M8 and the individual measuring instrument 3 measuring abnormal air quality values outside the building 1, the control device 4 The equipment 2 is restarted. Even when the ventilation equipment 2 is restarted, the control device 4 strengthens air quality monitoring until the measurement results of the dispersion measuring instruments M9 to M16 that first measured the abnormal values return to normal values (monitoring). It is desirable to continue the state of shortening the cycle.
  • the control device 4 performs individual measurement after any of the outer dispersion measuring instruments M9 to M16 measures an abnormal value and before the inner dispersion measuring instruments M1 to M8 measure the abnormal value.
  • the vessel 3 measures an abnormal air quality value outside the building 1
  • the ventilation facility 2 may be stopped immediately.
  • the control device 4 switches to improvement of air quality by the air conditioning equipment by operating the air conditioning equipment while stopping the ventilation equipment 2. Therefore, the control device 4 can stop the ventilation facility 2 as soon as the contaminated air reaches the building 1 even when no abnormal value is measured by the inner dispersion measuring instruments M1 to M8.
  • the control device 4 immediately stops the ventilation equipment 2 and activates the air conditioning equipment regardless of the arrival timing predicted by the prediction unit 411. It may be configured. In this case, even if it is difficult to predict the diffusion of the contaminated air, the control device 4 stops the ventilation facility 2 when the contaminated air reaches the inner dispersion measuring instruments M1 to M8. The ventilation equipment 2 can be stopped reliably before reaching.
  • the ventilation system 10 having the above-described configuration is based on the ventilation equipment 2 that ventilates the building 1, the individual measuring device 3 that measures the air quality inside and outside the building 1, and the ventilation based on the measurement results of the individual measuring device 3.
  • a control device 4 that controls the facility 2 and operates the ventilation facility 2 when the air quality outside the building 1 is better than the air quality inside the building 1, and a monitoring area 100 set around the building 1
  • a plurality of dispersion measuring devices M0 that are arranged at a plurality of observation points P0 and that measure the air quality at each observation point P0.
  • the control device 4 includes a prediction unit 411 that predicts whether or not contaminated air whose air quality has an abnormal value reaches the building 1 based on the measurement results of the plurality of dispersion measuring instruments M0. Furthermore, the control device 4 is configured to stop the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the prediction unit 411 predicts the arrival of contaminated air.
  • control device 4 controls the ventilation facility 2 that ventilates the building 1 based on the measurement result of the individual measuring device 3 that measures the air quality inside and outside the building 1,
  • Prediction unit that predicts whether or not contaminated air whose air quality shows an abnormal value arrives at building 1 based on the measurement results of a plurality of distributed measuring devices M0 that are arranged and measure the air quality at each observation point P0 411, when the prediction unit 411 predicts the arrival of contaminated air, the ventilation facility 2 is stopped regardless of the measurement result of the individual measuring instrument 3.
  • the control device 4 predicts that in advance and stops the ventilation facility 2, and the contaminated air is taken into the building 1 from outside the building 1. Can be avoided.
  • the ventilation system 10 improves the air quality inside the building 1 by ventilating the building 1, and the ventilation system 10
  • the ventilation facility 2 is stopped.
  • the ventilation system 10 can improve the air quality in the building 1 by ventilating the building 1 without wasting energy (electric power) in the ventilation facility 2.
  • the control device 4 includes the prediction unit 411 that predicts whether or not the contaminated air whose air quality has an abnormal value reaches the building based on the measurement results of the plurality of dispersion measuring devices M0. If the prediction unit 411 predicts the arrival of contaminated air, the ventilation facility 2 is stopped regardless of the measurement result of the individual measuring device 3. Therefore, there is an advantage that the air quality in the building 1 can be improved by ventilating the building 1 without wasting energy.
  • the ventilation system 10 is further provided with the air conditioning equipment (the air cleaner 61 and the air conditioner 62) which is provided in the building 1 separately from the ventilation equipment 2 and improves the air quality in the building 1.
  • the control device 4 further has a function of controlling the air conditioning equipment (air conditioning control unit 413), and is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. Therefore, the ventilation system 10 can improve the air quality in the building 1 by the air conditioning equipment during the period when the ventilation equipment 2 is stopped, and can maintain the comfort in the building 1 by a method other than ventilation.
  • the prediction unit 411 when the arrival of the contaminated air is predicted, the prediction unit 411 further has a function of predicting the timing at which the contaminated air reaches the building 1, and the control device 4 is the prediction unit 411.
  • the ventilation facility 2 is configured to stop in accordance with the predicted timing. That is, the control device 4 does not stop the ventilation facility 2 immediately when the prediction unit 411 predicts that the contaminated air reaches the building 1, but stops the ventilation facility 2 in accordance with the arrival timing.
  • the period for improving the air quality in the building 1 by the facility 2 can be secured for a long time.
  • control apparatus 4 further has the acquisition part 414 which acquires the information regarding the wind direction and wind speed of the observation point P0, and uses the information acquired in the acquisition part 414 for prediction by the prediction part 411. Configured to do. Therefore, the control device 4 has an advantage that the accuracy of prediction in the prediction unit 411 is improved.
  • control device 4 further includes a storage unit 44 that stores the history of measurement results of the plurality of dispersion measuring instruments M1 to M16, and the diffusion of contaminated air from the history stored in the storage unit 44.
  • the pattern is learned and used for prediction by the prediction unit 411. Therefore, the control device 4 has an advantage that the accuracy of prediction in the prediction unit 411 is improved.
  • the control device 4 uses the individual measuring instrument 3 to improve the air quality outside the building 1 from the air quality inside the building 1 after a predetermined time has elapsed since the prediction unit 411 predicted the arrival of contaminated air.
  • the ventilation facility 2 is configured to be restarted. Therefore, the control device 4 restarts the ventilation facility 2 when the contaminated air does not reach the building 1 even though the arrival of the contaminated air is predicted. Therefore, the air quality in the building 1 is improved by the ventilation facility 2. A long period of improvement can be secured.
  • the measurement results of the dispersion measuring instruments M1 to M16 are centrally managed by the management device 91, but not limited to this configuration, the measurement results may be managed by the control device 4. Moreover, a part of the function of the control device 4 may be provided in another device. For example, the function of the prediction unit 411 may be provided in the management device 91. In this case, the control device includes a plurality of devices (for example, the control device 4 and the management device 91), and the management device 91 predicts whether or not the contaminated air reaches the building 1, and controls based on the prediction result. The ventilation facility 2 is controlled by the device 4.
  • the control device 4 further includes an arrival prediction unit 415 that predicts the timing at which a person arrives at the building 1, and the building 1 matches the timing predicted by the arrival prediction unit 415. It is configured to improve the air quality inside.
  • the arrival predicting unit 415 uses information such as a current position and a change in position of the user terminal 71 having a GPS (Global Positioning System) function, and a user (household) who has gone out arrives at the building 1 ( The time of returning home is predicted as the timing at which a person arrives at the building 1. That is, the arrival prediction unit 415 predicts the timing at which a person arrives at the building 1.
  • GPS Global Positioning System
  • the control device 4 can acquire information such as the current location of the user terminal 71 via the Internet 8 at any time. That is, the user can predict the timing at which a person arrives at the building 1 (hereinafter, referred to as “home timing”) just by carrying the user terminal 71 when going out.
  • the arrival prediction unit 415 may represent the return timing based on the time it takes for a person to arrive at the building 1 instead of the time.
  • Ventilation equipment 2 and air-conditioning equipment are not able to operate and immediately improve the air quality in building 1, but it takes some time to improve the air quality. Therefore, the control device 4 uses the ventilation equipment 2 and the air conditioning equipment (air purifier) based on the predicted return timing so that the air quality in the building 1 is improved in accordance with the return timing predicted by the arrival prediction unit 415.
  • the machine 61 and the air conditioner 62) are controlled. That is, the control units (the ventilation control unit 412 and the air conditioning control unit 413) execute an improvement operation for improving the air quality in the building 1 in accordance with the timing (home timing) predicted by the arrival prediction unit 415.
  • the control device 4 stops the ventilation facility 2 and the air conditioning facility, and the air quality in the building 1 becomes a normal value at the timing of returning home predicted by the arrival prediction unit 415.
  • the ventilation equipment 2 and the air conditioning equipment are controlled in accordance with the timing of returning home.
  • the ventilation system 10 controls the air quality in the building 1 in accordance with the timing when the user arrives at the building 1 (returns home) while suppressing unnecessary power consumption by the ventilation facility 2 and the air conditioning facility when the building 1 is unattended. Can be improved.
  • control device 4 is configured to back-calculate the start timing of air quality improvement in the building 1 from the return timing predicted by the arrival prediction unit 415 and the time required to improve the air quality in the building 1. Has been.
  • control unit determines the air in the building 1 from the timing predicted by the arrival prediction unit 415 (home return timing) and the time required to improve the air quality in the building 1.
  • the start timing of quality improvement is determined, and the improvement operation is started from the start timing.
  • the ventilation system 10 can complete the improvement of the air quality in the building 1 when the user arrives at the building 1 (returns home).
  • control device 4 learns the time required for the person to move and the time required for improving the air quality in the building 1 and uses it for the prediction of the return timing at the arrival prediction unit 415 and the control of the ventilation equipment 2 and the air conditioning equipment. It is configured as follows.
  • control device 4 measures the time required to move from a predetermined location (for example, a station) to the building 1 each time, and learns the time required to move from the predetermined location to the building 1 by obtaining the average value. And predict the return timing.
  • a predetermined location for example, a station
  • control device 4 uses GPS to identify the user's travel route, learns the time required to travel to the building 1 for each route, and predicts the return timing based on the route that the user is taking.
  • the control device 4 learns the total number of steps required for the user to move from a predetermined location (for example, a station) to the building 1 and determines the return timing from the current number of steps. Predict.
  • control device 4 learns the maximum amount of change in temperature and humidity that can be adjusted within a predetermined time for each temperature and humidity outside the building 1, and is required to adjust the inside of the building 1 to the predetermined temperature and humidity. Judge the time.
  • the ventilation system 10 shown in FIG. 1 has been described as an example.
  • the ventilation system 10 is only one aspect of the present invention, and appropriate modifications are possible. That is, the ventilation system 10 includes a prediction unit 411 that predicts whether or not the contaminated air reaches the building 1 based on the measurement results of the plurality of distributed measuring devices M0. What is necessary is just the structure which stops the ventilation equipment 2 when arrival is estimated.
  • the air conditioning equipment can be omitted as appropriate, and in the control device 4, the air conditioning control unit 413, the acquisition unit 414, the arrival prediction unit 415, and the like can be omitted as appropriate.
  • control device 4 can appropriately omit the function of predicting the timing when the contaminated air reaches the building 1 by the prediction unit 411 and the function of learning the diffusion pattern of the contaminated air from the history stored in the storage unit 44. is there.
  • control device 4 indicates that the air quality outside the building 1 is better than the air quality inside the building 1 with the individual measuring device 3 after a predetermined time has passed since the prediction unit 411 predicted the arrival of contaminated air.
  • the function of restarting the ventilation facility 2 when the measurement result is obtained can be omitted as appropriate.
  • the ventilation system according to the present embodiment is different from the ventilation system according to the first embodiment in that the ventilation system is applied to a building having a plurality of floors such as a high-rise apartment (an apartment house).
  • a building having a plurality of floors such as a high-rise apartment (an apartment house).
  • the building 1 (11) has a plurality of levels 110.
  • the building 11 has three levels 110 (a low level 111, a middle level 112, and a high level 13).
  • the number of levels 110 of the building 11 is not particularly limited.
  • FIG. 4 only the control apparatus 4 and the ventilation installation 2 are illustrated among the ventilation systems of this embodiment.
  • the control device 4 is configured to control the ventilation equipment 2 for each level 110, and when the prediction unit 411 predicts the arrival of contaminated air, it stops the ventilation equipment 2 in order from the level 110 where the arrival of contaminated air is early. ing.
  • the ventilation system of the present embodiment includes a plurality of ventilation facilities 2 (21, 22, 23) that perform ventilation of each of the plurality of floors 110 (111, 112, 113) of the building 11.
  • the control units (the ventilation control unit 412 and the air conditioning control unit 413) are configured to perform normal operations for each of the plurality of ventilation facilities 2.
  • the control unit terminates the normal operation of the plurality of ventilation facilities 2 and the contaminated air reaches the plurality of ventilation facilities 2. It is comprised so that it may stop in order from the ventilation equipment 2 in an early hierarchy.
  • the control device 4 stops the ventilation facility 2 in order from the level where the polluted air arrives earlier, that is, the higher level 113 (for example, the higher level 113, the middle level 112, and the lower level 111).
  • the arrival timing of contaminated air may be as early as the lower floor 111 or the middle floor 112.
  • the control device 4 starts from the level where the contaminated air arrives earlier, that is, the lower floor 111 and the middle floor 112 (for example, the order of the lower hierarchy 111, the middle hierarchy 112, the higher hierarchy 113, or the middle hierarchy 112
  • the ventilation facility 2 is stopped in the order of the lower floor 111 and the higher floor 113).
  • control device 4 can reliably stop the ventilation facility 2 before the contaminated air reaches the level where the contaminated air arrives early, and the building 1 uses the ventilation facility 2 for the level where the contaminated air arrives late. A long period of improving the air quality inside can be secured.
  • control device 4 may statistically determine the order in which the contaminated air reaches each level 110, or may determine the current wind direction, wind speed, and the like. For example, when the individual measuring device 3 is provided for each level 110, the control device 4 can statistically determine the arrival order of the contaminated air from the history of the measurement results of the plurality of individual measuring devices 3. it can. Moreover, when the wind direction, wind speed, etc. around the building 1 are measured for a plurality of ground heights, the control device 4 can determine the arrival order of the contaminated air from these current measurement results.
  • one control device 4 may be provided for the entire building 1 or may be provided for each level, or one for each dwelling unit. It may be provided one by one.
  • the ventilation system includes the ventilation equipment 2, the individual measuring instrument 3, the plurality of distributed measuring instruments M0, and the control device 4.
  • the ventilation facility 2 is configured to ventilate the building 1.
  • the individual measuring instrument 3 is configured to measure the air quality inside the building 1 and the air quality outside the building 1.
  • the plurality of distributed measuring instruments M0 are configured to measure air quality at a plurality of observation points P0 in the monitoring area 100 including the building 1, respectively.
  • the control device 4 includes a control unit (a ventilation control unit 412 and an air conditioning control unit 413) that performs a normal operation of operating the ventilation facility 2 if the air quality outside the building 1 is better than the air quality inside the building 1.
  • the control device 4 further predicts whether or not an abnormality in which the air quality outside the building 1 shows an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring devices M0.
  • the control unit is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur.
  • the ventilation system further includes air conditioning equipment (air cleaner 61, air conditioner 62) for improving the air quality in the building 1.
  • the control unit is further configured to control the air conditioning equipment.
  • the control unit is configured to operate the air conditioning equipment during a period in which the ventilation equipment 2 is stopped.
  • the prediction unit 411 is configured to predict the timing at which contaminated air reaches the building 1 when it is predicted that an abnormality will occur. ing.
  • the control unit is configured to stop the ventilation facility 2 in accordance with the timing predicted by the prediction unit 411.
  • the control device 4 further acquires information on the wind direction and the wind speed at each of the plurality of observation points P0.
  • An acquisition unit 414 is further included.
  • the prediction unit 411 is configured to predict whether or not an abnormality will occur using the information acquired by the acquisition unit 414.
  • control unit normally performs a predetermined time after the prediction unit 411 predicts that an abnormality will occur. It is configured to resume operation.
  • the ventilation system further includes a plurality of ventilations that respectively ventilate the plurality of floors 110 of the building 1 (11).
  • the ventilation equipment 2 is provided.
  • the control unit is configured to perform a normal operation for each of the plurality of ventilation facilities 2.
  • the prediction unit 411 predicts that an abnormality will occur, the control unit terminates the normal operation of the plurality of ventilation facilities 2 and stops the plurality of ventilation facilities 2 in order from the ventilation facility 2 in the hierarchy 110 where the arrival of contaminated air is early. It is configured to let you.
  • control device 4 further includes a history of air quality respectively measured by a plurality of distributed measuring instruments M0. Is stored.
  • the prediction unit 411 is configured to predict whether or not an abnormality will occur by using the polluted air diffusion pattern obtained from the history stored in the storage unit 44.
  • control device 4 further includes an arrival prediction unit 415 that predicts the timing at which a person arrives at the building 1. Have.
  • the control unit is configured to execute an improvement operation for improving the air quality in the building 1 in accordance with the timing predicted by the arrival prediction unit 415.
  • the control unit determines that the inside of the building 1 is based on the timing predicted by the arrival prediction unit 415 and the time required to improve the air quality in the building 1.
  • the air quality improvement start timing is determined, and the improvement operation is started from the start timing.
  • the plurality of dispersion measuring instruments M0 is a set of the dispersion measuring instruments M0 in the same direction with respect to the building 1.
  • the prediction unit 411 has a dispersion in which the air quality measured by the set of dispersion measuring instruments M0 during the determination time is closest to the building 1 from the dispersion measuring instrument M0 farthest from the building 1 in the set of dispersion measuring instruments M0. If abnormal values are shown in order up to the measuring instrument M0, it is configured to predict that an abnormality will occur.
  • the plurality of dispersion measuring instruments M0 includes a plurality of outer dispersion measuring instruments M0 (M9 to M16), A plurality of inner dispersion measuring devices M0 (M1 to M8) respectively associated with the plurality of outer dispersion measuring devices M0.
  • the plurality of outer dispersion measuring instruments M0 are on the circumference of the first circle C1 with the building 1 as the center.
  • the plurality of inner dispersion measuring instruments M0 are on the circumference of the second circle C2 with the building 1 as the center.
  • the radius of the second circle C2 is smaller than the radius of the first circle C1.
  • Each of the plurality of inner dispersion measuring instruments M0 is on a straight line that connects the associated outer dispersion measuring instrument M0 and the building 1 among the plurality of outer dispersion measuring instruments M0.
  • the predicting unit 411 includes an inner part associated with the outer dispersion measuring instrument M0 in which the air quality shows an abnormal value within a determination time after the air quality measured by the outer dispersion measuring instrument M0 shows an abnormal value. When the air quality measured by the dispersion measuring device M0 shows an abnormal value, it is configured to predict that an abnormality will occur.
  • the control device 4 includes a first acquisition unit (first communication I / F) 42, a second acquisition unit (second communication I / F) 43, and a control unit (ventilation).
  • the first acquisition unit 42 is configured to acquire the air quality inside the building 1 and the air quality outside the building 1.
  • the second acquisition unit 43 is configured to acquire the air quality of each of the plurality of observation points P0 in the monitoring area 100 including the building 1.
  • the control unit is configured to execute a normal operation of operating the ventilation facility 2 for ventilating the building 1 if the air quality outside the building 1 is better than the air quality inside the building 1.
  • the prediction unit 411 is configured to predict whether or not an abnormality in which the air quality outside the building 1 exhibits an abnormal value due to contaminated air will occur based on the air quality at each of the plurality of observation points P0. .
  • the control unit is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

A ventilation system according to the present invention is provided with: ventilation equipment for ventilating a building; individual measurement instruments for measuring the air quality inside the building and the air quality outside the building; a plurality of distributed measurement instruments for respectively measuring the air quality at a plurality of observation sites within a monitored area including the building; and a control device. If the air quality outside the building is better than the air quality inside the building, the control device executes a normal operation which causes the ventilation equipment to operate. If the occurrence of an abnormality indicating that the air quality outside the building will have an abnormal value is predicted, on the basis of the air qualities respectively measured by the plurality of distributed measurement instruments, the control device ends the normal operation, and stops the ventilation equipment.

Description

換気システムおよび制御装置Ventilation system and control device
 本発明は、換気システムおよび制御装置に関し、特に建物の換気を行うことにより建物内の空気質を改善する換気システムおよびそれに用いる制御装置に関する。 The present invention relates to a ventilation system and a control device, and more particularly to a ventilation system that improves the air quality in a building by ventilating the building and a control device used therefor.
 従来から、対象空間の空気質を向上させるための設備として、室内の空気中の臭気成分、塵埃等を除去することで清浄化させた空気を再び室内に戻す空気清浄機が知られている(たとえば文献1[日本国公開特許公報第2008-36466号]参照)。 Conventionally, as a facility for improving the air quality of a target space, an air purifier is known that returns air purified by removing odor components, dust, and the like in the indoor air to the room again ( For example, see Reference 1 [Japanese Published Patent Publication No. 2008-36466].
 文献1に記載の空気清浄機は、プレフィルタ、プラズマイオン化部、光触媒フィルタ、プラズマ触媒フィルタからなる空気清浄部を備え、吸込口から吸い込まれた室内の空気中に含まれる異物を除去して空気を清浄化する。この空気清浄機は、プレフィルタを通過した空気流に含まれる塵埃等をプラズマイオン化部で帯電させて、光触媒フィルタを通過する際に吸着する。 The air purifier described in Literature 1 includes an air purifying unit including a prefilter, a plasma ionization unit, a photocatalytic filter, and a plasma catalytic filter, and removes foreign matters contained in the indoor air sucked from the suction port. To clean. In this air cleaner, dust or the like contained in the air flow that has passed through the prefilter is charged by the plasma ionization unit and adsorbed when passing through the photocatalytic filter.
 また、室内の空気質を最適に保つために、空気清浄部に加えて換気設備(換気機能部)を有し、全体の消費電力が少なくなるように空気清浄部と換気設備とを選択・運転して処理する手段を備えた空気清浄装置が提案されている(たとえば文献2[日本国公開特許公報第平11-190549号]参照)。 In addition, in order to keep the indoor air quality optimal, it has ventilation equipment (ventilation function section) in addition to the air purification section, and selects and operates the air purification section and ventilation equipment so that the overall power consumption is reduced. Thus, an air cleaning device having means for processing is proposed (see, for example, Document 2 [Japanese Patent Publication No. 11-190549]).
 文献2には、空気清浄部は送風部以外に空気中の粉塵を除去する除塵部などが必要なため、同じ処理風量に対しては換気設備より消費電力が大きく、内外温度が小さい場合は、換気設備のみでガス・粉塵を除去した方が省エネルギーになることの記載がある。 In Literature 2, since the air purifying unit needs a dust removing unit for removing dust in the air in addition to the air blowing unit, the power consumption is larger than the ventilation equipment for the same processing air volume, and the inside / outside temperature is small, There is a description that it is energy saving to remove gas and dust with only ventilation equipment.
 しかし、文献2に記載の空気清浄装置では、換気設備は、室内空気と室外空気とを交換するので、状況によっては建物内(室内)の空気質の改善に有効でない場合がある。たとえば、建物周辺に空気質が異常値を示すような空気(以下、「汚染空気」という)が存在するような状況においては、換気設備は、建物外から建物内に汚染空気を取り込むことになる。その結果、建物内の空気質の改善効果は期待できないにもかかわらず換気設備が運転することになるので、換気設備は、エネルギー(電力)を無駄に消費することになる。 However, in the air cleaning device described in Document 2, the ventilation facility exchanges indoor air and outdoor air, so that it may not be effective in improving the air quality in the building (indoor) depending on the situation. For example, in a situation where there is air whose air quality shows an abnormal value around the building (hereinafter referred to as “contaminated air”), the ventilation facility will take contaminated air from outside the building into the building. . As a result, since the ventilation facility operates even though the effect of improving the air quality in the building cannot be expected, the ventilation facility wastes energy (electric power).
 本発明は上記事由に鑑みて為されており、エネルギーを無駄に消費することなく、建物の換気を行うことにより建物内の空気質を改善できる換気システムおよびそれに用いる制御装置を提供することを目的とする。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide a ventilation system that can improve the air quality in the building by ventilating the building without wasting energy, and a control device used therefor. And
 本発明に係る換気システムは、換気設備と、個別計測器と、複数の分散計測器と、制御装置と、を備える。前記換気設備は、建物の換気を行うように構成されている。前記個別計測器は、前記建物内の空気質および前記建物外の空気質を計測するように構成されている。前記複数の分散計測器は、前記建物を含む監視地域内の複数の観測地点の空気質をそれぞれ計測するように構成されている。前記制御装置は、前記建物内の空気質より前記建物外の空気質が良好であれば前記換気設備を稼動させる通常動作を実行する制御部を有する。前記制御装置は、さらに、前記複数の分散計測器でそれぞれ計測された空気質に基づいて前記建物外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを予測する予測部を有する。前記制御部は、前記異常が起こると前記予測部が予測すると、前記通常動作を終了して前記換気設備を停止させるように構成されている。 The ventilation system according to the present invention includes a ventilation facility, individual measuring devices, a plurality of distributed measuring devices, and a control device. The ventilation facility is configured to ventilate a building. The individual measuring instrument is configured to measure the air quality inside the building and the air quality outside the building. The plurality of distributed measuring devices are configured to measure air quality at a plurality of observation points in a monitoring area including the building, respectively. The control device includes a control unit that executes a normal operation of operating the ventilation facility if the air quality outside the building is better than the air quality inside the building. The control device further includes a prediction unit that predicts whether an abnormality in which the air quality outside the building indicates an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring instruments. Have. The control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
 本発明に係る制御装置は、第1の取得部と、第2の取得部と、制御部と、予測部と、を備える。前記第1の取得部は、建物内の空気質および前記建物外の空気質を取得するように構成されている。前記第2の取得部は、前記建物を含む監視地域内の複数の観測地点のそれぞれの空気質を取得するように構成されている。前記制御部は、前記建物内の空気質より前記建物外の空気質が良好であれば前記建物の換気を行う換気設備を稼動させる通常動作を実行するように構成されている。前記予測部は、前記建物外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを、前記複数の観測地点のそれぞれの空気質に基づいて、予測するように構成されている。前記制御部は、前記異常が起こると前記予測部が予測すると、前記通常動作を終了して前記換気設備を停止させるように構成されている。 The control device according to the present invention includes a first acquisition unit, a second acquisition unit, a control unit, and a prediction unit. The first acquisition unit is configured to acquire air quality inside the building and air quality outside the building. The second acquisition unit is configured to acquire the air quality of each of a plurality of observation points in a monitoring area including the building. The control unit is configured to execute a normal operation of operating a ventilation facility that ventilates the building if the air quality outside the building is better than the air quality inside the building. The prediction unit is configured to predict whether or not an abnormality in which the air quality outside the building shows an abnormal value due to contaminated air occurs based on the air quality of each of the plurality of observation points. . The control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
実施形態1に係る換気システムの概略ブロック図である。1 is a schematic block diagram of a ventilation system according to Embodiment 1. FIG. 実施形態1に係る分散計測器の配置を示す概略平面図である。FIG. 3 is a schematic plan view showing the arrangement of the dispersion measuring apparatus according to the first embodiment. 実施形態1に係る換気システムの動作例を示すフローチャートである。It is a flowchart which shows the operation example of the ventilation system which concerns on Embodiment 1. FIG. 実施形態2に係る換気システムの概略説明図である。It is a schematic explanatory drawing of the ventilation system which concerns on Embodiment 2. FIG.
 (実施形態1)
 本実施形態の換気システムは、建物に適用され、建物の換気を行うことにより建物内の空気質を改善するシステムである。以下では、戸建住宅に換気システムが適用された例を示すが、換気システムが適用される建物は戸建住宅に限らず、たとえば集合住宅、店舗、オフィスビル、工場などであってもよい。
(Embodiment 1)
The ventilation system of this embodiment is a system that is applied to a building and improves the air quality in the building by ventilating the building. Below, although the example where the ventilation system was applied to the detached house is shown, the building to which the ventilation system is applied is not limited to the detached house, and may be, for example, an apartment house, a store, an office building, a factory, or the like.
 換気システム10は、図1に示すように、建物1の換気を行う換気設備2と、個別計測器3と、制御装置4と、複数台の分散計測器M1,M2,M3…(以下、各々を区別しない場合には「分散計測器M0」という)とを備えている。 As shown in FIG. 1, the ventilation system 10 includes a ventilation facility 2 for ventilating a building 1, an individual measuring device 3, a control device 4, a plurality of distributed measuring devices M 1, M 2, M 3. Are not referred to as “dispersion measuring device M0”).
 また、図1に例示する換気システム10は、空調装置としての空気清浄機61およびエアコン(エアーコンディショナ)62をさらに備えている。 The ventilation system 10 illustrated in FIG. 1 further includes an air purifier 61 and an air conditioner (air conditioner) 62 as air conditioners.
 図1の例では、建物1にはユーザ端末71と電力計測器72とネットワーク機器73,74がさらに設けられている。制御装置4およびネットワーク機器73,74は、ルータ75を介してインターネット8に接続されており、インターネット8には管理装置91およびサーバ92が接続されている。 In the example of FIG. 1, the building 1 is further provided with a user terminal 71, a power meter 72, and network devices 73 and 74. The control device 4 and the network devices 73 and 74 are connected to the Internet 8 via the router 75, and a management device 91 and a server 92 are connected to the Internet 8.
 個別計測器3は、建物1の内および外の空気質を計測する。 The individual measuring instrument 3 measures the air quality inside and outside the building 1.
 制御装置4は、個別計測器3の計測結果に基づいて換気設備2を制御し、建物1内の空気質より建物1外の空気質の方が良好である場合に換気設備2を稼動させる。 The control device 4 controls the ventilation facility 2 based on the measurement result of the individual measuring instrument 3, and operates the ventilation facility 2 when the air quality outside the building 1 is better than the air quality inside the building 1.
 複数台の分散計測器M1,M2,M3…は、建物1の周囲に設定された監視地域内の複数の観測地点P1,P2,P3…(以下、各々を区別しない場合には「観測地点P0」という)に分散して配置され各観測地点P0の空気質を計測する。つまり、複数の分散計測器M0は、建物1を含む監視地域100内の複数の観測地点P0の空気質をそれぞれ計測する。 A plurality of distributed measuring instruments M1, M2, M3... Are connected to a plurality of observation points P1, P2, P3... In the monitoring area set around the building 1 (hereinafter referred to as “observation points P0 if they are not distinguished from each other). ”) And the air quality at each observation point P0 is measured. That is, the plurality of distributed measuring devices M0 measure the air quality at the plurality of observation points P0 in the monitoring area 100 including the building 1, respectively.
 ここでいう空気質は、SOxやNOxや粒子状物質(PM:Particulate Matter)や揮発性有機化合物(VOC:Volatile Organic Compounds)等の大気汚染物質、CO、CO、臭気、花粉などのうち1つ以上についての空気中の成分濃度を意味している。ただし、個別計測器3および各分散計測器M1,M2,M3…は、上記空気質に加えて、温度、湿度などの空気環境に関する情報を計測するように構成されている。なお、揮発性有機化合物は、ホルムアルデヒド、ベンゼン、トルエン、キシレン、スチレン等の1種類以上を含む。 The air quality mentioned here is one of SOx, NOx, particulate matter (PM), volatile organic compounds (VOC) and other air pollutants, CO, CO 2 , odor, pollen, etc. Means the component concentration in the air for more than one. However, the individual measuring instrument 3 and each of the dispersion measuring instruments M1, M2, M3... Are configured to measure information on the air environment such as temperature and humidity in addition to the air quality. Note that the volatile organic compound includes one or more of formaldehyde, benzene, toluene, xylene, styrene, and the like.
 制御装置4は、複数台の分散計測器M1,M2,M3…の計測結果に基づいて、空気質が異常値を示す空気(以下、「汚染空気」という)が建物1に到達するか否かを予測する予測部411を有している。制御装置4は、予測部411で汚染空気の到達が予測された場合、個別計測器3の計測結果にかかわらず換気設備2を停止させるように構成されている。 The control device 4 determines whether or not air whose air quality indicates an abnormal value (hereinafter referred to as “contaminated air”) reaches the building 1 based on the measurement results of the plurality of distributed measuring instruments M1, M2, M3. It has the prediction part 411 which predicts. The control device 4 is configured to stop the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the prediction unit 411 predicts the arrival of contaminated air.
 日本の厚生労働省によれば、たとえばホルムアルデヒドについては0.10mg/m以下、総揮発性有機化合物(TVOC:Total Volatile Organic Compounds)については0.40mg/m以下を室内濃度指標値としている。中国の室内空気質量標準(GB18883)によれば、ホルムアルデヒドについては0.08mg/m以下、ベンゼンについては0.11mg/m以下、総揮発性有機化合物については0.60mg/m以下を指標値としている。本実施形態では、一例として、空気質がこれらの指標値で示される範囲から逸脱する空気を、空気質が異常値を示す汚染空気として扱う。 According to Japanese Ministry of Health, Labor and Welfare, for example, 0.10 mg / m 3 or less for formaldehyde, total volatile organic compounds: for (TVOC Total Volatile Organic Compounds) are the indoor concentration indicating value 0.40 mg / m 3 or less. According to Chinese indoor air mass standards (GB18883), 0.08mg / m 3 or less for the formaldehyde, 0.11 mg / m 3 or less for benzene, 0.60 mg / m 3 or less for the total volatile organic compounds It is an index value. In the present embodiment, as an example, air whose air quality deviates from the range indicated by these index values is treated as contaminated air whose air quality indicates an abnormal value.
 ただし、空気質の異常値は、これらの指標値によって定められる値に限らず、たとえば建物1内の空気質よりも悪い状態の空気質を異常値としてもよい。すなわち、制御装置4は、個別計測器3で計測されている建物1内の空気質を基準値とし、空気質が基準値より高い(悪い)値を示す空気を、空気質が異常値を示す汚染空気として扱ってもよい。 However, the abnormal value of air quality is not limited to the value determined by these index values, and for example, the air quality in a state worse than the air quality in the building 1 may be used as the abnormal value. That is, the control device 4 uses the air quality in the building 1 measured by the individual measuring instrument 3 as a reference value, air that shows a higher (bad) value than the reference value, and air quality that shows an abnormal value. It may be treated as contaminated air.
 空気清浄機61およびエアコン62は、換気設備2とは別に建物1に設けられ建物1内の空気質を改善する空調設備である。エアコン62は、たとえばフィルタにより空気中の浮遊粒子を除去したり、温度を下げることによりVOCの飛散量を減少させたりすることで空気質を改善する。本実施形態では、制御装置4は、空調設備(空気清浄機61およびエアコン62)を制御する機能をさらに有し、少なくとも換気設備2を停止させる期間には空調設備を稼動させるように構成されている。 The air purifier 61 and the air conditioner 62 are air conditioners that are provided in the building 1 separately from the ventilation facility 2 and improve the air quality in the building 1. The air conditioner 62 improves air quality by, for example, removing airborne particles in the air with a filter or reducing the amount of VOC scattering by lowering the temperature. In the present embodiment, the control device 4 further has a function of controlling the air conditioning equipment (the air purifier 61 and the air conditioner 62), and is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. Yes.
 制御装置4は、種々の情報を表示したりユーザからの操作入力を受け付けたりするためのユーザインタフェースとして、ユーザ端末71を利用する。ここでは、ユーザ端末71は、スマートフォンやタブレット端末等、ユーザが携帯可能であって、制御装置4との通信機能を有する端末からなる。 The control device 4 uses the user terminal 71 as a user interface for displaying various information and receiving operation inputs from the user. Here, the user terminal 71 is a terminal such as a smartphone or a tablet terminal that can be carried by the user and has a communication function with the control device 4.
 電力計測器72は、系統電源(商用電源)から供給される電力を、主幹系統および分岐系統ごとに計測するように構成されている。具体的には、建物1に設けられた分電盤(図示せず)に主幹ブレーカ(図示せず)と複数の分岐ブレーカ(図示せず)とが収納されており、電力計測器72は、主幹ブレーカを含む主幹系統、および各分岐ブレーカを含む分岐系統ごとに消費電力を計測する。電力計測器72は制御装置4に接続されており、制御装置4は、たとえば電力計測器72の計測結果をユーザ端末71に表示させることが可能である。 The power measuring instrument 72 is configured to measure the power supplied from the system power supply (commercial power supply) for each main system and branch system. Specifically, a main breaker (not shown) and a plurality of branch breakers (not shown) are housed in a distribution board (not shown) provided in the building 1, and the power meter 72 is Power consumption is measured for each main system including the main circuit breaker and each main system including each branch breaker. The power meter 72 is connected to the control device 4, and the control device 4 can display the measurement result of the power meter 72 on the user terminal 71, for example.
 ネットワーク機器73,74は、たとえばテレビ受像機やネットワークカメラなどである。制御装置4は、これらのネットワーク機器73,74を制御する機能をさらに有し、たとえばユーザ端末71と同様に種々の情報を表示するのに用いることができる。 The network devices 73 and 74 are, for example, a television receiver or a network camera. The control device 4 further has a function of controlling these network devices 73 and 74, and can be used to display various types of information in the same manner as the user terminal 71, for example.
 このように、本実施形態では制御装置4は、換気設備2だけでなく、建物1に設けられている種々の機器、設備を制御したり、電力計測器72で計測された消費電力を可視化(見える化)したりする。言い換えれば、制御装置4は、HEMS(Home Energy Management System)のコントローラとして機能する。 As described above, in this embodiment, the control device 4 controls not only the ventilation facility 2 but also various devices and facilities provided in the building 1 and visualizes the power consumption measured by the power meter 72 ( Visualize). In other words, the control device 4 functions as a controller for HEMS (Home Energy Management System).
 管理装置91は、コンピュータからなり、監視地域の情報を集中管理する機能を有している。管理装置91は、建物1の周囲に設定された監視地域ごとに設けられていてもよいし、複数の監視地域を含む広域の管理地域ごとに設けられていてもよい。 The management device 91 is composed of a computer and has a function of centrally managing the information of the monitoring area. The management device 91 may be provided for each monitoring area set around the building 1, or may be provided for each wide management area including a plurality of monitoring areas.
 サーバ92は、たとえば天気予報サーバなどからなり、少なくとも観測地点P0の風向および風速に関する情報を制御装置4に提供する機能を有している。本実施形態では、制御装置4は、サーバ92から観測地点P0の風向および風速に関する情報を取得する取得部414をさらに有し、取得部414にて取得した情報を用いて予測部411で予測を行うように構成されている。サーバ92は、観測地点P0の風向および風速の他、温度および湿度等についても、制御装置4へ提供する。 The server 92 is composed of, for example, a weather forecast server, and has a function of providing at least information regarding the wind direction and wind speed of the observation point P0 to the control device 4. In the present embodiment, the control device 4 further includes an acquisition unit 414 that acquires information on the wind direction and wind speed at the observation point P0 from the server 92, and the prediction unit 411 uses the information acquired by the acquisition unit 414 to perform prediction. Configured to do. The server 92 provides the control device 4 with the temperature and humidity in addition to the wind direction and wind speed at the observation point P0.
 以下、本実施形態の換気システム10の具体的な態様について説明する。 Hereinafter, specific modes of the ventilation system 10 of the present embodiment will be described.
 換気設備2は、モータ(図示せず)などの動力源を有しており、電気エネルギー(電力)を消費して動力源が発生する動力にて、建物1の内と外とで空気の交換(入れ換え)を行うことによって建物1の換気を行う。換気設備2は、たとえば天井裏に通したダクトを用いて換気するダクト式であってもよいし、建物1の壁に取り付けられる壁付け式であってもよい。また、換気の種別としてたとえば第一種換気、第二種換気、第三種換気のような分類がある場合、換気設備2の換気の種別は、第一種換気、第二種換気、第三種換気のいずれであってもよい。換気設備2は、たとえば部屋ごとに1ないし複数台ずつ設けられていてもよいが、本実施形態では、1つの建物1に対して1台の換気設備2が設けられていると仮定して説明する。 The ventilation facility 2 has a power source such as a motor (not shown), and exchanges air between the inside and outside of the building 1 with power generated by the power source by consuming electrical energy (electric power). The building 1 is ventilated by performing (replacement). For example, the ventilation facility 2 may be a duct type that ventilates using a duct that passes through the back of the ceiling, or may be a wall-mounted type that is attached to the wall of the building 1. In addition, when there is a classification such as type 1 ventilation, type 2 ventilation, type 3 ventilation as the type of ventilation, for example, the type of ventilation of the ventilation facility 2 is type 1 ventilation, type 2 ventilation, type 3 ventilation. Any of seed ventilation may be used. For example, one or a plurality of ventilation facilities 2 may be provided for each room. In the present embodiment, it is assumed that one ventilation facility 2 is provided for one building 1. To do.
 換気設備2は、制御装置4との通信機能を有しており、制御装置4から送信される制御信号に従って少なくとも稼動・停止の切り替えを行うように構成されている。さらに、換気設備2は、制御装置4からの制御信号に従って、換気風量(強・弱)を決定する機能も有している。 The ventilation facility 2 has a communication function with the control device 4 and is configured to at least switch between operation and stop according to a control signal transmitted from the control device 4. Further, the ventilation facility 2 has a function of determining the ventilation air volume (strong / weak) in accordance with a control signal from the control device 4.
 個別計測器3は、SOxセンサ、NOxセンサ、浮遊粒子センサ、VOCセンサ、COセンサ、臭気センサなど、空気質に関連した情報を検出する1つ以上のセンサと、温度センサや湿度センサとを複合的に組み合わせて構成されている。個別計測器3は、建物1の内と外とのそれぞれについて空気質を計測するので、上述したようなセンサを建物1の内と外とにそれぞれ備えている。ここでは、建物1内に設けられたセンサを室内センサ31とし、建物1外に設けられたセンサを室外センサ32とする。室内センサ31は室内の壁等に取り付けられ、室外センサ32は建物1の外壁等に取り付けられる。 The individual measuring instrument 3 includes one or more sensors that detect information related to air quality, such as an SOx sensor, a NOx sensor, a suspended particle sensor, a VOC sensor, a CO 2 sensor, and an odor sensor, and a temperature sensor and a humidity sensor. It is composed of multiple combinations. Since the individual measuring device 3 measures the air quality for each of the inside and outside of the building 1, the individual measuring device 3 includes the above-described sensors inside and outside the building 1. Here, a sensor provided in the building 1 is an indoor sensor 31, and a sensor provided outside the building 1 is an outdoor sensor 32. The indoor sensor 31 is attached to an indoor wall or the like, and the outdoor sensor 32 is attached to an outer wall or the like of the building 1.
 個別計測器3は、制御装置4との通信機能を有しており、定期的に、あるいは制御装置4からの要求に対する応答として、計測結果を制御装置4へ出力する。個別計測器3は、各々に複数の項目を含む室内センサ31の計測結果と室外センサ32の計測結果とを1組として、制御装置4へ出力する。 The individual measuring instrument 3 has a communication function with the control device 4 and outputs a measurement result to the control device 4 periodically or as a response to a request from the control device 4. The individual measuring device 3 outputs the measurement result of the indoor sensor 31 and the measurement result of the outdoor sensor 32 each including a plurality of items as a set to the control device 4.
 各分散計測器M0は、個別計測器3と同様に、SOxセンサ、NOxセンサ、浮遊粒子センサ、VOCセンサ、COセンサ、臭気センサなど、空気質に関連した情報を検出する1つ以上のセンサと、温度センサや湿度センサとを複合的に組み合わせて構成されている。ここで、監視地域100内に配置された複数台の分散計測器M1,M2,M3…は、計測器群5を構成する。 Each distributed measuring instrument M0, like the individual measuring instrument 3, is one or more sensors that detect information related to air quality, such as SOx sensors, NOx sensors, suspended particle sensors, VOC sensors, CO 2 sensors, and odor sensors. And a combination of a temperature sensor and a humidity sensor. Here, a plurality of distributed measuring instruments M1, M2, M3... Arranged in the monitoring area 100 constitute a measuring instrument group 5.
 一群の計測器群5に属する分散計測器M1,M2,M3…は、各々がセンサノードとなり、互いに協調動作することで監視地域100内に設定されている複数の観測地点P0の空気質の情報を収集可能なセンサネットワークを構築する。本実施形態では、分散計測器M1,M2,M3…はインターネット8に接続され、分散計測器M1,M2,M3…の計測結果は、インターネット8上の管理装置91にて一元管理される。そのため、各分散計測器M0は、管理装置91との通信機能を有しており、定期的に、あるいは管理装置91からの要求に対する応答として、計測結果を管理装置91へ出力する。 The distributed measuring instruments M1, M2, M3,... Belonging to the group of measuring instruments 5 are each sensor nodes and operate in cooperation with each other, and information on air quality at a plurality of observation points P0 set in the monitoring area 100. A sensor network that can collect data. In this embodiment, the distributed measuring instruments M1, M2, M3... Are connected to the Internet 8, and the measurement results of the distributed measuring instruments M1, M2, M3. Therefore, each distributed measuring instrument M0 has a communication function with the management apparatus 91, and outputs a measurement result to the management apparatus 91 periodically or as a response to a request from the management apparatus 91.
 監視地域100は、図2に示すように、建物1の周囲に設定された所定範囲の地域である。図2の例では、監視地域100は、建物1を中心とする同心円C1,C2上に位置する複数の観測地点P0を含むように、建物1を中心とする略円形状の範囲に設定されている。分散計測器M1,M2,M3…は、これら複数の観測点P1,P2,P3…に分散して配置されている。図2では、建物1から第1の距離に設定された8箇所の観測地点P1~P8に分散計測器M1~M8が配置され、建物1から第2の距離(>第1の距離)にある8箇所の観測地点P9~P16に分散計測器M9~M16が配置されている。なお、一例として第1の距離は2km、第2の距離は4kmと仮定する。 The monitoring area 100 is an area of a predetermined range set around the building 1 as shown in FIG. In the example of FIG. 2, the monitoring area 100 is set in a substantially circular range centered on the building 1 so as to include a plurality of observation points P0 located on the concentric circles C1 and C2 centered on the building 1. Yes. The dispersion measuring instruments M1, M2, M3,... Are distributed at these observation points P1, P2, P3,. In FIG. 2, distributed measuring instruments M1 to M8 are arranged at eight observation points P1 to P8 set at a first distance from the building 1, and are at a second distance (> first distance) from the building 1. Dispersion measuring devices M9 to M16 are arranged at eight observation points P9 to P16. As an example, it is assumed that the first distance is 2 km and the second distance is 4 km.
 複数の分散計測器M0は、建物1に対して同じ方向にある分散計測器M0の組(本実施形態では複数の組)を含む。さらに図2の例では、分散計測器M1~M16は建物1を中心として北、北東、東、南東、南、南西、西、北西の8つの方向に等角度間隔で配置されている。ここでは、分散計測器M1および分散計測器M9は建物1の北、分散計測器M2および分散計測器M10は建物1の北東、分散計測器M3および分散計測器M11は建物1の東、分散計測器M4および分散計測器M12は建物1の南東にそれぞれ配置されている。同様に、分散計測器M5および分散計測器M13は建物1の南、分散計測器M6および分散計測器M14は建物1の南西、分散計測器M7および分散計測器M15は建物1の西、分散計測器M8および分散計測器M16は建物1の北西にそれぞれ配置されている。 The plurality of dispersion measuring instruments M0 includes a set of dispersion measuring instruments M0 in the same direction with respect to the building 1 (a plurality of sets in the present embodiment). Further, in the example of FIG. 2, the dispersion measuring instruments M1 to M16 are arranged at equiangular intervals in the eight directions of north, northeast, east, southeast, south, southwest, west, and northwest with the building 1 as the center. Here, the dispersion measuring instrument M1 and the dispersion measuring instrument M9 are north of the building 1, the dispersion measuring instrument M2 and the dispersion measuring instrument M10 are northeast of the building 1, the dispersion measuring instrument M3 and the dispersion measuring instrument M11 are east of the building 1, and the dispersion measuring is performed. The instrument M4 and the dispersion measuring instrument M12 are arranged in the southeast of the building 1, respectively. Similarly, the dispersion measuring instrument M5 and the dispersion measuring instrument M13 are the south of the building 1, the dispersion measuring instrument M6 and the dispersion measuring instrument M14 are the southwest of the building 1, and the dispersion measuring instrument M7 and the dispersion measuring instrument M15 are the west of the building 1. The instrument M8 and the dispersion measuring instrument M16 are arranged in the northwest of the building 1, respectively.
 このように、複数の分散計測器M0は、複数の外側の分散計測器M1~M8と、複数の外側の分散計測器M1~M8にそれぞれ対応付けられた複数の内側の分散計測器M9~M16と、を含む。複数の外側の分散計測器M9~M16は、建物1を中心とする第1の円C1の円周上にある。複数の内側の分散計測器M1~M8は、建物1を中心とする第2の円C2の円周上にある。第2の円C2の半径は、第1の円C1の半径より小さい。複数の内側の分散計測器M1~M8のそれぞれは、複数の外側の分散計測器M9~M16のうちの対応付けられた外側の分散計測器と建物1とを結ぶ直線上にある。 As described above, the plurality of dispersion measuring instruments M0 includes a plurality of outer dispersion measuring instruments M1 to M8 and a plurality of inner dispersion measuring instruments M9 to M16 respectively associated with the plurality of outer dispersion measuring instruments M1 to M8. And including. The plurality of outer dispersion measuring instruments M9 to M16 are on the circumference of the first circle C1 with the building 1 as the center. The plurality of inner dispersion measuring instruments M1 to M8 are on the circumference of the second circle C2 with the building 1 as the center. The radius of the second circle C2 is smaller than the radius of the first circle C1. Each of the plurality of inner dispersion measuring instruments M1 to M8 is on a straight line connecting the building 1 with the corresponding outer dispersion measuring instrument among the plurality of outer dispersion measuring instruments M9 to M16.
 計測器群5は、このように分散計測器M1~M16が建物1の周囲に設定された監視地域100に分散して配置されることにより、これら複数台の分散計測器M1~M16の計測結果から、監視地域100における空気質の分布状況を監視することができる。複数台の分散計測器M1~M16の計測結果は管理装置91で一元管理されているので、管理装置91は、監視地域100の空気質の分布状況を監視できることになる。 The measuring instrument group 5 is distributed in the monitoring area 100 set around the building 1 in this manner, so that the measurement results of the plurality of distributed measuring instruments M1 to M16 are distributed. From this, it is possible to monitor the distribution of air quality in the monitoring area 100. Since the measurement results of the plurality of distributed measuring instruments M1 to M16 are centrally managed by the management device 91, the management device 91 can monitor the air quality distribution in the monitoring area 100.
 また、各観測地点P0に空気質に関連した情報を検出するセンサ装置が既に設置されている場合には、分散計測器M1~M16は、これら既設のセンサ装置を利用してもよい。あるいは、各観測地点P0に建物が存在する場合には、分散計測器M1~M16は、各建物に設けられている個別計測器3の室外センサ32を利用してもよい。 In addition, when sensor devices that detect information related to air quality are already installed at each observation point P0, the dispersion measuring instruments M1 to M16 may use these existing sensor devices. Alternatively, when a building exists at each observation point P0, the dispersion measuring instruments M1 to M16 may use the outdoor sensor 32 of the individual measuring instrument 3 provided in each building.
 各建物の個別計測器は制御装置4を介してインターネット8に接続されているので、個別計測器3を分散計測器M1~M16に利用する場合でも、管理装置91は、複数台の分散計測器M1~M16の計測結果を一元管理できる。 Since the individual measuring instruments of each building are connected to the Internet 8 via the control device 4, even when the individual measuring instrument 3 is used for the distributed measuring instruments M1 to M16, the management apparatus 91 has a plurality of distributed measuring instruments. The measurement results of M1 to M16 can be centrally managed.
 空調設備(空気清浄機61およびエアコン62)は、換気以外の方法で建物1内の空気の温度、湿度、清浄度、気流などを調節し、建物1内を快適な状態に保つ装置である。空調設備(空調装置)は、空気清浄機61およびエアコン62の他、たとえば床暖房等の冷暖房機器、除湿器、加湿器、サーキュレータ等であってもよい。ただし、ここでいう空調装置は、稼動時に電力やガス等のエネルギーを消費する装置のみを含み、稼動時に何らエネルギーを消費しない装置を含まない。また、空調設備は換気設備2に比べると消費電力が大きい。 The air conditioning equipment (the air purifier 61 and the air conditioner 62) is a device that maintains the interior of the building 1 in a comfortable state by adjusting the temperature, humidity, cleanliness, airflow, and the like of the air in the building 1 by a method other than ventilation. In addition to the air purifier 61 and the air conditioner 62, the air conditioning equipment (air conditioner) may be, for example, a cooling / heating device such as floor heating, a dehumidifier, a humidifier, or a circulator. However, the air conditioner here includes only a device that consumes energy such as electric power and gas during operation, and does not include a device that does not consume any energy during operation. In addition, the air conditioning equipment consumes more power than the ventilation equipment 2.
 空調設備は、制御装置4との通信機能を有しており、制御装置4から送信される制御信号に従って少なくとも稼動・停止の切り替えを行うように構成されている。さらに、空調設備は、制御装置4からの制御信号に従って、運転風量(強・弱)や設定温度を決定する機能も有している。 The air conditioning facility has a communication function with the control device 4 and is configured to perform at least switching between operation and stop according to a control signal transmitted from the control device 4. Furthermore, the air conditioning equipment also has a function of determining the operating air volume (strong / weak) and the set temperature in accordance with a control signal from the control device 4.
 制御装置4は、図1に示すように、各種の処理を行う処理部41と、第1通信インタフェース(以下、「インタフェース」を「I/F」と表記する)42と、第2通信I/F43と、記憶部44と、時計部45とを有している。本実施形態では、制御装置4は、コンピュータを主構成とし、記憶部44に格納されたプログラムを実行することにより、各部の機能を実現する。なお、制御装置4は、上記のプログラムを記録媒体から読み込むか、あるいはインターネット8を介してセンタサーバ(図示せず)からダウンロードすることによってインストールする。 As shown in FIG. 1, the control device 4 includes a processing unit 41 that performs various processes, a first communication interface (hereinafter, “interface” is expressed as “I / F”) 42, and a second communication I / O. F43, a storage unit 44, and a clock unit 45 are provided. In the present embodiment, the control device 4 has a computer as a main configuration, and executes the program stored in the storage unit 44 to realize the functions of the respective units. The control device 4 is installed by reading the above program from a recording medium or by downloading it from a center server (not shown) via the Internet 8.
 第1通信I/F42は、建物1に設けられている種々の機器、設備との間で通信する機能を有している。ここでは、第1通信I/F42は、換気設備2、空調設備(空気清浄機61およびエアコン62)、ユーザ端末71、個別計測器3の各々との間で双方向に通信する。第1通信I/F42は、建物1内の空気質および建物1外の空気質を(個別計測器3から)取得する第1の取得部として用いられる。本実施形態では、第1通信I/F42は電波を伝送媒体とする無線通信により換気設備2等と通信するが、制御装置4(第1通信I/F42)と換気設備2等との間の通信は無線通信に限らず有線通信であってもよい。 The first communication I / F 42 has a function of communicating with various devices and facilities provided in the building 1. Here, the first communication I / F 42 communicates bidirectionally with the ventilation facility 2, the air conditioning facility (the air purifier 61 and the air conditioner 62), the user terminal 71, and the individual measuring device 3. The first communication I / F 42 is used as a first acquisition unit that acquires the air quality inside the building 1 and the air quality outside the building 1 (from the individual measuring device 3). In the present embodiment, the first communication I / F 42 communicates with the ventilation facility 2 and the like by wireless communication using radio waves as a transmission medium, but between the control device 4 (first communication I / F 42) and the ventilation facility 2 and the like. The communication is not limited to wireless communication but may be wired communication.
 第2通信I/F43は、インターネット8上の管理装置91やサーバ92との間で双方向に通信する機能を有している。第2通信I/F43は、ルータ75を介してインターネット8に接続されており、Ethernet(登録商標)に準拠した通信を行う。第2通信I/F43は、建物1を含む監視地域100内の複数の観測地点P0のそれぞれの空気質を(管理装置91から)取得する第2の取得部として用いられる。さらに、第2通信I/F43は、ネットワーク機器73,74との通信機能も有している。 The second communication I / F 43 has a function of bidirectionally communicating with the management device 91 and the server 92 on the Internet 8. The second communication I / F 43 is connected to the Internet 8 via the router 75 and performs communication conforming to Ethernet (registered trademark). The second communication I / F 43 is used as a second acquisition unit that acquires (from the management device 91) the air quality of each of the plurality of observation points P0 in the monitoring area 100 including the building 1. Further, the second communication I / F 43 also has a communication function with the network devices 73 and 74.
 記憶部44は、各分散計測器M1~M16が配置されている観測地点P1~P16の位置情報(建物1からの距離および方角)を含む各種のデータを記憶する。観測地点P0の位置情報は緯度、経度で表されていてもよい。さらに、本実施形態では、記憶部44は、複数台の分散計測器M1~M16の計測結果の履歴を含むデータを記憶する。つまり、記憶部44は、複数台の分散計測器M0でそれぞれ計測された空気質の履歴を記憶する。 The storage unit 44 stores various data including position information (distance and direction from the building 1) of the observation points P1 to P16 where the dispersion measuring devices M1 to M16 are arranged. The position information of the observation point P0 may be expressed by latitude and longitude. Further, in the present embodiment, the storage unit 44 stores data including history of measurement results of the plurality of dispersion measuring instruments M1 to M16. That is, the memory | storage part 44 memorize | stores the log | history of the air quality each measured with the several dispersion | distribution measuring device M0.
 時計部45は、現在時刻を計時する。本実施形態では、時計部45はカレンダー機能を有しており、日付、現在時刻を計時する。 The clock unit 45 measures the current time. In the present embodiment, the clock unit 45 has a calendar function and measures the date and the current time.
 処理部41は、換気設備2を制御する換気制御部412を有している。ここでは、第1通信I/F42が換気設備2との通信機能を有するので、換気制御部412は、第1通信I/F42から換気設備2へ制御信号を送信することによって、換気設備2を制御する。さらに、換気制御部412は、換気設備2の動作状態(稼動・停止の別、換気風量等)を示す監視信号を第1通信I/F42にて換気設備2から受信することによって、換気設備2の動作状態を監視する。 The processing unit 41 includes a ventilation control unit 412 that controls the ventilation facility 2. Here, since the first communication I / F 42 has a communication function with the ventilation facility 2, the ventilation control unit 412 transmits the control signal from the first communication I / F 42 to the ventilation facility 2. Control. Further, the ventilation control unit 412 receives a monitoring signal indicating the operating state of the ventilation facility 2 (operation / stoppage, ventilation air volume, etc.) from the ventilation facility 2 by the first communication I / F 42, thereby providing the ventilation facility 2. Monitor the operating status of
 換気制御部412は、その基本的な動作として、建物1内の空気質より建物1外の空気質の方が良好である場合に換気設備2を稼動させるように、個別計測器3の計測結果に基づいて換気設備2を制御する。反対に、建物1外の空気質より建物1外の空気質の方が良好である場合には、換気制御部412は、換気設備2を停止させるように、個別計測器3の計測結果に基づいて換気設備2を制御する。つまり、換気制御部412は、建物1内の空気質より建物1外の空気質が良好であれば換気設備2を稼動させる動作(通常動作)を実行するように構成されている。この通常動作では、換気制御部412は、建物1内の空気質より建物1外の空気質が悪ければ換気設備2を稼動させない。ここでは、第1通信I/F42が個別計測器3との通信機能を有するので、換気制御部412は、個別計測器3の計測結果を第1通信I/F42にて取得し、取得した計測結果に基づいて換気設備2を制御する。 As a basic operation of the ventilation control unit 412, the measurement result of the individual measuring instrument 3 is operated so that the ventilation facility 2 is operated when the air quality outside the building 1 is better than the air quality inside the building 1. Based on the above, the ventilation facility 2 is controlled. On the other hand, when the air quality outside the building 1 is better than the air quality outside the building 1, the ventilation control unit 412 is based on the measurement result of the individual measuring instrument 3 so as to stop the ventilation equipment 2. To control the ventilation facility 2. That is, the ventilation control unit 412 is configured to execute an operation (normal operation) for operating the ventilation facility 2 if the air quality outside the building 1 is better than the air quality inside the building 1. In this normal operation, the ventilation control unit 412 does not operate the ventilation facility 2 if the air quality outside the building 1 is worse than the air quality inside the building 1. Here, since the first communication I / F 42 has a communication function with the individual measuring instrument 3, the ventilation control unit 412 acquires the measurement result of the individual measuring instrument 3 by the first communication I / F 42, and the acquired measurement. The ventilation facility 2 is controlled based on the result.
 具体例として、建物1の内と外とで気温および湿度が同値(気温22℃、湿度45%)であり、VOC濃度が建物1内で2.2mg/m、建物1外で1.0mg/mである場合、換気制御部412は、換気設備2を稼動させて建物1の換気を行う。このとき、換気システム10は、空調設備に比べて消費電力が小さい換気設備2を用いて建物1内の空気質を改善するので、空調設備を用いる場合に比べて省エネルギーになる。その後、建物1の内と外とでVOC濃度が同等になると、換気制御部412は、換気設備2を停止させる。 As a specific example, the temperature and humidity are the same inside and outside the building 1 (temperature 22 ° C., humidity 45%), the VOC concentration is 2.2 mg / m 3 inside the building 1, and 1.0 mg outside the building 1 In the case of / m 3 , the ventilation control unit 412 operates the ventilation facility 2 to ventilate the building 1. At this time, since the ventilation system 10 improves the air quality in the building 1 by using the ventilation facility 2 that consumes less power than the air conditioning facility, it saves energy compared to the case where the air conditioning facility is used. Thereafter, when the VOC concentration becomes the same inside and outside the building 1, the ventilation control unit 412 stops the ventilation facility 2.
 また、処理部41は、一群の計測器群5を構成する複数台の分散計測器M1~M16の計測結果に基づいて、空気質が異常値を示す汚染空気が建物1に到達するか否かを予測する予測部411を有している。つまり、予測部411は、複数の分散計測器M0でそれぞれ計測された空気質に基づいて、建物1外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを予測するように構成されている。ここでは、第2通信I/F43が管理装置91との通信機能を有するので、予測部411は、複数台の分散計測器M1~M16の計測結果を第2通信I/F43にて管理装置91から取得し、取得した計測結果に基づいて汚染空気が建物1に到達するか否かを予測する。 Further, the processing unit 41 determines whether or not the polluted air whose air quality shows an abnormal value reaches the building 1 based on the measurement results of the plurality of distributed measuring instruments M1 to M16 constituting the group of measuring instruments 5. It has the prediction part 411 which predicts. That is, the predicting unit 411 predicts whether or not an abnormality in which the air quality outside the building 1 shows an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring instruments M0. It is configured. Here, since the second communication I / F 43 has a communication function with the management device 91, the prediction unit 411 uses the second communication I / F 43 to measure the measurement results of the plurality of distributed measuring devices M1 to M16. And whether or not contaminated air reaches the building 1 is predicted based on the acquired measurement result.
 たとえば、監視地域100外で発生した汚染空気が建物1に向かっている場合、計測器群5は、まず遠距離側(外側)の(建物1から第2の距離にある)分散計測器M9~M16のいずれかで計測される空気質が異常値を示すことになる。その後、計測器群5は、最初に汚染空気を検出した分散計測器M9~M16と建物1との間に位置する近距離側(内側)の(建物1から第1の距離にある)分散計測器M1~M8で計測される空気質が異常値を示すことになる。つまり、汚染空気が建物1に向かっていれば、建物1から見て同じ方角に位置する外側の分散計測器M0と内側の分散計測器M0とは、順に異常値を計測することになる。 For example, when the polluted air generated outside the monitoring area 100 is heading toward the building 1, the measuring instrument group 5 starts with the distributed measuring instruments M9 to M9 on the far side (outside) (at a second distance from the building 1). The air quality measured by any of M16 will show an abnormal value. Thereafter, the measuring instrument group 5 performs the distributed measurement (at the first distance from the building 1) on the short distance side (inside) located between the building 1 and the dispersion measuring instruments M9 to M16 that first detect the contaminated air. The air quality measured by the devices M1 to M8 shows an abnormal value. In other words, if the contaminated air is directed toward the building 1, the outer dispersion measuring instrument M0 and the inner dispersion measuring instrument M0 located in the same direction as viewed from the building 1 will sequentially measure abnormal values.
 そこで、予測部411は、このように建物1から見て同じ方角に位置する外側の分散計測器M0と内側の分散計測器M0とが順に異常値を計測した場合には、汚染空気が建物1に到達すると予測する。 Therefore, when the outer dispersion measuring instrument M0 and the inner dispersion measuring instrument M0 located in the same direction as viewed from the building 1 sequentially measure abnormal values in this way, the predicting unit 411 causes the contaminated air to be in the building 1 Predicted to reach
 予測部411は、判定時間の間に、分散計測器M0の組(たとえば分散計測器M2,M10の組)でそれぞれ測定された空気質が分散計測器M0の組のうち建物1から最も遠い分散計測器M0(たとえばM10)から建物1に最も近い分散計測器M0(たとえばM2)まで順に異常値を示すと、異常が起こると予測する。換言すれば、予測部41は、外側の分散計測器M0で計測された空気質が異常値を示してから判定時間内に、空気質が異常値を示した外側の分散計測器M0(たとえばM10)に対応付けられた内側の分散計測器M0(たとえばM2)で計測された空気質が前記異常値を示すと、異常が起こると予測する。 The prediction unit 411 has a dispersion in which the air quality measured by a set of dispersion measuring instruments M0 (for example, a set of dispersion measuring instruments M2 and M10) during the determination time is farthest from the building 1 in the set of dispersion measuring instruments M0. If abnormal values are shown in order from the measuring instrument M0 (for example, M10) to the distributed measuring instrument M0 (for example, M2) closest to the building 1, it is predicted that an abnormality will occur. In other words, the predicting unit 41 determines that the outer dispersion measuring device M0 (for example, M10) in which the air quality shows an abnormal value within the determination time after the air quality measured by the outer dispersion measuring device M0 shows the abnormal value. If the air quality measured by the inner dispersion measuring device M0 (for example, M2) associated with () indicates the abnormal value, it is predicted that an abnormality will occur.
 なお、判定時間は、汚染空気の移動速度を考慮して決定される。建物1から最も遠い分散計測器M0で計測された空気質が異常値を示した時刻から長時間経過しても、建物1に最も近い分散計測器M0で計測された空気質が異常値を示さなければ、汚染空気が建物1に到達する可能性がなくなったと考えられる。 Note that the determination time is determined in consideration of the moving speed of the contaminated air. Even if the air quality measured with the dispersion measuring instrument M0 farthest from the building 1 shows an abnormal value, the air quality measured with the dispersion measuring instrument M0 closest to the building 1 shows an abnormal value. Otherwise, it is considered that there is no possibility that contaminated air reaches the building 1.
 換気制御部412は、個別計測器3の計測結果に基づいて換気設備2を制御する機能に加え、予測部411での予測結果に基づいて換気設備2を制御する機能も有している。換気制御部412は、予測部411で汚染空気が建物1に到達すると予測された場合、個別計測器3の計測結果にかかわらず換気設備2を停止させる。つまり、換気制御部412は、異常が起こると予測部411が予測すると、通常動作を終了して換気設備2を停止させるように構成されている。このように、換気制御部412は、個別計測器3の計測結果よりも予測部411の予測結果を優先し、汚染空気の到達が予測部411で予測された場合には、換気設備2を停止させるように換気設備2を制御する。 The ventilation control unit 412 has a function of controlling the ventilation facility 2 based on the prediction result of the prediction unit 411 in addition to the function of controlling the ventilation facility 2 based on the measurement result of the individual measuring device 3. When the prediction unit 411 predicts that the contaminated air reaches the building 1, the ventilation control unit 412 stops the ventilation facility 2 regardless of the measurement result of the individual measuring device 3. That is, the ventilation control unit 412 is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur. In this way, the ventilation control unit 412 gives priority to the prediction result of the prediction unit 411 over the measurement result of the individual measuring device 3 and stops the ventilation facility 2 when the arrival of contaminated air is predicted by the prediction unit 411. The ventilation facility 2 is controlled so that
 さらに、本実施形態では、処理部41は空調設備を制御する空調制御部413を有している。ここでは、第1通信I/F42が空調設備(空気清浄機61およびエアコン62)との通信機能を有するので、空調制御部413は、第1通信I/F42から空調設備へ制御信号を送信することによって、空調設備を制御する。さらに、空調制御部413は、空調設備の動作状態(稼動・停止の別、運転風量等)を示す監視信号を第1通信I/F42にて空調設備から受信することによって、空調設備の動作状態を監視する。 Furthermore, in this embodiment, the process part 41 has the air-conditioning control part 413 which controls an air-conditioning installation. Here, since the first communication I / F 42 has a communication function with the air conditioning equipment (the air purifier 61 and the air conditioner 62), the air conditioning control unit 413 transmits a control signal from the first communication I / F 42 to the air conditioning equipment. By controlling the air conditioning equipment. Furthermore, the air-conditioning control unit 413 receives the monitoring signal indicating the operation state of the air-conditioning equipment (operation / stoppage, operating air volume, etc.) from the air-conditioning equipment through the first communication I / F 42, thereby To monitor.
 空調制御部413は、少なくとも換気設備2を停止させる期間には空調設備を稼動させるように構成されている。つまり、空調制御部413は、換気制御部412が換気設備2を停止させている期間に空調設備を稼動させる。すなわち、個別計測器3の計測結果において建物1外の空気質より建物1外の空気質の方が良好である場合、および予測部411で汚染空気が建物1に到達すると予測された場合には、空調制御部413は、空調設備を稼動させるように制御する。これにより、換気システム10は、汚染空気が建物1に到達する前に、換気設備2を停止し、空調設備による空気質の改善に切り替えることができる。なお、空調制御部413は、空気清浄機61を稼動させる際、エアコン62を送風モードで稼動させることにより建物1内の空気を循環させ、空気清浄機61による空気質の改善効率を向上させてもよい。 The air conditioning control unit 413 is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. That is, the air conditioning control unit 413 operates the air conditioning equipment during a period in which the ventilation control unit 412 stops the ventilation equipment 2. That is, when the air quality outside the building 1 is better than the air quality outside the building 1 in the measurement result of the individual measuring instrument 3, and when the prediction unit 411 predicts that the contaminated air reaches the building 1 The air conditioning control unit 413 controls the air conditioning equipment to operate. Thereby, before the contaminated air reaches the building 1, the ventilation system 10 can stop the ventilation facility 2 and switch to improvement of air quality by the air conditioning facility. In addition, when operating the air cleaner 61, the air-conditioning control part 413 circulates the air in the building 1 by operating the air conditioner 62 in the air blowing mode, and improves the air quality improvement efficiency by the air cleaner 61. Also good.
 本実施形態では、換気制御部412と空調制御部413とが、建物1内の空気質を改善する改善動作を実行する制御部を構成している。なお、後述するように、空調制御部413は必須ではない。したがって、換気制御部412だけが制御部を構成していてもよい。 In the present embodiment, the ventilation control unit 412 and the air conditioning control unit 413 constitute a control unit that executes an improvement operation for improving the air quality in the building 1. As will be described later, the air conditioning control unit 413 is not essential. Therefore, only the ventilation control unit 412 may constitute the control unit.
 本実施形態では、予測部411は、汚染空気の到達が予測される場合、汚染空気が建物1に到達するタイミングを予測する機能をさらに有しており、制御装置4は、予測部411で予測されたタイミングに合わせて換気設備2を停止させるように構成されている。つまり、予測部411は、汚染空気が建物1に到達すると予測した場合には(つまり、異常が起こると予測すると)、建物1に汚染空気が到達するタイミング(以下、「到達タイミング」という)についても予測する。 In the present embodiment, the prediction unit 411 further has a function of predicting the timing when the contaminated air reaches the building 1 when the arrival of the contaminated air is predicted. It is configured to stop the ventilation facility 2 in accordance with the performed timing. That is, when the prediction unit 411 predicts that the contaminated air reaches the building 1 (that is, when it is predicted that an abnormality will occur), the timing at which the contaminated air reaches the building 1 (hereinafter referred to as “arrival timing”). Also predict.
 すなわち、予測部411は、上述したように建物1から見て同じ方角に位置する外側の分散計測器M0と内側の分散計測器M0とが順に異常値を計測した場合に、この汚染空気の到達タイミングを予測する。この場合、予測部411は、たとえば外側の分散計測器M0が異常値を計測した時刻と、内側の分散計測器M0が異常値を計測した時刻とに基づいて、汚染空気が建物1に到達する時刻(到達タイミング)を予測する。つまり、外側の分散計測器M9が異常値を計測してから、内側の分散計測器M1が異常値を計測するまでに5分掛かった場合、予測部411は、内側の分散計測器M1が異常値を計測したさらに5分後を到達タイミングとして予測する。なお、予測部411は、時刻ではなく、汚染空気が建物1に到達するまでに掛かる時間によって到達タイミングを表してもよい。 That is, the prediction unit 411 reaches the contaminated air when the outer dispersion measuring device M0 and the inner dispersion measuring device M0 located in the same direction as viewed from the building 1 sequentially measure abnormal values as described above. Predict timing. In this case, for example, the predicting unit 411 causes the contaminated air to reach the building 1 based on the time when the outer dispersion measuring device M0 measures the abnormal value and the time when the inner dispersion measuring device M0 measures the abnormal value. Time (arrival timing) is predicted. That is, when it takes five minutes from the time when the outer dispersion measuring instrument M9 measures the abnormal value to the time when the inner dispersion measuring instrument M1 measures the abnormal value, the prediction unit 411 determines that the inner dispersion measuring instrument M1 is abnormal. A further 5 minutes after measuring the value is predicted as the arrival timing. Note that the prediction unit 411 may represent the arrival timing based on the time it takes for the contaminated air to reach the building 1 instead of the time.
 換気制御部412は、時計部45で計時されている現在時刻が、予測部411で予測された到達タイミングの規定時間前になると、個別計測器3の計測結果にかかわらず換気設備2を停止させる。ここで、規定時間は、予測部411で予測された到達タイミングよりも汚染空気が建物1に早く到達することを見越して設定される時間であって、ユーザによって任意に設定される。つまり、換気制御部412は、予測部411で建物1に汚染空気が到達すると予測された時点ですぐに換気設備2を停止させるのではなく、到達タイミングに合わせて換気設備2を停止させる。 The ventilation control unit 412 stops the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the current time measured by the clock unit 45 comes before the specified time of the arrival timing predicted by the prediction unit 411. . Here, the specified time is a time set in anticipation that contaminated air reaches the building 1 earlier than the arrival timing predicted by the prediction unit 411, and is arbitrarily set by the user. That is, the ventilation control unit 412 does not stop the ventilation facility 2 immediately when the prediction unit 411 predicts that the contaminated air reaches the building 1, but stops the ventilation facility 2 in accordance with the arrival timing.
 また、本実施形態では、処理部41は、観測地点P0の風向および風速に関する情報を取得する取得部414をさらに有しており、取得部414にて取得した情報を用いて予測部411で予測を行うように構成されている。 In the present embodiment, the processing unit 41 further includes an acquisition unit 414 that acquires information regarding the wind direction and wind speed of the observation point P0, and the prediction unit 411 uses the information acquired by the acquisition unit 414 to perform prediction. Is configured to do.
 つまり、取得部414は、複数の観測地点P0それぞれでの風向および風速に関する情報を取得する。予測部411は、取得部414で取得された情報を利用して異常が起こるかどうかを予測する。 That is, the acquisition unit 414 acquires information on the wind direction and the wind speed at each of the plurality of observation points P0. The prediction unit 411 predicts whether an abnormality will occur using the information acquired by the acquisition unit 414.
 ここでは、第2通信I/F43がサーバ92との通信機能を有するので、取得部414は、観測地点P0の風向および風速に関する情報を第2通信I/F43にてサーバ92から取得する。 Here, since the second communication I / F 43 has a communication function with the server 92, the acquisition unit 414 acquires information on the wind direction and the wind speed at the observation point P0 from the server 92 by the second communication I / F 43.
 記憶部44は、各分散計測器M1~M16が配置されている観測地点P1~P16の位置情報(建物1からの距離および方角)を予め記憶しており、予測部411は、この位置情報と、サーバ92から取得した情報とに基づいて空気の移動方向および移動速度を予測できる。したがって、予測部411は、予測される空気の移動方向および移動速度と、複数台の分散計測器M1~M16の計測結果とに基づいて、汚染空気が建物1に到達するか否かを予測する。さらに、予測部411は、汚染空気が建物1に到達すると予測した場合には、予測される空気の移動方向および移動速度と、複数台の分散計測器M1~M16の計測結果とに基づいて、到達タイミングを予測する。 The storage unit 44 stores in advance position information (distance and direction from the building 1) of the observation points P1 to P16 where the dispersion measuring devices M1 to M16 are arranged, and the prediction unit 411 The moving direction and moving speed of air can be predicted based on the information acquired from the server 92. Therefore, the prediction unit 411 predicts whether or not the contaminated air reaches the building 1 based on the predicted moving direction and moving speed of the air and the measurement results of the plurality of dispersion measuring instruments M1 to M16. . Further, when the predicting unit 411 predicts that the contaminated air reaches the building 1, the predicting unit 411, based on the predicted moving direction and moving speed of the air and the measurement results of the plurality of dispersion measuring instruments M1 to M16, Predict arrival timing.
 予測部411は、このように観測地点P0の位置情報と風向および風速に関する情報とに基づいて予測を行う場合、汚染空気が内側の(建物1から第1の距離にある)分散計測器M1~M8に到達するタイミングについても予測可能である。つまり、予測部411は、外側の(建物1から第2の距離にある)分散計測器M9~M16が異常値を計測すると、汚染空気が建物1に到達するタイミング(到達タイミング)だけでなく、汚染空気が内側の分散計測器M1~M8に到達するタイミングも予測できる。 When the prediction unit 411 performs the prediction based on the position information of the observation point P0 and the information on the wind direction and the wind speed in this way, the dispersion measuring devices M1 to M1 in which the contaminated air is inside (at the first distance from the building 1) The timing to reach M8 can also be predicted. In other words, when the dispersion measuring instruments M9 to M16 on the outer side (at the second distance from the building 1) measure abnormal values, the prediction unit 411 not only has a timing (arrival timing) when the contaminated air reaches the building 1, The timing at which contaminated air reaches the inner dispersion measuring instruments M1 to M8 can also be predicted.
 さらにまた、本実施形態では、制御装置4は、記憶部44に記憶された複数台の分散計測器M1~M16の計測結果の履歴から汚染空気の拡散パターンを学習して予測部411での予測に用いるように構成されている。つまり、予測部411は、記憶部44に記憶された履歴から得られた汚染空気の拡散パターンを用いて、異常が起こるかどうかを予測するように構成されている。 Furthermore, in the present embodiment, the control device 4 learns the contaminated air diffusion pattern from the history of the measurement results of the plurality of dispersion measuring instruments M1 to M16 stored in the storage unit 44, and performs the prediction in the prediction unit 411. It is comprised so that it may be used for. That is, the prediction unit 411 is configured to predict whether or not an abnormality will occur using the polluted air diffusion pattern obtained from the history stored in the storage unit 44.
 具体的には、記憶部44は、複数台の分散計測器M1~M16の計測結果の履歴を、計測時における日付(あるいは季節)、現在時刻、各種の環境条件(温度、湿度、風向、風速)と対応付けて、一定期間(たとえば1ヵ月)分記憶している。汚染空気の拡散パターンは一意には決まらず、たとえば監視地域の地形や天候などによって大きく変わることがあるので、制御装置4は、過去の履歴から学習した汚染空気の拡散パターンを予測部411の予測に用いることにより、予測精度が向上する。 Specifically, the storage unit 44 records the history of the measurement results of a plurality of distributed measuring instruments M1 to M16, the date (or season) at the time of measurement, the current time, and various environmental conditions (temperature, humidity, wind direction, wind speed). ) For a certain period (for example, one month). The diffusion pattern of the contaminated air is not uniquely determined, and may vary greatly depending on, for example, the terrain or weather in the monitoring area. Therefore, the control device 4 predicts the diffusion pattern of the contaminated air learned from the past history by the prediction unit 411. By using this, the prediction accuracy is improved.
 また、本実施形態では、制御装置4は、予測部411で汚染空気の到達が予測されてから所定時間の経過後に、個別計測器3で建物1内の空気質より建物1外の空気質の方が良好との計測結果が得られた場合、換気設備2を再稼動させるように構成されている。つまり、制御部(換気制御部412)は、異常が起こると予測部411が予測してから所定時間が経過すると、通常動作を再開するように構成されている。すなわち、制御装置4は、予測部411で汚染空気の到達が予測されると、換気設備2を一旦停止させるが、所定時間(たとえば5分)が経過しても、汚染空気が建物1に到達しない場合には、換気制御部412にて換気設備2を再稼動させる。 Further, in the present embodiment, the control device 4 uses the individual measuring instrument 3 to determine the air quality outside the building 1 from the air quality inside the building 1 after a predetermined time has elapsed since the prediction unit 411 predicted the arrival of contaminated air. When the measurement result that the direction is better is obtained, the ventilation facility 2 is configured to restart. That is, the control unit (ventilation control unit 412) is configured to resume normal operation when a predetermined time has elapsed after the prediction unit 411 predicts that an abnormality will occur. That is, when the prediction unit 411 predicts the arrival of contaminated air, the control device 4 temporarily stops the ventilation facility 2, but the contaminated air reaches the building 1 even after a predetermined time (for example, 5 minutes) has elapsed. If not, the ventilation control unit 412 restarts the ventilation facility 2.
 本実施形態においては、制御装置4は、さらに到着予測部415としての機能を処理部41に有しているが、到着予測部415については後述する。 In the present embodiment, the control device 4 further has a function as the arrival prediction unit 415 in the processing unit 41. The arrival prediction unit 415 will be described later.
 次に、本実施形態の換気システム10の動作について図3を参照して説明する。ここでは、建物1内の空気質より建物1外の空気質の方が良好であり、制御装置4が、個別計測器3の計測結果に基づいて換気設備2を稼動させている場合を前提として説明する。また、制御装置4は、個別計測器3および分散計測器M1~M16の計測結果を定期的(たとえば1分毎)に監視(確認)していると仮定する。 Next, the operation of the ventilation system 10 of this embodiment will be described with reference to FIG. Here, it is assumed that the air quality outside the building 1 is better than the air quality inside the building 1 and the control device 4 operates the ventilation facility 2 based on the measurement result of the individual measuring device 3. explain. Further, it is assumed that the control device 4 monitors (confirms) the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16 periodically (for example, every minute).
 この場合において、外側の(建物1から第2の距離にある)分散計測器M9~M16のいずれかが異常値を計測すると(S1:Yes)、制御装置4は、まずサーバ92から風向および風速に関する情報を取得する(S2)。ここでは、建物1の北西に位置する分散計測器M16が異常値を計測し、そのときの風向が「北西」、風速が「10m/s」であったと仮定する。 In this case, when any of the dispersion measuring instruments M9 to M16 on the outer side (at the second distance from the building 1) measures an abnormal value (S1: Yes), the control device 4 first starts the wind direction and the wind speed from the server 92. The information regarding is acquired (S2). Here, it is assumed that the dispersion measuring device M16 located in the northwest of the building 1 measures an abnormal value, the wind direction at that time is “northwest”, and the wind speed is “10 m / s”.
 制御装置4は、分散計測器M1~M16の計測結果および処理S2で取得した情報に基づいて、汚染空気が建物1に到達するか否かを予測する(S3)。制御装置4は、汚染空気が建物1に到達すると予測した場合(S3:Yes)、その汚染空気の到達タイミングを予測する(S4)。処理S4において、予測部411は、汚染空気が建物1に到達するタイミングだけでなく、分散計測器M16と建物1との間(つまり建物1から第1の距離であって北西)に位置する分散計測器M8に汚染空気が到達するタイミングについても予測する。 The control device 4 predicts whether or not the contaminated air reaches the building 1 based on the measurement results of the dispersion measuring instruments M1 to M16 and the information acquired in the process S2 (S3). When it is predicted that the contaminated air will reach the building 1 (S3: Yes), the control device 4 predicts the arrival timing of the contaminated air (S4). In the process S4, the predicting unit 411 is not only the timing when the contaminated air reaches the building 1, but also the dispersion located between the dispersion measuring instrument M16 and the building 1 (that is, the first distance from the building 1 and northwest). The timing at which contaminated air reaches the measuring instrument M8 is also predicted.
 ここでは一例として、分散計測器M16から分散計測器M8までの距離は2km、風速が10m/sであるから、予測部411は、汚染空気が分散計測器M8に到達するタイミングを、分散計測器M16が異常値を計測してから200s後と予測する。同様に、分散計測器M16から建物1までの距離は4km、風速が10m/sであるから、予測部411は、汚染空気が建物1に到達するタイミングを、分散計測器M16が異常値を計測してから400s後と予測する。 Here, as an example, since the distance from the dispersion measuring instrument M16 to the dispersion measuring instrument M8 is 2 km and the wind speed is 10 m / s, the prediction unit 411 determines the timing at which the contaminated air reaches the dispersion measuring instrument M8. It is predicted that 200 seconds after M16 has measured the abnormal value. Similarly, since the distance from the dispersion measuring instrument M16 to the building 1 is 4 km and the wind speed is 10 m / s, the prediction unit 411 measures the timing when the contaminated air reaches the building 1 and the dispersion measuring instrument M16 measures the abnormal value. It is predicted that 400 seconds later.
 その後、制御装置4は、個別計測器3および分散計測器M1~M16の計測結果を監視する周期を短縮し(たとえば1分毎を10秒毎とし)、空気質の監視を強化する(S5)。このとき、制御装置4は、少なくとも個別計測器3と、汚染空気の到達が予測される分散計測器M8とを対象として監視を強化(監視周期を短縮)すればよく、全ての分散計測器M0について監視を強化する必要はない。また、制御装置4は、汚染空気の拡散(広がり)も考慮する場合、汚染空気の到達が予測される分散計測器M8の周辺の分散計測器M1,M7を、監視を強化する対象に含めてもよい。 Thereafter, the control device 4 shortens the period for monitoring the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16 (for example, every minute is set to every 10 seconds), and strengthens air quality monitoring (S5). . At this time, the control device 4 has only to strengthen the monitoring (shortening the monitoring cycle) for at least the individual measuring device 3 and the dispersion measuring device M8 where the arrival of contaminated air is predicted, and all the dispersion measuring devices M0. There is no need to strengthen monitoring. In addition, when considering the diffusion (spreading) of the contaminated air, the control device 4 includes the dispersion measuring devices M1 and M7 around the dispersion measuring device M8 where the arrival of the contaminated air is predicted as targets for strengthening the monitoring. Also good.
 その後、制御装置4は、内側の(建物1から第1の距離にある)分散計測器M8が異常値を計測すると(S6:Yes)、汚染空気の到達タイミングに合わせて、汚染空気が建物1に到達する前に換気設備2を停止させ(S7)、空調設備を稼動させる(S8)。このとき、制御装置4は、予測部411で予測された汚染空気が分散計測器M8に到達するタイミングと、実際に分散計測器M8が異常値を計測したタイミングとの差に基づいて、予測部411で予測される汚染空気が建物1に到達するタイミングを補正する。 Thereafter, when the dispersion measuring instrument M8 on the inner side (at the first distance from the building 1) measures an abnormal value (S6: Yes), the control device 4 detects that the contaminated air is in the building 1 in accordance with the arrival timing of the contaminated air. The ventilation equipment 2 is stopped before reaching (S7), and the air conditioning equipment is operated (S8). At this time, the control device 4 determines the prediction unit based on the difference between the timing when the contaminated air predicted by the prediction unit 411 reaches the dispersion measuring device M8 and the timing when the dispersion measuring device M8 actually measures the abnormal value. The timing at which the contaminated air predicted at 411 reaches the building 1 is corrected.
 なお、制御装置4は、外側の分散計測器M9~M16で異常値が計測されない場合(S1:No)、あるいは予測部411で汚染空気が建物1に到達しないと予測された場合(S3:No)、S1に戻って処理を実行する。また、制御装置4は、内側の分散計測器M1~M8で異常値が計測されない場合(S6:No)、S6に戻って処理を実行する。 Note that the control device 4 does not measure abnormal values with the outer dispersion measuring instruments M9 to M16 (S1: No), or predicts that the contaminated air does not reach the building 1 by the prediction unit 411 (S3: No). ), Return to S1 and execute the process. Further, when the abnormal value is not measured by the inner dispersion measuring instruments M1 to M8 (S6: No), the control device 4 returns to S6 and executes the process.
 また、他の動作例として、制御装置4は、外側の分散計測器M9~M16から建物1までの距離や、風向、風速等によっては、外側の分散計測器M9~M16のいずれかが異常値を計測した場合、すぐに換気設備2を停止させてもよい。この場合、制御装置4は、汚染空気が建物1に到達するか否かを予測する前に、まず換気設備2を停止させることになる。その際、制御装置4は、個別計測器3および分散計測器M1~M16の計測結果を監視する周期を短縮し、空気質の監視を強化する。したがって、制御装置4は、外側の分散計測器M9~M16のいずれかが異常値を計測してから汚染空気が建物1に到達するまでにあまり時間が掛からない場合でも、汚染空気が建物1に到達する前に換気設備2を停止させることができる。 As another example of operation, the control device 4 determines that one of the outer dispersion measuring instruments M9 to M16 has an abnormal value depending on the distance from the outer dispersion measuring instruments M9 to M16 to the building 1, the wind direction, the wind speed, or the like. When measuring, the ventilation facility 2 may be stopped immediately. In this case, the control device 4 first stops the ventilation facility 2 before predicting whether or not contaminated air reaches the building 1. At that time, the control device 4 shortens the period for monitoring the measurement results of the individual measuring instrument 3 and the dispersion measuring instruments M1 to M16, and strengthens the air quality monitoring. Therefore, the control device 4 does not take much time for the contaminated air to reach the building 1 after any of the outer dispersion measuring instruments M9 to M16 has measured an abnormal value. The ventilation equipment 2 can be stopped before reaching.
 その後、所定時間(判定時間)以内に、内側の分散計測器M1~M8、あるいは個別計測器3が建物1外の空気質の異常値を計測した場合、制御装置4は、換気設備2を停止させたままとして空調設備を稼動させる。 After that, if the inner dispersion measuring instruments M1 to M8 or the individual measuring instrument 3 measure an abnormal air quality value outside the building 1 within a predetermined time (judgment time), the control device 4 stops the ventilation equipment 2 The air conditioning equipment is operated as it is.
 一方、内側の分散計測器M1~M8と、個別計測器3とのいずれも建物1外の空気質の異常値を計測しないまま所定時間(判定時間)が経過した場合、制御装置4は、換気設備2を再稼動させる。なお、制御装置4は、換気設備2を再稼動させる場合でも、最初に異常値を計測した分散計測器M9~M16の計測結果が正常値に復帰するまでは、空気質の監視を強化(監視周期を短縮)した状態を継続することが望ましい。 On the other hand, when the predetermined time (determination time) has passed without any of the inner dispersion measuring instruments M1 to M8 and the individual measuring instrument 3 measuring abnormal air quality values outside the building 1, the control device 4 The equipment 2 is restarted. Even when the ventilation equipment 2 is restarted, the control device 4 strengthens air quality monitoring until the measurement results of the dispersion measuring instruments M9 to M16 that first measured the abnormal values return to normal values (monitoring). It is desirable to continue the state of shortening the cycle.
 さらに他の動作例として、制御装置4は、外側の分散計測器M9~M16のいずれかが異常値を計測した後、内側の分散計測器M1~M8が異常値を計測する前に、個別計測器3が建物1外の空気質の異常値を計測した場合、すぐに換気設備2を停止させてもよい。このとき、制御装置4は、換気設備2を停止させつつ空調設備を稼動させることで、空調設備による空気質の改善に切り替える。したがって、制御装置4は、内側の分散計測器M1~M8で異常値が計測されなかった場合にも、汚染空気が建物1に到達すればすぐに換気設備2を停止させることができる。 As another example of operation, the control device 4 performs individual measurement after any of the outer dispersion measuring instruments M9 to M16 measures an abnormal value and before the inner dispersion measuring instruments M1 to M8 measure the abnormal value. When the vessel 3 measures an abnormal air quality value outside the building 1, the ventilation facility 2 may be stopped immediately. At this time, the control device 4 switches to improvement of air quality by the air conditioning equipment by operating the air conditioning equipment while stopping the ventilation equipment 2. Therefore, the control device 4 can stop the ventilation facility 2 as soon as the contaminated air reaches the building 1 even when no abnormal value is measured by the inner dispersion measuring instruments M1 to M8.
 あるいは、制御装置4は、内側の分散計測器M1~M8が異常値を計測すると、予測部411で予測される到達タイミングに関わらず、すぐに換気設備2を停止させ、空調設備を稼動させるように構成されていてもよい。この場合、制御装置4は、汚染空気の拡散が予測困難であっても、内側の分散計測器M1~M8に汚染空気が到達した時点で換気設備2を停止させるので、汚染空気が建物1に到達する前に確実に換気設備2を停止させることができる。 Alternatively, when the dispersion measuring instruments M1 to M8 on the inner side measure abnormal values, the control device 4 immediately stops the ventilation equipment 2 and activates the air conditioning equipment regardless of the arrival timing predicted by the prediction unit 411. It may be configured. In this case, even if it is difficult to predict the diffusion of the contaminated air, the control device 4 stops the ventilation facility 2 when the contaminated air reaches the inner dispersion measuring instruments M1 to M8. The ventilation equipment 2 can be stopped reliably before reaching.
 以上説明した構成の換気システム10は、建物1の換気を行う換気設備2と、建物1の内および外の空気質を計測する個別計測器3と、個別計測器3の計測結果に基づいて換気設備2を制御し、建物1内の空気質より当該建物1外の空気質の方が良好である場合に換気設備2を稼動させる制御装置4と、建物1の周囲に設定された監視地域100内の複数の観測地点P0に分散して配置され各観測地点P0の空気質を計測する複数台の分散計測器M0とを備える。制御装置4は、複数台の分散計測器M0の計測結果に基づいて、空気質が異常値を示す汚染空気が建物1に到達するか否かを予測する予測部411を有している。さらに制御装置4は、予測部411で汚染空気の到達が予測された場合、個別計測器3の計測結果にかかわらず換気設備2を停止させるように構成されている。 The ventilation system 10 having the above-described configuration is based on the ventilation equipment 2 that ventilates the building 1, the individual measuring device 3 that measures the air quality inside and outside the building 1, and the ventilation based on the measurement results of the individual measuring device 3. A control device 4 that controls the facility 2 and operates the ventilation facility 2 when the air quality outside the building 1 is better than the air quality inside the building 1, and a monitoring area 100 set around the building 1 And a plurality of dispersion measuring devices M0 that are arranged at a plurality of observation points P0 and that measure the air quality at each observation point P0. The control device 4 includes a prediction unit 411 that predicts whether or not contaminated air whose air quality has an abnormal value reaches the building 1 based on the measurement results of the plurality of dispersion measuring instruments M0. Furthermore, the control device 4 is configured to stop the ventilation facility 2 regardless of the measurement result of the individual measuring device 3 when the prediction unit 411 predicts the arrival of contaminated air.
 換言すれば、制御装置4は、建物1の内および外の空気質を計測する個別計測器3の計測結果に基づいて、当該建物1の換気を行う換気設備2を制御し、建物1内の空気質より建物1外の空気質の方が良好である場合に換気設備2を稼動させる制御装置であって、建物1の周囲に設定された監視地域100内の複数の観測地点P0に分散して配置され各観測地点P0の空気質を計測する複数台の分散計測器M0の計測結果に基づいて、空気質が異常値を示す汚染空気が建物1に到達するか否かを予測する予測部411を有し、予測部411で汚染空気の到達が予測された場合、個別計測器3の計測結果にかかわらず換気設備2を停止させるように構成されている。 In other words, the control device 4 controls the ventilation facility 2 that ventilates the building 1 based on the measurement result of the individual measuring device 3 that measures the air quality inside and outside the building 1, A control device that operates the ventilation facility 2 when the air quality outside the building 1 is better than the air quality, and is distributed to a plurality of observation points P0 in the monitoring area 100 set around the building 1 Prediction unit that predicts whether or not contaminated air whose air quality shows an abnormal value arrives at building 1 based on the measurement results of a plurality of distributed measuring devices M0 that are arranged and measure the air quality at each observation point P0 411, when the prediction unit 411 predicts the arrival of contaminated air, the ventilation facility 2 is stopped regardless of the measurement result of the individual measuring instrument 3.
 したがって、制御装置4は、建物1周辺に汚染空気が存在するような状況においては、そのことを事前に予測して換気設備2を停止させ、建物1外から建物1内に汚染空気が取り込まれてしまうことを回避できる。要するに、換気システム10は、建物1内の空気質より建物1外の空気質の方が良好である場合には、建物1の換気を行うことにより建物1内の空気質を改善し、換気による建物1内の空気質の改善効果が期待できない場合には換気設備2を停止させる。その結果、換気システム10は、換気設備2にてエネルギー(電力)を無駄に消費することなく、建物1の換気を行うことにより建物1内の空気質を改善できる。 Therefore, in a situation where contaminated air exists around the building 1, the control device 4 predicts that in advance and stops the ventilation facility 2, and the contaminated air is taken into the building 1 from outside the building 1. Can be avoided. In short, when the air quality outside the building 1 is better than the air quality inside the building 1, the ventilation system 10 improves the air quality inside the building 1 by ventilating the building 1, and the ventilation system 10 When the air quality improvement effect in the building 1 cannot be expected, the ventilation facility 2 is stopped. As a result, the ventilation system 10 can improve the air quality in the building 1 by ventilating the building 1 without wasting energy (electric power) in the ventilation facility 2.
 すなわち、本実施形態では、制御装置4が、複数台の分散計測器M0の計測結果に基づいて、空気質が異常値を示す汚染空気が建物に到達するか否かを予測する予測部411を有し、予測部411で汚染空気の到達が予測された場合、個別計測器3の計測結果にかかわらず換気設備2を停止させる。したがって、エネルギーを無駄に消費することなく、建物1の換気を行うことにより建物1内の空気質を改善できるという利点がある。 That is, in the present embodiment, the control device 4 includes the prediction unit 411 that predicts whether or not the contaminated air whose air quality has an abnormal value reaches the building based on the measurement results of the plurality of dispersion measuring devices M0. If the prediction unit 411 predicts the arrival of contaminated air, the ventilation facility 2 is stopped regardless of the measurement result of the individual measuring device 3. Therefore, there is an advantage that the air quality in the building 1 can be improved by ventilating the building 1 without wasting energy.
 また、本実施形態では、換気システム10は、換気設備2とは別に建物1に設けられ建物1内の空気質を改善する空調設備(空気清浄機61およびエアコン62)をさらに備えている。制御装置4は、空調設備を制御する機能(空調制御部413)をさらに有し、少なくとも換気設備2を停止させる期間には空調設備を稼動させるように構成されている。そのため、換気システム10は、換気設備2を停止期間には、空調設備により建物1内の空気質を改善することができ、換気以外の方法で建物1内の快適性を維持できる。 Moreover, in this embodiment, the ventilation system 10 is further provided with the air conditioning equipment (the air cleaner 61 and the air conditioner 62) which is provided in the building 1 separately from the ventilation equipment 2 and improves the air quality in the building 1. The control device 4 further has a function of controlling the air conditioning equipment (air conditioning control unit 413), and is configured to operate the air conditioning equipment at least during a period in which the ventilation equipment 2 is stopped. Therefore, the ventilation system 10 can improve the air quality in the building 1 by the air conditioning equipment during the period when the ventilation equipment 2 is stopped, and can maintain the comfort in the building 1 by a method other than ventilation.
 さらにまた、本実施形態では、予測部411は、汚染空気の到達が予測される場合、汚染空気が建物1に到達するタイミングを予測する機能をさらに有し、制御装置4は、予測部411で予測されたタイミングに合わせて換気設備2を停止させるように構成される。すなわち、制御装置4は、予測部411で建物1に汚染空気が到達すると予測された時点ですぐに換気設備2を停止させるのではなく、到達タイミングに合わせて換気設備2を停止させるので、換気設備2により建物1内の空気質を改善する期間を長く確保できる。 Furthermore, in this embodiment, when the arrival of the contaminated air is predicted, the prediction unit 411 further has a function of predicting the timing at which the contaminated air reaches the building 1, and the control device 4 is the prediction unit 411. The ventilation facility 2 is configured to stop in accordance with the predicted timing. That is, the control device 4 does not stop the ventilation facility 2 immediately when the prediction unit 411 predicts that the contaminated air reaches the building 1, but stops the ventilation facility 2 in accordance with the arrival timing. The period for improving the air quality in the building 1 by the facility 2 can be secured for a long time.
 また、本実施形態においては、制御装置4は、観測地点P0の風向および風速に関する情報を取得する取得部414をさらに有し、取得部414にて取得した情報を用いて予測部411で予測を行うように構成されている。したがって、制御装置4は、予測部411での予測の精度が向上するという利点がある。 Moreover, in this embodiment, the control apparatus 4 further has the acquisition part 414 which acquires the information regarding the wind direction and wind speed of the observation point P0, and uses the information acquired in the acquisition part 414 for prediction by the prediction part 411. Configured to do. Therefore, the control device 4 has an advantage that the accuracy of prediction in the prediction unit 411 is improved.
 さらに、本実施形態では、制御装置4は、複数台の分散計測器M1~M16の計測結果の履歴を記憶する記憶部44をさらに有し、記憶部44に記憶された履歴から汚染空気の拡散パターンを学習して予測部411での予測に用いるように構成されている。したがって、制御装置4は、予測部411での予測の精度が向上するという利点がある。 Further, in the present embodiment, the control device 4 further includes a storage unit 44 that stores the history of measurement results of the plurality of dispersion measuring instruments M1 to M16, and the diffusion of contaminated air from the history stored in the storage unit 44. The pattern is learned and used for prediction by the prediction unit 411. Therefore, the control device 4 has an advantage that the accuracy of prediction in the prediction unit 411 is improved.
 さらにまた、本実施形態では、制御装置4は、予測部411で汚染空気の到達が予測されてから所定時間の経過後に、個別計測器3で建物1内の空気質より建物1外の空気質の方が良好との計測結果が得られた場合、換気設備2を再稼動させるように構成されている。そのため、制御装置4は、汚染空気の到達が予測されたものの実際には汚染空気が建物1に到達しない場合には、換気設備2を再稼動させるので、換気設備2により建物1内の空気質を改善する期間を長く確保できる。 Furthermore, in the present embodiment, the control device 4 uses the individual measuring instrument 3 to improve the air quality outside the building 1 from the air quality inside the building 1 after a predetermined time has elapsed since the prediction unit 411 predicted the arrival of contaminated air. When a measurement result that is better is obtained, the ventilation facility 2 is configured to be restarted. Therefore, the control device 4 restarts the ventilation facility 2 when the contaminated air does not reach the building 1 even though the arrival of the contaminated air is predicted. Therefore, the air quality in the building 1 is improved by the ventilation facility 2. A long period of improvement can be secured.
 なお、本実施形態では、分散計測器M1~M16の計測結果は、管理装置91で一元管理されているが、この構成に限らず、制御装置4で管理されていてもよい。また、制御装置4は、その機能の一部が他装置に設けられていてもよく、たとえば予測部411の機能が管理装置91に設けられていてもよい。この場合、制御装置は、複数の装置(たとえば制御装置4と管理装置91)からなり、汚染空気が建物1に到達するか否かについては管理装置91で予測し、その予測結果に基づいて制御装置4で換気設備2を制御することになる。 In the present embodiment, the measurement results of the dispersion measuring instruments M1 to M16 are centrally managed by the management device 91, but not limited to this configuration, the measurement results may be managed by the control device 4. Moreover, a part of the function of the control device 4 may be provided in another device. For example, the function of the prediction unit 411 may be provided in the management device 91. In this case, the control device includes a plurality of devices (for example, the control device 4 and the management device 91), and the management device 91 predicts whether or not the contaminated air reaches the building 1, and controls based on the prediction result. The ventilation facility 2 is controlled by the device 4.
 ところで、本実施形態の換気システム10では、制御装置4は、人が建物1へ到着するタイミングを予測する到着予測部415をさらに有し、到着予測部415で予測されるタイミングに合わせて建物1内の空気質を改善するように構成されている。 By the way, in the ventilation system 10 of this embodiment, the control device 4 further includes an arrival prediction unit 415 that predicts the timing at which a person arrives at the building 1, and the building 1 matches the timing predicted by the arrival prediction unit 415. It is configured to improve the air quality inside.
 具体的には、到着予測部415は、GPS(Global Positioning System)機能を有するユーザ端末71の現在位置や位置変化などの情報を利用して、外出中のユーザ(家人)が建物1に到着(帰宅)する時刻を人が建物1に到着するタイミングとして予測する。つまり、到着予測部415は、人が建物1へ到着するタイミングを予測する。 Specifically, the arrival predicting unit 415 uses information such as a current position and a change in position of the user terminal 71 having a GPS (Global Positioning System) function, and a user (household) who has gone out arrives at the building 1 ( The time of returning home is predicted as the timing at which a person arrives at the building 1. That is, the arrival prediction unit 415 predicts the timing at which a person arrives at the building 1.
 制御装置4は、ユーザ端末71の現在位置等の情報をインターネット8経由で随時取得可能である。つまり、ユーザは外出時にユーザ端末71を携帯しているだけで、制御装置4において、人が建物1に到着するタイミング(以下、「帰宅タイミング」という)を予測できる。なお、到着予測部415は、時刻ではなく、人が建物1に到着するまでに掛かる時間によって帰宅タイミングを表してもよい。 The control device 4 can acquire information such as the current location of the user terminal 71 via the Internet 8 at any time. That is, the user can predict the timing at which a person arrives at the building 1 (hereinafter, referred to as “home timing”) just by carrying the user terminal 71 when going out. Note that the arrival prediction unit 415 may represent the return timing based on the time it takes for a person to arrive at the building 1 instead of the time.
 換気設備2や空調設備は、稼動して建物1内の空気質をすぐに改善できるのではなく、空気質を改善するのにある程度の時間を要する。そこで、制御装置4は、到着予測部415で予測された帰宅タイミングに合わせて建物1内の空気質が改善されるように、予測された帰宅タイミングに基づいて換気設備2や空調設備(空気清浄機61およびエアコン62)を制御する。すなわち、制御部(換気制御部412、空調制御部413)は、到着予測部415で予測されたタイミング(帰宅タイミング)に合わせて建物1内の空気質を改善する改善動作を実行する。 Ventilation equipment 2 and air-conditioning equipment are not able to operate and immediately improve the air quality in building 1, but it takes some time to improve the air quality. Therefore, the control device 4 uses the ventilation equipment 2 and the air conditioning equipment (air purifier) based on the predicted return timing so that the air quality in the building 1 is improved in accordance with the return timing predicted by the arrival prediction unit 415. The machine 61 and the air conditioner 62) are controlled. That is, the control units (the ventilation control unit 412 and the air conditioning control unit 413) execute an improvement operation for improving the air quality in the building 1 in accordance with the timing (home timing) predicted by the arrival prediction unit 415.
 制御装置4は、たとえばユーザが外出して建物1が無人になると換気設備2および空調設備を停止させ、且つ到着予測部415で予測された帰宅タイミングには建物1内の空気質が正常値となるように、帰宅タイミングに合わせて換気設備2や空調設備を制御する。これにより、換気システム10は、建物1が無人の期間に換気設備2および空調設備による無駄な電力消費を抑えつつ、ユーザが建物1に到着(帰宅)するタイミングに合わせて建物1内の空気質を改善できる。 For example, when the user goes out and the building 1 becomes unattended, the control device 4 stops the ventilation facility 2 and the air conditioning facility, and the air quality in the building 1 becomes a normal value at the timing of returning home predicted by the arrival prediction unit 415. Thus, the ventilation equipment 2 and the air conditioning equipment are controlled in accordance with the timing of returning home. As a result, the ventilation system 10 controls the air quality in the building 1 in accordance with the timing when the user arrives at the building 1 (returns home) while suppressing unnecessary power consumption by the ventilation facility 2 and the air conditioning facility when the building 1 is unattended. Can be improved.
 ここでは、制御装置4は、到着予測部415で予測される帰宅タイミングと建物1内の空気質の改善に要する時間とから、建物1内の空気質の改善の開始タイミングを逆算するように構成されている。 Here, the control device 4 is configured to back-calculate the start timing of air quality improvement in the building 1 from the return timing predicted by the arrival prediction unit 415 and the time required to improve the air quality in the building 1. Has been.
 つまり、制御部(換気制御部412、空調制御部413)は、到着予測部415で予測されたタイミング(帰宅タイミング)と建物1内の空気質の改善に要する時間とから、建物1内の空気質の改善の開始タイミングを決定し、開始タイミングから改善動作を開始するように構成されている。 That is, the control unit (ventilation control unit 412, air conditioning control unit 413) determines the air in the building 1 from the timing predicted by the arrival prediction unit 415 (home return timing) and the time required to improve the air quality in the building 1. The start timing of quality improvement is determined, and the improvement operation is started from the start timing.
 そのため、換気システム10は、ユーザが建物1に到着(帰宅)する頃には建物1内の空気質の改善を完了することができる。 Therefore, the ventilation system 10 can complete the improvement of the air quality in the building 1 when the user arrives at the building 1 (returns home).
 また、制御装置4は、人が移動に要する時間や建物1内の空気質の改善に要する時間を学習し、到着予測部415での帰宅タイミングの予測や換気設備2および空調設備の制御に用いるように構成されている。 In addition, the control device 4 learns the time required for the person to move and the time required for improving the air quality in the building 1 and uses it for the prediction of the return timing at the arrival prediction unit 415 and the control of the ventilation equipment 2 and the air conditioning equipment. It is configured as follows.
 たとえば、制御装置4は、所定の場所(たとえば駅)から建物1までの移動に要する時間を都度計測して、その平均値を求めることで所定の場所から建物1までの移動に要する時間を学習し、帰宅タイミングを予測する。 For example, the control device 4 measures the time required to move from a predetermined location (for example, a station) to the building 1 each time, and learns the time required to move from the predetermined location to the building 1 by obtaining the average value. And predict the return timing.
 また、制御装置4は、GPSを利用してユーザの移動経路を識別して経路ごとに建物1までの移動に要する時間を学習し、ユーザが通っている経路に基づいて帰宅タイミングを予測する。 In addition, the control device 4 uses GPS to identify the user's travel route, learns the time required to travel to the building 1 for each route, and predicts the return timing based on the route that the user is taking.
 ユーザ端末71が歩数計の機能を有する場合には、制御装置4は、ユーザが所定の場所(たとえば駅)から建物1まで移動するのに要する総歩数を学習し、現在の歩数から帰宅タイミングを予測する。 When the user terminal 71 has a pedometer function, the control device 4 learns the total number of steps required for the user to move from a predetermined location (for example, a station) to the building 1 and determines the return timing from the current number of steps. Predict.
 また、制御装置4は、建物1外の温度や湿度ごとに、所定時間内に調節可能な温度や湿度の最大変化量を学習し、建物1内を所定の温度、湿度に調節するのに要する時間を判断する。 Further, the control device 4 learns the maximum amount of change in temperature and humidity that can be adjusted within a predetermined time for each temperature and humidity outside the building 1, and is required to adjust the inside of the building 1 to the predetermined temperature and humidity. Judge the time.
 なお、本実施形態では、図1に示す換気システム10を例に説明したが、この換気システム10は本発明の一態様に過ぎず、適宜の変更が可能である。すなわち、換気システム10は、少なくとも制御装置4が、複数台の分散計測器M0の計測結果に基づいて汚染空気が建物1に到達するか否かを予測する予測部411を有し、汚染空気の到達が予測された場合換気設備2を停止させる構成であればよい。 In the present embodiment, the ventilation system 10 shown in FIG. 1 has been described as an example. However, the ventilation system 10 is only one aspect of the present invention, and appropriate modifications are possible. That is, the ventilation system 10 includes a prediction unit 411 that predicts whether or not the contaminated air reaches the building 1 based on the measurement results of the plurality of distributed measuring devices M0. What is necessary is just the structure which stops the ventilation equipment 2 when arrival is estimated.
 たとえば、空調設備は適宜省略可能であり、また、制御装置4においては空調制御部413、取得部414、到着予測部415等はそれぞれ適宜省略可能である。 For example, the air conditioning equipment can be omitted as appropriate, and in the control device 4, the air conditioning control unit 413, the acquisition unit 414, the arrival prediction unit 415, and the like can be omitted as appropriate.
 さらに、制御装置4は、予測部411で汚染空気が建物1に到達するタイミングを予測する機能や、記憶部44に記憶された履歴から汚染空気の拡散パターンを学習する機能についても適宜省略可能である。 Further, the control device 4 can appropriately omit the function of predicting the timing when the contaminated air reaches the building 1 by the prediction unit 411 and the function of learning the diffusion pattern of the contaminated air from the history stored in the storage unit 44. is there.
 また、制御装置4は、予測部411で汚染空気の到達が予測されてから所定時間の経過後に、個別計測器3で建物1内の空気質より建物1外の空気質の方が良好との計測結果が得られた場合に換気設備2を再稼動させる機能についても適宜省略可能である。 In addition, the control device 4 indicates that the air quality outside the building 1 is better than the air quality inside the building 1 with the individual measuring device 3 after a predetermined time has passed since the prediction unit 411 predicted the arrival of contaminated air. The function of restarting the ventilation facility 2 when the measurement result is obtained can be omitted as appropriate.
 (実施形態2)
 本実施形態の換気システムは、高層マンション(集合住宅)のように複数の階層を有する建物に適用される点で実施形態1の換気システムとは相違する。以下、実施形態1と同様の構成については共通の符号を付して適宜説明を省略する。
(Embodiment 2)
The ventilation system according to the present embodiment is different from the ventilation system according to the first embodiment in that the ventilation system is applied to a building having a plurality of floors such as a high-rise apartment (an apartment house). Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof will be omitted as appropriate.
 本実施形態では、図4に示すように、建物1(11)は複数の階層110を有している。図4では、説明を簡略化するために、建物11は、3つの階層110(低階層111,中階層112,高階層13)を有している。建物11の階層110の数は特に限定されない。また、図4では、本実施形態の換気システムのうち制御装置4と換気設備2だけを図示している。 In the present embodiment, as shown in FIG. 4, the building 1 (11) has a plurality of levels 110. In FIG. 4, in order to simplify the description, the building 11 has three levels 110 (a low level 111, a middle level 112, and a high level 13). The number of levels 110 of the building 11 is not particularly limited. Moreover, in FIG. 4, only the control apparatus 4 and the ventilation installation 2 are illustrated among the ventilation systems of this embodiment.
 制御装置4は、階層110ごとに換気設備2を制御し、予測部411で汚染空気の到達が予測された場合、汚染空気の到達が早い階層110から順に換気設備2を停止させるように構成されている。 The control device 4 is configured to control the ventilation equipment 2 for each level 110, and when the prediction unit 411 predicts the arrival of contaminated air, it stops the ventilation equipment 2 in order from the level 110 where the arrival of contaminated air is early. ing.
 つまり、本実施形態の換気システムは、建物11の複数の階層110(111,112,113)のそれぞれの換気を行う複数の換気設備2(21,22,23)を備える。制御部(換気制御部412、空調制御部413)は、複数の換気設備2のそれぞれについて通常動作を実行するように構成されている。制御部(換気制御部412、空調制御部413)は、異常が起こると予測部411が予測すると、複数の換気設備2の通常動作を終了して、複数の換気設備2を汚染空気の到達が早い階層にある換気設備2から順に停止させるように構成されている。 That is, the ventilation system of the present embodiment includes a plurality of ventilation facilities 2 (21, 22, 23) that perform ventilation of each of the plurality of floors 110 (111, 112, 113) of the building 11. The control units (the ventilation control unit 412 and the air conditioning control unit 413) are configured to perform normal operations for each of the plurality of ventilation facilities 2. When the predicting unit 411 predicts that an abnormality will occur, the control unit (ventilation control unit 412 or air conditioning control unit 413) terminates the normal operation of the plurality of ventilation facilities 2 and the contaminated air reaches the plurality of ventilation facilities 2. It is comprised so that it may stop in order from the ventilation equipment 2 in an early hierarchy.
 すなわち、風向、風速は地上高によって大きく異なるため、高層マンションなどの建物1(11)においては、たとえば風向は同じでも地上高が大きい上層階ほど風速が速く、汚染空気の到達タイミングが上層階ほど早くなる場合がある。このような場合、制御装置4は、汚染空気の到達が早い階層、つまり高層階113から順(たとえば、高階層113、中階層112、低階層111の順)に換気設備2を停止させる。 That is, since the wind direction and the wind speed vary greatly depending on the ground height, in the building 1 (11) such as a high-rise apartment, for example, the upper floor with the same ground direction but the higher ground floor has a higher wind speed, and the arrival timing of the polluted air is higher in the upper floor. May be faster. In such a case, the control device 4 stops the ventilation facility 2 in order from the level where the polluted air arrives earlier, that is, the higher level 113 (for example, the higher level 113, the middle level 112, and the lower level 111).
 また、地形や近隣の建物との関係によっては、高層マンションなどの建物1(11)において、汚染空気の到達タイミングが低層階111や中層階112ほど早くなる場合もある。このような場合、制御装置4は、汚染空気の到達が早い階層、つまり低層階111や中層階112から順(たとえば、低階層111、中階層112、高階層113の順、あるいは、中階層112、低階層111、高階層113の順)に換気設備2を停止させる。 Also, depending on the topography and the relationship with neighboring buildings, in the building 1 (11) such as a high-rise apartment, the arrival timing of contaminated air may be as early as the lower floor 111 or the middle floor 112. In such a case, the control device 4 starts from the level where the contaminated air arrives earlier, that is, the lower floor 111 and the middle floor 112 (for example, the order of the lower hierarchy 111, the middle hierarchy 112, the higher hierarchy 113, or the middle hierarchy 112 The ventilation facility 2 is stopped in the order of the lower floor 111 and the higher floor 113).
 したがって、制御装置4は、汚染空気の到達が早い階層については汚染空気が到達する前に確実に換気設備2を停止させることができ、汚染空気の到達が遅い階層については換気設備2により建物1内の空気質を改善する期間を長く確保できる。 Therefore, the control device 4 can reliably stop the ventilation facility 2 before the contaminated air reaches the level where the contaminated air arrives early, and the building 1 uses the ventilation facility 2 for the level where the contaminated air arrives late. A long period of improving the air quality inside can be secured.
 ここで、制御装置4は、階層110ごとの汚染空気が到達する順番を、統計的に求めてもよいし、現在の風向、風速等から求めてもよい。たとえば、個別計測器3が階層110ごとに設けられている場合には、制御装置4は、これら複数台の個別計測器3の計測結果の履歴から汚染空気の到達順を統計的に求めることができる。また、建物1の周囲の風向、風速等が複数の地上高について計測されている場合には、制御装置4は、これらの現在の計測結果から汚染空気の到達順を求めることが可能である。 Here, the control device 4 may statistically determine the order in which the contaminated air reaches each level 110, or may determine the current wind direction, wind speed, and the like. For example, when the individual measuring device 3 is provided for each level 110, the control device 4 can statistically determine the arrival order of the contaminated air from the history of the measurement results of the plurality of individual measuring devices 3. it can. Moreover, when the wind direction, wind speed, etc. around the building 1 are measured for a plurality of ground heights, the control device 4 can determine the arrival order of the contaminated air from these current measurement results.
 なお、集合住宅のような建物1においては、制御装置4は建物1全体で1台設けられていてもよいし、階層ごとに1台ずつ設けられていてもよいし、各住戸ごとに1台ずつ設けられていてもよい。 In the building 1 such as an apartment house, one control device 4 may be provided for the entire building 1 or may be provided for each level, or one for each dwelling unit. It may be provided one by one.
 その他の構成および機能は実施形態1と同様である。 Other configurations and functions are the same as those in the first embodiment.
 以上述べたように、本発明に係る第1の形態の換気システムは、換気設備2と、個別計測器3と、複数の分散計測器M0と、制御装置4と、を備える。換気設備2は、建物1の換気を行うように構成されている。個別計測器3は、建物1内の空気質および建物1外の空気質を計測するように構成されている。複数の分散計測器M0は、建物1を含む監視地域100内の複数の観測地点P0の空気質をそれぞれ計測するように構成されている。制御装置4は、建物1内の空気質より建物1外の空気質が良好であれば換気設備2を稼動させる通常動作を実行する制御部(換気制御部412、空調制御部413)を有する。制御装置4は、さらに、複数の分散計測器M0でそれぞれ計測された空気質に基づいて建物1外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを予測する予測部411を有する。制御部は、異常が起こると予測部411が予測すると、通常動作を終了して換気設備2を停止させるように構成されている。 As described above, the ventilation system according to the first embodiment of the present invention includes the ventilation equipment 2, the individual measuring instrument 3, the plurality of distributed measuring instruments M0, and the control device 4. The ventilation facility 2 is configured to ventilate the building 1. The individual measuring instrument 3 is configured to measure the air quality inside the building 1 and the air quality outside the building 1. The plurality of distributed measuring instruments M0 are configured to measure air quality at a plurality of observation points P0 in the monitoring area 100 including the building 1, respectively. The control device 4 includes a control unit (a ventilation control unit 412 and an air conditioning control unit 413) that performs a normal operation of operating the ventilation facility 2 if the air quality outside the building 1 is better than the air quality inside the building 1. The control device 4 further predicts whether or not an abnormality in which the air quality outside the building 1 shows an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring devices M0. Have The control unit is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur.
 本発明に係る第2の形態の換気システムでは、第1の形態において、換気システムは、さらに、建物1内の空気質を改善する空調設備(空気清浄機61、エアコン62)を備える。制御部は、さらに、空調設備を制御するように構成される。制御部は、換気設備2を停止させている期間に空調設備を稼動させるように構成されている。 In the ventilation system of the second form according to the present invention, in the first form, the ventilation system further includes air conditioning equipment (air cleaner 61, air conditioner 62) for improving the air quality in the building 1. The control unit is further configured to control the air conditioning equipment. The control unit is configured to operate the air conditioning equipment during a period in which the ventilation equipment 2 is stopped.
 本発明に係る第3の形態の換気システムでは、第1または第2の形態において、予測部411は、異常が起こると予測すると、汚染空気が建物1に到達するタイミングを予測するように構成されている。制御部は、予測部411で予測されたタイミングに合わせて換気設備2を停止させるように構成されている。 In the ventilation system of the third form according to the present invention, in the first or second form, the prediction unit 411 is configured to predict the timing at which contaminated air reaches the building 1 when it is predicted that an abnormality will occur. ing. The control unit is configured to stop the ventilation facility 2 in accordance with the timing predicted by the prediction unit 411.
 本発明に係る第4の形態の換気システムでは、第1~第3の形態のいずれか一つにおいて、制御装置4は、さらに、複数の観測地点P0それぞれでの風向および風速に関する情報を取得する取得部414を、さらに有する。予測部411は、取得部414で取得された情報を利用して異常が起こるかどうかを予測するように構成されている。 In the ventilation system of the fourth form according to the present invention, in any one of the first to third forms, the control device 4 further acquires information on the wind direction and the wind speed at each of the plurality of observation points P0. An acquisition unit 414 is further included. The prediction unit 411 is configured to predict whether or not an abnormality will occur using the information acquired by the acquisition unit 414.
 本発明に係る第5の形態の換気システムでは、第1~第4の形態のいずれか一つにおいて、制御部は、異常が起こると予測部411が予測してから所定時間が経過すると、通常動作を再開するように構成されている。 In the ventilation system according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the control unit normally performs a predetermined time after the prediction unit 411 predicts that an abnormality will occur. It is configured to resume operation.
 本発明に係る第6の形態の換気システムでは、第1~第5の形態のいずれか一つにおいて、換気システムは、さらに、建物1(11)の複数の階層110のそれぞれの換気を行う複数の換気設備2を備える。制御部は、複数の換気設備2のそれぞれについて通常動作を実行するように構成される。制御部は、異常が起こると予測部411が予測すると、複数の換気設備2の通常動作を終了して、複数の換気設備2を汚染空気の到達が早い階層110にある換気設備2から順に停止させるように構成されている。 In a ventilation system according to a sixth aspect of the present invention, in any one of the first to fifth aspects, the ventilation system further includes a plurality of ventilations that respectively ventilate the plurality of floors 110 of the building 1 (11). The ventilation equipment 2 is provided. The control unit is configured to perform a normal operation for each of the plurality of ventilation facilities 2. When the prediction unit 411 predicts that an abnormality will occur, the control unit terminates the normal operation of the plurality of ventilation facilities 2 and stops the plurality of ventilation facilities 2 in order from the ventilation facility 2 in the hierarchy 110 where the arrival of contaminated air is early. It is configured to let you.
 本発明に係る第7の形態の換気システムでは、第1~第6の形態のいずれか一つにおいて、制御装置4は、さらに、複数台の分散計測器M0でそれぞれ計測された空気質の履歴を記憶する記憶部44を有する。予測部411は、記憶部44に記憶された履歴から得られた汚染空気の拡散パターンを用いて、異常が起こるかどうかを予測するように構成されている。 In the ventilation system according to the seventh aspect of the present invention, in any one of the first to sixth aspects, the control device 4 further includes a history of air quality respectively measured by a plurality of distributed measuring instruments M0. Is stored. The prediction unit 411 is configured to predict whether or not an abnormality will occur by using the polluted air diffusion pattern obtained from the history stored in the storage unit 44.
 本発明に係る第8の形態の換気システムでは、第1~第7の形態のいずれか一つにおいて、制御装置4は、さらに、人が建物1へ到着するタイミングを予測する到着予測部415を有する。制御部は、到着予測部415で予測されたタイミングに合わせて建物1内の空気質を改善する改善動作を実行するように構成されている。 In the ventilation system according to the eighth aspect of the present invention, in any one of the first to seventh aspects, the control device 4 further includes an arrival prediction unit 415 that predicts the timing at which a person arrives at the building 1. Have. The control unit is configured to execute an improvement operation for improving the air quality in the building 1 in accordance with the timing predicted by the arrival prediction unit 415.
 本発明に係る第9の形態の換気システムでは、第8の形態において、制御部は、到着予測部415で予測されたタイミングと建物1内の空気質の改善に要する時間とから、建物1内の空気質の改善の開始タイミングを決定し、開始タイミングから改善動作を開始するように構成されている。 In the ventilation system of the ninth form according to the present invention, in the eighth form, the control unit determines that the inside of the building 1 is based on the timing predicted by the arrival prediction unit 415 and the time required to improve the air quality in the building 1. The air quality improvement start timing is determined, and the improvement operation is started from the start timing.
 本発明に係る第10の形態の換気システムでは、第1~第9の形態のいずれか一つにおいて、複数の分散計測器M0は、建物1に対して同じ方向にある分散計測器M0の組を含む。予測部411は、判定時間の間に、記分散計測器M0の組でそれぞれ測定された空気質が分散計測器M0の組のうち建物1から最も遠い分散計測器M0から建物1に最も近い分散計測器M0まで順に異常値を示すと、異常が起こると予測するように構成されている。 In the ventilation system according to the tenth aspect of the present invention, in any one of the first to ninth aspects, the plurality of dispersion measuring instruments M0 is a set of the dispersion measuring instruments M0 in the same direction with respect to the building 1. including. The prediction unit 411 has a dispersion in which the air quality measured by the set of dispersion measuring instruments M0 during the determination time is closest to the building 1 from the dispersion measuring instrument M0 farthest from the building 1 in the set of dispersion measuring instruments M0. If abnormal values are shown in order up to the measuring instrument M0, it is configured to predict that an abnormality will occur.
 本発明に係る第11の形態の換気システムでは、第1~第9の形態のいずれか一つにおいて、複数の分散計測器M0は、複数の外側の分散計測器M0(M9~M16)と、複数の外側の分散計測器M0にそれぞれ対応付けられた複数の内側の分散計測器M0(M1~M8)と、を含む。複数の外側の分散計測器M0は、建物1を中心とする第1の円C1の円周上にある。複数の内側の分散計測器M0は、建物1を中心とする第2の円C2の円周上にある。第2の円C2の半径は、第1の円C1の半径より小さい。複数の内側の分散計測器M0のそれぞれは、複数の外側の分散計測器M0のうちの対応付けられた外側の分散計測器M0と建物1とを結ぶ直線上にある。予測部411は、外側の分散計測器M0で計測された空気質が異常値を示してから判定時間内に、空気質が異常値を示した外側の分散計測器M0に対応付けられた内側の分散計測器M0で計測された空気質が異常値を示すと、異常が起こると予測するように構成されている。 In the ventilation system of the eleventh aspect according to the present invention, in any one of the first to ninth aspects, the plurality of dispersion measuring instruments M0 includes a plurality of outer dispersion measuring instruments M0 (M9 to M16), A plurality of inner dispersion measuring devices M0 (M1 to M8) respectively associated with the plurality of outer dispersion measuring devices M0. The plurality of outer dispersion measuring instruments M0 are on the circumference of the first circle C1 with the building 1 as the center. The plurality of inner dispersion measuring instruments M0 are on the circumference of the second circle C2 with the building 1 as the center. The radius of the second circle C2 is smaller than the radius of the first circle C1. Each of the plurality of inner dispersion measuring instruments M0 is on a straight line that connects the associated outer dispersion measuring instrument M0 and the building 1 among the plurality of outer dispersion measuring instruments M0. The predicting unit 411 includes an inner part associated with the outer dispersion measuring instrument M0 in which the air quality shows an abnormal value within a determination time after the air quality measured by the outer dispersion measuring instrument M0 shows an abnormal value. When the air quality measured by the dispersion measuring device M0 shows an abnormal value, it is configured to predict that an abnormality will occur.
 本発明に係る第12の形態の制御装置4は、第1の取得部(第1通信I/F)42と、第2の取得部(第2通信I/F)43と、制御部(換気制御部412、空調制御部413)と、予測部411と、を備える。第1の取得部42は、建物1内の空気質および建物1外の空気質を取得するように構成されている。第2の取得部43は、建物1を含む監視地域100内の複数の観測地点P0のそれぞれの空気質を取得するように構成されている。制御部は、建物1内の空気質より建物1外の空気質が良好であれば建物1の換気を行う換気設備2を稼動させる通常動作を実行するように構成されている。予測部411は、建物1外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを、複数の観測地点P0のそれぞれの空気質に基づいて、予測するように構成されている。制御部は、異常が起こると予測部411が予測すると、通常動作を終了して換気設備2を停止させるように構成されている。 The control device 4 according to the twelfth aspect of the present invention includes a first acquisition unit (first communication I / F) 42, a second acquisition unit (second communication I / F) 43, and a control unit (ventilation). A control unit 412, an air conditioning control unit 413), and a prediction unit 411. The first acquisition unit 42 is configured to acquire the air quality inside the building 1 and the air quality outside the building 1. The second acquisition unit 43 is configured to acquire the air quality of each of the plurality of observation points P0 in the monitoring area 100 including the building 1. The control unit is configured to execute a normal operation of operating the ventilation facility 2 for ventilating the building 1 if the air quality outside the building 1 is better than the air quality inside the building 1. The prediction unit 411 is configured to predict whether or not an abnormality in which the air quality outside the building 1 exhibits an abnormal value due to contaminated air will occur based on the air quality at each of the plurality of observation points P0. . The control unit is configured to terminate the normal operation and stop the ventilation facility 2 when the prediction unit 411 predicts that an abnormality will occur.

Claims (12)

  1.  建物の換気を行う換気設備と、
     前記建物内の空気質および前記建物外の空気質を計測する個別計測器と、
     前記建物を含む監視地域内の複数の観測地点の空気質をそれぞれ計測する複数の分散計測器と、
     前記建物内の空気質より前記建物外の空気質が良好であれば前記換気設備を稼動させる通常動作を実行する制御部を有する制御装置と、
     を備え、
     前記制御装置は、さらに、前記複数の分散計測器でそれぞれ計測された前記空気質に基づいて前記建物外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを予測する予測部を有し、
     前記制御部は、前記異常が起こると前記予測部が予測すると、前記通常動作を終了して前記換気設備を停止させるように構成されている、
     換気システム。
    Ventilation equipment to ventilate the building,
    An individual measuring instrument for measuring the air quality inside the building and the air quality outside the building;
    A plurality of distributed measuring instruments that respectively measure the air quality at a plurality of observation points in the monitoring area including the building;
    If the air quality outside the building is better than the air quality inside the building, a control device having a control unit that executes a normal operation for operating the ventilation equipment;
    With
    The control device further predicts whether or not an abnormality in which the air quality outside the building shows an abnormal value due to contaminated air occurs based on the air quality measured by each of the plurality of dispersion measuring instruments. Have
    The control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
    Ventilation system.
  2.  さらに、前記建物内の空気質を改善する空調設備を備え、
     前記制御部は、さらに、前記空調設備を制御するように構成され、
     前記制御部は、前記換気設備を停止させている期間に前記空調設備を稼動させるように構成されている、
     請求項1に記載の換気システム。
    In addition, air conditioning equipment that improves the air quality in the building,
    The control unit is further configured to control the air conditioning equipment,
    The control unit is configured to operate the air conditioning equipment during a period in which the ventilation equipment is stopped.
    The ventilation system according to claim 1.
  3.  前記予測部は、前記異常が起こると予測すると、前記汚染空気が前記建物に到達するタイミングを予測するように構成され、
     前記制御部は、前記予測部で予測された前記タイミングに合わせて前記換気設備を停止させるように構成されている、
     請求項1または2に記載の換気システム。
    The predicting unit is configured to predict when the contaminated air reaches the building when predicting that the abnormality occurs,
    The control unit is configured to stop the ventilation facility in accordance with the timing predicted by the prediction unit.
    The ventilation system according to claim 1 or 2.
  4.  前記制御装置は、さらに、前記複数の観測地点それぞれでの風向および風速に関する情報を取得する取得部を、さらに有し、
     前記予測部は、前記取得部で取得された前記情報を利用して前記異常が起こるかどうかを予測するように構成されている、
     請求項1~3のいずれか1項に記載の換気システム。
    The control device further includes an acquisition unit that acquires information on a wind direction and a wind speed at each of the plurality of observation points,
    The prediction unit is configured to predict whether the abnormality will occur using the information acquired by the acquisition unit.
    The ventilation system according to any one of claims 1 to 3.
  5.  前記制御部は、前記異常が起こると前記予測部が予測してから所定時間が経過すると、前記通常動作を再開するように構成されている、
     請求項1~4のいずれか1項に記載の換気システム。
    The control unit is configured to resume the normal operation when a predetermined time has elapsed since the prediction unit predicted that the abnormality occurred.
    The ventilation system according to any one of claims 1 to 4.
  6.  さらに、前記建物の複数の階層のそれぞれの換気を行う複数の換気設備を備え、
     前記制御部は、前記複数の換気設備のそれぞれについて前記通常動作を実行するように構成され、
     前記制御部は、前記異常が起こると前記予測部が予測すると、前記複数の換気設備の前記通常動作を終了して、前記複数の換気設備を前記汚染空気の到達が早い階層にある前記換気設備から順に停止させるように構成されている、
     請求項1~5のいずれか1項に記載の換気システム。
    Furthermore, it comprises a plurality of ventilation equipment for ventilating each of the plurality of floors of the building,
    The control unit is configured to perform the normal operation for each of the plurality of ventilation facilities,
    When the predicting unit predicts that the abnormality occurs, the control unit terminates the normal operation of the plurality of ventilation facilities, and the ventilation facilities are in a hierarchy in which the contaminated air arrives early. It is configured to stop in order from
    The ventilation system according to any one of claims 1 to 5.
  7.  前記制御装置は、さらに、前記複数の分散計測器でそれぞれ計測された前記空気質の履歴を記憶する記憶部を有し、
     前記予測部は、前記記憶部に記憶された前記履歴から得られた前記汚染空気の拡散パターンを用いて、前記異常が起こるかどうかを予測するように構成されている、
     請求項1~6のいずれか1項に記載の換気システム。
    The control device further includes a storage unit that stores a history of the air quality measured by each of the plurality of dispersion measuring instruments,
    The prediction unit is configured to predict whether or not the abnormality will occur using a diffusion pattern of the contaminated air obtained from the history stored in the storage unit.
    The ventilation system according to any one of claims 1 to 6.
  8.  前記制御装置は、さらに、人が前記建物へ到着するタイミングを予測する到着予測部を有し、
     前記制御部は、前記到着予測部で予測されたタイミングに合わせて前記建物内の空気質を改善する改善動作を実行するように構成されている、
     請求項1~7のいずれか1項に記載の換気システム。
    The control device further includes an arrival prediction unit that predicts a timing at which a person arrives at the building,
    The control unit is configured to perform an improvement operation for improving air quality in the building in accordance with the timing predicted by the arrival prediction unit.
    The ventilation system according to any one of claims 1 to 7.
  9.  前記制御部は、前記到着予測部で予測されたタイミングと前記建物内の空気質の改善に要する時間とから、前記建物内の空気質の改善の開始タイミングを決定し、前記開始タイミングから前記改善動作を開始するように構成されている、
     ことを特徴とする請求項8に記載の換気システム。
    The control unit determines a start timing for improving the air quality in the building from the timing predicted by the arrival prediction unit and the time required for improving the air quality in the building, and the improvement from the start timing. Configured to start working,
    The ventilation system according to claim 8.
  10.  前記複数の分散計測器は、前記建物に対して同じ方向にある分散計測器の組を含み、
     前記予測部は、判定時間の間に、前記分散計測器の組でそれぞれ測定された前記空気質が前記分散計測器の組のうち前記建物から最も遠い前記分散計測器から前記建物に最も近い前記分散計測器まで順に前記異常値を示すと、前記異常が起こると予測するように構成されている、
     請求項1~9のいずれか1項に記載の換気システム。
    The plurality of dispersion measuring instruments includes a set of dispersion measuring instruments in the same direction with respect to the building,
    The prediction unit is configured such that, during the determination time, the air quality measured by each of the dispersion measuring instrument sets is closest to the building from the dispersion measuring instrument that is farthest from the building in the dispersion measuring instrument set. It is configured to predict that the abnormality will occur when the abnormal value is shown in order until a dispersion measuring instrument,
    The ventilation system according to any one of claims 1 to 9.
  11.  前記複数の分散計測器は、複数の外側の分散計測器と、前記複数の外側の分散計測器にそれぞれ対応付けられた複数の内側の分散計測器と、を含み、
     前記複数の外側の分散計測器は、前記建物を中心とする第1の円の円周上にあり、
     前記複数の内側の分散計測器は、前記建物を中心とする第2の円の円周上にあり、
     前記第2の円の半径は、前記第1の円の半径より小さく、
     前記複数の内側の分散計測器のそれぞれは、前記複数の外側の分散計測器のうちの対応付けられた外側の分散計測器と前記建物とを結ぶ直線上にあり、
     前記予測部は、前記外側の分散計測器で計測された前記空気質が前記異常値を示してから判定時間内に、前記空気質が前記異常値を示した前記外側の分散計測器に対応付けられた前記内側の分散計測器で計測された前記空気質が前記異常値を示すと、前記異常が起こると予測するように構成されている、
     請求項1~9のいずれか1項に記載の換気システム。
    The plurality of dispersion measuring instruments includes a plurality of outer dispersion measuring instruments, and a plurality of inner dispersion measuring instruments respectively associated with the plurality of outer dispersion measuring instruments,
    The plurality of outer dispersion measuring instruments are on a circumference of a first circle centered on the building;
    The plurality of inner dispersion measuring instruments are on the circumference of a second circle centered on the building,
    The radius of the second circle is smaller than the radius of the first circle;
    Each of the plurality of inner dispersion measuring instruments is on a straight line connecting the building with the corresponding outer dispersion measuring instrument among the plurality of outer dispersion measuring instruments,
    The prediction unit associates the air quality measured with the outer dispersion measuring instrument with the outer dispersion measuring instrument with the air quality showing the abnormal value within a determination time after the abnormal value is shown. The air quality measured by the inner dispersion measuring instrument is configured to predict that the abnormality occurs when the air quality indicates the abnormal value.
    The ventilation system according to any one of claims 1 to 9.
  12.  建物内の空気質および前記建物外の空気質を取得する第1の取得部と、
     前記建物を含む監視地域内の複数の観測地点のそれぞれの空気質を取得する第2の取得部と、
     前記建物内の空気質より前記建物外の空気質が良好であれば前記建物の換気を行う換気設備を稼動させる通常動作を実行する制御部と、
     前記建物外の空気質が汚染空気に起因する異常値を示す異常が起こるかどうかを、前記複数の観測地点のそれぞれの空気質に基づいて、予測する予測部と、
     を備え、
     前記制御部は、前記異常が起こると前記予測部が予測すると、前記通常動作を終了して前記換気設備を停止させるように構成されている、
     制御装置。
    A first acquisition unit for acquiring air quality inside the building and air quality outside the building;
    A second acquisition unit that acquires the air quality of each of a plurality of observation points in a monitoring area including the building;
    If the air quality outside the building is better than the air quality inside the building, a control unit that performs a normal operation for operating a ventilation facility that ventilates the building;
    A predicting unit that predicts whether or not an abnormality indicating an abnormal value due to contaminated air occurs in the air quality outside the building based on the air quality of each of the plurality of observation points;
    With
    The control unit is configured to terminate the normal operation and stop the ventilation facility when the prediction unit predicts that the abnormality occurs.
    Control device.
PCT/JP2014/002278 2013-05-13 2014-04-23 Ventilation system, and control device WO2014185013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480027677.2A CN105229389B (en) 2013-05-13 2014-04-23 Air exchange system and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-101203 2013-05-13
JP2013101203A JP2014222116A (en) 2013-05-13 2013-05-13 Ventilation system and control device

Publications (1)

Publication Number Publication Date
WO2014185013A1 true WO2014185013A1 (en) 2014-11-20

Family

ID=51898006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002278 WO2014185013A1 (en) 2013-05-13 2014-04-23 Ventilation system, and control device

Country Status (3)

Country Link
JP (1) JP2014222116A (en)
CN (1) CN105229389B (en)
WO (1) WO2014185013A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563008A (en) * 2017-05-24 2018-12-05 Future Decisions Ltd Air pollution management system and method
WO2019168349A1 (en) 2018-02-28 2019-09-06 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
WO2020217630A1 (en) * 2019-04-22 2020-10-29 パナソニックIpマネジメント株式会社 Air conditioning system
GB2588863A (en) * 2016-04-24 2021-05-12 David Mervin Jones Heating & ventilating system
EP4083525A1 (en) * 2021-04-29 2022-11-02 Microjet Technology Co., Ltd. Indoor air pollution prevention system
EP4089338A1 (en) * 2021-05-14 2022-11-16 Microjet Technology Co., Ltd. Indoor air pollution prevention system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017008228A (en) * 2014-12-24 2017-10-06 Koninklijke Philips Nv Arrangement and method for air management of a room.
CN106369751A (en) * 2016-09-12 2017-02-01 青岛海尔空调器有限总公司 Fresh air exchange control method
JP6770383B2 (en) * 2016-09-16 2020-10-14 日立グローバルライフソリューションズ株式会社 Electrical equipment control system
ES2891363T3 (en) * 2016-09-29 2022-01-27 Mitsubishi Electric Corp Ventilation system
JP7004508B2 (en) * 2017-03-27 2022-01-21 三菱電機株式会社 Air conditioning control device, air conditioner, air conditioning system, air conditioning control method and program
JP6934744B2 (en) * 2017-04-21 2021-09-15 住友重機械工業株式会社 Air purification system
CN109595754A (en) * 2017-09-29 2019-04-09 李在燮 Indoor air quality based on Internet of Things improves system
WO2019167713A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Air pollution display terminal
JP2021517233A (en) * 2018-03-09 2021-07-15 レマ ヤピ ヴェ ミマーリック アノニム シルケティ Smart ventilation system
TWI679378B (en) * 2018-08-22 2019-12-11 崑山科技大學 Air quality micro-monitoring system and air quality purification method
CN111174332B (en) * 2018-10-24 2021-05-25 青岛海尔空调器有限总公司 Control method and device for movable air conditioner
TWI690681B (en) * 2019-01-02 2020-04-11 逢甲大學 Control system of air quality and the operating method thereof
JP2020118420A (en) * 2019-01-28 2020-08-06 富士工業株式会社 Ventilation system
TWI695958B (en) * 2019-10-16 2020-06-11 國立高雄大學 Air quality monitoring system
WO2021149179A1 (en) * 2020-01-22 2021-07-29 三菱電機株式会社 Ventilation system and ventilation management device
CN111696242B (en) * 2020-06-28 2021-08-03 广东君略科技咨询有限公司 Block chain identity information authentication system based on big data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133121A (en) * 2004-11-08 2006-05-25 Daikin Ind Ltd Base section, air pollution information providing system, air pollution prediction method, and ventilation device
JP2009192199A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Ventilation system and building equipped with it
JP2010065947A (en) * 2008-09-11 2010-03-25 Toshiba Corp Room pressure controller and room pressure control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727783A (en) * 2004-07-26 2006-02-01 乐金电子(天津)电器有限公司 Device for controlling indoor air quality through using ventilation system, and method
FR2887632B1 (en) * 2005-06-22 2007-10-05 Valeo Systemes Thermiques DEVICE AND METHOD FOR MONITORING AND CONTROLLING AIR QUALITY, FOR MOTOR VEHICLE
ES2605941T3 (en) * 2006-02-21 2017-03-17 Urecsys - Urban Ecology Systems - Indoor Air Quality Management Ltd. System and method to evaluate and reduce air pollution by regulating airflow ventilation
CN102121740A (en) * 2010-01-12 2011-07-13 珠海格力电器股份有限公司 Air conditioner control system, control method and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133121A (en) * 2004-11-08 2006-05-25 Daikin Ind Ltd Base section, air pollution information providing system, air pollution prediction method, and ventilation device
JP2009192199A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Ventilation system and building equipped with it
JP2010065947A (en) * 2008-09-11 2010-03-25 Toshiba Corp Room pressure controller and room pressure control method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2588863A (en) * 2016-04-24 2021-05-12 David Mervin Jones Heating & ventilating system
GB2588863B (en) * 2016-04-24 2021-10-27 David Mervin Jones Heating and ventilation system
GB2563008B (en) * 2017-05-24 2020-04-08 Future Decisions Ltd Air pollution management system and method of controlling a ventilation system
GB2563008A (en) * 2017-05-24 2018-12-05 Future Decisions Ltd Air pollution management system and method
EP3682170A4 (en) * 2018-02-28 2020-08-26 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
US10890349B2 (en) 2018-02-28 2021-01-12 Samsung Electronics Co., Ltd Compound control apparatus and method thereof in air conditioning system
WO2019168349A1 (en) 2018-02-28 2019-09-06 Samsung Electronics Co., Ltd. Compound control apparatus and method thereof in air conditioning system
WO2020217630A1 (en) * 2019-04-22 2020-10-29 パナソニックIpマネジメント株式会社 Air conditioning system
CN113710963A (en) * 2019-04-22 2021-11-26 松下知识产权经营株式会社 Air conditioning system
JPWO2020217630A1 (en) * 2019-04-22 2021-12-23 パナソニックIpマネジメント株式会社 Air conditioning system
JP7182117B2 (en) 2019-04-22 2022-12-02 パナソニックIpマネジメント株式会社 air conditioning system
US11885515B2 (en) 2019-04-22 2024-01-30 Panasonic Intellectual Property Management Co., Ltd. Air conditioning system to calculate indoor air quality index to control air ventilation
EP4083525A1 (en) * 2021-04-29 2022-11-02 Microjet Technology Co., Ltd. Indoor air pollution prevention system
EP4089338A1 (en) * 2021-05-14 2022-11-16 Microjet Technology Co., Ltd. Indoor air pollution prevention system

Also Published As

Publication number Publication date
JP2014222116A (en) 2014-11-27
CN105229389A (en) 2016-01-06
CN105229389B (en) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2014185013A1 (en) Ventilation system, and control device
CA2918085C (en) An hvac system and an hvac controller configured to operate the hvac system based on air pollutant data and user comfort
US10767878B2 (en) Humidifier control systems and methods
US11994313B2 (en) Indoor air quality sensor calibration systems and methods
EP3781878B1 (en) System and method for adjusting mitigation thresholds
CA2923242C (en) Air treatment device for hvac systems
KR101865143B1 (en) a ventilation system based on measurement of indoor and outdoor air quality
US11609004B2 (en) Systems and methods with variable mitigation thresholds
US20210236979A1 (en) Particulate-matter-size-based fan control system
US11421901B2 (en) Coordinated control of standalone and building indoor air quality devices and systems
US11371726B2 (en) Particulate-matter-size-based fan control system
CN105674491A (en) Cloud platform-based indoor environment management system
JP2014074509A (en) Air conditioning system
KR20160076782A (en) Terminal device for indoor environment improvemnet of base internet of things
JP7394641B2 (en) air conditioning ventilation system
KR20180021261A (en) Control method of air conditioner
KR102479889B1 (en) Air quality analysis system based on artificial intelligence for indoor air purification control
JP2005003313A (en) Air-conditioning diagnosis system
JP2023028698A (en) Control device, ventilation air cleaning system, ventilation air cleaning control method, and program
JP2023181729A (en) Management system, management device, and management method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480027677.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798064

Country of ref document: EP

Kind code of ref document: A1