WO2014184951A1 - Stator for rotating electric machine - Google Patents

Stator for rotating electric machine Download PDF

Info

Publication number
WO2014184951A1
WO2014184951A1 PCT/JP2013/063795 JP2013063795W WO2014184951A1 WO 2014184951 A1 WO2014184951 A1 WO 2014184951A1 JP 2013063795 W JP2013063795 W JP 2013063795W WO 2014184951 A1 WO2014184951 A1 WO 2014184951A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
winding
turtle shell
slot
windings
Prior art date
Application number
PCT/JP2013/063795
Other languages
French (fr)
Japanese (ja)
Inventor
拓郎 磯谷
吉野 裕
雄亮 尾本
長谷川 裕之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380076646.1A priority Critical patent/CN105229900A/en
Priority to PCT/JP2013/063795 priority patent/WO2014184951A1/en
Priority to JP2015516859A priority patent/JP5855318B2/en
Publication of WO2014184951A1 publication Critical patent/WO2014184951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines

Definitions

  • the present invention relates to a stator of a rotating electric machine.
  • Patent Document 1 the multiplex winding turtle shell winding of each phase is divided into a plurality of sets made of an equal number of strands, and the insertion position from the back side of the slot is sequentially changed for each set, so that each set It is described that the upper and lower positions of the connecting wire of the multi-turn turtle shell winding are exchanged.
  • dislocation is applied to the connection line between the multi-turn turtle shell windings, it is said that eddy current loss and circulating current are reduced in the multi-turn turtle shell winding.
  • connection lines crossover lines
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a stator of a rotating electrical machine that can reduce the burden of preparation for performing a transition of a jumper.
  • a stator of a rotating electric machine is inserted into a plurality of slots and wound around a stator core having a plurality of slots.
  • the stator winding is re-patterned in a pattern different from that before cutting because the crossover wires are partially cut after the plurality of windings are inserted into the plurality of slots. It is characterized in that the connecting wire is dislocated by being connected.
  • the stator winding is moved by partially connecting the connecting wires after the plurality of windings are inserted into the plurality of slots and reconnecting the connecting wires in a pattern different from that before the cutting.
  • Line dislocation is performed and configured.
  • FIG. 1 is a diagram illustrating a configuration of a stator of a rotating electrical machine according to an embodiment.
  • FIG. 2 is a diagram showing the number of strands of the multi-turn turtle shell winding inserted per slot according to the embodiment.
  • FIG. 3 is a schematic view of a multi-turn turtle shell winding of a 48-slot four-pole machine manufactured according to the embodiment.
  • FIG. 4 is a diagram for explaining cutting and reconnection of a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the embodiment.
  • FIG. 5 is a schematic view showing a state in which a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the embodiment is inserted into a stator core.
  • FIG. 1 is a diagram illustrating a configuration of a stator of a rotating electrical machine according to an embodiment.
  • FIG. 2 is a diagram showing the number of strands of the multi-turn turtle shell winding inserted per slot according to the embodiment
  • FIG. 6 is an equivalent circuit diagram of a 48-slot 4-pole machine manufactured according to the embodiment.
  • FIG. 7 is a diagram illustrating a connection state at the time of slot insertion, a connection state after reconnection, and a relationship between the slot depth and the leakage magnetic flux of the multi-turn turtle shell winding manufactured in the embodiment.
  • FIG. 8 is a diagram showing a configuration of a rotating electrical machine using a stator according to a basic form.
  • FIG. 9 is a diagram illustrating a configuration of a stator of a rotating electrical machine according to a basic form.
  • FIG. 10 is a diagram showing the number of strands of multiple winding turtle shell windings inserted per slot according to the basic configuration.
  • FIG. 11 is a schematic view of a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the basic configuration.
  • FIG. 12 is a schematic view showing a state in which a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the basic form is inserted into a stator core.
  • FIG. 13 is an equivalent circuit diagram of a 48-slot 4-pole machine manufactured according to the basic configuration.
  • the stator 30 is used in a rotating electrical machine 50 in which the rotor 40 rotates with respect to the stator 30.
  • the rotating electrical machine 50 is, for example, a three-phase induction motor as shown in FIG.
  • FIG. 8 is a diagram showing a configuration of a rotating electrical machine 50 using the stator 30 according to the basic form.
  • the rotating electrical machine 50 includes a frame 1, a stator 30, a bracket 5, a rotor 40, an outer fan fan 8, and an outer fan cover 9.
  • the stator 30 has a stator core 2 and a stator winding 4.
  • the rotor 40 includes a rotor core 3, an end ring fan 10, a bearing 6, and a shaft 7.
  • the frame 1 has, for example, a substantially cylindrical shape, and houses the stator 30, the bracket 5, the rotor 40, the outer fan fan 8, and the outer fan cover 9.
  • the frame 1 is provided with cooling fins on the surface thereof.
  • the stator 30 is fixed to the frame 1.
  • the stator 30 is configured to accommodate the rotor 40 while being separated from the rotor 40.
  • the stator winding 4 is inserted into the stator core 2.
  • the stator core 2 is configured to be concentric with the shaft 7 and has, for example, a substantially cylindrical shape having an axis along the shaft 7.
  • the stator core 2 is formed of, for example, laminated electromagnetic steel plates.
  • the bracket 5 is configured to form an end plate of the frame 1.
  • the bracket 5 is penetrated by the shaft 7 of the rotor 40.
  • the rotor 40 is configured to be rotatable with respect to the stator 30.
  • the rotor core 3 is attached to the shaft 7.
  • the rotor core 3 is configured in a cage shape, for example, and has two end ring portions and a plurality of conductor bars (a plurality of rotor bars).
  • the end ring fan 10 is attached to two end ring portions and is configured to be rotatable together with the rotor core 3.
  • the bearing 6 is a rolling bearing that rotatably supports the shaft 7 with respect to the bracket 5.
  • the shaft 7 is connected to a rotational load, and transmits rotational power around the rotational axis RA to the rotational load.
  • the shaft 7 is connected to the outer fan fan 8 and transmits the rotational power around the rotation axis RA to the outer fan fan 8.
  • the outer fan 8 rotates to suck outside air and guide it to the frame 1 side to cool the surface of the frame 1 and the cooling fins attached to the frame 1.
  • the outer fan cover 9 is provided so as to cover the outer fan fan 8 and protects the outer fan fan 8 from an external impact or the like.
  • FIG. 9 is a diagram showing a configuration of the stator 30 of the rotating electrical machine 50 according to the basic form.
  • the stator 30 has the stator core 2 and the stator winding 4 as described above.
  • the stator core 2 includes a stator core body 21, a plurality of teeth 12, and a plurality of slots 11.
  • the plurality of teeth 12 extend along the radial direction from the stator core body 21 toward the rotation axis RA.
  • the plurality of teeth 12 have root ends connected to the stator core body 21 in a ring shape.
  • Slots 11 are formed between adjacent teeth 12, respectively.
  • FIG. 9 shows slot numbers No. 1 along the stator core body 21. 1-No. Slots 11 are respectively arranged at positions indicated by 48.
  • the configuration related to the U phase will be mainly described, but the same applies to the other phases (V phase, W phase).
  • the stator winding 4 is inserted into a plurality of slots 11 and wound around a plurality of teeth 12.
  • the stator winding 4 includes a plurality of multiple winding turtle shell windings 14 a to 14 d and a crossover group 17.
  • Each of the multiple winding turtle shell windings 14 a to 14 d is inserted into the slot 11.
  • the crossover group 17 connects a plurality of multiple winding turtle shell windings 14a to 14c to each other.
  • the crossover group 17 has a plurality of crossover lines 17a to 17c.
  • the crossover wire 17a connects the multiple winding turtle shell winding 14a and the multiple winding turtle shell winding 14b.
  • the crossover wire 17b connects the multi-turn turtle shell winding 14b and the multi-turn turtle shell winding 14c.
  • the crossover wire 17c connects the multi-turn turtle shell winding 14c and the multi-turn turtle shell winding 14d.
  • each multi-turn turtle shell winding 14 is composed of a plurality of strands 13 as shown in FIG.
  • the stator winding 4 is configured such that a plurality of multiple winding turtle shell windings 14 a to 14 d are connected by a crossover group 17. Then, the stator winding 4 is inserted into the plurality of slots 11 as shown in FIG. Thereby, the stator 30 of the rotary electric machine 50 shown in FIG. 9 is obtained.
  • FIG. 10 is a diagram showing the number of strands of the multi-turned turtle shell winding 14 inserted per slot according to the basic configuration. For example, FIG. 10 illustrates a case where the number of strands of the multi-turn turtle shell winding 14 inserted per slot is four.
  • FIG. 11 is a schematic diagram of the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form.
  • FIG. 12 shows that the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows the state.
  • FIG. 12 shows that the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows the state.
  • FIGS. 11 and 12 indicate the direction in which the winding is wound.
  • the numbers shown in FIGS. 12 and 9 are the slots 11 numbered in the clockwise order. This number is common to both FIG. 12 and FIG.
  • slot 11 is inserted into the slot 11 as shown in FIG.
  • slot number No. 1 slot 11 and slot number no. 12 slot 11 is inserted with the same multi-turn turtle shell winding 14a. 2 slot 11 and slot number no.
  • a multi-turn turtle shell winding 14 b is inserted into the 11 slots 11.
  • the slot number No. 24 slot 11 and slot number no. 13 slot 11 is inserted with the same multi-turn turtle shell winding 14c. 23 slot 11 and slot number no.
  • a multi-turn turtle shell winding 14 d is inserted into the 14 slots 11.
  • FIG. 13 is an equivalent circuit diagram of a 48-slot 4-pole machine in the stator 30 of a rotating electrical machine (for example, a three-phase induction motor) 50 manufactured according to the basic form.
  • FIG. 13 a configuration corresponding to a plurality of multiple winding turtle shell windings 14a to 14d and a plurality of crossover wires 17a to 17c is shown as a U-phase multiple winding turtle shell winding 14 for convenience.
  • One end of the U-phase multiple winding turtle shell winding 14 is connected to the power supply terminal 15, and the other end is connected to the neutral point terminal 16 (see FIGS. 11, 12, and 9).
  • the present embodiment aims to reduce the burden of preparation for performing crossover dislocation by making the following measures. Below, it demonstrates centering on a different part from a basic form.
  • FIG. 1 is a diagram illustrating a configuration of a stator 30i of a rotating electrical machine 50 according to an embodiment.
  • the crossover wires 19a to 19g are partially cut after the plurality of multiple winding turtle shell windings 18a to 18h are inserted into the plurality of slots 11, and the crossover wires 20a to 20e are different from those before cutting.
  • Crossover dislocation is performed by reconnecting with a pattern.
  • a plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11 in a state of being connected by the first crossover group 19 (see FIG. 1).
  • the second jumper wire group 20 includes the first jumper wire group 19 after the first jumper wire group 19 is partially cut in a state where the plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11.
  • a plurality of multi-turn turtle shell windings 18a to 18h are reconnected in a pattern different from that of the line group 19.
  • the first connecting wire group 19 has a plurality of connecting wires 19a to 19g (see FIG. 3).
  • the second connecting wire group 20 has a plurality of connecting wires 20a to 20e (see FIG. 4).
  • each multiple winding turtle shell winding 18 is composed of a plurality of strands 13 as shown in FIG.
  • the stator winding 4 i is configured such that a plurality of multiple winding turtle shell windings 18 a to 18 h are connected by a first crossover group 19. Then, the stator winding 4i is inserted into the plurality of slots 11, and the first crossover group 19 is partially cut as shown in FIG. A plurality of multiple turtle shell windings 18a to 18h are reconnected in a pattern different from that of the crossover wire group 19. At this time, the second crossover group 20 reconnects the multiple turtle shell windings 18a to 18h so that the two multiple turtle shell windings inserted in the same slot 11 are connected in parallel. Let Thereby, the stator 30i of the rotary electric machine 50 shown to FIG. 5, FIG. 1 is obtained.
  • FIG. 2 is a diagram showing the number of strands of the multi-turn turtle shell winding 18 inserted per slot according to the embodiment.
  • FIG. 2 illustrates a case where the number of strands of the multi-turn turtle shell winding 18 inserted per slot is eight.
  • the number of multiple-turned turtle shell windings 18 inserted per slot is doubled, for example. Therefore, the number of strands of the multi-turn turtle shell winding 18 inserted per slot can be doubled.
  • the multi-turn turtle shell winding produced by combining a plurality of strands 13 is equivalent to the multi-turn turtle shell winding having twice the number of strands without changing the existing winding equipment.
  • a stator core with the following electrical characteristics can be manufactured.
  • FIG. 3 is a schematic view of the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the embodiment.
  • FIG. 4 shows that the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows a mode that it disconnects and reconnects as it is.
  • FIG. 4 shows that the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows a mode that it disconnects and reconnects as it is.
  • FIG. 5 is a schematic diagram of the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 after being disconnected and reconnected.
  • FIG. 1 shows that the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 are inserted into the stator core 2 after being disconnected and reconnected.
  • the state is shown from the direction along the rotation axis RA.
  • crossover wires 19a, 19c, 19e, and 19g connecting the multi-turn turtle shell windings 18a to 18h are longer than usual because they are disconnected and reconnected after being inserted into the slot 11.
  • the multiple winding turtle shell windings 18a to 18h inserted in the slot 11 cut the crossover wires 19a, 19c, 19e, and 19g as shown in FIG.
  • the cut multiple winding tortoiseshell windings 18a to 18h are reconnected by the crossover wires 20a to 20e so that the two multiple winding tortoiseshell windings inserted in the same slot 11 are connected in parallel.
  • FIG. 6 is an equivalent circuit diagram of a 48-slot 4-pole machine in the stator 30i of the rotating electrical machine (for example, a three-phase induction motor) 50 manufactured according to the embodiment.
  • FIG. 6 a configuration corresponding to a plurality of multi-turn turtle shell windings 18a to 18h and a plurality of crossover wires 19b, 19d, 19f, and 20a to 20e is referred to as two U-phase multi-turn turtle shell windings 18 for convenience.
  • two U-phase multi-turn turtle shell windings 18 are connected in parallel between the feeding terminal 15 and the neutral point terminal 16. Thereby, the number of strands of the multi-turn turtle shell winding inserted per slot can be increased, and the equivalent cross-sectional area of the multi-turn turtle shell winding can be increased. Can be made highly efficient.
  • the multi-turned turtle-shaped windings inserted on the slot opening side and the back side of the slot are crossed between adjacent multi-turned turtle-shaped windings 18a to 18h to form a multi-turned turtle-shaped winding.
  • the purpose is to equalize the leakage flux of the flowing coil, and hence the leakage reactance.
  • FIG. 7B is a diagram showing the relationship between the slot depth and the leakage magnetic flux.
  • connection method between the coils according to the present invention does not limit the connection method unless a problem such as heat generation occurs in the connection part. (Caulking connection or welding connection may be used.)
  • the multi-turn turtle shell composed of double strands without changing the existing winding equipment by a simple cutting / reconnecting operation after inserting the slot 11 into the connecting wire between the multiple winding turtle shell-shaped windings.
  • a stator core having the same electrical characteristics as a form winding can be manufactured.
  • the stator winding 4 i has the crossover wire after the plurality of multi-turn turtle shell windings 18 a to 18 h are inserted into the plurality of slots 11.
  • the transition lines 19b, 19d, 19f, and 20a to 20e are transposed by partially cutting 19a to 19g and reconnecting the transition lines 20a to 20e in a pattern different from that before cutting.
  • the stator winding 4 i includes a plurality of multi-turn turtle shell windings 18 a to 18 h and a second jumper wire group 20.
  • the plurality of multiple winding turtle shell windings 18 a to 18 h are inserted into the plurality of slots 11 while being connected by the first crossover group 19.
  • the second jumper wire group 20 includes the first jumper wire group 19 after the first jumper wire group 19 is partially cut in a state where the plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11.
  • a plurality of multi-turn turtle shell windings 18a to 18h are reconnected in a pattern different from that of the line group 19.
  • the crossover wires 19a to 19g are partially cut after the plurality of multiple winding turtle shell windings 18a to 18h are inserted into the plurality of slots 11, and the crossover wires 20a to 20e are reconnected in a different pattern from that before cutting.
  • the stator winding 4i can be configured.
  • the second jumper wire group 20 is connected in parallel so that the two multi-turn turtle shell windings inserted in the same slot 11 are connected.
  • the plurality of multiple winding turtle shell windings 18a to 18h are reconnected.
  • two multi-turn turtle shell windings 18 arranged on one of the slot opening side and the slot back side in one slot 11 are arranged on the other of the slot opening side and the slot back side in another slot 11, respectively.
  • the leakage magnetic fluxes of the two multi-turn turtle shell windings 18 can be made equal to each other.
  • stator of the rotating electrical machine according to the present invention is useful for the rotating electrical machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

A stator for a rotating electric machine is provided with a stator iron core having a plurality of slots, and stator coils that are inserted and wound into the plurality of slots. After a plurality of the stator coils are inserted into the plurality of slots, connecting lines are cut at certain sites, and reconnected in a pattern differing from before they were cut, whereby the connecting lines are rearranged.

Description

回転電機の固定子Rotating electric machine stator
 本発明は、回転電機の固定子に関する。 The present invention relates to a stator of a rotating electric machine.
 回転電機のスロットの形状を同一に保ったまま回転電機を高効率化させる手法として、スロットに挿入される多重巻亀甲形巻線の断面積を増加させる方法がある。このとき、多重巻亀甲形巻線の断面積を増加させるには、巻線に使用される電線径を上げる方法、多重巻亀甲形巻線の巻数(ターン数)を増加させる方法、若しくは、素線数を増加させる方法が用いられる。小容量機においては、製作の容易性から複数の丸線よりなる多重巻亀甲形巻線が主に採用されている。 There is a method of increasing the cross-sectional area of the multi-turn turtle shell winding inserted into the slot as a method for improving the efficiency of the rotating electrical machine while maintaining the same slot shape of the rotating electrical machine. At this time, in order to increase the cross-sectional area of the multi-turn turtle shell winding, a method of increasing the diameter of the wire used for the winding, a method of increasing the number of turns (number of turns) of the multi-turn turtle shell winding, A method of increasing the number of lines is used. In small-capacity machines, a multi-turn turtle shell winding composed of a plurality of round wires is mainly adopted for ease of manufacture.
 特許文献1には、各相の多重巻亀甲形巻線を等しい本数の素線よりなる複数の組に分け、その組毎にスロットの奥側からの挿入位置を順次変更することにより、組ごとの多重巻亀甲形巻線の接続線の上下の位置が交換されることが記載されている。これにより、特許文献1によれば、多重巻亀甲形巻線間の接続線に転位が施されるので、多重巻亀甲形巻線において渦電流損失や循環電流が少なくなるとされている。 In Patent Document 1, the multiplex winding turtle shell winding of each phase is divided into a plurality of sets made of an equal number of strands, and the insertion position from the back side of the slot is sequentially changed for each set, so that each set It is described that the upper and lower positions of the connecting wire of the multi-turn turtle shell winding are exchanged. Thus, according to Patent Document 1, since dislocation is applied to the connection line between the multi-turn turtle shell windings, it is said that eddy current loss and circulating current are reduced in the multi-turn turtle shell winding.
特開平6-284614号公報JP-A-6-284614
 特許文献1に記載の技術では、各相の多重巻亀甲形巻線を予め複数組に分けて作成する必要があるので、接続線(渡り線)の転位を行うための準備の作業が煩雑である。 In the technique described in Patent Document 1, since it is necessary to divide and create multiple sets of multi-turn turtle shell windings for each phase in advance, the preparation work for transferring the connection lines (crossover lines) is complicated. is there.
 本発明は、上記に鑑みてなされたものであって、渡り線の転位を行うための準備の負担を軽減できる回転電機の固定子を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a stator of a rotating electrical machine that can reduce the burden of preparation for performing a transition of a jumper.
 上述した課題を解決し、目的を達成するために、本発明の1つの側面にかかる回転電機の固定子は、複数のスロットを有する固定子鉄心と、前記複数のスロットに挿入されて巻回される固定子巻線とを備え、前記固定子巻線は、複数の巻線が前記複数のスロットに挿入された後に渡り線が部分的に切断されて前記渡り線が切断前と異なるパターンで再接続されることにより前記渡り線の転位が行われて構成されていることを特徴とする。 In order to solve the above-described problems and achieve the object, a stator of a rotating electric machine according to one aspect of the present invention is inserted into a plurality of slots and wound around a stator core having a plurality of slots. The stator winding is re-patterned in a pattern different from that before cutting because the crossover wires are partially cut after the plurality of windings are inserted into the plurality of slots. It is characterized in that the connecting wire is dislocated by being connected.
 本発明によれば、固定子巻線は、複数の巻線が複数のスロットに挿入された後に渡り線が部分的に切断されて渡り線が切断前と異なるパターンで再接続されることにより渡り線の転位が行われて構成されている。これにより、予め多重巻亀甲形巻線を複数組に分けて製作する作業を省略することができるので、渡り線の転位を行うための準備の負担を軽減できる。 According to the present invention, the stator winding is moved by partially connecting the connecting wires after the plurality of windings are inserted into the plurality of slots and reconnecting the connecting wires in a pattern different from that before the cutting. Line dislocation is performed and configured. As a result, it is possible to omit the work of dividing the multi-turn turtle shell windings into a plurality of sets in advance, so that it is possible to reduce the burden of preparation for performing the transition of the crossover.
図1は、実施の形態にかかる回転電機の固定子の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a stator of a rotating electrical machine according to an embodiment. 図2は、実施の形態によって1スロット当りに挿入される多重巻亀甲形巻線の素線数を示す図である。FIG. 2 is a diagram showing the number of strands of the multi-turn turtle shell winding inserted per slot according to the embodiment. 図3は、実施の形態によって製作される48スロット4極機の多重巻亀甲形巻線の概略図である。FIG. 3 is a schematic view of a multi-turn turtle shell winding of a 48-slot four-pole machine manufactured according to the embodiment. 図4は、実施の形態によって製作される48スロット4極機の多重巻亀甲形巻線の切断・再接続を解説するための図である。FIG. 4 is a diagram for explaining cutting and reconnection of a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the embodiment. 図5は、実施の形態によって製作される48スロット4極機の多重巻亀甲形巻線が固定子鉄心に挿入された状態を示す概略図である。FIG. 5 is a schematic view showing a state in which a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the embodiment is inserted into a stator core. 図6は、実施の形態によって製作される48スロット4極機における等価回路図である。FIG. 6 is an equivalent circuit diagram of a 48-slot 4-pole machine manufactured according to the embodiment. 図7は、実施の形態において製作された多重巻亀甲形巻線のスロット挿入時の結線状態、再接続後の結線状態、及びスロット深さと漏れ磁束の関係をそれぞれ示す図である。FIG. 7 is a diagram illustrating a connection state at the time of slot insertion, a connection state after reconnection, and a relationship between the slot depth and the leakage magnetic flux of the multi-turn turtle shell winding manufactured in the embodiment. 図8は、基本の形態にかかる固定子を用いた回転電機の構成を示す図である。FIG. 8 is a diagram showing a configuration of a rotating electrical machine using a stator according to a basic form. 図9は、基本の形態にかかる回転電機の固定子の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of a stator of a rotating electrical machine according to a basic form. 図10は、基本の形態によって1スロット当りに挿入される多重巻亀甲形巻線の素線数を示す図である。FIG. 10 is a diagram showing the number of strands of multiple winding turtle shell windings inserted per slot according to the basic configuration. 図11は、基本の形態によって製作される48スロット4極機の多重巻亀甲形巻線の概略図である。FIG. 11 is a schematic view of a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the basic configuration. 図12は、基本の形態によって製作される48スロット4極機の多重巻亀甲形巻線が固定子鉄心に挿入された状態を示す概略図である。FIG. 12 is a schematic view showing a state in which a multi-turn turtle shell winding of a 48-slot 4-pole machine manufactured according to the basic form is inserted into a stator core. 図13は、基本の形態によって製作される48スロット4極機における等価回路図である。FIG. 13 is an equivalent circuit diagram of a 48-slot 4-pole machine manufactured according to the basic configuration.
 以下に、本発明にかかる回転電機の固定子の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a stator for a rotating electrical machine according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 実施の形態にかかる回転電機50の固定子30iについて説明する前に、基本の形態にかかる回転電機50の固定子30について説明する。
Embodiment.
Before describing the stator 30i of the rotating electrical machine 50 according to the embodiment, the stator 30 of the rotating electrical machine 50 according to the basic embodiment will be described.
 固定子30は、固定子30に対して回転子40が回転するような回転電機50に用いられる。回転電機50は、例えば、図8に示すような三相誘導電動機である。図8は、基本の形態にかかる固定子30を用いた回転電機50の構成を示す図である。 The stator 30 is used in a rotating electrical machine 50 in which the rotor 40 rotates with respect to the stator 30. The rotating electrical machine 50 is, for example, a three-phase induction motor as shown in FIG. FIG. 8 is a diagram showing a configuration of a rotating electrical machine 50 using the stator 30 according to the basic form.
 回転電機50は、フレーム1、固定子30、ブラケット5、回転子40、外扇ファン8、及び外扇カバー9を備える。固定子30は、固定子鉄心2及び固定子巻線4を有する。回転子40は、回転子鉄心3、エンドリングファン10、ベアリング6、及びシャフト7を有する。 The rotating electrical machine 50 includes a frame 1, a stator 30, a bracket 5, a rotor 40, an outer fan fan 8, and an outer fan cover 9. The stator 30 has a stator core 2 and a stator winding 4. The rotor 40 includes a rotor core 3, an end ring fan 10, a bearing 6, and a shaft 7.
 フレーム1は、例えば略円筒形状を有し、固定子30、ブラケット5、回転子40、外扇ファン8、及び外扇カバー9を収容する。フレーム1には、その表面に冷却フィンが設けられている。 The frame 1 has, for example, a substantially cylindrical shape, and houses the stator 30, the bracket 5, the rotor 40, the outer fan fan 8, and the outer fan cover 9. The frame 1 is provided with cooling fins on the surface thereof.
 固定子30は、フレーム1に固定されている。固定子30は、回転子40に離間しながら、回転子40を収容するように構成されている。固定子30では、固定子巻線4が、固定子鉄心2に挿入されている。固定子鉄心2は、シャフト7と同心になるように構成されており、例えば、シャフト7に沿った軸を有する略円筒形状を有している。固定子鉄心2は、例えば、積層された電磁鋼板等により形成されている。 The stator 30 is fixed to the frame 1. The stator 30 is configured to accommodate the rotor 40 while being separated from the rotor 40. In the stator 30, the stator winding 4 is inserted into the stator core 2. The stator core 2 is configured to be concentric with the shaft 7 and has, for example, a substantially cylindrical shape having an axis along the shaft 7. The stator core 2 is formed of, for example, laminated electromagnetic steel plates.
 ブラケット5は、フレーム1の端板を成すように構成されている。ブラケット5は、回転子40のシャフト7により貫通されている。 The bracket 5 is configured to form an end plate of the frame 1. The bracket 5 is penetrated by the shaft 7 of the rotor 40.
 回転子40は、固定子30に対して回転可能に構成されている。回転子鉄心3は、シャフト7に取り付けられている。回転子鉄心3は、例えばかご形で構成され、2つのエンドリング部、及び複数の導体バー(複数のローターバー)を有する。エンドリングファン10は、2つのエンドリング部に取り付けられており、回転子鉄心3とともに回転可能に構成されている。ベアリング6は、シャフト7をブラケット5に対して回転可能に軸支する転がり軸受である。シャフト7は、回転負荷に連結されており、回転軸RA周りの回転動力を回転負荷に伝達する。例えば、シャフト7は、外扇ファン8に連結されており、回転軸RA周りの回転動力を外扇ファン8に伝達する。 The rotor 40 is configured to be rotatable with respect to the stator 30. The rotor core 3 is attached to the shaft 7. The rotor core 3 is configured in a cage shape, for example, and has two end ring portions and a plurality of conductor bars (a plurality of rotor bars). The end ring fan 10 is attached to two end ring portions and is configured to be rotatable together with the rotor core 3. The bearing 6 is a rolling bearing that rotatably supports the shaft 7 with respect to the bracket 5. The shaft 7 is connected to a rotational load, and transmits rotational power around the rotational axis RA to the rotational load. For example, the shaft 7 is connected to the outer fan fan 8 and transmits the rotational power around the rotation axis RA to the outer fan fan 8.
 外扇ファン8は、回転することにより、外部の空気を吸引してフレーム1側に導き、フレーム1の表面とフレーム1に付随する冷却フィンとを冷却させる。 The outer fan 8 rotates to suck outside air and guide it to the frame 1 side to cool the surface of the frame 1 and the cooling fins attached to the frame 1.
 外扇カバー9は、外扇ファン8を覆うように設けられ、外扇ファン8を外部の衝撃等から保護する。 The outer fan cover 9 is provided so as to cover the outer fan fan 8 and protects the outer fan fan 8 from an external impact or the like.
 次に、回転電機50の固定子30の構成について図9を用いて説明する。図9は、基本の形態にかかる回転電機50の固定子30の構成を示す図である。 Next, the configuration of the stator 30 of the rotating electrical machine 50 will be described with reference to FIG. FIG. 9 is a diagram showing a configuration of the stator 30 of the rotating electrical machine 50 according to the basic form.
 固定子30は、上記のように、固定子鉄心2及び固定子巻線4を有する。固定子鉄心2は、固定子鉄心本体21、複数のティース12、及び複数のスロット11を有する。 The stator 30 has the stator core 2 and the stator winding 4 as described above. The stator core 2 includes a stator core body 21, a plurality of teeth 12, and a plurality of slots 11.
 複数のティース12は、固定子鉄心本体21から回転軸RAに向けて放射方向に沿って延びている。複数のティース12は、根元側端部が固定子鉄心本体21にリング状に連結されている。隣接するティース12間には、それぞれ、スロット11が形成されている。例えば、図9には、固定子鉄心本体21に沿ったスロット番号No.1~No.48で示す位置に、それぞれスロット11が配されている。以下では、U相に関連した構成を中心に説明するが、他の相(V相、W相)についても同様である。 The plurality of teeth 12 extend along the radial direction from the stator core body 21 toward the rotation axis RA. The plurality of teeth 12 have root ends connected to the stator core body 21 in a ring shape. Slots 11 are formed between adjacent teeth 12, respectively. For example, FIG. 9 shows slot numbers No. 1 along the stator core body 21. 1-No. Slots 11 are respectively arranged at positions indicated by 48. In the following description, the configuration related to the U phase will be mainly described, but the same applies to the other phases (V phase, W phase).
 固定子巻線4は、複数のスロット11に挿入されて、複数のティース12に巻回されている。固定子巻線4は、複数の多重巻亀甲形巻線14a~14d、及び渡り線群17を有する。各多重巻亀甲形巻線14a~14dは、スロット11に挿入されている。渡り線群17は、複数の多重巻亀甲形巻線14a~14cを互いに接続する。渡り線群17は、複数の渡り線17a~17cを有する。 The stator winding 4 is inserted into a plurality of slots 11 and wound around a plurality of teeth 12. The stator winding 4 includes a plurality of multiple winding turtle shell windings 14 a to 14 d and a crossover group 17. Each of the multiple winding turtle shell windings 14 a to 14 d is inserted into the slot 11. The crossover group 17 connects a plurality of multiple winding turtle shell windings 14a to 14c to each other. The crossover group 17 has a plurality of crossover lines 17a to 17c.
 例えば、渡り線17aは、多重巻亀甲形巻線14a及び多重巻亀甲形巻線14bを接続する。例えば、渡り線17bは、多重巻亀甲形巻線14b及び多重巻亀甲形巻線14cを接続する。例えば、渡り線17cは、多重巻亀甲形巻線14c及び多重巻亀甲形巻線14dを接続する。 For example, the crossover wire 17a connects the multiple winding turtle shell winding 14a and the multiple winding turtle shell winding 14b. For example, the crossover wire 17b connects the multi-turn turtle shell winding 14b and the multi-turn turtle shell winding 14c. For example, the crossover wire 17c connects the multi-turn turtle shell winding 14c and the multi-turn turtle shell winding 14d.
 より具体的には、各多重巻亀甲形巻線14を、図10に示すように複数本の素線13で構成する。例えば、図11に示すように、複数の多重巻亀甲形巻線14a~14dが渡り線群17で接続されるように固定子巻線4を構成する。そして、図12に示すように、固定子巻線4を複数のスロット11に挿入する。これにより、図9に示す回転電機50の固定子30が得られる。 More specifically, each multi-turn turtle shell winding 14 is composed of a plurality of strands 13 as shown in FIG. For example, as shown in FIG. 11, the stator winding 4 is configured such that a plurality of multiple winding turtle shell windings 14 a to 14 d are connected by a crossover group 17. Then, the stator winding 4 is inserted into the plurality of slots 11 as shown in FIG. Thereby, the stator 30 of the rotary electric machine 50 shown in FIG. 9 is obtained.
 図10は、基本の形態によって1スロット当りに挿入される多重巻亀甲形巻線14の素線数を示す図である。例えば、図10では、1スロット当りに挿入される多重巻亀甲形巻線14の素線数が4本である場合について例示されている。 FIG. 10 is a diagram showing the number of strands of the multi-turned turtle shell winding 14 inserted per slot according to the basic configuration. For example, FIG. 10 illustrates a case where the number of strands of the multi-turn turtle shell winding 14 inserted per slot is four.
 図11は、基本の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30における48スロット4極機の多重巻亀甲形巻線14a~14dの概略図である。図12は、基本の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30における48スロット4極機の多重巻亀甲形巻線14a~14dが固定子鉄心2に挿入された状態を示す概略図である。図9は、基本の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30における48スロット4極機の多重巻亀甲形巻線14a~14dが固定子鉄心2に挿入された状態を、回転軸RAに沿った方向から示している。 FIG. 11 is a schematic diagram of the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form. FIG. 12 shows that the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows the state. FIG. 9 shows that the multi-turn turtle shell windings 14a to 14d of the 48 slot quadrupole machine in the stator 30 of the rotating electric machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. The state is shown from the direction along the rotation axis RA.
 図11及び図12に示された矢印は、巻線の巻き回されている方向を示している。なお、図12、図9の図中に示す数字はスロット11を時計まわりの順に番号付けしたものである。この番号は図12、図9いずれにおいても共通である。 The arrows shown in FIGS. 11 and 12 indicate the direction in which the winding is wound. The numbers shown in FIGS. 12 and 9 are the slots 11 numbered in the clockwise order. This number is common to both FIG. 12 and FIG.
 図11に示す多重巻亀甲形巻線14a~14dは、図12のようにスロット11へ挿入される。例えば、スロット番号No.1のスロット11とスロット番号No.12のスロット11とには、同一の多重巻亀甲形巻線14aが挿入されており、スロット番号No.2のスロット11とスロット番号No.11のスロット11とには、多重巻亀甲形巻線14bが挿入されている。例えば、スロット番号No.24のスロット11とスロット番号No.13のスロット11とには、同一の多重巻亀甲形巻線14cが挿入されており、スロット番号No.23のスロット11とスロット番号No.14のスロット11とには、多重巻亀甲形巻線14dが挿入されている。 11 is inserted into the slot 11 as shown in FIG. For example, the slot number No. 1 slot 11 and slot number no. 12 slot 11 is inserted with the same multi-turn turtle shell winding 14a. 2 slot 11 and slot number no. A multi-turn turtle shell winding 14 b is inserted into the 11 slots 11. For example, the slot number No. 24 slot 11 and slot number no. 13 slot 11 is inserted with the same multi-turn turtle shell winding 14c. 23 slot 11 and slot number no. A multi-turn turtle shell winding 14 d is inserted into the 14 slots 11.
 基本の形態で製作した場合における固定子巻線4の等価回路図は、例えば、図13に示すようになる。図13は、基本の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30における48スロット4極機における等価回路図である。 The equivalent circuit diagram of the stator winding 4 when manufactured in the basic form is as shown in FIG. 13, for example. FIG. 13 is an equivalent circuit diagram of a 48-slot 4-pole machine in the stator 30 of a rotating electrical machine (for example, a three-phase induction motor) 50 manufactured according to the basic form.
 図13では、複数の多重巻亀甲形巻線14a~14d及び複数の渡り線17a~17cに対応した構成を便宜的にU相の多重巻亀甲形巻線14として示している。U相の多重巻亀甲形巻線14は、その一端が給電端子15に接続され、その他端が中性点端子16に接続されている(図11、図12、図9参照)。 In FIG. 13, a configuration corresponding to a plurality of multiple winding turtle shell windings 14a to 14d and a plurality of crossover wires 17a to 17c is shown as a U-phase multiple winding turtle shell winding 14 for convenience. One end of the U-phase multiple winding turtle shell winding 14 is connected to the power supply terminal 15, and the other end is connected to the neutral point terminal 16 (see FIGS. 11, 12, and 9).
 基本の形態では、回転電機50の高効率化を行うためには、多重巻亀甲形巻線の断面積を増加させることが考えられる。多重巻亀甲形巻線の断面積を増加させる方法としては、1スロット当りに挿入される多重巻亀甲形巻線の素線数を増加させることが考えられる。 In the basic form, in order to increase the efficiency of the rotating electrical machine 50, it is conceivable to increase the cross-sectional area of the multi-turn turtle shell winding. As a method of increasing the cross-sectional area of the multi-turn turtle shell winding, it is conceivable to increase the number of strands of the multi-turn turtle shell winding inserted per slot.
 このとき、仮に、各相の多重巻亀甲形巻線を等しい本数の素線よりなる複数の組に分け、その組毎にスロットの奥側からの挿入位置を順次変更して、渡り線の転位を行うことで、1スロット当りに挿入される多重巻亀甲形巻線の素線数を増加させる場合について考える。各相の多重巻亀甲形巻線を予め複数組に分けて作成する必要があるので、接続線(渡り線)の転位を行うための準備の作業が煩雑である。例えば、各相の多重巻亀甲形巻線を予め複数組に分けて作成する作業を、人手で行うか、あるいは、専用の巻線設備を用意して、複雑な操作を行う必要がある。 At this time, suppose that the multiple winding turtle shell winding of each phase is divided into a plurality of sets made of the same number of strands, and the insertion position from the back side of the slot is sequentially changed for each set, and the transition of the crossover wire A case will be considered in which the number of strands of the multi-turn turtle shell winding inserted per slot is increased by performing the above. Since it is necessary to divide and create multiple winding turtle shell windings for each phase in advance, the preparation work for transposing the connection lines (crossover lines) is complicated. For example, it is necessary to manually perform the work of creating multiple sets of multiple winding turtle shell windings for each phase in advance, or to prepare dedicated winding equipment and perform complicated operations.
 そこで、本実施の形態では、以下の工夫を行うことで、渡り線の転位を行うための準備の負担を軽減させることを目指す。以下では、基本の形態と異なる部分を中心に説明する。 Therefore, the present embodiment aims to reduce the burden of preparation for performing crossover dislocation by making the following measures. Below, it demonstrates centering on a different part from a basic form.
 具体的には、回転電機50の固定子30iを図1に示すように構成する。図1は、実施の形態にかかる回転電機50の固定子30iの構成を示す図である。 Specifically, the stator 30i of the rotating electrical machine 50 is configured as shown in FIG. FIG. 1 is a diagram illustrating a configuration of a stator 30i of a rotating electrical machine 50 according to an embodiment.
 固定子巻線4iは、複数の多重巻亀甲形巻線18a~18hが複数のスロット11に挿入された後に渡り線19a~19gが部分的に切断されて渡り線20a~20eが切断前と異なるパターンで再接続されることにより渡り線の転位が行われて構成されている。 In the stator winding 4i, the crossover wires 19a to 19g are partially cut after the plurality of multiple winding turtle shell windings 18a to 18h are inserted into the plurality of slots 11, and the crossover wires 20a to 20e are different from those before cutting. Crossover dislocation is performed by reconnecting with a pattern.
 例えば、複数の多重巻亀甲形巻線18a~18hは、第1の渡り線群19で接続された状態で複数のスロット11に挿入されている(図1参照)。第2の渡り線群20は、複数の多重巻亀甲形巻線18a~18hが複数のスロット11に挿入された状態で第1の渡り線群19が部分的に切断された後に第1の渡り線群19と異なるパターンで複数の多重巻亀甲形巻線18a~18hを再接続させるように構成されている。第1の渡り線群19は、複数の渡り線19a~19gを有する(図3参照)。第2の渡り線群20は、複数の渡り線20a~20eを有する(図4参照)。 For example, a plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11 in a state of being connected by the first crossover group 19 (see FIG. 1). The second jumper wire group 20 includes the first jumper wire group 19 after the first jumper wire group 19 is partially cut in a state where the plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11. A plurality of multi-turn turtle shell windings 18a to 18h are reconnected in a pattern different from that of the line group 19. The first connecting wire group 19 has a plurality of connecting wires 19a to 19g (see FIG. 3). The second connecting wire group 20 has a plurality of connecting wires 20a to 20e (see FIG. 4).
 より具体的には、各多重巻亀甲形巻線18を、図2に示すように複数本の素線13で構成する。例えば、図3に示すように、複数の多重巻亀甲形巻線18a~18hが第1の渡り線群19で接続されるように固定子巻線4iを構成する。そして、固定子巻線4iを複数のスロット11に挿入し、図4に示すように、第1の渡り線群19を部分的に切断し、その後、第2の渡り線群20により、第1の渡り線群19と異なるパターンで複数の多重巻亀甲形巻線18a~18hを再接続させる。このとき、第2の渡り線群20は、同一スロット11に挿入された2つの多重巻亀甲形巻線が並列に接続されるように、複数の多重巻亀甲形巻線18a~18hを再接続させる。これにより、図5、図1に示す回転電機50の固定子30iが得られる。 More specifically, each multiple winding turtle shell winding 18 is composed of a plurality of strands 13 as shown in FIG. For example, as shown in FIG. 3, the stator winding 4 i is configured such that a plurality of multiple winding turtle shell windings 18 a to 18 h are connected by a first crossover group 19. Then, the stator winding 4i is inserted into the plurality of slots 11, and the first crossover group 19 is partially cut as shown in FIG. A plurality of multiple turtle shell windings 18a to 18h are reconnected in a pattern different from that of the crossover wire group 19. At this time, the second crossover group 20 reconnects the multiple turtle shell windings 18a to 18h so that the two multiple turtle shell windings inserted in the same slot 11 are connected in parallel. Let Thereby, the stator 30i of the rotary electric machine 50 shown to FIG. 5, FIG. 1 is obtained.
 図2は、実施の形態によって1スロット当りに挿入される多重巻亀甲形巻線18の素線数を示す図である。例えば、図2では、1スロット当りに挿入される多重巻亀甲形巻線18の素線数が8本である場合について例示されている。例えば、各多重巻亀甲形巻線18の素線数が基本の形態と同様であっても(図10参照)、1スロット当りに挿入される多重巻亀甲形巻線18の数を例えば2倍にすることができるので、1スロット当りに挿入される多重巻亀甲形巻線18の素線数を2倍にすることができる。 FIG. 2 is a diagram showing the number of strands of the multi-turn turtle shell winding 18 inserted per slot according to the embodiment. For example, FIG. 2 illustrates a case where the number of strands of the multi-turn turtle shell winding 18 inserted per slot is eight. For example, even if the number of strands of each multi-turned turtle shell winding 18 is the same as in the basic form (see FIG. 10), the number of multiple-turned turtle shell windings 18 inserted per slot is doubled, for example. Therefore, the number of strands of the multi-turn turtle shell winding 18 inserted per slot can be doubled.
 これにより、図2に示すように、素線13を複数本まとめて製作される多重巻亀甲形巻線を既存の巻線設備そのままに2倍の素線数の多重巻亀甲形巻線と同等の電気特性をもつ固定子鉄心を製作することができる。 As a result, as shown in FIG. 2, the multi-turn turtle shell winding produced by combining a plurality of strands 13 is equivalent to the multi-turn turtle shell winding having twice the number of strands without changing the existing winding equipment. A stator core with the following electrical characteristics can be manufactured.
 図3は、実施の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30iにおける48スロット4極機の多重巻亀甲形巻線18a~18hの概略図である。図4は、基本の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30iにおける48スロット4極機の多重巻亀甲形巻線18a~18hが固定子鉄心2に挿入されたまま切断・再接続される様子を示す概略図である。図5は、切断・再接続後における、回転電機(例えば、三相誘導電動機)50の固定子30iにおける48スロット4極機の多重巻亀甲形巻線18a~18hの概略図である。図1は、切断・再接続後における、回転電機(例えば、三相誘導電動機)50の固定子30iにおける48スロット4極機の多重巻亀甲形巻線18a~18hが固定子鉄心2に挿入された状態を、回転軸RAに沿った方向から示している。 FIG. 3 is a schematic view of the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the embodiment. FIG. 4 shows that the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 manufactured according to the basic form are inserted into the stator core 2. It is the schematic which shows a mode that it disconnects and reconnects as it is. FIG. 5 is a schematic diagram of the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 after being disconnected and reconnected. FIG. 1 shows that the multi-turn turtle shell windings 18a to 18h of the 48 slot quadrupole machine in the stator 30i of the rotating electrical machine (for example, three-phase induction motor) 50 are inserted into the stator core 2 after being disconnected and reconnected. The state is shown from the direction along the rotation axis RA.
 本実施の形態では、多重巻亀甲形巻線18a~18h間をつないでいる渡り線19a、19c、19e、19gをスロット11へ挿入後に切断・再接続するため通常より長めにすることが好ましい。 In this embodiment, it is preferable that the crossover wires 19a, 19c, 19e, and 19g connecting the multi-turn turtle shell windings 18a to 18h are longer than usual because they are disconnected and reconnected after being inserted into the slot 11.
 図3に示すように製作した、多重巻亀甲形巻線18a~18hはスロット11へ挿入する。このとき、基本の形態では、1スロットに対して1つの多重巻亀甲形巻線14を挿入しているが、本実施の形態においては、1つのスロットに対して例えば2つの多重巻亀甲形巻線18を挿入する。 The multi-turn turtle shell windings 18a to 18h manufactured as shown in FIG. At this time, in the basic configuration, one multiple winding turtle shell winding 14 is inserted into one slot. However, in this embodiment, for example, two multiple winding turtle shell windings are inserted into one slot. Insert line 18.
 スロット11に挿入された多重巻亀甲形巻線18a~18hは、図4のように、渡り線19a、19c、19e、19gを切断する。切断した多重巻亀甲形巻線18a~18hについては、同一スロット11に挿入された2つの多重巻亀甲形巻線が並列に接続されるように渡り線20a~20eで再接続する。 The multiple winding turtle shell windings 18a to 18h inserted in the slot 11 cut the crossover wires 19a, 19c, 19e, and 19g as shown in FIG. The cut multiple winding tortoiseshell windings 18a to 18h are reconnected by the crossover wires 20a to 20e so that the two multiple winding tortoiseshell windings inserted in the same slot 11 are connected in parallel.
 実施の形態で製作した場合における固定子巻線4iの等価回路図は、例えば、図6に示すようになる。図6は、実施の形態によって製作される回転電機(例えば、三相誘導電動機)50の固定子30iにおける48スロット4極機における等価回路図である。 An equivalent circuit diagram of the stator winding 4i when manufactured in the embodiment is as shown in FIG. 6, for example. FIG. 6 is an equivalent circuit diagram of a 48-slot 4-pole machine in the stator 30i of the rotating electrical machine (for example, a three-phase induction motor) 50 manufactured according to the embodiment.
 図6では、複数の多重巻亀甲形巻線18a~18h及び複数の渡り線19b,19d,19f,20a~20eに対応した構成を便宜的にU相の2つの多重巻亀甲形巻線18として示している。例えば、図6に破線で囲って示すように、U相の2つの多重巻亀甲形巻線18が給電端子15及び中性点端子16の間で並列接続されている。これにより、1スロット当りに挿入される多重巻亀甲形巻線の素線数を増加させることができ、多重巻亀甲形巻線の等価的な断面積を増加させることができるので、回転電機50の高効率化を行うことができる。 In FIG. 6, a configuration corresponding to a plurality of multi-turn turtle shell windings 18a to 18h and a plurality of crossover wires 19b, 19d, 19f, and 20a to 20e is referred to as two U-phase multi-turn turtle shell windings 18 for convenience. Show. For example, as shown by being surrounded by a broken line in FIG. 6, two U-phase multi-turn turtle shell windings 18 are connected in parallel between the feeding terminal 15 and the neutral point terminal 16. Thereby, the number of strands of the multi-turn turtle shell winding inserted per slot can be increased, and the equivalent cross-sectional area of the multi-turn turtle shell winding can be increased. Can be made highly efficient.
 なお、上記の再接続には、隣接する多重巻亀甲形巻線18a~18h間でスロット開口側とスロット奥側とに挿入された多重巻亀甲形巻線を交差させ多重巻亀甲形巻線に流れるコイルの漏れ磁束、ついては漏れリアクタンスを均等にする目的がある。 In the above reconnection, the multi-turned turtle-shaped windings inserted on the slot opening side and the back side of the slot are crossed between adjacent multi-turned turtle-shaped windings 18a to 18h to form a multi-turned turtle-shaped winding. The purpose is to equalize the leakage flux of the flowing coil, and hence the leakage reactance.
 例えば、スロット開口側とスロット奥側とに挿入された2つの多重巻亀甲形巻線18を比較すると、図7(b)に示すように、スロット開口側の多重巻亀甲形巻線18の漏れ磁束の方がスロット奥側の多重巻亀甲形巻線18の漏れ磁束よりも大きい傾向にある。図7(b)は、スロット深さと漏れ磁束との関係を示す図である。 For example, when comparing two multi-turned turtle shell windings 18 inserted on the slot opening side and the back side of the slot, as shown in FIG. The magnetic flux tends to be larger than the leakage magnetic flux of the multi-turn turtle shell winding 18 on the back side of the slot. FIG. 7B is a diagram showing the relationship between the slot depth and the leakage magnetic flux.
 それに対して、図7(a)の左図に示すスロット11挿入時の結線状態から、渡り線を切断・再接続させることで、図7(a)の右図に示す結線状態へ転位させる。これにより、1つのスロット11内でスロット開口側及びスロット奥側の一方に配置される2つの多重巻亀甲形巻線18がそれぞれ別のスロット11内でスロット開口側及びスロット奥側の他方に配置されることになるので、2つの多重巻亀甲形巻線18の漏れ磁束を互いに均等にすることができる。 On the other hand, from the connection state when the slot 11 shown in the left diagram of FIG. 7A is inserted, the connecting wire is disconnected and reconnected to shift to the connection state shown in the right diagram of FIG. As a result, two multi-turn turtle shell windings 18 arranged on one of the slot opening side and the slot back side in one slot 11 are arranged on the other of the slot opening side and the slot back side in another slot 11, respectively. As a result, the leakage magnetic fluxes of the two multi-turn turtle shell windings 18 can be made equal to each other.
 なお、本発明によるコイル間の結線接続方法は接続部に発熱等の問題が生じない限り接続方法を限定しない。(カシメ接続や溶接での接続でも良い。) In addition, the connection method between the coils according to the present invention does not limit the connection method unless a problem such as heat generation occurs in the connection part. (Caulking connection or welding connection may be used.)
 本実施の形態によれば、多重巻亀甲形巻線間の渡り線をスロット11挿入後の簡単な切断・再接続作業により既存の巻線設備をそのままに2倍の素線からなる多重巻亀甲形巻線と同等の電気特性をもった固定子鉄心を製作することができる。 According to the present embodiment, the multi-turn turtle shell composed of double strands without changing the existing winding equipment by a simple cutting / reconnecting operation after inserting the slot 11 into the connecting wire between the multiple winding turtle shell-shaped windings. A stator core having the same electrical characteristics as a form winding can be manufactured.
 以上のように、本実施の形態では、回転電機50の固定子30iにおいて、固定子巻線4iは、複数の多重巻亀甲形巻線18a~18hが複数のスロット11に挿入された後に渡り線19a~19gが部分的に切断されて渡り線20a~20eが切断前と異なるパターンで再接続されることにより渡り線19b,19d,19f,20a~20eの転位が行われて構成されている。これにより、予め多重巻亀甲形巻線を複数組に分けて製作する作業を省略することができるので、渡り線の転位を行うための準備の負担を軽減できる。 As described above, in the present embodiment, in the stator 30 i of the rotating electrical machine 50, the stator winding 4 i has the crossover wire after the plurality of multi-turn turtle shell windings 18 a to 18 h are inserted into the plurality of slots 11. The transition lines 19b, 19d, 19f, and 20a to 20e are transposed by partially cutting 19a to 19g and reconnecting the transition lines 20a to 20e in a pattern different from that before cutting. As a result, it is possible to omit the work of dividing the multi-turn turtle shell windings into a plurality of sets in advance, so that it is possible to reduce the burden of preparation for performing the transition of the crossover.
 また、本実施の形態では、回転電機50の固定子30iにおいて、固定子巻線4iが、複数の多重巻亀甲形巻線18a~18h及び第2の渡り線群20を有する。複数の多重巻亀甲形巻線18a~18hは、第1の渡り線群19で接続された状態で複数のスロット11に挿入されている。第2の渡り線群20は、複数の多重巻亀甲形巻線18a~18hが複数のスロット11に挿入された状態で第1の渡り線群19が部分的に切断された後に第1の渡り線群19と異なるパターンで複数の多重巻亀甲形巻線18a~18hを再接続させるように構成されている。これにより、複数の多重巻亀甲形巻線18a~18hが複数のスロット11に挿入された後に渡り線19a~19gが部分的に切断されて渡り線20a~20eが切断前と異なるパターンで再接続されるように、固定子巻線4iを構成することができる。 Further, in the present embodiment, in the stator 30 i of the rotating electrical machine 50, the stator winding 4 i includes a plurality of multi-turn turtle shell windings 18 a to 18 h and a second jumper wire group 20. The plurality of multiple winding turtle shell windings 18 a to 18 h are inserted into the plurality of slots 11 while being connected by the first crossover group 19. The second jumper wire group 20 includes the first jumper wire group 19 after the first jumper wire group 19 is partially cut in a state where the plurality of multi-turn turtle shell windings 18a to 18h are inserted into the plurality of slots 11. A plurality of multi-turn turtle shell windings 18a to 18h are reconnected in a pattern different from that of the line group 19. As a result, the crossover wires 19a to 19g are partially cut after the plurality of multiple winding turtle shell windings 18a to 18h are inserted into the plurality of slots 11, and the crossover wires 20a to 20e are reconnected in a different pattern from that before cutting. Thus, the stator winding 4i can be configured.
 また、本実施の形態では、回転電機50の固定子30iにおいて、第2の渡り線群20は、同一スロット11に挿入された2つの多重巻亀甲形巻線が並列に接続されるように、複数の多重巻亀甲形巻線18a~18hを再接続させる。これにより、1つのスロット11内でスロット開口側及びスロット奥側の一方に配置される2つの多重巻亀甲形巻線18がそれぞれ別のスロット11内でスロット開口側及びスロット奥側の他方に配置されることになるので、2つの多重巻亀甲形巻線18の漏れ磁束を互いに均等にすることができる。これにより、既存の巻線設備において作成可能であった素線数からなる多重巻亀甲形巻線の2倍の素線数からなる多重巻亀甲形巻線と同等の多重巻亀甲形巻線を製作することが可能となるとともに、固定子30iの特性を向上できる。 Further, in the present embodiment, in the stator 30i of the rotating electrical machine 50, the second jumper wire group 20 is connected in parallel so that the two multi-turn turtle shell windings inserted in the same slot 11 are connected. The plurality of multiple winding turtle shell windings 18a to 18h are reconnected. As a result, two multi-turn turtle shell windings 18 arranged on one of the slot opening side and the slot back side in one slot 11 are arranged on the other of the slot opening side and the slot back side in another slot 11, respectively. As a result, the leakage magnetic fluxes of the two multi-turn turtle shell windings 18 can be made equal to each other. As a result, a multi-turn turtle-shaped winding equivalent to a multi-turn turtle-shaped winding consisting of twice as many wires as the multi-turn turtle-shaped winding consisting of the number of wires that could be created with existing winding equipment While being able to manufacture, the characteristic of the stator 30i can be improved.
 以上のように、本発明にかかる回転電機の固定子は、回転電機に有用である。 As described above, the stator of the rotating electrical machine according to the present invention is useful for the rotating electrical machine.
 1 フレーム、2 固定子鉄心、3 回転子鉄心、4 固定子巻線、5 ブラケット、6 ベアリング、7 シャフト、8 外扇ファン、9 外扇カバー、10 エンドリングファン、11 スロット、12 ティース、13 素線、14a~14d 多重巻亀甲形巻線、15 給電端子、16 中性点端子、17a~17c 渡り線、18a~18h 多重巻亀甲形巻線、19a~19g 渡り線、20a~20e 渡り線、30,30i 固定子、40 回転子、50 回転電機。 1 frame, 2 stator core, 3 rotor core, 4 stator winding, 5 bracket, 6 bearing, 7 shaft, 8 outer fan fan, 9 outer fan cover, 10 end ring fan, 11 slots, 12 teeth, 13 Wires, 14a to 14d, multi-turn turtle shell winding, 15 feed terminals, 16 neutral point terminals, 17a to 17c crossover wire, 18a to 18h multi-turn turtle shell winding, 19a to 19g crossover wire, 20a to 20e crossover wire , 30, 30i stator, 40 rotor, 50 rotating electrical machine.

Claims (3)

  1.  複数のスロットを有する固定子鉄心と、
     前記複数のスロットに挿入されて巻回される固定子巻線と、
     を備え、
     前記固定子巻線は、複数の巻線が前記複数のスロットに挿入された後に渡り線が部分的に切断されて渡り線が切断前と異なるパターンで再接続されることにより渡り線の転位が行われて構成されている
     ことを特徴とする回転電機の固定子。
    A stator core having a plurality of slots;
    A stator winding inserted into the plurality of slots and wound;
    With
    In the stator winding, after the plurality of windings are inserted into the plurality of slots, the connecting wire is partially cut and the connecting wire is reconnected in a pattern different from that before cutting, so that the connecting wire is dislocated. A stator of a rotating electric machine, characterized in that it is made and configured.
  2.  前記固定子巻線は、
     第1の渡り線群で接続された状態で前記複数のスロットに挿入された複数の多重巻亀甲形巻線と、
     前記複数の多重巻亀甲形巻線が前記複数のスロットに挿入された状態で前記第1の渡り線群が部分的に切断された後に前記第1の渡り線群と異なるパターンで前記複数の多重巻亀甲形巻線を再接続させるように構成された第2の渡り線群と、
     を有する
     ことを特徴とする請求項1に記載の回転電機の固定子。
    The stator winding is
    A plurality of multi-turn turtle shell windings inserted into the plurality of slots in a state of being connected by a first crossover group;
    The plurality of multiplex windings in a pattern different from that of the first crossover group after the first crossover group is partially cut in a state in which the plurality of multiplex winding turtle shell windings are inserted into the plurality of slots. A second crossover group configured to reconnect the tortoiseshell-shaped winding;
    The stator of the rotating electrical machine according to claim 1, wherein
  3.  前記第2の渡り線群は、同一スロットに挿入された2つの多重巻亀甲形巻線が並列に接続されるように、前記複数の多重巻亀甲形巻線を再接続させる
     ことを特徴とする請求項2に記載の回転電機の固定子。
    The second jumper wire group reconnects the plurality of multi-turn turtle shell windings so that the two multi-turn turtle shell windings inserted in the same slot are connected in parallel. The stator of the rotary electric machine according to claim 2.
PCT/JP2013/063795 2013-05-17 2013-05-17 Stator for rotating electric machine WO2014184951A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380076646.1A CN105229900A (en) 2013-05-17 2013-05-17 The stator of electric rotating machine
PCT/JP2013/063795 WO2014184951A1 (en) 2013-05-17 2013-05-17 Stator for rotating electric machine
JP2015516859A JP5855318B2 (en) 2013-05-17 2013-05-17 Stator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063795 WO2014184951A1 (en) 2013-05-17 2013-05-17 Stator for rotating electric machine

Publications (1)

Publication Number Publication Date
WO2014184951A1 true WO2014184951A1 (en) 2014-11-20

Family

ID=51897956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063795 WO2014184951A1 (en) 2013-05-17 2013-05-17 Stator for rotating electric machine

Country Status (3)

Country Link
JP (1) JP5855318B2 (en)
CN (1) CN105229900A (en)
WO (1) WO2014184951A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056296A1 (en) * 2015-10-01 2017-04-06 三菱電機株式会社 Three-phase induction motor
WO2019130893A1 (en) * 2017-12-25 2019-07-04 株式会社 明電舎 Stator of rotary machine
EP3982517A1 (en) * 2020-10-12 2022-04-13 Valeo Siemens eAutomotive Germany GmbH Stator for an electric machine with improved protection against potential differences between adjacent stator coils

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019132681A1 (en) * 2019-08-08 2021-02-11 stoba e-Systems GmbH Electric motor and stator with multiple grooves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759283A (en) * 1993-08-18 1995-03-03 Yaskawa Electric Corp Armature winding connection of three-phase ac motor
JP2005224052A (en) * 2004-02-06 2005-08-18 Fujitsu General Ltd Motor and method for manufacturing the same
JP2009195004A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Rotating electric machine
JP2009303420A (en) * 2008-06-16 2009-12-24 Asmo Co Ltd Stator and motor and manufacturing method for stator
JP2010074889A (en) * 2008-09-16 2010-04-02 Asmo Co Ltd Motor stator and method for manufacturing stator
JP2012095462A (en) * 2010-10-27 2012-05-17 Hitachi Automotive Systems Ltd Rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101904B2 (en) * 1987-03-20 1994-12-12 株式会社日立製作所 Wiring method for multi-turn turtle-shaped stator coil
JP3444637B2 (en) * 1993-01-27 2003-09-08 株式会社デンソー Armature of rotating electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0759283A (en) * 1993-08-18 1995-03-03 Yaskawa Electric Corp Armature winding connection of three-phase ac motor
JP2005224052A (en) * 2004-02-06 2005-08-18 Fujitsu General Ltd Motor and method for manufacturing the same
JP2009195004A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Rotating electric machine
JP2009303420A (en) * 2008-06-16 2009-12-24 Asmo Co Ltd Stator and motor and manufacturing method for stator
JP2010074889A (en) * 2008-09-16 2010-04-02 Asmo Co Ltd Motor stator and method for manufacturing stator
JP2012095462A (en) * 2010-10-27 2012-05-17 Hitachi Automotive Systems Ltd Rotary electric machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056296A1 (en) * 2015-10-01 2017-04-06 三菱電機株式会社 Three-phase induction motor
JPWO2017056296A1 (en) * 2015-10-01 2018-02-08 三菱電機株式会社 Three-phase induction motor
US20180358874A1 (en) * 2015-10-01 2018-12-13 Mitsubishi Electric Corporation Three-phase induction motor
US11101723B2 (en) 2015-10-01 2021-08-24 Mitsubishi Electric Corporation Three-phase induction motor
WO2019130893A1 (en) * 2017-12-25 2019-07-04 株式会社 明電舎 Stator of rotary machine
JP2019115180A (en) * 2017-12-25 2019-07-11 株式会社明電舎 Stator of rotary machine
EP3731378A4 (en) * 2017-12-25 2021-01-20 Meidensha Corporation Stator of rotary machine
US11056944B2 (en) 2017-12-25 2021-07-06 Meidensha Corporation Stator of rotary machine
EP3982517A1 (en) * 2020-10-12 2022-04-13 Valeo Siemens eAutomotive Germany GmbH Stator for an electric machine with improved protection against potential differences between adjacent stator coils

Also Published As

Publication number Publication date
JP5855318B2 (en) 2016-02-09
CN105229900A (en) 2016-01-06
JPWO2014184951A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6457198B2 (en) Brushless motor
JP5741747B1 (en) Insulator and brushless DC motor using the same
JP5924710B2 (en) Rotating electric machine
JPWO2015079732A1 (en) Armature of electric machine
JP6872289B1 (en) Rotating machine and its manufacturing method
JP5855318B2 (en) Stator manufacturing method
JP2018042423A (en) Coil and rotary electric machine with coil
WO2021112040A1 (en) Rotating electric machine stator and rotating electric machine
US10128707B2 (en) Winding for an electric machine having transposed bars comprised of stacks of strands
CN112531933A (en) Motor stator and motor
JP2003143822A (en) Induction motor
JP2006191733A (en) Winding connecting structure of rotating electric machine
CN213585304U (en) Motor stator and motor
JP2015111975A (en) Stator of dynamo-electric machine, and method of manufacturing stator of dynamo-electric machine
JP4483241B2 (en) 3-phase motor
CN112467898A (en) Motor stator and motor
JP2017184475A (en) Motor device and manufacturing method for motor device
WO2020170422A1 (en) Stator, motor, and compressor
JP2016101003A (en) Rotary machine and manufacturing method of the same
JP6189691B2 (en) Rotating electric machine stator
US12009714B2 (en) Rotating electric machine stator and rotating electric machine
JP5644526B2 (en) Stator and motor
CN214124962U (en) Motor stator and motor
CN214543852U (en) Motor stator winding, motor stator and motor
CN214101001U (en) Motor stator and motor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076646.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884701

Country of ref document: EP

Kind code of ref document: A1