WO2014184015A1 - Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides - Google Patents

Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides Download PDF

Info

Publication number
WO2014184015A1
WO2014184015A1 PCT/EP2014/059027 EP2014059027W WO2014184015A1 WO 2014184015 A1 WO2014184015 A1 WO 2014184015A1 EP 2014059027 W EP2014059027 W EP 2014059027W WO 2014184015 A1 WO2014184015 A1 WO 2014184015A1
Authority
WO
WIPO (PCT)
Prior art keywords
so2ch3
cfs
lsoxazolin
lsoxazol
alkyl
Prior art date
Application number
PCT/EP2014/059027
Other languages
English (en)
Inventor
Helmut Kraus
Frederick CALO
Matthias Witschel
Thomas Seitz
Trevor William Newton
Dario MASSA
Thomas Mietzner
Maciej Pasternak
Klaus Kreuz
Richard Roger Evans
Jens Lerchl
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2014184015A1 publication Critical patent/WO2014184015A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/713Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • C07D257/06Five-membered rings with nitrogen atoms directly attached to the ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to substituted N-(tetrazol-5-yl)- and N-(triazol-5- yl)arylcarboxamide compounds and the N-oxides and salts thereof and to compositions comprising the same.
  • the invention also relates to the use of the N-(tetrazol-5-yl)- and N- (triazol-5-yl)arylcarboxamide compounds or of the compositions comprising such compounds for controlling unwanted vegetation. Furthermore, the invention relates to methods of applying such compounds.
  • WO 201 1/035874 describes N-(1 ,2,5-oxadiazol-3-yl)benzamides carrying 3 substituents in the 2-, 3- and 4-positions of the phenyl ring and their use as herbicides.
  • WO 2012/028579 describes N-(tetrazol-4-yl)- and N-(triazol-3-yl)arylcarboxylic acid amides carrying 3 substituents in the 2-, 3- and 4-positions of the aryl ring and their use as herbicides.
  • the compounds of the prior art often suffer form insufficient herbicidal activity in particular at low application rates and/or unsatisfactory selectivity resulting in a low compatibility with crop plants.
  • N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds having a strong herbicidal activity, in particular even at low application rates, a sufficiently low toxicity for humans and animals and/or a high compatibility with crop plants.
  • the N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds should also show a broad activity spectrum against a large number of different unwanted plants.
  • R 1 is selected from the group consisting of cyano-Z 1 , halogen, nitro, Ci-Cs-alkyl, C2-C8- alkenyl, C2-Cs-alkynyl, Ci-Cs-haloalkyl, d-Cs-alkoxy, Ci-C 4 -alkoxy-Ci-C 4 -alkyl, Ci-C 4 - alkoxy-Ci-C -alkoxy-Z 1 , Ci-C -alkylthio-Ci-C -alkyl, Ci-C -alkylthio-Ci-C -alkylthio-Z 1 , C 2 - C6-alkenyloxy, C2-C6-alkynyloxy, Ci-C6-haloalkoxy, Ci-C 4 -haloalkoxy-Ci-C 4 -alkyl, Ci-C 4 - haloalkoxy-Ci-C 4 -alkoxy-Z 1
  • R 2 , R 3 are identical or different and independently selected from the group consisting of hydrogen, halogen, OH-Z 2 , NO2-Z 2 , cyano-Z 2 , Ci-C6-alkyl, C2-Cs-alkenyl, C2-Cs-alkynyl, C 3 -Cio- cycloalkyl-Z 2 , C 3 -Cio-cycloalkoxy-Z 2 , where the C 3 -Cio-cycloalkyl groups in the two afore- mentioned radicals are unsubstituted or partially or completely halogenated, Ci-Cs- haloalkyl, Ci-Cs-alkoxy-Z 2 , Ci-Cs-haloalkoxy-Z 2 , Ci-C 4 -alkoxy-Ci-C 4 -alkoxy-Z 2 , Ci-C 4 - a I ky 11 h i o-C1 -C 4 -a I kyl
  • R 4 , R 5 are identical or different and independently selected from the group consisting of hydrogen, cyano- Z 1 , halogen, nitro, Ci-Cs-alkyl, C 3 -C7-cycloalkyl, C 3 -C7-cycloalkyl-Ci-C 4 -alkyl, where the C 3 -C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-Cs-alkenyl, C2-Cs-alkynyl, Ci-Cs-haloalkyl, Ci-C 3 - alkylamino, Ci-C 3 -dialkylamino, Ci-C 3 -alkylamino-S(0)k, Ci-C 3 -alkylcarbonyl, Ci-C 3 - alkoxy, Ci-C 4 -alkoxy-Ci-C 4 -alkyl, Ci-C 4 -alkoxy-Ci-C 4 -
  • R 4 and R 5 are different from hydrogen; and further provided that if R 4 is hydrogen, halogen, cyano, nitro, Ci-C 4 -alkyl or Ci-C 4 -haloalkyl, R 5 is not hydrogen, halogen, Ci-C 4 -alkyl or Ci-C 4 -haloalkyl;
  • n 0, 1 or 2;
  • k 0, 1 or 2;
  • R', R 11 , R 21 independently of each other are selected from the group consisting of halogen, NO2, CN, d-Ce-alkyl, C 3 -C 7 -cycloalkyl, C 3 -C 7 -halocycloalkyl, Ci-C 6 -haloalkyl, C 2 -C 6 -alkenyl, C 2 - C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C6-alkoxy, Ci-C 4 -alkoxy-Ci-C 4 -alkyl,
  • Ci-C 4 -alkylthio-Ci-C 4 -alkyl, Ci-C 4 -haloalkoxy-Ci-C 4 -alkyl, Ci-C 4 -alkoxy-Ci-C 4 -alkoxy, C3- C7-cycloalkoxy and Ci-C6-haloalkyloxy, or two vicinal radicals R', R 11 or R 21 together may form a group 0;
  • Z, Z 1 , Z 2 independently of each other are selected from the group consisting of a covalent bond and Ci-C 4 -alkanediyl;
  • Z 2a is selected from the group consisting of a covalent bond, Ci-C 4 -alkanediyl, 0-Ci-C 4 - alkanediyl, Ci-C 4 -alkanediyl-0 and Ci-C 4 -alkanediyl-0-Ci-C 4 -alkanediyl;
  • R b , R 1b , R 2b independently of each other are selected from the group consisting of Ci-C6-alkyl, C3-C7-cycloalkyl, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6- haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, Ci-C 4 -alkoxy and Ci
  • R c , R 2c independently of each other are selected from the group consisting of hydrogen, C1-C6- alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-Ci-C 4 -alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C 4 - alkoxy-Ci-C 4 -alkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6- membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O,
  • R d , R 2d independently of each other are selected from the group consisting of Ci-C6-alkyl, C3-C7- cycloalkyl, C3-C7-cycloalkyl-Ci-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C1-C6- haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4- alkoxy-Ci-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-halo
  • R e , R f independently of each other are selected from the group consisting of hydrogen, C1-C6- alkyl, C3-C7-cycloalkyl, C3-C7-cycloalkyl-Ci-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated,
  • Ci-C6-haloalkyl C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, C1-C4- alkoxy-Ci-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and C1-C4- haloalkoxy, or
  • R e , R f together with the nitrogen atom, to which they are bound may form a 5-, 6 or 7- membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy;
  • R 2e , R 2f independently of each other have the meanings given for R e , R f ;
  • R9 is selected from the group consisting of hydrogen, Ci-C6-alkyl, C3-C7-cycloalkyl, C3-C7- cycloalkyl-Ci-C4-alkyl, where the C3-C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, Ci-C6-haloalkyl, C2-C6- alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C4-alkoxy-Ci-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alk
  • R k has the meanings given for R c ;
  • the invention also relates to the use of a compound of the present invention, an N-oxide or a salt thereof or of a composition comprising at least one compound of the invention, an N-oxide or an agriculturally suitable salt thereof for combating or controlling unwanted vegetation.
  • the invention also relates to a composition comprising at least one compound according to the invention, including an N-oxide or a salt thereof, and at least one auxiliary.
  • the invention relates to an agricultural composition comprising at least one compound according to the invention including an N-oxide or an agriculturally suitable salt thereof, and at least one auxiliary customary for crop protection formulations.
  • the present invention also relates to a method for combating or controlling unwanted vegetation, which method comprises allowing a herbicidally effective amount of at least one compound according to the invention, including an N-oxide or a salt thereof, to act on unwanted plants, their seed and/or their habitat.
  • the compounds of formula I may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastereomers.
  • the invention provides both the pure enantiomers or pure diastereomers of the compounds of formula I, and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compound of formula I or its mixtures.
  • Suitable compounds of formula I also include all possible geometrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be present with respect to an alkene, carbon-nitrogen double-bond, nitrogen-sulfur double bond or amide group.
  • stereoisomer(s) encompasses both optical isomers, such as enantiomers or diastereomers, the latter existing due to more than one center of chirality in the molecule, as well as geometrical isomers (cis/trans isomers).
  • the compounds of formula I may be present in the form of their tautomers.
  • the invention also relates to the tautomers of the formula I and the stereoisomers, salts and N-oxides of said tautomers.
  • N-oxide includes any compound of the present invention which has at least one tertiary nitrogen atom that is oxidized to an N-oxide moiety.
  • N-oxides in compounds of formula I can in particular be prepared by oxidizing the ring nitrogen atom(s) of the N-(tetrazol-5- yl)- and N-(triazol-5-yl)arylcarboxamide ring with a suitable oxidizing agent, such as peroxo car- boxylic acids or other peroxides, or the ring nitrogen atom(s) of a heterocyclic substituent R, R 1 , R 2 or R 3 .
  • the present invention moreover relates to compounds as defined herein, wherein one or more of the atoms depicted in formula I have been replaced by its stable, preferably non- radioactive isotope (e.g., hydrogen by deuterium, 12 C by 13 C, 14 N by 15 N, 16 0 by 18 0) and in particular wherein at least one hydrogen atom has been replaced by a deuterium atom.
  • the compounds according to the invention contain more of the respective isotope than this naturally occurs and thus is anyway present in the compounds of formula I.
  • the compounds of the present invention may be amorphous or may exist in one ore more different crystalline states (polymorphs) which may have different macroscopic properties such as stability or show different biological properties such as activities.
  • the present invention includes both amorphous and crystalline compounds of formula I, their enantiomers or diastere- omers, mixtures of different crystalline states of the respective compound of formula I, its enantiomers or diastereomers, as well as amorphous or crystalline salts thereof.
  • Salts of the compounds of the present invention are preferably agriculturally suitable salts. They can be formed in a customary method, e.g. by reacting the compound with an acid if the compound of the present invention has a basic functionality or by reacting the compound with a suitable base if the compound of the present invention has an acidic functionality.
  • Useful agriculturally suitable salts are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, do not have any adverse effect on the herbicidal action of the compounds according to the present invention.
  • Suitable cations are in particular the ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium (NhV) and substituted ammonium in which one to four of the hydrogen atoms are replaced by Ci-C4-alkyl, C1-C4- hydroxyalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, hydroxy-Ci-C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl.
  • substituted ammonium ions comprise methylammonium, isoprop- ylammonium, dimethylammonium, diisopropylammonium, trimethylammonium, tetrame- thylammonium, tetraethylammonium, tetrabutylammonium, 2-hydroxyethylammonium, 2-(2- hydroxyethoxy)ethylammonium, bis(2-hydroxyethyl)ammonium, benzyltrimethylammonium and benzl-triethylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(Ci-C4- alkyl)sulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium.
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensul- fate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting compounds of the present invention with an acid of the corresponding anion, preferably with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • weeds undesired vegetation
  • weeds are understood to include any vegetation growing in non-crop-areas or at a crop plant site or locus of seeded and otherwise desired crop, where the vegetation is any plant species, including their germinant seeds, emerging seedlings and established vegetation, other than the seeded or desired crop (if any).
  • Weeds, in the broadest sense, are plants considered undesirable in a particular location.
  • the organic moieties mentioned in the above definitions of the variables are - like the term halogen - collective terms for individual listings of the individual group members.
  • the prefix C n - Cm indicates in each case the possible number of carbon atoms in the group.
  • halogen denotes in each case fluorine, bromine, chlorine or iodine, in particular fluorine, chlorine or bromine.
  • partially or completely halogenated will be taken to mean that 1 or more, e.g. 1 , 2, 3, 4 or 5 or all of the hydrogen atoms of a given radical have been replaced by a halogen atom, in particular by fluorine or chlorine.
  • a partially or completely halogenated radical is termed below also “halo-radical”.
  • partially or completely halogenated alkyl is also termed haloalkyl.
  • alkyl as used herein (and in the alkyl moieties of other groups comprising an alkyl group, e.g. alkoxy, alkylamino, alkylcarbonyl, alkoxycarbonyl, alkylthio, alkylsulfonyl and alkoxyalkyi) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 10 carbon atoms, frequently from 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms and in particular from 1 to 3 carbon atoms.
  • Ci-C4-alkyl examples include methyl, ethyl, n-propyl, iso- propyl, n-butyl, 2-butyl (sec-butyl), isobutyl and tert-butyl.
  • Ci-C6-alkyl are, apart those mentioned for Ci-C4-alkyl, n-pentyl, 1 -methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2- dimethylpropyl, 1 -ethylpropyl, n-hexyl, 1 ,1 -dimethylpropyl, 1 ,2-dimethylpropyl, 1 -methylpentyl, 2- methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1 -dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3- dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1 -ethylbutyl, 2-ethylbutyl,
  • Ci-Cio-alkyl are, apart those mentioned for Ci-C6-alkyl, n-heptyl, 1 -methylhexyl, 2- methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1 -ethylpentyl, 2-ethylpentyl, 3- ethylpentyl, n-octyl, 1 -methyloctyl, 2-methylheptyl, 1 -ethylhexyl, 2-ethylhexyl, 1 ,2-dimethylhexyl, 1 -propylpentyl, 2-propylpentyl, nonyl, decyl, 2-propylheptyl
  • alkylene (or alkanediyl) as used herein in each case denotes an alkyl radical as defined above, wherein one hydrogen atom at any position of the carbon backbone is replaced by one further binding site, thus forming a bivalent moiety.
  • haloalkyl as used herein (and in the haloalkyl moieties of other groups com- prising a haloalkyl group, e.g. haloalkoxy, haloalkylthio, haloalkylcarbonyl, haloalkylsulfonyl and haloalkylsulfinyl) denotes in each case a straight-chain or branched alkyl group having usually from 1 to 8 carbon atoms (“Ci-Cs-haloalkyl”), frequently from 1 to 6 carbon atoms (“C1-C6- haloalkyl”), more frequently 1 to 4 carbon atoms (“Ci-C4-haloalkyl”), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms.
  • haloalkyl as used herein (and in the haloalkyl moieties of other groups com- prising a haloalkyl group,
  • haloalkyl moie- ties are selected from Ci-C4-haloalkyl, more preferably from Ci-C2-haloalkyl, more preferably from halomethyl, in particular from Ci-C2-fluoroalkyl.
  • Halomethyl is methyl in which 1 , 2 or 3 of the hydrogen atoms are replaced by halogen atoms. Examples are bromomethyl, chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl and the like.
  • Ci-C2-fluoroalkyl examples include fluo- romethyl, difluoromethyl, trifluoromethyl, 1 -fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, pentafluoroethyl, and the like.
  • Ci-C2-haloalkyl are, apart those mentioned for Ci-C2-fluoroalkyl, chloromethyl, dichloromethyl, trichloromethyl, bromomethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1 -chloroethyl, 2-chloroethyl, 2,2,- dichloroethyl, 2,2,2-trichloroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro- 2-fluoroethyl, 1 -bromoethyl, and the like.
  • Ci-C4-haloalkyl are, apart those mentioned for Ci-C2-haloalkyl, 1 -fluoropropyl, 2-fluoropropyl, 3-fluoropropyl, 3,3-difluoropropyl,
  • cycloalkyi as used herein (and in the cycloalkyi moieties of other groups comprising a cycloalkyi group, e.g. cycloalkoxy and cycloalkylalkyi) denotes in each case a mono- or bicyclic cycloaliphatic radical having usually from 3 to 10 carbon atoms (“C3-Cio-cycloalkyl”), preferably 3 to 7 carbon atoms (“C3-C7-cycloalkyl”) or in particular 3 to 6 carbon atoms (“C3-C6- cycloalkyl").
  • Examples of monocyclic radicals having 3 to 6 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Examples of monocyclic radicals having 3 to 7 carbon atoms comprise cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • Examples of bicyclic radicals having 7 or 8 carbon atoms comprise bicyclo[2.1.1]hexyl, bicyclo[2.2.1]heptyl, bicyclo[3.1.1]heptyl, bicyclo[2.2.1]heptyl, bicyclo[2.2.2]octyl and bicyclo[3.2.1]octyl.
  • halocycloalkyl as used herein (and in the halocycloalkyl moieties of other groups comprising an halocycloalkyl group, e.g. halocycloalkylmethyl) denotes in each case a mono- or bicyclic cycloaliphatic radical having usually from 3 to 10 carbon atoms, preferably 3 to 7 carbon atoms or in particular 3 to 6 carbon atoms, wherein at least one, e.g. 1 , 2, 3, 4 or 5 of the hydrogen atoms are replaced by halogen, in particular by fluorine or chlorine. Examples are
  • cycloalkyl-alkyl used herein denotes a cycloalkyi group, as defined above, which is bound to the remainder of the molecule via an alkylene group.
  • C3-C7- cycloalkyl-Ci-C4-alkyl refers to a C3-C7-cycloalkyl group as defined above which is bound to the remainder of the molecule via a Ci-C4-alkyl group, as defined above.
  • Examples are cyclo- propylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclobu- tylpropyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclohexylmethyl, cyclo- hexylethyl, cyclohexylpropyl, and the like.
  • alkenyl denotes in each case a monounsaturated straight-chain or branched hydrocarbon radical having usually 2 to 8 (“C2-C8-alkenyl”), preferably 2 to 6 carbon atoms (“C2-C6-alkenyl”), in particular 2 to 4 carbon atoms (“C2-C4-alkenyl”), and a double bond in any position, for example C2-C4-alkenyl, such as ethenyl, 1 -propenyl, 2-propenyl, 1 - methylethenyl, 1 -butenyl, 2-butenyl, 3-butenyl, 1 -methyl-1 -propenyl, 2-methyl-1 -propenyl, 1 - methyl-2-propenyl or 2-methyl-2-propenyl; C2-C6-alkenyl, such as ethenyl, 1 -propenyl, 2- propenyl, 1 -methylethenyl,
  • haloalkenyl as used herein, which may also be expressed as "alkenyl which is substituted by halogen", and the haloalkenyl moieties in haloalkenyloxy and the like refers to unsaturated straight-chain or branched hydrocarbon radicals having 2 to 8 ("C2-C8-haloalkenyl") or 2 to 6 (“C2-C6-haloalkenyl”) or 2 to 4 (“C2-C4-haloalkenyl”) carbon atoms and a double bond in any position, where some or all of the hydrogen atoms in these groups are replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, for example chlorovinyl, chloroallyl and the like.
  • alkynyl denotes unsaturated straight-chain or branched hydrocarbon radicals having usually 2 to 8 (“C2-C8-alkynyl”), frequently 2 to 6 (“C2-C6-alkynyl”), preferably 2 to 4 carbon atoms (“C2-C4-alkynyl”) and a triple bond in any position, for example C2- C4-alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2-butynyl, 3-butynyl, 1 -methyl-2- propynyl and the like, C2-C6-alkynyl, such as ethynyl, 1 -propynyl, 2-propynyl, 1 -butynyl, 2- butynyl, 3-butynyl, 1 -methyl-2-propynyl, 1 -pentynyl, 2-
  • haloalkynyl as used herein, which is also expressed as “alkynyl which is substituted by halogen”, refers to unsaturated straight-chain or branched hydrocarbon radicals having usually 2 to 8 carbon atoms (“C2-C8-haloalkynyl”), frequently 2 to 6 (“C2-C6-haloalkynyl”), preferabyl 2 to 4 carbon atoms (“C2-C4-haloalkynyl”), and a triple bond in any position (as mentioned above), where some or all of the hydrogen atoms in these groups are replaced by halo- gen atoms as mentioned above, in particular fluorine, chlorine and bromine.
  • alkoxy denotes in each case a straight-chain or branched alkyl group usually having from 1 to 8 carbon atoms ("d-Cs-alkoxy”), frequently from 1 to 6 carbon atoms (“Ci-C6-alkoxy”), preferably 1 to 4 carbon atoms (“Ci-C4-alkoxy”), which is bound to the remainder of the molecule via an oxygen atom.
  • Ci-C2-Alkoxy is methoxy or ethoxy.
  • C1-C4- Alkoxy is additionally, for example, n-propoxy, 1 -methylethoxy (isopropoxy), butoxy,
  • Ci-C6-Alkoxy is additionally, for example, pentoxy, 1 -methylbutoxy, 2-methylbutoxy, 3- methylbutoxy, 1 ,1 -dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1 -ethylpropoxy, hexoxy, 1 -methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1 - dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3- dimethylbutoxy, 3,3-dimethylbutoxy, 1 -ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2-trimethylpropoxy, 1 ,2,2- trimethylpropoxy, 1 -ethyl-1
  • haloalkoxy denotes in each case a straight-chain or branched alkoxy group, as defined above, having from 1 to 8 carbon atoms (“Ci-Cs-haloalkoxy”), frequently from 1 to 6 carbon atoms (“Ci-C6-haloalkoxy”), preferably 1 to 4 carbon atoms (“C1-C4- haloalkoxy”), more preferably 1 to 3 carbon atoms (“Ci-C3-haloalkoxy”), wherein the hydrogen atoms of this group are partially or totally replaced with halogen atoms, in particular fluorine atoms.
  • Ci-C 2 -Haloalkoxy is, for example, OCH 2 F, OCHF 2 , OCF 3 , OCH2CI, OCHC , OCCI 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2- chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2- fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy or OC2F5.
  • Ci-C4-Haloalkoxy is additionally, for example, 2-fluoropropoxy, 3-fluoropropoxy, 2,2- difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2- bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2-C2F5, OCF2-C2F5, 1 -(CH 2 F)-2-fluoroethoxy, 1 -(CH 2 CI)-2-chloroethoxy, 1 -(CH 2 Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.
  • Ci-C6-Haloalkoxy is additionally, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-brompentoxy, 5-iodopentoxy, unde- cafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluo- rohexoxy.
  • alkoxyalkyl denotes in each case alkyl usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an alkoxy radical usually comprising 1 to 8, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above.
  • Ci-C6-alkoxy-Ci-C6-alkyl is a Ci-C6-alkyl group, as defined above, in which one hydrogen atom is replaced by a Ci-C6-alkoxy group, as defined above.
  • Examples are CH2OCH3, CH2-OC2H5, n-propoxymethyl, CH2-OCH(CH3)2, n-butoxymethyl, (l -methylpropoxy)-methyl, (2- methylpropoxy)methyl, CH2-OC(CH3)3, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(n-propoxy)-ethyl, 2- (1 -methylethoxy)-ethyl, 2-(n-butoxy)ethyl, 2-(1 -methylpropoxy)-ethyl, 2-(2-methylpropoxy)-ethyl, 2-(1 ,1 -dimethylethoxy)-ethyl, 2-(methoxy)-propyl, 2-(ethoxy)-propyl, 2-(n-propoxy)-propyl, 2-(1 - methylethoxy)-propyl, 2-(n-butoxy)-propyl, 2-(1 -methylpropoxy)-propyl, 2-(2-methylprop
  • haloalkoxy-alkyl denotes in each case alkyl as defined above, usually comprising 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, wherein 1 carbon atom carries an haloalkoxy radical as defined above, usually comprising 1 to 8, frequently 1 to 6, in particular 1 to 4, carbon atoms as defined above.
  • Examples are fluoromethoxymethyl, difluoro- methoxymethyl, trifluoromethoxymethyl, 1 -fluoroethoxymethyl, 2-fluoroethoxymethyl, 1 ,1 - difluoroethoxymethyl, 1 ,2-difluoroethoxymethyl, 2,2-difluoroethoxymethyl, 1 ,1 ,2- trifluoroethoxymethyl, 1 ,2,2-trifluoroethoxymethyl, 2,2,2-trifluoroethoxymethyl, pentafluoroethox- ymethyl, 1 -fluoroethoxy-1 -ethyl, 2-fluoroethoxy-1 -ethyl, 1 ,1 -difluoroethoxy-1 -ethyl, 1 ,2- difluoroethoxy-1 -ethyl, 2,2-difluoroethoxy-1 -ethyl, 1 ,1 ,2-trifluoroethoxy-1 -e
  • alkylthio (also alkylsulfanyl, “alkyl-S” or “alkyl-S(0) k “ (wherein k is 0)) as used herein denotes in each case a straight-chain or branched saturated alkyl group as defined above, usually comprising 1 to 8 carbon atoms (“Ci-Cs-alkylthio”), frequently comprising 1 to 6 carbon atoms (“Ci-C6-alkylthio”), preferably 1 to 4 carbon atoms (“Ci-C4-alkylthio”), which is attached via a sulfur atom at any position in the alkyl group.
  • Ci-C2-Alkylthio is methylthio or ethylthio.
  • Ci-C4-Alkylthio is additionally, for example, n-propylthio, 1 -methylethylthio (iso- propylthio), butylthio, 1 -methylpropylthio (sec-butylthio), 2-methylpropylthio (isobutylthio) or 1 ,1 - dimethylethylthio (tert-butylthio).
  • Ci-C6-Alkylthio is additionally, for example, pentylthio, 1 - methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 1 ,1 -dimethylpropylthio, 1 ,2- dimethylpropylthio, 2,2-dimethylpropylthio, 1 -ethylpropylthio, hexylthio, 1 -methylpentylthio, 2- methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1 ,1 -dimethylbutylthio, 1 ,2- dimethylbutylthio, 1 ,3-dimethylbutylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio,
  • Ci-Cs-Alkylthio is additionally, for example, heptylthio, octylthio, 2-ethylhexylthio and positional isomers thereof.
  • haloalkylthio refers to an alkylthio group as defined above wherein the hydrogen atoms are partially or completely substituted by fluorine, chlorine, bromine and/or iodine.
  • Ci-C 2 -Haloalkylthio is, for example, SCH 2 F, SCHF 2 , SCF 3 , SCH 2 CI, SCHCI 2 , SCC , chlorofluoromethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 2- fluoroethylthio, 2-chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2,2,2- trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2-dichloro-2
  • Ci-C4-Haloalkylthio is additionally, for example, 2-fluoropropylthio, 3-fluoropropylthio, 2,2-difluoropropylthio, 2,3-difluoropropylthio,
  • Ci-C6-Haloalkylthio is additionally, for example, 5-fluoropentylthio, 5-chloropentylthio, 5-brompentylthio, 5- iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio,
  • alkylsulfinyl and “alkyl-S(0)k” (wherein k is 1 ) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • alkylsulfinyl and “alkyl-S(0)k” (wherein k is 1 ) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C2-a I kylsu If i nyl refers to a Ci-C2-alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C4-alkylsulfinyl refers to a Ci-C4-alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C6-alkylsulfinyl refers to a Ci-C6-alkyl group, as defined above, attached via a sulfinyl [S(O)] group.
  • Ci-C2-alkylsulfinyl is methylsulfinyl or ethylsulfinyl.
  • Ci-C4-alkylsulfinyl is additionally, for example, n-propylsulfinyl,
  • C1-C6- alkylsulfinyl is additionally, for example, pentylsulfinyl, 1 -methylbutylsulfinyl, 2- methylbutylsulfinyl, 3-methylbutylsulfinyl, 1 ,1 -dimethylpropylsulfinyl, 1 ,2-dimethylpropylsulfinyl, 2,2-dimethylpropylsulfinyl, 1 -ethylpropylsulfinyl, hexylsulfinyl, 1 -methylpentylsulfinyl, 2- methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1 ,1 -dimethylbutylsulfinyl,
  • alkylsulfonyl and “alkyl-S(0)k” (wherein k is 2) are equivalent and, as used herein, denote an alkyl group, as defined above, attached via a sulfonyl [S(0)2] group.
  • Ci-C2-alkylsulfonyl refers to a Ci-C2-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group.
  • Ci-C4-alkylsulfonyl refers to a Ci-C4-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group.
  • Ci-C6-alkylsulfonyl refers to a Ci-C6-alkyl group, as defined above, attached via a sulfonyl [S(0)2] group.
  • Ci-C2-alkylsulfonyl is methyl- sulfonyl or ethylsulfonyl.
  • Ci-C4-alkylsulfonyl is additionally, for example, n-propylsulfonyl, 1 -methylethylsulfonyl (isopropylsulfonyl), butylsulfonyl, 1 -methylpropylsulfonyl (sec- butylsulfonyl), 2-methylpropylsulfonyl (isobutylsulfonyl) or 1 ,1 -dimethylethylsulfonyl (tert- butylsulfonyl).
  • Ci-C6-alkylsulfonyl is additionally, for example, pentylsulfonyl,
  • alkylamino denotes in each case a group R * HN-, wherein R * is a straight-chain or branched alkyl group usually having from 1 to 6 carbon atoms ("Ci-Ce- alkylamino"), preferably 1 to 4 carbon atoms("Ci-C4-alkylamino").
  • Ci-C6-alkylamino are methylamino, ethylamino, n-propylamino, isopropylamino, n-butylamino, 2-butylamino, iso- butylamino, tert-butylamino, and the like.
  • dialkylamino denotes in each case a group R * R°N-, wherein R * and R°, independently of each other, are a straight-chain or branched alkyl group each usually having from 1 to 6 carbon atoms ("di-(Ci-C6-alkyl)-amino"), preferably 1 to 4 carbon atoms (“di- (Ci-C4-alkyl)-amino").
  • Examples of a di-(Ci-C6-alkyl)-amino group are dimethylamino, diethyla- mino, dipropylamino, dibutylamino, methyl-ethyl-amino, methyl-propyl-amino, methyl- isopropylamino, methyl-butyl-amino, methyl-isobutyl-amino, ethyl-propyl-amino, ethyl- isopropylamino, ethyl-butyl-amino, ethyl-isobutyl-amino, and the like.
  • aryl refers to a mono-, bi- or tricyclic aromatic hydrocarbon radical such as phenyl or naphthyl, in particular phenyl.
  • heteroaryl refers to a mono-, bi- or tricyclic heteroaromatic hydrocarbon radical, preferably to a monocyclic heteroaromatic radical, such as pyridyl, pyrim- idyl and the like.
  • N can optionally be oxidized, i.e. in the form of an N-oxide, and S can also optionally be oxidized to various oxidation states, i.e. as SO or SO2.
  • An unsaturated heterocyde contains at least one C-C and/or C-N and/or N-N double bond(s).
  • a fully unsaturated heterocyde contains as many conjugated C-C and/or C-N and/or N-N double bonds as allowed by the size(s) of the ring(s).
  • An aromatic monocyclic heterocyde is a fully unsaturated 5- or 6-membered monocyclic heterocyde.
  • An aromatic bicyclic heterocyde is an 8-, 9- or 10-membered bicyclic heterocyde consisting of a 5- or 6-membered heteroaromatic ring which is fused to a phenyl ring or to another 5- or 6-membered heteroaromatic ring.
  • the heterocyde may be attached to the remainder of the molecule via a carbon ring member or via a nitrogen ring member.
  • the heterocyclic ring contains at least one carbon ring atom. If the ring contains more than one O ring atom, these are not adjacent.
  • Examples of a 3-, 4-, 5- or 6-membered monocyclic saturated heterocyde include:
  • oxirane-2-yl aziridine-1 -yl, aziridine-2-yl, oxetan-2-yl, azetidine-1 -yl, azetidine-2-yl, azetidine-3- yl, thietane-1 -yl, thietan-2-yl, thietane-3-yl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, tetrahy- drothien-2-yl, tetrahydrothien-3-yl, pyrrolidin-1 -yl, pyrrolidin-2-yl, pyrrolidin-3-yl, pyrazolidin-1 -yl, pyrazolidin-3-yl, pyrazolidin-4-yl, pyrazolidin-5-yl, imidazolidin-1 -yl, imidazolidin-2-yl, imidazo
  • Examples of a 5- or 6-membered monocyclic partially unsaturated heterocycle include: 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3-dihydrothien- 2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2-yl, 2-pyrrolin- 3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin-3-yl, 2- isoxazolin-4-yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5-yl, 3-isoxa
  • a 5- or 6-membered monocyclic fully unsaturated (including aromatic) heterocyclic ring is e.g. a 5- or 6-membered monocyclic fully unsaturated (including aromatic) heterocyclic ring.
  • Examples are: 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 1 -pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 1-pyrazolyl, 3- pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl,
  • 6- membered heteroaromatic radical include benzofuranyl, benzothienyl, indolyl, indazolyl, ben- zimidazolyl, benzoxathiazolyl, benzoxadiazolyl, benzothiadiazolyl, benzoxazinyl, chinolinyl, iso- chinolinyl, purinyl, 1 ,8-naphthyridyl, pteridyl, pyrido[3,2-d]pyrimidyl or pyridoimidazolyl and the like.
  • Preferred compounds according to the invention are compounds of formula I or a stereoi- somer, salt or N-oxide thereof, wherein the salt is an agriculturally suitable salt. Further preferred compounds according to the invention are compounds of formula I or an N-oxide or salt thereof, especially an agriculturally suitable salt. Particularly preferred compounds according to the invention are compounds of formula I or a salt thereof, especially an agriculturally suitable salt thereof.
  • variable B in the compounds of formula I is CH.
  • R c is hydrogen, Ci-C6-alkyl C3-C7-cycloalkyl, C 2 -C6-alkenyl, C 2 -C6-haloalkenyl, Ci-C6-haloalkyl or phenyl, in particular Ci-C 4 -alkyl or Ci-C 4 -haloalkyl;
  • R d is Ci-C6-alkyl or Ci-C6-haloalkyl, in particular Ci-C 4 -alkyl,
  • R e , R f are independently of each other selected from hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl and benzyl, and in particular from the group consisting of hydrogen and Ci-C 4 -alkyl, or R e , R f together with the nitrogen atom, to which they are bound form a 5-, 6- or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-haloalkyl, and in particular R e , R f together with the nitrogen atom, to which they are bound may form a 5-, 6- or 7-membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S
  • R9, R h are independently of each other selected from hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl and benzyl and in particular from the group consisting of hydrogen or Ci-C4-alkyl, or
  • R k is H, Ci-C4-alkyl, Ci-C4-haloalkyl or phenyl, in particular Ci-C4-alkyl.
  • R c , R d , R e , R f and R k are as defined above and which preferably have on their own or in particular in combination the following meanings:
  • R c is Ci-C 4 -alkyl or Ci-C 4 -haloalkyl
  • R d is Ci-C 4 -alkyl
  • R e is hydrogen or Ci-C4-alkyl
  • R f is hydrogen or Ci-C4-alkyl
  • R e , R f together with the nitrogen atom, to which they are bound may form a 5-, 6 or 7- membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2, 3 or 4 methyl groups, and
  • R k is Ci-C 4 -alkyl.
  • variable R in the compounds of formula I is selected from Ci-C4-alkyl, C3-C7-cycloalkyl, Ci-C4-haloalkyl and C1-C4- alkoxy-Ci-C4-alkyl, in particular from methyl, ethyl, isopropyl, tert-butyl, cyclopropyl, cyclopentyl, cyclohexyl, CF 3 , CHF 2 , CCIF 2 , CH 2 CF 3 , CF 2 CF 3 , CH 2 CI, CHCI 2 , ethoxyethyl, ethoxymethyl, methoxyethyl and methoxymethyl.
  • variable R in the compounds of formula I is selected from Ci-C4-alkyl, C3-C7-cycloalkyl, Ci-C4-haloalkyl, methoxyethyl and methoxymethyl, in particular from methyl, ethyl, isopropyl, tert-butyl, cyclopropyl, cy- clopentyl, cyclohexyl, CF 3 , CHF 2 , CCIF 2 , CH 2 CF 3 , CF 2 CF 3 , CH 2 CI, CHCI 2 , methoxyethyl and methoxymethyl.
  • variable R in the com- pounds of formula I is phenyl or heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups R' which are as defined above and which are independently from one another are preferably selected from the group consisting of halogen, Ci-C4-alkyl, C3-C6-cycloalkyl, C3- C6-halocycloalkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl and C1-C6- haloalkyloxy, more preferably from
  • variable R in the compounds of formula I is phenyl or heterocyclyl, where heterocyclyl is a partially unsaturated or aromatic 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heterocycle containing 1 , 2, 3 or 4 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where the bicyclic heterocycle consists of a 5- or 6-membered heteroaromatic ring which is fused to a phenyl ring, and where phenyl and heterocyclyl are unsubstituted or substituted by 1 , 2, 3 or 4 groups R' which independently from one another have the aforementioned preferred meanings.
  • variable R in the compounds of the formula I is phenyl or heterocyclyl selected from pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, piperidin- 2-yl, piperidin-3-yl, piperidin-4-yl, benzisoxazole-2-yl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-triazol-3-yl, 1 - ethylbenzimidazol-2-yl, 4-methylthiazol-2-yl, thiophen-2-yl, furan-2-yl, furan-3-yl, tetrahydrofu- ran-2-yl, tetrahydrofuran-3-yl, isoxazol-2-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, oxazol-2- yl, oxazol-3-yl, o
  • variable R in the compounds of formula I is R b -S(0) n -Ci-C3-alkyl, where R b is as defined above and in particular selected from the group consisting of Ci-C6-alkyl, C3-C7-cycloalkyl, Ci-C6-haloalkyl, C 2 -C6-alkenyl, C 2 -C6- haloalkenyl, C 2 -C6-alkynyl, C 2 -C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1 , 2 or 3 groups, which are identical or different and preferably selected from the group
  • variable R in the compounds of formula I is R b -S(0) n -Ci-C3-alkyl, where R b is selected from the group consisting of Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-haloalkyl, C2-C6-haloalkenyl, C2-C6-haloalkynyl, C3-C7-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S.
  • variable R in the compounds of formula I is R b -S(0) n -Ci-C2-alkyl, where R b is selected from Ci-C6-alkyl, C1-C6- haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C3-C7-cycloalkyl, phenyl and hetero- cyclyl, where heterocyclyl is a 6-membered aromatic heterocyclic radical having 1 or 2 nitrogen atoms as ring members.
  • variable R in the compounds of formula I is R b -S(0) 2 -Ci-C 2 -alkyl, where R b is CH 3 , CH 2 H 3 , CH(CH 3 ) 2 ,
  • CH2CH2CH3, CH 2 CH CH 2 , CH 2 C ⁇ CH or phenyl.
  • variable R in the compounds of formula I is selected from the group consisting of methyl, ethyl, isopropyl, tert- butyl, cyclopropyl, cyclopentyl, cyclohexyl, CF 3 , CHF 2 , CCIF 2 , CH2CF3, CF2CF3, CH 2 CI, CHC , methoxyethyl, methoxymethyl, and in particular from methyl and ethyl.
  • Preferred compounds according to the invention are compounds of formula I, wherein R 1 is selected from the group consisting of CN, halogen, nitro, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6- alkynyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl, Ci-C 4 -alkoxy-Ci-C 4 -alkoxy-Z 1 , Ci-C 4 -alkylthio-Ci-C 4 -alkyl, Ci-C4-alkylthio-Ci-C 4 -alkylthio-Z 1 , C 2 - C6-alkenyloxy, C2-C6-alkynyloxy, Ci-C6-haloalkoxy, Ci-C4-haloalkoxy-Ci-C4-
  • R 1 is selected from halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci- C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy-Ci-C4-alkyl, Ci- C 4 -a I ky 11 h i o-C1 -C 4 -a I ky I , Ci-C4-alkylthio-Ci-C4-alkylthio-Ci-C 4 -alkyl, Ci-C 4 -alkoxy, C1-C4- haloalkoxy, C3-C4-alkenyloxy, C3-C4-alkynyloxy, Ci-C4-alkoxy-Ci-C4-alkoxy, Ci-C4-haloalkoxy- Ci-
  • R 1 is selected from the group consisting of halogen, nitro, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy, C1-C4- haloalkoxy, Ci-C4-alkylthio, Ci-C4-haloalkylthio and Ci-C4-alkylsulfonyl, specifically R 1 is F, CI, Br, I, nitro, CH 3 , CF 3 , OCH 3 , OCF 3 , SCH 3 , SCF 3 , S0 2 CH 3 or CH2OCH2CH2OCH3, and more specifically R 1 is F, CI, Br, I, nitro, CH 3 , CF 3 , OCH 3 , SCH 3 or S0 2 CH 3 .
  • variable R 2 is hydrogen
  • variable R 2 of the compounds of formula I has any one of the meanings given above for R 2 with the exception of hydrogen.
  • variable R 2 in the compounds of formula I is a 5- or 6-membered heterocyclyl, where heterocyclyl is a saturated, partially unsaturated or aromatic heterocyclic radical, which contains as ring member 1 heteroatom selected from the group consisting of O, N and S and 0, 1 , 2 or 3 further nitrogen atom(s), where hetero- cyclyl is unsubstituted or carries 1 , 2 or 3 radicals R 21 , as defined herein, which are identical or different.
  • variable R 2 in the compounds of formula I is a 5- or 6-membered heterocyclyl selected from the group consisting of isoxazolinyl (4,5-dihydroisoxazolyl), 1 ,2-dihydrotetrazolonyl, 1 ,4-dihydrotetrazolonyl, tetrahy- drofuryl, dioxolanyl, piperidinyl, morpholinyl, piperazinyl, isoxazolyl, pyrazolyl, thiazolyl, oxazolyl, furyl, pyridinyl, pyrimidinyl and pyrazinyl, where heterocyclyl is unsubstituted or carries 1 , 2 or 3 radicals R 21 which are identical or different and are selected from the group consisting of C1-C4- alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci
  • variable R 2 in the compounds of formula I is a 5- or 6-membered heterocyclyl selected from 4,5-dihydroisoxazol-3-yl, which is unsubstituted or substituted in position 5 with CH 3 , CH2F or CHF2, 4,5-dihydroisoxazol-5-yl, which is unsubstituted or substituted in position 3 with CH 3 , OCH 3 , CH2OCH3, CH2SCH3, 1 - methyl-5-oxo-1 ,5-dihydrotetrazol-2-yl, 4-methyl-5-oxo-4,5-dihydrotetrazol-1 -yl, morpholin-4-yl, isoxazol-3-yl, 5-methyl-isoxazol-3-yl, isoxazol-5-yl, 3-methyl-isoxazol-5-yl, 1 -methyl-1 H-pyrazol- 3-yl, 2-methyl-2H-pyra
  • variable R 2 in the compounds of formula I is phenyl-Z 2a , where Z 2a is as defined herein, and where phenyl is unsubstituted or carries 1 , 2 or 3 radicals R 21 which are identical or different and as defined above and which are in particular selected from halogen, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-haloalkyl, Ci-C4-alkoxy-Ci- C4-alkyl and Ci-C4-alkoxy-Ci-C4-alkoxy, and preferably from halogen, Ci-C2-alkyl, Ci-C2-alkoxy, Ci-C2-haloalkyl and Ci-C2-alkoxy-Ci-C2-alkoxy.
  • variable R 2 in the compounds of formula I is a radical of the following formula:
  • R P1 is hydrogen or halogen, preferably hydrogen, CI, Br or F, and in particular H or F;
  • R P2 is hydrogen, halogen or Ci-C2-alkoxy, preferably hydrogen, CI, Br, F, OCH3 or OCH2CH3, and in particular H, F, CI or OCH3; and R P3 is hydrogen, halogen, Ci-C2-alkyl, Ci-C2-haloalkyl, Ci-C2-alkoxy, Ci-C2-alkoxy-Ci-C2- alkoxy, preferably hydrogen, CI, Br, F, CH 3 , C 2 H 5 , CF 3 , CHF 2 , CH 2 F, CCI 2 F, CF 2 CI, CH2CF3, CH2CHF2, CF2CF3, OCH3, OCH2CH3, OCH2OCH3, OCH2CH2OCH2CH3,
  • variable R 2 in the compounds of formula I is phenyl which is unsubstituted or carries one radical R 21 , where R 21 is preferably attached to position 4 of the phenyl group and is as defined above and in particular selected from Ci-C2-alkyl, Ci-C2-alkoxy, Ci-C2-haloalkyl and Ci-C2-alkoxy-Ci-C2-alkoxy, preferably form CH3, C 2 H 5 , OCH3, OC 2 H 5 , CHF 2 , CF 3 , OCH2OCH3 and OCH 2 CH 2 OCH 3 , and specifically from OCH 3
  • variable R 2 in the compounds of formula I is selected from the group consisting of hydrogen, halogen, Ci-C6-alkyl, Ci-C4-alkoxy- Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C4-alkoxy, C1-C4- haloalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkenyloxy, C3-C6-haloalkynyloxy, Ci-C 4 -alkoxycarbonyl, Ci-C 4 -alkyl-S(0) k , k is 0, 1 , 2, and Ci-C 4 -haloalkyl-S(0) 2 .
  • variable R 2 in the compounds of formula I is selected from the group consisting of halogen, Ci-C6-alkyl, Ci-C4-alkoxy- Ci-C4-alkyl, Ci-C4-haloalkoxy-Ci-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C4-alkoxy, C1-C4- haloalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkenyloxy, C3-C6-haloalkynyloxy, Ci-C4-alkoxycarbonyl, Ci-C4-alkylsulfonyl, Ci-C4-alkylsulfinyl, Ci-C4-alkylsulfanyl, and C1-C4- haloalkyl-S(0) 2 .
  • variable R 2 in the compounds of formula I is selected from the group consisting of hydrogen, 4,5-dihydroisoxazol- 3-yl, which is unsubstituted or substituted in position 5 with CH3, CH2F or CHF2, 4,5- dihydroisoxazol-5-yl, which is unsubstituted or substituted in position 3 with CH3, OCH3, CH2OCH3, CH2SCH3, 1 -methyl-5-oxo-1 ,5-dihydrotetrazol-2-yl, 4-methyl-5-oxo-4,5- dihydrotetrazol-1 -yl, morpholin-4-yl, isoxazol-3-yl, 5-methyl-isoxazol-3-yl, isoxazol-5-yl, 3- methyl-isoxazol-5-yl, 1 -methyl-1 H-pyrazol-3-yl, 2-methyl-2H-pyrazol-3-yl, thiazol-2-
  • Preferred compounds according to the invention are compounds of formula I, wherein R 3 is selected from the group consisting of hydrogen, cyano, halogen, nitro, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, C2-C4-alkenyl, C2-C4-alkynyl, C2-C4-alkenyloxy, C2- C4-alkynyloxy or R 2b -S(0)k, where the variables k and R 2b have one of the herein defined meanings.
  • R 3 is selected from the group consisting of hydrogen, halogen, CN, NO2,
  • R 3 is selected from the group consisting of hydrogen, halogen, CN, NO2, Ci- C2-alkyl, Ci-C2-haloalkyl, Ci-C2-alkoxy, Ci-C2-haloalkoxy, Ci-C2-alkylthio, Ci-C2-haloalkylthio, Ci-C 2 -alkyl-S(0) 2 and Ci-C 2 -haloalkyl-S(0) 2 , specifically from H, CI, F, CN, N0 2 , CH 3 , CF 3 ,
  • Preferred compounds according to the invention are compounds of formula I, wherein R 4 and R 5 are identical or different and independently selected from the group consisting of hydro- gen, CN, halogen, nitro, Ci-C6-alkyl, C 3 -C7-cycloalkyl, C 3 -C7-cycloalkyl-Ci-C4-alkyl, where the C 3 -C7-cycloalkyl groups in the two aforementioned radicals are unsubstituted or partially or completely halogenated, C2-C6-alkenyl, C2-C6-alkynyl, Ci-C6-haloalkyl, Ci-C 3 -alkylamino, Ci-C 3 - dialkylamino, Ci-C 3 -alkylamino-S(0)k, Ci-C 3 -alkylcarbonyl, Ci-C6-alkoxy, Ci-C4-alkoxy-Ci-C4- alkyl, Ci-C 4 -alkoxy
  • R 4 and R 5 are identical or different and independently selected from the group consisting of hydrogen, halogen, CN, nitro, Ci-C4-alkyl, C 3 -C5-cycloalkyl, C 3 -C5-cycloalkyl- Ci-C4-alkyl, where the C 3 -Cs-cycloalkyl groups in the two aforementioned radicals are unsubsti- tuted or partially or completely halogenated, Ci-C4-haloalkyl, Ci-C 3 -alkylamino, Ci-C 3 - dialkylamino, Ci-C 3 -alkylamino-S(0)k, Ci-C 3 -alkylcarbonyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4- alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkyl,
  • R 4 and R 5 are identical or different and independently selected from the group consisting of hydrogen, halogen, CN, nitro, Ci-C4-alkyl, C3-C4-cycloalkyl, C3-C4-cycloalkyl- Ci-C2-alkyl, where the C3-C4-cycloalkyl groups in the two aforementioned radicals are unsubsti- tuted or partially or completely halogenated, Ci-C4-haloalkyl, Ci-C3 alkylcarbonyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-haloalkoxy, C1-C4- alkylthio, Ci-C4-haloalkylthio, Ci-C4-alkylsulfinyl, Ci-C4-alkylsulfon
  • R 4 and R 5 are identical or different and independently selected from the group consisting of H, F, CI, Br, I, CN, nitro, CH3, CH2CH3, CH(CH 3 ) 2 , cyclopropyl, CF 3 , OCH 3 , OCF 3 , SCH 3 , SOCH 3 , SO2CH3 or CH 2 OCH 3 ; provided that at least one of the radicals R 4 and R 5 is different from hydrogen; and further provided that if R 4 is hydrogen, halogen, cyano, nitro, Ci-C4-alkyl or Ci-C4-haloalkyl, R 5 is not hydrogen, halogen, Ci-C4-alkyl or Ci-C4-halo
  • Preferred compounds according to the invention are compounds of formula I, wherein R 4 is H and R 5 is selected from the group consisting of CN, nitro, cyclopropyl, cyclopropylmethyl, OCH3, OCH2CH3, OCH(CH 3 ) 2 , CH2OCH3, CH2OCH2CH2OCH3, OCF3, OCHF2, SCH 3 , SCF 3 , SCH2CH3, SCH2CF3, SOCH3, SOCH2CH3, SO2CH3, SO2CH3; more preferably R 5 is selected from the group consisting of CN, nitro, cyclopropyl, OCH 3 , CH2OCH3, OCF 3 , SCH 3 , SOCH 3 ,
  • R 5 is H and R 4 is selected from the group consisting of cyclopropyl, cyclopropylmethyl, OCH3, OCH2CH3, OCH(CH 3 ) 2 , CH2OCH3, CH2OCH2CH2OCH3, OCF3, OCHF2, SCH 3 , SCF 3 , SCH2CH3, SCH2CF3, SOCH3, SOCH2CH3, SO2CH3, SO2CH2CH3; more preferably R 4 is selected from the group consisting of cyclopropyl, OCH 3 , CH2OCH3, OCF 3 , SCH 3 , SOCH 3 , SO2CH3.
  • R', R 11 , R 21 independently of each other are selected from halogen, Ci-C4-alkyl, C3-C6- cycloalkyl, C3-C6-halocycloalkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci-C4-alkyl, C1-C4- alkylthio-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy and Ci-C6-haloalkyloxy, more preferably from halogen, Ci-C4-alkyl, C3-C6-cycloalkyl, Ci-C4-haloalkyl and Ci-C4-alkoxy.
  • R', R 11 , R 21 independently of each other are selected from the group consisting of halogen, Ci-C4-alkyl, C3-C6-cycloalkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-alkoxy-Ci- C4-alkyl, Ci-C4-alkylthio-Ci-C4-alkyl and Ci-C4-alkoxy-Ci-C4-alkoxy; in particular selected from halogen, Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-haloalkyl, Ci-C4-alkoxy-Ci-C4-alkyl and Ci-C4-alkoxy- Ci-C4-alkoxy; and specifically from CI, F, Br, methyl, ethyl, methoxy and trifluoromethyl.
  • Z, Z 1 , Z 2 independently of each other are selected from a covalent bond, methanediyl and ethanediyl, and in particular are a covalent bond.
  • Z 2a is selected from a covalent bond, Ci-C2-alkanediyl, 0-Ci-C2-alkanediyl, C1-C2- alkanediyl-0 and Ci-C2-alkanediyl-0-Ci-C2-alkanediyl; more preferably from a covalent bond, methanediyl, ethanediyl, O-methanediyl, O-ethanediyl, methanediyl-O, and ethanediyl-O; and in particular from a covalent bond, methanediyl and ethanediyl.
  • R b , R 1b , R 2b independently of each other are selected from Ci-C6-alkyl, C3-C7-cycloalkyl, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl and heterocyclyl are unsubstituted or substituted by 1 , 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, Ci-C2-haloalkyl and Ci-C2-alkoxy.
  • R b ,R 1b , R 2b independently of each other are selected from the group consisting of Ci-C4-alkyl, C2-C4-alkenyl, C2-C4-alkynyl, Ci-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4- haloalkynyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6- membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S.
  • R b , R 1b , R 2b independently of each other are selected from Ci-C4-alkyl, C1-C4- haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered aromatic heterocyclic radical having 1 or 2 nitrogen atoms as ring members.
  • R c , R 2c , R k independently of each other are selected from hydrogen, Ci-C6-alkyl, C3-C7- cycloalkyl, which is unsubstituted or partly or completely halogenated, Ci-C6-haloalkyl, C2-C6- alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C4-alkoxy-Ci-C4-alkyl, phenyl, benzyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially unsaturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S, where phenyl, benzyl and heterocyclyl are unsubstituted or substituted by 1 , 2 or 3 groups, which are identical or different and selected from the
  • R c , R 2c , R k independently of each other are selected from hydrogen, Ci- C4-alkyl, Ci-C4-haloalkyl, C2-C-alkenyl, C2-C-haloalkenyl, C2-C-alkynyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic saturated, partially un- saturated or aromatic heterocycle, which contains 1 , 2 or 3 heteroatoms as ring members, which are selected from the group consisting of O, N and S.
  • R c , R 2c , R k independently of each other are selected from hydrogen, C1-C4- alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C3-C6-cycloalkyl, phenyl and heterocyclyl, where heterocyclyl is a 5- or 6-membered aromatic heterocyclic radical having 1 or 2 nitro- gen atoms as ring members.
  • R d , R 2d independently of each other are selected from Ci-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partly or completely halogenated, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6- haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C4-alkoxy-Ci-C4-alkyl, phenyl and benzyl.
  • R d , R 2d independently of each other are selected from Ci-C6-alkyl, C1-C6- haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, Ci-C4-alkoxy-Ci-C4-alkyl and C3-C7- cycloalkyl, which is unsubstituted or partly or completely halogenated, and in particular selected from Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl and C3-C6- cycloalkyl.
  • R e , R f , R 2e , R 2f independently of each other are selected from the group consisting of hydrogen, Ci-C6-alkyl, C3-C7-cycloalkyl, which is unsubstituted or partially or completely halogenated, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, Ci-C4-alkoxy-Ci-C4-alkyl, phenyl and benzyl, where phenyl and benzyl are unsubstituted or substituted by 1 , 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl, C1-C4- haloalkyl and Ci-C4-alkoxy, or R e and R f or R 2e and R 2f together with the nitrogen atom, to which they are bound may form a 5-, 6 or 7-membered, saturated or uns
  • R e , R f , R 2e , R 2f independently of each other are selected from hydrogen, Ci-C6-alkyl, Ci-C6-haloalkyl and benzyl, or R e and R f or R 2e and R 2f together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated or unsaturated N- bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-haloalkyl.
  • R e , R f , R 2e , R 2f independently of each other are selected from hydrogen and Ci-C4-alkyl, or R e and R f or R 2e and R 2f together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2 or 3 methyl groups.
  • R9, R3 ⁇ 4 independently of each other are selected from hydrogen, Ci-C6-alkyl, C3-C7- cycloalkyl, which is unsubstituted or partly or completely halogenated, Ci-C6-haloalkyl, C2-C6- alkenyl, C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C4-alkoxy-Ci-C4-alkyl, phenyl and benzyl.
  • R3 ⁇ 4 independently of each other are selected from hydrogen, C1-C6- alkyl, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, benzyl, Ci-C4-alkoxy-Ci-C4-alkyl and C3-C7-cycloalkyl, which is unsubstituted or partly or completely halogenated, and in particular selected from hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, benzyl and C3-C6-cycloalkyl.
  • R h , R 2h independently of each other are selected from hydrogen, C1-C6- alkyl, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, benzyl, Ci-C4-alkoxy-Ci-C4-alkyl and C3-C7-cycloalkyl, which is unsubstituted or partly or completely halogenated, and in particular selected from hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2-C4-haloalkenyl, benzyl and C3-C6-cycloalkyl; or
  • R9 and R h or R3 ⁇ 4 and R 2h together with the nitrogen atom, to which they are bound may form a 5-, 6 or 7-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is
  • unsubstituted or may carry 1 , 2, 3 or 4 groups, which are identical or different and selected from the group consisting of 0, halogen, Ci-C4-alkyl and Ci-C4-haloalkyl and Ci-C4-alkoxy;
  • R h or R3 ⁇ 4 and R 2h together with the nitrogen atom, to which they are bound may form a 5- or 6-membered, saturated or unsaturated N-bound heterocyclic radical, which may carry as a ring member a further heteroatom selected from O, S and N and which is unsubstituted or may carry 1 , 2 or 3 groups, which are identical or different and selected from the group consisting of halogen, Ci-C4-alkyl and Ci-C4-haloalkyl;
  • n and k independently of each other are 0 or 2, and in particular 2.
  • R 1 is selected from the group consisting of halogen, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci- C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci-C4-alkoxy-Ci-C4-alkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy, Ci-C4-alkylthio, Ci-C4-haloalkylthio and Ci-C4-alkylsulfonyl, in particular from F, CI, Br, nitro, CH 3 , CF 3 , OCHs, SCHs, OCF 3 , SCF 3 , SO2CH3, CH2OCH3 and CH2OCH2CH2OCH3; and
  • R 3 is selected from the group consisting of hydrogen, halogen, CN, NO2, Ci-C4-alkyl, Ci-
  • C4-haloalkyl Ci-C4-alkoxy, Ci-C4-haloalkoxy, Ci-C4-haloalkylthio and Ci-C4-alkylsulfonyl, in particular from H, CI, F, CN, N0 2 , CH 3 , CF 3 , CHF 2 , OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCHF 2 , S(0) 2 CH 3 and S(0) 2 CH 2 CH 3 .
  • R is selected from Ci-C 4 -alkyl, in particular from CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 and C(CH 3 ) 3 ;
  • R 1 is selected from the group consisting of halogen, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl and Ci-C 4 -alkyl-S(0) 2 , in particular from CI, Br, F, nitro, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , CF 3 , CHF 2 , S(0) 2 CH 3 and S(0) 2 CH 2 CH 3 ;
  • R 2 is selected from the group consisting of hydrogen, halogen, Ci-C2-alkoxy-Ci-C2-alkyl,
  • R 2 is selected from CH20CH 3 , CH 2 OCH 2 CH 3 , CH 2 CH 2 OCH 3 , CH 2 CH 2 OCH 2 CH 3 , CH 2 OCF 3 , CH 2 OCHF 2 , CH 2 OCH 2 F,
  • R 3 is selected from the group consisting of hydrogen, halogen, CN, Ci-C4-haloalkyl and Ci-C 4 -alkyl-S(0) 2 , in particular from H, CI, F, CN, CF 3 , CHF 2 , S(0) 2 CH 3 and S(0) 2 CH 2 CH 3 ;
  • R 4 and R 5 are identical or different and independently selected from the group consisting of H, F, CI, Br, I, CN, nitro, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , cyclopropyl, cyclopropylmethyl, CF 3 , OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; and more specifically R 4 and R 5 are identical or different and independently selected from the group consisting of H, F, CI, Br, I, CN, nitro, CH 3 , CH 2 CH 3 , CH(CH 3 ) 2 , cyclopropyl, CF 3 , OCH 3 , O
  • R is selected from the group consisting of methyl and ethyl
  • R 1 is selected from the group consisting of chlorine, nitro, methyl, trifluoromethyl and me- thylsulfonyl;
  • R 2 is selected from the group consisting of hydrogen, CI, F, methyl, methylsulfonyl, me- thylsulfinyl, methylsulfanyl, 3-isoxazolinyl, 5-methyl-3-isoxazolinyl, 5-isoxazolinyl, 3-methyl-5- isoxazolinyl, 3-isoxazolyl, 5-methyl-3-isoxazolyl, 5-isoxazolyl and 3-methyl-5-isoxazolyl;
  • R 3 is selected from the group consisting of hydrogen, fluorine, chlorine, trifluoromethyl, CN and methylsulfonyl;
  • R 4 is H and R 5 is selected from the group consisting of CN, nitro, cyclopropyl, cyclopropylmethyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; more preferably R 5 is selected from the group consisting of CN, nitro, cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCHs, S0 2 CH 3 ; or
  • R 5 is H and R 4 is selected from the group consisting of cyclopropyl, cyclopropylmethyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; more preferably R 4 is selected from the group consisting of cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCH 3 , S0 2 CH 3 .
  • R is selected from the group consisting of methoxyethyl and methoxymethyl
  • R 1 is selected from the group consisting of chlorine, nitro, methyl, trifluoromethyl and me- thylsulfonyl;
  • R 2 is selected from the group consisting of hydrogen, CI, F, methyl, methylsulfonyl, me- thylsulfinyl, methylsulfanyl, 3-isoxazolinyl, 5-methyl-3-isoxazolinyl, 5-isoxazolinyl, 3-methyl-5- isoxazolinyl, 3-isoxazolyl, 5-methyl-3-isoxazolyl, 5-isoxazolyl and 3-methyl-5-isoxazolyl;
  • R 3 is selected from the group consisting of hydrogen, fluorine, chlorine, trifluoromethyl, CN and methylsulfonyl;
  • R 4 is H and R 5 is selected from the group consisting of CN, nitro, cyclopropyl, cyclopropylmethyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF2, SCHs, SCFs, SCH2CH3, SCH2CF3, SOCH3, SOCH2CH3, SO2CH3, SO2CH3; more preferably R 5 is selected from the group consisting of CN, nitro, cyclopropyl, OCH3, CH2OCH3, OCF3, SCH3, SOCH3, SO2CH3 ; or
  • R 5 is H and R 4 is selected from the group consisting of cyclopropyl, cyclopropylmethyl, OCH3, OCH2CH3, OCH(CH 3 ) 2 , CH2OCH3, CH2OCH2CH2OCH3, OCF3, OCHF2, SCH3, SCF 3 , SCH2CH3, SCH2CF3, SOCH3, SOCH2CH3, SO2CH3, SO2CH2CH3; more preferably R 4 is selected from the group consisting of cyclopropyl, OCH 3 , CH2OCH3, OCF 3 , SCH 3 , SOCH 3 , SO2CH3.
  • R is selected from Ci-C 4 -alkyl, in particular from CH 3 , CH2CH3, CH(CH 3 ) 2 and C(CH 3 ) 3 ;
  • R 1 is selected from the group consisting of halogen, nitro, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl and Ci-C 4 -alkyl-S(0) 2 , in particular from CI, Br, F, nitro, CH 3 , CH2CH3, CH(CH 3 ) 2 , CF 3 , CHF 2 , S(0) 2 CH 3 and S(0) 2 CH 2 CH 3 ;
  • R 2 is selected from the group consisting of hydrogen, halogen, Ci-C2-alkoxy-Ci-C2-alkyl,
  • R 2 is selected from CH2OCH3, CH2OCH2CH3, CH2CH2OCH3, CH2CH2OCH2CH3, CH2OCF3, CH2OCHF2, CH2OCH2F,
  • R 3 is selected from the group consisting of hydrogen, halogen, CN, Ci-C 4 -haloalkyl and Ci-C 4 -alkyl-S(0) 2 , in particular from H, CI, F, CN, CF 3 , CHF 2 , S(0) 2 CH 3 and S(0) 2 CH 2 CH 3 ;
  • R 4 and R 5 are identical or different and independently selected from the group consisting of H, F, CI, Br, I, CN, nitro, CH 3 , CH2CH3, CH(CH 3 ) 2 , cyclopropyl, cyclopropylmethyl, CF 3 , OCH 3 , OCH2CH3, OCH(CH 3 ) 2 , CH2OCH3, CH2OCH2CH2OCH3, OCF3, OCHF2, SCH3, SCFs, SCH2CH3, SCH2CF3, SOCH3, SOCH2CH3, SO2CH3, SO2CH3; and more specifically R 4 and R 5 are identical or different and independently selected from the group consisting of H, F, CI, Br, I, CN, nitro, CH 3 , CH2CH3, CH(CH 3 ) 2 , cyclopropyl, CF 3 , OCH 3 , OCF 3 , SCH 3 , SOCH 3 , SO2CH3 or CH2OCH3; provided that at least one of the
  • R is selected from the group consisting of methyl and ethyl
  • R 1 is selected from the group consisting of chlorine, nitro, methyl, trifluoromethyl and methylsulfonyl;
  • R 2 is selected from the group consisting of hydrogen, CI, F, methyl, methylsulfonyl, methylsulfinyl, methylsulfanyl, 3-isoxazolinyl, 5-methyl-3-isoxazolinyl, 5-isoxazolinyl, 3-methyl-5- isoxazolinyl, 3-isoxazolyl, 5-methyl-3-isoxazolyl, 5-isoxazolyl and 3-methyl-5-isoxazolyl;
  • R 3 is selected from the group consisting of hydrogen, fluorine, chlorine, trifluoromethyl, CN and methylsulfonyl; and either R 4 is H and R 5 is selected from the group consisting of CN, nitro, cyclopropyl, cyclopropyl methyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; more preferably R 5 is selected from the group consisting of CN, nitro, cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCHs, S0 2 CH 3 ; or
  • R 5 is H and R 4 is selected from the group consisting of cyclopropyl, cyclopropylmethyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; more preferably R 4 is selected from the group consisting of cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCH 3 , S0 2 CH 3 .
  • R, R 1 , R 2 , R 3 , R 4 and R 5 have the following meanings:
  • R is selected from the group consisting of methoxyethyl and methoxymethyl
  • R 1 is selected from the group consisting of chlorine, nitro, methyl, trifluoromethyl and me- thylsulfonyl;
  • R 2 is selected from the group consisting of hydrogen, CI, F, methyl, methylsulfonyl, me- thylsulfinyl, methylsulfanyl, 3-isoxazolinyl, 5-methyl-3-isoxazolinyl, 5-isoxazolinyl, 3-methyl-5- isoxazolinyl, 3-isoxazolyl, 5-methyl-3-isoxazolyl, 5-isoxazolyl and 3-methyl-5-isoxazolyl;
  • R 3 is selected from the group consisting of hydrogen, fluorine, chlorine, trifluoromethyl, CN and methylsulfonyl;
  • R 4 is H and R 5 is selected from the group consisting of CN, nitro, cyclopropyl, cyclopropylmethyl, OCH 3 , OCH 2 CH 3 , OCH(CH 3 ) 2 , CH 2 OCH 3 , CH 2 OCH 2 CH 2 OCH 3 , OCF 3 , OCHF 2 , SCH 3 , SCF 3 , SCH 2 CH 3 , SCH 2 CF 3 , SOCH 3 , SOCH 2 CH 3 , S0 2 CH 3 , S0 2 CH 2 CH 3 ; more preferably R 5 is selected from the group consisting of CN, nitro, cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCHs, S0 2 CH 3 ; or
  • R 5 is H and R 4 is selected from the group consisting of cyclopropyl, cyclopropylmethyl,
  • R 4 is selected from the group consisting of cyclopropyl, OCH 3 , CH 2 OCH 3 , OCF 3 , SCH 3 , SOCH 3 , S0 2 CH 3 .
  • Examples of preferred compounds are the individual compounds compiled in Tables 1 to
  • Table 3 Compounds of formula I (I I I.A-1 - III.A-5280) in which B is CH and R is methoxymethyl and the combination of R 1 , R 2 , R 3 , R 4 and R 5 for a compound corresponds in each case to one row of Table A;
  • Table 4 Compounds of formula I (IV.A-1 - IV.A-5280) in which B is CH and R is methoxy- ethyl and the combination of R 1 , R 2 , R 3 , R 4 and R 5 for a compound corresponds in each case to one row of Table A;
  • A-427 CI CH20CH2CF3 CF 3 OCH3 H
  • A-428 CI CH20CH2CF3 CF 3 OCF3 H
  • A-612 CI 5-Me-lsoxazolin-3-yl CFs H OCHs
  • A-613 CI 5-Me-lsoxazolin-3-yl CFs H OCFs
  • A-723 CI lsoxazol-3-yl SO2CH3 H cyclopropyl
  • A-724 CI lsoxazol-3-yl SO2CH3 H OCH3
  • A-834 CI 5-Me-lsoxazol-3-yl CN H N0 2
  • A-835 CI 5-Me-lsoxazol-3-yl CN H cyclopropyl
  • A-908 CI 3-Me-lsoxazolin-5-yl CFs OCFs H
  • A-909 CI 3-Me-lsoxazolin-5-yl CFs SCH 3 H
  • A-1019 CI 3-Me-lsoxazol-5-yl SO2CH3 OCH3 H
  • A-1020 CI 3-Me-lsoxazol-5-yl SO2CH3 OCF3 H
  • A-1304 CHs SOCHs SO2CH3 H SO2CH3

Abstract

N-(tétrazol-5-yl)arylcarboxamides et N-(triazol-5-yl)arylcarboxamides de formule (I), et leur utilisation comme herbicides. L'invention concerne des N-(tétrazol-5-yl)arylcarboxamides et N-(triazol-5-yl)arylcarboxamides de formule (I), et leur utilisation comme herbicides. Dans ladite formule (I), B représente N ou CH, tandis que R, R1, R2, R3, R4 et R5 représentent des groupes, tels que des groupes hydrogène, halogène ou organiques, comme alkyle ou phényle.
PCT/EP2014/059027 2013-05-15 2014-05-05 Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides WO2014184015A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13167846 2013-05-15
EP13167846.8 2013-05-15

Publications (1)

Publication Number Publication Date
WO2014184015A1 true WO2014184015A1 (fr) 2014-11-20

Family

ID=48326200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/059027 WO2014184015A1 (fr) 2013-05-15 2014-05-05 Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides

Country Status (1)

Country Link
WO (1) WO2014184015A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042259A1 (fr) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Variants de la hppd et procédé d'utilisation
US10023590B2 (en) 2014-04-17 2018-07-17 Basf Se Substituted pyridine compounds having herbicidal activity
WO2018177871A1 (fr) 2017-03-30 2018-10-04 Bayer Cropscience Aktiengesellschaft Amides d'acide n-(1,3,4-oxadiazol-2-yl)arylcarboxylique et leur utilisation comme herbicides
US10167297B2 (en) 2014-10-24 2019-01-01 Basf Se Substituted pyridine compounds having herbicidal activity
US10308953B2 (en) 2013-12-18 2019-06-04 BASF Agro B.V. Plants having increased tolerance to herbicides
US10344008B2 (en) 2015-05-08 2019-07-09 BASF Agro B.V. Process for the preparation of terpinolene epoxide
US10538470B2 (en) 2015-05-08 2020-01-21 BASF Agro B.V. Process for the preparation of limonene-4-ol
US10640477B2 (en) 2016-06-15 2020-05-05 BASF Agro B.V. Process for the epoxidation of a tetrasubstituted alkene
US11072593B2 (en) 2016-06-15 2021-07-27 BASF Agro B.V. Process for the epoxidation of a tetrasubstituted alkene
WO2021204667A1 (fr) 2020-04-07 2021-10-14 Bayer Aktiengesellschaft Diamides d'acide isophtalique substitués
WO2021209383A1 (fr) * 2020-04-17 2021-10-21 Syngenta Crop Protection Ag Composés herbicides
US11180770B2 (en) 2017-03-07 2021-11-23 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028579A1 (fr) * 2010-09-01 2012-03-08 Bayer Cropscience Ag Amides de l'acide n-(tétrazol-5-yl)- et n-(triazol-5-yl)arylcarboxylique, et leur utilisation comme herbicides
EP2589598A1 (fr) * 2011-11-03 2013-05-08 Bayer CropScience AG Amides d'acide carbonique de N-(tétrazol-5-yl)- et N-(triazol-5-yl)aryle 5-phényle-substitué et son utilisation comme herbicide
EP2589293A1 (fr) * 2011-11-03 2013-05-08 Bayer CropScience AG Compositions herbicides phytoprotectrices comprenant des amides d'acide carbonique de N-(tétrazol-5-yl) et N-(triazol-5-yl)aryle
WO2013072528A2 (fr) * 2012-04-27 2013-05-23 Basf Se Composés de n-(tétrazol-5-yl)- et n-(triazol-5-yl)pyridin-3-yl-carboxamides substitués et leur utilisation en tant qu'herbicides
WO2013076316A2 (fr) * 2012-04-27 2013-05-30 Basf Se Composés substitués de n-(tétrazol-5-yl)- et n-(triazol-5-yl) hétarylcarboxamides et leur utilisation comme herbicides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028579A1 (fr) * 2010-09-01 2012-03-08 Bayer Cropscience Ag Amides de l'acide n-(tétrazol-5-yl)- et n-(triazol-5-yl)arylcarboxylique, et leur utilisation comme herbicides
EP2589598A1 (fr) * 2011-11-03 2013-05-08 Bayer CropScience AG Amides d'acide carbonique de N-(tétrazol-5-yl)- et N-(triazol-5-yl)aryle 5-phényle-substitué et son utilisation comme herbicide
EP2589293A1 (fr) * 2011-11-03 2013-05-08 Bayer CropScience AG Compositions herbicides phytoprotectrices comprenant des amides d'acide carbonique de N-(tétrazol-5-yl) et N-(triazol-5-yl)aryle
WO2013072528A2 (fr) * 2012-04-27 2013-05-23 Basf Se Composés de n-(tétrazol-5-yl)- et n-(triazol-5-yl)pyridin-3-yl-carboxamides substitués et leur utilisation en tant qu'herbicides
WO2013076316A2 (fr) * 2012-04-27 2013-05-30 Basf Se Composés substitués de n-(tétrazol-5-yl)- et n-(triazol-5-yl) hétarylcarboxamides et leur utilisation comme herbicides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FORD R E ET AL: "Synthesis and quantitative structure-activity relationships of antiallergic 2-hydroxy-N-1H-tetrazol-5-ylbenzamides", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 29, 1 January 1986 (1986-01-01), pages 538 - 549, XP002109293, ISSN: 0022-2623, DOI: 10.1021/JM00154A019 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308953B2 (en) 2013-12-18 2019-06-04 BASF Agro B.V. Plants having increased tolerance to herbicides
US11306322B2 (en) 2013-12-18 2022-04-19 BASF Agro B.V. Plants having increased tolerance to herbicides
US10023590B2 (en) 2014-04-17 2018-07-17 Basf Se Substituted pyridine compounds having herbicidal activity
US10167297B2 (en) 2014-10-24 2019-01-01 Basf Se Substituted pyridine compounds having herbicidal activity
US10538470B2 (en) 2015-05-08 2020-01-21 BASF Agro B.V. Process for the preparation of limonene-4-ol
US10344008B2 (en) 2015-05-08 2019-07-09 BASF Agro B.V. Process for the preparation of terpinolene epoxide
WO2017042259A1 (fr) 2015-09-11 2017-03-16 Bayer Cropscience Aktiengesellschaft Variants de la hppd et procédé d'utilisation
US10640477B2 (en) 2016-06-15 2020-05-05 BASF Agro B.V. Process for the epoxidation of a tetrasubstituted alkene
US11072593B2 (en) 2016-06-15 2021-07-27 BASF Agro B.V. Process for the epoxidation of a tetrasubstituted alkene
US11180770B2 (en) 2017-03-07 2021-11-23 BASF Agricultural Solutions Seed US LLC HPPD variants and methods of use
US11304418B2 (en) 2017-03-30 2022-04-19 Bayer Cropscience Aktiengesellschaft Substituted n-(-1,3,4-oxadiazole-2-yl)aryl carboxamides and the use thereof as herbicides
WO2018177871A1 (fr) 2017-03-30 2018-10-04 Bayer Cropscience Aktiengesellschaft Amides d'acide n-(1,3,4-oxadiazol-2-yl)arylcarboxylique et leur utilisation comme herbicides
WO2021204667A1 (fr) 2020-04-07 2021-10-14 Bayer Aktiengesellschaft Diamides d'acide isophtalique substitués
WO2021209383A1 (fr) * 2020-04-17 2021-10-21 Syngenta Crop Protection Ag Composés herbicides
CN115362147A (zh) * 2020-04-17 2022-11-18 先正达农作物保护股份公司 除草化合物

Similar Documents

Publication Publication Date Title
US9902704B2 (en) Substituted N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds and their use as herbicides
EP3022190B1 (fr) Dérivés de n-(1,2,4-triazol-3-yl)-pyridin-2-yl-carboxamides en tant qu'herbicides
EP2855463B1 (fr) Composés substitués de n-(tétrazol-5-yl)- et n-(triazol-5-yl) arylcarboxamides et leur utilisation comme herbicides
AU2014267561B2 (en) Substituted N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds and their use as herbicides
US20160280696A1 (en) Substituted 1,2,5-oxadiazole compounds and their use as herbicides
EP3390372B1 (fr) Dérivés de benzamide et leur utilisation en tant que herbicides
WO2014184015A1 (fr) Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides
WO2013072300A1 (fr) Composés substitués de 1,2,5-oxadiazole et leur utilisation comme herbicides
US9096583B2 (en) Substituted 1,2,5-oxadiazole compounds and their use as herbicides II
US9398768B2 (en) Substituted N-(tetrazol-5-yl)- and N-(triazol-5-yl)pyridin-3-yl-carboxamide compounds and their use as herbicides
US20150291570A1 (en) Substituted N-(tetrazol-5-yl)- and N-(triazol-5-yl)arylcarboxamide compounds and their use as herbicides
AU2012338748A1 (en) Substituted 1,2,5-oxadiazole compounds and their use as herbicides III
WO2014184073A1 (fr) Composés substitués de n-(tétrazol-5-yl)arylcarboxamides et de n-(triazol-5-yl)arylcarboxamides, et leur utilisation comme herbicides
WO2014184017A1 (fr) Composés de n-(tétrazol-5-yl)- et n-(triazol-5-yl)pyridin-3-yl-carboxamides substitués et leur utilisation en tant qu'herbicides
WO2014184019A1 (fr) Composés de n-(1,2,5-oxadiazol-3-yl)carboxamide et leur utilisation en tant qu'herbicides
WO2014184058A1 (fr) Composés de 1,2,5-oxadiazole substitués et leur utilisation en tant qu'herbicides
EP2907807A1 (fr) Composés de benzamide et leur utilisation comme herbicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14725969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14725969

Country of ref document: EP

Kind code of ref document: A1