WO2014183720A1 - 提高te frr保护可靠性的方法及装置、头节点、存储介质 - Google Patents

提高te frr保护可靠性的方法及装置、头节点、存储介质 Download PDF

Info

Publication number
WO2014183720A1
WO2014183720A1 PCT/CN2014/079640 CN2014079640W WO2014183720A1 WO 2014183720 A1 WO2014183720 A1 WO 2014183720A1 CN 2014079640 W CN2014079640 W CN 2014079640W WO 2014183720 A1 WO2014183720 A1 WO 2014183720A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
tunnel
message
backup
Prior art date
Application number
PCT/CN2014/079640
Other languages
English (en)
French (fr)
Inventor
付志涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014183720A1 publication Critical patent/WO2014183720A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities

Definitions

  • the invention relates to the field of data network communication, in particular to a method and device, a head node and a storage medium for improving Traffic Engineering-Fast Re-Route (TE FRR). Background technique
  • TE-FRR technology is a local protection technology that performs local repair when a local link or node fails.
  • RFC4090 two types of local protection, link protection and node protection, are defined.
  • Two special node types in the protection process are also defined: Point of Local Repair (PL) and convergence point ( Merge Point, MP).
  • PL Point of Local Repair
  • MP Merge Point
  • the topology diagram includes: nodes R1, R2, and R3, where R1 is a PLR node, and R3 is an MP node;
  • the Label Switched Path (LSP) is a path composed of nodes R1, R2, and R3.
  • the primary LSP is called the primary tunnel, and the backup LSP is the path composed of nodes R1 and R3.
  • the topology map includes a link L12, L23, and L13. When the link L12 fails or the node R2 fails, the path is switched to the link L13 to form node protection.
  • the topology diagram includes: nodes R1, R2, and R3, where R2 is a PLR node, and R3 is an MP node.
  • Link L12, L23, L32 when link L23 fails, the path is switched to L32 to form link protection.
  • the MP node processes the protocol packets sent by the PATH, PATH-TEAR, etc. sent from the inbound interface of the backup tunnel. The protocol packets of the original tunnel are not processed.
  • the PLR point needs to know the path information of the PL point to the MP point of the main tunnel, and the PLR point needs to know the complete backup tunnel path.
  • the main tunnel is loose to the R2 node.
  • the complete path from 1 to R2 can only be known through ERO on R1 (may be feil/1—fei2/l, or feil/2-fei4/l, fei4/2—fei2/ 3), but the path information from R2 to R3 cannot be known from ERO.
  • the backup tunnel is loose to 4, and only the complete path of R1 to 4 can be known through ERO on R1, but the path information from 4 to R3 Unable to learn from ERO.
  • the path through which the primary tunnel passes is: L12, L23;
  • the path through which the backup tunnel passes is: L14, L24, : L23.
  • the path of the primary tunnel seen on R1 is L12
  • the path of the backup tunnel is L14
  • the trails are not visible. At this time, it is impossible to determine whether an FRR relationship can be formed.
  • RRO Route Object
  • the embodiments of the present invention provide a method, a device, a head node, and a storage medium for improving the reliability of the TE FRR protection, which can better solve the problem of reliability of forming a TE FRR relationship.
  • an embodiment of the present invention provides a method for improving reliability of TE FRR protection, where the method includes: After determining the path information of the primary tunnel, the head node determines whether there is a loose node in the backup tunnel as a non-destination node;
  • the head node When it is determined that there is a loose node in the backup tunnel as a non-destination node, the head node sends a PATH message along the backup tunnel to the destination node for causing each node along the path to carry the path information therein;
  • the head node receives, in response to the PATH message, a RESV message sent by the destination node along the path transmitting the PATH message to carry path information in the path along the path; the head node utilizes the path carried by the RESV message The information determines whether the backup tunnel can perform TE FRR protection on the node and/or link to be protected in the primary tunnel.
  • the determining whether there is a loose node as a non-destination node in the backup tunnel includes: determining, by the head node, a path option used in establishing the backup tunnel, whether the non-destination node exists in the backup tunnel node.
  • the path information carried by the PATH message includes: a node identifier and an outbound interface address of each node of the PATH message path, and each node of the PATH message path carries the respective node identifier and the outbound in the received PATH message. interface address.
  • the path information carried by the RESV message includes: a node identifier and an outbound interface address of each node of the RESV message path, and each node of the RESV message path carries its own node identifier and out in the received RESV message. interface address.
  • the head node uses the path information carried by the RESV message to determine whether the backup tunnel can perform the traffic engineering fast rerouting TE FRR protection on the node and/or the link to be protected in the primary tunnel, including:
  • the header node obtains the node identifier and the outbound interface address of each node of the backup tunnel by parsing the received RESV message, and determines whether the backup tunnel passes through the primary tunnel by using the node identifier and the outbound interface address of each node. Nodes and/or links to be protected;
  • the backup tunnel cannot perform TE FRR protection on the nodes and/or links to be protected in the primary tunnel.
  • the head node determines path information of the primary tunnel, including:
  • the head node determines whether there is a spear node as a non-destination node in the main tunnel; when it is determined that there is a spear node as a non-destination node in the main tunnel, the head node sends the destination node along the main tunnel to the destination node Used to enable each node along the way to carry path information within it
  • the head node receives a RESV message sent by the destination node in the reverse direction along the path transmitting the PATH message in response to the PATH message to cause the nodes along the path to carry path information therein.
  • the determining whether there is a loose node as a non-destination node in the backup tunnel comprises: determining whether there is a spear node as a non-destination node in the primary tunnel by using a path option used when the primary tunnel is established.
  • an embodiment of the present invention provides an apparatus for improving reliability of TE FRR protection, where the apparatus includes a backup tunnel judging module, a backup tunnel sending module, a backup tunnel receiving module, and an FRR protection determining module. , among them:
  • the backup tunnel judging module is configured to determine, after determining the path information of the primary tunnel, whether there is a loose node that is a non-destination node in the backup tunnel;
  • the backup tunnel sending module is configured to, when determining that there is a loose node in the backup tunnel as a non-destination node, send, along the backup tunnel, a destination node to carry path information in each node along the path.
  • PATH message
  • the backup tunnel receiving module is configured to receive, in response to the PATH message, a RESV message sent by the destination node along the path of transmitting the PATH message for causing each node along the path to carry path information therein;
  • the FRR protection determining module is configured to use the path information of the primary tunnel and the path information of the backup tunnel carried in the received RESV message to determine whether the backup tunnel can TE FRR protection is performed on the nodes and/or links to be protected in the primary tunnel.
  • the backup tunnel judging module is configured to determine whether there is a loose node as a non-destination node in the backup tunnel by using a path option used when the backup tunnel is established.
  • the device further includes a main tunnel judging module, a main tunnel sending module, and a main tunnel receiving module, where:
  • the primary tunnel determining module is configured to determine whether a loose node that is a non-destination node exists in the primary tunnel;
  • the primary tunnel sending module is configured to: when it is determined that there is a loose node that is a non-destination node in the primary tunnel, send a PATH message to the destination node along the primary tunnel, so that each node along the path is in the PATH message. Carrying path information;
  • the primary tunnel receiving module is configured to receive a RESV message that is sent by the destination node in the reverse direction along the path of the PATH message in response to the PATH message, so that each node along the path carries the path information in the RES V message.
  • an embodiment of the present invention provides a head node, where the head node includes a memory and a processor connected to the memory, where:
  • the memory is for storing executable instructions that, when executed, cause the processor to perform the above-described method of improving TE FRR protection reliability.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, and the computer executable instructions are used to perform the foregoing improvement.
  • the technical solution provided by the embodiment of the present invention knows exactly whether the path of the backup tunnel passes through the protected node and/or the link, thereby improving the reliability of forming the TE FRR protection.
  • FIG. 1 is a node protection topology diagram of a TE-FRR provided by the prior art
  • FIG. 2 is a link protection topology diagram of a TE-FRR provided by the prior art
  • FIG. 3 is a top view of a loose node calculation path provided by the prior art
  • FIG. 4 is a block diagram of a method for improving reliability of TE FRR protection according to an embodiment of the present invention
  • FIG. 5 is a block diagram of a device for improving reliability of TE FRR protection according to an embodiment of the present invention
  • FIG. 5-2 is a schematic diagram of improving TE of an embodiment of the present invention
  • FRR protection device structure block diagram 2 is a block diagram of the structure of the head node of the embodiment of the present invention.
  • the spear-scattering node exists when the tunnel is established, the spear-scattering node is not the destination node, and therefore, the complete path information of the tunnel is not obtained in the ERO.
  • the present invention automatically carries the path information such as the RRO in the interactive message established by the tunnel.
  • FIG. 4 is a schematic block diagram of improving the reliability of TE FRR protection according to an embodiment of the present invention. As shown in FIG. 4, the steps include:
  • Step 401 After determining the path information of the primary tunnel, the head node determines whether a spear-scatter node that is a non-destination node exists in the backup tunnel.
  • the head node determines whether there is a loose node that is a non-destination node in the backup tunnel by using a path option used when the backup tunnel is established.
  • header node determines path information of the primary tunnel, including:
  • the head node uses the path option used in the establishment of the primary tunnel to determine whether there is a spear node as a non-destination node in the primary tunnel;
  • the head node edge When it is judged that there is a spear node as a non-destination node in the main tunnel, the head node edge The primary tunnel sends to the destination node to enable the nodes along the path to carry path information therein.
  • the PATH message, the path information carried in the PATH message includes the node identifier and the outbound interface address of each node of the PATH message path primary tunnel, and the nodes of the PATH message path primary tunnel sequentially carry the respective nodes in the received PATH message. Identification and outgoing interface address;
  • the head node receives the RESV message sent by the destination node in the reverse direction along the path for transmitting the PATH message to enable the nodes along the path to carry the path information, thereby obtaining the complete path information of the primary tunnel.
  • the path information carried by the RESV message includes a node identifier and an outbound interface address of each node of the RESV message path, and each node of the RESV message path carries its own node identifier and an outbound interface address in the received RESV message.
  • Step 402 When it is determined that there is a loose node in the backup tunnel as a non-destination node, the head node sends a PATH message along the backup tunnel to the destination node for carrying the path information in each node along the path.
  • the path information carried by the PATH message includes a node identifier and an outbound interface address of each node of the PATH message path backup tunnel, and each node of the PATH message path backup tunnel carries its own in the received PATH message. Node ID and outbound interface address.
  • Step 403 The head node receives, in response to the PATH message, a RESV message that is sent in the reverse direction along the path of the PATH message to enable each node along the path to carry path information therein.
  • the path information carried by the RESV message includes a node identifier and an outbound interface address of each node of the RESV message path, and each node of the RESV message path sequentially carries its own node identifier and out in the received RESV message.
  • the interface address thus obtaining the complete path information of the backup tunnel.
  • Step 404 The head node uses the path information carried in the RESV message to determine whether the backup tunnel can perform TE FRR protection on the node and/or link to be protected in the primary tunnel.
  • the head node obtains a backup tunnel by parsing the received RESV message. Determining, by using the node identifier and the outbound interface address of each node, whether the backup tunnel passes through a node and/or a link to be protected in the primary tunnel, and determines the backup tunnel. When the node or the link to be protected is in the primary tunnel, it is determined that the backup tunnel cannot perform TE FRR protection on the node and/or link to be protected in the primary tunnel.
  • Figure 5-1 is a block diagram of the structure of the device for improving the reliability of the TE FRR protection according to the embodiment of the present invention.
  • the device includes a backup tunnel judging module 501, a backup tunnel sending module 502, and a backup tunnel receiving module 503. And an FRR protection determination module 504, wherein:
  • the backup tunnel judging module 501 is configured to determine, after determining the path information of the main tunnel, whether there is a spear node as a non-destination node in the backup tunnel;
  • the backup tunnel judging module determines whether there is a loose node that is a non-destination node in the backup tunnel by using a path option used when the backup tunnel is established.
  • the backup tunnel sending module 502 is configured to send, along the backup tunnel, a destination node to enable each node along the path to carry a path therein.
  • PATH message of the information
  • the path information carried in the PATH message includes a node identifier and an outbound interface address of each node of the PATH message path, and each node of the PATH message path backup tunnel carries its own node identifier and out in the received PATH message. interface address.
  • the backup tunnel receiving module 503 is configured to receive, by the destination node, a RESV message, which is sent in the reverse direction along the path for transmitting the PATH message, to enable the nodes along the path to carry the path information in response to the PATH message, thereby obtaining The complete path information of the backup tunnel, where the path information carried by the RESV message includes a node identifier and an outbound interface address of each node of the RESV message path, and each node of the RESV message path sequentially carries in the received RESV message The respective node ID and outbound interface address.
  • the FRR protection determining module 504 is configured to use the path information of the primary tunnel and the path information of the backup tunnel carried in the received RESV message to determine whether the backup tunnel is The FRR protection can be performed on the node and/or the link to be protected in the primary tunnel. Specifically, the FRR protection determining module 504 obtains the node identifier of each node of the backup tunnel by parsing the received RESV message. Determining whether the backup tunnel passes the node and/or link to be protected in the primary tunnel, and determines that the backup tunnel passes the primary tunnel by using the node identifier and the outbound interface address of the node.
  • the apparatus further includes a primary tunnel determination module 505, a primary tunnel sending module 506, and a primary tunnel receiving module 507.
  • the primary tunnel determining module 505 is configured to determine whether a loose node that is a non-destination node exists in the primary tunnel;
  • the primary tunnel determination module determines whether there is a spear node as a non-destination node in the primary tunnel by using a path option used when the primary tunnel is established.
  • the primary tunnel sending module 506 is configured to send a PATH message to the destination node along the primary tunnel, so that each node along the path is in the The path information is carried in the PATH message;
  • the path information carried in the PATH message includes the node identifier and the outbound interface address of each node of the PATH message path, and the nodes of the PATH message path in the PATH message carry the respective node identifiers in sequence. And the outbound interface address.
  • the primary tunnel receiving module 507 is configured to receive a RESV message that is sent by the destination node in the reverse direction along the path of the PATH message in response to the PATH message, so that each node along the way carries the path information in the RESV message, thereby Obtaining complete path information of the primary tunnel, where the path information carried by the RESV message includes a node identifier and an outbound interface address of each node of the RESV message path, and each node of the RESV message path is sequentially received in the received RESV message. Carry the respective node ID and outbound interface address.
  • This embodiment provides a head node. Referring to FIG. 6, the head node 600 includes a memory 601 and a processor 602 connected to the memory 601, where:
  • the memory is configured to store executable instructions that, when executed, cause the processor to perform the method of improving TE FRR protection reliability provided by the above embodiments.
  • the path option used by the tunnel establishment is determined, and if the path option has the following
  • the path information (such as RRO) is automatically carried in the PATH message and the RESV message, regardless of whether the configuration is deployed under the tunnel; otherwise, since the head node already knows the complete path information of the tunnel through the calculation path, The path information needs to be carried in the PATH message and the RESV message.
  • the head node can know exactly whether the path of the backup tunnel passes through the protected node and/or link, thereby improving the reliability of TE FRR formation.
  • the path option of the primary tunnel is loose to R2 first, and 2 is not the destination node, that is, R2 is a spear node that is a non-destination node.
  • R2 is a spear node that is a non-destination node.
  • the path information such as: RRO object
  • the PATH message of the primary tunnel reaches R2, 2 further calculates the path from R2 to destination R3. If the path calculated at this time is L23, then the PATH message sent by R2 to R3 also carries the path information (eg: RRO object).
  • the RESV message sent by the destination node R3 to the upstream also carries the path information
  • the RESV message sent by R2 to R1 carries the fei3/l, fei/2/l and the RIDs of the nodes R3 and R2.
  • the path option used by the backup tunnel is loose, first loose to R4, and the loose node R4 is not the destination node, that is, R4 is a non-destination node, and needs to automatically carry the path in the signaling PATH message. information.
  • the RESV message received by R1 carries the path information (such as: RRO) fei3/l, fei2/3, fei4/l, and the RIDs of nodes R3, R2, and 4.
  • R1 can get the complete path information of the backup tunnel.
  • the RESV message received by R1 carries the path information (such as: RRO) fei3/2, fei4/l, and the RIDs of nodes R3 and R4. Path information.
  • the path information (such as RRO) is automatically carried in the signaling PATH message and the RESV message. Regardless of whether the configuration is deployed under the tunnel, the head node knows by the path information whether the path of the backup tunnel passes through the node and/or link protected by the primary tunnel, thereby improving the reliability of TE FRR formation.
  • the backup tunnel judging module, the backup tunnel sending module, the backup tunnel receiving module, the FRR protection determining module, the main tunnel judging module, the main tunnel sending module, and the main tunnel receiving module in the device for improving the reliability of the TE FRR protection provided by the embodiment of the present invention can be implemented by a processor in the head node; of course, can also be implemented by a specific logic circuit; in the process of the specific embodiment, the processor can be a central processing unit (CPU), a microprocessor ( MPU, Micro Processor Unit), Digital Signal Processor (DSP) or Field Programmable Gate Array (FPGA) Wait.
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the above method for improving the reliability of the TE FRR protection is implemented in the form of a software function module, and is sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product.
  • the computer software product is stored in a storage medium and includes a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is implemented to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a removable hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • the embodiment of the present invention further provides a computer readable storage medium, where the computer readable storage medium stores computer executable instructions, where the computer executable instructions are used to perform the foregoing embodiments of the present invention.
  • the head node after determining the path information of the primary tunnel, determines that there is a loose node in the backup tunnel as a non-destination node, and sends the destination node along the backup tunnel to make each path along the path.
  • a PATH message in which the node carries the path information
  • the RESV message sent by the receiving destination node in the reverse direction along the path transmitting the PATH message to enable the nodes along the path to carry the path information in response to the PATH message
  • the path information carried in the RESV message determines whether the backup tunnel can perform TE FRR protection on the node and/or link to be protected in the primary tunnel; thus, the path of the backup tunnel is known through the path information. Whether the protected nodes and/or links pass through, thereby improving the reliability of forming TE FRR protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开一种提高TE FRR保护可靠性的方法及装置、头节点、存储介质,所述方法包括:头节点在确定主隧道的路径信息后,判断备份隧道中是否存在作为非目的地节点的松散节点;当判断所述备份隧道中存在作为非目的地节点的松散节点时,头节点沿着所述备份隧道向目的地节点发送用来使沿途各节点在其内携带路径信息的PATH消息;头节点接收目的地节点响应所述PATH消息而沿着传输所述PATH消息的路径逆向发送的用来使沿途各节点在其内携带路径信息的RESV消息;头节点利用所述RESV消息携带的路径信息,确定所述备份隧道是否能够对主隧道中待保护的节点和/或链路进行TE FRR保护。

Description

提高 TE FRR保护可靠性的方法及装置、 头节点、 存储介质 技术领域
本发明涉及数据网络通讯领域, 特别涉及一种提高流量工程快速重路 由 (Traffic Engineering-Fast Re-Route, TE FRR ) 的方法及装置、 头节点、 存储介质。 背景技术
TE-FRR技术是一种当局部链路或节点失效时进行本地修复的本地保 护技术。 在 RFC4090中, 定义了链路保护和节点保护两种本地保护类型, 同时也定义了在形成保护过程中的两种特殊的节点类型:本地修复点( Point of Local Repair, PL )和汇聚点 (Merge Point, MP )。
图 1为现有技术提供的 TE-FRR的节点保护拓朴图, 如图 1所示, 该 拓朴图包括: 节点 Rl、 R2、 R3, 其中, R1作为 PLR节点, R3作为 MP 节点; 主标签交换路径 ( Label Switched Path, LSP ) 为节点 Rl、 R2和 R3 组成的路径,其中主 LSP( Primary LSP )称为主隧道,而备隧道( Backup LSP ) 为节点 R1和 R3组成的路径; 该拓朴图一共包括链路 L12、 L23、 L13, 当 链路 L12失效或节点 R2失效时, 将路径切换至链路 L13, 形成节点保护。
图 2为现有技术提供的 TE-FRR的链路保护拓朴图, 如图 2所示, 该 拓朴图包括: 节点 Rl、 R2、 R3, 其中, R2作为 PLR节点, R3作为 MP 节点, 链路 L12、 L23、 L32, 当链路 L23失效时, 将路径切换至 L32, 形 成链路保护。 切换结束后, 在 MP 节点处理从备份隧道入接口上发送的 PATH, PATH-TEAR等上游发送的协议报文, 对于原隧道的协议报文不进 行处理。
判断一条隧道能否成为主隧道的备隧道, 通常需要判断该隧道是否经 过了被保护的链路或者节点。 如果经过了被保护的链路或者节点, 那么该 隧道将不符合作为该条主隧道的备份隧道的条件。
基于此, PLR点需要知道主隧道 PL 点至 MP点的路径信息,同时 PLR 点需要知道完整的备份隧道路径。
隧道在建立的时候, 可能存在矛散点, 那么 PLR点就不容易知道主隧 道 PLR点至 MP点以及备份隧道的完整路径, 因为显式路由对象( Explicit Route Object, ERO )信息不完整, 如图 3所示。
主隧道松散到 R2节点, 在 R1上通过 ERO只能知道从 1到 R2的完 整路径(可能是 feil/1— fei2/l, 也可能是 feil/2— fei4/l, fei4/2— fei2/3 ), 但是从 R2到 R3的路径信息从 ERO中无法得知, 同理, 备份隧道松散到 4, 在 R1上通过 ERO只能知道 R1到 4的完整路径, 但是从 4到 R3 的路径信息无法从 ERO中得知。
殳设主隧道经过的路径为: L12, L23; 备份隧道经过的路径为: L14, L24, : L23。
在 R1上看到的主隧道的路径为 L12, 备份隧道的路径为 L14, 后面的 路径都不可见, 这个时候无从判断是否可以形成 FRR关系。
当然, 另外一种获取路径信息的方法是通过记录路由对象 (Record Route Object, RRO ), 但是 RRO需要隧道的头节点对这个配置进行部署。 在实际工程部署中, 特别是部署备份隧道的时候, 如果存在松散, 同时又 没有配置隧道的 RRO属性, 会导致错误的 TE FRR关系形成。 发明内容
有鉴于此,本发明实施例提供一种提高 TE FRR保护可靠性的方法及装 置、 头节点、 存储介质, 能更好地解决形成 TE FRR关系的可靠性的问题。
根据本发明实施例的第一个方面, 本发明实施例提供了一种提高 TE FRR保护可靠性的方法, 所述方法包括: 头节点在确定主隧道的路径信息后, 判断备份隧道中是否存在作为非 目的地节点的松散节点;
当判断所述备份隧道中存在作为非目的地节点的松散节点时, 头节点 沿着所述备份隧道向目的地节点发送用来使沿途各节点在其内携带路径信 息的 PATH消息;
头节点接收目的地节点响应所述 PATH消息而沿着传输所述 PATH消息 的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV消息; 头节点利用所述 RESV消息携带的路径信息, 确定所述备份隧道是否 能够对主隧道中待保护的节点和 /或链路进行 TE FRR保护。
优选地, 所述判断备份隧道中是否存在作为非目的地节点的松散节点, 包括: 头节点利用备份隧道建立时使用的路径选项, 判断所述备份隧道中 是否存在作为非目的地节点的^散节点。
优选地, 所述 PATH消息携带的路径信息包括: 所述 PATH消息途径各 节点的节点标识和出接口地址, 所述 PATH 消息途径各节点依次在收到的 PATH消息内携带各自的节点标识和出接口地址。
优选地, 所述 RESV消息携带的路径信息包括: 所述 RESV消息途径 各节点的节点标识和出接口地址, 所述 RESV消息途径各节点依次在收到 的 RESV消息内携带各自的节点标识和出接口地址。
优选地, 所述头节点利用所述 RESV消息携带的路径信息, 确定所 述备份隧道是否能够对主隧道中待保护的节点和 /或链路进行流量工程快 速重路由 TE FRR保护, 包括:
所述头节点通过解析所收到的 RESV消息, 得到备份隧道各个节点的 节点标识和出接口地址, 并利用所述各个节点的节点标识和出接口地址, 判断所述备份隧道是否经过主隧道中待保护的节点和 /或链路;
当判断所述备份隧道经过所述主隧道中待保护的节点或链路时, 确定 所述备份隧道不能对所述主隧道中待保护的节点和 /或链路进行 TE FRR保 护。
优选地, 所述头节点确定主隧道的路径信息, 包括:
头节点判断主隧道中是否存在作为非目的地节点的矛散节点; 当判断所述主隧道中存在作为非目的地节点的矛散节点时, 头节点沿 着所述主隧道向目的地节点发送用来使沿途各节点在其内携带路径信息的
PATH消息;
头节点接收目的地节点响应所述 PATH消息而沿着传输所述 PATH消息 的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV消息。
优选地, 所述判断备份隧道中是否存在作为非目的地节点的松散节点, 包括: 利用主隧道建立时使用的路径选项, 判断所述主隧道中是否存在作 为非目的地节点的矛散节点。
根据本发明实施例的第二方面,本发明实施例提供了一种提高 TE FRR 保护可靠性的装置, 所述装置包括备份隧道判断模块、 备份隧道发送模块、 备份隧道接收模块和 FRR保护确定模块, 其中:
所述备份隧道判断模块, 配置为在确定主隧道的路径信息后, 判断备 份隧道中是否存在作为非目的地节点的松散节点;
所述备份隧道发送模块, 配置为当判断所述备份隧道中存在作为非目 的地节点的松散节点时, 沿着所述备份隧道向目的地节点发送用来使沿途 各节点在其内携带路径信息的 PATH消息;
所述备份隧道接收模块, 配置为接收目的地节点响应所述 PATH 消息 而沿着传输所述 PATH 消息的路径逆向发送的用来使沿途各节点在其内携 带路径信息的 RESV消息;
所述 FRR保护确定模块, 配置为利用所述主隧道的路径信息和所收到 的 RESV消息内携带的备份隧道的路径信息, 确定所述备份隧道是否能够 对所述主隧道中待保护的节点和 /或链路进行 TE FRR保护。
优选地, 所述备份隧道判断模块, 配置为利用备份隧道建立时使用的 路径选项, 判断所述备份隧道中是否存在作为非目的地节点的松散节点。
优选地, 所述装置还包括主隧道判断模块、 主隧道发送模块和主隧道 接收模块, 其中:
所述主隧道判断模块, 配置为判断主隧道中是否存在作为非目的地节 点的松散节点;
所述主隧道发送模块, 配置为当判断所述主隧道中存在作为非目的地 节点的松散节点时, 沿着所述主隧道向目的地节点发送 PATH 消息, 使沿 途各节点在所述 PATH消息内携带路径信息;
所述主隧道接收模块, 配置为接收目的地节点响应所述 PATH 消息而 沿着所述 PATH消息传输的路径逆向发送的 RESV消息, 使沿途各节点在 所述 RES V消息内携带路径信息。
根据本发明实施例的第三方面, 本发明实施例提供一种头节点, 所述 头节点包括存储器和与所述存储器连接的处理器; 其中:
所述存储器用于存储可执行指令, 当所述可执行指令被执行时, 使所 述处理器执行上述的提高 TE FRR保护可靠性的方法。
根据本发明实施例的第四方面, 本发明实施例提供一种计算机可读存 储介质, 所述计算机可读存储介质中存储有计算机可执行指令, 所述计算 机可执行指令用于执行上述的提高 TE FRR保护可靠性的方法。
与现有技术相比较, 本发明实施例的有益效果在于:
本发明实施例提供的技术方案, 通过路径信息, 确切知道备份隧道的 路径是否经过了被保护的节点和 /或链路, 从而提高了形成 TE FRR保护的 可靠性。 附图说明
图 1是现有技术提供的 TE-FRR的节点保护拓朴图;
图 2是现有技术提供的 TE-FRR的链路保护拓朴图;
图 3是现有技术提供的松散节点算路拓朴图;
图 4是本发明实施例提高 TE FRR保护可靠性的方法原理框图; 图 5-1是本发明实施例提高 TE FRR保护可靠性的装置结构框图一; 图 5-2是本发明实施例提高 TE FRR保护可靠性的装置结构框图二; 图 6是本发明实施例头节点的结构框图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
由于隧道建立的时候, 存在矛散节点, 所述矛散节点并非目的地节点, 因此, ERO 中得不到所述隧道的完整的路径信息。 针对于这种算路时使用 松散路径, 同时松散节点不是目的地节点的情况, 本发明自动在隧道建立 的交互消息中携带路径信息比如 RRO。
图 4是本发明实施例提高 TE FRR保护可靠性的原理框图,如图 4所示, 步骤包括:
步骤 401、 头节点在确定主隧道的路径信息后, 判断备份隧道中是否存 在作为非目的地节点的矛散节点。
具体地说, 头节点利用备份隧道建立时使用的路径选项, 判断所述备 份隧道中是否存在作为非目的地节点的松散节点。
进一步地, 所述头节点确定主隧道的路径信息, 包括:
头节点利用主隧道建立时使用的路径选项, 判断主隧道中是否存在作 为非目的地节点的矛散节点;
当判断所述主隧道中存在作为非目的地节点的矛散节点时, 头节点沿 着所述主隧道向目的地节点发送用来使沿途各节点在其内携带路径信息的
PATH消息, 所述 PATH消息携带的路径信息包括所述 PATH消息途径主隧 道各节点的节点标识和出接口地址, 所述 PATH 消息途径主隧道各节点依 次在收到的 PATH消息内携带各自的节点标识和出接口地址;
头节点接收目的地节点响应所述 PATH消息而沿着传输所述 PATH消息 的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV消息, 从而得到主隧道的完整的路径信息, 所述 RESV消息携带的路径信息包括 所述 RESV消息途径各节点的节点标识和出接口地址, 所述 RESV消息途 径各节点依次在收到的 RESV消息内携带各自的节点标识和出接口地址。
步骤 402、 当判断所述备份隧道中存在作为非目的地节点的松散节点 时, 头节点沿着所述备份隧道向目的地节点发送用来使沿途各节点在其内 携带路径信息的 PATH消息。
具体地说,所述 PATH消息携带的路径信息包括所述 PATH消息途径备 份隧道各节点的节点标识和出接口地址, 所述 PATH 消息途径备份隧道各 节点依次在收到的 PATH消息内携带各自的节点标识和出接口地址。
步骤 403、 头节点接收目的地节点响应所述 PATH消息, 而沿着传输所 述 PATH 消息的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV消息。
具体地说, 所述 RESV消息携带的路径信息包括所述 RESV消息途径 各节点的节点标识和出接口地址, 所述 RESV消息途径各节点依次在收到 的 RESV消息内携带各自的节点标识和出接口地址, 从而得到备份隧道的 完整的路径信息。
步骤 404、头节点利用所述 RESV消息携带的路径信息,确定所述备份 隧道是否能够对主隧道中待保护的节点和 /或链路进行 TE FRR保护。
具体地说, 所述头节点通过解析所收到的 RESV消息, 得到备份隧道 各个节点的节点标识和出接口地址, 并利用所述各个节点的节点标识和出 接口地址, 判断所述备份隧道是否经过主隧道中待保护的节点和 /或链路, 当判断所述备份隧道经过所述主隧道中待保护的节点或链路时, 确定所述 备份隧道不能对所述主隧道中待保护的节点和 /或链路进行 TE FRR保护。
图 5-1是本发明实施例提高 TE FRR保护可靠性的装置结构框图一,如 图 5-1所示, 所述装置包括备份隧道判断模块 501、备份隧道发送模块 502、 备份隧道接收模块 503和 FRR保护确定模块 504, 其中:
所述备份隧道判断模块 501, 配置为在确定主隧道的路径信息后, 判断 备份隧道中是否存在作为非目的地节点的矛散节点;
具体地说, 所述备份隧道判断模块利用备份隧道建立时使用的路径选 项, 判断所述备份隧道中是否存在作为非目的地节点的松散节点。
当判断所述备份隧道中存在作为非目的地节点的松散节点时, 所述备 份隧道发送模块 502,配置为沿着所述备份隧道向目的地节点发送用来使沿 途各节点在其内携带路径信息的 PATH消息;
其中,所述 PATH消息携带的路径信息包括所述 PATH消息途径各节点 的节点标识和出接口地址, 所述 PATH 消息途径备份隧道各节点依次在收 到的 PATH消息内携带各自的节点标识和出接口地址。
所述备份隧道接收模块 503,配置为接收目的地节点响应所述 PATH消 息而沿着传输所述 PATH 消息的路径逆向发送的用来使沿途各节点在其内 携带路径信息的 RESV消息, 从而得到备份隧道的完整的路径信息, 其中, 所述 RESV消息携带的路径信息包括所述 RESV消息途径各节点的节点标 识和出接口地址, 所述 RESV消息途径各节点依次在收到的 RESV消息内 携带各自的节点标识和出接口地址。
所述 FRR保护确定模块 504, 配置为利用所述主隧道的路径信息和所 收到的 RESV消息内携带的备份隧道的路径信息, 确定所述备份隧道是否 能够对所述主隧道中待保护的节点和 /或链路进行 TE FRR保护; 具体地说, 所述 FRR保护确定模块 504, 通过解析所收到的 RESV消 息, 得到备份隧道各个节点的节点标识和出接口地址, 并利用所述各个节 点的节点标识和出接口地址, 判断所述备份隧道是否经过主隧道中待保护 的节点和 /或链路, 当判断所述备份隧道经过所述主隧道中待保护的节点或 链路时, 确定所述备份隧道不能对所述主隧道中待保护的节点和 /或链路进 行 TE FRR保护。 进一步地, 如图 5-2所示, 所述装置还包括主隧道判断模 505、 主隧道 发送模块 506和主隧道接收模块 507。
所述主隧道判断模块 505,配置为判断主隧道中是否存在作为非目的地 节点的松散节点;
具体地说, 所述主隧道判断模块利用主隧道建立时使用的路径选项, 判断所述主隧道中是否存在作为非目的地节点的矛散节点。
当判断所述主隧道中存在作为非目的地节点的矛散节点时, 所述主隧 道发送模块 506, 配置为沿着所述主隧道向目的地节点发送 PATH消息, 使 沿途各节点在所述 PATH消息内携带路径信息;
其中,所述 PATH消息携带的路径信息包括所述 PATH消息途径主隧道 各节点的节点标识和出接口地址, 所述 PATH 消息途径主隧道各节点依次 在收到的 PATH消息内携带各自的节点标识和出接口地址。
所述主隧道接收模块 507,配置为接收目的地节点响应所述 PATH消息 而沿着所述 PATH消息传输的路径逆向发送的 RESV消息, 使沿途各节点 在所述 RESV消息内携带路径信息, 从而得到主隧道的完整的路径信息, 其中, 所述 RESV消息携带的路径信息包括所述 RESV消息途径各节点的 节点标识和出接口地址, 所述 RESV消息途径各节点依次在收到的 RESV 消息内携带各自的节点标识和出接口地址。 本实施例提供了一种头节点, 请参见图 6所示, 所述头节点 600包括 存储器 601和与所述存储器 601连接的处理器 602, 其中:
所述存储器用于存储可执行指令, 当所述可执行指令被执行时, 使所 述处理器执行上述实施例提供的提高 TE FRR保护可靠性的方法。
通过图 4、 图 5-1、 图 5-2和图 6所示的实施例, 本发明实施例在任意 一条隧道建立的时候, 判断隧道建立使用的路径选项, 若路径选项中存在 下述的情况, 则自动在 PATH 消息和 RESV 消息中携带路径信息 (比如 RRO ), 而不管隧道下是否有部署这个配置; 否则, 由于头节点通过算路已 经知道所述隧道的完整的路径信息, 因此不需要在 PATH消息和 RESV消 息中携带路径信息。 头节点通过这些路径信息, 能够确切的知道备份隧道 的路径是否经过了被保护的节点和 /或链路, 从而提高 TE FRR形成的可靠 性。
情况: 路径选项中有松散节点, 并且所述松散节点是隧道的非目的地 节点, 也就是说, 路径选项中有作为非目的地节点的松散节点。
以下结合图 3所示矛散节点算路拓朴图, 进行进一步说明。
如图 3所示, 主隧道的路径选项为先松散至 R2, 2不是目的地节点, 即 R2是作为非目的地节点的矛散节点。 假设 1计算出来到 R2的路径为 L12, 那么需要自动的在信令 PATH消息中携带路径信息(如: RRO对象), 即携带 feil/1地址和 R1的节点标识 RID。 主隧道的 PATH消息到达 R2后, 2进一步计算 R2到目的地 R3的路径, 假设这时算出的路径为 L23, 那么 2往 R3发送的 PATH消息也会携带路径信息(如: RRO对象), 这时携带 feil/1地址、 fei2/2地址以及节点 R1和 R2的 RID。 目的地节点 R3往上游 发送的 RESV消息也会携带路径信息, R2往 R1发送的 RESV消息会携带 fei3/l、 fei/2/l以及节点 R3和 R2的 RID。 这样, 1通过解析 RESV消息, 就能够得到主隧道的完整的路径信息。 同理, 备份隧道使用的路径选项也存在松散, 先松散至 R4, 松散节点 R4不是目的地节点, 即 R4是作为非目的地节点的^散节点, 需要自动地 在信令 PATH消息中携带路径信息。
如果备份隧道的路径为 L14-L24-L23 , 那么 R1收到的 RESV消息中就 会携带路径信息 (如: RRO ) fei3/l、 fei2/3、 fei4/l 以及节点 R3、 R2、 4 的 RID, R1能够得到备份隧道的完整的路径信息。 通过比较主隧道的路径 信息和备份隧道的路径信息可知, 该备份隧道经过了需要保护的节点 R2, 所以不能形成 FRR保护。
如果备份隧道的路径为 L14-L43 , 那么 R1收到的 RESV消息中就会携 带路径信息(如: RRO ) fei3/2、 fei4/l以及节点 R3和 R4的 RID, 1能够 得到备份隧道的完整的路径信息。 通过比较主隧道的路径信息和备份隧道 的路径信息可知, 该备份隧道没有经过需要保护的节点 R2, 所以可以形成 节点保护。
综上所述, 任意一条隧道建立的时候, 如果路径选项中有松散节点, 并且所述矛散节点不是隧道的目的地节点, 则自动在信令 PATH 消息和 RESV消息中携带路径信息 (比如 RRO ), 而不管隧道下是否有部署这个配 置, 从而使头节点通过这些路径信息确切知道备份隧道的路径是否经过了 主隧道被保护的节点和 /链路,从而提高 TE FRR形成的可靠性。
本发明实施例提供的提高 TE FRR保护可靠性的装置中的备份隧道判 断模块、 备份隧道发送模块、 备份隧道接收模块、 FRR保护确定模块、 主 隧道判断模块、 主隧道发送模块和主隧道接收模块, 都可以通过头节点中 的处理器来实现; 当然也可通过具体的逻辑电路实现; 在具体实施例的过 程中, 处理器可以为中央处理器(CPU, Central Processing Unit ), 微处理 器(MPU, Micro Processor Unit )、 数字信号处理器(DSP, Digital Signal Processor )或现场可编程门阵列 ( FPGA, Field Programmable Gate Array ) 等。
本发明实施例中,如果以软件功能模块的形式实现上述的提高 TE FRR 保护可靠性的方法, 并作为独立的产品销售或使用时, 也可以存储在一个 计算机可读取存储介质中。 基于这样的理解, 本发明实施例的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计 算机设备(可以是个人计算机、 服务器、 或者网络设备等)执行本发明各 个实施例所述方法的全部或部分。 而前述的存储介质包括: U盘、 移动硬 盘、 只读存储器(ROM, Read Only Memory ), 磁碟或者光盘等各种可以存 储程序代码的介质。 这样, 本发明实施例不限制于任何特定的硬件和软件 结合。
相应地, 本发明实施例再提供一种计算机可读存储介质, 所述计算机 可读存储介质中存储有计算机可执行指令, 所述计算机可执行指令用于执 行上述本发明各实施例所提供的提高 TE FRR保护可靠性的方法。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领 域技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原 理所作的修改, 都应当理解为落入本发明的保护范围。 工业实用性
本发明实施例中, 头节点在确定主隧道的路径信息后, 判断所述备份 隧道中存在作为非目的地节点的松散节点时, 沿着所述备份隧道向目的地 节点发送用来使沿途各节点在其内携带路径信息的 PATH 消息; 接收目的 地节点响应所述 PATH消息而沿着传输所述 PATH消息的路径逆向发送的用 来使沿途各节点在其内携带路径信息的 RESV消息; 利用所述 RESV消息 携带的路径信息, 确定所述备份隧道是否能够对主隧道中待保护的节点和 / 或链路进行 TE FRR保护; 如此, 通过路径信息, 确切知道备份隧道的路径 是否经过了被保护的节点和 /或链路, 从而提高了形成 TE FRR保护的可靠 性。

Claims

权利要求书
1、 一种提高 TE FRR保护可靠性的方法, 所述方法包括:
头节点在确定主隧道的路径信息后, 判断备份隧道中是否存在作为 非目的地节点的矛散节点;
当判断所述备份隧道中存在作为非目的地节点的松散节点时, 头节 点沿着所述备份隧道向目的地节点发送用来使沿途各节点在其内携带路 径信息的 PATH消息;
头节点接收目的地节点响应所述 PATH消息, 而沿着传输所述 PATH 消息的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV 消息;
头节点利用所述 RESV消息携带的路径信息, 确定所述备份隧道是 否能够对主隧道中待保护的节点和 /或链路进行流量工程快速重路由 TE FRR保护。
2、 根据权利要求 1所述的方法, 其中, 所述判断备份隧道中是否存 在作为非目的地节点的松散节点, 包括: 利用备份隧道建立时使用的路 径选项, 判断所述备份隧道中是否存在作为非目的地节点的矛散节点。
3、 根据权利要求 2所述的方法, 其中, 所述 PATH消息携带的路径 信息包括: 所述 PATH 消息途径各节点的节点标识和出接口地址, 所述 PATH消息途径各节点依次在收到的 PATH消息内携带各自的节点标识和 出接口地址。
4、 根据权利要求 3所述的方法, 其中, 所述 RESV消息携带的路径 信息包括: 所述 RESV消息途径各节点的节点标识和出接口地址, 所述
RESV消息途径各节点依次在收到的 RESV消息内携带各自的节点标识 和出接口地址。
5、 根据权利要求 4所述的方法, 其中, 所述头节点利用所述 RESV 消息携带的路径信息, 确定所述备份隧道是否能够对主隧道中待保护的 节点和 /或链路进行流量工程快速重路由 TE FRR保护, 包括:
所述头节点通过解析所收到的 RESV消息, 得到备份隧道各个节点 的节点标识和出接口地址, 并利用所述各个节点的节点标识和出接口地 址, 判断所述备份隧道是否经过主隧道中待保护的节点和 /或链路, 当判 断所述备份隧道经过所述主隧道中待保护的节点或链路时, 确定所述备 份隧道不能对所述主隧道中待保护的节点和 /或链路进行 TE FRR保护。
6、 根据权利要求 1至 5任意一项所述的方法, 其中, 所述头节点确 定主隧道的路径信息, 包括:
头节点判断主隧道中是否存在作为非目的地节点的矛散节点; 当判断所述主隧道中存在作为非目的地节点的矛散节点时, 头节点 沿着所述主隧道向目的地节点发送用来使沿途各节点在其内携带路径信 息的 PATH消息;
头节点接收目的地节点响应所述 PATH消息而沿着传输所述 PATH消 息的路径逆向发送的用来使沿途各节点在其内携带路径信息的 RESV消 息。
7、 根据权利要求 6所述的方法, 其中, 所述判断备份隧道中是否存 在作为非目的地节点的松散节点, 包括: 利用主隧道建立时使用的路径 选项, 判断所述主隧道中是否存在作为非目的地节点的矛散节点。
8、 一种提高 TE FRR保护可靠性的装置, 该装置包括备份隧道判断 模块、 备份隧道发送模块、 备份隧道接收模块和 FRR保护确定模块, 其 中:
所述备份隧道判断模块, 配置为在确定主隧道的路径信息后, 判断 备份隧道中是否存在作为非目的地节点的矛散节点;
所述备份隧道发送模块, 配置为当判断所述备份隧道中存在作为非 目的地节点的松散节点时, 沿着所述备份隧道向目的地节点发送用来使 沿途各节点在其内携带路径信息的 PATH消息;
所述备份隧道接收模块, 配置为接收目的地节点响应所述 PATH 消 息而沿着传输所述 PATH 消息的路径逆向发送的用来使沿途各节点在其 内携带路径信息的 RESV消息;
所述 FRR保护确定模块, 配置为利用所述主隧道的路径信息和所收 到的 RESV消息内携带的备份隧道的路径信息, 确定所述备份隧道是否 能够对所述主隧道中待保护的节点和 /或链路进行流量工程快速重路由 TE FRR保护。
9、 根据权利要求 8所述的装置, 其中, 所述备份隧道判断模块, 配 置为利用备份隧道建立时使用的路径选项, 判断所述备份隧道中是否存 在作为非目的地节点的矛散节点。
10、 根据权利要求 8或 9所述的装置, 其中, 所述装置还包括主隧 道判断模块、 主隧道发送模块和主隧道接收模块, 其中:
所述主隧道判断模块, 配置为判断主隧道中是否存在作为非目的地 节点的松散节点;
所述主隧道发送模块, 配置为当判断所述主隧道中存在作为非目的 地节点的松散节点时, 沿着所述主隧道向目的地节点发送 PATH 消息, 使沿途各节点在所述 PATH消息内携带路径信息;
所述主隧道接收模块, 配置为接收目的地节点响应所述 PATH 消息 而沿着所述 PATH消息传输的路径逆向发送的 RESV消息, 使沿途各节 点在所述 RESV消息内携带路径信息。
11、 一种头节点, 所述头节点包括存储器和与所述存储器连接的处理 器; 其中:
所述存储器用于存储可执行指令, 当所述可执行指令被执行时, 使所 述处理器执行权利要求 1至 7任一项所述的提高 TE FRR保护可靠性的方 法。
12、 一种计算机可读存储介质, 所述计算机可读存储介质中存储有计 算机可执行指令, 所述计算机可执行指令用于执行权利要求 1至 7任一项 所述的提高 TE FRR保护可靠性的方法。
PCT/CN2014/079640 2013-12-05 2014-06-10 提高te frr保护可靠性的方法及装置、头节点、存储介质 WO2014183720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310653294.3A CN104702501B (zh) 2013-12-05 2013-12-05 一种提高te frr保护可靠性的方法及装置
CN201310653294.3 2013-12-05

Publications (1)

Publication Number Publication Date
WO2014183720A1 true WO2014183720A1 (zh) 2014-11-20

Family

ID=51897779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079640 WO2014183720A1 (zh) 2013-12-05 2014-06-10 提高te frr保护可靠性的方法及装置、头节点、存储介质

Country Status (2)

Country Link
CN (1) CN104702501B (zh)
WO (1) WO2014183720A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037681A2 (en) * 2007-09-21 2009-03-26 Alcatel Lucent Rsvp-te enhancement for mpls-frr bandwidth optimization
CN101562536A (zh) * 2009-05-19 2009-10-21 迈普通信技术股份有限公司 一种局部路径保护的快速重路由方法
CN101599859A (zh) * 2009-06-30 2009-12-09 华为技术有限公司 一种双向隧道的保护方法、系统及节点
CN103166848A (zh) * 2013-03-07 2013-06-19 杭州华三通信技术有限公司 选择多协议标签交换流量工程旁路隧道的方法及节点

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780253A (zh) * 2004-11-17 2006-05-31 华为技术有限公司 一种快速重路由的方法
CN101431466B (zh) * 2007-11-09 2011-04-06 华为技术有限公司 快速重路由方法及标签交换路由器
US7936667B2 (en) * 2009-01-05 2011-05-03 Cisco Technology, Inc. Building backup tunnels for fast reroute in communications networks
US8630189B2 (en) * 2009-09-17 2014-01-14 At&T Intellectual Property I, L.P. Methods, apparatus and articles of manufacture to monitor tunnels within traffic engineering/fast reroute enabled networks
CN102158397B (zh) * 2011-02-17 2016-06-29 中兴通讯股份有限公司 一种重路由的方法和本地修复点节点
CN102647340A (zh) * 2012-03-22 2012-08-22 中兴通讯股份有限公司 Rsvp-te隧道中的松散节点及其路径计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037681A2 (en) * 2007-09-21 2009-03-26 Alcatel Lucent Rsvp-te enhancement for mpls-frr bandwidth optimization
CN101562536A (zh) * 2009-05-19 2009-10-21 迈普通信技术股份有限公司 一种局部路径保护的快速重路由方法
CN101599859A (zh) * 2009-06-30 2009-12-09 华为技术有限公司 一种双向隧道的保护方法、系统及节点
CN103166848A (zh) * 2013-03-07 2013-06-19 杭州华三通信技术有限公司 选择多协议标签交换流量工程旁路隧道的方法及节点

Also Published As

Publication number Publication date
CN104702501A (zh) 2015-06-10
CN104702501B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN1973486B (zh) 在采用受保护链路的数据网络中避免微环的方法和装置
KR102118687B1 (ko) SDN(Software-defined networking)에서 네트워크 장애 해소를 위한 컨트롤러 및 스위치의 동작 방법과, 이를 위한 컨트롤러 및 스위치
US8305882B2 (en) Methods, systems, and computer program products for detecting and/or correcting faults in a multiprotocol label switching network by using redundant paths between nodes
TWI472191B (zh) 非相交路徑計算演算法
WO2012037820A1 (zh) 多协议标签交换系统、节点设备及双向隧道的建立方法
CN103888351B (zh) 在基于多路径路由的网络中管理多个会话的方法及装置
US9154412B2 (en) Multicast label distribution protocol over a remote loop-free alternative
US11595441B2 (en) Systems and methods for securing network paths
WO2012109912A1 (zh) 一种重路由的方法和本地修复点节点
CN101610535A (zh) 多链路直连场景下保证bfd会话稳定性的方法、系统及装置
CN110086711B (zh) 流量回切方法、装置、电子设备及可读存储介质
TWI492575B (zh) 快速標籤交換路徑警示機制
WO2013026336A1 (zh) 一种路径检测的实现方法及节点
EP4199465A1 (en) Creating a packet with a loopback label stack to detect network link/node failures
WO2013189414A2 (zh) 网络拓扑自动获取方法及系统、网络查询及管理系统
JP2005277446A (ja) 予備パス設定方法及びその装置
EP3048761B1 (en) Control method and device for self-loopback of network data
WO2015117377A1 (zh) 一种网络连通性验证方法、装置和计算机可读存储介质
CN110430131A (zh) 一种报文转发方法及装置
WO2016169214A1 (zh) 一种隧道保护切换的方法和装置
CN102769552A (zh) 一种通过bfd检测lsp时传输bfd报文的方法和设备
WO2021000619A1 (zh) 报文转发方法及装置
CN104852848B (zh) 一种数据传输的方法和设备
US20140146659A1 (en) Rendezvous point convergence method and apparatus
WO2019223435A1 (zh) 组播快速切换的方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14797904

Country of ref document: EP

Kind code of ref document: A1