WO2014183481A1 - 完全人工红蓝光型光合转光玻璃平面光源 - Google Patents

完全人工红蓝光型光合转光玻璃平面光源 Download PDF

Info

Publication number
WO2014183481A1
WO2014183481A1 PCT/CN2014/071004 CN2014071004W WO2014183481A1 WO 2014183481 A1 WO2014183481 A1 WO 2014183481A1 CN 2014071004 W CN2014071004 W CN 2014071004W WO 2014183481 A1 WO2014183481 A1 WO 2014183481A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
red
light
blue
component
Prior art date
Application number
PCT/CN2014/071004
Other languages
English (en)
French (fr)
Inventor
王达健
张长江
陆启飞
吴玲玲
Original Assignee
邯郸市盛德技术玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邯郸市盛德技术玻璃有限公司 filed Critical 邯郸市盛德技术玻璃有限公司
Publication of WO2014183481A1 publication Critical patent/WO2014183481A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to the field of optical functional glass and semiconductor optoelectronic technology, and in particular to a fully artificial red-blue photosynthetic light-converting glass planar light source.
  • Light is the energy of plant photosynthesis, and the dark reaction of photosynthesis is the fixation process of carbon dioxide, forming a high-energy compound adenosine triphosphate.
  • the wavelengths of illumination required for plant photosynthesis typically include blue light from 400 nm to 500 nm and red light from 620 nm to 680 nm and far-red light from 720 nm to 740 nm, which contribute to plant phototaxis, photosynthesis and photomorphogenesis.
  • the red and blue synchrotron radiation corresponding to the above-mentioned bands is called photosynthetically active radiation, and this special light does not contain ultraviolet light having a wavelength of 280 nm to 320 nm, which can prevent damage to plant pigments.
  • a red light with a characteristic wavelength of 660 nm and a light source of 450 nm blue can significantly increase the photosynthetic quantum yield of plants, and a red light emitting source with a characteristic wavelength of 66 nm is particularly important.
  • the glass with photosynthetically active radiation is called photosynthetic light-transmissive glass, or called photosynthetic glass.
  • the photosynthetic glass is in the form of photosynthetic light-transmissive hollow glass components and photosynthetic light-transmissive glass.
  • Plant growth photosynthesis requires photosynthetically active irradiance energy with a characteristic wavelength of 660 nm red light.
  • the sources that provide such light energy are sunlight, artificial light, and mixed light.
  • Artificial light includes high-pressure sodium lamps, fluorescent lamps, and semiconductor light-emitting diodes. Light sources that use artificial light are called complete artificial light sources. Among them, semiconductor light-emitting diodes are energy-saving, environmentally friendly, and long-life, and are used to replace artificial light sources of traditional plant lighting.
  • a blue light diode capable of emitting a wavelength of 400 nm to 500 nm is currently realized by an InGaN semiconductor chip, which is simply referred to as a blue light diode; a red light capable of emitting a wavelength of 620 nm to 680 nm is realized by an AlGalnP semiconductor chip, Referred to as red light two Tube.
  • the use of these red and blue diodes to make a plant growth source is a mixture of a single blue LED and a single red diode that is exposed directly to the air.
  • the problems are: Whether it is a blue-light diode or a red-light diode, in the environment of plant lighting, contact with hot air, it is easy to cause the chip of the light-emitting diode to deteriorate, the emission spectrum deviates from the required spectrum, the life of the diode and the entire light source. shorten.
  • Another disadvantage is that the photon energy of red and blue light is not uniform in spatial distribution. The phytochrome of plants cannot simultaneously absorb the red and blue energy needed for photosynthesis at the molecular level, and can not achieve energy saving, increase production and increase value of plant growth. the goal of.
  • the use of ultra-white embossed glass to achieve photosynthetically efficient emission is a new technology.
  • the light source emitting red and blue light is placed in the hollow glass module, which can isolate the illuminating source from the environment.
  • the micro-nano structure on the glass surface can solve the light emission. Reflection and export efficiency issues.
  • the object of the present invention is to provide a completely artificial red-blue photosynthetic light-converting glass planar light source, including an insulating glass and an LED thereof, and a component composed of an insulating glass and a red-blue LED artificial light source can be synchronized for the above technical analysis and existing problems.
  • Red light with a characteristic wavelength of 660 nm and blue light with a characteristic wavelength of 450 nm are emitted to form a planar light source with uniform spatial distribution in two colors.
  • the insulating glass is made of two sheets which are evenly spaced by an effective supporting aluminum strip and sealed with a silicone sealant at the periphery to form a dry gas space between the glass layers.
  • the planar light source comprises an insulating glass component and a red-blue LED component thereof, one glass in the hollow glass component is an ultra-white embossed glass, and the other is a sunlight-controlled coated glass, and the red-blue LED component is composed of a red-blue LED chip and is placed in a hollow The interior of the glass component cavity.
  • the volts of the red light-emitting diodes having a characteristic wavelength of 660 nm are from the Al-GalnP red-light LEDs, and the forward-current voltage is 1.5 volts to 1.75 volts.
  • the volts are 2. 9 to 3. 4 volts.
  • the forward voltage is 2. 9 to 3. 4 volts.
  • the red and blue LED components are placed around the silicone sealant of the hollow glass component and the aluminum frame strip and the coated surface of the solar control coated glass.
  • the distance between the ultra-white embossed glass and the solar-controlled coated glass in the insulating glass unit is 9 mm to 15 mm.
  • the invention has the following advantages: 1 The blue light diode and the red light diode are enclosed in the hollow glass, and the hot air is isolated, which can prolong the life of the semiconductor chip and the light source; 2 the red and blue radiation energy emitted in the space Uniform distribution; 3 radiant power ratio of red and blue light is easy to adjust; 4 easy to achieve large-scale industrial production.
  • Figure 1 is a planar light source structure of a fully artificial red-blue photosynthetic light-converting glass assembly.
  • Figure 2 is a cross-sectional view taken along line I - I of Figure 1.
  • Figure 3 is an emission spectrum of a planar light source of an artificial red-blue photosynthetic light-converting glass assembly.
  • 1 is an insulating glass component
  • 2 is a red-blue LED component
  • 3 is an ultra-white embossed glass
  • 4 is an embossed surface
  • 5 is a silicone sealant and an aluminum frame strip
  • 6 is a coated surface
  • 7 is a solar control coating. glass.
  • AlGalnP red LED products emitting red light with a characteristic wavelength of 660 nm are used.
  • the forward voltage is 1.5 75 volts when the forward DC current is 150 mA, and the InGaN blue LED with the emission characteristic wavelength of 450 nm is selected.
  • the forward voltage is 2.9 volts, assembled into a red-blue LED component 2, placed on the periphery of the hollow glass component 1 and on the coated surface 6 of the solar-controlled coated glass 7, and the other glass is ultra-white.
  • Embossed glass 3, ultra-white embossed glass 3 and solar control coated glass 7 The distance between the glass is 9 mm, surrounded by silicone sealant and aluminum frame strip 5, and the power is connected to form a completely artificial red-blue photosynthetic light-converting glass plane light source.
  • the structure is shown in Figure 1 and Figure 2, The emission spectrum of the planar light source is shown in Figure 3.
  • the AlGalnP red LED product with a characteristic wavelength of 660 nm red light is used.
  • the forward voltage is 1.5 mA when the forward DC current is 150 mA, and the InGaN blue LED with the emission characteristic wavelength of 450 nm is selected.
  • the forward voltage is 3.4 volts, assembled into a red-blue LED component 2, placed on the periphery of the hollow glass component 1 and on the coated surface 6 of the solar-controlled coated glass 7, and the other glass is ultra-white.
  • Embossed glass 3, ultra-white embossed glass 3 and solar control coated glass 7 The distance between the two pieces of glass is 15 mm, surrounded by silicone sealant and aluminum frame strip 5, connected to the power supply, forming a complete artificial red
  • the blue light-type photosynthetic light-converting glass planar light source has the structure shown in Fig. 1 and Fig. 2, and the emission spectrum of the planar light source is shown in Fig. 3.
  • the AlGalnP red LED product with a characteristic wavelength of 660 nm red light is used.
  • the forward voltage is 1.5 mA when the forward DC current is 150 mA, and the InGaN blue LED with the emission characteristic wavelength of 450 nm is selected.
  • the forward voltage is 3.1 volts, and it is assembled into a red and blue LED component 2, placed on the periphery of the hollow glass component 1 and on the coated surface 6 of the solar control coated glass 7, and the other glass is ultra-white.
  • Embossed glass 3, ultra-white embossed glass 3 and solar control coated glass 7 The distance between the two pieces of glass is 10 mm, surrounded by silicone sealant and aluminum frame strip 5, connected to the power supply, forming a complete artificial red
  • the blue light-type photosynthetic light-converting glass planar light source has the structure shown in Fig. 1 and Fig. 2, and the emission spectrum of the planar light source is shown in Fig. 3.

Abstract

提供一种完全人工红蓝光型光合转光玻璃平面光源,包括中空玻璃组件(1)及红蓝光LED组件(2),中空玻璃组件(1)中的一片玻璃是超白压花玻璃(3),另一片是阳光控制镀膜玻璃(7),中空玻璃组件(1)四周和中部安装有特征波长为660纳米的A1GaInP红光LED和特征波长为450纳米的InGaN蓝光LED人工光源。

Description

完全人工红蓝光型光合转光玻璃平面光源
技术领域
本发明涉及光功能玻璃和半导体光电技术领域, 具体的说, 涉及一种完全 人工红蓝光型光合转光玻璃平面光源。
背景技术
光是植物光合作用的能源, 光合作用的暗反应即二氧化碳的固定过程, 形 成高能化合物三磷酸腺苷。 植物光合作用需要的光照波长通常包括 400纳米至 500纳米的蓝光和 620纳米至 680纳米的红光以及 720纳米至 740纳米的远红光,对 植物的趋光性、 光合作用和光形态发生作用。 具有上述波段对应的红光和蓝光 同步辐射称为光合有效辐射, 这种特种光中不含有波长在 280纳米至 320纳米的 紫外光, 可防止对植物色素的伤害。 同时具有特征波长为 660纳米的红光和 450 纳米蓝光的光源可显著提高植物生长光合量子产率, 其中具有特征波长为 66纳 米的红光发射光源尤为重要。 具有光合有效辐射的玻璃称为光合转光玻璃, 或 者称为光合玻璃, 光合玻璃的形式有光合转光中空玻璃组件和光合转光体玻璃 两大类型。
植物生长光合作用需要具有特征波长为 660 纳米红光的光合有效辐照能 量, 提供这类光能的光源有太阳光、 人工光以及混合光。 人工光包括高压钠灯、 荧光灯以及半导体发光二极管, 全部采用人工光的光源称为完全人工光源, 其 中半导体发光二极管具有节能、 环保、 长寿命特点, 用来替代传统植物照明的 人工光源。 在半导体人工光源中, 目前能够发射波长为 400纳米至 500纳米的 蓝光二极管通过 InGaN半导体芯片来实现, 简称为蓝光二极管; 能够发射波长 为 620纳米至 680纳米的红光通过 AlGalnP半导体芯片来实现, 简称为红光二 极管。 采用这些红光和蓝光二极管来制作植物生长光源的方案是, 用单个的蓝 光二极管和单个的红光二极管混排组成, 二极管直接裸露在空气中。 存在的问 题有: 无论是蓝光二极管还是红光二极管, 在植物照明使用环境中, 和潮热的 空气接触, 容易导致发光二极管的芯片劣化, 发射光谱偏离需要的光谱, 二极 管和整个光源的使用寿命缩短。 另一个缺点是, 红光和蓝光的光子能量在空间 分布上不均匀, 植物的光敏色素不能在分子水平上同步吸收光合作用所需要的 红光和蓝光能量, 不能达到植物生长节能、 增产、 增值的目的。
采用超白压花玻璃实现光合有效发射的方案是一个新技术, 把发射红蓝光 的光源放置于中空玻璃组件内, 可以隔离发光源受环境的影响, 通过玻璃表面 的微米纳米结构可以解决出射光的反射以及导出效率问题。
发明内容
本发明的目的是针对上述技术分析和存在问题, 提供一种完全人工红蓝光 型光合转光玻璃平面光源, 包括中空玻璃及其 LED, 采用中空玻璃及其红蓝光 LED人工光源构成的组件能够同步发射特征波长为 660纳米的红光和特征波长 为 450纳米的蓝光, 形成空间上双色均匀分布的平面光源。
本发明的技术方案可以通过下述的技术措施来实现:
中空玻璃是由两片以有效支撑铝条框均匀隔开并周边粘接硅酮密封胶密 封, 使玻璃层间形成有干燥气体空间的制品。
该平面光源包括中空玻璃组件及其红蓝光 LED组件, 中空玻璃组件中的一 片玻璃是超白压花玻璃, 另一片是阳光控制镀膜玻璃, 红蓝光 LED组件由红蓝 光 LED芯片组成并放置在中空玻璃组件腔体内部。
红蓝光 LED组件发射特征波长为 660纳米的红光来自于 AlGalnP红光 LED, 正向直流电流为 150毫安培时正向电压为 1. 3伏至 2. 75伏。 红蓝光 LED组件发射特征波长为 450纳米的蓝光来自于 InGaN蓝光 LED, 正向直流电流为 20毫安培时正向电压是 2. 9至 3. 4伏。
红蓝光 LED组件放置于中空玻璃组件的硅酮密封胶和铝框条的四周和阳光 控制镀膜玻璃的镀膜面上。
中空玻璃组件中的超白压花玻璃和阳光控制镀膜玻璃两片玻璃之间的间隔 距离是 9毫米至 15毫米。
本发明与现有技术相比具有下列优点: 1 蓝光二极管和红光二极管封闭在 中空玻璃内, 隔离潮热空气, 可以延长半导体芯片和光源的寿命; 2 发射的红 光和蓝光辐射能量在空间分布上均匀; 3红光和蓝光的辐射功率比率容易调整; 4容易实现规模化工业生产。
附图说明
图 1是完全人工红蓝光型光合转光玻璃组件平面光源结构。
图 2是图 1的 I - I的剖视图。
图 3是人工红蓝光型光合转光玻璃组件平面光源的发射光谱图。
图中 1是中空玻璃组件, 2是红蓝光 LED组件, 3是超白压花玻璃, 4是压 花面, 5是硅酮密封胶和铝框条, 6是镀膜面, 7是阳光控制镀膜玻璃。
具体实 J ^r式
实施例 1:
选用发射特征波长为 660纳米红光的 AlGalnP红光 LED产品,正向直流电流 为 150毫安培时正向电压为 2. 75伏, 再选用发射特征波长为 450纳米的 InGaN 蓝光 LED, 正向直流电流为 20毫安培时正向电压是 2. 9伏, 装配成红蓝光 LED 组件 2, 放置于中空玻璃组件 1内的四周和阳光控制镀膜玻璃 7的镀膜面 6上, 另一片玻璃选用超白压花玻璃 3, 超白压花玻璃 3和阳光控制镀膜玻璃 7两片 玻璃之间的间隔距离是 9毫米,四周用硅酮密封胶和铝框条 5封闭,联结上电源, 形成完全人工红蓝光型光合转光玻璃平面光源, 结构如图 1和图 2所示, 平面 光源的发射光谱图如图 3所示。
实施例 2:
选用发射特征波长为 660纳米红光的 AlGalnP红光 LED产品,正向直流电流 为 150毫安培时正向电压为 1. 3伏, 再选用发射特征波长为 450纳米的 InGaN 蓝光 LED, 正向直流电流为 20毫安培时正向电压是 3. 4伏, 装配成红蓝光 LED 组件 2, 放置于中空玻璃组件 1内的四周和阳光控制镀膜玻璃 7的镀膜面 6上, 另一片玻璃选用超白压花玻璃 3, 超白压花玻璃 3和阳光控制镀膜玻璃 7两片 玻璃之间的间隔距离是 15毫米,四周用硅酮密封胶和铝框条 5封闭,联结上电 源, 形成完全人工红蓝光型光合转光玻璃平面光源, 结构如图 1和图 2所示, 平面光源的发射光谱图如图 3所示。
实施例 3:
选用发射特征波长为 660纳米红光的 AlGalnP红光 LED产品,正向直流电流 为 150毫安培时正向电压为 2. 0伏, 再选用发射特征波长为 450纳米的 InGaN 蓝光 LED, 正向直流电流为 20毫安培时正向电压是 3. 1伏, 装配成红蓝光 LED 组件 2, 放置于中空玻璃组件 1内的四周和阳光控制镀膜玻璃 7的镀膜面 6上, 另一片玻璃选用超白压花玻璃 3, 超白压花玻璃 3和阳光控制镀膜玻璃 7两片 玻璃之间的间隔距离是 10毫米,四周用硅酮密封胶和铝框条 5封闭,联结上电 源, 形成完全人工红蓝光型光合转光玻璃平面光源, 结构如图 1和图 2所示, 平面光源的发射光谱图如图 3所示。
以上所述实施例仅表达了本发明的实施方式, 其描述较为具体和详细, 但 并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干改进, 这 些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以所附权利要求 为准。

Claims

权 利 要 求 书
1. 一种完全人工红蓝光型光合转光玻璃平面光源, 包括中空玻璃组件 (1 ) 及其红蓝光 LED组件(2), 其特征在于: 中空玻璃组件(1 ) 中的一片玻璃是超 白压花玻璃 (3) 置于中空玻璃组件 (1 ) 的上层, 另一片是阳光控制镀膜玻璃
( 7) 置于中空玻璃组件 (1 ) 的下层, 红蓝光 LED组件(2) 由红蓝光 LED芯片 组成并放置在中空玻璃组件(1 ) 内部, 两片玻璃以有效支撑铝条框均匀隔开并 周边粘接硅酮密封胶密封。
2. 根据权利要求 1所述的完全人工红蓝光型光合转光玻璃平面光源, 其特 征在于: 红蓝光 LED组件 (2) 发射特征波长为 660纳米的红光, 采用 AlGalnP 红光 LED,正向直流电流为 150毫安培时正向电压为 1. 3伏至 2. 75伏。
3. 根据权利要求 1所述的完全人工红蓝光型光合转光玻璃平面光源, 其特 征在于: 红蓝光 LED组件(2)发射特征波长为 450纳米的蓝光, 采用 InGaN蓝 光 LED, 正向直流电流为 20毫安培时正向电压是 2. 9至 3. 4伏。
4. 根据权利要求 1所述的完全人工红蓝光型光合转光玻璃平面光源, 其特 征在于: 红蓝光 LED组件 (2) 的红蓝光 LED芯片放置于中空玻璃组件 (1 ) 的 硅酮密封胶和铝框条 (5 ) 的四周和阳光控制镀膜玻璃 (7) 的镀膜面 (6) 上。
5. 根据权利要求 1所述的完全人工红蓝光型光合转光玻璃平面光源, 其特 征在于: 中空玻璃组件 (1 ) 中的超白压花玻璃 (3) 和阳光控制镀膜玻璃 (7) 两片玻璃之间的间隔距离是 9毫米至 15毫米。
PCT/CN2014/071004 2013-05-16 2014-01-21 完全人工红蓝光型光合转光玻璃平面光源 WO2014183481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013101816243A CN103258943A (zh) 2013-05-16 2013-05-16 完全人工红蓝光型光合转光玻璃平面光源
CN201310181624.3 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014183481A1 true WO2014183481A1 (zh) 2014-11-20

Family

ID=48962755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071004 WO2014183481A1 (zh) 2013-05-16 2014-01-21 完全人工红蓝光型光合转光玻璃平面光源

Country Status (3)

Country Link
CN (1) CN103258943A (zh)
TW (1) TW201445073A (zh)
WO (1) WO2014183481A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258943A (zh) * 2013-05-16 2013-08-21 邯郸市盛德技术玻璃有限公司 完全人工红蓝光型光合转光玻璃平面光源
CN103606630A (zh) * 2013-12-13 2014-02-26 天津理工大学 一种有机电致发红蓝光光合转光玻璃平板光源
CN114956555B (zh) * 2022-06-20 2023-08-18 深圳瑞欧光技术有限公司 一种转光透光一体化玻璃板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040230102A1 (en) * 2003-05-13 2004-11-18 Anderson William Grant Efficient LED lamp for enhancing commercial and home plant growth
CN201690847U (zh) * 2010-04-23 2011-01-05 潍坊广生新能源有限公司 Led植物灯
CN201706341U (zh) * 2010-06-17 2011-01-12 上海尊华电子工程有限公司 发光中空led玻璃
CN102326491A (zh) * 2011-06-01 2012-01-25 张家港市瑞腾科技有限公司 利用led光源促进植物生长的方法
CN103258943A (zh) * 2013-05-16 2013-08-21 邯郸市盛德技术玻璃有限公司 完全人工红蓝光型光合转光玻璃平面光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040230102A1 (en) * 2003-05-13 2004-11-18 Anderson William Grant Efficient LED lamp for enhancing commercial and home plant growth
CN201690847U (zh) * 2010-04-23 2011-01-05 潍坊广生新能源有限公司 Led植物灯
CN201706341U (zh) * 2010-06-17 2011-01-12 上海尊华电子工程有限公司 发光中空led玻璃
CN102326491A (zh) * 2011-06-01 2012-01-25 张家港市瑞腾科技有限公司 利用led光源促进植物生长的方法
CN103258943A (zh) * 2013-05-16 2013-08-21 邯郸市盛德技术玻璃有限公司 完全人工红蓝光型光合转光玻璃平面光源

Also Published As

Publication number Publication date
TW201445073A (zh) 2014-12-01
CN103258943A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CA3003994C (en) Lighting assembly
CN203907265U (zh) 一种led球泡灯
CN204785626U (zh) 一种led植物生长补光灯
CN103925483A (zh) 一种新型led植物生长灯
WO2016180078A1 (zh) 一种植物生长灯
CN201797809U (zh) 植物灯
WO2014183481A1 (zh) 完全人工红蓝光型光合转光玻璃平面光源
TW201106853A (en) Plants illumination device
CN201897098U (zh) 多功能led灯
TW201507605A (zh) 植物工廠用發光二極體照明模組和搭載該照明模組的植物工廠用發光二極體照明裝置
CN2822175Y (zh) 调节植物生长用半导体照射光源装置
CN203010263U (zh) 一种led植物生长光源
TWM399604U (en) plant lamp
CN203949002U (zh) 一种360度发光的散热led灯
CN203297988U (zh) 一种植物生长灯
WO2013023468A1 (zh) 一种用于植物光照的可调光谱灯具
CN103256556B (zh) 太阳光和人工光并用型光合转光玻璃平面光源
CN205227030U (zh) 植物生长用led平板光源
CN201256569Y (zh) 植物生长房用大功率led光源
CN104067853A (zh) 一种用于食用菌生产的led补光灯
CN203442503U (zh) 完全人工红蓝光型光合转光玻璃平面光源
RU2709465C1 (ru) Линейный светодиодный фитосветильник
CN203915792U (zh) 多波段led辅助治疗室
CN203503654U (zh) 一种高亮度可调光cob光源
CN203322991U (zh) 太阳光和人工光并用型光合转光玻璃平面光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14798434

Country of ref document: EP

Kind code of ref document: A1