WO2014183250A1 - 交直流智能高效节能电机及其驱动方法 - Google Patents

交直流智能高效节能电机及其驱动方法 Download PDF

Info

Publication number
WO2014183250A1
WO2014183250A1 PCT/CN2013/075540 CN2013075540W WO2014183250A1 WO 2014183250 A1 WO2014183250 A1 WO 2014183250A1 CN 2013075540 W CN2013075540 W CN 2013075540W WO 2014183250 A1 WO2014183250 A1 WO 2014183250A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
power
module
energy
signal source
Prior art date
Application number
PCT/CN2013/075540
Other languages
English (en)
French (fr)
Inventor
张瑞棉
Original Assignee
东莞市科圣特电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市科圣特电子科技有限公司 filed Critical 东莞市科圣特电子科技有限公司
Priority to PCT/CN2013/075540 priority Critical patent/WO2014183250A1/zh
Publication of WO2014183250A1 publication Critical patent/WO2014183250A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention relates to the field of electric machines, and particularly relates to an AC/DC intelligent high-efficiency energy-saving motor and a driving method thereof.
  • the prior art AC motors, brushed DC motors, and brushless DC motors have been widely used in daily life and production, and have been used in household appliances, enterprises, electric vehicles, electric bicycles, and automation equipment. Due to the disadvantages of the existing motor used in various industries: high energy consumption, low power conversion efficiency, low power consumption, low torque, energy consumption and torque are not proportional, inefficient energy consumption, low power factor, motor No-load power consumption is 65% of the power consumption of the load. It consumes more electricity, has less power, has higher operating temperature, is more susceptible to damage caused by motor blockage, has high motor running noise, and has a short service life. Especially the traditional motor has not only huge defects.
  • the motor can't manufacture high speed, the highest is 2888 rpm, and the objective factor of the traditional motor is high energy consumption and low efficiency.
  • the average power consumption of the motor with power of 50W-500KW is 56%, and the average waste is 44%.
  • the traditional high-energy consumption of electric motors has caused waste of electric energy to users and economic losses to users. It has caused waste of electricity energy to the country.
  • carbon dioxide emitted by coal-fired or fuel-fired power generation. Sulfur dioxide, nitrogen oxides (2.62kg per kg of combustion), at the same time, caused serious pollution to the human environment and endangered human survival.
  • the present invention provides an AC and DC intelligent and efficient Energy-saving motor, to solve various bad factors and defects in the traditional motor, when the electric energy is supplied to the motor, the motor has low energy consumption, high efficiency and high torque, achieving high energy saving of 60%, under the premise of equal power consumption with other motors.
  • the torque is increased by 4.8 times, the motor speed can be adjusted steplessly between 300 rpm and -30000 rpm, the motor is not burned, and the startup cabinet and the frequency conversion device are not required during operation, and the motor can be generated while the motor is running.
  • the electric energy is supplied to the external load, so that the motor can be used at a low temperature, and the low-cost service life can be achieved for more than 10 years, and energy conservation is achieved.
  • the present invention provides an AC-DC intelligent high-efficiency energy-saving motor and a driving method thereof, which not only increases the rotational torque of the motor, saves energy consumption, and ensures that the AC power source is interfered.
  • the motor still moves smoothly.
  • An AC/DC intelligent high-efficiency energy-saving motor has a motor mode and a generator mode, and the AC/DC intelligent high-efficiency energy-saving motor comprises:
  • rectifier module rectifies the input AC power source into a DC power source in a motor mode
  • a periodic pulse generation module wherein the periodic pulse generation module generates a periodic pulse signal source in the motor mode
  • rate control module adjusts a potential frequency difference of the periodic pulse signal source in a motor mode
  • excitation driving module amplifies the periodic pulse signal source after the rate control module is controlled in the motor mode, and pushes a cycle of periodic dynamic potentials having equal phase differences between the phases;
  • a power driving module accepting the excitation driving mode in a motor mode
  • the multi-phase generated periodic dynamic potentials having equal phase differences between each other perform power amplification of the electric energy and are supplied to the motor coil;
  • the energy-efficient motor drives a load when the motor is driven by the power driving module in the motor mode, and generates power by the internal structure of the motor in the generator mode, and outputs the generated electric energy to the induction output.
  • the inductive output module receives the driving power of the motor in the mutual sense of the motor mode, and transmits the driving electric energy of the motor received by the mutual inductance to the external power supply through the internal function conversion output, and generates the electric power generated by the motor in the generator mode.
  • the power output is the driving power of the motor in the mutual sense of the motor mode, and transmits the driving electric energy of the motor received by the mutual inductance to the external power supply through the internal function conversion output, and generates the electric power generated by the motor in the generator mode.
  • the AC power source is a three-phase AC power source or a two-phase AC power source.
  • the rate control module reduces or increases the frequency of the periodic pulse signal source generated by the periodic pulse generating module.
  • the periodic dynamic potential having the equal phase difference between the plurality of phases is a continuous potential of a sinusoidal waveform having equal phase differences between the phases.
  • the continuous potential of the sinusoidal waveform in which the plurality of phases have equal phase differences with each other is a continuous potential of a sinusoidal waveform having three phases or two phases having equal phase differences with each other.
  • the power driving module uses a power supply driver to dynamically power the multi-phase periodic dynamic potentials having equal phase differences with each other to drive the AC/DC intelligent high-efficiency energy-saving motor to operate.
  • the present invention also discloses a driving method for an AC-DC intelligent high-efficiency energy-saving motor, and the driving method of the AC-DC intelligent high-efficiency energy-saving motor includes:
  • the input AC power is rectified and converted into DC power to provide use of each module of the motor; the DC power source is used to drive the periodic pulse generating circuit to oscillate, and the periodic pulse signal source generated by the periodic pulse generating circuit is regulated and processed Obtain a multiphase communication signal with stable frequency and phase Source
  • the AC/DC intelligent high-efficiency energy-saving motor is driven by the multi-phase AC signal source with the stable rate and phase, and the operation is driven to drive the load.
  • the AC power source is a three-phase AC power source or a two-phase AC power source.
  • the invention provides an AC/DC intelligent high-efficiency energy-saving motor and a driving method thereof, and the AC/DC intelligent high-efficiency energy-saving motor does not need a starting cabinet and a frequency conversion speed regulating device, and the torque is increased to other motors under the premise of the same energy consumption as other motors. 4. 8 times, and achieve energy saving of 60%, at the same time can supply 10%-40% of the input power to other electrical equipment, achieving multi-function while reducing the temperature rise of the AC-DC intelligent high-efficiency energy-saving motor.
  • the AC/DC intelligent high-efficiency energy-saving motor is not interfered by the AC power supply of the power grid, and can rotate at a stable speed after starting, and can realize stepless speed change between 300 rpm and 30,000 rpm.
  • the AC/DC intelligent high-efficiency energy-saving motor also has the function of a generator, realizes multi-purpose of one machine, and expands the application field. After the popularization of the AC-DC intelligent high-efficiency energy-saving motor, the electric energy per hour can be 1.56 billion degrees.
  • FIG. 1 is a circuit block diagram of an AC/DC intelligent high-efficiency energy-saving motor according to a first embodiment of the present invention.
  • 2 is a circuit schematic diagram of an AC-DC intelligent high-efficiency energy-saving motor according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the frequency increase of the periodic pulse signal source by the AC-DC intelligent high-efficiency energy-saving motor according to the first embodiment of the present invention.
  • Fig. 4 is a schematic diagram showing the frequency reduction of a periodic pulse signal source by an AC-DC intelligent high-efficiency energy-saving motor according to a first embodiment of the present invention.
  • Fig. 5 is a flow chart showing a driving method of an AC/DC intelligent high-efficiency energy-saving motor according to a second embodiment of the present invention.
  • 1 to 4 show a first embodiment of the present invention.
  • the AC/DC intelligent high-efficiency energy-saving motor includes a rectifier module 101 and a pulse sampling module.
  • the rate control module 103, the excitation pushing module 104, the power driving module 105, the motor 106, and the inductive output module 107 are included in the rate control module 103, the excitation pushing module 104, the power driving module 105, the motor 106, and the inductive output module 107.
  • the alternating current input to the AC/DC high-efficiency energy-saving motor is three-phase alternating current.
  • the rectifier module 101 is configured to rectify the three-phase AC power input to the AC/DC intelligent high-efficiency motor in the motor mode, and convert the AC power into a DC power source.
  • the three-phase AC power input to the rectifier module 101 is a power frequency 50 Hz/60 Hz three-phase AC power source from the public power grid, and the power output of the rectifier module 101 is a DC power source rectified by the rectifier module 101. .
  • the rectification module 101 uses a three-phase bridge full-wave rectification circuit to rectify the input of the three-phase AC power supply, and provides a stable power supply to the AC/DC intelligent high-efficiency energy-saving motor of the present invention. section.
  • the periodic pulse generation module 102 is operative to generate a periodic pulse signal source in the motor mode under excitation of a DC power source output by the rectifier module 101.
  • the periodic pulse signal source of the periodic pulse generation module 102 is a periodic square wave signal source or a periodic sinusoidal signal source, and the periodic pulse signal source is required to have good frequency stability.
  • the periodic pulse generation module 102 is implemented by connecting an oscillation circuit to a periodic pulse trigger circuit.
  • the rate control module 103 is configured to regulate a rate difference of a periodic pulse signal source generated by the periodic pulse generation module 102 in a motor mode. Since the rate difference of the periodic pulse signal source regulated by the rate control module 103 determines the rotational speed of the motor, the rate control module 103 generates a periodic pulse signal source generated by the periodic pulse generating module 102. s speed The regulation of the frequency difference achieves the regulation of the rotational speed of the motor.
  • the process of the rate adjustment module 103 regulating the rate difference of the periodic pulse signal is a process of increasing a rate difference of the periodic pulse signal or a rate of the periodic pulse signal.
  • the process of making a difference is reduced.
  • the process of increasing the rate difference of the periodic pulse signal is a process of interpolating the periodic pulse signal.
  • Fig. 3 shows the process of raising the rate difference of the periodic pulse signal. Referring to FIG. 3, if the period of the periodic pulse signal source 301 is T, the rate control module 103 inserts N-1 equally spaced pulse signals between the two pulse signals to obtain a period in which the frequency is increased. Sex pulse signal source 302.
  • the process of reducing the rate difference of the periodic pulse signal is a process of downsampling the periodic pulse signal.
  • Fig. 4 shows a process of reducing the rate difference of the periodic pulse signal.
  • the rate control module samples the periodic pulse signal source once every time period of the NXT is passed, and the sampled frequency is generated.
  • the reduced periodic pulse signal source 402 is the output signal source of the rate regulation module 103.
  • the rate control module 103 is implemented by using a sequential circuit to connect the flip-flop circuit.
  • the excitation pushing module 104 is configured to control the periodic pulse signal source controlled by the rate regulation module 103 in the motor mode, and generate a periodic signal source with three phases having the same phase difference.
  • the periodic pulse signal source regulated by the rate regulation module is a periodic square wave signal source.
  • the excitation pushing module 104 first controls the adjusted periodic square wave signal source, that is, changes the amplitude of the adjusted periodic square wave signal source. Then, the excitation pushing module 104 divides the periodic square wave signal source into eight paths for processing, specifically, performing stepping work on the eight-way periodic square wave signal source integrated into four sinusoidal alternating current signal sources.
  • the process of synthesizing an eight-way periodic square wave signal source into a four-way sinusoidal AC signal source is according to the frequency of the eight-way periodic square wave signal source And the time point of the rising edge of the rising edge synthesizes the eight-way periodic square wave signal.
  • the first three sinusoidal AC signal sources of the four sinusoidal AC signal sources have equal phase differences with each other in sequence, and the fourth sinusoidal AC signal source is a composite point signal source of the first three sinusoidal AC signal sources.
  • the power drive module 105 is configured to power regulate a sine wave signal source output by the excitation push module 104 in a motor mode.
  • the power driving module 105 performs power regulation on the sine wave signal source output by the excitation pushing module 104 by using a power driver. After power amplification by the power drive module 105, the sinusoidal signal source has sufficient power to propel the rotor of the motor.
  • the energy efficient motor 106 rotates at a different rate under the drive of the power drive module 105.
  • the energy efficient motor 106 is a three phase or single phase AC/DC motor.
  • the energy efficient motor 106 includes a stator, a rotor, and front and rear end caps, and the stator has a motor coil assembly. Since the frequency of the sine wave signal source is regulated by the rate control module, the speed of the high efficiency energy-saving motor 106 is steplessly adjustable.
  • the high-efficiency energy-saving motor can make the rotating torque of the motor 4.8 times that of the conventional electric motor, and the electric power efficiency is 98%, while the energy saving is 60%, and the rotating speed can be adjusted to 300 rpm. Minutes - 30,000 rpm.
  • the high-efficiency energy-saving motor 106 rotates, and the magnetic power cutting of the rotor of the high-efficiency energy-saving motor rotates and the internal surface of the stator is transferred by the stator to transfer the residual magnetic flux to the generator output line group to be converted into electric energy to generate electricity. effect.
  • the stator windings of the motor 106 are connected to a constant power source and receive a constant magnetic field from the rotor.
  • the magnetic flux of the stator winding drives the rotor to cut the magnetic field lines, and the magnetic force of the rotating magnetic force of the rotor is absorbed by the generator line group and the current is induced to the high efficiency.
  • the output circuit of the power generation line in the energy-saving motor is a constant power source and receive a constant magnetic field from the rotor.
  • the inductive output module 107 senses driving power and will sense the drive Dynamic power output. In this embodiment, the inductive output module outputs the driving power to generate power
  • the AC/DC intelligent high-efficiency energy-saving motor can not only provide power for other power-consuming equipments while outputting stable mechanical rotation, but also reduce the internal self-consumption and high temperature rise of the AC-DC intelligent high-efficiency energy-saving motor.
  • the rapid aging of the wires of the AC/DC intelligent high-efficiency energy-saving motor is avoided, and the life of the AC-DC intelligent high-efficiency power-saving motor is prolonged.
  • An induction winding is disposed adjacent the stator winding of the motor 106, and the induction winding is coupled to the output port. The induction winding senses the energy of the alternating magnetic field of the stator winding and outputs the energy of the received alternating magnetic field through the output port to connect other electrical appliances to supply power to other electrical appliances.
  • the inductive output module 107 outputs the induced current obtained by cutting the magnetic field lines of the constant magnetic field when the motor rotor rotates to other electrical appliances to supply power to other electrical appliances.
  • FIG. 2 is a circuit schematic diagram of an AC/DC intelligent high-efficiency energy-saving motor according to an embodiment of the present invention.
  • a three-phase or single-phase AC power source inputs the AC/DC intelligent energy-efficient motor and generator from input ports R, S, T, and ⁇ .
  • the rectifier 201 receives from the input port R, S, T, ⁇ -phase or single-phase AC power input, three-phase or single-phase AC input power is rectified to obtain a DC power supply DLV1, DLV3 0
  • the DC power supply DLV1, DLV3 is connected to the rate control module 203, the excitation push module 204, and the power drive module 205, and is the rate control module 203, the excitation push module 204, and the power drive module.
  • the rectifier module 201 provides power.
  • the rectifier module 201 also outputs three AC power sources DLV2, DLV4 and DLVN.
  • the AC power sources DLV2, DLV4, and DLVN are respectively connected to the rate control module 203 and the excitation push module 204, and are used to provide the speed control module 203 and the excitation push module 204 with fast-used power.
  • the other DC power output of the rectifier module 201 is connected to the periodic pulse generation module 202.
  • the periodic pulse generation module 202 is composed of an oscillation circuit and a periodic pulse signal source generation circuit.
  • the oscillating circuit is configured to generate a rate pulse power source having a stable frequency and phase
  • the rush signal source generating circuit is configured to generate a periodic pulse signal source according to the frequency and phase of the rate pulse power source, wherein the periodic pulse signal source has the same frequency as the rate pulse power source.
  • the periodic pulse generation module 202 generates a periodic pulse signal source and inputs the generated periodic pulse signal source to the rate regulation module 203 through the diode D2.
  • the rate control module 203 performs frequency-speed regulation on the periodic pulse signal source.
  • the frequency-speed regulation of the periodic pulse signal source is such that the frequency of the periodic pulse signal source increases or the frequency of the periodic pulse signal source decreases.
  • the rate control module 203 divides the frequency-regulated periodic pulse signal source into multiple channels, and periodically pulses the multi-channel frequency-controlled
  • the first three periodic pulse signal sources P2, P3 and P4 of the signal sources P2, P3, P4 and P5 are respectively delayed.
  • the rate control module 203 outputs the periodic square wave power source P1 before the frequency speed control and the delayed periodic pulse signal sources P2, P3, P4, and P5 to the excitation pushing module 204, respectively.
  • the excitation pushing module 204 receives the power sources P1, P2, P3, P4, and P5 output by the rate control module 203, and amplifies the delayed periodic pulse signal sources P2, P3, P4, and P5, and then delays.
  • the frequency and phase of the subsequent periodic pulse signal sources P2, P3, P4, and P5 respectively generate a sinusoidal AC power source, wherein any two of the first three sinusoidal AC power sources P2, P3, and P4 have the same phase difference
  • the latter three-way sinusoidal AC power supply P5 is the integrated point signal source of the first three sinusoidal AC power supplies P2, P3 and P4.
  • the excitation pushing module 204 divides the generated multi-channel sinusoidal AC power sources P2, P3, P4, and P5 into positive half-wave power sources PT1, ⁇ 3, ⁇ 5, ⁇ 7 and negative half-wave power supplies ⁇ 2, ⁇ 4, ⁇ 6, ⁇ 8, respectively.
  • the generated positive half-wave power sources ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 and negative half-wave power supplies ⁇ 2, ⁇ 4, ⁇ 6, ⁇ 8 are output to the power driving module 205, respectively.
  • the power driving module 205 power-amplifies the positive half-wave power sources ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 and the negative half-wave power sources ⁇ 2, ⁇ 4, ⁇ 6, ⁇ 8 input by the excitation pushing module 204, and puts the power
  • the positive positive half-wave power supplies PT1, ⁇ 3, ⁇ 5, ⁇ 7 and negative half-wave power supplies ⁇ 2, ⁇ 4, ⁇ 6, ⁇ 8 are integrated into motor drive power sources L1U, L2V, L3W, LN, LG, wherein the motor drive power source L1U, L2V, L3W, LN, LG include a grounding power source LG.
  • the motor 206 is driven by the motor drive power sources L1U, L2V, L3W, LN, LG to drive the load machine to work.
  • the motor 206 is coupled to an output stage.
  • the output stage senses electrical energy of the motor drive power source and outputs the sensed power from the output terminals B B , B, C, N.
  • the AC/DC intelligent high-efficiency energy-saving motor and generator further includes a high-frequency harmonic suppression module 207.
  • the high frequency harmonic suppression module is a high and low pass filter for filtering out the high frequency power input to the power driving module 205 to prevent high and low frequency harmonics in the circuit from interfering with the motor driving power.
  • the embodiment provides an AC/DC intelligent high-efficiency energy-saving motor.
  • the AC/DC intelligent high-efficiency energy-saving motor does not need a start-up cabinet and a frequency conversion speed control device, and the torque is increased to other motors under the premise of the same energy consumption as other motors. 8 times, and achieve energy saving of 60%, at the same time can supply 10%-40% of the input power generation to other electrical equipment, achieving multi-function while reducing the temperature rise of the AC-DC intelligent high-efficiency energy-saving motor.
  • the AC/DC intelligent high-efficiency energy-saving motor is not interfered by the AC power supply of the power grid, and can rotate at a stable speed after starting, and can realize stepless speed change between 300 rpm and 30,000 rpm.
  • the AC/DC intelligent high-efficiency energy-saving motor also has the function of a generator, and realizes multi-purpose of one machine.
  • Fig. 5 shows a second embodiment of the present invention.
  • Fig. 5 is a flow chart showing a driving method of an AC/DC intelligent high-efficiency energy-saving motor according to a second embodiment of the present invention.
  • the driving method of the AC/DC intelligent high-efficiency energy-saving motor comprises: rectifying an input AC power source, converting it into DC power to provide use of each module of the motor; driving the periodic pulse generating circuit to oscillate by using the DC power source, and pulsing the periodic pulse
  • the periodic pulse signal source generated by the generating circuit is regulated Processing to obtain a multi-phase AC signal source with stable frequency and phase; driving the AC/DC intelligent high-efficiency energy-saving motor with the multi-phase AC signal source with stable rate and phase to realize operation and driving load.
  • step S301 the input AC power is rectified and converted into DC power to provide use of each module of the motor.
  • the input AC power is first rectified into a DC power supply.
  • the rectification of the AC power source is completed by using a bridge full control rectifier circuit.
  • the DC power supply after rectification has a fixed current value and voltage value, and does not change with time.
  • step S302 the DC power source is used to drive the periodic pulse generating circuit to oscillate, and the periodic pulse signal source generated by the periodic pulse generating circuit is subjected to regulation processing to obtain a frequency and phase stable multi-phase AC signal source.
  • the DC power source After rectifying to obtain a DC power source, the DC power source is used to drive the oscillation circuit.
  • the oscillating circuit generates a high frequency oscillating signal source driven by the direct current power source.
  • the high frequency oscillating signal source is input to a flip flop, and the flip flop generates a periodic pulse signal source according to a frequency of the high frequency oscillating signal source.
  • the frequency of the periodic pulse signal source is adjusted by a frequency multiplier or a frequency divider to obtain a periodic pulse signal source of a specific frequency.
  • the periodic pulse signal source of the specific frequency is divided into multiple paths, and each of the periodic pulse signal sources is input to an AC signal generator.
  • the AC signal generator generates a continuous AC signal source based on the frequency of the input periodic pulse signal source and the rising edge time point. Finally, the AC signal source of the output of the multiple AC signal generators is phase-controlled, and a multi-phase AC signal source with stable frequency and phase is generated.
  • the periodic pulse signal source of the specific frequency is divided into three paths, wherein each path period
  • the pulse signal source is input to an AC signal generator.
  • the three AC signal generators generate an AC signal source according to the frequency of the input periodic pulse signal source and the rising edge time point.
  • a three-phase AC signal source with stable frequency and phase is generated.
  • step S303 the AC-DC intelligent high-efficiency energy-saving motor is driven by the multi-phase AC signal source with the stable rate and phase, and the operation is driven to drive the load.
  • the AC/DC intelligent high-efficiency energy-saving motor is driven by the multi-phase AC signal source with stable frequency and phase.
  • the AC/DC intelligent high-efficiency energy-saving motor is stable because the frequency of the multi-phase AC signal source for driving the AC/DC intelligent high-efficiency energy-saving motor is stable, and the multi-phase AC signal source maintains a fixed phase difference between the multi-phase signals. It can be rotated at a fixed angular rate, so that stable mechanical energy can be obtained by the AC/DC intelligent high-efficiency energy-saving motor.
  • the embodiment provides a driving method for an AC-DC intelligent high-efficiency energy-saving motor.
  • the AC-DC intelligent high-efficiency energy-saving motor rectifies and oscillates the input multi-phase AC signal. Frequency control, delay and sine wave occur, thus obtaining a multi-phase AC signal with stable frequency and phase, and driving the motor by using the multi-phase AC signal with stable frequency and phase, so that the AC-DC intelligent high-efficiency energy-saving motor
  • the rotational speed is not interfered by the frequency and phase of the multiphase AC signal, and the stable output mechanical energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种交直流智能高效节能电机及其驱动方法,所述交直流智能高效节能电机包括:整流模块(101)、周期脉冲发生模块(102)、速率调控模块(103)、激励推动模块(104)、功率驱动模块(105)、电机(106)及感应输出模块(107)。在电动机模式下,功率驱动模块驱动电机带动负载,在发电模式下,借助电机内部的结构进行发电,将发电得到的电能输出给感应输出模块。

Description

交直流智能高效节能电机及其驱动方法 技术领域
本发明涉及电机领域, 具体涉及一种交直流智能高效节能电机及其驱动方 法。
背景技术
现有技术中已有的交流电动机、 有刷直流电动机、 无刷直流电动机, 这些 电机在人们的日常生产生活中使用普及, 已用于家用电器、 企业、 电动汽车、 电动自行车、 自动化设备。 由于现有的电机使用在各行各业的不利因素是: 高 耗能、 用电转化效率低、 耗电多扭矩力小、 耗能与扭矩力不成正比、 无效耗能 大、 功率因数低、 电机空载耗电是负载耗电的 65%, 用电浪费多、 动力小、 工作 温度高、 电机堵转易损坏、 电机运行噪音大、 使用寿命短, 特别是传统的电机, 不但有巨大的缺陷, 电机不能制造高转速, 最高为 2888转 /m, 而传统电机的客 观因素是高耗能低效率, 功率在 50W— 500KW的电机平均的用电效率为 56%, 平 均浪费为 44%, 由于传统的电机高耗能长年累月给使用者导致的电能浪费并对使 用者造成了经济损失, 给国家造成了电能源浪费, 被浪费的电能源中, 用煤碳 或燃油发电转化时所排放的二氧化碳、 二氧化硫、 氮氧化物(每 kg 燃烧后为 2. 62kg)与此同时, 对人类环境造成了严重的污染、 危害人类的生存。
传统的电机导致不良因素的原因:
1、 技术落后; 2、 结构设计不合理; 3、 体积大及笨重; 4、 材质低劣; 5、 材质磁通密度低; 6、 制造工艺粗糙; 7、 电能与磁通量不成正比; 8、 生产电机 耗材多。
针对上述电机存在的不良因素和缺陷, 本发明特提出一种交直流智能高效 节能电机,去解决传统电机存在的各种不良因素和缺陷, 把电能提供给电机时使 电机低耗能、 高效率、 大扭力, 实现高节能 60%, 在与其他电机同等功耗的前提 下扭力提高 4. 8倍,电机的转速在 300转 /分钟 -30000转 /分钟之间可无级调整, 电机堵转不烧毁, 运行时无需外加启动柜及变频装置, 同时在电机运行时可发 电将电能提供给外负载, 使电机使用时低温升, 并达到低成本使用寿命长达 10 年以上, 并实现节约能源的目的。
发明内容
有鉴于此, 本发明提供一种交直流智能高效节能电机及其驱动方法,所述直 流交流转化电机不仅增大了电机的转动扭力, 节省了能耗, 并且保证在交流电 源受到干扰的情况下电机仍能平稳的运动。
为达此目的, 本发明采用以下技术方案:
一种交直流智能高效节能电机, 所述交直流智能高效节能电机具有电动机 模式及发电机模式, 所述交直流智能高效节能电机包括:
整流模块, 所述整流模块在电动机模式下将输入的交流电源进行整流, 转 化为直流电源;
周期脉冲发生模块, 所述周期脉冲发生模块在电动机模式下发生周期性脉 冲信号源;
速率调控模块, 所述速率调控模块在电动机模式下调控所述周期性脉冲信 号源的电位频差;
激励推动模块, 所述激励推动模块在电动机模式下将所述速率调控模块调 控后的周期性脉冲信号源进行放大, 并推动多相相互之间具有相等相位差的周 期性动态电位的循环;
功率驱动模块, 所述功率驱动模块在电动机模式下接受对所述激励推动模 块产生的多相相互之间具有相等相位差的周期性动态电位进行对电能功率的功 率放大, 并输送给电机线圈;
高效节能电机, 所述高效节能电机在电动机模式下在所述功率驱动模块的 驱动下运转时驱动负载, 并在发电机模式下借助电机内部的结构进行发电, 将 发电得到的电能输出给感应输出模块;
感应输出模块, 所述感应输出模块在电动机模式下互感接受电机的驱动电 能, 并将互感接受的电机的驱动电能进行传递通过内功能转化输出向外供电, 并在发电机模式下将电机发电产生的电能输出。
进一歩的, 所述交流电源是三相交流电源或者两相交流电源。
进一歩的, 所述速率调控模块对所述周期脉冲发生模块所产生所述周期性 脉冲信号源进行频速降低或升高。
进一歩的, 所述多相相互之间具有相等相位差的周期性动态电位是多相相 互之间具有相等相位差的正弦波形的连续电位。
进一歩的, 所述多相相互之间具有相等相位差的正弦波形的连续电位是三 相或者两相相互之间具有相等相位差的正弦波形的连续电位。
进一歩的, 所述功率驱动模块使用电源功率驱动器对所述多相相互之间具 有相等相位差的周期性动态电位进行动态功率驱动, 以推动所述交直流智能高 效节能电机运转。
对应的, 本发明还公开了一种交直流智能高效节能电机的驱动方法, 所述 交直流智能高效节能电机的驱动方法包括:
对输入的交流电源进行整流, 转化为直流电能以提供电机各模块使用; 利用所述直流电源驱动周期脉冲发生电路振荡, 并对所述周期脉冲发生电 路产生的周期性脉冲信号源进行调控处理以获得频率及相位稳定的多相交流信 号源;
利用所述速率及相位稳定的多相交流信号源驱动所述交直流智能高效节能 电机, 实现运转而驱动负载。
进一歩的, 所述交流电源是三相交流电源或者两相交流电源。
本发明提供一种交直流智能高效节能电机及其驱动方法, 所述交直流智能 高效节能电机运行无需启动柜及变频调速装置, 在与其他电机相同能耗的前提 下扭力提高至其他电机的 4. 8 倍, 并且实现节能 60% , 同时可将输入电能的 10%-40%供给其他用电设备, 实现多功能的同时降低了所述交直流智能高效节能 电机的温度升高。 所述交直流智能高效节能电机不受电网的交流电源的干扰, 启动后能够以稳定的速度转动, 并可在 300转 /分钟至 30000转 /分钟之间实现 无级变速。 所述交直流智能高效节能电机还具有发电机的功能, 实现了一机多 用, 拓展了应用领域, 所述交直流智能高效节能电机普及后每小时可为国家节 约电能 1. 56亿度。
附图说明
图 1是本发明的第一实施例提供的交直流智能高效节能电机的电路模块图。 图 2是本发明的第一实施例提供的交直流智能高效节能电机的电路原理图。 图 3 是本发明的第一实施例提供的交直流智能高效节能电机对周期性脉冲 信号源进行频速升高的示意图。
图 4是本发明的第一实施例提供的交直流智能高效节能电机对周期性脉冲 信号源进行频速降低的示意图。
图 5 是本发明的第二实施例提供的交直流智能高效节能电机的驱动方法的 流程图。
具体实施方式 下面结合附图并通过具体实施例来进一歩说明本发明的技术方案。
图 1至图 4示出了本发明的第一实施例。
图 1是本发明的第一实施例提供的交直流智能高效节能电机的电路模块图。 参见图 1, 所述交直流智能高效节能电机包括整流模块 101、 脉冲取样模块
102、 速率调控模块 103、 激励推动模块 104、 功率驱动模块 105、 电机 106及感 应输出模块 107。
在本实施例中, 输入所述交直流高效节能电机的交流电是三相交流电。 所 述整流模块 101 用于在电动机模式下对输入所述交直流智能高效节能电机的三 相交流电源进行整流, 把交流电源转化为直流电源。 其中, 输入所述整流模块 101的三相交流电源为来自于公共电网的工频 50Hz/60Hz三相交流电源,而所述 整流模块 101输出的电源是经过所述整流模块 101整流后的直流电源。 在本实 施例中, 所述整流模块 101 使用三相桥式全波整流电路实现对输入的所述三相 交流电源的整流, 把稳定的电源提供给本发明的交直流智能高效节能电机的其 他部分。
所述周期脉冲发生模块 102用于在电动机模式下在所述整流模块 101输出 的直流电源的激励下产生周期性脉冲信号源。 所述周期脉冲生成模块 102 的周 期性脉冲信号源是周期性方波信号源或者周期性正弦信号源, 并且要求所述周 期性脉冲信号源具有很好的频波稳定性。 在本实施例中, 所述周期脉冲发生模 块 102采用振荡电路连接周期性脉冲触发电路而实现。
所述速率调控模块 103用于在电动机模式下对由所述周期脉冲生成模块 102 产生的周期性脉冲信号源的速率频差进行调控。由于经过所述速率调控模块 103 调控的周期性脉冲信号源的速率频差决定了所述电机的转速, 所以所述速率调 控模块 103通过对所述周期脉冲生成模块 102产生的周期性脉冲信号源的速率 频差的调控实现了对所述电机的转速的调控。
所述速率调控模块 103对所述周期性脉冲信号的速率频差进行调控的过程 是对所述周期性脉冲信号的速率频差进行升高的过程或者是对所述周期性脉冲 信号的速率频差进行降低的过程。 对所述周期性脉冲信号的速率频差进行升高 的过程就是对所述周期性脉冲信号进行插值的过程。 图 3 示出了对所述周期性 脉冲信号的速率频差进行升高的过程。 参见图 3, 如果所述周期性脉冲信号源 301的周期是 T, 则所述速率调控模块 103在两个脉冲信号之间插入 N-1个等间 距的脉冲信号, 得到频速升高的周期性脉冲信号源 302。
对所述周期性脉冲信号的速率频差进行降低的过程是对所述周期性脉冲信 号进行降采样的过程。 图 4示出了对所述周期性脉冲信号的速率频差进行降低 的过程。 参见图 4, 如果所述周期性脉冲信号源 401的周期是 T, 则所述速率调 控模块每经过 N X T的时间段时对所述周期性脉冲信号源进行一次采样发生, 经 过采样得到的频速降低的周期性脉冲信号源 402就是所述速率调控模块 103的 输出信号源。 在本实施例中, 所述速率调控模块 103 采用按序电路连接触发器 电路来实现。
所述激励推动模块 104用于在电动机模式下对所述速率调控模块 103调控 后的周期性脉冲信号源进行控制, 并生成三相相互之间相位差相等的周期性信 号源。 经所述速率调控模块调控后的周期性脉冲信号源为周期性方波信号源。 所述激励推动模块 104首先对所述调控后的周期性方波信号源进行控制, 即将 所述调控后的周期性方波信号源的幅度进行电位变化。 随后, 所述激励推动模 块 104将所述周期性方波信号源分为八路进行处理, 具体是对八路周期性方波 信号源综合为四路正弦交流信号源进行阶梯工作。 所述将八路周期性方波信号 源综合为四路正弦交流信号源的过程是按照所述八路周期性方波信号源的频速 及上升沿下降沿的时间点对所述八路周期性方波信号进行综合。 所述四路正弦 交流信号源中的前三路正弦交流信号源按序相互之间具有相等的相位差, 而第 四路正弦交流信号源是前三路正弦交流信号源的综合点信号源。
所述功率驱动模块 105用于在电动机模式下对所述激励推动模块 104输出 的正弦波信号源进行功率调控。 所述功率驱动模块 105采用电源功率驱动器对 所述激励推动模块 104输出的正弦波信号源进行功率调控。 经过所述功率驱动 模块 105 的功率放大后, 所述正弦波信号源具有足够的功率, 能够推动所述电 动机的转子转动。
在电动机模式下, 所述高效节能电机 106在所述功率驱动模块 105的驱动 下以不同的速率旋转。 所述高效节能电机 106 是三相或单相交直流电机。 所述 高效节能电机 106包括定子、 转子及前后端盖四部分, 并且所述定子具有电机 线圈组合。 由于所述正弦波信号源的频率经过了所述速率调控模块的调控, 因 此所述高效节能电机 106 的转速无级可调。 在电动机模式下, 所述高效节能电 机能够使得电机的转动扭力是现有传统电机的 4. 8倍, 同时用电效率为 98%, 同 时用电节能为 60%, 转速可调为 300转 /分钟 -30000转 /分钟。
在发电机模式下, 所述高效节能电机 106转动, 所述高效节能电机的转子 转动时具有的磁动力切割与定子内部面被定子吸收余磁传递给发电机输出线组 转化为电能达到发电的效果。 在发电机模式下, 所述电机 106 的定子绕组连接 着恒定电源, 并接受转子恒定的磁场。 所述定子绕组吸收的磁场在高低速转动 时, 定子绕组磁通驱动转子切割磁力线, 所述转子转动的磁动力的切割所述磁 场的磁力线被发电机线组所吸收电流被感应到所述高效节能电机内发电线路输 出回路上。
在电动机模式下, 所述感应输出模块 107感应驱动电能, 并将感应到的驱 动电能输出。 在本实施例中, 所述感应输出模块将所述驱动电能使发电输出
10%-40%。 这样一来, 所述交直流智能高效节能电机不仅能在输出稳定机械转动 的同时, 为其他用电设备提供电能, 而且降低了所述交直流智能高效节能电机 的内部自耗大温度升高, 避免在所述交直流智能高效节能电机的电线的快速老 化, 延长了所述交直流智能高效节电电机的寿命。 电机 106 的定子绕组附近配 置有感应绕组, 并且所述感应绕组与输出端口连接。 所述感应绕组感应所述定 子绕组的交变磁场的能量, 并将感应接收到的交变磁场的能量通过所述输出端 口输出, 以便连接其他电器, 为其他电器供电。
在发电机模式下, 所述感应输出模块 107将所述电机转子自旋转时切割所 述恒定磁场的磁力线得到的感应电流输出给其他电器, 为其他电器提供电源。
图 2是本发明具体实施例提供的交直流智能高效节能电机的电路原理图。 参见图 2, 三相或单相交流电源从输入端口 R、 S、 T、 Ν输入所述交直流智 能高效节能电机及发电机。 所述整流模块 201接收到从所述输入端口 R、 S、 T、 Ν输入的三相或单相交流电源后, 对输入的三相或单相交流电源进行整流, 得到 直流电源 DLV1、 DLV30所述直流电源 DLV1、 DLV3连接至所述速率调控模块 203、 所述激励推动模块 204及所述功率驱动模块 205, 为所述速率调控模块 203、 所 述激励推动模块 204及所述功率驱动模块 205提供电源。同时所述整流模块 201 还输出三路交流电源 DLV2、 DLV4及 DLVN。所述交流电源 DLV2、 DLV4及 DLVN分 别连接至所述速率调控模块 203及所述激励推动模块 204,用于为所述速率调控 模块 203及所述激励推动模块 204提供快速使用的电源。
所述整流模块 201的另外一路直流电源输出连接至周期脉冲发生模块 202。 所述周期脉冲发生模块 202 由振荡电路及周期性脉冲信号源发生电路构成。 所 述振荡电路用于产生具有稳定的频率及相位的速率脉冲电源, 而所述周期性脉 冲信号源发生电路用于根据所述速率脉冲电源的频率及相位生成周期性脉冲信 号源, 其中, 所述周期性脉冲信号源具有与所述速率脉冲电源相同的频率。
所述周期脉冲发生模块 202发生周期性脉冲信号源后通过二极管 D2将所生 成的周期性脉冲信号源输入至所述速率调控模块 203。所述速率调控模块 203接 收到所述周期性脉冲信号源后, 对所述周期性脉冲信号源进行频速调控。 对所 述周期性脉冲信号源进行频速调控是对周期性脉冲信号源的频速升高或者对所 述周期性脉冲信号源的频速降低。 对所述周期性脉冲信号源进行频速调控后, 所述速率调控模块 203将频速调控后的周期性脉冲信号源分为多路, 并对所述 多路频速调控后的周期性脉冲信号源 P2、 P3、 P4及 P5中的前三路周期性脉冲 信号源 P2、 P3及 P4分别进行时延。 完成上述处理后, 所述速率调控模块 203 将频速调控前的周期性方波电源 P1 及延时后的周期性脉冲信号源 P2、 P3、 P4 及 P5分别输出至所述激励推动模块 204。
所述激励推动模块 204接收所述速率调控模块 203输出的电源 Pl、 P2、 P3、 P4及 P5, 将时延后的周期性脉冲信号源 P2、 P3、 P4及 P5进行放大, 然后按照 时延后的周期性脉冲信号源 P2、 P3、 P4及 P5的频率及相位分别生成正弦交流 电源, 其中, 前三路正弦交流电源 P2、 P3及 P4中的任意两路电源之间具有相 同的相位差, 而后三路正弦交流电源 P5是前三路正弦交流电源 P2、 P3及 P4的 综合点信号源。 最后, 所述激励推动模块 204将生成的多路正弦交流电源 P2、 P3、 P4及 P5分别分成正半波电源 PT1、 ΡΤ3、 ΡΤ5、 ΡΤ7及负半波电源 ΡΤ2、 ΡΤ4、 ΡΤ6、 ΡΤ8, 并将生成的正半波电源 ΡΤ1、 ΡΤ3、 ΡΤ5、 ΡΤ7及负半波电源 ΡΤ2、 ΡΤ4、 ΡΤ6、 ΡΤ8分别输出至所述功率驱动模块 205。
所述功率驱动模块 205对由所述激励推动模块 204输入的正半波电源 ΡΤ1、 ΡΤ3、 ΡΤ5、 ΡΤ7及负半波电源 ΡΤ2、 ΡΤ4、 ΡΤ6、 ΡΤ8进行功率放大, 并将功率放 大后的正半波电源 PT1、 ΡΤ3、 ΡΤ5、 ΡΤ7及负半波电源 ΡΤ2、 ΡΤ4、 ΡΤ6、 ΡΤ8综 合成为电机驱动电源 L1U、 L2V、 L3W、 LN、 LG, 其中, 所述电机驱动电源 L1U、 L2V、 L3W、 LN、 LG包括接地电源 LG。
所述电机 206在所述电动机驱动电源 L1U、 L2V、 L3W、 LN、 LG的驱动下转 动, 驱动负载机械做功。 所述电机 206 与输出级连接。 所述输出级感应所述电 动机驱动电源的电能, 并将感应到的电能从输出端 Π Α、 B、 C、 N输出。
所述交直流智能高效节能电机及发电机还包括高频谐波抑制模块 207。所述 高频谐波抑制模块是高低通滤波器, 用于滤除输入至所述功率驱动模块 205 的 高频电源, 以免电路中的高低频谐波干扰所述电动机驱动电源。
本实施例提供了一种交直流智能高效节能电机, 所述交直流智能高效节能 电机运行无需启动柜及变频调速装置, 在与其他电机相同能耗的前提下扭力提 高至其他电机的 4. 8倍, 并且实现节能 60%, 同时可将输入发电电能的 10%-40% 供给其他用电设备, 实现多功能的同时降低了所述交直流智能高效节能电机的 温度升高。 所述交直流智能高效节能电机不受电网的交流电源的干扰, 启动后 能够以稳定的速度转动, 并可在 300转 /分钟至 30000转 /分钟之间实现无级变 速。 所述交直流智能高效节能电机还具有发电机的功能, 实现了一机多用。 图 5示出了本发明的第二实施例。
图 5 是本发明的第二实施例提供的交直流智能高效节能电机的驱动方法的 流程图。
所述交直流智能高效节能电机的驱动方法包括: 对输入的交流电源进行整 流, 转化为直流电能以提供电机各模块使用; 利用所述直流电源驱动周期脉冲 发生电路振荡, 并对所述周期脉冲发生电路产生的周期性脉冲信号源进行调控 处理以获得频率及相位稳定的多相交流信号源; 利用所述速率及相位稳定的多 相交流信号源驱动所述交直流智能高效节能电机, 实现运转而驱动负载。
在歩骤 S301中, 对输入的交流电源进行整流, 转化为直流电能以提供电机 各模块使用。
由于用于驱动电机的交流电源通常取自公共电网, 而公共电网容易受到干 扰, 造成电机的转速不稳定, 进一歩使得电机输出的机械功率不稳定。
为了避免由于输入的交流电源频率的不稳定造成电机输出功率的不稳定, 首先将输入的交流电源整流成直流电源。 优选的, 完成对所述交流电源的整流 采用桥式全控整流电路。 整流完成后的直流电源具有固定的电流值和电压值, 不随时间的变化而变化。
在歩骤 S302中, 利用所述直流电源驱动周期脉冲发生电路振荡, 并对所述 周期脉冲发生电路产生的周期性脉冲信号源进行调控处理以获得频率及相位稳 定的多相交流信号源。
经过整流得到直流电源后, 利用所述直流电源驱动振荡电路。 所述振荡电 路在所述直流电源的驱动下产生高频振荡信号源。 将所述高频振荡信号源输入 至触发器, 所述触发器根据所述高频振荡信号源的频率生成周期性脉冲信号源。 生成所述周期性脉冲信号源后, 利用倍频器或者分频器对所述周期性脉冲信号 源的频速进行调控, 得到特定频速的周期性脉冲信号源。 将所述特定频率的周 期性脉冲信号源分为多路, 将每一路所述周期性脉冲信号源输入至一个交流信 号发生器。 所述交流信号发生器根据输入的周期性脉冲信号源的频率及上升沿 时间点生成连续的交流信号源。 最后将多个交流信号发生器的输出的交流信号 源进行相位调控, 就生成了频率和相位稳定的多相交流信号源。
优选的, 所述特定频率的周期性脉冲信号源分为三路, 其中的每一路周期 性脉冲信号源输入至一个交流信号发生器。 三个交流信号发生器根据输入的周 期性脉冲信号源的频率及上升沿时间点生成一路交流信号源。 对三路交流信号 源的相位进行调控, 就生成了频率及相位稳定的三相交流信号源。
在歩骤 S303中, 利用所述速率及相位稳定的多相交流信号源驱动所述交直 流智能高效节能电机, 实现运转而驱动负载。
得到所述频率和相位稳定的多相交流信号源后, 利用所述频率和相位稳定 的多相交流信号源驱动所述交直流智能高效节能电机。 由于用于驱动所述交直 流智能高效节能电机的多相交流信号源的频率稳定, 并且所述多相交流信号源 多相信号之间保持固定的相位差, 所以所述交直流智能高效节能电机能够按照 固定的角度速率转动, 因而能够通过所述交直流智能高效节能电机获得稳定的 机械能。
本实施例提供了一种交直流智能高效节能电机的驱动方法, 根据所述交直 流智能高效节能电机的驱动方法, 所述交直流智能高效节能电机对输入的多相 交流信号进行整流、 振荡、 频控、 延时及正弦波发生, 因而获得了频率和相位 稳定的多相交流信号, 并利用所述的频率和相位稳定的多相交流信号驱动电机, 使得所述交直流智能高效节能电机的转速不受到所述的多相交流信号的频率和 相位的干扰, 稳定的输出机械能。
以上所述仅为本发明的优选实施例, 并不用于限制本发明, 对于本领域技 术人员而言, 本发明可以有各种改动和变化。 凡在本发明的精神和原理之内所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

WO 2014/183250 权 利 要 求 书 PCT/CN2013/075540
1、一种交直流智能高效节能电机, 所述交直流智能高效节能电机具有电动 机模式及发电机模式, 其特征在于, 所述交直流智能高效节能电机包括:
整流模块, 所述整流模块在电动机模式下将输入的交流电源进行整流, 转 化为直流电源;
周期脉冲发生模块, 所述周期脉冲发生模块在电动机模式下发生周期性脉 冲信号源;
速率调控模块, 所述速率调控模块在电动机模式下调控所述周期性脉冲信 号源的电位频差;
激励推动模块, 所述激励推动模块在电动机模式下将所述速率调控模块调 控后的周期性脉冲信号源进行放大, 并推动多相相互之间具有相等相位差的周 期性动态电位的循环;
功率驱动模块, 所述功率驱动模块在电动机模式下接受对所述激励推动模 块产生的多相相互之间具有相等相位差的周期性动态电位进行对电能功率的功 率放大, 并输送给电机线圈;
高效节能电机, 所述高效节能电机在电动机模式下在所述功率驱动模块的 驱动下运转时驱动负载, 并在发电机模式下借助电机内部的结构进行发电, 将 发电得到的电能输出给感应输出模块;
感应输出模块, 所述感应输出模块在电动机模式下互感接受电机的驱动电 能, 并将互感接受的电机的驱动电能进行传递通过内功能转化输出向外供电, 并在发电机模式下将电机发电产生的电能输出。
2、 根据权利要求 1所述的交直流智能高效节能电机, 其特征在于, 所述交 流电源是三相交流电源或者两相交流电源。
3、 根据权利要求 1所述的交直流智能高效节能电机, 其特征在于, 所述速 率调控模块对所述周期脉冲发生模块所产生所述周期性脉冲信号源进行频速降 低或升高。
4、 根据权利要求 1所述的交直流智能高效节能电机, 其特征在于, 所述多 相相互之间具有相等相位差的周期性动态电位是多相相互之间具有相等相位差 的正弦波形的连续电位。
5、 根据权利要求 4所述的交直流智能高效节能电机, 其特征在于, 所述多 相相互之间具有相等相位差的正弦波形的连续电位是三相或者两相相互之间具 有相等相位差的正弦波形的连续电位。
6、 根据权利要求 1所述的交直流智能高效节能电机, 其特征在于, 所述功 率驱动模块使用电源功率驱动器对所述多相相互之间具有相等相位差的周期性 动态电位进行动态功率驱动, 以推动所述交直流智能高效节能电机运转。
7、 一种交直流智能高效节能电机的驱动方法, 其特征在于, 所述交直流智 能高效节能电机的驱动方法包括:
对输入的交流电源进行整流, 转化为直流电能以提供电机各模块使用; 利用所述直流电源驱动脉冲发生电路振荡, 并对所述周期脉冲发生电路产 生的周期性脉冲信号源进行调控处理以获得频率及相位稳定的多相交流信号 源;
利用所述速率及相位稳定的多相交流信号源驱动所述交直流智能高效节能 电机, 实现运转而驱动负载。
8、根据权利要求 7所述的交直流智能高效节能电机的驱动方法, 其特征在 于, 所述交流电源是三相交流电源或者两相交流电源。
PCT/CN2013/075540 2013-05-13 2013-05-13 交直流智能高效节能电机及其驱动方法 WO2014183250A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075540 WO2014183250A1 (zh) 2013-05-13 2013-05-13 交直流智能高效节能电机及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075540 WO2014183250A1 (zh) 2013-05-13 2013-05-13 交直流智能高效节能电机及其驱动方法

Publications (1)

Publication Number Publication Date
WO2014183250A1 true WO2014183250A1 (zh) 2014-11-20

Family

ID=51897572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075540 WO2014183250A1 (zh) 2013-05-13 2013-05-13 交直流智能高效节能电机及其驱动方法

Country Status (1)

Country Link
WO (1) WO2014183250A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930071A (zh) * 2004-03-18 2007-03-14 东芝电梯株式会社 升降机控制装置
CN101425756A (zh) * 2008-07-30 2009-05-06 东元总合科技(杭州)有限公司 一种直流侧电压可控型四象限变频器及其方法
CN103248315A (zh) * 2013-05-13 2013-08-14 东莞市科圣特电子科技有限公司 交直流智能高效节能电机及其驱动方法
CN203243278U (zh) * 2013-05-13 2013-10-16 东莞市科圣特电子科技有限公司 交直流智能高效节能电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930071A (zh) * 2004-03-18 2007-03-14 东芝电梯株式会社 升降机控制装置
CN101425756A (zh) * 2008-07-30 2009-05-06 东元总合科技(杭州)有限公司 一种直流侧电压可控型四象限变频器及其方法
CN103248315A (zh) * 2013-05-13 2013-08-14 东莞市科圣特电子科技有限公司 交直流智能高效节能电机及其驱动方法
CN203243278U (zh) * 2013-05-13 2013-10-16 东莞市科圣特电子科技有限公司 交直流智能高效节能电机

Similar Documents

Publication Publication Date Title
Anand et al. Modified dual output cuk converter-fed switched reluctance motor drive with power factor correction
WO2012142814A1 (zh) 一种直流无刷同步风力发电机的励磁方法、装置及系统
CN202004714U (zh) 一种直流无刷同步风力发电机的励磁装置及风力发电系统
CN108964392B (zh) 一种双三相同步电机
EP2320542A3 (en) Brushless high-frequency alternator and excitation method for DC, single-phase and multi-phase AC power-frequency generation
CN101892998A (zh) 直流变频电风扇
CN105305894B (zh) 一种基于转矩分配函数在线修正的srm转矩脉动最小化控制方法
CN104767442A (zh) 多相发电机的并联式电源转换系统及其操作方法
US20110050150A1 (en) Electric motor
Kumar et al. BLDC motor ceiling fan using a bridgeless isolated PFC SEPIC converter
CN106301102A (zh) 一种多相永磁同步电机驱动系统及其控制方法
CN112217238A (zh) 一种无刷双馈发电机系统及其控制方法
Kommula et al. PFC based SEPIC converter fed BLDC motor with torque ripple minimization approach
CN103095202A (zh) 同步发电机逆变式励磁系统
CN103248315B (zh) 交直流智能高效节能电机及其驱动方法
CN202385046U (zh) 同步发电机逆变式励磁系统
WO2014183250A1 (zh) 交直流智能高效节能电机及其驱动方法
CN201753692U (zh) 直流变频电风扇
CN203243278U (zh) 交直流智能高效节能电机
Kumar et al. Bridgeless Landsman Converter Based PM-BLDC Motor Drive for Exhaust Fan
CN102751820A (zh) 全风速增能增效型同步风力发电机组
WO2014029199A1 (zh) 一种交流发电机
CN109905057A (zh) 一种永磁同步电机低电流谐波控制系统
Yang et al. A new single-phase to three-phase cycloconverter for low cost ac motor drives
Qin et al. Considerations of harmonic and torque ripple in a large power doubly salient electro-magnet motor drive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884912

Country of ref document: EP

Kind code of ref document: A1