WO2014183177A1 - Method for reducing iron ore in a reactor with transient plasma torches - Google Patents

Method for reducing iron ore in a reactor with transient plasma torches Download PDF

Info

Publication number
WO2014183177A1
WO2014183177A1 PCT/BR2013/000461 BR2013000461W WO2014183177A1 WO 2014183177 A1 WO2014183177 A1 WO 2014183177A1 BR 2013000461 W BR2013000461 W BR 2013000461W WO 2014183177 A1 WO2014183177 A1 WO 2014183177A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
reactor
iron ore
torches
transient
Prior art date
Application number
PCT/BR2013/000461
Other languages
French (fr)
Portuguese (pt)
Inventor
Alberto Carlos PEREIRA FILHO
Original Assignee
Pereira Filho Alberto Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR102013011912-1A external-priority patent/BR102013011912B1/en
Application filed by Pereira Filho Alberto Carlos filed Critical Pereira Filho Alberto Carlos
Publication of WO2014183177A1 publication Critical patent/WO2014183177A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/04Heavy metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/12Making spongy iron or liquid steel, by direct processes in electric furnaces
    • C21B13/125By using plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/02Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of single-chamber fixed-hearth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/62Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Definitions

  • This patent application deals with the use of transient plasma technology torches in a compact reactor, which combined with the use of a hydrocarbon as fuel, preferably natural gas, generates a synthesis gas and thermal energy capable of making the reduction of pig iron in the same environment.
  • ferrous and non-ferrous metal ore reduction segment in particular but not limited to iron ore and may be applied in the reduction of other ores, metal oxides provided that the synthesis gas behaves well as a reducing agent. .
  • Iron metallurgy basically consists in the reduction of its oxides with the use of a reducing agent.
  • the basic principle of operation of a blast furnace is the removal of oxygen from the ore using mineral or vegetable coal or even the babassu coconut shell, which is thus reduced to iron.
  • the reduction is the result of combining the carbon present in the coke with the ore oxygen, which in an exothermic reaction generates CO.
  • hot air s 1000 ° C
  • the coke comes into combustion generating heat and reducing iron ore, resulting in pig iron and slag
  • the temperature inside a Blast furnace can reach 1500 ° C.
  • the traditional process requires some raw material preparations:
  • Coke oven - composed of a battery of coke ovens or cells where coke impurities are eliminated.
  • the resulting product is metallurgical coke which is a porous residue composed mainly of carbon having high mechanical strength and high melting point.
  • Plasma can be understood as an ionized gas at elevated temperatures compared to conventional systems such as combustion, electrical resistance and others.
  • the typical range of temperatures achieved by thermal plasmas ranges from 5,000 ° C to 10,000 ° C, although it is possible to reach higher temperatures.
  • Plasma is generated by the use of electricity and a gas as a conductive fluid with high energy efficiency in so-called "plasma torches". Once controlled, there is a high electron temperature and less energy transfer to the heavy particles (ions and neutral particles). Under such thermodynamic conditions, some plasmas, known as transient plasmas, registered in Brazil as Rotex plasma, offer great advantages in chemical processes, with low power consumption, acting as dissociation catalysts, offering good selectivity, presenting high conversion rates. .
  • US 4752329 - Midrex - a method of producing blast furnace iron in which the upper zone reduces iron oxide by reaction upon contact with a gaseous reducing agent represented by natural gas.
  • a gaseous reducing agent represented by natural gas represented by natural gas.
  • synthetic gas obtained from natural gas is used as a reducing agent.
  • synthesis gas production unit H 2 and CO
  • H 2 and CO synthesis gas production unit
  • US4439233 anticipates a method for the production of synthesis gas, in which natural gas and Water vapor passes through a steam reformer to form the reducing gas at elevated temperature.
  • a drawback of the above process is the high cost of implantation, and the iron produced, not liquefied due to the low temperature achieved, is of inferior quality, popularly known as "sponge iron".
  • the Fastmelt process uses natural gas, oil and pulverized coal as reducing agents, but does not employ plasma but a burner.
  • the reactor is of the rotary type, different from the one proposed in this claim, in addition the ore receives a carbon-enriched sintering preparation.
  • the process is made possible by the different characteristics of the reactor containing transient plasma torches whose quantity is determined by the desired production capacity, torch channels through which the plasma flows and the bowl where a plasma zone and a zone are configured. through which they pour liquid metal and slag, in an operating regime very similar to that of a blast furnace leak, but without the use of coke or charcoal, which depending on the procedural advantage can also be used.
  • part of the energy contained in the synthesis gas is used for preheating and reducing the ore load.
  • the differential in the fusion zone is the atmosphere with strong presence of the synthesis gas, which prevents reoxidation. Residual reduction of iron oxides present and dengue and ash scorification occur in the liquid state in the lower vat.
  • the natural gas or hydrocarbon is injected into the transient plasma torch with the addition of compressed air in an appropriate equivalence ratio for the formation of the synthesis gas and heat production, according to the reaction below:
  • FeO + CO Fe + C0 2 starts at 1300 ° F
  • FeO + H 2 Fe + H 2 0
  • the liquid and agitated material remains in constant interaction with the synthesis gas, increasing the residence time of the process and, consequently, the rate of conversion of iron ore to pig iron.
  • agents such as limestone, dolomite or the like are added to the ore according to their chemical need by the action of these agents.
  • Iron in the liquid state and in the bottom of the reactor is continuously poured at a rate defined by the function of its feed rate and synthesis gas consumption. Supernatant slag is expelled through a passage in the middle of the reactor.
  • the remaining gases make their way to the thermal reserve unit positioned at the upper reactor inlet.
  • the first ore reductions occur, as shown in the above equations.
  • the exhaust gases pass through a set of filters, cleaning and burning the residual fuel, to finally be thrown into the atmosphere.
  • they can be reused in energy production.
  • Compressed air generator unit for plasma torches; Natural gas or other hydrocarbon network for synthesis gas generation;
  • Thermal reserve unit for preheating and reduction of iron ore in its oxide phases.
  • Liquid or gaseous hydrocarbon in particular natural gas, but may also be used, heavy oil, diesel oil, gasoline, ethanol and even pulverized coal;
  • Synthesis gas production, ore reduction and enthalpy generation are performed in the same environment, ie in the reactor with a more favorable kinetics due to the high temperature achieved with the torches.
  • the "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCH REACTOR" object of this patent application consists essentially of the use of torch reactor (2) with transient plasma technology as catalytic converter in the generation of the iron ore reducing agent from natural gas or another hydrocarbon, so that the reduction, synthesis gas production and enthalpy occur in the same environment.
  • the claimed process does not require the blast furnace figure as it uses transient plasma technology, ie in an intermediate range between cold plasma and thermal plasma effected by compact torches (2) strategically located in the area. of plasma (3) from an equally compact reactor (1), thus acting as a catalytic converter in the generation of the synthesis gas via natural gas or another hydrocarbon. Catalysis is explained by the combination of the high inherent plasma temperature and the high density of high energy electrons above 2eV of cold plasma. Torches (2) are connected to an external plasma source (4), natural gas or other hydrocarbon network (not shown) and a compressed air source (not shown).
  • a mineral feeder (5) containing ore fines and or in natura iron ore with the fillers provides this material to the reactor (1), in a ratio proportional to the required pig iron flow rate and the synthesis gas, not without it must first pass a thermal reserve unit (6) using the hot gas return from the melting zone (7) located above the plasma zone (3).
  • unit (6) Preheating takes place favoring the first reductions of ore oxides, especially hematite and magnetite, due to the presence of the countercurrent hydrogen and carbon monoxide reducing gases at a temperature of 450 ° C to 850 ° C, suitable for this stage.
  • the preheated mineral charge is carried to the melting zone (7) where it is subjected to the action of plasma from the torches (2) blowing high temperature synthesis gas to the central reactor bowl in the melting zone. (7) itself.
  • the ore already in liquid form and in a state of agitation, the ore remains in contact with the synthesis gas, interacting with it and increasing the reduction period.
  • the synthesis gas makes up a vortex helical path. After performing the vortex trajectory, the gas is forced out of a central opening (8) directed to the thermal reserve unit (6), and thereafter to the filter assembly (9) where it is treated through a duct.
  • the gases When faced with a fork (10), the gases are directed to a flare chimney (11) in which the residual fuel is burned to finally be thrown into the atmosphere.
  • exhaust gases can be reused in energy production (12).
  • the highest density material ie pig iron
  • the slag remains in the supernatant and is leaked through a lateral passage (5) and from there to another crucible (16).
  • the reactor (1) is designed to operate at elevated temperatures in the range 1500 ° C to 1600 ° C, and is coated with refractory cement and insulating material.
  • Transient plasma source (4) is an alternating or direct current electro-electronic equipment with variable power according to the appropriate reduction ratio.
  • the source (4) has a current and power control system, electrical resistors, circuit breakers, special wiring, high voltage fuses and other components necessary for its operation.
  • Non-equilibrium transient plasma torches (2) bring together the benefits of good energy density thermal (high temperature) plasma with the advantages of "corona", “glow”, and cold plasma discharges. which have high selectivity of radicals and energetic electrons.
  • Typical electron temperatures in these plasmas range from 11,000 ° K ( ⁇ 1 eV) to over 23,000 ° K ( ⁇ 2eV), which is sufficient to break the bonds of the gas and oxidizer molecules and is sufficient to produce free radicals.
  • the fluid is cracked into smaller radicals, energized in excited states or transformed into free radicals, which contribute to the formation of the process synthesis gas.
  • it is possible to obtain a high rate in the production of energetic electrons which enables the dissociation of molecules in favor of synthesis gas formation and the generation of enthalpy in the process.
  • the conversion factor is the ratio of the amount of synthesis gas produced by the quantity of natural gas, ie:
  • 0,65 to 0,80, ie for 1 m 3 of natural gas around 1,95 to 2,4 m 3 of synthesis gas (CO + H2).
  • the process temperature is controlled from 1500 ° C to 2400 ° C.
  • the transient plasma torch is basically composed of two electrodes - cathode and anode, between which an electric arc is maintained.
  • a gas any gas can in principle be used
  • the passage of a gas initially at room temperature, through the electric arc causes collisions between the electric arc electrons and the molecules or atoms (in the case of inert gases) of the gas. These collisions transfer some of the electron kinetic energy to the gas, dissociating it and ionizing it directly or by thermal ionization.
  • the transient plasma torch is a device based on a cylindrical geometry, generating a plasma in a continuous volumetric flow, providing a uniform flow for discharge and application in the process.
  • the flow is of the reverse vortex type very similar to a tornado that develops inside the torch.
  • the arc begins at the small gap between the electrodes. Due to the strong effect of vortex flow, the arc is forced to lengthen on one of the electrodes inside the cylinder. To lengthen the arc, a greater demand for power is required.
  • the voltage increases and the current decreases; consequently, the electric field and the electron temperature increase, but the gas temperature decreases. Therefore, plasma intensifies its non-equilibrium state. Plasma zone reactive species are trapped within the reactor.
  • Recirculation is critical for catalytic reactions via plasma. All gas passes through the discharge zone and may be pure or a mixture of various types of gases or liquids such as air and ethanol, air and methane, air and pulverized coal, air and butane, pure methane, air pure etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A method for reducing iron ore in a reactor with transient plasma torches essentially consists in using the reactor (1) with torches (2) of transient plasma technology as a catalytic converter for generating the iron ore reducing agent from natural gas or another hydrocarbon, such that reduction, synthesis gas production and enthalpy occur in a single environment.

Description

"PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE"  "Process for Iron Ore Reduction in Transient Regime Plasma Taps"
Breve apresentação Short presentation
Trata a presente solicitação de patente de invenção da utilização de tochas com tecnologia de plasma em estado transiente em um reator compacto, que combinada com o uso de um hidrocarboneto como combustível, preferencialmente gás natural, gera um gás de síntese e energia térmica capaz de fazer a redução de minério de ferro em gusa em um mesmo ambiente.  This patent application deals with the use of transient plasma technology torches in a compact reactor, which combined with the use of a hydrocarbon as fuel, preferably natural gas, generates a synthesis gas and thermal energy capable of making the reduction of pig iron in the same environment.
Campo de aplicação' Application field'
Relacionado ao segmento de redução de minérios de metais ferrosos e não ferrosos, em especial minério de fero, porém não limitado a esse podendo ser aplicado na redução de outros minérios, óxidos de metais desde que o gás de síntese comporte-se bem como agente redutor.  Related to the ferrous and non-ferrous metal ore reduction segment, in particular but not limited to iron ore and may be applied in the reduction of other ores, metal oxides provided that the synthesis gas behaves well as a reducing agent. .
Embasamento Basement
I) Da metalurgia:  I) From metallurgy:
A metalurgia do ferro basicamente consiste na redução dos seus óxidos com a utilização de um agente redutor.  Iron metallurgy basically consists in the reduction of its oxides with the use of a reducing agent.
Tradicionalmente, a transformação do minério de ferro em gusa é realizada em um equipamento denominado de alto-forno melhor representado por uma cuba de grandes dimensões, de 50m a 100m de altura, que além do minério também recepciona coque metalúrgico e fundentes.  Traditionally, the transformation of iron ore into pig iron is performed in a so-called blast furnace equipment better represented by a large bowl, 50m to 100m high, which in addition to the ore also welcomes metallurgical coke and fluxes.
O princípio básico de funcionamento de um alto-forno é a retirada do oxigénio do minério, com uso de carvão mineral ou vegetal ou até mesmo a casca do coco de babaçu, que dessa maneira é reduzido a ferro. Assim, a redução é resultante da combinação do carbono presente no coque com o oxigénio do minério, que numa reação exotérmica gera CO. Ao entrar em contato com o ar quente (s1000°C) soprado através das ventaneiras, o coque entra em combustão gerando calor e reduzindo o minério de ferro, originando o ferro-gusa e a escória, sendo que a temperatura no interior de um alto-forno pode alcançar 1500°C. No entanto, o processo tradicional exige alguns preparos da matéria-prima: The basic principle of operation of a blast furnace is the removal of oxygen from the ore using mineral or vegetable coal or even the babassu coconut shell, which is thus reduced to iron. Thus, the reduction is the result of combining the carbon present in the coke with the ore oxygen, which in an exothermic reaction generates CO. Upon contact with hot air ( s 1000 ° C) blown through the vents, the coke comes into combustion generating heat and reducing iron ore, resulting in pig iron and slag, the temperature inside a Blast furnace can reach 1500 ° C. However, the traditional process requires some raw material preparations:
a) Coqueria - composta por uma bateria de fornos ou células de coqueificação onde se dá a eliminação das impurezas do coque. O produto resultante é o coque metalúrgico que é um resíduo poroso composto principalmente por carbono, tendo alta resistência mecânica e elevado ponto de fusão.  a) Coke oven - composed of a battery of coke ovens or cells where coke impurities are eliminated. The resulting product is metallurgical coke which is a porous residue composed mainly of carbon having high mechanical strength and high melting point.
b) Sinterização - a preparação do minério de ferro para a produção da gusa é o mais moderno aperfeiçoamento do alto-forno moderno. Aos finos do minério são adicionados fundentes (finos de calcário, areia e sílica, por exemplo, e moinha de coque, além de finos do próprio sínter). Os componentes são depositados em um grelha móvel que passa através de um forno que funde a mistura. Segue-se um processo de resfriamento e britagem, para que o material atinja a granulometria adequada haja vista que os grãos mais finos são indesejáveis, uma vez que reduzem a permeabilidade do ar na combustão, comprometendo a queima. Para solucionar este problema é que são adicionados os materiais fundentes. Todo este processo de aglomeração é denominado de sinterização, cujo produto final é o sínter com diâmetro médio superior a 5 cm.  b) Sintering - The preparation of iron ore for the production of pig iron is the most modern improvement of the modern blast furnace. To the ore fines are added fluxes (limestone, sand and silica fines, for example, and coke mill, as well as sinter fines). The components are deposited on a movable grate that passes through an oven that melts the mixture. This is followed by a cooling and crushing process, so that the material reaches the appropriate particle size since the finer grains are undesirable as they reduce the air permeability in combustion, compromising burning. To solve this problem, flux materials are added. This whole agglomeration process is called sintering, whose end product is the sinter with an average diameter of more than 5 cm.
II) Do plasma:  II) From plasma:
O plasma pode ser entendido como um gás ionizado a temperaturas elevadas, quando comparado com sistemas convencionais, tais como: combustão, resistência elétrica e outros. A faixa típica de temperaturas alcançadas por plasmas térmicos varia em torno de 5.000 °C a 10.000°C, embora seja possível atingir temperaturas mais elevadas. O plasma é gerado pelo uso de eletricidade e um gás como fluido condutor, com alto rendimento energético, nas chamadas "tochas de plasma". Uma vez controlado, têm-se alta temperatura dos elétrons e menor transferência de energia para as partículas pesadas (íons e partículas neutras). Em tais condições termodinâmicas, alguns plasmas, conhecidos como plasmas transientes, registrado no Brasil como plasma Rotex, oferecem grandes vantagens nos processos químicos, com baixo consumo de energia elétrica, atuando como agentes catalisadores de dissociação, oferece boa seletividade, apresentado altas taxas de conversão. Plasma can be understood as an ionized gas at elevated temperatures compared to conventional systems such as combustion, electrical resistance and others. The typical range of temperatures achieved by thermal plasmas ranges from 5,000 ° C to 10,000 ° C, although it is possible to reach higher temperatures. Plasma is generated by the use of electricity and a gas as a conductive fluid with high energy efficiency in so-called "plasma torches". Once controlled, there is a high electron temperature and less energy transfer to the heavy particles (ions and neutral particles). Under such thermodynamic conditions, some plasmas, known as transient plasmas, registered in Brazil as Rotex plasma, offer great advantages in chemical processes, with low power consumption, acting as dissociation catalysts, offering good selectivity, presenting high conversion rates. .
Estado da técnica State of the art
São conhecidos uma enorme gama de processos para redução do minério de ferro utilizando coque, carvão vegetal entre outras matérias primas como agentes redutores.  A wide range of processes for reducing iron ore using coke, charcoal and other raw materials as reducing agents are known.
Para contornar o problema do coque na obtenção do ferro-gusa a partir do minério de ferro, novos processos e tecnologias são desenvolvidos como, por exemplo, o RDI (Reduction Direct Irorí) entre eles o Hlsmelt®, Fastmelt, Corex, Redsmelt, Midrex, Technored, etc.  To overcome the problem of coke in the production of pig iron from iron ore, new processes and technologies are developed, such as RDI (Reduction Direct Irorí), including Hlsmelt®, Fastmelt, Corex, Redsmelt, Midrex. , Technored, etc.
O US 4752329 - Midrex - um método de produção de ferro em alto forno em cuja zona superior a redução do óxido de ferro se dá com a reação quando do contato com um agente redutor gasoso representado pelo gás natural. Assim, é utilizado como agente redutor o gás de síntese obtido do gás natural.  US 4752329 - Midrex - a method of producing blast furnace iron in which the upper zone reduces iron oxide by reaction upon contact with a gaseous reducing agent represented by natural gas. Thus, synthetic gas obtained from natural gas is used as a reducing agent.
O processo necessita de uma unidade de produção do gás de síntese (H2 e CO), obtido a partir da combustão parcial do gás natural, que é direcionado para a unidade de redução do minério. O documento de patente US4439233 antecipa um método para produção do gás de síntese, no qual o gás natural e o vapor de água passam por um reformador de vapor para formar o gás de redução a temperatura elevada. The process requires a synthesis gas production unit (H 2 and CO), obtained from the partial combustion of natural gas, which is directed to the ore reduction unit. US4439233 anticipates a method for the production of synthesis gas, in which natural gas and Water vapor passes through a steam reformer to form the reducing gas at elevated temperature.
Um inconveniente do processo supracitado é o elevado custo de implantação, além de que o ferro produzido, não liquefeito devido a baixa temperatura conseguida, é de qualidade inferior, popularmente conhecido como "ferro esponja".  A drawback of the above process is the high cost of implantation, and the iron produced, not liquefied due to the low temperature achieved, is of inferior quality, popularly known as "sponge iron".
O processo Fastmelt utiliza gás natural, óleo e carvão pulverizado como agentes redutores, porém não emprega plasma, mas sim um queimador. O reator é do tipo rotativo, diferente do proposto neste pleito, ademais o minério recebe um preparo de sinterização enriquecido em carbono.  The Fastmelt process uses natural gas, oil and pulverized coal as reducing agents, but does not employ plasma but a burner. The reactor is of the rotary type, different from the one proposed in this claim, in addition the ore receives a carbon-enriched sintering preparation.
Objetivo da invenção Purpose of the invention
Tecnologia para a produção de gusa baseada no uso de gás natural, ou qualquer outro hidrocarboneto, em estado líquido ou gasoso ou mesmo óleo pesado, como agente redutor, combinado com energia elétrica aplicada às tochas de plasma em regime transiente, não havendo necessidade das matérias primas passarem pelos processos primários de coqueria / sinterização e tampouco de usina para produção de gás de síntese, portanto sendo injetadas diretamente no reator em estado natural caracterizando um processo do tipo RDI ((Reduction Direct Iron). Da invenção  Technology for the production of pig iron based on the use of natural gas or any other hydrocarbon, liquid or gaseous or even heavy oil, as a reducing agent, combined with electrical energy applied to transient plasma torches, with no need for materials raw materials undergo the primary coke oven / sintering processes and also the plant for the production of synthesis gas, thus being injected directly into the reactor in the natural state characterizing an RDI (Reduction Direct Iron) process.
O processo é possível pelas particularidades diferenciadas do reator que contém tochas de plasma em regime transiente cuja quantidade é determinada pela capacidade de produção que se deseja, canais das tochas por onde flui o plasma e a cuba onde se configuram uma zona de plasma e uma zona de fusão, e através da qual extravasam o metal líquido e a escória, em um regime operacional muito parecido com o de vazamento de um alto forno, porém sem o uso de coque ou carvão vegetal, que dependendo da vantagem processual também pode ser utilizado. Assim, parte da energia contida no gás de síntese é empregada para o pré-aquecimento e a redução da carga do minério. Por sua vez, o diferencial na zona de fusão é a atmosfera com forte presença de do gás de síntese, o que evita a reoxidação. A redução residual dos óxidos de ferro presentes e a escorificação de ganga e cinzas ocorrem no estado líquido na cuba inferior. The process is made possible by the different characteristics of the reactor containing transient plasma torches whose quantity is determined by the desired production capacity, torch channels through which the plasma flows and the bowl where a plasma zone and a zone are configured. through which they pour liquid metal and slag, in an operating regime very similar to that of a blast furnace leak, but without the use of coke or charcoal, which depending on the procedural advantage can also be used. Thus, part of the energy contained in the synthesis gas is used for preheating and reducing the ore load. In turn, the differential in the fusion zone is the atmosphere with strong presence of the synthesis gas, which prevents reoxidation. Residual reduction of iron oxides present and dengue and ash scorification occur in the liquid state in the lower vat.
No processo, o gás natural ou hidrocarboneto é injetado na tocha de plasma em regime transiente com a adição de ar comprimido numa relação de equivalência adequada para a formação do gás de síntese e produção do calor, conforme a reação abaixo:  In the process, the natural gas or hydrocarbon is injected into the transient plasma torch with the addition of compressed air in an appropriate equivalence ratio for the formation of the synthesis gas and heat production, according to the reaction below:
Reação básica do gás metano em gás de síntese  Basic reaction of methane gas in synthesis gas
CH4 + ½ 02 + plasma→ CO + 2H2 CH 4 + ½ 0 2 + plasma → CO + 2H 2
Em seguida injeta-se o minério in natura, que em contato com o gás e a temperatura sofre o processo de redução conforme reações abaixo, passíveis de ocorrer de diferentes formas:  Then the fresh ore is injected, which in contact with the gas and the temperature undergoes the reduction process according to the reactions below, which may occur in different ways:
Hematita em Magnetita  Hematite to Magnetite
3 Fe203 + CO = C02 + 2 Fe304 inicia a 850°F 3 Fe 2 0 3 + CO = C0 2 + 2 Fe 3 0 4 starts at 850 ° F
3 Fe203 + H2 = H20 + 2 Fe304 3 Fe 2 0 3 + H 2 = H 2 0 + 2 Fe 3 0 4
Magnetita em Wustite - Óxido de Ferro  Magnetite in Wustite - Iron Oxide
Fe304 + CO = C02 + 3 FeO inicia a 1 100°F Fe 3 0 4 + CO = C 2 2 + 3 FeO starts at 1,100 ° F
Fe304 + H2 = H20 + 3 FeO Fe 3 0 4 + H 2 = H 2 0 + 3 FeO
Wustite - Óxido de Ferro em Ferro  Wustite - Iron Iron Oxide
FeO + CO = C02 + Fe inicia em 1300°F FeO + CO = Fe + C0 2 starts at 1300 ° F
FeO + H2 = Fe + H20 Na zona de fusão, no interior do reator, o material em estado líquido e agitado permanece em interação constante com o gás de síntese aumentando o tempo de residência do processo e, consequentemente, a taxa de conversão de minério de ferro em gusa. Para separação das impurezas, agentes como calcário, dolomita ou afim, são adicionados ao minério em conformidade com a sua necessidade química mediante a ação desses agentes. O ferro em estado líquido e no fundo do reator é vazado continuamente a uma proporção definida pela em função da sua taxa de alimentação e consumo do gás de síntese. A escória sobrenadante é expelida através de uma passagem na parte média do reator. Para otimização do processo, os gases remanescentes tomam caminho à unidade de reserva térmica posicionada na entrada superior do reator. Nessa unidade ocorrem as primeiras reduções do minério, conforme demonstrado nas equações acima. Na sequência, os gases exaustos passam por um conjunto de filtros, limpeza e queima do combustível residual, para finalmente serem jogados para a atmosfera. Dependendo da composição dos gases exaustos, podem ser reaproveitados na produção de energia. FeO + H 2 = Fe + H 2 0 In the melting zone, inside the reactor, the liquid and agitated material remains in constant interaction with the synthesis gas, increasing the residence time of the process and, consequently, the rate of conversion of iron ore to pig iron. For separation of impurities, agents such as limestone, dolomite or the like are added to the ore according to their chemical need by the action of these agents. Iron in the liquid state and in the bottom of the reactor is continuously poured at a rate defined by the function of its feed rate and synthesis gas consumption. Supernatant slag is expelled through a passage in the middle of the reactor. For process optimization, the remaining gases make their way to the thermal reserve unit positioned at the upper reactor inlet. In this unit the first ore reductions occur, as shown in the above equations. Afterwards, the exhaust gases pass through a set of filters, cleaning and burning the residual fuel, to finally be thrown into the atmosphere. Depending on the composition of exhaust gases, they can be reused in energy production.
Principais modificações introduzidas no processo  Major changes to the process
A substituição do coque ou carvão vegetal pelo gás natural, ou outro hidrocarboneto, que fornece energia térmica e, ao mesmo tempo, parte deste é convertida em gás de síntese graças as tochas de plasma em regime transiente.  The replacement of coke or charcoal by natural gas, or another hydrocarbon, which provides thermal energy and at the same time part of it is converted into synthesis gas thanks to transient plasma torches.
Estas modificações implicam em uma série de diferenciais em relação aos processos convencionais, envolvendo equipamento, matérias-primas, procedimentos, e principalmente tecnologia.  These modifications imply a series of differentials in relation to conventional processes, involving equipment, raw materials, procedures, and mainly technology.
a) Equipamentos: A principal diferença em relação ao alto forno ou mesmo ao processo RDI convencional são as tochas de plasma em regime transiente instaladas no reator; a) Equipment: The main difference from the blast furnace or even the conventional RDI process is the transient plasma torches installed in the reactor;
Fonte de energia para as tochas de plasma;  Power source for plasma torches;
Unidade geradora de ar comprimido para as tochas de plasma; Rede de gás natural, ou outro hidrocarboneto, para geração do gás de síntese;  Compressed air generator unit for plasma torches; Natural gas or other hydrocarbon network for synthesis gas generation;
s Alimentador de carga mineral para o reator;  s Mineral load feeder to the reactor;
Unidade de reserva térmica, para pré-aquecimento e redução do minério de ferro em suas fases de óxido.  Thermal reserve unit for preheating and reduction of iron ore in its oxide phases.
b) Matérias-primas:  b) Raw materials:
Hidrocarboneto líquido ou gasoso, em especial o gás natural, porém também pode ser utilizado, óleo pesado, óleo diesel, gasolina, etanol e até mesmo carvão pulverizado;  Liquid or gaseous hydrocarbon, in particular natural gas, but may also be used, heavy oil, diesel oil, gasoline, ethanol and even pulverized coal;
Ar comprimido;  Compressed air;
Minério de ferro in natura ou finos de minério, sem necessidade de preparos (sinterização no caso do alto forno);  Fresh iron ore ore fines, without preparation (sintering in the case of the blast furnace);
Água para refrigeração;  Cooling water;
Cargas - de acordo com as necessidades da química de separação da escória e da limpeza do metal no processo.  Loads - according to the needs of slag separation chemistry and metal cleaning in the process.
c) Procedimentos e tecnologia:  c) Procedures and technology:
A produção de gás de síntese, a redução do minério e a geração de entalpia são efetuadas no mesmo ambiente, ou seja, no reator com uma cinética mais favorável devido à temperatura elevada conseguida com as tochas.  Synthesis gas production, ore reduction and enthalpy generation are performed in the same environment, ie in the reactor with a more favorable kinetics due to the high temperature achieved with the torches.
Descrição da figura Figura 1 : Vista esquemática dos principais componentes do processo inventado. Description of the figure Figure 1: Schematic view of the main components of the invented process.
Descrição detalhada  Detailed Description
O "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" objeto desta solicitação de patente de invenção, consiste essencialmente do uso no reator (1) de tochas (2) com tecnologia de plasma em regime transiente, como conversor catalítico na geração do agente redutor do minério de ferro a partir do gás natural, ou outro hidrocarboneto, de forma que a redução, a produção de gás de síntese e a entalpia se dêem em um mesmo ambiente.  The "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCH REACTOR" object of this patent application consists essentially of the use of torch reactor (2) with transient plasma technology as catalytic converter in the generation of the iron ore reducing agent from natural gas or another hydrocarbon, so that the reduction, synthesis gas production and enthalpy occur in the same environment.
Mais particularmente, o processo reivindicado não necessita da figura do alto forno uma vez que utiliza tecnologia de plasma em regime transiente, ou seja, numa faixa intermediária entre o plasma frio e o plasma térmico, efetivado por tochas (2) compactas estrategicamente instaladas na zona de plasma (3) de um reator (1) igualmente compacto, fazendo assim a função de um conversor catalítico na geração do gás de síntese via gás natural ou outro hidrocarboneto. A catálise é explicada pela combinação da alta temperatura inerente ao plasma e da elevada densidade dos elétrons de alta energia, acima de 2eV, do plasma frio. As tochas (2) são ligadas a uma fonte (4) de plasma externa, à rede de gás natural ou outro hidrocarboneto (não representadas) e a uma fonte de ar comprimido (não representado). Um alimentador (5) de carga mineral, contendo finos de minério e ou minério de ferro in natura com as cargas, disponibiliza esse material para o reator (1), numa razão proporcional a vazão de gusa requerida e ao gás de síntese, não sem antes passar por uma unidade (6) de reserva térmica utilizando o retorno de gás quente da zona de fusão (7) localizada acima da zona de plasma (3). Na unidade (6) acontece um pré-aquecimento favorecendo as primeiras reduções de óxidos do minério, especialmente hematita e magnetita, isto devido a presença dos gases redutores hidrogénio e monóxido de carbono em contracorrente numa temperatura de 450°C a 850°C, adequada para este estágio. Dessa forma, a carga mineral pré- aquecida é conduzida para a zona de fusão (7) onde é submetida à ação do plasma proveniente das tochas (2) que sopram gás de síntese em alta temperatura para a cuba central do reator na zona de fusão (7) propriamente dita. Nessa fase, já em forma líquida e em estado de agitação o minério permanece em contato com o gás de síntese, interagindo com o mesmo e aumentando o período de redução. Para incrementar ainda mais o tempo de residência e a interação entre o agente redutor e o minério, o gás de síntese perfaz uma trajetória helicoidal, em forma de vórtice. Após executar a trajetória em vórtice, o gás é forçado a sair por uma abertura central (8) direcionada para a unidade (6) de reserva térmica, e daí seguindo para o conjunto de filtros (9) onde é tratado através de um duto. Ao deparar com uma bifurcação (10), os gases são direcionados para uma chaminé (11) com flare na qual é queimado o combustível residual, para finalmente serem jogados para a atmosfera. Dependendo da composição, os gases exaustos podem ser reaproveitados na produção de energia (12). Assim, o material de maior densidade, ou seja, o ferro gusa é depositado na parte de baixo do reator sendo drenado por uma passagem (13) em direção a um cadinho (14). Por outro lado, o material de menor densidade, a escória, permanece na parte sobrenadante é extravasada por uma passagem ( 5) lateral e daí para outro cadinho (16). More particularly, the claimed process does not require the blast furnace figure as it uses transient plasma technology, ie in an intermediate range between cold plasma and thermal plasma effected by compact torches (2) strategically located in the area. of plasma (3) from an equally compact reactor (1), thus acting as a catalytic converter in the generation of the synthesis gas via natural gas or another hydrocarbon. Catalysis is explained by the combination of the high inherent plasma temperature and the high density of high energy electrons above 2eV of cold plasma. Torches (2) are connected to an external plasma source (4), natural gas or other hydrocarbon network (not shown) and a compressed air source (not shown). A mineral feeder (5) containing ore fines and or in natura iron ore with the fillers provides this material to the reactor (1), in a ratio proportional to the required pig iron flow rate and the synthesis gas, not without it must first pass a thermal reserve unit (6) using the hot gas return from the melting zone (7) located above the plasma zone (3). In unit (6) Preheating takes place favoring the first reductions of ore oxides, especially hematite and magnetite, due to the presence of the countercurrent hydrogen and carbon monoxide reducing gases at a temperature of 450 ° C to 850 ° C, suitable for this stage. Thus, the preheated mineral charge is carried to the melting zone (7) where it is subjected to the action of plasma from the torches (2) blowing high temperature synthesis gas to the central reactor bowl in the melting zone. (7) itself. In this phase, already in liquid form and in a state of agitation, the ore remains in contact with the synthesis gas, interacting with it and increasing the reduction period. To further increase the residence time and the interaction between the reducing agent and the ore, the synthesis gas makes up a vortex helical path. After performing the vortex trajectory, the gas is forced out of a central opening (8) directed to the thermal reserve unit (6), and thereafter to the filter assembly (9) where it is treated through a duct. When faced with a fork (10), the gases are directed to a flare chimney (11) in which the residual fuel is burned to finally be thrown into the atmosphere. Depending on the composition, exhaust gases can be reused in energy production (12). Thus, the highest density material, ie pig iron, is deposited on the underside of the reactor and drained through a passage (13) towards a crucible (14). On the other hand, the lower density material, the slag, remains in the supernatant and is leaked through a lateral passage (5) and from there to another crucible (16).
Além do gás natural, outros hidrocarbonetos como gasolina, diesel e etanol podem ser utilizados, bastando fazer um ajuste no sistema de alimentação de combustível e uma regulagem na mistura ar/ combustível no interior da tocha (2). O reator (1) é projetado para operar em temperaturas elevadas, na faixa entre 1500°C e 1600°C, para tanto sendo revestido com cimento refratário e material isolante. In addition to natural gas, other hydrocarbons such as gasoline, diesel and ethanol can be used by adjusting the fuel supply system and adjusting the air / fuel mixture inside the torch (2). The reactor (1) is designed to operate at elevated temperatures in the range 1500 ° C to 1600 ° C, and is coated with refractory cement and insulating material.
A fonte (4) de plasma transiente é um equipamento eletroeletrônico, de corrente alternada ou contínua, com potência variável de acordo com a taxa de redução adequada. A fonte (4) apresenta um sistema de controle de corrente e potência, resistências eiétricas, disjuntores, cablagem especial, fusíveis de alta voltagem e demais componentes necessários ao seu funcionamento.  Transient plasma source (4) is an alternating or direct current electro-electronic equipment with variable power according to the appropriate reduction ratio. The source (4) has a current and power control system, electrical resistors, circuit breakers, special wiring, high voltage fuses and other components necessary for its operation.
As tochas (2) de plasma transiente, de não equilíbrio, reúnem os benefícios do plasma térmico (alta temperatura), com boa densidade de energia, com as vantagens das descargas que geram plasmas frios, do tipo "corona", "glow", os quais possuem alta taxa de seletividade de radicais e de elétrons energéticos. Temperaturas típicas dos elétrons nesses plasmas são da ordem de 11.000 °K (~ 1 eV) a mais de 23000 °K (~ 2eV), o que é suficiente para quebrar as ligações das moléculas dos gases e do comburente, além de ser suficiente para produzir radicais livres. O fluido é craqueado em radicais menores, energizados em estados excitados ou transformados em radicais livres, que contribuem na formação do gás de síntese do processo. Desse modo, é possível obter alta taxa na produção de elétrons energéticos, que possibilita a dissociação das moléculas em benefício da formação do gás de síntese e a geração de entalpia no processo.  Non-equilibrium transient plasma torches (2) bring together the benefits of good energy density thermal (high temperature) plasma with the advantages of "corona", "glow", and cold plasma discharges. which have high selectivity of radicals and energetic electrons. Typical electron temperatures in these plasmas range from 11,000 ° K (~ 1 eV) to over 23,000 ° K (~ 2eV), which is sufficient to break the bonds of the gas and oxidizer molecules and is sufficient to produce free radicals. The fluid is cracked into smaller radicals, energized in excited states or transformed into free radicals, which contribute to the formation of the process synthesis gas. Thus, it is possible to obtain a high rate in the production of energetic electrons, which enables the dissociation of molecules in favor of synthesis gas formation and the generation of enthalpy in the process.
Utilizado com gás natural e ar, numa relação de equivalência adequada, chega-se a um fator de conversão na produção de gás de síntese em média de 80%. O fator de conversão é a razão entre a quantidade em volume de gás de síntese produzido pela quantidade de gás natural, ou seja:  Used with natural gas and air, in an appropriate equivalence ratio, an average conversion factor in synthesis gas production of 80% is reached. The conversion factor is the ratio of the amount of synthesis gas produced by the quantity of natural gas, ie:
a = [H2] [CO]/3[CH4+ ...] Para a tocha de plasma em regime transiente, α = 0,65 a 0,80, ou seja, para 1 m3 de gás natural obtém-se em torno de 1 ,95 a 2,4 m3 de gás de síntese (CO + H2). A temperatura no processo é controlada entre 1500°C a 2400°C. a = [H 2 ] [CO] / 3 [CH 4 + ...] For the transient plasma torch, α = 0,65 to 0,80, ie for 1 m 3 of natural gas around 1,95 to 2,4 m 3 of synthesis gas (CO + H2). The process temperature is controlled from 1500 ° C to 2400 ° C.
Construtivamente, a tocha de plasma em regime transiente é basicamente composta de dois eletrodos - cátodo e ânodo, entre os quais, um arco elétrico é mantido. A passagem de um gás (qualquer gás pode ser usado, em princípio), inicialmente à temperatura ambiente, pelo arco elétrico, ocasiona colisões entre os elétrons do arco elétrico e as moléculas ou átomos (no caso de gases inertes) do gás. Essas colisões transferem uma parte da energia cinética dos elétrons para o gás, dissociando-o e ionizando-o diretamente ou por ionização térmica.  Constructively, the transient plasma torch is basically composed of two electrodes - cathode and anode, between which an electric arc is maintained. The passage of a gas (any gas can in principle be used), initially at room temperature, through the electric arc causes collisions between the electric arc electrons and the molecules or atoms (in the case of inert gases) of the gas. These collisions transfer some of the electron kinetic energy to the gas, dissociating it and ionizing it directly or by thermal ionization.
A tocha de plasma em regime transiente é um dispositivo baseado numa geometria cilíndrica, gerando um plasma num fluxo volumétrico contínuo, fornecendo um fluxo uniforme para a descarga e aplicação no processo. O fluxo é do tipo vórtice reverso muito similar a um tornado que se desenvolve no interior da tocha. Quando a alta voltagem é aplicada, o arco inicia-se no "gap" pequeno entre os eletrodos. Devido ao forte efeito do escoamento em vórtice, o arco é obrigado a se alongar num dos eletrodos no interior do cilindro. Para alongar o arco, há necessidade de uma demanda maior de potência. À medida que o arco se estica, a voltagem aumenta e a corrente diminui; consequentemente, o campo elétrico e a temperatura dos elétrons aumentam, mas a temperatura do gás diminui. Portanto, o plasma intensifica seu estado de "non-equilibrium". As espécies reativas da zona de plasma são retidas no interior do reator. A recirculação é fundamental para reações catalíticas via plasma. Todo o gás passa pela zona de descarga e pode ser puro ou uma mistura de vários tipos de gases ou líquidos, como, por exemplo, o ar e etanol, ar e metano, ar e carvão pulverizado, ar e butano, metano puro, ar puro etc.  The transient plasma torch is a device based on a cylindrical geometry, generating a plasma in a continuous volumetric flow, providing a uniform flow for discharge and application in the process. The flow is of the reverse vortex type very similar to a tornado that develops inside the torch. When high voltage is applied, the arc begins at the small gap between the electrodes. Due to the strong effect of vortex flow, the arc is forced to lengthen on one of the electrodes inside the cylinder. To lengthen the arc, a greater demand for power is required. As the arc stretches, the voltage increases and the current decreases; consequently, the electric field and the electron temperature increase, but the gas temperature decreases. Therefore, plasma intensifies its non-equilibrium state. Plasma zone reactive species are trapped within the reactor. Recirculation is critical for catalytic reactions via plasma. All gas passes through the discharge zone and may be pure or a mixture of various types of gases or liquids such as air and ethanol, air and methane, air and pulverized coal, air and butane, pure methane, air pure etc.

Claims

REIVINDICAÇÕES
1) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE ", caracterizado por utilizar um plasma em regime transiente, numa faixa intermediária entre o plasma frio e o plasma térmico, efetivado por umas tochas (2) compactas instaladas na zona de plasma (3) de um reator (1 ) compacto, fazendo assim a função de um conversor catalítico na geração de um gás de síntese como agente redutor a partir do gás natural ou um outro hidrocarboneto líquido ou gasoso, com a entalpia necessária para manter a temperatura na zona de fusão entre 1500° a 1600°C.  1) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCHES", characterized by the use of a transient plasma in an intermediate range between cold plasma and thermal plasma, effected by a compact torch (2) installed in the plasma zone (3) of a compact reactor (1), thus acting as a catalytic converter to generate a synthesis gas as a reducing agent from natural gas or another liquid or gaseous hydrocarbon with enthalpy required to maintain the temperature in the melting zone between 1500 ° and 1600 ° C.
2) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" de acordo com a reivindicação 1 , caracterizado pela redução, a produção de gás de síntese e a entalpia se darem em um mesmo ambiente. 2) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT REGIME PLASMA TORCHES" according to claim 1, characterized in that the reduction, synthesis gas production and enthalpy occur in the same environment.
3) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" de acordo com a reivindicação 1 , caracterizado pela utilização de hidrocarbonetos como gasolina, diesel e etanol, bastando fazer um ajuste no sistema de alimentação de combustível e uma regulagem na mistura ar/ combustível no interior da tocha (2). 4) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" de acordo com a reivindicação 1 , caracterizado pelo controle da temperatura da tocha ser possível a redução de outros minérios de metais ferrosos e não ferrosos.  3) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCHES" according to claim 1, characterized by the use of hydrocarbons such as gasoline, diesel and ethanol by simply adjusting the fuel supply system and an air / fuel mixture adjustment inside the torch (2). (4) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCHES" according to claim 1, characterized in that control of the torch temperature makes it possible to reduce other ferrous and non-ferrous metal ores.
5) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" de acordo com a reivindicação 1 , caracterizado pela tocha (2) na região de plasma (3) do reator (1) estar ligada a uma fonte (4) externa, a rede de gás natural ou outro hidrocarboneto a uma fonte de ar comprimido. 5) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA TORCHES" according to claim 1, characterized in that the torch (2) in the plasma region (3) of the reactor (1) is connected to an external source (4), the natural gas network or other hydrocarbon to a source of compressed air.
6) "PROCESSO PARA REDUÇÃO DE MINÉRIO DE FERRO EM REATOR COM TOCHAS DE PLASMA EM REGIME TRANSIENTE" de acordo com a reivindicação 1 , caracterizado por um alimentador (5) de carga mineral, contendo finos de minério e ou minério de ferro in natura com as cargas, disponibilizar esse material para o reator (1 ), não sem antes passar por uma unidade (6) de reserva térmica utilizando o retomo de gás quente da zona de fusão (7) localizada acima da zona de plasma (3) onde é submetida à ação do plasma proveniente das tochas (2); o gás é forçado a sair por uma abertura central (8) direcionada para a unidade (6) de reserva térmica, e daí seguindo para o conjunto de filtros (9); numa bifurcação (10), os gases são direcionados para uma chaminé (11) com flare na qual é queimado e dependendo da composição, os gases exaustos podem ser reaproveitados na produção de energia (12); o material de maior densidade, o ferro gusa é depositado na parte de baixo do reator sendo drenado por uma passagem (13) em direção a um cadinho (14); o material de menor densidade, a escória, permanece na parte sobrenadante é extravasada por uma passagem (15) lateral e daí para outro cadinho (16).  (6) "PROCESS FOR REDUCING IRON ORE IN TRANSIENT PLASMA REACTOR TORCHES" according to Claim 1, characterized by a mineral filler (5) containing ore fines and / or fresh iron ore with loads, make this material available to reactor (1), not without first passing through a thermal reserve unit (6) using the hot zone gas of the melting zone (7) located above the plasma zone (3) where it is subjected to plasma action from the torches (2); gas is forced out of a central opening (8) directed to the thermal reserve unit (6), and thereafter into the filter assembly (9); at a fork (10), the gases are directed to a flare chimney (11) in which it is burned and depending on the composition, exhaust gases can be reused in energy production (12); the higher density material, the pig iron is deposited in the bottom of the reactor and drained through a passage (13) towards a crucible (14); the lower density material, the slag, remains in the supernatant and is leaked through a lateral passage (15) and thence to another crucible (16).
PCT/BR2013/000461 2013-05-14 2013-11-04 Method for reducing iron ore in a reactor with transient plasma torches WO2014183177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130119121 2013-05-14
BR102013011912-1A BR102013011912B1 (en) 2013-05-14 PROCESS FOR REDUCING IRON ORE IN A REACTOR WITH PLASMA TORCHES IN TRANSIENT REGIME

Publications (1)

Publication Number Publication Date
WO2014183177A1 true WO2014183177A1 (en) 2014-11-20

Family

ID=50397468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000461 WO2014183177A1 (en) 2013-05-14 2013-11-04 Method for reducing iron ore in a reactor with transient plasma torches

Country Status (1)

Country Link
WO (1) WO2014183177A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514219A (en) * 1983-02-03 1985-04-30 Institut De Recherches De La Siderurgie Francaise Method of producing molten metal
US4765828A (en) * 1987-06-19 1988-08-23 Minnesota Power & Light Company Method and apparatus for reduction of metal oxides
JPH07213892A (en) * 1994-02-01 1995-08-15 Central Res Inst Of Electric Power Ind Plasma reaction apparatus
BRPI0604804A (en) * 2006-11-17 2008-07-01 Alberto Carlos Pereira Jr backward plasma injector
BRPI0803036A2 (en) * 2008-08-01 2011-03-22 Polaris Ind E Com De Componentes Mecanicos Ltda Epp plasma technology reactor-based solid waste treatment process
CA2745813A1 (en) * 2011-06-10 2011-12-27 S & S Advanced Metal Technologies Llc System and method for the thermal processing of ore bodies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514219A (en) * 1983-02-03 1985-04-30 Institut De Recherches De La Siderurgie Francaise Method of producing molten metal
US4765828A (en) * 1987-06-19 1988-08-23 Minnesota Power & Light Company Method and apparatus for reduction of metal oxides
JPH07213892A (en) * 1994-02-01 1995-08-15 Central Res Inst Of Electric Power Ind Plasma reaction apparatus
BRPI0604804A (en) * 2006-11-17 2008-07-01 Alberto Carlos Pereira Jr backward plasma injector
BRPI0803036A2 (en) * 2008-08-01 2011-03-22 Polaris Ind E Com De Componentes Mecanicos Ltda Epp plasma technology reactor-based solid waste treatment process
CA2745813A1 (en) * 2011-06-10 2011-12-27 S & S Advanced Metal Technologies Llc System and method for the thermal processing of ore bodies

Also Published As

Publication number Publication date
BR102013011912A2 (en) 2014-04-08

Similar Documents

Publication Publication Date Title
Sabat et al. Hydrogen plasma processing of iron ore
US2343780A (en) Reaction between solids and gases
CA1224974A (en) Method for destroying refuse
US5046144A (en) Method and furnace for the preparation of a melt for mineral wool production
US3765870A (en) Method of direct ore reduction using a short cap arc heater
US4010090A (en) Process for converting naturally occurring hydrocarbon fuels into gaseous products by an arc heater
BRPI0706710A2 (en) reduction process and its installation
CA1150518A (en) Recovering non-volatile metals from dust containing metal oxides
US4013867A (en) Polyphase arc heater system
Rao et al. Thermal plasma torches for metallurgical applications
US3649189A (en) Preparation of finely particulate silicon oxides
US20080044781A1 (en) Method of solid fuel combustion intensification
PL76243B1 (en)
RU2296165C2 (en) Metal direct reduction method from dispersed raw ore material and apparatus for performing the same
CA1147964A (en) Process for reducing spent gas generated in the production of sponge iron
RU2349545C2 (en) Device for producing technical carbon and hydrogen
US4584465A (en) Method and apparatus for heating process air for industrial purposes
WO2014183177A1 (en) Method for reducing iron ore in a reactor with transient plasma torches
BR102013011912B1 (en) PROCESS FOR REDUCING IRON ORE IN A REACTOR WITH PLASMA TORCHES IN TRANSIENT REGIME
US4654077A (en) Method for the pyrometallurgical treatment of finely divided materials
Panishev et al. Direct reduction of Ti-V magnetite via ITmk3 technology
US4061492A (en) Method of ore reduction with an arc heater
US342607A (en) kendill
US1167016A (en) Process of reducing iron ores and other metallic oxids to the metallic state.
US4732368A (en) Apparatus for the pyrometallurgical treatment of finely divided materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884383

Country of ref document: EP

Kind code of ref document: A1