WO2014182133A1 - 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2014182133A1
WO2014182133A1 PCT/KR2014/004188 KR2014004188W WO2014182133A1 WO 2014182133 A1 WO2014182133 A1 WO 2014182133A1 KR 2014004188 W KR2014004188 W KR 2014004188W WO 2014182133 A1 WO2014182133 A1 WO 2014182133A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
mapped
special subframe
pattern
ofdm symbol
Prior art date
Application number
PCT/KR2014/004188
Other languages
English (en)
French (fr)
Inventor
윤성준
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2014182133A1 publication Critical patent/WO2014182133A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a reference signal in a wireless communication system.
  • UMTS Universal Mobile Telecommunications System
  • WCDMA wideband code division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio services
  • LTE Long-term evolution
  • LTE-A LTE-advanced
  • 3GPP 3rd generation partnership project
  • Component carrier (CC) used in a conventional multiple carrier system (CC) is important to the versatility of the physical layer, there is overlap of the control region and common signal overhead. Therefore, there are problems such as unnecessary resources in terms of spectral efficiency due to the reduction of resources for the data signal. Accordingly, in order to efficiently operate the multi-carrier system, it is required to introduce a new carrier type (NCT) constituting the multi-carrier system.
  • NCT new carrier type
  • RS reference signal
  • LCT legacy carrier type
  • the conventional conventional carrier type (LCT) is also referred to as backward compatible carrier type (BCCT) by distinguishing it from NCT.
  • the NCT may include non-standalone NCT and standalone NCT.
  • Non-alone NCT is an NCT that may not exist in the form of a single cell, but may exist in the form of a secondary serving cell (SCell) when a primary serving cell (PCell) exists.
  • SCell secondary serving cell
  • PCell primary serving cell
  • NCT alone is NCT that can exist in the form of a single cell.
  • the sole NCT may be in the form of a PCell.
  • a cell-specific RS (CRS) may not be transmitted.
  • the conventional physical downlink control channel (PDCCH), the physical HARQ indicator channel (PHICH), and the physical control format indicator channel (PCFICH), which are control channels based on the CRS may be removed or replaced with other types of channels.
  • FIG. 1 illustrates an example of a communication system in which a high power node and a low power node are disposed.
  • next generation communication system such as 3GPP LTE-A
  • a small cell based on a low-power node as well as a macro cell (F1) based on a high-power node as shown in FIG. 1.
  • F1 macro cell
  • Small cells aim to increase spectral efficiency with efficient deployment and operation.
  • the small cell may be considered both in the frequency band F1 which is the coverage of the macro cell and in the frequency band F2 other than the coverage of the macro cell.
  • the small cells may be provided in both indoor environments (shown as cuboids in FIG. 1) and in outdoor environments (shown outside cuboids in FIG. 1).
  • an ideal or non-ideal backhaul network may be supported between the macro cell and the small cell and / or between the small cells.
  • the small cell may be provided in both a low density deployment environment and / or a high density deployment environment.
  • Table 1 shows a configuration of a special subframe in a time division duplex (TDD) frame of 3GPP LTE.
  • a special subframe in a TDD frame includes 9 elements in a normal cyclic prefix and 7 elements in an extended CP.
  • configurations 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 each represent (DwPTS, guard period, among the 14 orthogonal frequency division multiplexing (OFDM) symbols of one special subframe.
  • the number of OFDM symbols for UpPTS) is (3, 10, 1), (9, 4, 1), (10, 3, 1), (11, 2, 1), (12, 1, 1), Indicates that it is (3, 9, 2), (9, 3, 2), (10, 2, 2), (11, 1, 2), (6, 6, 2).
  • configurations 0, 1, 2, 3, 4, 5, 6, and 7 each have the number of OFDM symbols for (DwPTS, guard period, UpPTS) among 12 OFDM symbols in one special subframe. (3, 8, 1), (8, 3, 1), (9, 2, 1), (10, 1, 1), (3, 7, 2), (8, 2, 2), (9 , 1, 2), (5, 5, 2).
  • a wireless communication system it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • fading occurs due to a multipath time delay.
  • the process of restoring the transmission signal by compensating for the distortion of the signal caused by a sudden environmental change due to fading is called channel estimation.
  • channel estimation it is necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells. For channel estimation or channel state measurement, a channel estimation is generally performed using reference signals known to each other.
  • the channel state information (CSI) reference signal is used for channel estimation of the physical downlink shared channel (PDSCH) of the LTE-A terminal.
  • the CSI-RS may be relatively sparse in the frequency domain or the time domain and may be punctured in the data region of a general subframe or a multimedia broadcast and multicast single frequency network (MBSFN) subframe.
  • Channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. may be reported from the UE when necessary through estimation of CSI.
  • CSI-RS is not transmitted in a special subframe of a TDD frame.
  • transmission of CSI-RS may be required even in a special subframe of a TDD frame. Therefore, there is a need for a method and a method of mapping a CSI-RS to a resource element in a special subframe of the TDD frame.
  • An object of the present invention is to provide a method and apparatus for transmitting a reference signal in a wireless communication system.
  • the present invention provides a method and apparatus for transmitting a channel state information (CSI) reference signal (RS) in a special subframe within a time division duplex (TDD) frame.
  • CSI channel state information
  • RS reference signal
  • TDD time division duplex
  • the present invention considers the position of a demodulation reference signal (DMRS) that is changed based on the number of orthogonal frequency division multiplexing (OFDM) symbols for DwPTS in a special subframe within a TDD frame, Provides a method and apparatus for mapping to resource elements.
  • OFDM orthogonal frequency division multiplexing
  • a method of transmitting a reference signal by a base station (BS) in a wireless communication system includes generating a channel state information (CSI) reference signal (RS) sequence, and generating the generated CSI-RS sequence according to a CSI-RS pattern using a modulation symbol. Mapping to at least one resource element of a special subframe in a time division duplex (TDD) frame, and orthogonal frequency division multiplexing (OFDM) signal generated based on the mapped CSI-RS sequence to a terminal And transmitting, wherein the CSI-RS pattern is determined according to a configuration of the special subframe and a cyclic prefix (CP).
  • CSI channel state information
  • RS reference signal
  • a base station in a wireless communication system.
  • the base station is a reference signal generator configured to generate a channel state information (CSI) reference signal (RS) sequence, the generated CSI-RS sequence by using a modulation symbol (CSI) modulation symbol (modulation symbol)
  • CSI channel state information
  • a resource mapper configured to map to at least one resource element of a special subframe within a time division duplex (TDD) frame according to a -RS pattern, and an orthogonal OFDM generated based on the mapped CSI-RS sequence and a transmitter configured to transmit a frequency division multiplexing (UE) signal to the UE, wherein the CSI-RS pattern is determined according to a configuration of the special subframe and a cyclic prefix (CP).
  • CP frequency division multiplexing
  • a method of performing channel estimation by a mobile station (MS) in a wireless communication system includes receiving an orthogonal frequency division multiplexing (OFDM) signal generated based on a channel state information (CSI) reference signal (RS) sequence, and demodulating the received OFDM signal to a channel.
  • OFDM orthogonal frequency division multiplexing
  • CSI-RS sequence comprises at least one resource of a special subframe in a time division duplex (TDD) frame according to a CSI-RS pattern using a modulation symbol; Mapped to an element, the CSI-RS pattern is determined according to a configuration of the special subframe and a cyclic prefix (CP).
  • TDD time division duplex
  • CP cyclic prefix
  • a mobile station (MS) in a wireless communication system demodulates the reception unit configured to receive an orthogonal frequency division multiplexing (OFDM) signal generated based on a channel state information (CSI) reference signal (RS) sequence, and the received OFDM signal.
  • CSI channel state information
  • RS reference signal
  • a channel estimator configured to perform channel estimation, wherein the CSI-RS sequence includes a special subframe within a time division duplex (TDD) frame according to a CSI-RS pattern using a modulation symbol.
  • TDD time division duplex
  • the CSI-RS pattern is mapped to at least one resource element of, and is determined according to a configuration of the special subframe and a cyclic prefix (CP).
  • CP cyclic prefix
  • the CSI-RS can be efficiently transmitted in a special subframe within the TDD frame.
  • FIG. 1 illustrates an example of a communication system in which a high power node and a low power node are disposed.
  • FIG. 2 illustrates a wireless communication system to which an embodiment of the present invention can be applied.
  • 3 shows a structure of a radio frame in 3GPP LTE.
  • 5A to 5B illustrate examples of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
  • FIG. 6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
  • 7A-7B illustrate the mapping of DMRSs in normal CPs.
  • 9A to 9H illustrate CSI-RS patterns when a CSI-RS pattern used in a general subframe is used as it is in a special subframe using a general CP.
  • 10A to 10E illustrate a CSI-RS pattern when a CSI-RS pattern used in a general subframe is used as it is in a special subframe using an extended CP.
  • 11A to 11B illustrate examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 12A to 12B illustrate other examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 13 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 14A to 14B illustrate further examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 15A to 15D illustrate still other examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 16 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 17A to 17B illustrate further examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 18A to 18B illustrate still other examples of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 19 shows an embodiment of a method of transmitting a reference signal according to an embodiment of the present invention.
  • 20 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented by wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is part of evolved UMTS (E-UMTS) using evolved-UMTS terrestrial radio access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • FIG. 2 illustrates a wireless communication system to which an embodiment of the present invention can be applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a specific geographic area or frequency area and may be called a site.
  • the site may be divided into a plurality of regions 15a, 15b, and 15c, which may be called sectors, and the sectors may have different cell IDs.
  • a mobile station (MS) 12 may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • the base station 11 generally refers to a station that communicates with the terminal 12, and includes an evolved-NodeB (eNodeB), a base transceiver system (BTS), an access point, an femto eNB, and a household It may be called other terms such as a base station (HeNB), a relay, a remote radio head (RRH), and the like.
  • eNodeB evolved-NodeB
  • BTS base transceiver system
  • HeNB base station
  • RRH remote radio head
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense, indicating some areas covered by base station 11, and include mega cells, macro cells, micro cells, and pico. The term encompasses various coverage areas such as a pico cell and a femto cell.
  • a terminal typically belongs to one cell, and a cell to which the terminal belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are relatively determined based on the terminal.
  • downlink means communication from the base station 11 to the terminal 12
  • uplink means communication from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • the wireless communication system may be any one of a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • Wireless communication systems can be largely divided into frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the uplink transmission and the downlink transmission are time-divided in the entire frequency band, and thus the downlink transmission by the base station and the uplink transmission by the terminal cannot be simultaneously performed.
  • uplink transmission and downlink transmission are performed in different subframes.
  • 3 shows a structure of a radio frame in 3GPP LTE. It may be referred to 3GPP TS 36.211 V8.2.0 (2008-03).
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19.
  • Transmission time interval (TTI) is a basic scheduling unit for data transmission. In 3GPP LTE, one TTI may be equal to the time taken for one subframe to be transmitted.
  • One radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of subcarriers in the frequency domain.
  • the OFDM symbol is used to represent one symbol period since 3GPP LTE uses OFDMA in downlink, and may be called a different name according to a multiple access scheme.
  • SC-FDMA when SC-FDMA is used as an uplink multiple access method, it may be referred to as an SC-FDMA symbol.
  • a resource block (RB) includes a plurality of consecutive subcarriers in one slot in resource allocation units.
  • the structure of the radio frame is merely an example. Accordingly, the number of subframes included in the radio frame, the number of slots included in the subframe, or the number of OFDM symbols included in the slot may be variously changed.
  • 3GPP LTE defines that one slot includes 7 OFDM symbols in a normal cyclic prefix (CP), and one slot includes 6 OFDM symbols in an extended CP.
  • CP normal cyclic prefix
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in a normal CP. Up to three OFDM symbols (up to four OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are allocated, and the remaining OFDM symbols are the PDSCH (physical downlink shared channel). Becomes the data area to be allocated.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and N RB resource blocks in the frequency domain.
  • the number N RB of resource blocks included in the downlink slot depends on the downlink transmission bandwidth set in the cell.
  • N RB in 3GPP LTE may be any one of 6 to 110.
  • One resource block includes a plurality of subcarriers in the frequency domain.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element.
  • one resource block corresponds to one slot of 0.5 ms in the time domain, and corresponds to a total of 12 subcarriers when the frequency spacing between each subcarrier is 15 Khz at 180 Khz in the frequency domain.
  • one resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of OFDM symbols and the number of subcarriers in the resource block is illustrated. Is not limited thereto.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, the frequency interval, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • PRB-pairs two resource blocks that are physically allocated in one subframe on the time axis may be referred to as physical resource block pairs (PRB-pairs).
  • Reference signal is generally transmitted in sequence.
  • the reference signal sequence a sequence having excellent correlation property may be used.
  • the reference signal sequence may use a constant amplitude zero auto-correlation (CAZAC) sequence.
  • the CAZAC sequence includes a ZCoff-based sequence or the like, and the ZC-based sequence may be cyclically extended or truncated according to a purpose.
  • the reference signal sequence may use a pseudo-random (PN) sequence.
  • PN sequences include m-sequences, computer-generated PN sequences, gold sequences, and Kasami sequences.
  • the downlink reference signal may include a cell-specific RS (CRS), a multimedia broadcast and multicast single frequency network (MBSFN) reference signal, a UE-specific RS, and a positioning reference signal (PRS). ) And channel state information (CSI) reference signals (CSI-RS).
  • CRS is a reference signal transmitted to all UEs in a cell.
  • the CRS may be used for channel measurement for channel quality indicator (CQI) feedback and channel estimation for PDSCH.
  • the MBSFN reference signal may be transmitted in a subframe allocated for MBSFN transmission.
  • the UE-specific reference signal is a reference signal received by a specific terminal or a specific group of terminals in a cell, and may be referred to as a demodulation RS (DMRS).
  • DMRS demodulation RS
  • DMRS demodulation RS
  • DMRS demodulation RS
  • DMRS demodulation RS
  • DMRS demodulation RS
  • DMRS demodulation RS
  • the CSI-RS will be described.
  • the CSI-RS may be transmitted through one, two, four or eight antenna ports.
  • the CSI RS may be defined only for the case where the frequency interval ⁇ f between the subcarriers is 15 kHz.
  • CSI-RS may refer to 3GPP TS 36.211 V10.1.0 (2011-03).
  • the CSI-RS sequence r l, ns (m) may be defined as in Equation 1.
  • n s is a slot number in a radio frame
  • l is an OFDM symbol number in a slot.
  • the m-th CSI-RS sequence is generated by forming a real part and an imaginary part through a pseudo-random sequence c (i), and then normalizing them.
  • c (i) may be defined by a Gold sequence of length-31.
  • c (i) may have a value of 0 or 1 as a binary pseudo-random sequence. Therefore, as shown in Equation 1, 1-2 ⁇ c (i) may represent a value of 1 or -1, and the real number part corresponds to an even numbered 2 mth sequence, and the imaginary part corresponds to an odd number (2 m Use the +1) th sequence.
  • N C 1600
  • the initialization of the second m-sequence x 2 (i) may be initialized to different values depending on the system parameter values used in the channel or signal to which the sequence is applied. It can be expressed as.
  • the pseudo random sequence c (i) may be initialized by Equation 3 at the start of each OFDM symbol.
  • N CP has a value of 1 in a general CP and 0 in an extended CP.
  • the N ID CSI may have any one of integers from 0 to 503.
  • the N ID CSI may be a virtual cell ID (VCID) for CSI-RS when signaled from a higher layer.
  • the N ID CSI may be equal to a physical cell ID (PCI) if there is no signaling from a higher layer.
  • PCI physical cell ID
  • the CSI-RS sequence r l, ns (m) is a complex-valued modulation symbol a k used as a reference symbol on the antenna port p according to Equation 4.
  • l (p) can be mapped.
  • a k, l (p) is a complex modulation symbol mapped to the k th subcarrier and the l th OFDM symbol of the p th antenna port.
  • a k, l (p) is mapped by multiplying the CSI-RS sequence r l, ns (m ') and the orthogonal sequence w l'' .
  • Equation 5 Each parameter of Equation 4 may be defined by Equation 5.
  • the CSI-RS configuration includes a non-zero transmission power CSI-RS configuration indicating a pattern in which a CSI-RS is transmitted to a terminal of each cell (or transmission point (TP)), and a neighboring cell (or It may be classified into a zero transmission power CSI-RS configuration for muting a PDSCH region corresponding to CSI-RS transmission of TP).
  • TP transmission point
  • Zero or one CSI-RS configuration per CSI process may be used for a terminal assuming non-zero power CSI-RS, and zero or several CSI RS configurations may be used for a terminal assuming zero power CSI-RS.
  • Information about one or more non-zero power CSI-RS configuration may be transmitted to each terminal of the corresponding cell.
  • the information on the CSI-RS configuration includes 2-bit information indicating whether the number of antenna ports (hereinafter, CSI-RS antenna ports) for transmitting non-zero power CSI-RS is any one of 1, 2, 4, and 8; 5 bit information indicating a CSI-RS pattern configurable for each number of CSI-RS antenna ports may be included.
  • Table 2 shows the mapping of the CSI-RS configuration and (k ', l'), that is, the CSI-RS pattern of Equation 5 in the general CP, and Table 3 shows the CSI-RS configuration and Equation 5 in the extended CP. ', l'), that is, mapping of the CSI-RS pattern.
  • CSI-RS configurations are used when the number of antenna ports is 1 or 2
  • 16 CSI-RS configurations when the number of antenna ports is 4, and the number of antenna ports
  • Table 3 a total of 28 CSI-RS configurations when the number of antenna ports is 1 or 2 for the extended CP, 14 CSI-RS configurations when the number of antenna ports is 4, and the number of antenna ports In eight, there are a total of seven CSI-RS configurations.
  • the location of one specific resource element to which the CSI-RS is mapped may be indicated for each CSI-RS antenna port with respect to the CSI-RS configuration. That is, the location of the remaining resource elements to which the CSI-RS is mapped may be determined by Equation 5 based on the location of the one specific resource element, and thus, the total CSI-RS configurable for each number of CSI-RS antenna ports. The pattern can be seen.
  • the CSI-RS is mapped to a resource element having a subcarrier index of 9 and an OFDM symbol index of 2 in the second slot.
  • the resource element indicated by Table 2 may be one of positions of resource elements to which the CSI-RS transmitted through the first CSI-RS antenna port is mapped.
  • the positions of the remaining resource elements to which the CSI-RSs transmitted through the first CSI-RS antenna port are mapped and the positions of the resource elements to which the CSI-RSs are transmitted through the remaining CSI-RS antenna port are mapped according to Equation (5). It may be located at regular intervals from the resource element indicated by 2.
  • FIG. 5 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
  • FIG. 5A illustrates a CSI-RS pattern in the case of FDD + TDD and FIG. 5B in the case of TDD.
  • the number indicated on each resource element represents a CSI-RS configuration number.
  • a is CSI-RS antenna port ⁇ 15, 16 ⁇
  • b is CSI-RS antenna port ⁇ 17, 18 ⁇
  • c is CSI-RS antenna port ⁇ 19, 20 ⁇
  • d is CSI-RS antenna port ⁇ 19, 20 ⁇
  • A denotes DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇
  • B denotes transmission of DMRS on DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇ .
  • C represents a resource element to which the CRS is mapped.
  • the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
  • the CSI-RS pattern of FIG. 5 may be applied even when the number of CRS antenna ports is one or four, or when the CRS is not transmitted. In addition, the CSI-RS pattern of FIG. 5 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 subframes, or when a control region is not allocated.
  • DMRS uses two code division multiplexing (CDM) groups (A: DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇ , and B: DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇ ). Although assumed, the CSI-RS pattern of FIG. 5 may be applied even when using one CDM group.
  • CDM code division multiplexing
  • FIG. 6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
  • the numbers indicated in each resource element in FIG. 6 indicate CSI-RS configuration numbers.
  • a is CSI-RS antenna port ⁇ 15, 16 ⁇
  • b is CSI-RS antenna port ⁇ 17, 18 ⁇
  • c is CSI-RS antenna port ⁇ 19, 20 ⁇
  • d is CSI-RS antenna port ⁇ 19, 20 ⁇
  • E indicates transmitting DMRS on DMRS antenna port ⁇ 7, 8 ⁇ .
  • C represents a resource element to which the CRS is mapped.
  • the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
  • the CSI-RS pattern of FIG. 6 may be applied even when the number of CRS antenna ports is one or four or when no CRS is transmitted. In addition, the CSI-RS pattern of FIG. 6 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 of the subframe, or when the control region is not allocated.
  • the zero power CSI-RS configuration is a 16-bit bitmap composed of four CSI-RS antenna ports. For a bit set to 1 in a 16-bit bitmap configured by a higher layer, the terminal selects a resource element corresponding to four CSI-RS antenna ports in Tables 2 and 3 as zero-power CSI-RS. Can be set. More specifically, the most significant bit (MSB) of the 16-bit bitmap corresponds to the first CSI-RS configuration index when the number of CSI-RS antenna ports is 4 in Tables 2 and 3. Subsequent bits of the 16-bit bitmap correspond to the direction in which the CSI-RS configuration index increases when the number of CSI-RS antenna ports is 4 in Tables 2 and 3.
  • the resource element set to the zero power CSI-RS may mute the PDSCH corresponding to the CSI-RS transmission of the neighbor cell or the TP, and the PDSCH may be transmitted to the resource element not set to the zero power CSI-RS.
  • the UE may transmit the CSI-RS only in the downlink slot that satisfies the condition of n s mod 2 in Table 2 and Table 3.
  • the UE is a subframe or paging message in which a special subframe of the TDD frame, transmission of the CSI RS collides with a synchronization signal, a physical broadcast channel (PBCH), and a system information block type 1 (SystemInformationBlockType1).
  • PBCH physical broadcast channel
  • SystemInformationBlockType1 system information block type 1
  • the antennas in one set S is not used for transmission of the CSI-RS on the antenna port in the PDSCH or another set S in the same slot.
  • Table 4 shows an example of a subframe configuration in which the CSI-RS is transmitted.
  • a period (T CSI-RS ) and an offset ( ⁇ CSI-RS ) of a subframe in which the CSI-RS is transmitted may be determined according to the CSI-RS subframe configuration (I CSI-RS ).
  • the CSI-RS subframe configuration may be configured separately for the non-zero power CSI-RS and zero-power CSI-RS.
  • the subframe for transmitting the CSI-RS needs to satisfy the equation (6).
  • the following parameters may be signaled from a higher layer such as RRC (radio resource control) for CSI-RS.
  • RRC radio resource control
  • antennaPortsCount It has a length of 2 bits and indicates the number of CSI-RS antenna ports in Table 2 or Table 3.
  • resouceConfig has a length of 5 bits, and indicates the CSI-RS configuration and corresponding resource elements, that is, the CSI-RS pattern in Table 2 or Table 3.
  • subframeConfig has a length of 8 bits and indicates the CSI-RS subframe configuration in Table 4.
  • Pc indicates a value related to the CSI-RS transmission power.
  • the N ID CSI of Equation 3 may be signaled from an upper layer.
  • v is the number of layers used for transmission of the PDSCH. That is, in case of using one layer for transmission of PDSCH, DMRS may be transmitted on antenna ports 7 or 8.
  • up to eight DMRS antenna ports may be used depending on the number of layers.
  • DMRS may exist and be valid for PDSCH demodulation only if PDSCH transmission is associated with the corresponding antenna port.
  • DMRS may be transmitted only on the RB to which the corresponding PDSCH is mapped.
  • Rx indicates transmitting DMRS on antenna port x.
  • R 7 represents transmitting DMRS on antenna port 7.
  • a total of 12 resource elements per DMRS antenna port may be used in a PRB pair defined as one physical resource block (PRB) on the frequency axis and one subframe on the time axis.
  • PRB physical resource block
  • FIG. 7A shows the mapping of DMRSs to antenna ports 7, 8 and FIG. 7B shows the mapping of DMRSs to antenna ports 9 and 10.
  • FIG. 7 DMRSs transmitted on antenna ports 7, 8, 11, and 13 are mapped to the same resource elements on time-frequency, which may be referred to as CDM group 1. That is, R 7 , R 8 , R 11 , and R 13 may all be mapped to resource elements at the same location. In FIG. 7, R 11 and R 13 are not shown, but R 11 and R 13 may be mapped to resource elements at the same location as R 7 and R 8 .
  • DMRSs transmitted on antenna ports 9, 10, 12, and 14 are also mapped to the same resource elements in time-frequency, which may be referred to as CDM group 2.
  • R 9 , R 10 , R 12 , and R 14 are all mapped to resource elements at the same location.
  • R 12 and R 14 are not shown, all of R 12 and R 14 may be mapped to resource elements at the same positions as R 9 and R 10 .
  • CDM group 1 and CDM group 2 may be divided into positions of different resource elements on time-frequency. This may be referred to as frequency division multiplexing (FDM) and time division multiplexing (TDM) based division.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • antenna ports in one CDM group mapped to the same resource elements on time-frequency may be distinguished by an orthogonal sequence such as an orthogonal cover code (OCC) of Table 5. This can be called a CDM-based division.
  • OFC orthogonal cover code
  • antenna ports 7, 8, 11, and 13 in CDM group 1 may be divided into OCC A, B, C, and D, and antenna ports 9, 10, 12, and 14 degree OCC in CDM group 2, respectively. It can be divided into A, B, C, and D.
  • an OCC having a length of 4 may be applied over four OFDM symbols in one subframe on a time axis.
  • four OFDM symbols to which the OCC is applied are the sixth, seventh, thirteenth, and fourteenth OFDM symbols (the first subframe of the third row of FIG. 7A).
  • the four OFDM symbols to which the OCC is applied are the third, fourth, like the subframe of the second row of FIG. 7A.
  • the OCC having a length of 2 may be applied over two OFDM symbols in one subframe on the time axis.
  • two OFDM symbols to which the OCC is applied are the third and fourth OFDM symbols (OFDM symbol indexes # 2 and # 3 of the first slot). May be).
  • Rx indicates transmitting DMRS on antenna port x.
  • R 7 represents transmitting DMRS on antenna port 7.
  • a total of 16 resource elements may be used per DMRS antenna port in a PRB pair defined as one PRB on the frequency axis and one subframe on the time axis.
  • DMRSs transmitted on antenna ports 7 and 8 are mapped to the same resource elements on time-frequency.
  • DMRS on antenna ports 9-14 in the extended CP is not supported.
  • Antenna ports 7 and 8 can be distinguished by the OCC of Table 5.
  • the CSI-RS is not transmitted in the special subframe of the TDD frame.
  • transmission of CSI-RS may be required even in a special subframe of a TDD frame.
  • the CSI-RS pattern used in the existing general subframe is used in the special subframe as it is, the number of configurable CSI-RS patterns can be greatly reduced due to the GP and UpPTS areas where CSI-RS cannot be transmitted. have.
  • the number of CSI-RS patterns that can be practically applied is increased. May be limited.
  • Table 6 shows the number of CSI-RS patterns that can be used in a general subframe and a special subframe when the existing CSI-RS pattern is used as it is.
  • a general subframe using a generic CP can use 32, 16, and 8 CSI-RS patterns, respectively, depending on the number of antenna ports, while using a general CP and configuring a special subframe.
  • the special subframe which is any one of 1, 2, 6, or 7, may use only 4, 2, and 1 CSI-RS patterns, respectively, depending on the number of antenna ports.
  • a is CSI-RS antenna port ⁇ 15, 16 ⁇
  • b is CSI-RS antenna port ⁇ 17, 18 ⁇
  • c is CSI-RS antenna port ⁇ 19, 20 ⁇
  • d is CSI-RS antenna port ⁇ 19, 20 ⁇ This shows transmitting the CSI-RS.
  • A denotes DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇
  • B denotes transmission of DMRS on DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇ .
  • the shaded areas represent the GP and UpPTS areas.
  • FIG. 9 shows a CSI-RS pattern when a CSI-RS pattern used in a general subframe is used as it is in a special subframe using a general CP.
  • 9A and 9B show a CSI-RS pattern in a special subframe having a special subframe configuration of four.
  • 9C and 9D show a CSI-RS pattern in a special subframe having a special subframe configuration of 3 or 8.
  • FIG. 9A to 9D in a special subframe having a special subframe configuration of 3, 4, or 8, and using a general CP, when the number of CSI-RS antenna ports is 1 or 2, 16 CSIs are used. It can be seen that only 6 CSI-RS patterns can be used for the -RS pattern, and the number of CSI-RS antenna ports is 4, and only 3 CSI-RS patterns can be used for the number of CSI-RS antenna ports.
  • FIG. 9E shows a CSI-RS pattern in a special subframe having a special subframe configuration of 2 or 7.
  • FIG. 9F illustrates a CSI-RS pattern in a special subframe having a special subframe configuration of 1 or 6.
  • FIG. 9E and 9F in a special subframe having any one of 1, 2, 6, or 7 and using a special CP, 4 when the number of CSI-RS antenna ports is 1 or 2 It can be seen that two CSI-RS patterns can be used for two CSI-RS patterns, four CSI-RS antenna ports, and one CSI-RS pattern for eight CSI-RS antenna ports. have.
  • FIG. 9G illustrates a CSI-RS pattern in a special subframe having a special subframe configuration of 9.
  • FIG. 9H shows a CSI-RS pattern in a special subframe in which the special subframe configuration is 0 or 5.
  • FIG. 9G and 9H in a special subframe having a special subframe configuration of 0, 5, or 9, and using a general CP, there is no CSI-RS pattern that can be used.
  • FIG. 10 shows a CSI-RS pattern when a CSI-RS pattern used in a general subframe is used as it is in a special subframe using an extended CP.
  • FIG. 10A shows a CSI-RS pattern in a special subframe having a special subframe configuration of 3.
  • FIG. 10B shows a CSI-RS pattern in a special subframe having a special subframe configuration of 2 or 6.
  • FIG. 10A and 10B in a special subframe having a special subframe configuration of 2, 3, or 6, and using an extended CP, when the number of CSI-RS antenna ports is 1 or 2, 20 CSIs are used. It can be seen that only 10 CSI-RS patterns can be used for the -RS pattern and 4 CSI-RS antenna ports, and only 5 CSI-RS patterns for 8 CSI-RS antenna ports.
  • FIG. 10C illustrates a CSI-RS pattern in a special subframe having a special subframe configuration of 1 or 5.
  • FIG. 10C in a special subframe having a special subframe configuration of 1 or 5 and using an extended CP, when the number of CSI-RS antenna ports is one or two, eight CSI-RS patterns are used. It can be seen that four CSI-RS patterns can be used when the number of antenna ports is four, and only two CSI-RS patterns can be used when the number of CSI-RS antenna ports is eight.
  • FIG. 10D shows a CSI-RS pattern in a special subframe having a special subframe configuration of 7.
  • FIG. 10E illustrates a CSI-RS pattern in a special subframe having a special subframe configuration of 0 or 4.
  • FIG. 10D and 10E in a special subframe having a special subframe configuration of 0, 4, or 7 and using an extended CP, there is no CSI-RS pattern that can be used.
  • a new CSI-RS pattern is required in a special subframe instead of the CSI-RS pattern used in a general subframe. That is, the position of the OFDM symbol to which the CSI-RS is mapped in the special subframe should be changed.
  • various CSI-RS patterns may be configured.
  • the CSI-RS pattern used in an existing general subframe may be divided into four parts for convenience.
  • the first part is a CSI-RS pattern portion mapped to a first OFDM symbol and a second OFDM symbol to which a DMRS is mapped in a subframe. That is, referring to FIG. 5A, the CSI-RS configurations 0, 5, 10, and 11 of the OFDM symbols of the OFDM symbol indexes # 5 and # 6 of the first slot correspond. Alternatively, referring to FIG. 6, CSI-RS configurations 0, 1, 4, 5, 8, 9, 10, and 11 of the OFDM symbols of the OFDM symbol indexes # 4 and # 5 of the first slot are corresponding parts.
  • the second part is the CSI-RS pattern portion mapped to the third OFDM symbol and the fourth OFDM symbol to which the DMRS is mapped in the subframe. That is, referring to FIG. 5A, the CSI-RS configurations 4, 9, 18, and 19 of the OFDM symbols of the OFDM symbol indexes # 5 and # 6 of the second slot correspond to the corresponding portions. Alternatively, referring to FIG. 6, CSI-RS configurations 2, 3, 6, 7, 12, 13, 14, and 15 of the OFDM symbols of the OFDM symbol indexes # 4 and # 5 of the second slot are corresponding parts.
  • the third part is a CSI-RS pattern portion that is mapped to two consecutive OFDM symbols among OFDM symbols to which DMRSs are not mapped in a subframe. That is, referring to FIG. 5A, CSI-RS configurations 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 of the OFDM symbols of the OFDM symbol indexes # 2 and # 3 of the second slot. This is the corresponding part. Alternatively, referring to FIG. 6, CSI-RS configurations 16 to 27 of the OFDM symbols of OFDM symbol indexes # 1 and # 2 of the second slot correspond to the corresponding parts.
  • the fourth part is a CSI-RS pattern portion mapped to two non-contiguous OFDM symbols among OFDM symbols to which DMRSs are not mapped in a subframe. That is, referring to FIG. 5B, the CSI-RS configurations 20 to 31 of the OFDM symbols of the OFDM symbol indexes # 1 and # 3 of the second slot correspond.
  • the first and second parts of the CSI-RS pattern divided into four parts are mapped to the OFDM symbol to which the DMRS is mapped even in a special subframe. That is, the first part is mapped to the first OFDM symbol and the second OFDM symbol to which the DMRS is mapped in the subframe, and the second part is mapped to the third and fourth OFDM symbol to which the DMRS is mapped in the subframe.
  • the position to which the CSI-RS is mapped also moves.
  • the third part and the fourth part of the CSI-RS pattern are mapped to two OFDM symbols among OFDM symbols to which DMRSs are not mapped even in a special subframe. That is, the third part is mapped to two consecutive OFDM symbols among the OFDM symbols to which no DMRS is mapped in the subframe, and the fourth part is mapped to two non-contiguous OFDM symbols among the OFDM symbols to which the DMRS is not mapped in the subframe. .
  • 11 shows an example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 11A shows a CSI-RS pattern of a special subframe having a special subframe configuration of 4 and using a normal CP.
  • 11B illustrates a CSI-RS pattern of a special subframe having a special subframe configuration of 3 or 8 and using a normal CP.
  • first parts corresponding to CSI-RS configurations 0, 5, 10, and 11 are mapped to OFDM symbols of OFDM symbol indexes # 2 and # 3 of the first slot.
  • the second part, to which the CSI-RS configurations 4, 9, 18, and 19 correspond, is mapped to OFDM symbols of OFDM symbol indexes # 2, # 3 of the second slot.
  • the third part corresponding to CSI-RS configuration 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 corresponds to OFDM symbol indexes # 0, # 1, # 4 of the first slot.
  • OFDM symbols of # 5, # 6 and OFDM symbols of # 2 are mapped to two consecutive OFDM symbols. For example, it is mapped to OFDM symbol of # 1, # 1, OFDM symbol of slot # 1, OFDM symbol of # 1, # 5, # 6 of symbol # 1, or OFDM symbol # of second slot # 2.
  • 0 and # 1 may be mapped to OFDM symbols.
  • FIG. 11 it is assumed that a third part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of a first slot.
  • the fourth part corresponding to CSI-RS configurations 20 to 31 is mapped to OFDM symbols of OFDM symbol indexes # 4 and # 6 of the first slot.
  • the fourth part may not be configured in the special subframe as a whole of the special subframe or any one of the special subframe configurations 3, 4, or 8.
  • Equation 7 a portion corresponding to l in Equation 5 may be changed as shown in Equation 7.
  • x may be changed according to the position of the OFDM symbol to which the third part is mapped. For example, as shown in FIG. 11, when the third part is changed and mapped from the OFDM symbol of OFDM symbol indexes # 2 and # 3 of the second slot to the OFDM symbol of OFDM symbol indexes # 0 and # 1 of the first slot, x may be -2 corresponding to the difference from # 2 (or # 3) to # 0 (or # 1). In addition, it may be reflected in Table 2 and / or Equation 7 that the third part is changed and mapped from the second slot to the first slot.
  • the change and mapping from the second slot to the first slot may be reflected in Table 2 and / or Equation (7).
  • it may be reflected in Table 2 and / or Equation 7 that the fourth part is changed and mapped from the second slot to the first slot. Meanwhile, when the fourth part is not configured, the part corresponding to the CSI-RS configurations 20 to 31 in Equation 7 may be omitted.
  • 12 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 12A illustrates a CSI-RS pattern of a special subframe having a special subframe configuration of 2 or 7 and using a normal CP.
  • 12B illustrates a CSI-RS pattern of a special subframe having a special subframe configuration of 1 or 6 and using a normal CP.
  • first parts corresponding to CSI-RS configurations 0, 5, 10, and 11 are mapped to OFDM symbols of OFDM symbol indexes # 2 and # 3 of the first slot.
  • the second part to which CSI-RS configuration 4, 9, 18, and 19 correspond is mapped to OFDM symbols of OFDM symbol indexes # 5, # 6 of the first slot.
  • the third part corresponding to the CSI-RS configuration 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 corresponds to OFDM symbol indexes # 0, # 1, and second of the first slot. It is mapped to two consecutive OFDM symbols among OFDM symbols of OFDM symbol indexes # 0 and # 1 of the slot. For example, it may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot or to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the second slot. In FIG. 12, it is assumed that a third part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of a first slot.
  • the fourth part corresponding to the CSI-RS configurations 20 to 31 is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 2 of the second slot when the special subframe configuration is 2 or 7.
  • Equation 8 When the CSI-RS pattern of FIG. 12A is expressed by the equation, a part corresponding to l in Equation 5 may be changed as shown in Equation 8.
  • Equation 9 When the CSI-RS pattern of FIG. 12B is expressed by the equation, a part corresponding to l in Equation 5 may be changed as shown in Equation 9.
  • Equations 8 and 9 the mapping of the second part from the second slot to the first slot may be reflected in Tables 2 and / or Equations 8 and 9. In addition, it may be reflected in Table 2 and / or Equations 8 and 9 that the third part is changed and mapped from the first slot to the second slot.
  • FIG. 13 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 13 shows a CSI-RS pattern of a special subframe having a special subframe configuration of 9 and using a normal CP.
  • first parts corresponding to CSI-RS configurations 0, 5, 10, and 11 are mapped to OFDM symbols of OFDM symbol indexes # 2 and # 3 of the first slot.
  • the second part to which the CSI-RS configurations 4, 9, 18, and 19 correspond is not configured.
  • the third part corresponding to CSI-RS configuration 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 corresponds to OFDM symbol indexes # 0, # 1, # 4 of the first slot.
  • # 5 are mapped to two consecutive OFDM symbols among the OFDM symbols. For example, it may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot or to OFDM symbols of OFDM symbol indexes # 4 and # 5 of the first slot.
  • FIG. 13 it is assumed that a third part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of a first slot.
  • the fourth part to which the CSI-RS configurations 20 to 31 correspond is not configured.
  • Equation 10 When the CSI-RS pattern of FIG. 13 is expressed by the equation, a portion corresponding to l in Equation 5 may be changed as shown in Equation 10.
  • x may be changed according to the position of the OFDM symbol to which the third part is mapped. For example, as shown in FIG. 13, when the third part is changed and mapped from the OFDM symbol of OFDM symbol indexes # 2 and # 3 of the second slot to the OFDM symbol of OFDM symbol indexes # 0 and # 1 of the first slot, x may be -2 corresponding to the difference from # 2 (or # 3) to # 0 (or # 1). In addition, it may be reflected in Table 2 and / or Equation 7 that the third part is changed and mapped from the second slot to the first slot.
  • x is # 2 (or 2 may correspond to a difference from # 3) to # 4 (or # 5).
  • the change and mapping from the second slot to the first slot may be reflected in Table 2 and / or Equation (7).
  • 14 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention. 14 shows a CSI-RS pattern of a special subframe having a special subframe configuration of 0 or 5 and using a normal CP.
  • the symbols may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot.
  • the second part to which the CSI-RS configurations 4, 9, 18, and 19 correspond is not configured.
  • the third part to which the CSI-RS configuration 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 corresponds is not configured when the first part is configured as shown in FIG. 14B.
  • 14A when the first part is not configured as shown in FIG. 14A, the first part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot.
  • the fourth part to which the CSI-RS configurations 20 to 31 correspond is not configured.
  • Equation 11 When the CSI-RS pattern of FIG. 14A is expressed by the equation, a part corresponding to l in Equation 5 may be changed as shown in Equation 11.
  • the change of the third part from the second slot to the first slot may be reflected in Table 2 and / or Equation 11.
  • Equation 12 When the CSI-RS pattern of FIG. 14B is expressed by the equation, a part corresponding to l in Equation 5 may be changed as shown in Equation 12.
  • 15 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 15A and 15B illustrate a CSI-RS pattern of a special subframe having a special subframe configuration of 3 and using an extended CP.
  • 15C and 15D show a CSI-RS pattern of a special subframe having a special subframe configuration of 2 or 6 and using an extended CP.
  • the first part corresponding to the CSI-RS configuration 0, 1, 4, 5, 8, 9, 10, and 11 corresponds to the OFDM symbol indexes # 4 and # 5 of the first slot similarly to the general subframe. Is mapped to an OFDM symbol.
  • the second part to which the CSI-RS configuration 2, 3, 6, 7, 12, 13, 14, and 15 corresponds is not configured.
  • the third part to which the CSI-RS configurations 16 to 27 correspond is mapped to OFDM symbols of OFDM symbol indexes # 1 and # 2 of the second slot similarly to general subframes, as shown in FIGS. 15A and 15C, or FIGS. 15B and FIG.
  • the fourth part is not configured in the special subframe using the extended CP.
  • Equation 13 When the CSI-RS pattern of FIGS. 15A and 15C is expressed by Equation 15, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 13.
  • Equation 14 When the CSI-RS patterns of FIGS. 15B and 15D are expressed by Equations, portions corresponding to 1 in Equation 5 may be changed as in Equation 14.
  • Equation 14 the change of the third part from the second slot to the first slot and mapped may be reflected in Table 2 and / or Equation 14.
  • 16 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention. 16 shows a CSI-RS pattern of a special subframe having a special subframe configuration of 1 or 5 and using an extended CP.
  • the first part corresponding to the CSI-RS configuration 0, 1, 4, 5, 8, 9, 10, and 11 corresponds to the OFDM symbol indexes # 4 and # 5 of the first slot similarly to the general subframe. Is mapped to an OFDM symbol.
  • the second part to which the CSI-RS configuration 2, 3, 6, 7, 12, 13, 14, and 15 corresponds is not configured.
  • the third part to which the CSI-RS configurations 16 to 27 correspond to the OFDM symbol of the OFDM symbol # 0, # 1, # 2, # 3 of the first slot and the OFDM symbol index # 0, # 1 of the second slot It is mapped to two consecutive OFDM symbols among OFDM symbols.
  • an OFDM symbol index # 0, # 1 of the first slot is mapped to an OFDM symbol, an OFDM symbol index # 2, # 3 of a first slot, or an OFDM symbol index # of a second slot.
  • 0 and # 1 may be mapped to OFDM symbols.
  • FIG. 16 it is assumed that a third part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of a first slot.
  • the fourth part is not configured in the special subframe using the extended CP.
  • Equation 15 When the CSI-RS pattern of FIG. 16 is expressed by the equation, a portion corresponding to l in Equation 5 may be changed as shown in Equation 15.
  • x may be changed according to the position of the OFDM symbol to which the third part is mapped. For example, as shown in FIG. 16, when the third part is changed and mapped from the OFDM symbol of OFDM symbol indexes # 1 and # 2 of the second slot to the OFDM symbol of OFDM symbol indexes # 0 and # 1 of the first slot, x may be -1 corresponding to the difference from # 1 (or # 2) to # 0 (or # 1). In addition, it may be reflected in Table 3 and / or Equation 15 that the third part is changed and mapped from the second slot to the first slot.
  • x is # 2 (or It may be 1 corresponding to the difference from # 3) to # 2 (or # 3).
  • the change from the second slot to the first slot may be reflected in Table 3 and / or Equation 15 below.
  • 17 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention. 17 shows a CSI-RS pattern of a special subframe having a special subframe configuration of 7 and using an extended CP.
  • a first part corresponding to CSI-RS configurations 0, 1, 4, 5, 8, 9, 10, and 11 may not be configured as shown in FIG. 17A, or a special subframe of special subframe configuration 7 later.
  • the DMRS may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot.
  • the first part may be mapped to OFDM symbols of OFDM symbol indexes # 3 and # 4 of the first slot.
  • the second part to which the CSI-RS configuration 2, 3, 6, 7, 12, 13, 14, and 15 corresponds is not configured.
  • the third part to which CSI-RS configurations 16 to 27 correspond is mapped to two consecutive OFDM symbols among OFDM symbols of OFDM symbol indexes # 0, # 1, # 2, # 3, and # 4 of the first slot. For example, it may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot or to OFDM symbols of OFDM symbol indexes # 3 and # 4 of the first slot.
  • FIG. 17A it is assumed that a third part is mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of a first slot.
  • the third part may be mapped to remaining OFDM symbols except for the OFDM symbol to which the first part is mapped. It may not be configured as shown in Figure 17b.
  • the fourth part is not configured in the special subframe using the extended CP.
  • Equation 17A When the CSI-RS pattern of FIG. 17A is expressed by Equation 17, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 16.
  • Equation 16 When the CSI-RS pattern of FIG. 17A is expressed by Equation 17, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 16.
  • Equation 17B When the CSI-RS pattern of FIG. 17B is expressed by Equation 17, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 17.
  • FIG. 17B When the CSI-RS pattern of FIG. 17B is expressed by Equation 17, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 17.
  • FIG. 17B When the CSI-RS pattern of FIG. 17B is expressed by Equation 17, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 17.
  • x may be changed according to the position of the OFDM symbol to which the third part is mapped. For example, when the third part is mapped to the OFDM symbol of the OFDM symbol index # 1, # 2 of the second slot from the OFDM symbol of the second slot as shown in Figure 17a, x may be -1 corresponding to the difference from # 1 (or # 2) to # 0 (or # 1). In addition, it may be reflected in Table 3 and / or Equation 16 and Equation 17 that the third part is changed and mapped from the second slot to the first slot.
  • the third part is mapped from an OFDM symbol of OFDM symbol index # 1, # 2 of the second slot to an OFDM symbol of OFDM symbol index # 3, # 4 of the first slot, x is # 1 (or 2 may correspond to the difference from # 2) to # 3 (or # 4).
  • the change and mapping from the second slot to the first slot may be reflected in Table 3 and / or Equation 16 and Equation 17.
  • the part corresponding to the CSI-RS configuration 16 to 27 in Equation 17 may be omitted.
  • 18 shows another example of a CSI-RS pattern configured according to a reference signal transmission method according to an embodiment of the present invention.
  • 18 shows a CSI-RS pattern of a special subframe in which a special subframe configuration is 0 or 4 and uses an extended CP.
  • a first part to which CSI-RS configurations 0, 1, 4, 5, 8, 9, 10, and 11 correspond is not configured as shown in FIG. 18A, or later, a special subframe configuration of 0 or 4 may be special.
  • the DMRS When the DMRS is configured in the subframe, it may be mapped to OFDM symbols of OFDM symbol indexes # 0 and # 1 of the first slot as shown in FIG. 18B.
  • the second part to which the CSI-RS configuration 2, 3, 6, 7, 12, 13, 14, and 15 corresponds is not configured.
  • the third part to which the CSI-RS configurations 16 to 27 correspond is not configured when the first part is configured as shown in FIG. 18B, and is an OFDM symbol of the first slot when the first part is not configured as shown in FIG. 18A. It is mapped to the OFDM symbol at indexes # 0 and # 1.
  • the fourth part is not configured in the special subframe using the extended CP.
  • Equation 18 When the CSI-RS pattern of FIG. 18A is expressed by Equation 18, a part corresponding to 1 in Equation 5 may be changed as shown in Equation 18.
  • Equation 18 the change of the third part from the second slot to the first slot and mapped may be reflected in Table 3 and / or Equation 18.
  • Equation 19 When the CSI-RS pattern of FIG. 18B is expressed by the equation, a part corresponding to l in Equation 5 may be changed as shown in Equation 19.
  • Equation 5 the portion corresponding to l in Equation 5 is replaced by Equations 7 to 19 according to the special subframe configuration and CP for the CSI-RS pattern for the special subframe. It can be expressed by one equation including both the portion corresponding to l in 5 (corresponding to a general subframe) and the case of Equations 7 to 19 (corresponding to each special subframe configuration of a special subframe) It may be.
  • the above-mentioned third part in case of general CP, CSI-RS configuration 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16, and 17 are corresponding parts and extended CP.
  • Equation 20 includes only the change of the part for the third part among the parts corresponding to l in Equation 5. Therefore, although not included in Equation 20, parts for the first part, the second part, and the fourth part may also be included according to each special subframe configuration of the special subframe with reference to Equations 7 to 19. There will be.
  • resource elements and slot numbers to which CSI-RSs are mapped may be changed for each CSI-RS configuration in Tables 2 and 3, which are not equations. That is, according to the special subframe configuration, Table 2 may be changed for the special subframe using the general CP and Table 3 for the special subframe using the extended CP.
  • FIG. 19 shows an embodiment of a method of transmitting a reference signal according to an embodiment of the present invention.
  • step S100 the base station generates a CSI-RS sequence.
  • the reference signal sequence may be generated by equations (1) through (3).
  • the base station maps the generated CSI-RS sequence to the resource element using the modulation symbol.
  • the modulation symbol may be generated by Equation 4.
  • the CSI-RS sequence may be mapped to a resource element according to the CSI-RS pattern described in FIGS. 11 to 18 according to various embodiments of the present invention.
  • any one of Equations 7 to 20 may be used according to a special subframe configuration and CP.
  • step S120 the base station transmits an OFDM signal generated based on the CSI-RS sequence mapped to the resource element to the terminal.
  • the terminal receives an OFDM signal, demodulates it and performs channel estimation.
  • the procedure for demodulating an OFDM signal may be the reverse of the procedure for generating an OFDM signal.
  • the terminal de-maps the received OFDM signal to resource elements to detect a modulation symbol and detect a CSI-RS sequence from the modulation symbol.
  • the terminal performs channel estimation by comparing the detected reference signal sequence with the CSI-RS sequence generated by the terminal itself.
  • 20 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a transmitter 820, and a receiver 830.
  • the processor 810 includes a reference signal generator 811 and a resource mapper 812.
  • the reference signal generator 811 is configured to generate a CSI-RS sequence.
  • the reference signal sequence may be generated by equations (1) through (3).
  • the resource mapper 812 is configured to map CSI-RS sequences generated using modulation symbols to resource elements.
  • the modulation symbol may be generated by Equation 4.
  • the CSI-RS sequence may be mapped to a resource element according to the CSI-RS pattern described in FIGS. 11 to 18 according to various embodiments of the present invention.
  • any one of Equations 7 to 20 may be used according to a special subframe configuration and CP.
  • the transmitter 820 is configured to transmit the OFDM signal generated based on the CSI-RS sequence mapped to the resource element to the terminal 900.
  • the receiver 830 is configured to receive an uplink signal from the terminal 900.
  • the terminal 900 includes a channel estimator 910, a transmitter 920, and a receiver 930.
  • the receiver 930 is configured to receive an OFDM signal from the base station 800.
  • the channel estimator 910 is configured to demodulate the received OFDM signal to perform channel estimation.
  • the procedure for demodulating an OFDM signal may be the reverse of the procedure for generating an OFDM signal.
  • the channel estimator 910 detects a modulation symbol by demapping the received OFDM signal to resource elements, and detects a CSI-RS sequence from the modulation symbol.
  • the channel estimator 910 performs channel estimation by comparing the detected reference signal sequence with the CSI-RS sequence generated by the UE itself.
  • the transmitter 920 is configured to transmit an uplink signal to the base station 800.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치가 제공된다. 기지국(BS; base station)은 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 생성하고, 생성된 CSI-RS 시퀀스를 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑한다. 기지국은 상기 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 단말로 전송한다. 이때 상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정된다.

Description

무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치에 관한 것이다.
UMTS(universal mobile telecommunications system)는 GSM(global system for mobile communications) 및 GPRS(general packet radio services) 등의 유럽 시스템(European system)들을 기반으로 WCDMA(wideband code division multiple access)에서 동작하는 3세대(3rd generation) 비동기(asynchronous) 이동 통신 시스템이다. 4세대(4th generation) 이동 통신 시스템으로 LTE(long-term evolution) 및 LTE-A(LTE-advanced)가 UMTS를 표준화한 3GPP(3rd generation partnership project)에 의해서 논의 중이다.
종래의 다중 반송파(multiple carrier) 시스템에서 사용하는 요소 반송파(CC; component carrier)는 물리 계층의 범용성이 중시되어, 제어 영역의 중복 및 공통 신호 오버헤드가 존재한다. 따라서 데이터 신호를 위한 자원이 줄어들어 스펙트럼 효율(spectrum efficiency) 면에서 불필요한 손실이 존재하는 등의 문제점이 존재한다. 이에 따라, 다중 반송파 시스템을 효율적으로 운용하기 위하여 다중 반송파 시스템을 구성하는 새로운 반송파 타입(NCT; new carrier type)의 도입이 요구된다. NCT에서는 성능의 저하가 없거나 최소화하는 범위 내에서 종래 반송파 타입(LCT; legacy carrier type)에 비하여 하향링크 제어 채널(downlink control channel) 또는 채널 추정(channel estimation)을 위한 참조 신호(RS; reference signal)가 제거되거나 줄어들 수 있다. 이는 최대한의 데이터 전송 효율을 획득하기 위함이다. 상기 기존의 종래 반송파 타입(LCT)를 NCT와 구별하여 역호환성 반송파 타입(BCCT; backward compatible carrier type)이라고 부르기도 한다.
NCT는 비단독(non-standalone) NCT 및 단독(standalone) NCT를 포함할 수 있다. 비단독 NCT는 단독의 셀 형태로 존재할 수 없고 1차 셀(PCell; primary serving cell)이 존재하는 경우에 2차 셀(SCell; secondary serving cell)의 형태로 존재할 수 있는 NCT이다. 반면, 단독 NCT는 단독의 셀 형태로 존재할 수 있는 NCT이다. 예를 들어, 단독 NCT는 PCell의 형태로 존재할 수 있다. 단독 NCT와 비단독 NCT에서는 셀 특정 참조 신호(CRS; cell-specific RS)가 전송되지 않을 수 있다. 이에 따라 CRS를 기반으로 하는 제어 채널인 기존의 PDCCH(physical downlink control channel), PHICH(physical HARQ indicator channel), PCFICH(physical control format indicator channel)이 제거되거나 다른 형태의 채널로 대체될 수 있다.
도 1은 고전력 노드와 저전력 노드가 배치된 통신 시스템의 일 예를 나타낸다.
3GPP LTE-A 등 차세대 통신 시스템에서는, 도 1과 같이 고전력 노드(high-power node)에 기반한 매크로 셀(macro cell, F1)뿐만 아니라, 저전력 노들(low-power node)에 기반한 소형 셀(small cell, F2)을 통해 실내(indoor) 및 실외(outdoor)에 무선 통신 서비스를 제공하기 위한 연구가 진행 중에 있다.
소형 셀은 효율적인 배치(deployment)와 운영(operation)으로 스펙트럼 효율(spectrum efficiency)을 증대하는 것을 목적으로 한다. 소형 셀은 매크로 셀의 커버리지(coverage)인 주파수 대역 F1과, 매크로 셀의 커버리지 이외의 주파수 대역 F2에서 모두 고려될 수 있다. 또한, 소형 셀은 실내 환경(도 1에서는 직육면체 내로 도시)과 실외 환경(도 1에서는 직육면체 밖으로 도시)에서 모두 제공될 수 있다. 또한, 매크로 셀과 소형 셀 사이, 및/또는 소형 셀들 사이에서는 이상적(ideal)이거나 비이상적인(non-ideal) 백홀망(backhaul network)이 지원될 수 있다. 그리고 소형 셀은 저밀도의 배치(sparse deployment) 환경 및/또는 고밀도의 배치(dense deployment) 환경에서 모두 제공될 수 있다.
표 1은 3GPP LTE의 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 구성을 나타낸다.
표 1
Figure PCTKR2014004188-appb-T000001
표 1을 참조하면, TDD 프레임 내 특별 서브프레임의 구성은 일반(normal) CP(cyclic prefix)에서는 9개, 확장(extended) CP에서는 7개로 구성된다. 일반 CP의 경우, 구성 0, 1, 2, 3, 4, 5, 6, 7, 8 및 9는 각각 하나의 특별 서브프레임의 14개의 OFDM(orthogonal frequency division multiplexing) 심볼 중 (DwPTS, guard period, UpPTS)를 위한 OFDM 심볼의 개수가 각각 (3, 10, 1), (9, 4, 1), (10, 3, 1), (11, 2, 1), (12, 1, 1), (3, 9, 2), (9, 3, 2), (10, 2, 2), (11, 1, 2), (6, 6, 2)임을 지시한다. 확장 CP의 경우, 구성 0, 1, 2, 3, 4, 5, 6 및 7은 각각 하나의 특별 서브프레임의 12개의 OFDM 심볼 중 (DwPTS, guard period, UpPTS)를 위한 OFDM 심볼의 개수가 각각 (3, 8, 1), (8, 3, 1), (9, 2, 1), (10, 1, 1), (3, 7, 2), (8, 2, 2), (9, 1, 2), (5, 5, 2)임을 지시한다.
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 무선 통신 시스템에서는 다중 경로 시간 지연으로 인하여 페이딩이 발생하게 된다. 페이딩으로 인한 급격한 환경 변화에 의하여 생기는 신호의 왜곡을 보상하여 전송 신호를 복원하는 과정을 채널 추정이라고 한다. 또한 단말이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state)를 측정할 필요가 있다. 채널 추정 또는 채널 상태 측정을 위해서 일반적으로 송수신기가 상호 간에 알고 있는 참조 신호를 이용하여 채널 추정을 수행하게 된다.
채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal)는 LTE-A 단말의 PDSCH(physical downlink shared channel)에 대한 채널 추정에 사용된다. CSI-RS는 주파수 영역 또는 시간 영역에서 비교적 드물게(sparse) 배치되며, 일반 서브프레임 또는 MBSFN(multimedia broadcast and multicast single frequency network) 서브프레임의 데이터 영역에서는 생략(punctured)될 수 있다. CSI의 추정을 통해 필요한 경우에 CQI(channel quality indicator), PMI(precoding matrix indicator) 및 RI(rank indicator) 등이 단말로부터 보고될 수 있다.
현재 3GPP LTE-A에서 CSI-RS는 TDD 프레임의 특별 서브프레임에서는 전송되지 않는다. 그러나 향후 NCT 또는 소형 셀 환경을 고려할 경우, TDD 프레임의 특별 서브프레임에서도 CSI-RS의 전송이 필요할 수 있다. 따라서, TDD 프레임의 특별 서브프레임에서 CSI-RS를 자원 요소에 맵핑하는 방법 및 전송하는 방법이 요구된다.
본 발명의 기술적 과제는 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치를 제공하는 데에 있다. 본 발명은 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)에서 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal)을 전송하는 방법 및 장치를 제공한다. 또한, 본 발명은 TDD 프레임 내의 특별 서브프레임에서, DwPTS를 위한 OFDM(orthogonal frequency division multiplexing) 심볼 개수를 기반으로 변경되는 복조 참조 신호(DMRS; demodulation reference signal)의 위치를 고려하여, CSI-RS를 자원 요소에 맵핑하는 방법 및 장치를 제공한다.
무선 통신 시스템에서 기지국(BS; base station)에 의한 참조 신호를 전송하는 방법이 제공된다. 상기 방법은 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 생성하는 단계, 상기 생성된 CSI-RS 시퀀스를 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑하는 단계, 및 상기 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 단말로 전송하는 것을 포함하는 단계를 포함하며, 상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정된다.
다른 양태에 있어서, 무선 통신 시스템에서 기지국(BS; base station)이 제공된다. 상기 기지국은 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 생성하도록 구성되는 참조 신호 생성부, 상기 생성된 CSI-RS 시퀀스를 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑하도록 구성되는 자원 맵퍼, 및 상기 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 단말로 전송하도록 구성되는 전송부를 포함하며, 상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정된다.
또 다른 양태에 있어서, 무선 통신 시스템에서 단말(MS; mobile station)에 의한 채널 추정을 수행하는 방법이 제공된다. 상기 방법은 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 수신하는 단계, 및 상기 수신한 OFDM 신호를 복조하여 채널 추정을 수행하는 단계를 포함하며, 상기 CSI-RS 시퀀스는 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑되며, 상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정된다.
또 다른 양태에 있어서, 무선 통신 시스템에서 단말(MS; mobile station)이 제공된다. 상기 단말은 채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 수신하도록 구성되는 수신부, 및 상기 수신한 OFDM 신호를 복조하여 채널 추정을 수행하도록 구성되는 채널 추정부를 포함하며, 상기 CSI-RS 시퀀스는 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑되며, 상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정된다.
TDD 프레임 내의 특별 서브프레임에서 CSI-RS를 효율적으로 전송할 수 있다.
도 1은 고전력 노드와 저전력 노드가 배치된 통신 시스템의 일 예를 나타낸다.
도 2는 본 발명의 실시예가 적용될 수 있는 무선 통신 시스템을 나타낸다.
도 3은 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 4는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 5a 내지 도 5b는 일반 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 예들을 나타낸다.
도 6은 확장 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.
도 7a 내지 도 7b는 일반 CP에서 DMRS의 맵핑을 나타낸다.
도 8은 확장 CP에서 DMRS의 맵핑을 나타낸다.
도 9a 내지 도 9h는 일반 서브프레임에서 사용하는 CSI-RS 패턴을 일반 CP를 사용하는 특별 서브프레임에서 그대로 사용하는 경우의 CSI-RS 패턴들을 나타낸다.
도 10a 내지 도 10e는 일반 서브프레임에서 사용하는 CSI-RS 패턴을 확장 CP를 사용하는 특별 서브프레임에서 그대로 사용하는 경우의 CSI-RS 패턴을 나타낸다.
도 11a 내지 도 11b는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 예들를 나타낸다.
도 12a 내지 도 12b는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 다른 예들을 나타낸다.
도 13은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다.
도 14a 내지 도 14b는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예들를 나타낸다.
도 15a 내지 도 15d는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예들를 나타낸다.
도 16은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다.
도 17a 내지 도 17b는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예들을 나타낸다.
도 18a 내지 도 18b은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예들을 나타낸다.
도 19는 본 발명의 일 실시예에 따른 참조 신호 전송 방법의 일 실시예를 나타낸다.
도 20은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
이하, 본 명세서에서는 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 2는 본 발명의 실시예가 적용될 수 있는 무선 통신 시스템을 나타낸다.
도 2를 참조하면, 무선 통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선 통신 시스템(10)은 적어도 하나의 기지국(11; BS; base station)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역에 대해 통신 서비스를 제공하며, 사이트(site)라고 불릴 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들(15a, 15b, 15c)로 나누어질 수 있으며, 상기 섹터는 각기 서로 다른 셀 아이디를 가질 수가 있다.
단말(12; MS; mobile station)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNodeB (evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point), 펨토 기지국(femto eNB), 가내 기지국(HeNB; home eNodeB), 릴레이(relay), 원격 무선 헤드(RRH; remote radio head)등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가 셀(mega cell), 매크로 셀(macro cell), 마이크로 셀(micro cell), 피코 셀(pico cell), 펨토 셀(femto cell) 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
단말은 통상적으로 하나의 셀에 속하는데, 단말이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 단말을 기준으로 상대적으로 결정된다.
이 기술은 하향링크(downlink) 또는 상향링크(uplink)에 사용될 수 있다. 일반적으로 하향링크는 기지국(11)에서 단말(12)로의 통신을 의미하며, 상향링크는 단말(12)에서 기지국(11)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분이고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분이고, 수신기는 기지국(11)의 일부분일 수 있다.
무선 통신 시스템은 MIMO(multiple-input multiple-output) 시스템, MISO(multiple-input single-output) 시스템, SISO(single-input single-output) 시스템 및 SIMO(single-input multiple-output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
도 3은 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.2.0 (2008-03)을 참조할 수 있다.
도 3을 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. TTI(transmission time interval)는 데이터 전송을 위한 기본 스케줄링 단위이다. 3GPP LTE에서 하나의 TTI는 하나의 서브프레임이 전송되는 데에 걸리는 시간과 같을 수 있다. 하나의 무선 프레임의 길이는 10 ms이고, 하나의 서브프레임의 길이는 1 ms이고, 하나의 슬롯의 길이는 0.5 ms일 수 있다.
하나의 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 복수의 부반송파를 포함한다. OFDM 심볼은 3GPP LTE가 하향링크에서 OFDMA를 사용하므로 하나의 심볼 구간(symbol period)을 표현하기 위한 것으로, 다중 접속 방식에 따라 다른 명칭으로 불리울 수 있다. 예를 들어, 상향링크 다중 접속 방식으로 SC-FDMA가 사용될 경우 SC-FDMA 심볼이라고 할 수 있다. 자원블록(RB; resource block)는 자원 할당 단위로 하나의 슬롯에서 복수의 연속하는 부반송파를 포함한다. 상기 무선 프레임의 구조는 일 예에 불과한 것이다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수, 또는 슬롯에 포함되는 OFDM 심볼의 개수는 다양하게 변경될 수 있다.
3GPP LTE는 일반(normal) CP(cyclic prefix)에서 하나의 슬롯은 7개의 OFDM 심볼을 포함하고, 확장(extended) CP에서 하나의 슬롯은 6개의 OFDM 심볼을 포함하는 것으로 정의하고 있다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 일반 CP에서 7개의 OFDM 심볼을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심볼들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심볼들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(physical downlink shared channel)가 할당되는 데이터 영역이 된다.
도 4는 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 NRB개의 자원 블록을 포함한다. 하향링크 슬롯에 포함되는 자원 블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, 3GPP LTE에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 하나의 자원 블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심볼 인덱스이다.
여기서, 하나의 자원 블록은 시간 영역에서 0.5ms로 하나의 슬롯에 해당하며, 주파수 영역에서 180Khz로 각 서브캐리어 간의 주파수 간격(frequency spacing)이 15Khz일 경우 총 12개의 서브캐리어에 해당한다. 도 3에서 하나의 자원 블록을 시간 영역에서 7개의 OFDM 심볼, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원 블록 내 OFDM 심볼의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심볼의 수와 부반송파의 수는 CP의 길이, 주파수 간격 등에 따라 다양하게 변경될 수 있다. 예를 들어, 일반 CP의 경우 OFDM 심볼의 수는 7이고, 확장된 CP의 경우 OFDM 심볼의 수는 6이다.
하나의 OFDM 심볼에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
또한 시간 축으로 하나의 서브프레임 내에서 물리적으로 할당된 2개의 자원 블록을 물리 자원 블록 쌍 (Physical Resource Block pair, PRB-pair)라고 부를 수 있다.
참조 신호(RS; reference signal)는 일반적으로 시퀀스로 전송된다. 참조 신호 시퀀스는 상관 특성(correlation property)가 우수한 시퀀스가 사용될 수 있다. 한 예로, 참조 신호 시퀀스는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스를 사용할 수 있다. CAZAC 시퀀스에는 ZC 기반 시퀀스(Zadoff-Chu based sequence) 등이 있으며, 상기 ZC 기반 시퀀스는 용도에 따라 순환 확장(cyclic extension) 되거나 절단(truncation)되어 사용 될 수도 있다. 또 다른 예로, 참조 신호 시퀀스는 PN(pseudo-random) 시퀀스를 사용할 수 있다. PN 시퀀스에는 m-시퀀스, 컴퓨터를 통해 생성된 PN 시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등이 있다.
하향링크 참조 신호는 셀 특정 참조 신호(CRS; cell-specific RS), MBSFN(multimedia broadcast and multicast single frequency network) 참조 신호, 단말 특정 참조 신호(UE-specific RS), 위치 참조 신호(PRS; positioning RS) 및 채널 상태 정보(CSI; channel state information) 참조 신호(CSI-RS)로 구분될 수 있다. CRS는 셀 내 모든 단말에게 전송되는 참조 신호로, CRS는 CQI(channel quality indicator) 피드백에 대한 채널 측정과 PDSCH에 대한 채널 추정에 사용될 수 있다. MBSFN 참조 신호는 MBSFN 전송을 위해 할당된 서브프레임에서 전송될 수 있다. 단말 특정 참조 신호는 셀 내 특정 단말 또는 특정 단말 그룹이 수신하는 참조 신호로, 복조 참조 신호(DMRS; demodulation RS)로 불릴 수 있다. DMRS는 특정 단말 또는 특정 단말 그룹이 데이터 복조에 주로 사용된다. PRS는 단말의 위치 추정에 사용될 수 있다. CSI-RS는 LTE-A 단말의 PDSCH에 대한 채널 추정에 사용된다.
CSI-RS에 대해서 설명한다.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통하여 전송될 수 있다. 이때 사용되는 안테나 포트는 각각 p=15, p=15, 16, p=15,...,18 및 p=15,...,22일 수 있다. CSI RS는 서브캐리어 간의 주파수 간격 Δf가 15kHz인 경우에 대해서만 정의될 수 있다. CSI-RS는 3GPP TS 36.211 V10.1.0 (2011-03)을 참조할 수 있다.
CSI-RS 시퀀스 rl,ns(m)은 수학식 1과 같이 정의될 수 있다.
수학식 1
Figure PCTKR2014004188-appb-M000001
수학식 1에서 ns는 무선 프레임 내의 슬롯 번호, l은 슬롯 내의 OFDM 심볼 번호이다. 수학식 1을 참조하면, m번째 CSI-RS 시퀀스는 의사 랜덤 시퀀스(pseudo-random sequence) c(i)를 통해 각각 실수부와 허수부를 구성한 후, 정규화(normalize)하여 생성된다. c(i)는 길이-31의 골드(Gold) 시퀀스에 의해 정의될 수 있다. c(i)는 이진 의사 랜덤 시퀀스로 0 또는 1의 값을 가질 수 있다. 따라서, 수학식 1에서 보는 바와 같이 1-2·c(i)은 1 또는 -1의 값을 나타낼 수 있으며, 실수부에서는 짝수에 해당하는 2m번째 시퀀스를, 허수부에서는 홀수에 해당하는 (2m+1)번째 시퀀스를 사용한다. 길이 MPN의 출력 시퀀스 c(n) (n=0,1,...,MPN-1)은 수학식 2와 같이 정의될 수 있다.
수학식 2
Figure PCTKR2014004188-appb-M000002
수학식 2에서 NC=1600이며, 제1 m-시퀀스 x1(i)는 x1(0)=1, x1(n)=0, (n=1,2,...,30)로 초기화될 수 있다. 제2 m-시퀀스 x2(i)의 초기화는 시퀀스가 적용되는 채널이나 신호에서 사용되는 시스템 파라미터 값에 따라 서로 다른 값으로 초기화가 될 수 있으며, 이는
Figure PCTKR2014004188-appb-I000001
로 표현될 수 있다.
의사 랜덤 시퀀스 c(i)는 각 OFDM 심볼의 시작에서 수학식 3에 의해서 초기화될 수 있다.
수학식 3
Figure PCTKR2014004188-appb-M000003
수학식 3에서, NCP는 일반 CP에서는 1, 확장 CP에서는 0의 값을 가진다. NID CSI는 0에서 503까지의 정수 중 어느 하나의 값을 가질 수 있다. NID CSI는 상위 계층으로부터 시그널링 되는 경우 CSI-RS을 위한 가상 셀 아이디(VCID; virtual cell ID)일 수 있다. NID CSI는 상위 계층으로부터의 시그널링이 없다면 물리 셀 아이디(PCI; physical cell ID)와 같을 수 있다.
CSI-RS의 전송을 위하여 구성된 서브프레임에서, CSI-RS 시퀀스 rl,ns(m)은 수학식 4에 따라 안테나 포트 p 상에서 참조 심볼로 사용되는 복소 변조 심볼(complex-valued modulation symbol) ak,l (p)에 맵핑될 수 있다.
수학식 4
Figure PCTKR2014004188-appb-M000004
수학식 4를 참조하면, ak,l (p)는 p번째 안테나 포트의 k번째 부반송파 및 l번째 OFDM 심볼에 맵핑되는 복소 변조 심볼이다. ak,l (p)는 CSI-RS 시퀀스 rl,ns(m') 및 직교 시퀀스 wl''가 곱하여져 맵핑된다.
수학식 4의 각 파라미터는 수학식 5에 의해서 정의될 수 있다.
수학식 5
Figure PCTKR2014004188-appb-M000005
수학식 5를 참조하면, (k',l') 및 ns에 대한 필요조건은 후술하는 표 2 및 표 3에 의해서 주어질 수 있다.
하나의 셀에서 복수의 CSI-RS 구성(configuration)이 사용될 수 있다. CSI-RS 구성은 각 셀 (또는 전송 포인트(TP; transmission point))의 단말에게 CSI-RS가 전송되는 패턴을 지시하는 비영전력(non-zero transmission power) CSI-RS 구성과, 인접 셀(또는 TP)의 CSI-RS 전송에 대응되는 PDSCH 영역을 뮤팅(muting)하기 위한 영전력(zero transmission power) CSI-RS 구성으로 구분될 수 있다. 비영전력 CSI-RS를 가정하는 단말에 대하여 CSI 프로세스 당 0개 또는 1개의 CSI-RS 구성이, 영전력 CSI-RS를 가정하는 단말에 대하여 0개 또는 여러 개의 CSI RS 구성이 사용될 수 있다.
해당 셀의 각 단말에게 하나 이상의 비영전력 CSI-RS 구성(이하, CSI-RS 구성)에 대한 정보가 전송될 수 있다. CSI-RS 구성에 대한 정보는, 비영전력 CSI-RS를 전송하는 안테나 포트(이하, CSI-RS 안테나 포트)의 개수가 1, 2, 4 및 8 중 어느 하나인지를 지시하는 2비트 정보와, CSI-RS 안테나 포트의 개수 별로 구성 가능한 CSI-RS 패턴을 지시하는 5비트 정보를 포함할 수 있다.
표 2는 일반 CP에서 CSI-RS 구성과 수학식 5의 (k',l'), 즉 CSI-RS 패턴의 맵핑을 나타내며, 표 3은 확장 CP에서 CSI-RS 구성과 수학식 5의 (k',l'), 즉 CSI-RS 패턴의 맵핑을 나타낸다.
표 2
Figure PCTKR2014004188-appb-T000002
표 3
Figure PCTKR2014004188-appb-T000003
표 2를 참조하면, 일반 CP의 경우 안테나 포트의 개수가 1개 또는 2개일 때 는 총 32가지 CSI-RS 구성, 안테나 포트의 개수가 4개일 때는 총 16가지 CSI-RS 구성, 안테나 포트의 개수가 8개일 때는 총 8가지의 CSI-RS 구성이 존재한다. 표 3을 참조하면, 확장 CP의 경우 안테나 포트의 개수가 1개 또는 2개일 때는 총 28가지 CSI-RS 구성, 안테나 포토의 개수가 4개일 때는 총 14가지 CSI-RS 구성, 안테나 포트의 개수가 8개일 때는 총 7가지의 CSI-RS 구성이 존재한다.
표 2 및 표 3을 참조하면, CSI-RS 구성에 대하여 CSI-RS 안테나 포트 개수 별로 CSI-RS가 맵핑되는 특정한 하나의 자원 요소의 위치가 지시될 수 있다. 즉, 상기 특정한 하나의 자원 요소의 위치를 기반으로 수학식 5에 의하여 CSI-RS가 맵핑되는 나머지 자원 요소들의 위치가 결정될 수 있으며, 이에 따라 CSI-RS 안테나 포트의 개수 별로 구성 가능한 전체 CSI-RS 패턴을 알 수 있다.
예를 들어, CSI-RS 안테나 포트의 개수가 8개이며 CSI-RS 구성의 값이 2(=00010)인 경우, 표 2에 의하여 이에 대응되는 (k',l')=(9,2) 및 ns mod 2=1이 지시된다. 따라서, CSI-RS 전송을 위하여 구성된 서브프레임 내에서, CSI-RS가 두 번째 슬롯의 부반송파 인덱스가 9이고 OFDM 심볼 인덱스가 2인 자원 요소에 맵핑됨을 알 수 있다. 표 2에 의하여 지시되는 자원 요소는 첫 번째 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 자원 요소의 위치 중 하나일 수 있다. 첫 번째 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 나머지 자원 요소의 위치 및 나머지 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 자원 요소의 위치는 수학식 5에 의하여 표 2에 의하여 지시되는 자원 요소와 일정 간격을 두고 위치할 수 있다.
도 5는 일반 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.
도 5a는 FDD+TDD의 경우, 도 5b는 TDD의 경우에 CSI-RS 패턴을 나타낸다. 도 5에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {15, 16}, b는 CSI-RS 안테나 포트 {17, 18}, c는 CSI-RS 안테나 포트 {19, 20}, d는 CSI-RS 안테나 포트 {19, 20} 상으로 CSI-RS를 전송하는 것을 나타낸다. A는 DMRS 안테나 포트 {7, 8, 11, 13}, B는 DMRS 안테나 포트 {9, 10, 12, 14} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 5에서 CRS 안테나 포트의 개수는 2개이며, 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다.
도 5의 CSI-RS 패턴은 CRS 안테나 포트의 개수가 1개 또는 4개이거나, CRS를 전송하지 않는 경우에도 적용될 수 있다. 또한, 도 5의 CSI-RS 패턴은 제어 영역이 서브프레임의 처음 1개 내지 4개에 OFDM 심볼에 할당되거나, 제어 영역이 할당되지 않는 경우에도 적용될 수 있다. 또한, 도 5에서 DMRS는 2개의 CDM(code division multiplexing) 그룹(A: DMRS 안테나 포트 {7, 8, 11, 13}, B: DMRS 안테나 포트 {9, 10, 12, 14})을 사용하는 것을 가정하였으나, 도 5의 CSI-RS 패턴은 1개의 CDM 그룹을 사용하는 경우에도 적용될 수 있다.
도 6은 확장 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.
도 5와 마찬가지로, 도 6에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {15, 16}, b는 CSI-RS 안테나 포트 {17, 18}, c는 CSI-RS 안테나 포트 {19, 20}, d는 CSI-RS 안테나 포트 {19, 20} 상으로 CSI-RS를 전송하는 것을 나타낸다. E는 DMRS 안테나 포트 {7, 8} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 6에서 CRS 안테나 포트의 개수는 2개이며, 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다.
도 6의 CSI-RS 패턴은 CRS 안테나 포트의 개수가 1개 또는 4개이거나, CRS를 전송하지 않는 경우에도 적용될 수 있다. 또한, 도 6의 CSI-RS 패턴은 제어 영역이 서브프레임의 처음 1개 내지 4개에 OFDM 심볼에 할당되거나, 제어 영역이 할당되지 않는 경우에도 적용될 수 있다.
이하에서, 도 5 및 도 6에서 적용된 CRS, 제어 영역 및 DMRS에 관련한 사항은 후술하는 본 발명의 일 실시예들에 동일하게 적용될 수 있다.
영전력 CSI-RS 구성은 CSI-RS 안테나 포트의 개수를 4개로 하여 구성되는 16비트의 비트맵(bitmap)이다. 상위 계층에 의하여 구성되는 16비트의 비트맵에서 1로 설정된 비트에 대하여, 단말은 표 2 및 표 3에서 CSI-RS 안테나 포트의 개수가 4개인 경우에 대응되는 자원 요소를 영전력 CSI-RS로 설정할 수 있다. 보다 구체적으로 16비트의 비트맵의 MSB(most significant bit)가 표 2 및 표 3에서 CSI-RS 안테나 포트의 개수가 4개인 경우에서 첫 번째 CSI-RS 구성 인덱스에 대응된다. 16비트의 비트맵의 이어지는 비트들은 표 2 및 표 3에서 CSI-RS 안테나 포트의 개수가 4개인 경우에서 CSI-RS 구성 인덱스가 증가하는 방향으로 대응된다. 영전력 CSI-RS로 설정된 자원 요소에서는 인접 셀 또는 TP의 CSI-RS 전송에 대응되는 PDSCH를 뮤 팅하여, 영전력 CSI-RS로 설정되지 않은 자원 요소에서는 PDSCH를 전송할 수 있다.
단말은 표 2 및 표 3에서 ns mod 2의 조건을 만족하는 하향링크 슬롯에서만 CSI-RS를 전송할 수 있다. 또한, 단말은 TDD 프레임의 특별 서브프레임(special subframe), CSI RS의 전송이 동기화 신호(synchronization signal), PBCH(physical broadcast channel), 시스템 정보 블록 타입 1(SystemInformationBlockType1)과 충돌하는 서브프레임 또는 페이징 메시지가 전송되는 서브프레임에서는 CSI-RS를 전송하지 않는다. 또한, S={15}, S={15, 16}, S={17, 18}, S={19, 20} 또는 S={21, 22}인 집합 S에서, 하나의 집합 S 내의 안테나 포트 상으로 CSI-RS의 전송에 사용되는 자원 요소는 동일한 슬롯 내에서 PDSCH나 다른 집합 S 내의 안테나 포트 상으로 CSI-RS의 전송에 사용되지 않는다.
표 4는 CSI-RS가 전송되는 서브프레임 구성의 일 예를 나타낸다.
표 4
CSI-RS-SubframeConfigICSI-RS CSI-RS 주기TCSI-RS (서브프레임) CSI-RS 서브프레임 오프셋ΔCSI-RS (subframes)
0 - 4 5 ICSI-RS
5 - 14 10 ICSI-RS-5
15 - 34 20 ICSI-RS-15
35 - 74 40 ICSI-RS-35
75 - 154 80 ICSI-RS-75
표 4를 참조하면, CSI-RS 서브프레임 구성(ICSI-RS)에 따라 CSI-RS가 전송되는 서브프레임의 주기(TCSI-RS) 및 오프셋(ΔCSI-RS)가 결정될 수 있다. CSI-RS 서브프레임 구성은 비영전력 CSI-RS 및 영전력 CSI-RS에 대하여 분리되어(separately) 구성될 수 있다. 한편, CSI-RS를 전송하는 서브프레임은 수학식 6을 만족할 필요가 있다.
수학식 6
Figure PCTKR2014004188-appb-M000006
CSI-RS를 위하여 다음과 같은 파라미터들이 RRC(radio resource control) 등의 상위 계층으로부터 시그널링 될 수 있다.
1) antennaPortsCount: 2비트의 길이를 가지며, 표 2나 표 3에서 CSI-RS 안테나 포트의 개수를 지시한다.
2) resouceConfig: 5비트의 길이를 가지며, 표 2나 표 3에서 CSI-RS 구성 및 이에 대응되는 자원 요소, 즉, CSI-RS 패턴을 지시한다.
3) subframeConfig: 8비트의 길이를 가지며, 표 4에서 CSI-RS 서브프레임 구성을 지시한다.
4) Pc: CSI-RS 전송 전력과 관련된 값을 지시한다.
이외에도 CoMP(coordinated multi point) 전송 환경을 고려할 경우, 수학식 3의 NID CSI가 상위 계층으로부터 시그널링 될 수 있다.
DMRS에 대해서 설명한다.
DMRS는 PDSCH의 전송을 위하여 지원되며, 안테나 포트 p=5, p=7, p=8 또는 p=7,8,...,v+6 상으로 전송될 수 있다. 이때 v는 PDSCH의 전송을 위하여 사용되는 레이어의 개수이다. 즉, PDSCH의 전송을 위하여 하나의 레이어를 사용하는 경우, DMRS는 안테나 포트 7 또는 8 상으로 전송될 수 있다. 또한, 레이어의 개수에 따라 최대 8개의 DMRS 안테나 포트가 사용될 수 있다. DMRS는 PDSCH 전송이 대응되는 안테나 포트와 관련되는 경우에만 PDSCH 복조를 위하여 존재하며 유효할 수 있다. DMRS는 대응되는 PDSCH가 맵핑된 RB 상에서만 전송될 수 있다.
도 7은 일반 CP에서 DMRS의 맵핑을 나타낸다.
도 7에서 Rx는 안테나 포트 x 상으로 DMRS를 전송하는 것을 나타낸다. 예를 들어, R7은 안테나 포트 7 상으로 DMRS를 전송하는 것을 나타낸다. 주파수 축으로 하나의 물리 자원 블록(PRB; physical resource block)과 시간 축으로 하나의 서브프레임으로 정의되는 PRB 쌍(pair)에서는 DMRS 안테나 포트 당 총 12개의 자원 요소들이 사용될 수 있다.
도 7a는 안테나 포트 7, 8에 대한 DMRS의 맵핑을, 도 7b는 안테나 포트 9, 10에 대한 DMRS의 맵핑을 나타낸다. 도 7을 참조하면, 안테나 포트 7, 8, 11, 13 상으로 전송되는 DMRS는 시간-주파수 상에서 동일한 자원 요소들에 맵핑되며, 이를 CDM 그룹 1이라 할 수 있다. 즉, R7, R8, R11, R13은 모두 동일한 위치의 자원 요소에 맵핑될 수 있다. 도 7에서는 R11과 R13은 도시되지 않았으나, R11, R13이 모두 R7 및 R8과 동일한 위치의 자원 요소에 맵핑될 수 있다. 또한 안테나 포트 9, 10, 12, 14 상으로 전송되는 DMRS도 시간-주파수 상에서 동일한 자원 요소들에 맵핑되며 이를 CDM 그룹 2이라 할 수 있다. 즉, R9, R10, R12, R14는 모두 동일한 위치의 자원 요소에 맵핑된다. 도 7에서는 R12와 R14는 도시되지 않았으나, R12, R14가 모두 R9 및 R10과 동일한 위치의 자원 요소에 맵핑될 수 있다.
즉, CDM 그룹 1과 CDM 그룹 2은 시간-주파수 상에서 서로 다른 자원 요소의 위치로 구분될 수 있다. 이는 FDM(frequency division multiplexing) 및 TDM(time division multiplexing) 기반의 구분이라 할 수 있다. 또한, 시간-주파수 상에서 동일한 자원 요소들에 맵핑되는 하나의 CDM 그룹 내의 안테나 포트들은 표 5의 직교 커버 코드(OCC; orthogonal cover code)와 같은 직교 시퀀스(orthogonal sequence)에 의해서 구분될 수 있다. 이를 CDM 기반의 구분이라 할 수 있다.
표 5
OCC (길이=4) [a b c d]
OCC A [+1 +1 +1 +1]
OCC B [+1 -1 +1 -1]
OCC C [+1 +1 -1 -1]
OCC D [+1 -1 -1 +1]
표 5를 참조하면, CDM 그룹 1 내의 안테나 포트 7, 8, 11, 13은 각각 OCC A, B, C, D로 구분될 수 있으며, CDM 그룹 2 내의 안테나 포트 9, 10, 12, 14도 OCC A, B, C, D로 구분될 수 있다.
표 5와 같이 길이가 4인 OCC는 시간 축으로 하나의 서브프레임 내에서 4개의 OFDM 심볼에 걸쳐 적용될 수 있다. 예를 들어, 일반 CP를 사용하는 일반 서브프레임에서, OCC가 적용되는 4개의 OFDM 심볼은 도 7a의 3번째 줄의 서브프레임과 같이 6번째, 7번째, 13번째 및 14번째 OFDM 심볼(제1 슬롯의 OFDM 심볼 인덱스 #5, #6 및 제2 슬롯의 OFDM 심볼 인덱스 #5, #6)일 수 있다. 또는, 일반 CP를 사용하며 특별 서브프레임 구성이 3, 4 또는 8 중 어느 하나인 특별 서브프레임에서, OCC가 적용되는 4개의 OFDM 심볼은 도 7a의 2번째 줄의 서브프레임과 같이 3번째, 4번째, 10번째 및 11번째 OFDM 심볼(제1 슬롯의 OFDM 심볼 인덱스 #2, #3 및 제2 슬롯의 OFDM 심볼 인덱스 #2, #3)일 수 있다. 또는, 일반 CP를 사용하며 특별 서브프레임 구성이 1, 2, 6 또는 7 중 어느 하나인 특별 서브프레임에서, OCC가 적용되는 4개의 OFDM 심볼은 도 7a의 1번째 줄의 서브프레임과 같이 3번째, 4번째, 6번째 및 7번째 OFDM 심볼(제1 슬롯의 OFDM 심볼 인덱스 #2, #3, #5, #6)일 수 있다.
길이가 2인 OCC는 시간 축으로 하나의 서브프레임 내에서 2개의 OFDM 심볼에 걸쳐 적용될 수 있다. 예를 들어, 일반 CP를 사용하며 특별 서브프레임 구성이 9인 특별 서브프레임에서, OCC가 적용되는 2개의 OFDM 심볼은 3번째 및 4번째 OFDM 심볼(제1 슬롯의 OFDM 심볼 인덱스 #2, #3)일 수 있다.
도 8은 확장 CP에서 DMRS의 맵핑을 나타낸다.
도 8에서 Rx는 안테나 포트 x 상으로 DMRS를 전송하는 것을 나타낸다. 예를 들어, R7은 안테나 포트 7 상으로 DMRS를 전송하는 것을 나타낸다. 주파수 축으로 하나의 PRB과 시간 축으로 하나의 서브프레임으로 정의되는 PRB 쌍에서는 DMRS 안테나 포트 당 총 16개의 자원 요소들이 사용될 수 있다. 도 8을 참조하면, 안테나 포트 7, 8 상으로 전송되는 DMRS는 시간-주파수 상에서 동일한 자원 요소들에 맵핑된다. 확장 CP에서 안테나 포트 9 내지 14 상의 DMRS는 지원되지 않는다. 안테나 포트 7과 8은 표 5의 OCC에 의해서 구분될 수 있다.
앞에서 설명한 바와 같이, CSI-RS는 TDD 프레임의 특별 서브프레임에서는 전송되지 않는다. 그러나 향후 새로운 반송파 타입(NCT; new carrier type) 또는 소형 셀(small cell) 환경을 고려할 경우, TDD 프레임의 특별 서브프레임에서도 CSI-RS의 전송이 필요할 수 있다. 그러나 기존의 일반 서브프레임에서 사용하는 CSI-RS 패턴을 특별 서브프레임에서 그대로 사용할 경우, CSI-RS를 전송할 수 없는 GP 및 UpPTS 영역으로 인하여 구성할 수 있는 CSI-RS 패턴의 개수가 크게 감소할 수 있다. 즉 NCT나 소형 셀 환경을 고려하여 특별 서브프레임에서도 CSI-RS를 전송한다 하더라도, 기존의 일반 서브프레임에서 사용하는 CSI-RS 패턴을 그대로 사용할 경우 실질적으로 적용할 수 있는 CSI-RS 패턴의 개수가 제한될 수 있다.
표 6은 기존의 CSI-RS 패턴을 그대로 사용하는 경우 일반 서브프레임과 특수 서브프레임에서 사용할 수 있는 CSI-RS 패턴의 개수를 나타낸다.
표 6
Figure PCTKR2014004188-appb-T000004
표 6을 참조하면, 일반 CP를 사용하는 일반 서브프레임은 안테나 포트의 개수에 따라 각각 32개, 16개, 8개의 CSI-RS 패턴을 사용할 수 있는 반면에, 일반 CP를 사용하며 특별 서브프레임 구성이 1, 2, 6 또는 7 중 어느 하나인 특별 서브프레임은 안테나 포트 개수에 따라 각각 4개, 2개, 1개의 CSI-RS 패턴만을 사용할 수 있다.
이하의 설명에서, 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {15, 16}, b는 CSI-RS 안테나 포트 {17, 18}, c는 CSI-RS 안테나 포트 {19, 20}, d는 CSI-RS 안테나 포트 {19, 20} 상으로 CSI-RS를 전송하는 것을 나타낸다. A는 DMRS 안테나 포트 {7, 8, 11, 13}, B는 DMRS 안테나 포트 {9, 10, 12, 14} 상으로 DMRS를 전송하는 것을 나타낸다. 음영 부분은 GP와 UpPTS 영역을 나타낸다.
도 9는 일반 서브프레임에서 사용하는 CSI-RS 패턴을 일반 CP를 사용하는 특별 서브프레임에서 그대로 사용하는 경우의 CSI-RS 패턴을 나타낸다.
도 9a 및 도 9b는 특별 서브프레임 구성이 4인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9c 및 도 9d는 특별 서브프레임 구성이 3 또는 8인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9a 내지 도 9d를 참조하면, 특별 서브프레임 구성이 3, 4 또는 8 중 어느 하나이며 일반 CP를 사용하는 특별 서브프레임에서는, CSI-RS 안테나 포트의 개수가 1개 또는 2개일 때는 16개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 4개일 때는 6개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 8개일 때는 3개의 CSI-RS 패턴만을 사용할 수 있음을 알 수 있다.
도 9e는 특별 서브프레임 구성이 2 또는 7인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9f는 특별 서브프레임 구성이 1 또는 6인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9e 및 도 9f를 참조하면, 특별 서브프레임 구성이 1, 2, 6 또는 7 중 어느 하나이며 일반 CP를 사용하는 특별 서브프레임에서는, CSI-RS 안테나 포트의 개수가 1개 또는 2개일 때는 4개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 4개일 때는 2개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 8개일 때는 1개의 CSI-RS 패턴만을 사용할 수 있음을 알 수 있다.
도 9g는 특별 서브프레임 구성이 9인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9h는 특별 서브프레임 구성이 0 또는 5인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 9g 및 도 9h를 참조하면, 특별 서브프레임 구성이 0, 5 또는 9 중 어느 하나이며 일반 CP를 사용하는 특별 서브프레임에서는, 사용할 수 있는 CSI-RS 패턴이 없다.
도 10은 일반 서브프레임에서 사용하는 CSI-RS 패턴을 확장 CP를 사용하는 특별 서브프레임에서 그대로 사용하는 경우의 CSI-RS 패턴을 나타낸다.
도 10a는 특별 서브프레임 구성이 3인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 10b는 특별 서브프레임 구성이 2 또는 6인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 10a 및 도 10b를 참조하면, 특별 서브프레임 구성이 2, 3 또는 6 중 어느 하나이며 확장 CP를 사용하는 특별 서브프레임에서는, CSI-RS 안테나 포트의 개수가 1개 또는 2개일 때는 20개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 4개일 때는 10개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 8개일 때는 5개의 CSI-RS 패턴만을 사용할 수 있음을 알 수 있다.
도 10c는 특별 서브프레임 구성이 1 또는 5인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 10c를 참조하면, 특별 서브프레임 구성이 1 또는 5이며 확장 CP를 사용하는 특별 서브프레임에서는, CSI-RS 안테나 포트의 개수가 1개 또는 2개일 때는 8개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 4개일 때는 4개의 CSI-RS 패턴을, CSI-RS 안테나 포트의 개수가 8개일 때는 2개의 CSI-RS 패턴만을 사용할 수 있음을 알 수 있다.
도 10d는 특별 서브프레임 구성이 7인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 10e는 특별 서브프레임 구성이 0 또는 4인 특별 서브프레임에서의 CSI-RS 패턴을 나타낸다. 도 10d 및 도 10e를 참조하면, 특별 서브프레임 구성이 0, 4 또는 7 중 어느 하나이며 확장 CP를 사용하는 특별 서브프레임에서는, 사용할 수 있는 CSI-RS 패턴이 없다.
이와 같은 문제점을 해결하기 위하여, 특별 서브프레임에서는 일반 서브프레임에서 사용하는 CSI-RS 패턴이 아닌 새로운 CSI-RS 패턴이 요구된다. 즉, 특별 서브프레임에서 CSI-RS가 맵핑되는 OFDM 심볼의 위치가 변경되어야 한다.
이하, 실시예를 통하여 본 발명의 일 실시예에 따른 참조 신호 맵핑 방법 및/또는 참조 신호 전송 방법을 설명한다. 본 발명의 다양한 실시예에 따라 다양한 CSI-RS 패턴이 구성될 수 있다.
먼저, 특별 서브프레임을 위한 CSI-RS 패턴을 구성하기 위하여, 편의상 기존의 일반 서브프레임에서 사용하는 CSI-RS 패턴을 4개의 파트로 나눌 수 있다.
*1) 제1 파트는 서브프레임에서 DMRS가 맵핑되는 1번째 OFDM 심볼 및 2번째 OFDM 심볼에 맵핑되는 CSI-RS 패턴 부분이다. 즉, 도 5a를 참조하면 제1 슬롯의 OFDM 심볼 인덱스 #5, #6의 OFDM 심볼의 CSI-RS 구성 0, 5, 10 및 11이 대응되는 부분이다. 또는, 도 6을 참조하면, 제1 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼의 CSI-RS 구성 0, 1, 4, 5, 8, 9, 10 및 11이 대응되는 부분이다.
2) 제2 파트는 서브프레임에서 DMRS가 맵핑되는 3번째 OFDM 심볼 및 4번째 OFDM 심볼에 맵핑되는 CSI-RS 패턴 부분이다. 즉, 도 5a를 참조하면 제2 슬롯의 OFDM 심볼 인덱스 #5, #6의 OFDM 심볼의 CSI-RS 구성 4, 9, 18 및 19이 대응되는 부분이다. 또는, 도 6을 참조하면, 제2 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼의 CSI-RS 구성 2, 3, 6, 7, 12, 13, 14 및 15이 대응되는 부분이다.
3) 제3 파트는 서브프레임에서 DMRS가 맵핑되지 않는 OFDM 심볼 중 연속한 2개의 OFDM에 맵핑되는 CSI-RS 패턴 부분이다. 즉, 도 5a를 참조하면 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼의 CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 부분이다. 또는, 도 6을 참조하면, 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼의 CSI-RS 구성 16 내지 27이 대응되는 부분이다.
4) 제4 파트는 서브프레임에서 DMRS가 맵핑되지 않는 OFDM 심볼 중 연속하지 않은 2개의 OFDM에 맵핑되는 CSI-RS 패턴 부분이다. 즉, 도 5b를 참조하면 제2 슬롯의 OFDM 심볼 인덱스 #1, #3의 OFDM 심볼의 CSI-RS 구성 20 내지 31이 대응되는 부분이다.
이와 같이 4개의 파트로 나눠진 CSI-RS 패턴 중 제1 파트와 제2 파트는 특별 서브프레임에서도 DMRS가 맵핑된 OFDM 심볼에 맵핑된다. 즉, 제1 파트는 서브프레임에서 DMRS가 맵핑되는 1번째 OFDM 심볼 및 2번째 OFDM 심볼에 맵핑되며, 제2 파트는 서브프레임에서 DMRS가 맵핑되는 3번째 OFDM 심볼 및 4번째 OFDM 심볼에 맵핑된다. 다만, 특별 서브프레임에서 DMRS가 맵핑되는 OFDM 심볼의 위치가 이동함에 따라, CSI-RS가 맵핑되는 위치도 이동한다. CSI-RS 패턴 중 제3 파트와 제4 파트는 특별 서브프레임에서도 DMRS가 맵핑되지 않는 OFDM 심볼들 중에서 2개의 OFDM 심볼들에 맵핑된다. 즉, 제3 파트는 서브프레임에서 DMRS가 맵핑되지 않는 OFDM 심볼 중 연속한 2개의 OFDM에 맵핑되며, 제4 파트는 서브프레임에서 DMRS가 맵핑되지 않는 OFDM 심볼 중 연속하지 않은 2개의 OFDM에 맵핑된다.
도 11은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 일 예를 나타낸다. 도 11a는 특별 서브프레임 구성이 4이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다. 도 11b는 특별 서브프레임 구성이 3 또는 8이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 11을 참조하면, CSI-RS 구성 0, 5, 10 및 11이 대응되는 제1 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에 맵핑된다. CSI-RS 구성 4, 9, 18 및 19이 대응되는 제2 파트는, 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에 맵핑된다.
CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 제3 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1, #4, #5, #6의 OFDM 심볼 및 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼 중 연속한 2개의 OFDM 심볼에 맵핑된다. 예를 들어, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되거나, 제1 슬롯의 OFDM 심볼 인덱스 #5, #6의 OFDM 심볼에 맵핑되거나, 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. 도 11에서는 제3 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되는 경우를 가정한다.
CSI-RS 구성 20 내지 31이 대응되는 제4 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #4, #6의 OFDM 심볼에 맵핑된다. 또는, 특별 서브프레임 전체나 특별 서브프레임 구성 3, 4 또는 8 중 어느 하나인 특별 서브프레임에서, 제4 파트는 구성되지 않을 수 있다.
도 11의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 7과 같이 변경될 수 있다.
수학식 7
Figure PCTKR2014004188-appb-M000007
수학식 7에서 x는 제3 파트가 맵핑되는 OFDM 심볼의 위치에 따라 변경될 수 있다. 예를 들어, 도 11과 같이 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #2(또는 #3)에서 #0(또는 #1)로의 차이에 해당하는 -2일 수 있다. 또한, 추가적으로 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 7에 반영될 수 있다. 만약, 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #5, #6의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #2(또는 #3)에서 #5(또는 #6)로의 차이에 해당하는 3일 수 있다. 또한, 추가적으로 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 7에 반영될 수 있다. 또한, 제4 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 7에 반영될 수 있다. 한편, 제4 파트가 구성되지 않는 경우, 수학식 7에서 CSI-RS 구성 20 내지 31에 대응되는 부분은 생략될 수 있다.
도 12는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 12a는 특별 서브프레임 구성이 2 또는 7이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다. 도 12b는 특별 서브프레임 구성이 1 또는 6이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 12를 참조하면, CSI-RS 구성 0, 5, 10 및 11이 대응되는 제1 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에 맵핑된다. CSI-RS 구성 4, 9, 18 및 19이 대응되는 제2 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #5, #6의 OFDM 심볼에 맵핑된다.
CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 제3 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1 및 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼 중 연속한 2개의 OFDM 심볼에 맵핑된다. 예를 들어, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되거나, 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. 도 12에서는 제3 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되는 경우를 가정한다.
CSI-RS 구성 20 내지 31이 대응되는 제4 파트는, 특별 서브프레임 구성이 2 또는 7의 경우 제2 슬롯의 OFDM 심볼 인덱스 #0, #2의 OFDM 심볼에 맵핑된다. 또는, 특별 서브프레임 전체나 특별 서브프레임 구성 2 또는 7인 특별 서브프레임에서, 제4 파트는 구성되지 않을 수 있다. 특별 서브프레임 구성이 1 또는 6의 경우 제4 파트는 구성되지 않는다.
도 12a의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 8과 같이 변경될 수 있다.
수학식 8
Figure PCTKR2014004188-appb-M000008
도 12b의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 9와 같이 변경될 수 있다.
수학식 9
Figure PCTKR2014004188-appb-M000009
수학식 8 및 9에서 제2 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 8 및 9에 반영될 수 있다. 또한, 제3 파트가 제1 슬롯에서 제2 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 8 및 9에 반영될 수 있다.
도 13은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 13은 특별 서브프레임 구성이 9이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 13을 참조하면, CSI-RS 구성 0, 5, 10 및 11이 대응되는 제1 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에 맵핑된다. CSI-RS 구성 4, 9, 18 및 19이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 제3 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1, #4, #5의 OFDM 심볼 중 연속한 2개의 OFDM 심볼에 맵핑된다. 예를 들어, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되거나, 제1 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼에 맵핑될 수 있다. 도 13에서는 제3 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되는 경우를 가정한다. CSI-RS 구성 20 내지 31이 대응되는 제4 파트는 구성되지 않는다.
도 13의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 10과 같이 변경될 수 있다.
수학식 10
Figure PCTKR2014004188-appb-M000010
수학식 10에서 x는 제3 파트가 맵핑되는 OFDM 심볼의 위치에 따라 변경될 수 있다. 예를 들어, 도 13과 같이 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #2(또는 #3)에서 #0(또는 #1)로의 차이에 해당하는 -2일 수 있다. 또한, 추가적으로 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 7에 반영될 수 있다. 만약, 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #2(또는 #3)에서 #4(또는 #5)로의 차이에 해당하는 2일 수 있다. 또한, 추가적으로 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 7에 반영될 수 있다.
도 14는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 14는 특별 서브프레임 구성이 0 또는 5이며 일반 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 14를 참조하면, CSI-RS 구성 0, 5, 10 및 11이 대응되는 제1 파트는 도 14a와 같이 구성되지 않거나, 차후에 특별 서브프레임 구성 0 또는 5의 특별 서브프레임에서 DMRS가 구성되는 경우 도 14b와 같이 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. CSI-RS 구성 4, 9, 18 및 19이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 제3 파트는, 도 14b와 같이 제1 파트가 구성되는 경우에는 구성되지 않고, 도 14a와 같이 제1 파트가 구성되지 않는 경우에는 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑된다. CSI-RS 구성 20 내지 31이 대응되는 제4 파트는 구성되지 않는다.
도 14a의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 11과 같이 변경될 수 있다.
수학식 11
Figure PCTKR2014004188-appb-M000011
수학식 11에서 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 11에 반영될 수 있다.
도 14b의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 12와 같이 변경될 수 있다.
수학식 12
Figure PCTKR2014004188-appb-M000012
도 15는 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 15a 및 도 15b는 특별 서브프레임 구성이 3이며 확장 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다. 도 15c 및 도 15d는 특별 서브프레임 구성이 2 또는 6이며 확장 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 15를 참조하면, CSI-RS 구성 0, 1, 4, 5, 8, 9, 10, 11이 대응되는 제1 파트는, 일반 서브프레임과 마찬가지로 제1 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼에 맵핑된다. CSI-RS 구성 2, 3, 6, 7, 12, 13, 14, 15이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 16 내지 27이 대응되는 제3 파트는, 도 15a 및 도 15c와 같이 일반 서브프레임과 마찬가지로 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼에 맵핑되거나, 도 15b 및 도 15c와 같이 다른 특별 서브프레임 구성들과의 통일성을 위하여 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. 제4 파트는 확장 CP를 사용하는 특별 서브프레임에서 구성되지 않는다.
도 15a 및 도 15c의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 13과 같이 변경될 수 있다.
수학식 13
Figure PCTKR2014004188-appb-M000013
도 15b 및 도 15d의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 14와 같이 변경될 수 있다.
수학식 14
Figure PCTKR2014004188-appb-M000014
수학식 14에서 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 2 및/또는 수학식 14에 반영될 수 있다.
도 16은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 16은 특별 서브프레임 구성이 1 또는 5이며 확장 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 16을 참조하면, CSI-RS 구성 0, 1, 4, 5, 8, 9, 10, 11이 대응되는 제1 파트는, 일반 서브프레임과 마찬가지로 제1 슬롯의 OFDM 심볼 인덱스 #4, #5의 OFDM 심볼에 맵핑된다. CSI-RS 구성 2, 3, 6, 7, 12, 13, 14, 15이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 16 내지 27이 대응되는 제3 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1, #2, #3의 OFDM 심볼 및 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼 중 연속한 2개의 OFDM 심볼에 맵핑된다. 예를 들어, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되거나, 제1 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼에 맵핑되거나, 제2 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. 도 16에서는 제3 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되는 경우를 가정한다. 제4 파트는 확장 CP를 사용하는 특별 서브프레임에서 구성되지 않는다.
도 16의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 15와 같이 변경될 수 있다.
수학식 15
Figure PCTKR2014004188-appb-M000015
수학식 15에서 x는 제3 파트가 맵핑되는 OFDM 심볼의 위치에 따라 변경될 수 있다. 예를 들어, 도 16과 같이 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #1(또는 #2)에서 #0(또는 #1)로의 차이에 해당하는 -1일 수 있다. 또한, 추가적으로 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 3 및/또는 수학식 15에 반영될 수 있다. 만약, 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #2, #3의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #2(또는 #3)에서 #2(또는 #3)로의 차이에 해당하는 1일 수 있다. 또한, 추가적으로 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 3 및/또는 수학식 15에 반영될 수 있다.
도 17은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 17은 특별 서브프레임 구성이 7이며 확장 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 17을 참조하면, CSI-RS 구성 0, 1, 4, 5, 8, 9, 10, 11이 대응되는 제1 파트는 도 17a와 같이 구성되지 않거나, 차후에 특별 서브프레임 구성 7의 특별 서브프레임에서 DMRS가 구성되는 경우 도 17b와 같이 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. 또는, 제1 파트는 제1 슬롯의 OFDM 심볼 인덱스 #3, #4의 OFDM 심볼에 맵핑될 수 있다. CSI-RS 구성 2, 3, 6, 7, 12, 13, 14, 15이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 16 내지 27이 대응되는 제3 파트는, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1, #2, #3, #4의 OFDM 심볼 중 연속한 2개의 OFDM 심볼에 맵핑된다. 예를 들어, 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되거나, 제1 슬롯의 OFDM 심볼 인덱스 #3, #4의 OFDM 심볼에 맵핑될 수 있다. 도 17a에서는 제3 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑되는 경우를 가정한다. 단, 제1 파트가 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑된 경우에는, 제3 파트는 제1 파트가 맵핑된 OFDM 심볼을 제외한 나머지 OFDM 심볼에 맵핑될 수 있으며, 도 17b와 같이 구성되지 않을 수도 있다. 제4 파트는 확장 CP를 사용하는 특별 서브프레임에서 구성되지 않는다.
도 17a의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 16과 같이 변경될 수 있다.
수학식 16
Figure PCTKR2014004188-appb-M000016
도 17b의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 17과 같이 변경될 수 있다.
수학식 17
Figure PCTKR2014004188-appb-M000017
수학식 16 및 수학식 17에서 x는 제3 파트가 맵핑되는 OFDM 심볼의 위치에 따라 변경될 수 있다. 예를 들어, 도 17a와 같이 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #1(또는 #2)에서 #0(또는 #1)로의 차이에 해당하는 -1일 수 있다. 또한, 추가적으로 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 3 및/또는 수학식 16 및 수학식 17에 반영될 수 있다. 만약, 제3 파트가 제2 슬롯의 OFDM 심볼 인덱스 #1, #2의 OFDM 심볼에서 제1 슬롯의 OFDM 심볼 인덱스 #3, #4의 OFDM 심볼로 변경되어 맵핑될 경우, x는 #1(또는 #2)에서 #3(또는 #4)로의 차이에 해당하는 2일 수 있다. 또한, 추가적으로 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 3 및/또는 수학식 16 및 수학식 17에 반영될 수 있다. 한편, 제3 파트가 구성되지 않는 경우, 수학식 17에서 CSI-RS 구성 16 내지 27에 대응되는 부분은 생략될 수 있다.
도 18은 본 발명의 일 실시예에 따른 참조 신호 전송 방법에 따라 구성되는 CSI-RS 패턴의 또 다른 예를 나타낸다. 도 18은 특별 서브프레임 구성이 0 또는 4이며 확장 CP를 사용하는 특별 서브프레임의 CSI-RS 패턴을 나타낸다.
도 18을 참조하면, CSI-RS 구성 0, 1, 4, 5, 8, 9, 10, 11이 대응되는 제1 파트는 도 18a와 같이 구성되지 않거나, 차후에 특별 서브프레임 구성 0 또는 4의 특별 서브프레임에서 DMRS가 구성되는 경우 도 18b와 같이 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑될 수 있다. CSI-RS 구성 2, 3, 6, 7, 12, 13, 14, 15이 대응되는 제2 파트는 구성되지 않는다.
CSI-RS 구성 16 내지 27이 대응되는 제3 파트는, 도 18b와 같이 제1 파트가 구성되는 경우에는 구성되지 않고, 도 18a와 같이 제1 파트가 구성되지 않는 경우에는 제1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼에 맵핑된다. 제4 파트는 확장 CP를 사용하는 특별 서브프레임에서 구성되지 않는다.
도 18a의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 18과 같이 변경될 수 있다.
수학식 18
Figure PCTKR2014004188-appb-M000018
수학식 18에서 제3 파트가 제2 슬롯에서 제1 슬롯으로 변경되어 맵핑되는 것이 표 3 및/또는 수학식 18에 반영될 수 있다.
도 18b의 CSI-RS 패턴을 수학식으로 표현하면, 수학식 5의 l에 대응되는 부분이 수학식 19와 같이 변경될 수 있다.
수학식 19
Figure PCTKR2014004188-appb-M000019
이상의 실시예에서 특별 서브프레임을 위한 CSI-RS 패턴을 위하여 수학식 5에서 l에 대응되는 부분이 특별 서브프레임 구성 및 CP에 따라 수학식 7 내지 수학식 19로 대체되는 것으로 설명하였으나, 기존 수학식 5에서 l에 대응되는 부분(일반 서브프레임일 때에 해당) 및 수학식 7 내지 수학식 19의 경우(특별 서브프레임의 각 특별 서브프레임 구성일 때에 해당)를 모두 포함하여 하나의 수학식으로 표현될 수도 있다. 예를 들어 앞서 언급한 제3 파트(일반 CP일 경우 CSI-RS 구성 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 16 및 17이 대응되는 부분, 확장 CP일 경우 CSI-RS 구성 16 내지 27이 대응되는 부분)가 특별 서브프레임의 모든 특별 서브프레임 구성에 대해 제 1 슬롯의 OFDM 심볼 인덱스 #0, #1의 OFDM 심볼로 변경되어 맵핑될 경우 상기 하나의 수학식은 다음의 수학식 20으로 표현될 수 있을 것이다. 여기서 아래 수학식 20은, 수학식 5에서 l에 대응되는 부분 중 제3 파트에 대한 부분의 변경만을 포함하였다. 따라서, 수학식 20에서는 포함 되어 있지 않지만, 제1 파트, 제2 파트 및 제4 파트에 대한 부분 역시, 수학식 7 내지 수학식 19를 참고하여 특별 서브프레임의 각 특별 서브프레임 구성에 따라 포함될 수 있을 것이다.
수학식 20
Figure PCTKR2014004188-appb-M000020
또한, 수학식이 아닌 표 2 및 표 3에서 각 CSI-RS 구성에 대하여 CSI-RS가 맵핑되는 자원 요소 및 슬롯 번호가 변경될 수 있다. 즉, 특별 서브프레임 구성에 따라 일반 CP를 사용하는 특별 서브프레임의 경우 표 2를, 확장 CP를 사용하는 특별 서브프레임의 경우 표 3을 변경할 수 있다.
도 19는 본 발명의 일 실시예에 따른 참조 신호 전송 방법의 일 실시예를 나타낸다.
도 19를 참조하면, 단계 S100에서 기지국은 CSI-RS 시퀀스를 생성한다. 참조 신호 시퀀스는 수학식 1 내지 수학식 3에 의하여 생성될 수 있다.
단계 S110에서 기지국은 변조 심볼을 이용하여 생성된 CSI-RS 시퀀스를 자원 요소에 맵핑한다. 변조 심볼은 수학식 4에 의하여 생성될 수 있다. CSI-RS 시퀀스는 본 발명의 다양한 실시예에 따라 도 11 내지 도 18에 기술된 CSI-RS 패턴에 따라 자원 요소에 맵핑될 수 있다. CSI-RS 시퀀스가 자원 요소에 맵핑될 때 특별 서브프레임 구성 및 CP에 따라 수학식 7 내지 수학식 20 중 어느 하나가 사용될 수 있다.
단계 S120에서 기지국은 자원 요소에 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM 신호를 단말로 전송한다.
단계 S130에서 단말은 OFDM 신호를 수신하고, 이를 복조하여 채널 추정을 수행한다. OFDM 신호를 복조하는 절차는 OFDM 신호를 생성하는 절차의 역순일 수 있다. 예를 들어, 단말은 수신된 OFDM 신호를 자원 요소에 디맵핑(de-mapping)하여 변조 심볼을 검출하고, 변조 심볼로부터 CSI-RS 시퀀스를 검출한다. 단말은 검출한 참조 신호 시퀀스와 단말 자신이 생성한 CSI-RS 시퀀스를 비교함으로써 채널 추정을 수행한다.
도 20은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810), 전송부(820) 및 수신부(830)을 포함한다. 프로세서(810)는 참조 신호 생성부(811) 및 자원 맵퍼(812)를 포함한다.
참조 신호 생성부(811)는 CSI-RS 시퀀스를 생성하도록 구성된다. 참조 신호 시퀀스는 수학식 1 내지 수학식 3에 의하여 생성될 수 있다.
자원 맵퍼(812)는 변조 심볼을 이용하여 생성된 CSI-RS 시퀀스를 자원 요소에 맵핑하도록 구성된다. 변조 심볼은 수학식 4에 의하여 생성될 수 있다. CSI-RS 시퀀스는 본 발명의 다양한 실시예에 따라 도 11 내지 도 18에 기술된 CSI-RS 패턴에 따라 자원 요소에 맵핑될 수 있다. CSI-RS 시퀀스가 자원 요소에 맵핑될 때 수특별 서브프레임 구성 및 CP에 따라 수학식 7 내지 수학식 20 중 어느 하나가 사용될 수 있다.
전송부(820)는 자원 요소에 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM 신호를 단말(900)로 전송하도록 구성된다.
수신부(830)는 상향링크 신호를 단말(900)로부터 수신하도록 구성된다.
단말(900)은 채널 추정부(910), 전송부(920) 및 수신부(930)를 포함한다.
수신부(930)는 기지국(800)으로부터 OFDM 신호를 수신하도록 구성된다.
채널 추정부(910)는 수신한 OFDM 신호를 복조하여 채널 추정을 수행하도록 구성된다. OFDM 신호를 복조하는 절차는 OFDM 신호를 생성하는 절차의 역순일 수 있다. 예를 들어, 채널 추정부(910)는 수신된 OFDM 신호를 자원 요소에 디맵핑(de-mapping)하여 변조 심볼을 검출하고, 변조 심볼로부터 CSI-RS 시퀀스를 검출한다. 채널 추정부(910)는 검출한 참조 신호 시퀀스와 단말 자신이 생성한 CSI-RS 시퀀스를 비교함으로써 채널 추정을 수행한다.
전송부(920)는 상향링크 신호를 기지국(800)으로 전송하도록 구성된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 무선 통신 시스템에서 기지국(BS; base station)에 의한 참조 신호를 전송하는 방법에 있어서,
    채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 생성하는 단계;
    상기 생성된 CSI-RS 시퀀스를 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑하는 단계; 및
    상기 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 단말로 전송하는 것을 포함하는 단계를 포함하며,
    상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정되는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 CSI-RS 패턴은 복조 참조 신호(DMRS; demodulation reference signal)가 맵핑된 첫 번째 OFDM 심볼 및 두 번째 OFDM 심볼에 구성되는 제1 파트를 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서,
    상기 특별 서브프레임이 일반(normal) CP를 사용하는 경우, 상기 제1 파트는 CSI RS 구성 0, 5, 10 및 11에 대응되는 것을 특징으로 하는 방법.
  4. 제 2 항에 있어서,
    상기 특별 서브프레임이 확장(extended) CP를 사용하는 경우, 상기 제1 파트는 CSI RS 구성 0, 1, 4, 5, 8 내지 11에 대응되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑된 세 번째 OFDM 심볼 및 네 번째 OFDM 심볼에 구성되는 제2 파트를 포함하는 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 특별 서브프레임이 일반 CP를 사용하는 경우, 상기 제2 파트는 CSI RS 구성 4, 9, 18 및 19에 대응되는 것을 특징으로 하는 방법.
  7. 제 5 항에 있어서,
    상기 특별 서브프레임이 확장 CP를 사용하는 경우, 상기 제2 파트는 CSI RS 구성 2, 3, 6, 7, 12 내지 15에 대응되는 것을 특징으로 하는 방법.
  8. 제 1 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑되지 않은 OFDM 심볼들 중 연속된 2개의 OFDM 심볼들에 구성되는 제3 파트를 포함하는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 특별 서브프레임이 일반 CP를 사용하는 경우, 상기 제3 파트는 CSI RS 구성 1, 2, 3, 6, 7, 8, 12 내지 17에 대응되는 것을 특징으로 하는 방법.
  10. 제 8 항에 있어서,
    상기 특별 서브프레임이 확장 CP를 사용하는 경우, 상기 제3 파트는 CSI RS 구성 16 내지 27에 대응되는 것을 특징으로 하는 방법.
  11. 제 1 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑되지 않은 OFDM 심볼들 중 연속되지 않은 2개의 OFDM 심볼들에 구성되는 제4 파트를 포함하는 것을 특징으로 하는 방법.
  12. 제 11 항에 있어서,
    상기 특별 서브프레임이 일반 CP를 사용하는 경우, 상기 제4 파트는 CSI RS 구성 20 내지 31에 대응되는 것을 특징으로 하는 방법.
  13. 무선 통신 시스템에서 기지국(BS; base station)에 있어서,
    채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 생성하도록 구성되는 참조 신호 생성부;
    상기 생성된 CSI-RS 시퀀스를 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑하도록 구성되는 자원 맵퍼; 및
    상기 맵핑된 CSI-RS 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 단말로 전송하도록 구성되는 전송부를 포함하며,
    상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정되는 것을 특징으로 하는 기지국.
  14. 제 13 항에 있어서,
    상기 CSI-RS 패턴은 복조 참조 신호(DMRS; demodulation reference signal)가 맵핑된 첫 번째 OFDM 심볼 및 두 번째 OFDM 심볼에 구성되는 제1 파트를 포함하는 것을 특징으로 하는 기지국.
  15. 제 13 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑된 세 번째 OFDM 심볼 및 네 번째 OFDM 심볼에 구성되는 제2 파트를 포함하는 것을 특징으로 하는 기지국.
  16. 제 13 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑되지 않은 OFDM 심볼들 중 연속된 2개의 OFDM 심볼들에 구성되는 제3 파트 또는 연속되지 않은 2개의 OFDM 심볼들에 구성되는 제4 파트를 포함하는 것을 특징으로 하는 기지국.
  17. 무선 통신 시스템에서 단말(MS; mobile station)에 의한 채널 추정을 수행하는 방법에 있어서,
    채널 상태 정보(CSI; channel state information) 참조 신호(RS; reference signal) 시퀀스를 기반으로 생성된 OFDM(orthogonal frequency division multiplexing) 신호를 수신하는 단계; 및
    상기 수신한 OFDM 신호를 복조하여 채널 추정을 수행하는 단계를 포함하며,
    상기 CSI-RS 시퀀스는 변조 심볼(modulation symbol)을 이용하여 CSI-RS 패턴에 따라 TDD(time division duplex) 프레임 내의 특별 서브프레임(special subframe)의 적어도 하나의 자원 요소에 맵핑되며,
    상기 CSI-RS 패턴은 상기 특별 서브프레임의 구성(configuration) 및 CP(cyclic prefix)에 따라 결정되는 것을 특징으로 하는 방법.
  18. 제 17 항에 있어서,
    상기 CSI-RS 패턴은 복조 참조 신호(DMRS; demodulation reference signal)가 맵핑된 첫 번째 OFDM 심볼 및 두 번째 OFDM 심볼에 구성되는 제1 파트를 포함하는 것을 특징으로 하는 기지국.
  19. 제 17 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑된 세 번째 OFDM 심볼 및 네 번째 OFDM 심볼에 구성되는 제2 파트를 포함하는 것을 특징으로 하는 방법.
  20. 제 17 항에 있어서,
    상기 CSI-RS 패턴은 DMRS가 맵핑되지 않은 OFDM 심볼들 중 연속된 2개의 OFDM 심볼들에 구성되는 제3 파트 또는 연속되지 않은 2개의 OFDM 심볼들에 구성되는 제4 파트를 포함하는 것을 특징으로 하는 방법.
PCT/KR2014/004188 2013-05-10 2014-05-09 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치 WO2014182133A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130053460A KR20140133367A (ko) 2013-05-10 2013-05-10 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
KR10-2013-0053460 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014182133A1 true WO2014182133A1 (ko) 2014-11-13

Family

ID=51867526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004188 WO2014182133A1 (ko) 2013-05-10 2014-05-09 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20140133367A (ko)
WO (1) WO2014182133A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078765A (zh) * 2015-01-29 2017-08-18 松下电器(美国)知识产权公司 无线通信方法和装置
US10505685B2 (en) * 2016-08-26 2019-12-10 Qualcomm Incorporated Adapting to delay spread variation in wireless communication systems
CN112311435A (zh) * 2015-04-10 2021-02-02 阿里斯卡尔股份有限公司 发送csi-rs的信令信息的方法和报告csi的方法
CN112448908A (zh) * 2019-09-03 2021-03-05 维沃移动通信有限公司 Pts的发送方法、接收方法、发送端设备及接收端设备

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on CSI-RS transmission on NCT", 3GPP TSG RAN WG1 MEETING #72BIS R1-130975, 15 April 2013 (2013-04-15), CHICAGO, USA *
CATT: "Usage of TDD special subframes on NCT", 3GPP TSG RAN WG1 MEETING #72BIS R1-130974, 15 April 2013 (2013-04-15), CHICAGO, USA *
CMCC: "Evaluation and Analysis of New DMRS Pattern in NCT", 3GPP TSG RAN WG1 MEETING #72BIS R1-131529, 15 April 2013 (2013-04-15), CHICAGO, USA *
INTEL CORPORATION: "Considerations on CSI-RS transmission in TDD", 3GPP TSG RAN WG1 MEETING #72BIS R1-130909, 15 April 2013 (2013-04-15), CHICAGO, USA *
PANTECH: "Considetations on reference signal in TDD special subframe", 3GPP TSG RAN WG1 MEETING #72BIS R1-131523, 15 April 2013 (2013-04-15), CHICAGO, USA *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078765A (zh) * 2015-01-29 2017-08-18 松下电器(美国)知识产权公司 无线通信方法和装置
CN112311435A (zh) * 2015-04-10 2021-02-02 阿里斯卡尔股份有限公司 发送csi-rs的信令信息的方法和报告csi的方法
CN112311435B (zh) * 2015-04-10 2023-10-31 阿里斯卡尔股份有限公司 发送csi-rs的信令信息的方法和报告csi的方法
US10505685B2 (en) * 2016-08-26 2019-12-10 Qualcomm Incorporated Adapting to delay spread variation in wireless communication systems
AU2017315445B2 (en) * 2016-08-26 2020-10-15 Qualcomm Incorporated Adapting to delay spread variation in wireless communication systems
CN112448908A (zh) * 2019-09-03 2021-03-05 维沃移动通信有限公司 Pts的发送方法、接收方法、发送端设备及接收端设备
CN112448908B (zh) * 2019-09-03 2022-12-13 维沃移动通信有限公司 Pts的发送方法、接收方法、发送端设备及接收端设备

Also Published As

Publication number Publication date
KR20140133367A (ko) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2011087345A2 (en) Method and apparatus for allocating channel state information-reference signal in wireless communication system
WO2018128453A1 (en) Method of transmitting reference signal for channel state change measurement and apparatus therefor
WO2015020505A1 (ko) 무선 통신 시스템에서 참조 신호를 전송하는 방법 및 장치
WO2011019229A2 (ko) 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
WO2016010379A1 (ko) 무선 통신 시스템에서 채널을 추정하는 방법 및 장치
WO2011152651A2 (en) Apparatus and method for allocating channel state information-reference signal in wireless communication system
WO2018231030A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
WO2016163797A1 (ko) 전 차원 다중입력 다중출력 무선 통신 시스템에서 채널상태정보 참조신호 송수신 방법 및 장치
WO2016043523A1 (ko) 반송파 집성 기법을 지원하는 무선 통신 시스템에서 단말이 기지국과 신호를 송수신하는 방법 및 장치
WO2012070823A2 (ko) 무선 통신 시스템에서 하향링크 측정 방법 및 장치
WO2013069954A1 (en) Apparatus and method for estimating channel
WO2011078571A2 (ko) 프리코딩된 사운딩 참조신호를 이용하여 comp 통신을 수행하는 장치 및 그 방법
WO2011034340A2 (ko) 다중 안테나를 지원하는 무선 통신 시스템에서 하향링크 참조신호를 전송하는 방법 및 장치
WO2010008245A2 (en) Method and apparatus for transmitting reference signal in multiple antenna system
WO2011040797A2 (ko) 하향링크 참조신호의 전송방법 및 장치
WO2012064117A9 (ko) 무선 통신 시스템에서 셀간 간섭 조정에 대한 하향링크 제어 채널의 송수신 방법 및 장치
WO2012081881A2 (ko) 다중 분산 노드 시스템에서 채널상태정보 참조신호를 전송하는 방법 및 수신 방법
WO2014112748A1 (ko) 협력적 전송 환경에서 수신 방법 및 단말
WO2017047971A1 (ko) 복조 참조 신호 송수신 방법 및 이를 이용한 장치
WO2011008062A2 (ko) 하향링크 참조신호의 전송방법 및 장치
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2012099412A2 (ko) 무선 통신 시스템에서 중계기의 상향링크 신호 전송 방법 및 장치
WO2012015238A2 (ko) 다중 노드 시스템에서 기지국이 노드를 반정적으로 단말에 할당하는 방법 및 장치
WO2016060466A1 (ko) Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치
WO2014123389A1 (ko) 간섭 제거를 위해 네트워크 지원 정보를 전송하는 방법 및 서빙셀 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14795495

Country of ref document: EP

Kind code of ref document: A1