WO2014181783A1 - Method for enucleating erythroblasts and method for maintaining enucleated erythrocytes - Google Patents

Method for enucleating erythroblasts and method for maintaining enucleated erythrocytes Download PDF

Info

Publication number
WO2014181783A1
WO2014181783A1 PCT/JP2014/062205 JP2014062205W WO2014181783A1 WO 2014181783 A1 WO2014181783 A1 WO 2014181783A1 JP 2014062205 W JP2014062205 W JP 2014062205W WO 2014181783 A1 WO2014181783 A1 WO 2014181783A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
enucleation
culture
conditions
erythrocytes
Prior art date
Application number
PCT/JP2014/062205
Other languages
French (fr)
Japanese (ja)
Inventor
稔久 八田
英理子 島村
ひろき 島田
百合子 仲島
Original Assignee
学校法人金沢医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人金沢医科大学 filed Critical 学校法人金沢医科大学
Publication of WO2014181783A1 publication Critical patent/WO2014181783A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/665Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans derived from pro-opiomelanocortin, pro-enkephalin or pro-dynorphin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/85Hormones derived from pro-opiomelanocortin, pro-enkephalin or pro-dynorphin

Definitions

  • the present invention relates to a nucleated red blood cell enucleation method and a enucleated red blood cell maintenance method characterized by culturing erythroblasts under hypoxic conditions.
  • Red blood cells are important blood components that carry oxygen, but cannot increase because they themselves do not have a nucleus. Therefore, in the living body, erythrocyte progenitor cells in the previous stage of erythrocytes proliferate and mature through “nuclear enucleation” that discharges the nucleus. Therefore, mass production of erythrocyte progenitor cells is necessary to produce erythrocytes in large quantities, and for that purpose, establishment of a “cell line (erythroid progenitor cell line)” is necessary.
  • Non-patent Document 2 In a study on hematopoiesis, Ihle et al. Reported that “SOCS3 is essential for hematopoiesis in the fetal liver” (see Non-patent Document 1). In addition, Nagata et al. Reported that the fetal liver of DNase II knockout mice cannot produce mature erythrocytes, causing severe anemia, and that fetal liver macrophage DNase II is important as a support for erythroid differentiation. (Reference: Non-Patent Document 2).
  • an erythrocyte progenitor cell line was established from mouse ES cells by a group of the independent administrative institution RIKEN, which enabled large-scale culture of erythrocyte progenitor cells in vitro (see Non-Patent Document 3).
  • a method of transfusion of erythroid progenitor cells directly into the body is also conceivable since the large-scale culture has become possible.
  • the progenitor cells are nucleated, there are great concerns regarding safety such as canceration. Actually, there is a need for an induction method for further differentiation of the progenitor cells to enucleate them to obtain mature erythrocytes that are anucleated.
  • Non-Patent Document 4 “20 days of culturing is required until the production of mature erythrocytes enucleated from erythrocyte progenitor cells. Of enucleated cells is 77% ".
  • mifepristone which is an antiestrogenic agent, is added as a factor that induces enucleation. Enucleation is induced by differentiating erythroid progenitor cells with a differentiation-inducing factor added at the beginning of the culture, and stopping proliferation of erythroblasts with non-physiological molecules.
  • Patent Document 1 discloses a “nuclear erythrocyte enucleation method characterized by culturing nucleated erythrocytes in a culture medium containing a compound derived from proopiomelanocortin (POMC)”.
  • POMC proopiomelanocortin
  • the enucleation rate is about 70% at the 7th day after maturation. Further, the enucleation method had a low maintenance rate of enucleated erythrocytes.
  • an object of the present invention is to provide a new method for inducing enucleation in a short time and a method for improving the survival rate of enucleated erythrocytes.
  • the present inventors have found that “the culture of erythroblasts under hypoxic conditions is the effect of promoting the enucleation start time, the effect of enucleating, and the effect of promoting enucleation. And having an effect of increasing the survival rate of enucleated erythrocytes ”, the present invention was completed. That is, the present invention is characterized by the following as a solution to the above problems. “1.
  • a method and / or enucleation of erythroblasts comprising culturing hematopoietic stem cells, erythroid progenitor cells, and / or erythroblasts in a culture solution under oxygen conditions of 1.0% to 18.0% How to maintain red blood cells.
  • 2. The method according to item 1, wherein the oxygen condition is 2.0% to 10.0%. 3.
  • 3. The method according to item 1 or 2, wherein the oxygen condition is 3.0% to 7.0%. 4).
  • the present invention provides an erythroblast having an effect of promoting the enucleation initiation time, an effect of promoting the enucleation induction, an effect of enucleating the nucleus, and an effect of increasing the survival rate of enucleated erythrocytes.
  • a method of enucleation and / or a method of maintaining enucleated erythrocytes could be provided. This makes it possible to shorten the blood production period and eliminate the risk of canceration associated with erythroblast transfusion. That is, safe blood can be obtained stably in a short time, and the contribution to medical technology is very large.
  • the present invention relates to a method and / or denucleation of erythroblasts characterized by culturing hematopoietic stem cells, erythroid progenitor cells, and / or erythroblasts in a culture solution under oxygen conditions of 1.0% to 18.0%. It relates to "a method for maintaining nuclear red blood cells". Embodiments of the present invention will be described below.
  • the “maintenance method of enucleated erythrocytes” includes not only preventing and eliminating mutations and disappearances of enucleated erythrocytes, but also includes methods for culturing, amplifying, differentiating and maturing enucleated erythrocytes.
  • Hematopoietic stem cells The “hematopoietic stem cell” of the present invention is a cell having the ability to differentiate into all types of blood cells and the ability to reconstruct hematopoiesis. It is mainly present in bone marrow, umbilical cord blood, spleen or liver, and is also present in peripheral blood although it is in a trace amount. “Stem cells” mean pluripotent hematopoietic stem cells and differentiated myeloid stem cells (CFU-GEMM). These cells are CD34 and CD133 positive cells. Hematopoietic stem cells can be obtained by a method known per se.
  • hematopoietic stem cells can be isolated using commercially available antibodies that bind to hematopoietic stem cell surface antigens (eg, CD34) using methods well known to those skilled in the art.
  • CD34 hematopoietic stem cell surface antigens
  • the antibody is bound to magnetic beads and immunological methods are utilized to recover the desired cell type.
  • the hematopoietic stem cells are in the form of CD34 positive cells.
  • CD34 is known as a standard marker for hematopoietic stem cells.
  • CD34 positive cells can be achieved by many different methods. The most widely used is positive immunological selection based on binding the cells to anti-CD34 antibodies (Cellpro, Baxter, Myltenyi) immobilized on a solid support. Other sorting methods include negative sorting that isolates all cells that do not express CD34 from CD34 positive cells based on the expression of cell lineage specific cell surface antigens.
  • the hematopoietic stem cells to be cultured can be produced ex vivo from embryonic stem cells (see: WO 01/34776, US 6,613,568). Further, for example, human umbilical cord blood CD34 positive cells (available from Cell Bank of RIKEN) can be used.
  • the “erythroid progenitor cell” of the present invention means a cell in which blood cells of each lineage cannot be identified from hematopoietic stem cells, but can only differentiate into blood cells in one direction of the erythroid. Specifically, platelet colony forming cells (CFU-MEG), eosinophil colony forming cells (CFU-EO), granulocyte monocyte colony forming cells (CFU-GM), erythroid cells (BFU-E, CFU-E) ), T precursor cells, B precursor cells and the like. These are all CD34 positive cells. Erythrocyte progenitor cells can be obtained by a method known per se.
  • erythrocyte progenitor cells present in the above-described bone marrow, umbilical cord blood, spleen, liver or peripheral blood from a cell separation device (flow cytometry or the like).
  • a method for inducing erythroid progenitor cells from mouse ES cells is also known (see Non-Patent Document 3).
  • human bone marrow-derived CD34-positive hematopoietic progenitor cells can be obtained from Lonza or the like.
  • hematopoietic stem cells or erythrocyte progenitor cells used in the present invention can also be obtained using the method described below.
  • the “erythroblast” of the present invention is used to distinguish it from enucleated red blood cells (mature red blood cells). It is a cell differentiated from erythroid progenitor cells and includes all stages of basic erythroblasts, polychromatic erythroblasts, and normal erythroblasts. Various methods for preparing erythroblasts have been reported, and methods known per se can be used. For example, a “method of adding and preferentially aggregating and sedimenting red blood cells by adding a water-soluble polymer compound to collected whole blood” described in International Publication WO2004 / 012750 can be used, but is not particularly limited. In addition, a method for differentiating cord blood-derived hematopoietic stem cells or erythroid progenitor cells into erythroblasts is also known (see Non-Patent Document 4).
  • the origin of the hematopoietic stem cell, erythroid progenitor cell or erythroblast is not particularly limited as long as it is derived from a mammal. Preferred examples include humans, dogs, cats, mice, rats, rabbits, pigs, cows and horses, with humans being more preferred.
  • the said hematopoietic stem cell, erythrocyte progenitor cell, or erythroblast derived from a human is intended to be isolated from a living body.
  • the “culture solution (medium)” of the present invention can maintain or survive ES cells, hematopoietic stem cells, erythrocyte progenitor cells, erythroblasts, reticulocytes, or mature erythrocytes, or ES cells, hematopoietic stem cells or erythrocyte progenitor cells
  • Any medium (medium) can be used as long as it does not inhibit maintenance, survival, differentiation, maturation, or self-replication.
  • it contains inorganic substances such as sodium, potassium, calcium, magnesium, phosphorus, chlorine, amino acids, vitamins, hormones, antibiotics, cytokines, fatty acids, sugars or other chemical components or biological components such as serum depending on the purpose.
  • “Culture conditions” of the present invention include, except for oxygen conditions, physical cells such as temperature, osmotic pressure and light, and chemical cells such as carbon dioxide, pH and redox potential, ES cells, Hematopoietic stem cells, erythroid progenitor cells, erythroblasts, reticulocytes, or mature erythrocytes can be maintained and survived, or ES cells, hematopoietic stem cells or erythroid progenitor cells are maintained, survived, differentiated, matured, and self-replicated. Any environmental condition may be used as long as it does not inhibit anything.
  • the temperature is 20 to 40 ° C, preferably about 37 ° C.
  • the osmotic pressure is specifically an osmotic pressure under physiological conditions, and preferably an osmotic pressure equal to that of physiological saline.
  • the light may be as dark as a dark room, or as bright as the brightness outside in sunny weather.
  • the general pH in the culture system is 6.0 to 8.0, preferably a pH equivalent to physiological conditions.
  • Carbon dioxide may be used to control the pH, or any other buffer may be used.
  • the concentration of carbon dioxide is the concentration of dissolved carbon dioxide in a state where the culture is in contact with the gas phase of 5%.
  • the oxygen concentration dissolved in the culture solution is lower than the normal aerobic culture condition (20% O 2 ), 1.0% to 18.0%, preferably 2.0% to 10.0%, more preferably 3.0% to 7.0%, still more preferably 4.0% to 6.0%, and most preferably about 5.0%.
  • the time when the oxygen concentration dissolved in the culture solution is set to 1.0% to 18.0% is the differentiation phase, the first maturity phase in the amplification phase, the differentiation phase, the first mature phase and the second mature phase. Although it is the period and the second maturity period, other periods may be set.
  • the oxygen concentration dissolved in the culture solution can be easily set in the range of 1.0% to 18.0% by an incubator using nitrogen gas.
  • Expansion phase about 7 days. This is the time to amplify CD34 positive cells and erythroid progenitor cells 8-20 times.
  • Differentiation phase 3-4 days. By culturing in the presence of erythropoietin, CD34-positive cells and erythroid progenitor cells undergo cell division and differentiate into pre-erythroblasts.
  • Maturation Phase 1 About 3 days. Cells divide from pre-erythroblasts and differentiate into basic erythroblasts and polychromatic erythroblasts.
  • Maturation Phase 2 (2nd maturity phase: M3 and later): Positively dyed erythroblasts are enucleated and mature into mature erythrocytes via reticulocytes.
  • the “enucleation method” of the present invention can use the following method, but is not particularly limited as long as it can induce enucleation of erythrocytes.
  • the cell concentration (including erythroblasts) is 1.0 ⁇ 10 2 to 1.0 ⁇ 10 10 , preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 8 , more preferably 1.0 in 1 ml of culture solution having an oxygen concentration of 1.0% to 18.0%. It is prepared to ⁇ 10 4 to 1.0 ⁇ 10 7 , most preferably about 1.0 ⁇ 10 5 .
  • the final concentration of the POMC-derived compound in the culture medium is 0.005 nM to 50 nM, preferably 0.01 nM to 30 nM, more preferably 0.1 nM to 20 nM, and most preferably 1.0 nM to 10 nM.
  • the compound may be added at the start of the culture or may be added as appropriate during the culture.
  • the culture temperature is preferably 33 to 38 ° C., and the CO 2 concentration is preferably about 3 to 7%.
  • the culture time for enucleation induction in erythroblasts derived from rat fetuses is 2 to 24 hours, preferably 3 to 12 hours, more preferably 4 to 8 hours.
  • Non-patent Document 4 it takes 20 days from culture of hematopoietic progenitor cells derived from human umbilical cord blood to enucleated erythrocytes. Can induce more than half of enucleation. Note that the difference in time required for enucleation between humans and rats is thought to be due to the difference in the time required for fetal development and the number of days to survive red blood cells.
  • the “method of culturing and / or amplifying enucleated erythrocytes” according to the present invention can use the following method, but is not particularly limited as long as it can induce enucleation of erythroblasts.
  • Hematopoietic stem cells or erythrocyte progenitor cells are differentiated into nucleated erythrocytes by the method described above. In the process of differentiation, various cytokines are introduced into the culture medium as necessary.
  • the final concentration of the POMC-derived compound in the culture solution is 0.005 nM to 50 nM, preferably 0.01 nM to 30 nM, more preferably 0.1 nM to 20 nM, most preferably 1.0 nM to 10 nM.
  • the compound may be added at the start of the culture or may be added as appropriate during the culture.
  • the “cytokine” of the present invention is a proteinous factor that is released from cells and mediates cell-cell interaction, and exhibits a control action of an immune response, an antitumor action, an antiviral action, a cell growth / differentiation regulating action, etc. Means.
  • interleukin-1 interleukin-1
  • IL-2 interleukin-2
  • IL-3 interleukin-3
  • IL-4 interleukin-4
  • interleukin-5 IL-5
  • interleukin-6 interleukin-6
  • IL-7 interleukin-7
  • interleukin-8 interleukin-8
  • interleukin-9 interleukin-9
  • interleukin-10 IL-10
  • interleukin-11 interleukin-11
  • interleukin-12 interleukin-12
  • IL-13 interleukin-13
  • IL-14 interleukin-14
  • IL-15 interleukin-15
  • interleukin-16 interleukin-16
  • interferon ⁇ IFN- ⁇
  • IFN- ⁇ interferon ⁇
  • IFN- ⁇ interferon ⁇
  • G-CSF Granulocyte-monocyte colony stimulating factor
  • GM-CSF Granulocyte-monocyte colony stimulating factor
  • GM-CSF Granulocyte-monocyte colony stimulating
  • the “denucleation start time promoting effect” of the present invention means an effect that the enucleation start time can be advanced as shown in the results of Example 2, unlike the conventional enucleation method.
  • the “denucleation induction promoting effect” of the present invention means an effect capable of increasing the enucleation rate as shown by the results of Example 2, unlike the conventional enucleation method.
  • the “development effect of enucleated erythrocytes” of the present invention is different from the conventional enucleation method, as shown in the results of Example 3, the survival rate of enucleated erythrocytes (denucleated erythrocytes / total Cell)).
  • the “nuclear ejection effect” of the present invention means an effect that, unlike the conventional denuclearization method, can increase the rate at which the denucleated nucleus is detached from the cell membrane, as the results of Example 3 show.
  • Improved expression of GATA1, GATA2 and / or MXI1 “Improved expression of GATA1, GATA2 and / or MXI1” of the present invention means that GATA1 and GATA2 under hypoxic conditions as shown in the results of Example 4 as compared with culture under normal oxygen conditions. And / or MXI1 expression is increased. Improved expression means that the expression level of GATA1, GATA2 and / or MXI1 under hypoxic conditions is about 1.2 times higher than the expression level of GATA1, GATA2 and / or MXI1 under normal oxygen conditions It means 5.0 times, 1.5 times to 4.5 times, 2.0 times to 4.0 times, 2.5 to 3.5 times.
  • GATA1 and GATA2 are transcription factors required for erythroid differentiation, and MXI1 is known to be a transcription factor that induces nuclear enrichment before the enucleation process.
  • the “improved expression of MC1R, MC2R and / or MC5R” of the present invention is more specifically reduced under low oxygen conditions as shown in the results of Example 5 as compared with the culture under normal oxygen conditions. It means that the expression of MC1R, MC2R and / or MC5R is increased under oxygen conditions and POMC-derived compound addition conditions.
  • the expression improvement means that the expression level of MC1R, MC2R and / or MC5R under hypoxic conditions is about 2.0 times higher than the expression level of MC1R, MC2R and / or MC5R under normal oxygen conditions It means 10.0 times, 3.0 times to 9.0 times, 3.5 times to 8.0 times.
  • MC1R, MC2R and MC5R are melanocortin receptors.
  • the “POMC-derived compound” of the present invention includes POMC, MSH ( ⁇ -, ⁇ -, ⁇ -MSH), ACTH, LPH ( ⁇ -, ⁇ -LPH), endorphin ( ⁇ , ⁇ , ⁇ -endorphin) or CLIP.
  • a protected derivative, a sugar chain-modified product, an acylated derivative, or an acetylated derivative thereof can be obtained by a method known per se. Details of the POMC-derived compound are described in Patent Document 1.
  • POMC is a precursor of melanocyte stimulating hormone (MSH), adrenocorticotropin (ACTH), lipotropin (LPH), CLIP and ⁇ -endorphin. All these hormones are produced by cleavage from just one large precursor, POMC.
  • MSH melanocyte stimulating hormone
  • ACTH adrenocorticotropin
  • LPH lipotropin
  • CLIP ⁇ -endorphin
  • ACTH is a peptide consisting of the following amino acid residues.
  • ACTH may be referred to as ACTH1-39 in order to distinguish from the following ACTH fragment sequences.
  • ACTH1-24 sequence 1 to 24 of ACTH is a peptide consisting of the following amino acid residues.
  • Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro SEQ ID NO: 2
  • ACTH1-10 the 1st to 10th sequence of ACTH is a peptide consisting of the following amino acid residues.
  • ACTH1-14 (sequence 1 to 14 of ACTH) is a peptide consisting of the following amino acid residues.
  • Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly (SEQ ID NO: 14)
  • ACTH1-16 (sequence 1 to 16 of ACTH) is a peptide consisting of the following amino acid residues.
  • ACTH1-17 ACTH1-17 (ACTH 1st to 17th sequence) is a peptide consisting of the following amino acid residues.
  • ACTH7-38 (the 7th to 38th sequence of ACTH) is a peptide consisting of the following amino acid residues.
  • Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Val-Ala-Glu-Asn-Glu-Ser- Ala-Glu-Ala-Phe-Pro-Leu-Glu (SEQ ID NO: 18)
  • ACTH4-9 (ACTH 4th to 9th sequence) is a peptide consisting of the following amino acid residues.
  • Met-Glu-His-Phe-Arg-Trp (SEQ ID NO: 19)
  • MSH ⁇ (melanocyte-stimulating hormone), a melanocyte-stimulating hormone ⁇ is a peptide hormone produced in the pituitary midlobe, and ⁇ -MSH, ⁇ -MSH, and ⁇ -MSH exist.
  • ⁇ -MSH is a peptide consisting of the following amino acid residues containing an Acetyl group.
  • ⁇ -MSH is a peptide consisting of the following amino acid residues.
  • ⁇ -MSH is a peptide consisting of the following amino acid residues. Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-Gly (SEQ ID NO: 5)
  • LPH ⁇ (lipotropin), a fat mobilizing hormone ⁇ is a single-chain polypeptide produced in the anterior pituitary and middle lobe, and includes ⁇ -LPH and ⁇ -LPH.
  • ⁇ -LPH is a peptide consisting of the following amino acid residues.
  • Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu SEQ ID NO: 6
  • ⁇ -LPH is a peptide consisting of the following amino acid residues.
  • Endorphins are endogenous opioid peptides existing in the mammalian brain and pituitary gland. Three types of ⁇ , ⁇ , and ⁇ are known.
  • ⁇ -Endorphin is a peptide consisting of the following amino acid residues. Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys- Ser-Gln-Thr-Pro-Leu-Val-Thr (SEQ ID NO: 8)
  • ⁇ -endorphin is a peptide consisting of the following amino acid residues.
  • ⁇ -endorphin is a peptide consisting of the following amino acid residues. Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn- Ala-Tyr-Lys-Lys-Gly-Glu (SEQ ID NO: 9)
  • ⁇ -endorphin is a peptide consisting of the following amino acid residues. Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu (SEQ ID NO: 10)
  • CLIP cardiac-like peptide
  • Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe SEQ ID NO: 11
  • MSH ⁇ -, ⁇ -, ⁇ -MSH
  • ACTH ACTH
  • LPH ⁇ -, ⁇ -LPH
  • endorphins ⁇ , ⁇ , ⁇ -endorphin
  • CLIP CLIP
  • MSH ⁇ -, ⁇ -, ⁇ -MSH
  • ACTH ⁇ -, ⁇ -LPH
  • endorphins ⁇ , ⁇ , ⁇ -endorphin
  • CLIP ⁇ -endorphin
  • the present invention provides a peptide comprising any of the peptides described above, has 90% or more homology with any of the peptides described above, and has an effect of inducing nucleation of erythrocytes of substantially the same quality as the peptide.
  • Peptides or peptides having 1 to 5 amino acid substitutions, deletions, insertions and / or additions to peptides described in any of the above and having a substantially homogeneous erythrocyte enucleation inducing action are also derived from POMC It is included as a compound.
  • the “peptide containing the peptide described in SEQ ID NO: 1” substantially maintains the enucleation of erythrocytes of the peptide described in SEQ ID NO: 1, and is 1-30, 1-20 at the N-terminus and / or C-terminus.
  • 1 to 10, 1 to 5 means a peptide added with any amino acid.
  • Enucleation-inducing action substantially the same quality as the peptide of SEQ ID NO: 1 means that the peptide has a nucleoblast-denucleating action of the erythroblast, the degree of which is compared with that of the peptide. It can be strong or weak.
  • Sequence homology usually means 70% or more of the entire amino acid sequence, preferably 80%, more preferably 85% or more, still more preferably 90% or more, even more preferably 95% or more, and most preferably 98%. It is suitable that it is% or more.
  • a peptide having sequence homology with the peptide represented by the amino acid sequence described in SEQ ID NO: 1 for example, in the amino acid sequence described in SEQ ID NO: 1, for example, 1 to 15, preferably 1 to 10, more preferably Amino acid sequence having 1 to 5, even more preferably 1 to 3, even more preferably 1 to 2, most preferably 1 amino acid mutation, such as a deletion, substitution, addition or insertion mutation
  • the peptide represented by these can be illustrated.
  • the degree of amino acid mutation and the position thereof are not particularly limited as long as the peptide having the mutation has substantially the same quality of enucleation as the peptide represented by the amino acid sequence shown in SEQ ID NO: 1. .
  • Preservation method of enucleated red blood cells When storing enucleated erythrocytes (including a long period of time), a method known per se can be used. Examples of storage methods include cryopreservation methods. In this case, Cell Banker (C) (Nippon Zenyaku Kogyo Co., Ltd.), glycerin, ethylene glycol, dimethyl sulfoxide (DMSO), sucrose, glucose, polyvinyl as necessary. A cryoprotectant such as pyrrolidone (PVP) or trehalose may be added, slowly frozen using a program freezer, etc., and then stored in liquid nitrogen or a deep freezer at -80 ° C.
  • C Cell Banker
  • glycerin glycerin
  • ethylene glycol ethylene glycol
  • dimethyl sulfoxide (DMSO) dimethyl sulfoxide
  • sucrose glucose
  • glucose polyvinyl
  • a cryoprotectant such as pyrrolidone (PVP)
  • Hematopoietic progenitor growth medium (HPGM, Lonza) was used as the culture medium in this example.
  • (Culture conditions in each phase) (1) Expansion phase Cells: Cord blood-derived or bone marrow-derived CD34 positive hematopoietic progenitor cells 1 ⁇ 10 5 (cells / ml) (Purity 90% or more, Lonza) Culture days: 7 days Addition factor of culture solution: 50 ng / ml thrombopoietin (Peprotech), 50 ng / ml Flt3 ligand (Peprotech), 50 ng / ml Stem Cell Factor (SCF) (R & D) Temperature: 37 ° C Oxygen concentration: 2.0% to 20.0% (2) Differentiation phase Cells: The cells amplified in (1) above were diluted to 2 ⁇ 10 5 (cells / ml).
  • Culture days 3 days Factors added to the culture: 3 U / ml erythropoietin (Kyowa Hakko Kirin), 25 ng / ml SCF, 10 ng / ml interleukin-3 (IL-3) (Peprotech), 10 ng / ml interleukin-6 (IL-6) (Peprotech) Temperature: 37 ° C Oxygen concentration: 2.0% to 20.0% (3) Maturation Phase 1 (first maturity) The culture start time is designated as M0, and hereinafter referred to as M0, M1, and M2.
  • Cells The cells cultured in (2) above were diluted to 1 ⁇ 10 5 (cells / ml).
  • Culture days 3 days (M0-M3) Factors added to the culture medium: 3 U / ml erythropoietin Temperature: 37 ° C Oxygen concentration: 2.0% to 20.0% (4) Maturation Phase 2 (2nd maturity: M3 or later) Cells: The cells cultured in (3) above were diluted to 4 ⁇ 10 5 (cells / ml). Culture days: Measure enucleation rate after M5 Addition factor to culture medium: None Temperature: 37 ° C Oxygen concentration: 2.0% to 20.0%
  • the method for measuring the enucleation rate by flow cytometry is as follows. (1) Cell staining reagent Nuclear staining: SYTO16 (Molecular Probes) Red blood cell marker: APC label-glycophorin A (GPA) (Becton Dickinson) (2) Measurement method The cells stained in (1) above were measured by flow cytometry. The enucleation rate was calculated by the following formula. In measurement by flow cytometry, only red blood cells from which nuclei have been completely ejected (away from the cell membrane) are measured as enucleated cells. Measured as (non-nucleated cells).
  • Datsukakuritsu (%) 100 ⁇ ⁇ GPA + SYTO16 - / (GPA + SYTO16 - + GPA + SYTO16 +) ⁇ Enucleated cells (mature red blood cells): GPA + SYTO16 - Akablast: GPA + SYTO16 +
  • the method for measuring the enucleation rate under a microscope is as follows. (1) Cell staining reagent Nuclear staining: Hoechst 33342 (Molecular Probes) (2) Measurement method The cells stained with the staining reagent of (1) above were photographed under 10 fields of view (phase contrast image + fluorescence image) under a fluorescence microscope, and cells with and without nuclei were counted. The enucleation rate was calculated by the following formula.
  • the definition of the enucleated cell is defined as a cell during enucleation in which the nucleus protrudes outside the circumference of the cell membrane, or the nucleus does not exist in the cell membrane.
  • Erythrocyte cultures under hypoxic conditions (2% to 10% O 2 ) are more effective in promoting the enucleation initiation time and denucleation compared to erythrocyte cultures under normal aerobic culture conditions (20% O 2 ). It was confirmed whether there was a nuclear induction promotion effect. Details are as follows.
  • FIG. 1 shows the enucleation rate under each oxygen concentration condition.
  • Hypoxic conditions (2% -10% O 2 ) had a 4-day enucleation rate about 4 times higher than aerobic culture conditions (20% O 2 ). That is, under the hypoxic condition (2% to 10% O 2 ), the effect of promoting the enucleation start time is exhibited.
  • hyponuclear conditions (2-10% O 2 ) have a very high enucleation rate on day 7 compared to aerobic culture conditions (20% O 2 ). In particular, the enucleation rate was about 1.8 times compared to 78% under 5% O 2 conditions and 45% under aerobic culture conditions (20% O 2 ).
  • the survival rate of enucleated erythrocytes under each oxygen concentration condition is shown in FIG.
  • normal aerobic culture conditions (20% O 2 ) enucleated erythrocytes rapidly denatured and disappeared after M8, and thus could not be maintained.
  • the enucleated red blood cell / total cell ratio under normal aerobic culture conditions (20% O 2 ) it was 43.3% on the 8th day of the mature culture, but rapidly decreased to 3.2% on the 11th day. That is, only about 7.4% (3.2 / 43.3%) of enucleated erythrocytes could be maintained.
  • hypoxic condition 2%, 5% O 2
  • the 5% O 2 enucleated red blood cell / total cell ratio under hypoxic conditions was 75.9% on the 8th day of mature culture compared to only 41.1% on the 11th day. There wasn't. That is, approximately 54.2% (41.1 / 75.9%) of enucleated erythrocytes could be maintained. Based on the above, culturing with 5% O 2 under hypoxic conditions is approximately 7.3 times (54.2 / 7.4%) of detachment compared to culturing under normal aerobic culturing conditions (20% O 2 ). It showed the effect of increasing the survival rate of nuclear red blood cells.
  • the enucleation rate on the 7th day of mature culture was measured by counting enucleated erythrocytes after nuclear staining with Hoechst under a fluorescence microscope.
  • Cells CD34-positive hematopoietic progenitor cells derived from cord blood Culture medium: Addition of ACTH, a compound derived from HPGM + EPO + POMC ⁇ addition time is the first day of mature culture (M0) and the third day (M3) ⁇ Oxygen concentration (O 2 ): 5, 20%
  • FIG. 3 shows the enucleation rate of erythrocytes under each oxygen concentration condition and with or without ACTH (A39 in the figure).
  • the enucleation rate under hypoxic conditions and under POMC-derived compound addition conditions (O 2 5% A39) was very high, exceeding 90%.
  • POMC-derived compound-free condition (O 2 5% CNT) was 81%, and the denuclearization promoting effect of POMC-derived compounds was confirmed even under low oxygen conditions.
  • the enucleation rate under hypoxic conditions and POMC-derived compound addition conditions is about 1.3 times that of normal aerobic culture conditions (20% O 2 ) and POMC-derived compound addition conditions. it was high.
  • the enucleation rate can be increased by the low oxygen condition and the addition of the POMC-derived compound.
  • the value of the enucleation rate on the 7th day of O 2 5% as measured by the flow cytometry in FIG. 1 and the value of the enucleation rate on the 7th day of O 2 5% as measured under the microscope in FIG. Is 78% in the flow cytometry measurement, which is almost the same as 80% under the microscope.
  • the aerobic culture condition (20%) the enucleation rate value by flow cytometry was 45%, and the enucleation rate value under a microscope was 55%.
  • Erythrocyte culture under hypoxic conditions (5% O 2 ) has improved expression of GATA1, GATA2 and MXI1 in enucleated erythrocytes compared to normal erythrocyte culture conditions (20% O 2 ) To see if it is. Details are as follows.
  • Cells Cord blood-derived CD34-positive hematopoietic progenitor cells
  • Culture method Culture method described in Example 1 (without adding ACTH)
  • Oxygen concentration (O 2 ) Culture was carried out at 20% oxygen concentration until the start of Maturation (M0 day), and cells were divided into two groups of oxygen 5% and 20% on M0 day.
  • Measurement of expression levels of GATA1, GATA2 and MXI1 On day M3, cells were collected by centrifugation, RNA extraction, and real-time PCR were performed.
  • Erythrocyte culture under hypoxic conditions improves MC1R, MC2R and MC5R expression of enucleated erythrocytes compared to erythrocytes under normal aerobic culture conditions (20% O 2 ). To see if it is. Details are as follows.
  • ⁇ Culture conditions> Cell: Cord blood-derived CD34-positive hematopoietic progenitor cells Culture method: Culture method described in Example 1 (ACTH is not added) Oxygen concentration (O 2 ): Culture was carried out at 20% oxygen concentration until the start of Maturation (M0 day), and cells were divided into two groups of oxygen 5% and 20% on M0 day. Measurement of expression levels of MC1R, MC2R and MC5R: On day M3, cells were collected by centrifugation, RNA extraction, and real-time PCR were performed.
  • the expression levels of MC1R, MC2R and MC5R under each oxygen concentration condition are shown in FIG.
  • the gene expression levels of all MC1R, MC2R and MC5R under hypoxic conditions were remarkably increased compared to the gene expression levels under normal oxygen conditions.
  • the enucleation promoting effect by ACTH can be obtained by increasing the expression of the receptor even without addition of ACTH.
  • FIG. 6 shows the enucleation rate under each oxygen concentration condition.
  • the denuclearization rate was 24.8% at 20% oxygen, 31.5% at 10% oxygen, and 38.4% (P ⁇ 0.01) at 2% oxygen. That is, an increase in the enucleation rate was recognized depending on the oxygen concentration.
  • the hyponuclear condition with 2% oxygen showed an effect of increasing the enucleation rate by about 1.5 times compared with the condition with 20% oxygen.
  • This also corresponds to the effect of umbilical cord blood-derived cells on bone marrow-derived cells (the enucleation rate under oxygen 5% condition is 1.8 times higher than the enucleation rate under oxygen 20% condition) The result to be obtained.
  • the enucleation rate can be improved by 1.5 to 1.8 times under hypoxic conditions.
  • nucleation of erythroblasts under hypoxic conditions can improve the enucleation rate regardless of the origin of hematopoietic progenitor cells.
  • the erythroblast enucleation method of the present invention was able to induce and maintain the enucleation of the final stage of mammalian erythrocyte differentiation in a short time.
  • the present invention was able to provide a method for enucleation that can induce and maintain the enucleation of the final stage of erythroid differentiation in a short time.
  • the blood production period can be shortened, and the risk of canceration associated with transfusion of erythrocyte progenitor cells and erythroblasts can be eliminated. That is, safe blood can be obtained stably in a short time, and the contribution to medical technology is very large.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

[Problem] To provide a method for strongly induce enucleation within a short period of time and a method for improving the survival rate of enucleated erythrocytes. [Solution] The present invention was completed by finding "incubation of erythroblasts under low-oxygen conditions exhibits an effect of advancing the starting timing of enucleation, an effect of removing nuclei, an effect of promoting the induction of enucleation and an effect of improving the survival rate of enucleated erythrocytes".

Description

赤芽球の脱核方法及び脱核赤血球の維持方法Enucleation method of erythroblast and maintenance method of enucleated erythrocyte
 本発明は、低酸素条件下で赤芽球を培養することを特徴とする有核赤血球の脱核方法及び脱核赤血球の維持方法に関する。
 なお、本出願は、参照によりここに援用されるところ、日本特許出願番号2013-097312からの優先権を請求する。
The present invention relates to a nucleated red blood cell enucleation method and a enucleated red blood cell maintenance method characterized by culturing erythroblasts under hypoxic conditions.
This application claims priority from Japanese Patent Application No. 2013-097312, which is incorporated herein by reference.
 医療分野では現在献血による輸血が主体であるが、その供給を確保するには収集、感染等の検査、保存、に多大な労力や費用が必要となっている。医療や研究の分野において血液を十分量供給する為には、短時間かつ効率的に培養造血系幹細胞から成熟赤血球を誘導する方法が必要である。将来的に、iPS細胞やES細胞などを含む全能性又は多能性幹細胞から造血幹細胞の培養技術と応用が可能となれば、すべての行程を人工的に培養でき、感染のリスクが低くかつ安定的に血液の供給が可能となり医療への貢献は高い。また、工業的に多量の血液培養が可能となり、低コストでの生産と医療産業としての発展が期待できる。 In the medical field, blood transfusion by blood donation is currently the main, but in order to secure the supply, much labor and cost are required for collection, inspection of infection and storage. In order to supply a sufficient amount of blood in the medical and research fields, a method for inducing mature erythrocytes from cultured hematopoietic stem cells in a short time and efficiently is necessary. In the future, if the technology and application of hematopoietic stem cells can be applied from totipotent or pluripotent stem cells including iPS cells and ES cells, all processes can be cultured artificially, and the risk of infection is low and stable. In particular, blood supply becomes possible and the contribution to medical care is high. In addition, a large amount of blood culture can be industrially produced, and production at a low cost and development as a medical industry can be expected.
 赤血球は、酸素を運ぶ重要な血液成分であるが、それ自身は核を持たないために増えることはできない。よって、生体内では、赤血球の前段階の赤血球前駆細胞が増殖し、核を排出する「脱核」を経て成熟する。
 従って、大量に赤血球を製造するには、赤血球前駆細胞の大量増殖が必要で、そのためには、「細胞株(赤血球前駆細胞株)」の樹立が必要であった。
Red blood cells are important blood components that carry oxygen, but cannot increase because they themselves do not have a nucleus. Therefore, in the living body, erythrocyte progenitor cells in the previous stage of erythrocytes proliferate and mature through “nuclear enucleation” that discharges the nucleus.
Therefore, mass production of erythrocyte progenitor cells is necessary to produce erythrocytes in large quantities, and for that purpose, establishment of a “cell line (erythroid progenitor cell line)” is necessary.
 また、造血に関する研究では、Ihleらのグループにより、「SOCS3が胎児肝臓での造血に必須であること」が報告されている(参照:非特許文献1)。
 さらに、長田らのグループにより、「DNase IIノックアウトマウスの胎児では成熟赤血球が出来ず、重篤な貧血を引き起こし、胎児肝臓のマクロファージDNase IIは赤血球分化のサポートとして重要であること」が報告されている(参照:非特許文献2)。
In a study on hematopoiesis, Ihle et al. Reported that “SOCS3 is essential for hematopoiesis in the fetal liver” (see Non-patent Document 1).
In addition, Nagata et al. Reported that the fetal liver of DNase II knockout mice cannot produce mature erythrocytes, causing severe anemia, and that fetal liver macrophage DNase II is important as a support for erythroid differentiation. (Reference: Non-Patent Document 2).
 一方、独立行政法人理化学研究所のグループによりマウスES細胞から赤血球前駆細胞株が樹立され、赤血球前駆細胞の試験管内での大量培養が可能となった(参照:非特許文献3)。
 該大量培養が可能になったことにより、赤血球前駆細胞を直接体内に輸血する方法も考えられる。しかし、該前駆細胞は有核であるため癌化の問題など安全性の面が非常に危惧される。実際には、該前駆細胞をさらに分化させて脱核し、無核となった成熟赤血球を得るための誘導方法が必要である。
On the other hand, an erythrocyte progenitor cell line was established from mouse ES cells by a group of the independent administrative institution RIKEN, which enabled large-scale culture of erythrocyte progenitor cells in vitro (see Non-Patent Document 3).
A method of transfusion of erythroid progenitor cells directly into the body is also conceivable since the large-scale culture has become possible. However, since the progenitor cells are nucleated, there are great concerns regarding safety such as canceration. Actually, there is a need for an induction method for further differentiation of the progenitor cells to enucleate them to obtain mature erythrocytes that are anucleated.
 また、Miharadaらによって報告されている臍帯血を利用した成熟赤血球の製造方法(非特許文献4)では、「赤血球前駆細胞から脱核した成熟赤血球の生成まで20日間の培養日数を必要とし、最終の脱核細胞は77%であること」を開示している。
 前記成熟赤血球の製造方法では、脱核を誘導する因子として抗エストロゲン剤であるミフェプリストンを添加している。培養初期に添加される分化誘導因子により赤血球前駆細胞を分化させ、非生理的分子により赤芽球の増殖を停止させることにより脱核が誘導されている。
Further, in the method for producing mature erythrocytes using umbilical cord blood reported by Miharada et al. (Non-Patent Document 4), “20 days of culturing is required until the production of mature erythrocytes enucleated from erythrocyte progenitor cells. Of enucleated cells is 77% ".
In the method for producing mature erythrocytes, mifepristone, which is an antiestrogenic agent, is added as a factor that induces enucleation. Enucleation is induced by differentiating erythroid progenitor cells with a differentiation-inducing factor added at the beginning of the culture, and stopping proliferation of erythroblasts with non-physiological molecules.
 前述のとおり、赤血球前駆細胞の製造方法はすでにいくつか知られているが、その過程で生理的条件及び生理的分子のみで赤芽球を短時間かつ高効率に脱核させる技術については、ほとんど知られていない。しかし、本発明者らは、脱核を誘導する因子であるプロオピオメラノコルチン(POMC)由来の化合物を培地に添加する方法を報告している(参照:特許文献1)。 As described above, several methods for producing erythroid progenitor cells are already known. However, in the process, there are almost no techniques for enucleating erythroblasts in a short time and with high efficiency using only physiological conditions and physiological molecules. unknown. However, the present inventors have reported a method in which a compound derived from proopiomelanocortin (POMC), which is a factor that induces enucleation, is added to a medium (see Patent Document 1).
 特許文献1は、「有核赤血球をプロオピオメラノコルチン(POMC)由来の化合物を含む培養液で培養することを特徴とする有核赤血球の脱核方法」を開示している。しかし、脱核率は、成熟後7日目では、最大で約70%である。また、該脱核方法は、脱核赤血球の維持率が低かった。 Patent Document 1 discloses a “nuclear erythrocyte enucleation method characterized by culturing nucleated erythrocytes in a culture medium containing a compound derived from proopiomelanocortin (POMC)”. However, the enucleation rate is about 70% at the 7th day after maturation. Further, the enucleation method had a low maintenance rate of enucleated erythrocytes.
 以上の背景から、現状の製造方法で得られた赤血球では、赤芽球が約20~30%残存し、さらに該赤血球を体内に投与すると癌化の危険性を有することが問題となっている。
 加えて、今後、ヒトiPS又はES細胞から大量の赤芽球を誘導可能となり、短時間で赤血球の脱核を誘導するための方法が必要になると考えられる。
From the above background, about 20 to 30% of erythroblasts remain in the erythrocytes obtained by the current production method, and further there is a risk of canceration when the erythrocytes are administered into the body. .
In addition, a large amount of erythroblasts can be induced from human iPS or ES cells in the future, and a method for inducing erythrocyte enucleation in a short time will be required.
国際公開WO2010/098079International Publication WO2010 / 098079
 本発明は、以上の背景から、新たに積極的かつ短時間に脱核を誘導する方法及び脱核赤血球の生存率を向上させる方法を提供することを課題とする。 From the above background, an object of the present invention is to provide a new method for inducing enucleation in a short time and a method for improving the survival rate of enucleated erythrocytes.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、「低酸素条件下での赤芽球の培養は、脱核開始時期促進効果、核排出効果、脱核誘導促進効果及び脱核赤血球の生存率上昇効果を有すること」を見出して、本発明を完成した。
 すなわち、本発明は、上記の課題を解決するものとして以下のことを特徴としている。
「1.造血系幹細胞、赤血球前駆細胞、及び/又は赤芽球を1.0%~18.0%の酸素条件下の培養液で培養することを特徴とする赤芽球の脱核方法及び/又は脱核赤血球の維持方法。
 2.前記酸素条件が2.0%~10.0%である前項1に記載の方法。
 3.前記酸素条件が3.0%~7.0%である前項1又は2に記載の方法。
 4.前記酸素条件が4.0%~6.0%である前項1~3のいずれか1に記載の方法。
 5.前記培養液に、プロオピオメラノコルチン(POMC)由来の化合物を含む前項1~4のいずれか1に記載の方法。
 6.前記化合物は、以下のいずれか1から選ばれる前項5に記載の方法。
 (1)ACTH
 (2)POMC
 (3)MSH
 (4)LPH
 (5)エンドルフィン
 (6)CLIP
 7.前記化合物は、ACTHである前項5又は6に記載の方法。
 8.GATA1、GATA2及び/又はMXI1の発現が向上していることを特徴とする前項1~7のいずれか1に記載の方法。
 9.MC1R、MC2R及び/又はMC5Rの発現が向上していることを特徴とする前項1~8のいずれか1に記載の方法。」
As a result of intensive research in order to solve the above problems, the present inventors have found that “the culture of erythroblasts under hypoxic conditions is the effect of promoting the enucleation start time, the effect of enucleating, and the effect of promoting enucleation. And having an effect of increasing the survival rate of enucleated erythrocytes ”, the present invention was completed.
That is, the present invention is characterized by the following as a solution to the above problems.
“1. A method and / or enucleation of erythroblasts comprising culturing hematopoietic stem cells, erythroid progenitor cells, and / or erythroblasts in a culture solution under oxygen conditions of 1.0% to 18.0% How to maintain red blood cells.
2. 2. The method according to item 1, wherein the oxygen condition is 2.0% to 10.0%.
3. 3. The method according to item 1 or 2, wherein the oxygen condition is 3.0% to 7.0%.
4). 4. The method according to any one of items 1 to 3, wherein the oxygen condition is 4.0% to 6.0%.
5. 5. The method according to any one of items 1 to 4, wherein the culture solution contains a compound derived from proopiomelanocortin (POMC).
6). 6. The method according to item 5 above, wherein the compound is selected from any one of the following.
(1) ACTH
(2) POMC
(3) MSH
(4) LPH
(5) Endorphins (6) CLIP
7). 7. The method according to 5 or 6 above, wherein the compound is ACTH.
8). 8. The method according to any one of 1 to 7 above, wherein the expression of GATA1, GATA2 and / or MXI1 is improved.
9. 9. The method according to any one of items 1 to 8, wherein expression of MC1R, MC2R and / or MC5R is improved. "
 本発明は、低酸素条件下での赤芽球を培養することで、脱核開始時期促進効果、脱核誘導促進効果、核排出効果及び脱核赤血球の生存率上昇効果を有する赤芽球の脱核方法及び/又は脱核赤血球の維持方法を提供することができた。
 これにより、血液の製造期間の短縮が可能になり、赤芽球の輸血に伴う癌化の危険性を除くことが可能となる。すなわち、安全な血液を短時間かつ安定して得ることができ、医療技術への貢献は非常に大きい。
By culturing erythroblasts under hypoxic conditions, the present invention provides an erythroblast having an effect of promoting the enucleation initiation time, an effect of promoting the enucleation induction, an effect of enucleating the nucleus, and an effect of increasing the survival rate of enucleated erythrocytes. A method of enucleation and / or a method of maintaining enucleated erythrocytes could be provided.
This makes it possible to shorten the blood production period and eliminate the risk of canceration associated with erythroblast transfusion. That is, safe blood can be obtained stably in a short time, and the contribution to medical technology is very large.
低酸素条件下での赤血球の脱核開始時期促進効果及び脱核誘導促進効果の確認Confirmation of the effect of promoting the enucleation initiation time and enucleation induction of erythrocytes under hypoxic conditions 低酸素条件下での脱核赤血球の生存率増加の確認Confirmation of increased survival of enucleated erythrocytes under hypoxic conditions 低酸素条件下及びPOMC由来化合物添加条件下での赤血球の脱核誘導促進効果の確認及び低酸素条件下における核排除率増加の確認Confirmation of the effect of promoting nucleation of red blood cells under hypoxic conditions and addition of POMC-derived compounds, and confirmation of increased nuclear exclusion rate under hypoxic conditions 低酸素条件下でのGATA1、GATA2及びMXI1の発現向上の確認Confirmation of improved expression of GATA1, GATA2 and MXI1 under hypoxic conditions 低酸素条件下及びPOMC由来化合物添加条件下でのMC1R、MC2R及びMC5Rの発現向上の確認Confirmation of improved expression of MC1R, MC2R and MC5R under hypoxic conditions and under POMC-derived compound addition conditions 低酸素条件下での骨髄由来CD34陽性造血前駆細胞由来赤血球の脱核誘導促進効果の確認Confirmation of enucleation induction promoting effect of bone marrow-derived CD34 positive hematopoietic progenitor erythrocytes under hypoxic condition
 本発明は「造血系幹細胞、赤血球前駆細胞、及び/又は赤芽球を1.0%~18.0%の酸素条件下の培養液で培養することを特徴とする赤芽球の脱核方法及び/又は脱核赤血球の維持方法」に関する。以下に、本発明の実施の形態について説明する。
 なお、「脱核赤血球の維持方法」とは、脱核赤血球の変異・消失を防ぐことだけでなく、脱核赤血球の培養、増幅、分化、成熟の方法も含む。
The present invention relates to a method and / or denucleation of erythroblasts characterized by culturing hematopoietic stem cells, erythroid progenitor cells, and / or erythroblasts in a culture solution under oxygen conditions of 1.0% to 18.0%. It relates to "a method for maintaining nuclear red blood cells". Embodiments of the present invention will be described below.
The “maintenance method of enucleated erythrocytes” includes not only preventing and eliminating mutations and disappearances of enucleated erythrocytes, but also includes methods for culturing, amplifying, differentiating and maturing enucleated erythrocytes.
(造血系幹細胞)
 本発明の「造血系幹細胞」は、あらゆる種類の血球に分化する能力を有するとともに造血再構築能を有する細胞である。主に骨髄、臍帯血、脾臓あるいは肝臓中に存在し、微量ながら末梢血にも存在する。なお、「幹細胞」は、多能性造血系幹細胞及びこれから分化した骨髄系幹細胞(CFU-GEMM)を意味する。これら細胞はCD34、CD133陽性細胞である。
 造血系幹細胞は、自体公知の方法で得ることができる。例えば、上記記載の骨髄、臍帯血、脾臓、肝臓又は末梢血に存在する造血系幹細胞を細胞分離装置(フローサイトメトリー等)から分離することで得られることができる。
 より詳しくは、造血系幹細胞は、造血系幹細胞表面抗原(例えば、CD34)に結合する市販の抗体を用い、当業者に周知の方法を用いて単離することができる。例えば、該抗体は、磁性ビーズに結合され、そして免疫学的方法が、所望の細胞型を回収するために利用される。好ましくは、造血系幹細胞は、CD34陽性細胞の形態である。実際、CD34は、造血系幹細胞の標準マーカーとして知られている。
 CD34陽性細胞の分離は、多くの様々な方法により達成できる。最も広く使用されるものは、固体支持体上に固定された抗CD34抗体(Cellpro, Baxter, Myltenyi)に当該細胞を結合させることに基づく陽性免疫学的選別である。他の選別方法は、細胞系列特異的細胞表面抗原の発現に基づいてCD34陽性細胞から、CD34を発現しない細胞の全てを単離するネガティブ選別を含む。加えて、培養される造血系幹細胞は、胚性幹細胞からex vivoで産生することもできる(参照:WO 01/34776、US 6,613,568)。
 また、例えば、ヒト臍帯血CD34陽性細胞(独立行政法人理化学研究所のCell Bankから入手可能)を利用することができる。
(Hematopoietic stem cells)
The “hematopoietic stem cell” of the present invention is a cell having the ability to differentiate into all types of blood cells and the ability to reconstruct hematopoiesis. It is mainly present in bone marrow, umbilical cord blood, spleen or liver, and is also present in peripheral blood although it is in a trace amount. “Stem cells” mean pluripotent hematopoietic stem cells and differentiated myeloid stem cells (CFU-GEMM). These cells are CD34 and CD133 positive cells.
Hematopoietic stem cells can be obtained by a method known per se. For example, it can be obtained by separating hematopoietic stem cells present in the bone marrow, umbilical cord blood, spleen, liver or peripheral blood described above from a cell separation device (flow cytometry or the like).
More specifically, hematopoietic stem cells can be isolated using commercially available antibodies that bind to hematopoietic stem cell surface antigens (eg, CD34) using methods well known to those skilled in the art. For example, the antibody is bound to magnetic beads and immunological methods are utilized to recover the desired cell type. Preferably, the hematopoietic stem cells are in the form of CD34 positive cells. Indeed, CD34 is known as a standard marker for hematopoietic stem cells.
Separation of CD34 positive cells can be achieved by many different methods. The most widely used is positive immunological selection based on binding the cells to anti-CD34 antibodies (Cellpro, Baxter, Myltenyi) immobilized on a solid support. Other sorting methods include negative sorting that isolates all cells that do not express CD34 from CD34 positive cells based on the expression of cell lineage specific cell surface antigens. In addition, the hematopoietic stem cells to be cultured can be produced ex vivo from embryonic stem cells (see: WO 01/34776, US 6,613,568).
Further, for example, human umbilical cord blood CD34 positive cells (available from Cell Bank of RIKEN) can be used.
(赤血球前駆細胞)
 本発明の「赤血球前駆細胞」は、造血系幹細胞から各系統の血液細胞が分化形態学的には同定できないが、すでに赤血球系の一方向の血液細胞にしか分化し得ない細胞を意味する。
 具体的には血小板コロニー形成細胞(CFU-MEG)、好酸球コロニー形成細胞(CFU-EO)、顆粒球単球コロニー形成細胞(CFU-GM)、赤血球形成細胞(BFU-E、CFU-E)、T前駆細胞、B前駆細胞などである。これらはいずれもCD34陽性細胞である。
 赤血球前駆細胞は、自体公知の方法で得ることができる。例えば、上記記載の骨髄、臍帯血、脾臓、肝臓又は末梢血に存在する赤血球前駆細胞を細胞分離装置(フローサイトメトリー等)から分離することで得られる。
 加えて、マウスES細胞から赤血球前駆細胞に誘導する方法も知られている(参照:非特許文献3)。
 また、ヒト骨髄由来CD34陽性造血前駆細胞は、ロンザ社等から入手を利用することができる。
(Erythroid progenitor cells)
The “erythroid progenitor cell” of the present invention means a cell in which blood cells of each lineage cannot be identified from hematopoietic stem cells, but can only differentiate into blood cells in one direction of the erythroid.
Specifically, platelet colony forming cells (CFU-MEG), eosinophil colony forming cells (CFU-EO), granulocyte monocyte colony forming cells (CFU-GM), erythroid cells (BFU-E, CFU-E) ), T precursor cells, B precursor cells and the like. These are all CD34 positive cells.
Erythrocyte progenitor cells can be obtained by a method known per se. For example, it can be obtained by separating erythrocyte progenitor cells present in the above-described bone marrow, umbilical cord blood, spleen, liver or peripheral blood from a cell separation device (flow cytometry or the like).
In addition, a method for inducing erythroid progenitor cells from mouse ES cells is also known (see Non-Patent Document 3).
In addition, human bone marrow-derived CD34-positive hematopoietic progenitor cells can be obtained from Lonza or the like.
 加えて、造血系幹細胞又は赤血球前駆細胞を大量に増幅するために、各種の方法及び最適な培養条件への開発が試みられてきている。そして、下記のようにいくつかの報告がされている。
 よって、本発明で使用する造血系幹細胞又は赤血球前駆細胞は、下記記載の方法を利用して得ることもできる。
 (1)哺乳動物由来のストローマ細胞と造血系幹細胞を共培養することにより造血系幹細胞を増殖する方法(参照:特開平10-295369)。
 (2)ヒト臍帯血から得られる造血支持能を有する細胞を体外で増幅させて造血系幹細胞を得る方法(参照:特開2002-6520)。
 (3)ヒト造血系幹細胞又は赤血球前駆細胞を、ヒト胎盤組織又は臍帯組織由来のストローマ細胞の共存下で培養する方法(参照:特開2004-222502)。
 (4)子宮内膜細胞を用いた造血系幹細胞又は赤血球前駆細胞の培養及び増幅方法(参照:特表2007-525231)。
In addition, in order to amplify a large amount of hematopoietic stem cells or erythrocyte progenitor cells, various methods and development to optimum culture conditions have been attempted. And there are some reports as follows.
Therefore, hematopoietic stem cells or erythroid progenitor cells used in the present invention can also be obtained using the method described below.
(1) A method of proliferating hematopoietic stem cells by co-culturing stromal cells derived from mammals and hematopoietic stem cells (see: JP-A-10-295369).
(2) A method of obtaining hematopoietic stem cells by amplifying cells having hematopoietic support ability obtained from human umbilical cord blood outside the body (see: JP-A-2002-6520).
(3) A method of culturing human hematopoietic stem cells or erythrocyte progenitor cells in the presence of stromal cells derived from human placental tissue or umbilical cord tissue (see: JP 2004-222502 A).
(4) A method for culturing and amplifying hematopoietic stem cells or erythrocyte progenitor cells using endometrial cells (see: Special Table 2007-525231).
(赤芽球)
 本発明の「赤芽球」は、脱核をした赤血球(成熟赤血球)と区別するために使用する。赤血球前駆細胞より分化した細胞であり、塩基性赤芽球、多染性赤芽球、正染性赤芽球のすべてのステージを含める。
 赤芽球の調製方法は、多種報告されており自体公知の方法が利用することができる。例えば、国際公開WO2004/012750に記載の「採集した全血に水溶性高分子化合物を添加して選択促進的に赤血球を凝集沈降させる方法」を利用することができるが、特に限定されない。
 加えて、臍帯血由来の造血幹細胞又は赤血球前駆細胞を赤芽球に分化させる方法も知られている(参照:非特許文献4)。
(Red blast)
The “erythroblast” of the present invention is used to distinguish it from enucleated red blood cells (mature red blood cells). It is a cell differentiated from erythroid progenitor cells and includes all stages of basic erythroblasts, polychromatic erythroblasts, and normal erythroblasts.
Various methods for preparing erythroblasts have been reported, and methods known per se can be used. For example, a “method of adding and preferentially aggregating and sedimenting red blood cells by adding a water-soluble polymer compound to collected whole blood” described in International Publication WO2004 / 012750 can be used, but is not particularly limited.
In addition, a method for differentiating cord blood-derived hematopoietic stem cells or erythroid progenitor cells into erythroblasts is also known (see Non-Patent Document 4).
 上記造血系幹細胞、赤血球前駆細胞又は赤芽球の由来は、哺乳類由来であれば特に限定されない。好ましくは、ヒト、イヌ、ネコ、マウス、ラット、ウサギ、ブタ、ウシ、ウマ等が例示されるが、より好ましくはヒトである。なお、ヒト由来の上記造血系幹細胞、赤血球前駆細胞又は赤芽球は、生体から分離されたものを対象とする。 The origin of the hematopoietic stem cell, erythroid progenitor cell or erythroblast is not particularly limited as long as it is derived from a mammal. Preferred examples include humans, dogs, cats, mice, rats, rabbits, pigs, cows and horses, with humans being more preferred. In addition, the said hematopoietic stem cell, erythrocyte progenitor cell, or erythroblast derived from a human is intended to be isolated from a living body.
{培養液(培地)}
 本発明の「培養液(培地)」は、ES細胞、造血系幹細胞、赤血球前駆細胞、赤芽球、網状赤血球、若しくは成熟赤血球が維持・生存でき、又はES細胞、造血系幹細胞若しくは赤血球前駆細胞が維持・生存・分化・成熟・自己複製するのに何ら阻害するものでなければ、如何なる培養液(培地)を用いることができる。
 例えば、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素などの無機物、アミノ酸、ビタミン、ホルモン、抗生物質、サイトカイン、脂肪酸、糖又は目的に応じてその他の化学成分もしくは血清のような生体成分を含有することもできる。
 例として、 hematopoietic progenitor growth medium (HPGM、ロンザ社)、DMEM 、RPMI、 IMDM、10%FBS (細胞培養のための抗生物質を含む)等を使用することができる。
{Culture solution (medium)}
The “culture solution (medium)” of the present invention can maintain or survive ES cells, hematopoietic stem cells, erythrocyte progenitor cells, erythroblasts, reticulocytes, or mature erythrocytes, or ES cells, hematopoietic stem cells or erythrocyte progenitor cells Any medium (medium) can be used as long as it does not inhibit maintenance, survival, differentiation, maturation, or self-replication.
For example, it contains inorganic substances such as sodium, potassium, calcium, magnesium, phosphorus, chlorine, amino acids, vitamins, hormones, antibiotics, cytokines, fatty acids, sugars or other chemical components or biological components such as serum depending on the purpose. You can also
Examples include hematopoietic progenitor growth medium (HPGM, Lonza), DMEM, RPMI, IMDM, 10% FBS (including antibiotics for cell culture), and the like.
(培養条件)
 本発明の「培養条件」は、酸素条件を除き、温度、浸透圧、光などの物理的環境条件、及び炭酸ガス、pH、酸化還元電位などの化学的環境条件のいずれについても、ES細胞、造血系幹細胞、赤血球前駆細胞、赤芽球、網状赤血球、若しくは成熟赤血球が維持・生存でき、又はES細胞、造血系幹細若しくは赤血球前駆細胞が維持・生存・分化・成熟・自己複製するのに何ら阻害するものでなければ、如何なる環境条件であってもよい。
 温度については、20~40℃、好ましくは約37℃である。
 浸透圧については具体的には生理条件における浸透圧であり、好ましくは生理食塩水と等しい浸透圧である。
 光としては暗室ほどの暗い条件であってもよいし、晴天時の外の明るさほどに明るくてもよい。
 培養系における一般的なpHは、6.0~8.0であり、好ましくは生理条件と同等のpHである。pHをコントロールするには二酸化炭素を用いてもよいし、他のいかなる緩衝液を用いてもよい。
 炭酸ガスの濃度としては具体的には培養が5%の気相と接触している状態での溶存炭酸ガス濃度である。
(Culture conditions)
“Culture conditions” of the present invention include, except for oxygen conditions, physical cells such as temperature, osmotic pressure and light, and chemical cells such as carbon dioxide, pH and redox potential, ES cells, Hematopoietic stem cells, erythroid progenitor cells, erythroblasts, reticulocytes, or mature erythrocytes can be maintained and survived, or ES cells, hematopoietic stem cells or erythroid progenitor cells are maintained, survived, differentiated, matured, and self-replicated. Any environmental condition may be used as long as it does not inhibit anything.
The temperature is 20 to 40 ° C, preferably about 37 ° C.
The osmotic pressure is specifically an osmotic pressure under physiological conditions, and preferably an osmotic pressure equal to that of physiological saline.
The light may be as dark as a dark room, or as bright as the brightness outside in sunny weather.
The general pH in the culture system is 6.0 to 8.0, preferably a pH equivalent to physiological conditions. Carbon dioxide may be used to control the pH, or any other buffer may be used.
Specifically, the concentration of carbon dioxide is the concentration of dissolved carbon dioxide in a state where the culture is in contact with the gas phase of 5%.
(低酸素条件)
 本発明の「低酸素条件下」は、培養液に溶存している酸素濃度が、通常の好気的培養条件(20% O2)よりは低く、1.0%~18.0%、好ましくは2.0%~10.0%、より好ましくは3.0%~7.0%、さらに好ましくは4.0%~6.0%、最も好ましくは約5.0%である。
 特に、培養液に溶存している酸素濃度が、1.0%~18.0%になるように設定する時期は、増幅期、分化期、第1成熟期及び第2成熟期において、分化期、第1成熟期及び第2成熟期であるが、その他の期間でも設定しても良い。
 なお、培養液に溶存している酸素濃度は、窒素ガスを用いたインキュベーターにより容易に1.0%~18.0%の範囲に設定することができる。また、酸素吸着剤を培養液に添加することによっても達成することができる。
 さらに、酸素センサー等を使用することにより容易に培養液に溶存している酸素濃度を測定することができる。
 Expansion phase(増幅期):約7日間。CD34陽性細胞及び赤血球前駆細胞を8~20倍に増幅させる時期である。
 Differentiation phase(分化期):3~4日間。エリスロポイエチン存在下での培養により、CD34陽性細胞及び赤血球前駆細胞が細胞分裂し前赤芽球に分化する。
 Maturation Phase1(第1成熟期):約3日間。前赤芽球から細胞分裂し、塩基性赤芽球、多染性赤芽球に分化する。また、多染性赤芽球はさらに成熟し正染性赤芽球となる。
 Maturation Phase2(第2成熟期:M3以降):正染性赤芽球が脱核し、網状赤血球を経て成熟赤血球に成熟する。
(Low oxygen condition)
In the “hypoxic condition” of the present invention, the oxygen concentration dissolved in the culture solution is lower than the normal aerobic culture condition (20% O 2 ), 1.0% to 18.0%, preferably 2.0% to 10.0%, more preferably 3.0% to 7.0%, still more preferably 4.0% to 6.0%, and most preferably about 5.0%.
In particular, the time when the oxygen concentration dissolved in the culture solution is set to 1.0% to 18.0% is the differentiation phase, the first maturity phase in the amplification phase, the differentiation phase, the first mature phase and the second mature phase. Although it is the period and the second maturity period, other periods may be set.
The oxygen concentration dissolved in the culture solution can be easily set in the range of 1.0% to 18.0% by an incubator using nitrogen gas. It can also be achieved by adding an oxygen adsorbent to the culture medium.
Furthermore, the oxygen concentration dissolved in the culture medium can be easily measured by using an oxygen sensor or the like.
Expansion phase: about 7 days. This is the time to amplify CD34 positive cells and erythroid progenitor cells 8-20 times.
Differentiation phase: 3-4 days. By culturing in the presence of erythropoietin, CD34-positive cells and erythroid progenitor cells undergo cell division and differentiate into pre-erythroblasts.
Maturation Phase 1: About 3 days. Cells divide from pre-erythroblasts and differentiate into basic erythroblasts and polychromatic erythroblasts. In addition, the polychromatic erythroblast further matures to become a normal dye erythroblast.
Maturation Phase 2 (2nd maturity phase: M3 and later): Positively dyed erythroblasts are enucleated and mature into mature erythrocytes via reticulocytes.
(脱核方法)
 本発明の「脱核方法」は、以下の方法を利用することができるが、赤血球の脱核を誘導できるならば特に限定されない。
 細胞濃度(赤芽球を含む)を1.0%~18.0%の酸素濃度の培養液1ml中に1.0×102~1.0×1010、好ましくは1.0×103~1.0×108、より好ましくは1.0×104~1.0×107、最も好ましくは約1.0×105に調製する。
 そして、好ましくは、POMC由来の化合物を培養液中の最終濃度が0.005 nM~50 nM、好ましくは0.01 nM~30 nM、より好ましくは0.1 nM~20 nM、最も好ましくは1.0 nM~10 nMになるように添加する。なお、該化合物の添加時期は、培養開始時点でもよいが、培養途中に適宜追加しても良い。
 培養温度は、33~38℃が好ましく、CO2濃度は、約3~7%が好ましい。
 ラット胎児由来の赤芽球における脱核誘導のための培養時間は、2~24時間、好ましくは3~12時間、より好ましくは4~8時間である。
 また、ヒト臍帯血由来の造血前駆細胞の培養から脱核赤血球へは20日間を要するが(参照:非特許文献4)、本方法においては14日目頃から脱核を導き、15日目には半数以上の脱核を誘導できる。
 なお、ヒトとラットにおけるに脱核に要する時間の違いは、胎児の発生に要する時間や赤血球の生存日数の違いによるものと考えられる。
(Denucleation method)
The “enucleation method” of the present invention can use the following method, but is not particularly limited as long as it can induce enucleation of erythrocytes.
The cell concentration (including erythroblasts) is 1.0 × 10 2 to 1.0 × 10 10 , preferably 1.0 × 10 3 to 1.0 × 10 8 , more preferably 1.0 in 1 ml of culture solution having an oxygen concentration of 1.0% to 18.0%. It is prepared to × 10 4 to 1.0 × 10 7 , most preferably about 1.0 × 10 5 .
Preferably, the final concentration of the POMC-derived compound in the culture medium is 0.005 nM to 50 nM, preferably 0.01 nM to 30 nM, more preferably 0.1 nM to 20 nM, and most preferably 1.0 nM to 10 nM. Add as follows. The compound may be added at the start of the culture or may be added as appropriate during the culture.
The culture temperature is preferably 33 to 38 ° C., and the CO 2 concentration is preferably about 3 to 7%.
The culture time for enucleation induction in erythroblasts derived from rat fetuses is 2 to 24 hours, preferably 3 to 12 hours, more preferably 4 to 8 hours.
In addition, it takes 20 days from culture of hematopoietic progenitor cells derived from human umbilical cord blood to enucleated erythrocytes (see: Non-patent Document 4). Can induce more than half of enucleation.
Note that the difference in time required for enucleation between humans and rats is thought to be due to the difference in the time required for fetal development and the number of days to survive red blood cells.
 本発明の「脱核赤血球の培養/及び増幅方法」は、以下の方法を利用することができるが、赤芽球の脱核を誘導できるならば特に限定されない。
 造血系幹細胞又は赤血球前駆細胞を上記記載の方法により有核を有する赤血球に分化する。なお、分化の過程において、必要に応じて各種サイトカインを培養液中に導入する。次に、有核を有する赤血球が培養液中に存在する時期に、好ましくは、POMC由来の化合物を培養液中の最終濃度が0.005 nM~50 nM、好ましくは0.01 nM~30 nM、より好ましくは0.1 nM~20 nM、最も好ましくは1.0 nM~10 nMになるように添加する。なお、該化合物の添加時期は、培養開始時点でもよいが、培養途中に適宜追加しても良い。
The “method of culturing and / or amplifying enucleated erythrocytes” according to the present invention can use the following method, but is not particularly limited as long as it can induce enucleation of erythroblasts.
Hematopoietic stem cells or erythrocyte progenitor cells are differentiated into nucleated erythrocytes by the method described above. In the process of differentiation, various cytokines are introduced into the culture medium as necessary. Next, when nucleated red blood cells are present in the culture solution, preferably the final concentration of the POMC-derived compound in the culture solution is 0.005 nM to 50 nM, preferably 0.01 nM to 30 nM, more preferably 0.1 nM to 20 nM, most preferably 1.0 nM to 10 nM. The compound may be added at the start of the culture or may be added as appropriate during the culture.
(サイトカイン)
 本発明の「サイトカイン」は、細胞から放出され、細胞間相互作用を媒介するタンパク質性因子で、免疫応答の制御作用、抗腫瘍作用、抗ウイルス作用、細胞増殖・分化の調節作用などを示す物質を意味する。具体的には、インターロイキン-1(IL-1)、インターロイキン-2(IL-2)、インターロイキン-3(IL-3)、インターロイキン-4(IL-4)、インターロイキン-5(IL-5)、インターロイキン-6(IL-6)、インターロイキン-7(IL-7)、インターロイキン-8(IL-8)、インターロイキン-9(IL-9)、インターロイキン-10(IL-10)、インターロイキン-11(IL-11)、インターロイキン-12(IL-12)、インターロイキン-13(IL-13)、インターロイキン-14(IL-14)、インターロイキン-15(IL-15)、インターロイキン-16(IL-16)、インターフェロンα(IFN-α)、インターフェロンβ(IFN-β)、インターフェロンγ(IFN-γ)、顆粒球コロニー刺激因子(G-CSF)、顆粒球-単球コロニー刺激因子(GM-CSF)、単球コロニー刺激因子、顆粒球-マクロファージコロニー刺激因子、好酸球コロニー刺激因子、血小板コロニー刺激因子、幹細胞因子(SCF)、幹細胞増殖因子、flk2/flt3-リガンド、白血病阻害(阻止)因子、エリスロポエチン(EPO)、マクロファージ由来炎症性タンパク1α(MIP-1α)などが挙げられ、好ましくはインターロイキン-3、幹細胞因子(SCF)、Flt-3L、顆粒球コロニー刺激因子、顆粒球-マクロファージコロニー刺激因子、flk2/flt3-リガンド、MIP-1α又はエリスロポエチン、トロンボポイエチン、トランスフェリン、血管内皮増殖因子(VEGF)、インスリン等が挙げられる。
(Cytokine)
The “cytokine” of the present invention is a proteinous factor that is released from cells and mediates cell-cell interaction, and exhibits a control action of an immune response, an antitumor action, an antiviral action, a cell growth / differentiation regulating action, etc. Means. Specifically, interleukin-1 (IL-1), interleukin-2 (IL-2), interleukin-3 (IL-3), interleukin-4 (IL-4), interleukin-5 ( IL-5), interleukin-6 (IL-6), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-9 (IL-9), interleukin-10 ( IL-10), interleukin-11 (IL-11), interleukin-12 (IL-12), interleukin-13 (IL-13), interleukin-14 (IL-14), interleukin-15 ( IL-15), interleukin-16 (IL-16), interferon α (IFN-α), interferon β (IFN-β), interferon γ (IFN-γ), granulocyte colony stimulating factor (G-CSF), Granulocyte-monocyte colony stimulating factor (GM-CSF) Monocyte colony stimulating factor, granulocyte-macrophage colony stimulating factor, eosinophil colony stimulating factor, platelet colony stimulating factor, stem cell factor (SCF), stem cell growth factor, flk2 / flt3-ligand, leukemia inhibitory (blocking) factor, erythropoietin (EPO), macrophage-derived inflammatory protein 1α (MIP-1α), etc., preferably interleukin-3, stem cell factor (SCF), Flt-3L, granulocyte colony stimulating factor, granulocyte-macrophage colony stimulating factor Flk2 / flt3-ligand, MIP-1α or erythropoietin, thrombopoietin, transferrin, vascular endothelial growth factor (VEGF), insulin and the like.
(脱核開始時期促進効果)
 本発明の「脱核開始時期促進効果」は、従来の脱核方法とは異なり、実施例2の結果が示すように脱核開始時期を早めることができる効果を意味する。
(Effect of promoting the enucleation start time)
The “denucleation start time promoting effect” of the present invention means an effect that the enucleation start time can be advanced as shown in the results of Example 2, unlike the conventional enucleation method.
(脱核誘導促進効果)
 本発明の「脱核誘導促進効果」は、従来の脱核方法とは異なり、実施例2の結果が示すように脱核率を高めることができる効果を意味する。
(Denucleation induction promotion effect)
The “denucleation induction promoting effect” of the present invention means an effect capable of increasing the enucleation rate as shown by the results of Example 2, unlike the conventional enucleation method.
(脱核赤血球の生存率上昇効果)
 本発明の「脱核赤血球の生存率上昇効果」は、従来の脱核方法とは異なり、実施例3の結果が示すように、成熟段階での脱核赤血球の生存率(脱核赤血球/総細胞)を高めることができる効果を意味する。
(Effect of increasing the survival rate of enucleated erythrocytes)
The “development effect of enucleated erythrocytes” of the present invention is different from the conventional enucleation method, as shown in the results of Example 3, the survival rate of enucleated erythrocytes (denucleated erythrocytes / total Cell)).
(核排出効果)
 本発明の「核排出効果」は、従来の脱核方法とは異なり、実施例3の結果が示すように、脱核した核が細胞膜から離脱する割合を高めることができる効果を意味する。
(Nuclear emission effect)
The “nuclear ejection effect” of the present invention means an effect that, unlike the conventional denuclearization method, can increase the rate at which the denucleated nucleus is detached from the cell membrane, as the results of Example 3 show.
(GATA1、GATA2及び/又は MXI1の発現の向上)
 本発明の「GATA1、GATA2及び/又は MXI1の発現の向上」とは、通常の酸素条件下での培養と比較して、実施例4の結果が示すように、低酸素条件下ではGATA1、GATA2及び/又は MXI1の発現が増加していることを意味する。
 発現の向上とは、低酸素条件下でのGATA1、GATA2及び/又は MXI1の発現量が、通常の酸素条件下でのGATA1、GATA2及び/又は MXI1の発現量と比較して、約1.2倍~5.0倍、1.5倍~4.5倍、2.0倍~4.0倍、2.5~3.5倍を意味する。
 なお、GATA1及びGATA2は赤芽球分化に必要とされる転写因子であり、MXI1は脱核過程前の核濃縮を誘導する転写因子であることが知られている。
(Improved expression of GATA1, GATA2 and / or MXI1)
“Improved expression of GATA1, GATA2 and / or MXI1” of the present invention means that GATA1 and GATA2 under hypoxic conditions as shown in the results of Example 4 as compared with culture under normal oxygen conditions. And / or MXI1 expression is increased.
Improved expression means that the expression level of GATA1, GATA2 and / or MXI1 under hypoxic conditions is about 1.2 times higher than the expression level of GATA1, GATA2 and / or MXI1 under normal oxygen conditions It means 5.0 times, 1.5 times to 4.5 times, 2.0 times to 4.0 times, 2.5 to 3.5 times.
GATA1 and GATA2 are transcription factors required for erythroid differentiation, and MXI1 is known to be a transcription factor that induces nuclear enrichment before the enucleation process.
(MC1R、MC2R及び/又はMC5Rの発現の向上)
 本発明の「MC1R、MC2R及び/又はMC5Rの発現の向上」は、通常の酸素条件下での培養と比較して、実施例5の結果が示すように、低酸素条件下、より詳しくは低酸素条件下及びPOMC由来化合物添加条件下でのMC1R、MC2R及び/又はMC5Rの発現が増加していることを意味する。
 発現の向上とは、低酸素条件下でのMC1R、MC2R及び/又はMC5Rの発現量が、通常の酸素条件下でのMC1R、MC2R及び/又はMC5Rの発現量と比較して、約2.0倍~10.0倍、3.0倍~9.0倍、3.5倍~8.0倍を意味する。
 なお、MC1R、MC2R及びMC5Rは、メラノコルチンレセプターである。
(Improved expression of MC1R, MC2R and / or MC5R)
The “improved expression of MC1R, MC2R and / or MC5R” of the present invention is more specifically reduced under low oxygen conditions as shown in the results of Example 5 as compared with the culture under normal oxygen conditions. It means that the expression of MC1R, MC2R and / or MC5R is increased under oxygen conditions and POMC-derived compound addition conditions.
The expression improvement means that the expression level of MC1R, MC2R and / or MC5R under hypoxic conditions is about 2.0 times higher than the expression level of MC1R, MC2R and / or MC5R under normal oxygen conditions It means 10.0 times, 3.0 times to 9.0 times, 3.5 times to 8.0 times.
MC1R, MC2R and MC5R are melanocortin receptors.
(POMC由来の化合物)
 本発明の「POMC由来の化合物」は、POMC、MSH(α-、β-、γ-MSH)、ACTH、LPH(γ-、β-LPH)、エンドルフィン(α、β、γ-エンドルフィン)若しくはCLIP、又はそれらの保護化誘導体、糖鎖修飾体、アシル化誘導体、若しくはアセチル化誘導体を対象とする。
 保護化誘導体、糖鎖修飾体、アシル化誘導体、若しくはアセチル化誘導体は、自体公知の方法で得ることができる。
 なお、POMC由来の化合物の詳細は、特許文献1に記載されている。
(Compound derived from POMC)
The “POMC-derived compound” of the present invention includes POMC, MSH (α-, β-, γ-MSH), ACTH, LPH (γ-, β-LPH), endorphin (α, β, γ-endorphin) or CLIP. Or a protected derivative, a sugar chain-modified product, an acylated derivative, or an acetylated derivative thereof.
The protected derivative, sugar chain modified product, acylated derivative, or acetylated derivative can be obtained by a method known per se.
Details of the POMC-derived compound are described in Patent Document 1.
 POMC は、メラノサイト刺激ホルモン(MSH)、アドレノコルチコトロピン(ACTH)、リポトロピン(LPH)、CLIP並びにβエンドルフィンの前駆体である。これら全てのホルモンは、ただ1つの大きな前駆体POMCから切断されて、生成される。 POMC is a precursor of melanocyte stimulating hormone (MSH), adrenocorticotropin (ACTH), lipotropin (LPH), CLIP and β-endorphin. All these hormones are produced by cleavage from just one large precursor, POMC.
 ACTHは、以下のアミノ酸残基からなるペプチドである。加えて、本明細書において、ACTHは、以下のACTHの断片配列と区別するために、ACTH1-39と称する場合がある。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Val-Ala-Glu-Asn-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe(配列番号1)
ACTH is a peptide consisting of the following amino acid residues. In addition, in this specification, ACTH may be referred to as ACTH1-39 in order to distinguish from the following ACTH fragment sequences.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn- Val-Ala-Glu-Asn-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe (SEQ ID NO: 1)
 加えて、様々なACTHの断片配列が知られている。これらの断片配列自体が脱核作用を有すると考えられる。
 ACTH1-24(ACTHの1番から24番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro(配列番号2)
 ACTH1-10(ACTHの1番から10番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly(配列番号13)
 ACTH1-14(ACTHの1番から14番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly(配列番号14)
 ACTH1-16(ACTHの1番から16番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys(配列番号15)
 ACTH1-17(ACTHの1番から17番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg(配列番号16)
 ACTH4-10(ACTHの4番から10番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Met-Glu-His-Phe-Arg-Trp-Gly(配列番号17)
 ACTH7-38(ACTHの7番から38番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Val-Ala-Glu-Asn-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu(配列番号18)
 ACTH4-9(ACTHの4番から9番目の配列)は、以下のアミノ酸残基からなるペプチドである。
 Met-Glu-His-Phe-Arg-Trp(配列番号19)
In addition, various ACTH fragment sequences are known. These fragment sequences themselves are considered to have an enucleating action.
ACTH1-24 (sequence 1 to 24 of ACTH) is a peptide consisting of the following amino acid residues.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro (SEQ ID NO: 2)
ACTH1-10 (the 1st to 10th sequence of ACTH) is a peptide consisting of the following amino acid residues.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly (SEQ ID NO: 13)
ACTH1-14 (sequence 1 to 14 of ACTH) is a peptide consisting of the following amino acid residues.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly (SEQ ID NO: 14)
ACTH1-16 (sequence 1 to 16 of ACTH) is a peptide consisting of the following amino acid residues.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys (SEQ ID NO: 15)
ACTH1-17 (ACTH 1st to 17th sequence) is a peptide consisting of the following amino acid residues.
Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg (SEQ ID NO: 16)
ACTH4-10 (the 4th to 10th sequence of ACTH) is a peptide consisting of the following amino acid residues.
Met-Glu-His-Phe-Arg-Trp-Gly (SEQ ID NO: 17)
ACTH7-38 (the 7th to 38th sequence of ACTH) is a peptide consisting of the following amino acid residues.
Phe-Arg-Trp-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Val-Ala-Glu-Asn-Glu-Ser- Ala-Glu-Ala-Phe-Pro-Leu-Glu (SEQ ID NO: 18)
ACTH4-9 (ACTH 4th to 9th sequence) is a peptide consisting of the following amino acid residues.
Met-Glu-His-Phe-Arg-Trp (SEQ ID NO: 19)
 MSH{(melanocyte-stimulating hormone)、メラノサイト刺激ホルモン}は、脳下垂体中葉で生成されるペプチドホルモンであり、α-MSH、β-MSH、γ-MSHが存在している。
 α-MSHは、Acetyl基を含む以下のアミノ酸残基からなるペプチドである。
 Acetyl-(N)-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2(配列番号3)
 β-MSHは、以下のアミノ酸残基からなるペプチドである。
 Ala-Glu-Lys-Lys-Asp-Glu-Gly-Pro-Tyr-Arg-Met-Glu-His-Phe-Arg-Trp-Gly-Ser-Pro-Pro-Lys-Asp(配列番号4)
 γ-MSHは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-Gly(配列番号5)
MSH {(melanocyte-stimulating hormone), a melanocyte-stimulating hormone} is a peptide hormone produced in the pituitary midlobe, and α-MSH, β-MSH, and γ-MSH exist.
α-MSH is a peptide consisting of the following amino acid residues containing an Acetyl group.
Acetyl- (N) -Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH 2 (SEQ ID NO: 3)
β-MSH is a peptide consisting of the following amino acid residues.
Ala-Glu-Lys-Lys-Asp-Glu-Gly-Pro-Tyr-Arg-Met-Glu-His-Phe-Arg-Trp-Gly-Ser-Pro-Pro-Lys-Asp (SEQ ID NO: 4)
γ-MSH is a peptide consisting of the following amino acid residues.
Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Phe-Gly (SEQ ID NO: 5)
 LPH{(lipotropin)、脂肪動員ホルモン}は、下垂体前葉及び中葉で生成される単鎖のポリペチドであり、γ-LPH,β-LPHがある。
 γ-LPHは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu(配列番号6)
 β-LPHは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr(配列番号7)
LPH {(lipotropin), a fat mobilizing hormone} is a single-chain polypeptide produced in the anterior pituitary and middle lobe, and includes γ-LPH and β-LPH.
γ-LPH is a peptide consisting of the following amino acid residues.
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu (SEQ ID NO: 6)
β-LPH is a peptide consisting of the following amino acid residues.
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys- Ser-Gln-Thr-Pro-Leu-Val-Thr (SEQ ID NO: 7)
 エンドルフィン(endorphin)は、哺乳類の脳及び下垂体に存在する内因性オピオイドペプチドで、α、β、γの3種類が知られている。
 α-エンドルフィンは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr(配列番号8)
 β-エンドルフィンは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu(配列番号9)
 γ-エンドルフィンは、以下のアミノ酸残基からなるペプチドである。
 Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu(配列番号10)
Endorphins (endorphins) are endogenous opioid peptides existing in the mammalian brain and pituitary gland. Three types of α, β, and γ are known.
α-Endorphin is a peptide consisting of the following amino acid residues.
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys- Ser-Gln-Thr-Pro-Leu-Val-Thr (SEQ ID NO: 8)
β-endorphin is a peptide consisting of the following amino acid residues.
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn- Ala-Tyr-Lys-Lys-Gly-Glu (SEQ ID NO: 9)
γ-endorphin is a peptide consisting of the following amino acid residues.
Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu (SEQ ID NO: 10)
 CLIP(カルジオトロピン様ペプチド)は、下記のアミノ酸残基からなるペプチドである。
 Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe(配列番号11)
CLIP (cardiotropin-like peptide) is a peptide consisting of the following amino acid residues.
Arg-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-Pro-Leu-Glu-Phe (SEQ ID NO: 11)
 なお、上記のMSH(α-、β-、γ-MSH)、ACTH、LPH(γ-、β-LPH)、エンドルフィン(α、β、γ-エンドルフィン)又はCLIPは、各種間において一部のアミノ酸が異なる場合がある。
 例えば、ACTHにおいて、クジラは配列番号1と同じ配列であるが、ブタでは配列番号の1の31番目のSerがLeuになっており、ヒツジ、ウシでは配列番号1の33番目のGluがGlnになっている。
 本発明では、各種間において異なるMSH(α-、β-、γ-MSH)、ACTH、LPH(γ-、β-LPH)、エンドルフィン(α、β、γ-エンドルフィン)及びCLIPもPOMC由来の化合物として含める。
The above MSH (α-, β-, γ-MSH), ACTH, LPH (γ-, β-LPH), endorphins (α, β, γ-endorphin) or CLIP are some amino acids among various types. May be different.
For example, in ACTH, the whale has the same sequence as SEQ ID NO: 1, but in pigs, the 31st Ser of SEQ ID NO: 1 is Leu, and in sheep and cattle, the 33rd Glu of SEQ ID NO: 1 is Gln. It has become.
In the present invention, MSH (α-, β-, γ-MSH), ACTH, LPH (γ-, β-LPH), endorphins (α, β, γ-endorphin) and CLIP which are different among various compounds are also derived from POMC. Include as.
 また、本発明者らは、「ACTH1-39、ACTH1-24及びCLIPは、赤血球の脱核誘導作用を有すること」を確認している。よって、ACTH1-39、ACTH1-24及びCLIPに共通する下記のアミノ酸残基を有するペプチドが赤血球の脱核誘導作用を担っていると考えられる。よって、下記ペプチドもPOMC由来の化合物として含める。
 Arg-Pro-Val-Lys-Val-Tyr-Pro(配列番号12)
In addition, the present inventors have confirmed that “ACTH1-39, ACTH1-24 and CLIP have an erythrocyte enucleation-inducing action”. Therefore, it is considered that peptides having the following amino acid residues common to ACTH1-39, ACTH1-24, and CLIP are responsible for erythrocyte enucleation induction. Therefore, the following peptides are also included as POMC-derived compounds.
Arg-Pro-Val-Lys-Val-Tyr-Pro (SEQ ID NO: 12)
 また、本発明は、上記いずれかに記載のペプチドを含むペプチド、上記いずれかに記載のペプチドと90%以上の相同性を有しかつ該ペプチドと実質的同質の赤血球の脱核誘導作用を持つペプチド又は、上記いずれかに記載のペプチドに対して、1~5個のアミノ酸が置換、欠損、挿入及び/又は付加しておりかつ実質的同質の赤血球の脱核誘導作用を持つペプチドもPOMC由来の化合物として含める。 In addition, the present invention provides a peptide comprising any of the peptides described above, has 90% or more homology with any of the peptides described above, and has an effect of inducing nucleation of erythrocytes of substantially the same quality as the peptide. Peptides or peptides having 1 to 5 amino acid substitutions, deletions, insertions and / or additions to peptides described in any of the above and having a substantially homogeneous erythrocyte enucleation inducing action are also derived from POMC It is included as a compound.
 「配列番号1に記載のペプチドを含むペプチド」とは、配列番号1に記載のペプチドの赤血球の脱核作用を実質的に維持し、N末端及び/又はC末端に1~30、1~20、1~10、1~5個の任意のアミノ酸を付加したペプチドを意味する。 The “peptide containing the peptide described in SEQ ID NO: 1” substantially maintains the enucleation of erythrocytes of the peptide described in SEQ ID NO: 1, and is 1-30, 1-20 at the N-terminus and / or C-terminus. , 1 to 10, 1 to 5 means a peptide added with any amino acid.
 「配列番号1に記載のペプチドと実質的に同質の脱核誘導作用」とは、該ペプチドの赤芽球の脱核作用を有することを意味し、その程度が該ペプチドの脱核作用と比較して強くても弱くてもよい。 "Enucleation-inducing action substantially the same quality as the peptide of SEQ ID NO: 1" means that the peptide has a nucleoblast-denucleating action of the erythroblast, the degree of which is compared with that of the peptide. It can be strong or weak.
 「配列相同性」とは、通常、アミノ酸配列の全体で70%以上、好ましくは80%、より好ましくは85%以上、さらに好ましくは90%以上、さらにより好ましくは95%以上、最も好ましくは98%以上であることが適当である。 “Sequence homology” usually means 70% or more of the entire amino acid sequence, preferably 80%, more preferably 85% or more, still more preferably 90% or more, even more preferably 95% or more, and most preferably 98%. It is suitable that it is% or more.
 配列番号1に記載のアミノ酸配列で表されるペプチドと配列相同性を有するペプチドとして、例えば、配列番号1に記載のアミノ酸配列において、例えば1~15個、好ましくは1~10個、より好ましくは1~5個、さらにより好ましくは1個~3個、またさらに好ましくは1個~2個、最も好ましくは1個のアミノ酸の変異、例えば欠失、置換、付加又は挿入といった変異を有するアミノ酸配列で表されるペプチドが例示できる。アミノ酸の変異の程度及びそれらの位置等は、該変異を有するペプチドが、配列番号1に記載のアミノ酸配列で表されるペプチドと実質的に同質の脱核作用を有するものである限り特に制限されない。 As a peptide having sequence homology with the peptide represented by the amino acid sequence described in SEQ ID NO: 1, for example, in the amino acid sequence described in SEQ ID NO: 1, for example, 1 to 15, preferably 1 to 10, more preferably Amino acid sequence having 1 to 5, even more preferably 1 to 3, even more preferably 1 to 2, most preferably 1 amino acid mutation, such as a deletion, substitution, addition or insertion mutation The peptide represented by these can be illustrated. The degree of amino acid mutation and the position thereof are not particularly limited as long as the peptide having the mutation has substantially the same quality of enucleation as the peptide represented by the amino acid sequence shown in SEQ ID NO: 1. .
(脱核赤血球の保存方法)
 脱核赤血球を保存(長期間も含む)する場合、自体公知の方法を用いることができる。保存の方法として、例えば凍結保存法が挙げられ、この場合必要に応じてセルバンカー(C)(日本全薬工業株式会社)、グリセリン、エチレングリコール、ジメチルスルホキシド(DMSO)、ショ糖、グルコース、ポリビニルピロリドン(PVP)、トレハロースなどの凍結防御剤を加え、プログラムフリーザーなどを用い緩速凍結を行い、その後液体窒素又は-80℃のディープフリーザー等中に保存すればよい。
(Preservation method of enucleated red blood cells)
When storing enucleated erythrocytes (including a long period of time), a method known per se can be used. Examples of storage methods include cryopreservation methods. In this case, Cell Banker (C) (Nippon Zenyaku Kogyo Co., Ltd.), glycerin, ethylene glycol, dimethyl sulfoxide (DMSO), sucrose, glucose, polyvinyl as necessary. A cryoprotectant such as pyrrolidone (PVP) or trehalose may be added, slowly frozen using a program freezer, etc., and then stored in liquid nitrogen or a deep freezer at -80 ° C.
 以下に具体例を挙げて本発明を詳細に説明するが、本発明はこれらの例に限定されない。 Hereinafter, the present invention will be described in detail with specific examples, but the present invention is not limited to these examples.
(材料及び方法)
 実施例で使用した材料及び方法は、以下の通りである。
(Materials and methods)
The materials and methods used in the examples are as follows.
 本実施例の培養液は、すべてhematopoietic progenitor growth medium (HPGM、ロンザ社)を使用した。
(各フェーズにおける培養条件)
 (1)Expansion phase(増幅期)
 細胞:臍帯血由来又は骨髄由来のCD34陽性造血前駆細胞1×105 (cells/ml) (純度90%以上、ロンザ社)
 培養日数:7日間
 培養液の添加因子:50 ng/ml トロンボポイエチン(ペプロテック社)、50 ng/ml Flt3 リガンド(ペプロテック社)、50 ng/ml Stem Cell Factor (SCF)(R & D社)
 温度:37℃
 酸素濃度:2.0%~20.0%
 (2)Differentiation phase(分化期)
 細胞:上記(1)で増幅された細胞を2×105 (cells/ml)に希釈した。
 培養日数:3日間
 培養液への添加因子: 3 U/ml エリスロポイエチン(協和発酵キリン社)、25 ng/ml SCF、10 ng/ml インターロイキン-3 (IL-3)(ペプロテック社)、 10 ng/ml インターロイキン-6 (IL-6)(ペプロテック社)
 温度:37℃
 酸素濃度:2.0%~20.0%
 (3)Maturation Phase1(第1成熟期)
 培養開始時を M0とし、以下、M0, M1, M2と称する。
 細胞:上記(2)で培養された細胞を1×105 (cells/ml)に希釈した。
 培養日数:3日間(M0-M3)
 培養液への添加因子: 3 U/mlエリスロポイエチン
 温度:37℃
 酸素濃度:2.0%~20.0%
 (4)Maturation Phase2(第2成熟期:M3以降)
 細胞:上記(3)で培養された細胞を4×105 (cells/ml)に希釈した。
 培養日数: M5以降脱核率を測定
 培養液への添加因子:なし
 温度:37℃
 酸素濃度:2.0%~20.0%
Hematopoietic progenitor growth medium (HPGM, Lonza) was used as the culture medium in this example.
(Culture conditions in each phase)
(1) Expansion phase
Cells: Cord blood-derived or bone marrow-derived CD34 positive hematopoietic progenitor cells 1 × 10 5 (cells / ml) (Purity 90% or more, Lonza)
Culture days: 7 days Addition factor of culture solution: 50 ng / ml thrombopoietin (Peprotech), 50 ng / ml Flt3 ligand (Peprotech), 50 ng / ml Stem Cell Factor (SCF) (R & D)
Temperature: 37 ° C
Oxygen concentration: 2.0% to 20.0%
(2) Differentiation phase
Cells: The cells amplified in (1) above were diluted to 2 × 10 5 (cells / ml).
Culture days: 3 days Factors added to the culture: 3 U / ml erythropoietin (Kyowa Hakko Kirin), 25 ng / ml SCF, 10 ng / ml interleukin-3 (IL-3) (Peprotech), 10 ng / ml interleukin-6 (IL-6) (Peprotech)
Temperature: 37 ° C
Oxygen concentration: 2.0% to 20.0%
(3) Maturation Phase 1 (first maturity)
The culture start time is designated as M0, and hereinafter referred to as M0, M1, and M2.
Cells: The cells cultured in (2) above were diluted to 1 × 10 5 (cells / ml).
Culture days: 3 days (M0-M3)
Factors added to the culture medium: 3 U / ml erythropoietin Temperature: 37 ° C
Oxygen concentration: 2.0% to 20.0%
(4) Maturation Phase 2 (2nd maturity: M3 or later)
Cells: The cells cultured in (3) above were diluted to 4 × 10 5 (cells / ml).
Culture days: Measure enucleation rate after M5 Addition factor to culture medium: None Temperature: 37 ° C
Oxygen concentration: 2.0% to 20.0%
(フローサイトメトリーによる脱核率測定方法)
 フローサイトメトリーによる脱核率測定方法は、以下の通りである。
 (1)細胞染色試薬
 核染色:SYTO16(モルキュラープローブ社)
 赤血球マーカー:APCラベルーグリコホリンA(GPA)(ベクトンディッキンソン社)
 (2)測定方法
 上記(1)で染色した細胞を、フローサイトメトリーで測定した。脱核率は以下の式により算出した。フローサイトメトリーでの測定では、完全に核が排出された(細胞膜から離れた)赤血球のみが脱核細胞として測定され、脱核してもなお核が細胞膜に接着しているものは赤芽球(脱核していない細胞)として測定した。
 脱核率(%)=100 × {GPA+ SYTO16-/(GPA+ SYTO16- + GPA+ SYTO16+)}
 脱核した細胞(成熟赤血球): GPA+ SYTO16-
 赤芽球:GPA+ SYTO16+
(Method of measuring enucleation rate by flow cytometry)
The method for measuring the enucleation rate by flow cytometry is as follows.
(1) Cell staining reagent Nuclear staining: SYTO16 (Molecular Probes)
Red blood cell marker: APC label-glycophorin A (GPA) (Becton Dickinson)
(2) Measurement method The cells stained in (1) above were measured by flow cytometry. The enucleation rate was calculated by the following formula. In measurement by flow cytometry, only red blood cells from which nuclei have been completely ejected (away from the cell membrane) are measured as enucleated cells. Measured as (non-nucleated cells).
Datsukakuritsu (%) = 100 × {GPA + SYTO16 - / (GPA + SYTO16 - + GPA + SYTO16 +)}
Enucleated cells (mature red blood cells): GPA + SYTO16 -
Akablast: GPA + SYTO16 +
(顕微鏡下による脱核率測定方法)
 顕微鏡下による脱核率測定方法は、以下の通りである。
 (1)細胞染色試薬
 核染色:ヘキスト33342(モルキュラープローブ社)
 (2)測定方法
 上記(1)の染色試薬で染色した細胞を蛍光顕微鏡下にて10視野撮影(位相差像+蛍光像)し、核のある細胞と無い細胞をそれぞれカウントした。脱核率は以下の式により算出した。なお、脱核細胞の定義は、核が細胞膜の円周よりも外に突出している脱核中の細胞、もしくは核が細胞膜内に無いものとした。それ以外の核が細胞膜内にあるものを有核細胞とした。より詳しくは、顕微鏡下での脱核率は、脱核が誘導された細胞はすべて脱核細胞として測定されるため、フローサイトメトリーでの脱核率(核が細胞膜に接着しているものは有核細胞に分類される)と比較して、高くなる。また、フローサイトメトリーでの脱核率と顕微鏡下での脱核率の差は、脱核中の細胞(脱核が誘導されたが核が細胞から完全に排出されておらず、細胞膜に接着している)の率を表している。
 脱核率=脱核細胞/全細胞(有核細胞+脱核細胞)
(Method of measuring the enucleation rate under a microscope)
The method for measuring the enucleation rate under a microscope is as follows.
(1) Cell staining reagent Nuclear staining: Hoechst 33342 (Molecular Probes)
(2) Measurement method The cells stained with the staining reagent of (1) above were photographed under 10 fields of view (phase contrast image + fluorescence image) under a fluorescence microscope, and cells with and without nuclei were counted. The enucleation rate was calculated by the following formula. In addition, the definition of the enucleated cell is defined as a cell during enucleation in which the nucleus protrudes outside the circumference of the cell membrane, or the nucleus does not exist in the cell membrane. Those having other nuclei in the cell membrane were defined as nucleated cells. More specifically, the enucleation rate under the microscope is measured as all enucleated cells as enucleated cells. Therefore, the enucleation rate in flow cytometry (the one with the nucleus attached to the cell membrane) Compared to nucleated cells). In addition, the difference between the enucleation rate in flow cytometry and the enucleation rate under the microscope is the difference between the enucleated cells (the enucleation was induced, but the nuclei were not completely discharged from the cells and adhered to the cell membrane. )).
Enucleation rate = enucleated cells / whole cells (nucleated cells + enucleated cells)
(低酸素条件下での赤血球の脱核開始時期促進効果及び脱核誘導促進効果)
 低酸素条件下(2%~10% O2)での赤血球培養は、通常の好気的培養条件下(20% O2)での赤血球培養と比較して、脱核開始時期促進効果及び脱核誘導促進効果があるかどうかを確認した。詳細は、以下の通りである。
(Effects of promoting the enucleation of erythrocytes and promoting enucleation of red blood cells under hypoxic conditions)
Erythrocyte cultures under hypoxic conditions (2% to 10% O 2 ) are more effective in promoting the enucleation initiation time and denucleation compared to erythrocyte cultures under normal aerobic culture conditions (20% O 2 ). It was confirmed whether there was a nuclear induction promotion effect. Details are as follows.
 下記の培養条件により、成熟培養8日目(M8)における脱核率をフローサイトメトリーにより測定した。
<培養条件>
 細胞:臍帯血由来CD34陽性造血前駆細胞
 培養液:HPGM+ EPO (ACTHは添加していない)
 酸素濃度(O2):2, 5, 10, 20%
Under the following culture conditions, the enucleation rate on the 8th day of mature culture (M8) was measured by flow cytometry.
<Culture conditions>
Cells: Cord blood-derived CD34-positive hematopoietic progenitor cells Culture medium: HPGM + EPO (without adding ACTH)
Oxygen concentration (O 2 ): 2, 5, 10, 20%
 各酸素濃度条件下での脱核率を図1に示す。
 低酸素条件下(2%~10% O2)は、好気的培養条件下(20% O2)と比較して、4日目の脱核率が約4倍であった。すなわち、低酸素条件下(2%~10% O2)は、脱核開始時期促進効果を示す。
 さらに、低酸素条件(2%~10% O2)は、好気的培養条件(20% O2)と比較して、7日目の脱核率は非常に高い。特に、5% O2条件下は78%、好気的培養条件下(20% O2)の45%と比較して、脱核率は約1.8倍であった。これは、生理的条件下(非生理的分子の添加及び、非生理的な条件を使用しない)での脱核率としては非常に高い値である。
 以上により、低酸素条件下(2%~10% O2)での赤血球培養は、脱核開始時期促進効果及び脱核誘導促進効果があることを確認した。
FIG. 1 shows the enucleation rate under each oxygen concentration condition.
Hypoxic conditions (2% -10% O 2 ) had a 4-day enucleation rate about 4 times higher than aerobic culture conditions (20% O 2 ). That is, under the hypoxic condition (2% to 10% O 2 ), the effect of promoting the enucleation start time is exhibited.
Furthermore, hyponuclear conditions (2-10% O 2 ) have a very high enucleation rate on day 7 compared to aerobic culture conditions (20% O 2 ). In particular, the enucleation rate was about 1.8 times compared to 78% under 5% O 2 conditions and 45% under aerobic culture conditions (20% O 2 ). This is a very high value for the enucleation rate under physiological conditions (addition of non-physiological molecules and non-physiological conditions are not used).
From the above, it was confirmed that erythrocyte culture under hypoxic conditions (2% to 10% O 2 ) has an effect of promoting the enucleation initiation time and the effect of promoting enucleation induction.
(低酸素条件下での脱核赤血球の生存率上昇の確認)
 低酸素条件下(2%~5% O2)での赤血球培養は、赤血球通常の好気的培養条件下(20% O2)と比較して、脱核赤血球の生存率上昇効果があるかどうかを確認した。詳細は、以下の通りである。
(Confirmation of increased survival rate of enucleated erythrocytes under hypoxic conditions)
Is erythrocyte culture under hypoxic conditions (2% to 5% O 2 ) more effective in increasing the survival rate of enucleated erythrocytes compared to erythrocytes under normal aerobic culture conditions (20% O 2 )? I confirmed. Details are as follows.
 下記の培養条件により、成熟培養11日目(M11)における脱核率をフローサイトメトリーにより測定した。
<培養条件>
 細胞:臍帯血由来CD34陽性造血前駆細胞
 培養液:HPGM+ EPO (ACTHは添加していない)
 酸素濃度(O2):2, 5, 20%
Under the following culture conditions, the enucleation rate on the 11th day of mature culture (M11) was measured by flow cytometry.
<Culture conditions>
Cells: Cord blood-derived CD34-positive hematopoietic progenitor cells Culture medium: HPGM + EPO (without adding ACTH)
Oxygen concentration (O 2 ): 2, 5, 20%
 各酸素濃度条件下での脱核赤血球の生存率を図2に示す。
 通常の好気的培養条件(20% O2)では、M8以降に脱核赤血球は急激に変性・消失するため、脱核赤血球を維持することができなかった。通常の好気的培養条件(20% O2)の脱核赤血球/総細胞比に関し、成熟培養8日目は43.3%であったのに対し、11日目は3.2%まで急激に低下した。すなわち、約7.4%(3.2/43.3%)の脱核赤血球のみが維持できた。
 一方、低酸素条件下(2%,5% O2)は、好気的培養条件下(20% O2)と比較して、11日目の生存率が非常に高かった。より詳しくは、低酸素条件下である5% O2の脱核赤血球/総細胞比に関し、成熟培養8日目は75.9%であったのに対し、11日目はわずか41.1%にしか低下しなかった。すなわち、約54.2%(41.1/75.9%)の脱核赤血球を維持できた。
 以上により、低酸素条件下である5% O2での培養は、通常の好気的培養条件(20% O2)での培養と比較して、約7.3倍(54.2/7.4%)の脱核赤血球の生存率上昇効果を示した。
The survival rate of enucleated erythrocytes under each oxygen concentration condition is shown in FIG.
Under normal aerobic culture conditions (20% O 2 ), enucleated erythrocytes rapidly denatured and disappeared after M8, and thus could not be maintained. Regarding the enucleated red blood cell / total cell ratio under normal aerobic culture conditions (20% O 2 ), it was 43.3% on the 8th day of the mature culture, but rapidly decreased to 3.2% on the 11th day. That is, only about 7.4% (3.2 / 43.3%) of enucleated erythrocytes could be maintained.
On the other hand, under the hypoxic condition (2%, 5% O 2 ), the survival rate on the 11th day was very high compared with the aerobic culture condition (20% O 2 ). More specifically, the 5% O 2 enucleated red blood cell / total cell ratio under hypoxic conditions was 75.9% on the 8th day of mature culture compared to only 41.1% on the 11th day. There wasn't. That is, approximately 54.2% (41.1 / 75.9%) of enucleated erythrocytes could be maintained.
Based on the above, culturing with 5% O 2 under hypoxic conditions is approximately 7.3 times (54.2 / 7.4%) of detachment compared to culturing under normal aerobic culturing conditions (20% O 2 ). It showed the effect of increasing the survival rate of nuclear red blood cells.
(低酸素条件及びPOMC由来化合物添加条件下での赤血球脱核誘導促進効果の確認及び低酸素条件による核排出効果の確認)
 低酸素条件(2%~5% O2)下及びPOMC由来化合物添加条件下での赤血球培養は、赤血球通常の好気的培養条件下(20% O2)と比較して、脱核誘導促進効果があるかどうかを確認した。さらに、脱核した核が細胞膜から離脱する効果(核排出効果)についても確認した。詳細は、以下の通りである。
(Confirmation of erythrocyte enucleation induction promotion effect under hypoxic condition and POMC-derived compound addition condition and confirmation of nuclear discharge effect under hypoxic condition)
Erythrocyte culturing under hypoxic conditions (2% to 5% O 2 ) and under the addition of POMC-derived compounds is promoted to promote enucleation compared to erythrocytes under normal aerobic culture conditions (20% O 2 ) It was confirmed whether it was effective. Furthermore, the effect of removing the enucleated nucleus from the cell membrane (nuclear emission effect) was also confirmed. Details are as follows.
 下記の培養条件により、成熟培養7日目(M7)における脱核率を、蛍光顕微鏡下でのヘキストによる核染色後の脱核赤血球のカウントにより測定した。
<培養条件>
 細胞:臍帯血由来CD34陽性造血前駆細胞
 培養液:HPGM+ EPO+POMC由来化合物であるACTH添加{添加時期は、成熟培養1日目(M0)と3日目(M3)}
 酸素濃度(O2):5, 20%
Under the following culture conditions, the enucleation rate on the 7th day of mature culture (M7) was measured by counting enucleated erythrocytes after nuclear staining with Hoechst under a fluorescence microscope.
<Culture conditions>
Cells: CD34-positive hematopoietic progenitor cells derived from cord blood Culture medium: Addition of ACTH, a compound derived from HPGM + EPO + POMC {addition time is the first day of mature culture (M0) and the third day (M3)}
Oxygen concentration (O 2 ): 5, 20%
 各酸素濃度条件及びACTH(図中:A39)添加有無条件下での赤血球の脱核率を図3に示す。
 低酸素条件及びPOMC由来化合物添加条件下(O2 5% A39)での脱核率は、非常に高く90%を超えた。低酸素条件でPOMC由来化合物無添加条件下(O2 5% CNT)では81%であり、低酸素条件でもPOMC由来化合物による脱核促進効果が確認された。
 低酸素条件及びPOMC由来化合物添加条件下での脱核率は、通常の好気的培養条件(20% O2)及びPOMC由来化合物添加条件下での脱核率と比較して、約1.3倍高かった。
 これにより、低酸素条件及びPOMC由来化合物添加により、脱核率を上昇させることができることを確認した。
 また、図1のフローサイトメトリーでの測定によるO2 5%の7日目の脱核率の値と図3の顕微鏡下での測定によるO2 5%の7日目の脱核率の値を比較すると、フローサイトメトリーの測定では78%であり、顕微鏡下の80%とほぼ変わらない。一方、好気的培養条件(20%)に関し、フローサイトメトリーでの脱核率の値は45%であり、顕微鏡下での脱核率の値は55%であった。これらの数値により、低酸素条件では脱核が誘導された細胞において核がほぼ完全排出されているが、好気的条件では約10%の細胞では脱核が誘導されたにも関わらず核が細胞から離脱できていないことを確認した。つまり、低酸素条件は核排出効果を有することを確認した。
FIG. 3 shows the enucleation rate of erythrocytes under each oxygen concentration condition and with or without ACTH (A39 in the figure).
The enucleation rate under hypoxic conditions and under POMC-derived compound addition conditions (O 2 5% A39) was very high, exceeding 90%. Under low oxygen conditions, POMC-derived compound-free condition (O 2 5% CNT) was 81%, and the denuclearization promoting effect of POMC-derived compounds was confirmed even under low oxygen conditions.
The enucleation rate under hypoxic conditions and POMC-derived compound addition conditions is about 1.3 times that of normal aerobic culture conditions (20% O 2 ) and POMC-derived compound addition conditions. it was high.
Thereby, it was confirmed that the enucleation rate can be increased by the low oxygen condition and the addition of the POMC-derived compound.
In addition, the value of the enucleation rate on the 7th day of O 2 5% as measured by the flow cytometry in FIG. 1 and the value of the enucleation rate on the 7th day of O 2 5% as measured under the microscope in FIG. Is 78% in the flow cytometry measurement, which is almost the same as 80% under the microscope. On the other hand, regarding the aerobic culture condition (20%), the enucleation rate value by flow cytometry was 45%, and the enucleation rate value under a microscope was 55%. These figures indicate that the nucleus is almost completely excreted in cells that have been enucleated under hypoxic conditions, but the nucleus remains in about 10% of cells that are enucleated under aerobic conditions. It was confirmed that the cells were not detached. That is, it was confirmed that low oxygen conditions have a nuclear emission effect.
(低酸素条件下での脱核赤血球のGATA1、GATA2及びMXI1の発現向上の確認)
 低酸素条件下(5% O2)での赤血球培養は、赤血球通常の好気的培養条件下(20% O2)と比較して、脱核赤血球のGATA1、GATA2及びMXI1の発現が向上しているかどうかを確認した。詳細は、以下の通りである。
(Confirmation of improved expression of GATA1, GATA2 and MXI1 in enucleated erythrocytes under hypoxic conditions)
Erythrocyte culture under hypoxic conditions (5% O 2 ) has improved expression of GATA1, GATA2 and MXI1 in enucleated erythrocytes compared to normal erythrocyte culture conditions (20% O 2 ) To see if it is. Details are as follows.
<培養条件>
 細胞:臍帯血由来CD34陽性造血前駆細胞
 培養方法:実施例1に記載の培養方法(ACTHは添加していない)
 酸素濃度(O2):Maturation開始(M0日)まで20%酸素濃度にて培養し、M0日にて細胞を酸素5%および20%の2つの群に分けた。
 GATA1、GATA2及びMXI1の発現量の測定:M3日に細胞を遠心分離により回収し、RNA抽出、そしてリアルタイムPCRを行った。
<Culture conditions>
Cells: Cord blood-derived CD34-positive hematopoietic progenitor cells Culture method: Culture method described in Example 1 (without adding ACTH)
Oxygen concentration (O 2 ): Culture was carried out at 20% oxygen concentration until the start of Maturation (M0 day), and cells were divided into two groups of oxygen 5% and 20% on M0 day.
Measurement of expression levels of GATA1, GATA2 and MXI1: On day M3, cells were collected by centrifugation, RNA extraction, and real-time PCR were performed.
 各酸素濃度条件下でのGATA1、GATA2及びMXI1の発現量を図4に示す。
 赤芽球分化において必要とされる転写因子GATA1及びGATA2、並びに脱核過程前の核濃縮を誘導する転写因子MXI1において、低酸素条件下のすべての遺伝子発現量は、通常酸素条件下の遺伝子発現量と比較して、顕著に増加していた。
The expression levels of GATA1, GATA2 and MXI1 under each oxygen concentration condition are shown in FIG.
In the transcription factors GATA1 and GATA2 required for erythroblast differentiation and the transcription factor MXI1, which induces nuclear enrichment before the enucleation process, all gene expression levels under hypoxic conditions are gene expression under normal oxygen conditions There was a marked increase compared to the amount.
(低酸素条件下での脱核赤血球のMC1R、MC2R及びMC5Rの発現向上の確認)
 低酸素条件下(5% O2)での赤血球培養は、赤血球通常の好気的培養条件下(20% O2)と比較して、脱核赤血球のMC1R、MC2R及びMC5Rの発現が向上しているかどうかを確認した。詳細は、以下の通りである。
(Confirmation of improved expression of MC1R, MC2R and MC5R in enucleated erythrocytes under hypoxic conditions)
Erythrocyte culture under hypoxic conditions (5% O 2 ) improves MC1R, MC2R and MC5R expression of enucleated erythrocytes compared to erythrocytes under normal aerobic culture conditions (20% O 2 ). To see if it is. Details are as follows.
<培養条件>
 細胞:臍帯血由来CD34陽性造血前駆細胞
 培養方法:実施例1に記載の培養方法(ACTHは添加しているない)
 酸素濃度(O2):Maturation開始(M0日)まで20%酸素濃度にて培養し、M0日にて細胞を酸素5%および20%の2つの群に分けた。
 MC1R、MC2R及びMC5Rの発現量の測定:M3日に細胞を遠心分離により回収し、RNA抽出、そしてリアルタイムPCRを行った。
<Culture conditions>
Cell: Cord blood-derived CD34-positive hematopoietic progenitor cells Culture method: Culture method described in Example 1 (ACTH is not added)
Oxygen concentration (O 2 ): Culture was carried out at 20% oxygen concentration until the start of Maturation (M0 day), and cells were divided into two groups of oxygen 5% and 20% on M0 day.
Measurement of expression levels of MC1R, MC2R and MC5R: On day M3, cells were collected by centrifugation, RNA extraction, and real-time PCR were performed.
 各酸素濃度条件下でのMC1R、MC2R及びMC5Rの発現量を図5に示す。
 低酸素条件下のすべてのMC1R、MC2R及びMC5Rの遺伝子発現量は、通常酸素条件下の遺伝子発現量と比較して、顕著に増加していた。
 これにより、ACTHによる脱核促進効果が、ACTH無添加においてもレセプターの発現増加により得られるものと考えられる。
The expression levels of MC1R, MC2R and MC5R under each oxygen concentration condition are shown in FIG.
The gene expression levels of all MC1R, MC2R and MC5R under hypoxic conditions were remarkably increased compared to the gene expression levels under normal oxygen conditions.
Thus, it is considered that the enucleation promoting effect by ACTH can be obtained by increasing the expression of the receptor even without addition of ACTH.
(低酸素条件下での骨髄由来CD34陽性造血前駆細胞由来赤血球の脱核誘導促進効果の確認)
 低酸素条件下(2%、10% O2)での赤血球培養は、通常の好気的培養条件下(20% O2)での赤血球培養と比較して、脱核誘導促進効果があるかどうかを確認した。詳細は、以下の通りである。
(Confirmation of the effect of promoting enucleation of bone marrow-derived CD34-positive hematopoietic progenitor erythrocytes under hypoxic conditions)
Is erythrocyte culture under hypoxic conditions (2%, 10% O 2 ) more effective in promoting enucleation induction than erythrocyte culture under normal aerobic culture conditions (20% O 2 )? I confirmed. Details are as follows.
 下記の培養条件により、成熟培養7日目(M7)における脱核率をフローサイトメトリーにより測定した。
<培養条件>
 細胞:骨髄血由来CD34陽性造血前駆細胞(ロンザ社)
 培養方法:実施例1と同じ方法で培養した。なお、ACTHは添加していない。
 酸素濃度(O2):2, 10, 20%
Under the following culture conditions, the enucleation rate on the seventh day of mature culture (M7) was measured by flow cytometry.
<Culture conditions>
Cells: Bone marrow blood-derived CD34 positive hematopoietic progenitor cells (Lonza)
Culturing method: Culturing was carried out in the same manner as in Example 1. ACTH is not added.
Oxygen concentration (O 2 ): 2, 10, 20%
 各酸素濃度条件下での脱核率を図6に示す。酸素20%の条件では脱核率24.8%、酸素10%の条件では脱核率31.5%、及び酸素2%の条件では脱核率38.4%(P<0.01)であった。
 すなわち、酸素濃度依存的に脱核率の上昇が認められた。特に、酸素2%の低酸素条件下は、酸素20%の条件下と比較して、約1.5倍の脱核率上昇の効果が認められた。
 これにより、骨髄由来細胞においても、臍帯血由来細胞での効果(酸素5%条件下での脱核率は、酸素20%条件下での脱核率と比較して、1.8倍高い)に相当する結果が得られた。
 以上により、由来の異なる造血前駆細胞においても、低酸素条件下によって1.5~1.8倍の脱核率を向上させることができる。
FIG. 6 shows the enucleation rate under each oxygen concentration condition. The denuclearization rate was 24.8% at 20% oxygen, 31.5% at 10% oxygen, and 38.4% (P <0.01) at 2% oxygen.
That is, an increase in the enucleation rate was recognized depending on the oxygen concentration. In particular, the hyponuclear condition with 2% oxygen showed an effect of increasing the enucleation rate by about 1.5 times compared with the condition with 20% oxygen.
This also corresponds to the effect of umbilical cord blood-derived cells on bone marrow-derived cells (the enucleation rate under oxygen 5% condition is 1.8 times higher than the enucleation rate under oxygen 20% condition) The result to be obtained.
As described above, even in hematopoietic progenitor cells of different origins, the enucleation rate can be improved by 1.5 to 1.8 times under hypoxic conditions.
(総論)
 実施例2~4の結果により、低酸素条件下での赤芽球の培養は、脱核開始時期促進効果、脱核誘導促進効果、核排出促進効果、及び脱核赤血球の生存率上昇効果を示す。さらに、低酸素条件下及びPOMC由来化合物添加条件下での赤芽球の培養の脱核率は、低酸素条件下での赤芽球の培養の脱核率と比較して、高い。
 実施例5~6の結果により、低酸素条件下での赤芽球の培養では、GATA1、GATA2及びMXI1の発現が向上している。
 実施例7の結果により、低酸素条件下での赤芽球の培養では、造血前駆細胞由来にかかわらず、脱核率向上をさせることができる。
 以上により、本発明の赤芽球の脱核方法は、短時間に哺乳類由来赤血球分化の最終段階の脱核を誘導し、さらに維持することができた。
(General)
According to the results of Examples 2 to 4, culturing erythroblasts under hypoxic conditions has an effect of promoting the enucleation initiation time, the effect of promoting the enucleation induction, the effect of promoting nuclear ejection, and the effect of increasing the survival rate of enucleated erythrocytes. Show. Furthermore, the enucleation rate of the erythroblast culture under the hypoxic condition and the POMC-derived compound addition condition is higher than the enucleation rate of the erythroblast culture under the hypoxic condition.
From the results of Examples 5 to 6, the expression of GATA1, GATA2, and MXI1 is improved in the culture of erythroblasts under hypoxic conditions.
According to the results of Example 7, nucleation of erythroblasts under hypoxic conditions can improve the enucleation rate regardless of the origin of hematopoietic progenitor cells.
As described above, the erythroblast enucleation method of the present invention was able to induce and maintain the enucleation of the final stage of mammalian erythrocyte differentiation in a short time.
 本発明は、短時間に赤血球分化の最終段階の脱核を誘導し、さらに維持することができる脱核方法を提供することができた。
 これにより、血液の製造期間を短縮可能になり、赤血球前駆細胞や赤芽球の輸血に伴う癌化の危険性を除くことが可能となる。すなわち、安全な血液を短時間・かつ安定して得ることができ、医療技術への貢献は非常に大きい。
The present invention was able to provide a method for enucleation that can induce and maintain the enucleation of the final stage of erythroid differentiation in a short time.
As a result, the blood production period can be shortened, and the risk of canceration associated with transfusion of erythrocyte progenitor cells and erythroblasts can be eliminated. That is, safe blood can be obtained stably in a short time, and the contribution to medical technology is very large.

Claims (9)

  1.  造血系幹細胞、赤血球前駆細胞、及び/又は赤芽球を1.0%~18.0%の酸素条件下の培養液で培養することを特徴とする赤芽球の脱核方法及び/又は脱核赤血球の維持方法。 A method for enucleating erythroblasts and / or maintaining enucleated erythrocytes, comprising culturing hematopoietic stem cells, erythroid progenitor cells, and / or erythroblasts in a culture solution under oxygen conditions of 1.0% to 18.0% Method.
  2.  前記酸素条件が2.0%~10.0%である請求項1に記載の方法。 The method according to claim 1, wherein the oxygen condition is 2.0% to 10.0%.
  3.  前記酸素条件が3.0%~7.0%である請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the oxygen condition is 3.0% to 7.0%.
  4.  前記酸素条件が4.0%~6.0%である請求項1~3のいずれか1に記載の方法。 The method according to any one of claims 1 to 3, wherein the oxygen condition is 4.0% to 6.0%.
  5.  前記培養液に、プロオピオメラノコルチン(POMC)由来の化合物を含む請求項1~4のいずれか1に記載の方法。 The method according to any one of claims 1 to 4, wherein the culture solution contains a compound derived from proopiomelanocortin (POMC).
  6.  前記化合物は、以下のいずれか1から選ばれる請求項5に記載の方法。
     (1)ACTH
     (2)POMC
     (3)MSH
     (4)LPH
     (5)エンドルフィン
     (6)CLIP
    The method according to claim 5, wherein the compound is selected from any one of the following.
    (1) ACTH
    (2) POMC
    (3) MSH
    (4) LPH
    (5) Endorphins (6) CLIP
  7.  前記化合物は、ACTHである請求項5又は6に記載の方法。 The method according to claim 5 or 6, wherein the compound is ACTH.
  8.  GATA1、GATA2及び/又はMXI1の発現が向上していることを特徴とする請求項1~7のいずれか1に記載の方法。 The method according to any one of claims 1 to 7, wherein the expression of GATA1, GATA2 and / or MXI1 is improved.
  9.  MC1R、MC2R及び/又はMC5Rの発現が向上していることを特徴とする請求項1~8のいずれか1に記載の方法。 The method according to any one of claims 1 to 8, wherein expression of MC1R, MC2R and / or MC5R is improved.
PCT/JP2014/062205 2013-05-07 2014-05-06 Method for enucleating erythroblasts and method for maintaining enucleated erythrocytes WO2014181783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-097312 2013-05-07
JP2013097312A JP2016135100A (en) 2013-05-07 2013-05-07 Erythroblast enucleation method, and enucleated erythrocyte maintenance method

Publications (1)

Publication Number Publication Date
WO2014181783A1 true WO2014181783A1 (en) 2014-11-13

Family

ID=51867263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062205 WO2014181783A1 (en) 2013-05-07 2014-05-06 Method for enucleating erythroblasts and method for maintaining enucleated erythrocytes

Country Status (2)

Country Link
JP (1) JP2016135100A (en)
WO (1) WO2014181783A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525031A (en) * 2017-06-30 2020-08-27 エタブリスモン フランセ ドュ サンEtablissement Francais Du Sang Method for producing erythroid progenitor cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098079A1 (en) * 2009-02-24 2010-09-02 学校法人金沢医科大学 Method for denucleating nucleated erythrocyte, and denucleation inducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098079A1 (en) * 2009-02-24 2010-09-02 学校法人金沢医科大学 Method for denucleating nucleated erythrocyte, and denucleation inducer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANGUITA EDUARDO ET AL.: "Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2", EMBO J., vol. 23, no. 14, 2004, pages 2841 - 2852 *
KEN'ICHI SAWADA: "Updated review of erythroblast enucleation", HEMATOLOGY & ONCOLOGY, vol. 59, no. 3, 2009, pages 332 - 338 *
NAKAJIMA YURIKO ET AL.: "The induction of erythroblast differentiation and enucleation under hypoxic culture conditions", JPN. J. CLIN. HEMATOL., vol. 54, no. 9, September 2013 (2013-09-01), pages 1240 *
SHIBATA TAKESHI: "Studies on erythropoiesis II In vitro studies on red cell proliferation under varied oxygen tension", ACTA MEDICA OKAYAMA, vol. 18, no. 4, 1964, pages 179 - 188 *
WADA HIDEHO ET AL.: "Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system", BLOOD, vol. 75, no. 2, 1990, pages 505 - 511 *
ZHANG LINGBO ET AL.: "miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxil", GENES & DEVELOPMENT, vol. 25, no. 2, 2011, pages 119 - 124 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525031A (en) * 2017-06-30 2020-08-27 エタブリスモン フランセ ドュ サンEtablissement Francais Du Sang Method for producing erythroid progenitor cells
JP7162625B2 (en) 2017-06-30 2022-10-28 エタブリスモン フランセ ドュ サン Methods of producing erythroid progenitor cells

Also Published As

Publication number Publication date
JP2016135100A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
EP2841563B1 (en) Method for developing natural killer cells from stem cells
KR101947588B1 (en) Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts
Douay Experimental culture conditions are critical for ex vivo expansion of hematopoietic cells
JP2007536936A (en) Stem cell populations and methods of use
AU2006321172B2 (en) Methods of improving stem cell homing and engraftment
JP7016102B2 (en) A method for producing T cells or NK cells, a medium for culturing T cells or NK cells, a method for culturing T cells or NK cells, a method for maintaining an undifferentiated state of undifferentiated T cells, and an agent for promoting the growth of T cells or NK cells.
JP5597904B2 (en) Culture method for blood cell differentiation from pluripotent stem cells
US20160222350A1 (en) Method For Enucleating Nucleated Erythrocyte, And Enucleation Inducer
JP2022534397A (en) Methods of generating and expanding hematopoietic stem cells
US20190046578A1 (en) Methods and compositions for expanding long-term hematopoietic stem cell populations
JP2014523741A (en) Megakaryocyte progenitor cells for platelet production
JP5791506B2 (en) Peptides that suppress differentiation of hematopoietic stem cells or hematopoietic progenitor cells and uses thereof
JP2004222502A (en) Method for amplifying hematopoietic stem cell
CN111164204A (en) Method for preparing T cell population with genetic diversity from iPS cells
WO2015152305A1 (en) Growth peptide for hematopoietic cells and use for growth peptide for hematopoietic cells
WO2014181783A1 (en) Method for enucleating erythroblasts and method for maintaining enucleated erythrocytes
WO2022241558A1 (en) A method for producing blood progenitor and progenitor t cells, resulting cells and methods and uses thereof
Tsujp et al. A Murine Stromal Cell Line Promotes the Expansion of CD34hlgh+-Primitive Progenitor Cells Isolated from Human Umbilical Cord Blood in Combination with Human Cytokines
US20060084170A1 (en) Cytokine-free growth and maintenance of progenitor cells
Ziegler et al. Expansion of stem and progenitor cells
JP2004024089A (en) Cell culture equipment, cell culture medium, cell culture kit and cell culture method
CN116836920B (en) Serum-free culture medium and method for preparing mesenchymal stem cells by using same
JP6817633B2 (en) Hematopoietic stem cell amplification inducer
Shatirishvili et al. Cord blood hematopoietic stem cell expansion: preclinical studies and clinical trials. Review
EP1424388A1 (en) Method of enriching and/or propagating non-embryonic stem cells while preventing differentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794373

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP