WO2014181023A1 - Beta-glucosidase variants having reduced transglycosylation activity - Google Patents

Beta-glucosidase variants having reduced transglycosylation activity Download PDF

Info

Publication number
WO2014181023A1
WO2014181023A1 PCT/ES2014/070391 ES2014070391W WO2014181023A1 WO 2014181023 A1 WO2014181023 A1 WO 2014181023A1 ES 2014070391 W ES2014070391 W ES 2014070391W WO 2014181023 A1 WO2014181023 A1 WO 2014181023A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
glucosidase
seq
acid sequence
amino acid
Prior art date
Application number
PCT/ES2014/070391
Other languages
Spanish (es)
French (fr)
Inventor
Bruno Díez García
Ana GÓMEZ RODRÍGUEZ
Jorge GIL MARTÍNEZ
Noelia VALBUENA CRESPO
Antonio Javier MORENO PÉREZ
Rafael DUEÑAS SÁNCHEZ
Ana María MUÑOZ GONZÁLEZ
Dolores PÉREZ GÓMEZ
Sandra GAVALDÁ MARTÍN
Laura SÁNCHEZ ZAMORANO
Consolación ÁLVAREZ NÚÑEZ
María De Los Angeles BERMÚDEZ ALCANTARA
Pablo GUTIÉRREZ GÓMEZ
Ricardo ARJONA ANTOLÍN
Original Assignee
Abengoa Bioenergía Nuevas Tecnologías, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Bioenergía Nuevas Tecnologías, S.A. filed Critical Abengoa Bioenergía Nuevas Tecnologías, S.A.
Publication of WO2014181023A1 publication Critical patent/WO2014181023A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the invention pertains to the field of enzymes useful for the production of bioproducts and, more particularly, to beta-glucosidase vanants and their use in the production of fermentable sugars and ethanol from cellulosic material.
  • Vegetable biomass provides an abundant source of potential energy in the form of sugars and, therefore, is an important renewable source for the generation of fermentable sugars. Fermentation of these sugars can lead to commercially valuable end products, such as ethanol also called bioethanol.
  • any saccharification technology is to alter or eliminate structural and compositional impediments to hydrolysis in order to improve the rate of Enzymatic hydrolysis and increase yields of fermentable sugars from cellulose or hemicelluloses (N. Mosier et al., 2005, Bioresource Technology 96, 673-686). After this saccharification stage a fermentation process is carried out.
  • Cellulases (1,4-beta-D-glucan-4-glucanhydrolase, EC 3.2.1.4) are multienzyme complexes comprising three main components, endo-p-glucanase (EC 3.2.1 .4), exo-p-glucanase or cellobiohydrolase (EC 3.2.1 .9.1) and ⁇ -glucosidase (EC 3.2.1 .21), which have been shown to act synergistically in cellulose hydrolysis (Ekperigin, MM, 2007, African Journal of Biotechnology, Vol. 6 (1), p. 028-033).
  • beta-glucosidase is a glucosidase enzyme that acts on the ⁇ 1 -> 4 bonds that bind two glucoses or glucose-substituted molecules (i.e., the cellobiose disaccharide). It is an exocellulase with specificity for various substrates of beta-D-glycosides. It catalyzes the hydrolysis of non-reducing terminal residues in beta-D-glycosides with glucose release. Therefore, it is widely used together with other cellulases in processes for the conversion of cellulosic biomass into fermentable sugars. Its application in the conversion of biomass with a high cellulose content into fermentable sugars for the production of fuel ethanol is an area extensively studied.
  • Beta-glucosidases (BGLs, EC 3.2.1 .21) catalyze the transfer of glycosyl groups between oxygen nucleophiles on different types of substrates.
  • BGLs with a retention mechanism (Rye et al., 2000. Curr. Opin. Chem. Biol. 4), as is the case with Bgl1, have reduced hydrolytic activity at high concentrations of substrate or product and this depends at least that two different phenomena occur: inhibition and transglycosylation (Bohlin et al., 2013, Appl. Microbiol. Biotechnol., 97 (1): 159-169).
  • the retention mechanism initially forms a covalent glycosyl complex with the enzyme.
  • This intermediate decomposes in the second stage of the reaction, which can be produced by a water molecule (hydrolytic activity) or by an acceptor sugar (transglycosylation activity).
  • the acceptor is the substrate itself.
  • cellobiose has been described as a preferential substrate to retain BGLs in their transglycosylation reaction.
  • a beta glucosidase with a hydrolytic activity capable of producing glucose efficiently but with a reduced transglycosylating activity would be useful, being able to decrease the synthesis of other compounds, such as ethyl-beta-D-glucopyranoside in the presence of ethanol, so as to increase the production of fermentable sugars and will improve the performance of an enzyme mixture containing BGL.
  • the present invention describes new beta-glucosidase vanants with reduced transglycosylation capacity for the hydrolysis of cellulosic material in fermentable sugars, as well as a process for producing said beta-glucosidase variants, a process for producing fermentable sugars and a process for producing bioproducts, such as ethanol, with said variants.
  • the present invention represents a solution to the need to provide beta-glucosidase vanants with the enhanced property of reduced transglycosylation activity for optimization of the stage of hydrolysis of cellulosic material in fermentable sugars.
  • beta-glucosidases decreases the final concentration of fermentable sugars in ethanol and, consequently, the yield of the final product of the process.
  • the inventors have demonstrated that the beta-glucosidase vanants of the present invention have reduced transglycosylation activity and, therefore, significantly increase the yield of the hydrolysis stage, which leads to an increase in the production of the bioproduct, preferably ethanol.
  • a first aspect of the present invention relates to a method for the selection of beta-glucosidase variants with reduced transglycosylation activity compared to the native beta-glucosidase, hereinafter referred to as "first method of the invention", which comprises: a) Incubate the beta-glucosidase vahants with p-nitro-phenyl-glucopyranoside in the presence of cellobiose,
  • step (b) Compare the p-nitrophenol value measured in step (b) with a reference value
  • beta-glucosidase refers to an enzyme that catalyzes the hydrolysis of a sugar dimer, including, but not limited to, cellobiose, with the release of a corresponding sugar monomer, which is used. , but without limitation, for the synthesis of ethanol.
  • the beta-glucosidase enzyme acts on the ⁇ 1 -> 4 bonds that bind two glucoses or glucose-substituted molecules (i.e. cellobiose disaccharide). It is an exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of non-reducing terminal residues in beta-D-glycosides with glucose release.
  • vanant refers to an enzyme that comes from a native enzyme by one or more deletions, insertions and / or substitutions of one or more amino acids at the point (s) within its amino acid sequence. and, therefore, has a different sequence from that of the native enzyme.
  • vacancy of beta-glucosidase means a polypeptide that has beta-glucosidase activity produced by an organism that expresses a modified nucleotide sequence encoding a native beta-glucosidase. Said modified nucleotide sequence is obtained by human intervention by modification of the nucleotide sequence encoding a native beta-glucosidase.
  • modification means herein any chemical modification of the amino acid or nucleic acid sequence of a native beta-glucosidase.
  • native beta-glucosidase refers to a beta-glucosidase enzyme or its preprotein, expressed by a microorganism such as bacteria or filamentous fungi.
  • the native beta-glucosidase enzyme referred to in the present invention is expressed by a filamentous fungus, more preferably by a fungus belonging to the genus Myceliophthora, even more preferably by Myceliophthora thermophila, even more preferably the enzyme beta- Native glucosidase is the enzyme of SEQ ID NO: 1 (also called BgM) or SEQ ID NO: 2.
  • SEQ ID NO: 2 is the preprotein of SEQ ID NO: 1 and consists of a signal peptide corresponding to amino acids 1 to 19 of SEQ ID NO: 2 linked to SEQ ID NO: 1.
  • transglycosylation activity of beta-glucosidases consists in the initial formation of a covalent glycosyl complex with the enzyme and its subsequent decomposition in the second stage of the reaction by means of an acceptor sugar, instead of being produced by a water molecule ( hydrolytic activity).
  • acceptor sugar is the substrate itself.
  • the p-nitro-phenyl-glucopyranoside substrate is also called pNGP.
  • This substrate is hydrolyzed by beta-glucosidase. Therefore, this substrate is incubated under conditions that allow beta-glucosidase variants to perform the hydrolytic process in step (a) of the first process of the invention. Additionally, said incubation is performed in the presence of cellobiose, since this disaccharide has been described as a preferential substrate to retain beta-glucosidases in their transglycosylation activity. Therefore, in the presence of cellobiose, the hydrolytic activity of beta-glucosidase on pNGP shows a reduction due to the transglycosylation activity.
  • reference value refers to the measurement of p-nitrophenol released by a native beta-glucosidase, preferably SEQ ID NO: 1 or SEQ ID NO: 2, incubated with pNGP in the presence of cellobiose.
  • a native beta-glucosidase incubated with pNGP in the presence of cellobiose has a low production of p-nitrophenol, since the enzyme will use cellobiose as substrate to carry out the transglycosylation process instead of using pNGP to carry out the hydrolytic process that generates p-nitrophenol.
  • step (a) the measurement of p-nitrophenol released after incubation in step (a) and its comparison with the measurement of p-nitrophenol released after incubation of a native beta-glucosidase with pNGP in the presence of cellobiose allows the selection of beta-glucosidase vanants with lower transglycosylation capacity than that of a native beta-glucosidase.
  • the comparison in step (c) can be performed manually or by computer.
  • a low transglycosylation activity can also be recognized when a hydrolytic capacity in pNGP of between 30-70% is measured in step (b).
  • the beta-glucosidase vanants used in the first process of the invention can be derived either from a library of mutants already known in the state of the art or commercially available or can be designed by any method known to those skilled in the art. matter to generate a library of mutants of an enzyme.
  • the mutants that constitute said library may comprise substitutions, deletions and / or insertions of one or more amino acids in their amino acid sequences, as well as substitution of one or more amino acid side chains.
  • another aspect of the invention refers to a process for producing beta-glucosidase variants with reduced transglycosylation activity compared to native beta-glucosidase, hereinafter "second process of the invention", which comprises the design of a library of beta-glucosidase enzyme mutants and the selection of beta-glucosidase vanants with reduced transglycosylation activity according to steps (a) to (d) of the first method of the invention
  • Another aspect of the invention refers to an isolated beta-glucosidase vanant produced by the second process of the invention.
  • beta-vacancy Isolated glucosidase comprising an amino acid sequence having a sequence identity of at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% with SEQ ID NO: 2 and comprises an amino acid substitution at position Q21 1 corresponding to positions 1 to 871 of SEQ ID NO: 2, where the beta-glucosidase vanant has a reduced transglycosylation activity compared to native beta-glucosidase, hereinafter referred to as "beta-glucosidase vanant of the invention".
  • the reduced transglycosylation activity compared to native beta-glucosidase is preferably measured by the first method of the invention described above.
  • the amino acid substitution of said vane is Q21 1 H.
  • identity in the context of describing two or more polypeptide sequences, refers to a specified percentage of amino acid residue matches at positions from an alignment of two amino acid sequences. Sequence alignment procedures for comparison are well known in the art. The degree of identity can be determined by the Clustal method (Higgins, 1989, CABIOS 5: 151-153), the Wilbur-Lipman method (Wilbur and Lipman, 1983, Proceedings of the National Academy of Science USA 80: 726- 730), the GAG program, including GAP (Devereux et al.
  • the beta-glucosidase vahant of the invention may exhibit limited changes in its amino acid sequence. These changes allow maintenance of the beta-glucosidase variant function and reduced transglycosylation activity compared to native beta-glucosidase. These changes may be substitutions, deletions or additions.
  • the substitutions are conserved amino acids that are amino acids with side chains and similar properties with respect to, for example, hydrophobic or aromatic properties. These substitutions include, but are not limited to, substitutions between Glu and Asp, Lys and Arg, Asn and Gln, Ser and Thr, and / or among the amino acids included in the following list: Ala, Leu, Val e lie. The changes do not lead to relevant modifications in the essential characteristics or properties of the beta-glucosidase variant of the invention.
  • amino acid substitution at position Q21 1, corresponding to positions 1 to 871 of SEQ ID NO: 2 is by amino acids having the same properties, on, for example, hydrophobic or aromatic properties, as the amino acid H.
  • substitutions allow the beta-glucosidase vanants of the invention to maintain the same function as the preferred vanant of SEQ ID NO: 4, including reduced transglycosylation activity compared to native beta-glucosidase.
  • the beta-glucosidase variant of the invention comprises the amino acid sequence SEQ ID NO: 4.
  • An example of a beta-glucosidase variant of the invention comprising the amino acid sequence SEQ ID NO: 4 is the polypeptide of SEQ ID NO: 5, which is the preprotein of SEQ ID NO: 4, which consists of a signal peptide corresponding to amino acids 1 to 19 of SEQ ID NO: 5 linked to SEQ ID NO: 4. Therefore
  • the beta-glucosidase vanant of the invention consists of the amino acid sequence SEQ ID NO: 5.
  • This SEQ ID NO: 5 corresponds to the native beta-glucosidase of SEQ ID NO: 2, which comprises amino acid substitution Q21 1 H.
  • substitution Q21 1 H reduces the activity of transglycosylation of the enzyme, which increases the final concentration of fermentable sugars in a hydrolytic process from cellulosic material.
  • Said sequence SEQ ID NO: 5 will also be referred to hereinafter as Bgl1 Q21 1 H preprotein.
  • the beta-glucosidase vanant of the invention consists of the amino acid sequence SEQ ID NO: 4. This SEQ ID NO: 4 corresponds to the mature beta-glucosidase of SEQ ID NO: 5.
  • Said sequence SEQ ID NO: 4 will also be referred to as mature Bgl1 Q21 1 H protein.
  • the beta-glucosidase vanant of the invention can be synthesized, for example, but without limitations, in vitro. For example, through the synthesis of solid phase peptides or recombinant DNA approaches.
  • the beta-glucosidase variant of the invention can be produced recombinantly, including its production as a mature peptide or as a preprotein that includes a signal peptide.
  • the preparation of the beta-glucosidase vanant of the invention can be carried out by any means known in the art, such as modification of a DNA sequence encoding a native beta-glucosidase, such as, for example, but not limited to, the SEQ ID NO: 3, which encodes the preprotein of SEQ ID NO: 2, transformation of the modified DNA sequence into a suitable host cell and expression of the modified DNA sequence to form the enzymatic vanant.
  • modification of a DNA sequence encoding a native beta-glucosidase such as, for example, but not limited to, the SEQ ID NO: 3, which encodes the preprotein of SEQ ID NO: 2, transformation of the modified DNA sequence into a suitable host cell and expression of the modified DNA sequence to form the enzymatic vanant.
  • nucleic acid sequence of the invention provides an isolated nucleic acid sequence encoding the beta-glucosidase vanant of the invention or the beta-glucosidase vahant produced by the second process of the invention, hereinafter referred to as "nucleic acid sequence of the invention ", and the nucleic acid sequence complementary thereto.
  • an "isolated nucleic acid molecule", “nucleotide sequence”, “nucleic acid sequence” or “polynucleotide” is a nucleic acid molecule (polynucleotide) that has been removed from its natural environment (ie, that has undergone human manipulation) and may include DNA, RNA or derivatives of DNA or RNA, including cDNA.
  • the nucleotide sequence of the present invention may or may not be chemically or biochemically modified, and may be obtained artificially by cloning and selection procedures or by sequencing.
  • the nucleic acid sequence of the invention can encode the mature polypeptide or a preprotein consisting of a signal peptide bound to the mature enzyme that will have to be further processed.
  • the nucleotide sequence of the present invention may also comprise other elements, such as introns, non-coding sequences at the 3 'and / or 5' ends, ribosome binding sites, etc.
  • This nucleotide sequence may also include coding sequences for additional amino acids that are useful for purification or stability of the encoded peptide.
  • the nucleic acid sequence of the invention is SEQ ID NO: 6, which is the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 5 (preprotein of SEQ ID NO: 4).
  • nucleic acid sequence of a nucleic acid sequence encoding the beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second process of the invention, refers to the acid sequence nucleic of the strand complementary to that encoding the beta-glucosidase vanant of the invention, or the beta-glucosidase vanant produced by the second method of the invention.
  • a double-stranded DNA or encoding a given amino acid sequence comprises a monocatenaho DNA and its complementary strand, which has a sequence that is complementary to the monocatenaho DNA.
  • the nucleic acid sequence of the invention can be included in a genetic construct, preferably in an expression vector.
  • Said genetic construct may further comprise one or more gene expression regulatory sequences, such as promoters, terminators etc. Therefore, in another aspect, the invention provides a genetic construct comprising the nucleic acid sequence of the invention or the nucleic acid sequence complementary thereto, hereinafter "gene construct of the invention".
  • said gene construct is an expression vector.
  • nucleic acid construct refers to a functional unit necessary for the transfer or expression of a gene of interest, herein, the nucleic acid sequence of the invention as described, and regulatory sequences, including, for example, a promoter , operably linked to the sequence encoding the protein. It refers to a single or double stranded nucleic acid molecule that is isolated from a natural gene or that is modified to contain nucleic acid segments in a way that would not otherwise exist in nature.
  • nucleic acid construct is synonymous with the expression "expression cassette,” when the nucleic acid construct contains the control sequences required for the expression of the coding sequence.
  • expression vector also known as "expression construct” or “plasmid,” refers to a linear or circular DNA molecule, which comprises the nucleic acid sequence of the invention and is operably linked to segments. additional that provide transcription of the encoded peptide.
  • a plasmid is used to introduce a specific gene into a target cell. Once the expression vector is inside the cell, the protein that is encoded by the gene is produced by the ribosomal complexes of the cell transcription and translation machinery. Often the plasmid is engineered to contain regulatory sequences that act as enhancer and promoter regions and that lead to efficient transcription of the gene carried in the expression vector.
  • the objective of a well-designed expression vector is the production of large amounts of stable messenger RNA and, therefore, of proteins.
  • Expression vectors are basic tools of biotechnology and protein production, such as enzymes.
  • the expression vector of the invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as an extrachromosomal self-replicating vector.
  • expression vectors are phages, cosmids, phagemids, artificial yeast chromosomes (YAC), artificial chromosomes. bacterial (BAC), human artificial chromosomes (HAC) or viral vectors, such as adenovirus, retrovirus or lentivirus.
  • the gene constructs of the present invention encompass an expression vector, where the expression vector can be used to transform a suitable host or host cell so that the host can express the beta-glucosidase vanant of the invention or the beta-vanant glucosidase produced by the second process of the invention.
  • Methods for recombinant protein expression in fungi and other organisms are well known in the art and numerous expression vectors are available or can be constructed using routine procedures.
  • control sequences is defined herein to include all components that are necessary or advantageous for the expression of the nucleic acid sequence of the present invention.
  • control sequences include, but are not limited to, a leader, a polyadenylation sequence, a propeptide sequence, a promoter, a signal peptide sequence and a transcription terminator.
  • the control sequences include a promoter and termination signals of transcription and translation.
  • Control sequences can be provided with linkers in order to introduce specific restriction sites that facilitate the binding of control sequences with the coding region of the nucleic acid sequence of the present invention.
  • operably linked indicates herein a configuration in which a control sequence is placed in a suitable position relative to the nucleic acid sequence of the present invention, such that the control sequence directs the expression of the nucleic acid sequence of the present invention.
  • the expression vector of the invention can be an autonomous replication vector, that is a vector that exists as an extrachromosomal entity, whose replication is independent of chromosome replication, for example a plasmid, an extrachromosomal element, a minichromosome or a chromosome. artificial.
  • the vector may contain any means to guarantee self-replication.
  • the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome (s) in which it has been integrated.
  • a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon can be used.
  • the vectors used in the present invention preferably contain one or more selectable markers that allow easy selection of transformed, transfected, transduced or similar cells.
  • a selectable marker is a gene product that provides resistance to a biocide or a virus, to heavy metals, prototrophy to auxotrophs and the like.
  • Markers selected for use in a host cell of a filamentous fungus include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG ( orotidin-5'-phosphate decarboxylase), cysC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof.
  • amdS acetamidase
  • argB ornithine carbamoyltransferase
  • bar phosphinothricin acetyltransferase
  • hph hygromycin phosphotransferase
  • niaD nitrate
  • the vectors used in the present invention preferably contain one or more elements that allow the integration of the vector into the genome of the host cell or the autonomous replication of the vector into the cell irrespective of the genome.
  • the vector may depend on the nucleic acid sequence of the present invention or any other element of the vector for integration into the genome by homologous or non-homologous recombination.
  • the vector may contain additional nucleotide sequences to direct integration by homologous recombination into the genome of the host cell at one or more precise location (s) on the chromosome (s).
  • the vector may further comprise an origin of replication that allows the vector to replicate autonomously in the host cell in question.
  • the origin of replication can be any plasmid replicator that participates in autonomous replication that works in a cell.
  • the term "origin of replication" or "plasmid replicator” is defined herein as a nucleotide sequence that allows a plasmid or vector to replicate in vivo. Examples of useful origins of replication in a filamentous fungal cell are AMAI and ANSI.
  • More than one copy of the nucleic acid sequence of the present invention can be inserted into the host cell to increase the production of the gene product.
  • An increase in the number of copies of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the genome of the host cell or by including a selectable marker gene amplifiable with the polynucleotide, where cells containing amplified copies of the marker gene select it and, consequently, additional copies of the polynucleotide, can be selected by culturing the cells in the presence of the appropriate selection agent.
  • the methods used to link the elements described above to construct the recombinant expression vectors referred to in the present invention are well known to one skilled in the art.
  • the invention provides a host cell comprising the gene construct of the invention, hereinafter referred to as "host cell of the invention”. Therefore, said host cell expresses the beta-glucosidase vanant of the invention.
  • the "host cell”, as used herein, includes any cell type that is susceptible to transformation, transfection, transduction and the like with the gene construct of the invention.
  • the host cell can be eukaryotic, such as a mammalian, insect, plant or fungal cell.
  • the host cell is a filamentous fungus cell. Filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, morning and other complex polysaccharides.
  • the filamentous fungus host cell is a cell of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Neceliophthora, Neceliophthora, Myceliophthora Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma.
  • the filamentous fungus host cell is a cell of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger or Aspergillus oryzae.
  • the filamentous fungus host cell is a Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium pseusgramusarum Fusarium, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, or Fusarium venenatum.
  • Fusarium bactridioides Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium
  • the host cell of filamentous fungus is a cell of Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis su b rufa, Ceriprepsus corustrous, Ceriporiopsus corusorus, Ceriporiopsis corusorus Cerustrous , Gibberella zeae, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes trichoderma, Trichoderma
  • the host cell of the invention is any strain of the Myceliophthora thermophila species.
  • the host cell of the invention is strain C1 of the Myceliophthora thermophila species. It will be understood that, for the aforementioned species, the invention encompasses both perfect and imperfect states and other taxonomic equivalents, for example anamorphs, regardless of the name of the species by which they are known. Those skilled in the art will readily recognize the identity of suitable equivalents. For example, Myceliophthora thermophila is equivalent to Chrysosporium lucknowense.
  • the beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second process of the invention has a reduced transglycosylation activity, whereby its use in an enzymatic composition for the stage of hydrolysis of the cellulosic material in sugars Fermentable in the processes for the production of a bioproduct, preferably ethanol, it is interesting to improve the activity of the entire enzyme composition.
  • an enzymatic composition comprising the beta-glucosidase vanant of the invention or the beta-glucosidase variant produced by the second method of the invention, hereinafter referred to as "enzymatic composition of the invention ".
  • the enzyme composition of the invention further comprises other cellulolytic enzymes.
  • beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second process of the invention can be combined with one or more of the cellulolytic enzymes described herein or with any other available enzyme. and suitable to produce a multienzyme composition.
  • One or more components of the multienzyme composition (apart from the enzymes described in the present invention) can be obtained or derived from a microbial, plant or other source or combination thereof, and will contain enzymes capable of degrading the cellulosic material.
  • cellulolytic enzymes also known as “cellulases” refers to a category of enzymes capable of hydrolyzing cellulose (p-1, 4-glucan or ⁇ -D-glucosidic bonds) in shorter, cellobiose and / or oligosaccharides glucose.
  • Examples of cellulolytic enzymes are, but are not limited to, endoglucanases, beta-glucosidases, cellobiohydrolases or beta-xylosidases. Therefore, in a more preferred embodiment, these cellulolytic enzymes are selected from the list consisting of: endoglucanases, beta-glucosidases, cellobiohydrolases, beta-xylosidases or any combination thereof.
  • These cellulolytic enzymes can be derived from the host cell of the invention or other microorganisms producing cellulolytic enzymes other than the host cell of the invention. They can also be produced naturally or recombinantly.
  • EG animal glycosylcholine
  • E.C. 3.2.1 .4 cellulase enzymes classified as E.C. 3.2.1 .4. These enzymes hydrolyse the glucosidic ⁇ -1, 4 cellulose bonds.
  • cellobiohydrolase refers to a protein that catalyzes the hydrolysis of cellulose in cellobiose through an exoglucanase activity, sequentially releasing cellobiose molecules from the reducing or non-reducing ends of cellulose or cellooligosaccharides.
  • ⁇ -xylosidase refers to a protein that hydrolyzes the short 1,4- ⁇ - ⁇ -xylo-oligomers in xylose.
  • the enzyme composition of the invention further comprises the host cell of the invention.
  • composition of the invention can be prepared according to methods known in the art and can be in the form of a liquid or a dry composition.
  • the composition may be in the form of a granulate or a microgranulate.
  • the enzymes to be included in the Composition can be stabilized according to procedures known in the art.
  • beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second method of the invention, as well as the host cell or the composition of the present invention can be used in the production of monosaccharides, disaccharides and polysaccharides as chemical or fermentation reserves from cellulosic material for the production of ethanol, plastics or other products or intermediates.
  • the host cell of the present invention can be used as a source of the beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second method of the invention and other cellulolytic enzymes, in a fermentation process from the cellulosic material
  • Another aspect of the invention refers to an enzymatic composition obtained by the host cell of the invention.
  • the degradation or hydrolysis of the cellulosic material in fermentable sugars a process also known as "saccharification", by means of the beta-glucosidase variant of the invention, the beta-glucosidase vahant produced by the second method of the invention, the host cell of the invention or the composition of the invention can be accompanied after a fermentation process in which the fermentable sugars obtained are used in order to finally obtain a bioproduct such as bioethanol.
  • the present invention relates to a process for producing fermentable sugars, hereinafter referred to as "third process of the invention", which comprises: a) Incubate the cellulosic material with the beta-glucosidase steamer of the invention , the beta-glucosidase vahante produced by the second method of the invention, the host cell of the invention or the enzymatic composition of the invention, and
  • step (b) Recover the fermentable sugar obtained after the incubation in step (a).
  • transferable sugar refers to simple sugars, such as glucose, xylose, arabinose, galactose, mannose, rhamnose, sucrose or fructose.
  • the present invention relates to a method of producing a bioproduct, hereafter referred to as "fourth process of the invention", comprising: a) Incubate the cellulosic material with the beta-glucosidase vanant of the invention, the vanant of beta-glucosidase produced by the second method of the invention, the host cell of the invention or the enzymatic composition of the invention,
  • step (b) Ferment the fermentable sugars obtained after the incubation of step (a) with at least one fermenting microorganism
  • step (b) Recover the bioproduct obtained after fermentation in step (b).
  • cellulosic material means the biodegradable fraction of products, residues and wastes of biological origin from agriculture (including vegetables, such as crop residues and animal substances), forestry (such as timber resources) and related industries, including fishmongers and aquaculture , as well as the biodegradable fraction of industrial and municipal waste, such as municipal solid waste or paper.
  • the cellulosic material is straw or organic fraction of municipal solid waste.
  • the cellulosic material is plant biomass, more preferably selected from the list consisting of: biomass rich in fermentable sugars, such as sugar cane, starch biomass, for example, wheat grain or corn straw.
  • the plant biomass is grain of cereals, such as starch, wheat, barley or mixtures thereof.
  • the third and / or fourth process of the invention preferably comprises a pretreatment process before step (a).
  • a pretreatment process will result in the cellulosic material components being more accessible for later stages or more digestible by enzymes after treatment in the absence of hydrolysis.
  • the pretreatment can be a chemical, physical or biological pretreatment, or any mixture thereof.
  • recovery refers to the recovery of fermentable sugars obtained after incubation in step (a) of the third process of the invention or the bioproduct obtained after fermentation of step (b) of Fourth process of the invention. Recovery may occur by any procedure known in the art, including mechanical or manual.
  • fermentation refers to a process of biological transformation caused by the activity of some microorganisms in which sugars such as glucose, fructose and sucrose are converted into ethanol. Therefore, the microorganisms used are fermenting microorganisms that have a fermentation capacity, such as yeasts, preferably Saccharomyces cerevisiae.
  • steps (a) and (b) of the fourth process of the invention can be performed simultaneously.
  • bioproduct refers to the materials, chemicals and energy derivatives of renewable biological resources.
  • bioproducts are, but are not limited to, hydrocarbon compounds in their different forms, such as aliphatic hydrocarbons (saturated, unsaturated, cyclic) or aromatic, such as alkanes, alkenes, alkynes, cyclic forms of these compounds or aromatic hydrocarbons; oxygenated substances such as alcohols, ethers, aldehydes, ketones or carboxylic acids; nitrogenous substances such as amines, amides, nitrogen compounds or nit; halogenated substances such as halides.
  • hydrocarbon compounds in their different forms, such as aliphatic hydrocarbons (saturated, unsaturated, cyclic) or aromatic, such as alkanes, alkenes, alkynes, cyclic forms of these compounds or aromatic hydrocarbons; oxygenated substances such as alcohols, ethers, aldehydes, ketones or carboxylic acids; nitrogenous substances such as amines, amides, nitrogen
  • bioproducts also includes any combination of the compounds described above, compounds that also derive from the compounds described above by any type of physical, chemical or biological treatment, polymers of the compounds described above, compounds described above substituted by any group or functional element in one or more of its bonds and branched forms of the compounds described above.
  • Ethanol can be produced by enzymatic degradation of cellulosic material and the conversion of saccharides released into ethanol. This type of ethanol is often called bioethanol. It can be used as a fuel additive or as an expander in mixtures of less than 1% and up to 100% (a fuel substitute).
  • the bioproduct is biofuel.
  • biofuel refers to a hydrocarbon, or a mixture thereof, that can be used as fuel and is obtained using fermentable cellulosic material as the starting material.
  • biofuels include, but are not limited to, ethanol or bioethanol and biodiesel.
  • the biofuel is bioethanol.
  • bioethanol or "ethanol” refers to an alcohol made by fermentation, mainly from fermentable cellulosic material such as carbohydrates produced by the beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second process of the invention, or starch cultures such as corn or sugarcane.
  • fermentable cellulosic material such as carbohydrates produced by the beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second process of the invention, or starch cultures such as corn or sugarcane.
  • Fig. 1 Expression vector with Tcbhl as termination sequence and pyr5 as selection marker. SacI and Notl were the restriction sites chosen for the cloning of the Pcbh1-bgl1 fragment.
  • Fig. 3 Relative activity beta-glucosidase of 31 L2D and other transformants analyzed using pNGP as a substrate in the presence and absence of cellobiose.
  • Fig. 4 Amplified bgl1Q211H expression plasmid of strain 31 L2D.
  • Fig. 5 SDS-PAGE of the purified beta-glucosidase enzymes. 20 g of protein were loaded in each lane. Lane 1: Marker; Lane 2: Bgl1; Lane 3: mature Bgl1 Q21 1 H protein.
  • Fig. 6 Indirect transglycosylation assay of the BgM enzyme and the mature Bgl1Q211 H protein. All measurements were analyzed in triplicate and the error bars correspond to the standard deviation.
  • Fig. 7 Thermal studies using the BgM enzyme and the mature Bgl1Q211 H protein.
  • Example 1 Mutagenesis of bgll. Construction of an expression vector, mutagenesis, amplification of the banks with bgll mutations.
  • M. thermophila C1 has been described as a good quality transformation system for expressing and secreting heterologous proteins and polypeptides.
  • the bgll gene of M. thermophila C1 beta-glucosidase was chosen to improve its enzymatic quality in the present invention.
  • This enzyme shows a high transglycosylation profile, so that the objective of mutagenesis was to reduce this transglycosylation activity without affecting the hydrolytic activity of beta-glucosidase per se.
  • the bgll cDNA sequence was synthesized in vitro after optimization, to eliminate recognition sites for the most common restriction enzymes without altering the amino acid sequence.
  • the bgll cDNA nucleotide sequence and the deduced amino acid sequence are shown in SEQ ID NO: 3 and SEQ ID NO: 2, respectively.
  • the coding sequence has a length of 2616 including the termination codon.
  • the protein encoded by this sequence has a length of 871 amino acids with an expected molecular mass of 95 KDa and an islectric point of 5.10.
  • the predicted mature protein (SEQ ID NO: 1) contains 852 amino acids with an expected molecular mass of 93 KDa and an islectric point of 5.04.
  • the bgll gene was synthesized in vitro together with the promoter of the cellobiohydrolase 1 (Pcbhl) gene of M. thermophila C1.
  • the Pcbhl sequence includes a region of 1796 bp upstream of the cellobiohydrolase 1 gene of M. thermophila C1 (cbhl, NCBI registration number XP_003660789.1).
  • This fragment (Pcbh1-bgl1) was synthesized in vitro, including the sequence of the Sacl and Notl restriction enzymes at the ends (Sacl at the 5 ' end and Notl at the 3 ' end) to be cloned into an expression vector called pBASEI .
  • the pBASEI expression vector also contained the terminator sequence of the Myceliophthora thermophila C1 cellobiohydrolase 1 gene (Tcbhl, corresponding to a region of 1014 bp downstream of cbhl) and the pyr5 gene (accession number in NCBI XP_003660657.1) of the same strain as a selection marker.
  • the pyr5 gene encodes a functional orotate phosphoribosyl transferase and its expression vector allows the complement of uridine auxotrophy in the corresponding auxotrophic host strain, M. thermophila C1 pyr5-.
  • the expression vector pBASEI is shown in Figure 1.
  • the Pcbhl-bgll fragment was digested with the restriction enzymes Sacl and Not ⁇ and cloned into pBASEI, previously digested with the same restriction enzymes.
  • the pBASEI expression vector and the Pcbhl-bgll cassette were ligated and the binding product was transformed into electrocompetent cells of Escherichia coli XLI Blue MRF following the protocol provided by the manufacturer (Agilent Technologies Inc.).
  • the recombinant plasmid obtained was named pABC334 and is shown in Figure 2.
  • the bgll gene cloned in pABC344 was subjected to random mutagenesis by PCR amplification using the GeneMorpholl EZClone mutagenesis kit Domain Mutagenesis Kit (Agilent Technologies Inc.). Mutagenic amplification was performed using oligonucleotides 1 and 2 shown below. The signal peptide and termination codon were excluded from mutagenic amplification. Thus, these oligonucleotides amplify a 2553 bp fragment corresponding to the bgll sequence without signal peptide or termination codon.
  • Oligonucleotide 1 (SEQ ID NO: 7):
  • Oligonucleotide 2 (SEQ ID NO: 8):
  • the GeneMorpholl EZClone Domain Mutagenesis system allows different mutation rates depending on the amount of target DNA and the amplification cycles used during the process. With these premises, two different mutant banks were generated: the first with a mutation frequency between 0-1 mutations / kb and the second with a mutation frequency between 1 -4.5 mutations / kb.
  • the initial target amount was 2 g and 0.8 g of pABC344 respectively for each bank.
  • the conditions for the amplification reaction were a 95 ° C cycle for 2 minutes; and 30 cycles each at 95 ° C for 30 seconds, 57 ° C for 30 seconds and 72 ° C for 3 minutes.
  • the heat block was maintained at 72 ° C for 10 minutes, followed by a 12 ° C retention cycle.
  • PCR products corresponding to mutated versions of bgll were purified on agarose gel with a QIAquick gel extraction kit (Qiagen) and used as mega primers in a second PCR to amplify the complete pABC344 using the following conditions: one cycle at 95 ° C for 1 minute and 25 cycles of 95 ° C for 50 seconds, 60 ° C for 50 seconds and 68 ° C for 10 minutes.
  • the amplification reactions were digested with Dpn? (10U / L) for 2 hours at 37 ° C to remove the parental expression plasmid pABC344 used as the target, since Dpn only recognizes methylated DNA. Therefore, only amplified plasmids during this second PCR reaction remain after digestion with Dpn.
  • Both mutation banks were transformed into ultracompetent Escherichia coli XL-10 Gold cells following the protocol provided by the manufacturer (Agilent Technologies Inc.) and the plasmid DNA from a total of 320,000 colonies transformed with both mutant banks was purified using the Plasmid Maxi kit (Omega bio-tek, Inc).
  • the plasmid DNA of the banks containing the different mutated versions of bgll were transformed into the auxotrophic host strain M. thermophila C1 pyr5- (Verdoes et al., 2007, Ind. Biotechnol., 3 (1)), previously used in others High performance selections in M. thermophila.
  • DNA was introduced into the host strain using a protoplast transformation method (US7399627B2). The transformants were seeded on agar plates without uridine supplement. After 5 days of incubation at 35 ° C, the resulting prototrophic transformants (expressing the pyrS gene) were analyzed. The transformants obtained were inoculated in 96-well microtiter plate (PMT) cultures to carry out high-throughput screening (US7794962B2).
  • the objective of the selection or screening was to identify the mutated versions of bgll with low transglycosylation activity. Therefore, an indirect assay was established to estimate the transglycosylation capacity of a BGL enzyme (beta-glucosidase).
  • Hydrolytic activity in pNGP p-nitro-phenyl-glucopyranoside was measured in the presence and absence of cellobiose (5.5, mM).
  • Cellobiose has been described as a preferential substrate of BGL with retention mechanism or "retainining" in its transglycosylation reaction. Therefore in Presence of cellobiose, BGL activity on pNGP shows a reduction due to transglycosylation activity.
  • Beta-glucosidase activity is measured in units per liter of culture (U / 1).
  • One unit of pNGP hydrolysis activity was defined as the amount of enzyme equivalent to the release of 1 pmol of p-nitrophenol per minute.
  • the 5 ⁇ beta-glucosidase activity of supernatants of each transformant was analyzed with 100 mg / l pNGP (Sigma N7006) for 10 minutes at 50 ° C in a final volume of 100 ⁇ .
  • the reaction was stopped by adding 100 ⁇ of 1 M sodium carbonate to the reaction mixtures.
  • Each reaction was also carried out in the presence of cellobiose (5.5 mM). Hydrolytic capacity was measured by the release of p-nitrophenol in the presence and in the absence of cellobiose as an indication of low transglycosylation capacity.
  • a DNA fragment containing Pcbh1-bgl1 was amplified from the genomic DNA using oligonucleotides 3 and 4.
  • Oligonucleotide 3 (SEQ ID NO: 9): The Sacl restriction site is underlined. 5 ' -CGAGGAGCTCCTTACAAAAAAAAGGTATCC-3 '
  • Oligonucleotide 4 (SEQ ID NO: 10): The restriction sites SamHI, Smal and Pst ⁇ are underlined. The termination codon is in box.
  • Oligonucleotide 3 includes the Sacl and hybrid restriction site at the 3 'end of Pcbhl.
  • the oligonucleotide 4 hybrid at the 3 'end of bgll and includes the bgll termination codon and the restriction sites SamHI, Smal and Pst ⁇ to clone in the pBASEI expression plasmid.
  • Oligonucleotides 3 and 4 were used to amplify the Pcbhl-bgll fragment using genomic DNA from strain 31 L2D as the target (obtained using the Qiagen DNeasy Plant Mini Kit) with the Proof High-Fidelity DNA polymerase (BioRad) and were programmed during a cycle at 98 ° C for 2 minutes and 30 cycles of 98 ° C for 10 seconds, 72 ° C for 90 seconds and 72 ° C for 10 minutes.
  • the amplified DNA fragment was digested with the restriction enzymes Sacl and SamHI and cloned into pABC344 previously digested with the same restriction enzymes.
  • the ligation mixture was transformed into electrocompetent cells of Escherichia coli XLI Blue MRF following the protocol provided by the manufacturer (Stratagene).
  • the recombinant plasmid was named pABC410 and is shown in Figure 4.
  • the bgll gene of pABC410 was sequenced.
  • the mutated bgll showed a mutation: the guanine from position 633 of the native bgll nucleotide sequence SEQ ID NO: 3 had been mutated to thymine, thus giving a nucleotide sequence of SEQ ID NO: 6, which encoded a preprotein (SEQ ID NO: 5 , Bgl1 Q21 1 H), in which the glutamine (Q) in residue 21 1 of the native preprotein SEQ ID NO: 2 had been exchanged for histidine (H), so that 31 L2D expressed a mutated mature version ( SEQ ID NO: 4) of mature BgM in which the glutamine (Q) in residue 192 of the mature native protein of SEQ ID NO: 1 had been exchanged for histidine (H), called mature Bgl1 protein Q21 1 H.
  • the nucleotide sequence encoding the Bgl1 Q21 1 H preprotein and the amino acid sequence of the mature protein are shown in SEQ ID NO: 6 and SEQ ID NO: 4, respectively.
  • the coding sequence has a length of 2616 including the termination codon.
  • the predicted encoded preprotein has 871 amino acids (SEQ ID NO: 5) with an expected molecular mass of 95 KDa and an isoelectric point of 5.14.
  • Plasmid pABC410 was transformed into M. thermophila C1 in order to confirm the phenotype of low transglycosylation activity observed in strain 31 L2D. The transformation, selective detection and measurement of BGL activity was carried out as described previously in the present invention. All transformants expressing Bgl1 Q21 1 H of pABC410 showed the same low transglycosylation activity as strain 31 L2D.
  • Example 3 Comparative analysis of BgM of strain C1 of Myceliophthora thermophila and the mutant Bgl1Q211 H.
  • the resulting enzyme preparations (15 ml samples) were then desalted on a HiPrep Desalting Sephadex G-25 column (GE Helthcare) in 100 mM Tris-HCI buffer, at pH 7.0 at a flow rate of 15 ml min "1 .
  • a sample containing 150 mg of total protein was subsequently applied on a HiLoad 26/10 Q-Sepharose HP column (GE Helthcare) equilibrated with the same buffer.
  • the column was washed with the starting buffer and the proteins bound thereto were eluted with a NaCI gradient at a flow rate of 5 mL min "1 using a linear elution profile of 0 to 30%.
  • 9 cycles were performed of purification for each enzyme, thus pure 109 and 11 mg of the native Bgl1 enzymes and Q21 1 H, respectively, were obtained.
  • the purified BGLs were loaded on SDS-PAGE electrophoresis gels with a concentration of 7.5% acrylamide, in order to check the homogeneity of the samples (Fig. 5).
  • this enzyme can be expected to have a molecular size of 93kDa.
  • fungal glycoside hydrolases and other enzymes belonging to different protein families are often glycosylated, bearing both O-linked and N-linked glycans.
  • glycosylation is the most frequent post-translational modification in these proteins.
  • a single band of 11-16 kDa was detected for both samples, indicating that electrophoretically pure enzymes have been obtained and that glycosylated versions of the enzymes have been successfully purified.
  • Beta-glucosidases catalyze the transfer of glycosyl groups between oxygen nucleophiles on different types of substrates.
  • BGLs with a retention mechanism as in the case of Bgl1, have reduced hydrolytic activity at high concentrations of substrate or product and this depends at least on the existence of two different phenomena: inhibition and transglycosylation.
  • the kinetic characterization of Bgl1 and the mature mutant protein of Bgl1 Q21 1 H was performed based on its hydrolytic capacity.
  • the hydrolytic activity of BGL was determined using p-nitrophenyl-beta-D-glucopyranoside (pNGP, Sigma) as a substrate.
  • pNGP p-nitrophenyl-beta-D-glucopyranoside
  • the enzymatic reaction mixtures (1 ml final volume) containing 100 pmol of sodium acetate buffer (pH 5.0), 100 g of pNGP (0.33 pmol) and an adequate amount of the enzyme purified, incubated at 50 ° C for 10 minutes.
  • One unit of hydrolysis activity on pNGP was defined as the amount of enzyme equivalent to the release of 1 pmol of p-nitrophenol per minute.
  • a soluble compound glucose or xylose
  • the purified BGLs were characterized in terms of enzymatic activity (V max ), affinity for the substrate (K m ), thermal resistance and effect on the enzymatic activity of glucose, which is the most abundant compound at the end of the enzymatic hydrolysis processes.
  • V max and K m were calculated using a Hanes-Woolf graph. Inhibition kinetics was calculated using an Eadie-Hofstee graph. Results are shown in table 2.
  • Glucose is a potent competitive inhibitor of most BGLs. This was also true for the native enzyme and for the purified Bgl1 Q21 1 H mature protein. Assays in the presence of different glucose concentrations adjusted to a competitive pattern inhibition by glucose using an Eadie-Hofstee graph. The calculated K ⁇ were 3.83 and 1.38 mM "1 for the Bgl1 enzyme and the mature Bgl1 Q21 1 H protein, indicating a potent competitive glucose inhibition for both enzymes.
  • the retention mechanism initially forms a covalent glycosyl complex with the enzyme.
  • This intermediate decomposes in the second stage of the reaction, which can be produced by a water molecule (hydrolytic activity) or by means of an acceptor sugar (transglycosylation activity).
  • the acceptor is the substrate itself.
  • cellobiose has been described as a preferential substrate for BGLs with retention mechanism in their transglycosylation reaction.
  • Table 3 Retention times and relative areas for sugars detected after the transglycosylation test.
  • the relative area represents the percentage of each sugar in the total concentration in the reaction mixture after the transglycosylation test.
  • glucose is the product of the hydrolytic capacity of BGLs on the real, cellobiose substrate.
  • Celotriose can only be formed within a transglycosylation reaction whereby a cellobiose molecule acts as an acceptor for glucose retained at the active site of the BGL enzyme.
  • Cellobiose can be the result of (1) non-hydrolyzed substrate that remains in the reaction mixture or (2) the product of a transglycosylation reaction, with glucose being both the acceptor and the donor.
  • the reduction of the transglycosylation capacity of the mature protein of the BgM Q21 1 H enzyme seems to be responsible for an improvement of this enzyme in terms of efficiency in the enzymatic hydrolysis of biomass, a process in which there is a high concentration of substrates of transglycosylation that impairs the hydrolysis of said substrates in fermentable sugars.
  • the purified Bgl1 enzyme and the mature Bgl1 Q21 1 H protein were analyzed in terms of thermal stability based on the pNGP assay. Two types of tests were carried out: determination of the denaturation temperature and stability studies in biomass hydrolysis conditions.
  • the purified enzymes were incubated for 10 minutes at temperatures ranging between 30 and 80 ° C, then conventional pNGP assays were performed using treated enzymes and the activity was represented as a relative percentage compared to the lack of treatment
  • a characteristic parameter can be calculated by which the temperature responsible for a 50% loss of enzymatic activity (T1 / 2) is determined. The results are shown in Figure 7A.
  • reaction mixtures (1 ml of final volume) containing 0.1 mg of purified enzyme and 100 pmol of sodium acetate buffer (pH 5.0) were incubated at 50 ° C for 72 hours and under agitation conditions (300 rpm, Thermomixer Comfort, Eppendorf). Samples were taken at 24, 48 and 72 hours and pNGP assays were performed conventional. The results are shown in Figure 7B.
  • T1 / 2 was calculated to be 65 and 62 ° C for the enzyme Bgl1 and the mature protein of Bgl1 Q21 1 H, respectively. , both above the biomass hydrolysis temperature (50 ° C). Regarding the thermal stability in the biomass hydrolysis conditions both enzymes remained active after 72 h at 50 ° C. In addition, 20% activation was determined for the mutant enzyme.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention relates to beta-glucosidase variants having reduced transglycosylation activity. The invention also relates to a gene construct, a host cell and an enzyme composition comprising said variants. The invention further relates to a method for producing said variants, a method for producing fermentable sugar and a method for producing a bioproduct, such as bioethanol, from cellulose material with the beta-glucosidase variants, the host cell or the enzyme composition comprising said variants.

Description

VARIANTES DE BETA-GLUCOSIDASA CON ACTIVIDAD DE  BETA-GLUCOSIDASA VARIANTS WITH ACTIVITY OF
TRANSGLICOSILACIÓN REDUCIDA  REDUCED TRANSGLICOSILATION
DESCRIPCIÓN DESCRIPTION
La invención pertenece al campo de las enzimas útiles para la producción de bioproductos y, más particularmente, a vanantes de la beta-glucosidasa y a su uso en la producción de azúcares fermentables y de etanol a partir de material celulósico. The invention pertains to the field of enzymes useful for the production of bioproducts and, more particularly, to beta-glucosidase vanants and their use in the production of fermentable sugars and ethanol from cellulosic material.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
La biomasa vegetal proporciona una fuente abundante de potencial energía en forma de azúcares y, por tanto, es una importante fuente renovable para la generación de azúcares fermentables. La fermentación de estos azúcares puede dar lugar a productos finales comercialmente valiosos, tales como el etanol también denominado bioetanol. Vegetable biomass provides an abundant source of potential energy in the form of sugars and, therefore, is an important renewable source for the generation of fermentable sugars. Fermentation of these sugars can lead to commercially valuable end products, such as ethanol also called bioethanol.
Aunque la fermentación de los azúcares a etanol es relativamente directa, la conversión eficiente de biomasa celulósica en azúcares fermentables, tales como la glucosa, supone un mayor desafío. La enorme energía potencial de las grandes cantidades de hidratos de carbono que integran la biomasa vegetal no está suficientemente utilizada porque los azúcares forman parte de polímeros complejos (polisacáridos, tales como celulosa y hemicelulosa) y, por tanto, no son fácilmente accesibles para la fermentación. Por tanto, la celulosa se puede tratar previamente, de forma mecánica, química, enzimática o de otros modos, para aumentar su susceptibilidad a la hidrólisis. Después, tras este proceso de pretratamiento tiene lugar una etapa de sacarificación, que es un proceso enzimático por el cual los hidratos de carbono complejos (como almidón o celulosa) se hidrolizan en sus componentes monosacáridos. El objetivo de cualquier tecnología de sacarificación es alterar o eliminar los impedimentos estructurales y de composición para la hidrólisis con el fin de mejorar la tasa de hidrólisis enzimática y aumentar los rendimientos de azúcares fermentables a partir de celulosa o de hemicelulosas (N. Mosier y col., 2005, Bioresource Technology 96, 673-686). Después de esta etapa de sacarificación se realiza un proceso de fermentación. Although the fermentation of sugars to ethanol is relatively straightforward, the efficient conversion of cellulosic biomass into fermentable sugars, such as glucose, is a major challenge. The enormous potential energy of the large amounts of carbohydrates that make up the plant biomass is not sufficiently used because sugars are part of complex polymers (polysaccharides, such as cellulose and hemicellulose) and, therefore, are not easily accessible for fermentation. . Therefore, cellulose can be pretreated, mechanically, chemically, enzymatically or in other ways, to increase its susceptibility to hydrolysis. Then, after this pretreatment process a saccharification stage takes place, which is an enzymatic process by which complex carbohydrates (such as starch or cellulose) are hydrolyzed into their monosaccharide components. The purpose of any saccharification technology is to alter or eliminate structural and compositional impediments to hydrolysis in order to improve the rate of Enzymatic hydrolysis and increase yields of fermentable sugars from cellulose or hemicelluloses (N. Mosier et al., 2005, Bioresource Technology 96, 673-686). After this saccharification stage a fermentation process is carried out.
La hidrólisis enzimática de los polisacáridos en azúcares solubles y, por último, en monómeros tales como xilosa, glucosa y otras pentosas y hexosas, se cataliza mediante varias enzimas que en conjunto se denominan "celulasas". Las celulasas (1 ,4-beta-D-glucano-4-glucanohidrolasa, EC 3.2.1.4) son complejos multienzimáticos que comprenden tres componentes principales, endo-p-glucanasa (EC 3.2.1 .4), exo-p-glucanasa o celobiohidrolasa (EC 3.2.1 .9.1 ) y β-glucosidasa (EC 3.2.1 .21 ), que se ha demostrado que actúan de forma sinérgica en la hidrólisis de la celulosa (Ekperigin, M.M., 2007, African Journal of Biotechnology, Vol.6 (1 ), pág. 028-033). The enzymatic hydrolysis of polysaccharides in soluble sugars and, finally, in monomers such as xylose, glucose and other pentoses and hexoses, is catalyzed by various enzymes that together are called "cellulases." Cellulases (1,4-beta-D-glucan-4-glucanhydrolase, EC 3.2.1.4) are multienzyme complexes comprising three main components, endo-p-glucanase (EC 3.2.1 .4), exo-p-glucanase or cellobiohydrolase (EC 3.2.1 .9.1) and β-glucosidase (EC 3.2.1 .21), which have been shown to act synergistically in cellulose hydrolysis (Ekperigin, MM, 2007, African Journal of Biotechnology, Vol. 6 (1), p. 028-033).
Específicamente, la beta-glucosidasa es una enzima glucosidasa que actúa sobre los enlaces β1 ->4 que unen dos glucosas o moléculas sustituidas con glucosa (es decir, el disacárido celobiosa). Es una exocelulasa con especificidad por diversos sustratos de beta-D-glucósidos. Cataliza la hidrólisis de residuos terminales no reductores en los beta-D-glucósidos con liberación de glucosa. Por tanto, se usa ampliamente junto con otras celulasas en procesos para la conversión de la biomasa celulósica en azúcares fermentables. Su aplicación en la conversión de biomasa con un contenido elevado en celulosa en azúcares fermentables para la producción de etanol combustible es un área extensamente estudiada. Specifically, beta-glucosidase is a glucosidase enzyme that acts on the β1 -> 4 bonds that bind two glucoses or glucose-substituted molecules (i.e., the cellobiose disaccharide). It is an exocellulase with specificity for various substrates of beta-D-glycosides. It catalyzes the hydrolysis of non-reducing terminal residues in beta-D-glycosides with glucose release. Therefore, it is widely used together with other cellulases in processes for the conversion of cellulosic biomass into fermentable sugars. Its application in the conversion of biomass with a high cellulose content into fermentable sugars for the production of fuel ethanol is an area extensively studied.
Por consiguiente, las celulasas microbianas se han convertido en biocatalizadores focales debido a su naturaleza compleja y a sus extensas aplicaciones industriales (Kuhad R. C. y col., 201 1 , Enzyme Research, Article ID 280696). Hoy en día se ha prestado una considerable atención a los conocimientos actuales sobre la producción de celulasas y los retos en la investigación sobre celulasas, especialmente en la dirección de la mejora de la economía del proceso de varias industrias, con el fin de obtener celulasas con mayor actividad y mejores propiedades. En este sentido, se han diseñado beta- glucosidasas con mejor actividad hidrolítica o termoestabilidad (WO201 1063308A2). Consequently, microbial cellulases have become focal biocatalysts due to their complex nature and extensive industrial applications (Kuhad RC et al., 201 1, Enzyme Research, Article ID 280696). Nowadays, considerable attention has been given to current knowledge about cellulose production and cellulose research challenges, especially in the direction of improving Economics of the process of several industries, in order to obtain cellulases with greater activity and better properties. In this sense, beta-glucosidases with better hydrolytic activity or thermostability have been designed (WO201 1063308A2).
Las beta-glucosidasas (BGLs, EC 3.2.1 .21 ) catalizan la transferencia de grupos glicosil entre nucleófilos de oxígeno sobre diferentes tipos de sustratos. Las BGLs con un mecanismo de retención (Rye y col., 2000. Curr. Opin. Chem. Biol. 4), como es el caso de Bgl1 , tienen actividad hidrolítica reducida a concentraciones elevadas de sustrato o de producto y esto depende al menos de que se produzcan dos fenómenos diferentes: inhibición y transglicosilación (Bohlin et al., 2013, Appl. Microbiol. Biotechnol., 97(1 ): 159-169). El mecanismo de retención forma inicialmente un complejo glicosil covalente con la enzima. Este intermedio se descompone en la segunda etapa de la reacción, lo que se puede producir mediante una molécula de agua (actividad hidrolítica) o mediante un azúcar aceptor (actividad de transglicosilación). En la reacción de transglicosilación más sencilla, el aceptor es el propio sustrato. No obstante, la celobiosa se ha descrito como sustrato preferencial para retener a las BGLs en su reacción de transglicosilación. Beta-glucosidases (BGLs, EC 3.2.1 .21) catalyze the transfer of glycosyl groups between oxygen nucleophiles on different types of substrates. BGLs with a retention mechanism (Rye et al., 2000. Curr. Opin. Chem. Biol. 4), as is the case with Bgl1, have reduced hydrolytic activity at high concentrations of substrate or product and this depends at least that two different phenomena occur: inhibition and transglycosylation (Bohlin et al., 2013, Appl. Microbiol. Biotechnol., 97 (1): 159-169). The retention mechanism initially forms a covalent glycosyl complex with the enzyme. This intermediate decomposes in the second stage of the reaction, which can be produced by a water molecule (hydrolytic activity) or by an acceptor sugar (transglycosylation activity). In the simplest transglycosylation reaction, the acceptor is the substrate itself. However, cellobiose has been described as a preferential substrate to retain BGLs in their transglycosylation reaction.
Una beta glucosidasa con una actividad hidrolítica capaz de producir glucosa de forma eficiente pero con una actividad transglicosiladora reducida sería de utilidad, pudiendo disminuir la síntesis de otros compuestos, tales como etil- beta-D-glucopiranósido en presencia de etanol, de modo que aumentase la producción de azúcares fermentables y mejorara el rendimiento de una mezcla enzimática que contuviera BGL. A beta glucosidase with a hydrolytic activity capable of producing glucose efficiently but with a reduced transglycosylating activity would be useful, being able to decrease the synthesis of other compounds, such as ethyl-beta-D-glucopyranoside in the presence of ethanol, so as to increase the production of fermentable sugars and will improve the performance of an enzyme mixture containing BGL.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención describe nuevas vanantes de beta-glucosidasa con capacidad de transglicosilación reducida para la hidrólisis de material celulósico en azúcares fermentables, así como un procedimiento para producir dichas variantes de beta-glucosidasa, un procedimiento para producir azúcares fermentables y un procedimiento para producir bioproductos, tales como etanol, con dichas variantes. The present invention describes new beta-glucosidase vanants with reduced transglycosylation capacity for the hydrolysis of cellulosic material in fermentable sugars, as well as a process for producing said beta-glucosidase variants, a process for producing fermentable sugars and a process for producing bioproducts, such as ethanol, with said variants.
Por tanto, la presente invención representa una solución a la necesidad de proporcionar vanantes de beta-glucosidasa con la propiedad mejorada de una actividad de transglicosilación reducida para la optimización de la etapa de hidrólisis de material celulósico en azúcares fermentables. Therefore, the present invention represents a solution to the need to provide beta-glucosidase vanants with the enhanced property of reduced transglycosylation activity for optimization of the stage of hydrolysis of cellulosic material in fermentable sugars.
La capacidad de transglicosilación de las beta-glucosidasas disminuye la concentración final de azúcares fermentables en etanol y, en consecuencia, el rendimiento del producto final del proceso. Sin embargo, los inventores han demostrado que las vanantes de beta-glucosidasa de la presente invención tienen actividad de transglicosilación reducida y, por tanto, aumentan significativamente el rendimiento de la etapa de hidrólisis, lo que conduce a un aumento de la producción del bioproducto, preferiblemente etanol. The transglycosylation capacity of beta-glucosidases decreases the final concentration of fermentable sugars in ethanol and, consequently, the yield of the final product of the process. However, the inventors have demonstrated that the beta-glucosidase vanants of the present invention have reduced transglycosylation activity and, therefore, significantly increase the yield of the hydrolysis stage, which leads to an increase in the production of the bioproduct, preferably ethanol.
La presente invención también proporciona un procedimiento para la selección de vahantes de beta-glucosidasa con actividad de transglicosilación reducida. Por tanto, un primer aspecto de la presente invención se refiere a un procedimiento para la selección de variantes de beta-glucosidasa con actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa, en lo sucesivo "primer procedimiento de la invención", que comprende: a) Incubar las vahantes de beta-glucosidasa con p-nitro-fenil- glucopiranósido en presencia de celobiosa, The present invention also provides a method for the selection of beta-glucosidase cleavages with reduced transglycosylation activity. Therefore, a first aspect of the present invention relates to a method for the selection of beta-glucosidase variants with reduced transglycosylation activity compared to the native beta-glucosidase, hereinafter referred to as "first method of the invention", which comprises: a) Incubate the beta-glucosidase vahants with p-nitro-phenyl-glucopyranoside in the presence of cellobiose,
b) Medir la liberación de p-nitrofenol,  b) Measure the release of p-nitrophenol,
c) Comparar el valor del p-nitrofenol medido en la etapa (b) con un valor de referencia, y  c) Compare the p-nitrophenol value measured in step (b) with a reference value, and
d) Seleccionar aquellas vahantes de beta-glucosidasa cuyos valores medidos en la etapa (b) son más elevados que el valor de referencia. El término "beta-glucosidasa", como se usa aquí, se refiere a una enzima que cataliza la hidrólisis de un dímero de azúcar, incluyendo, pero sin limitarnos, celobiosa, con la liberación de un monómero de azúcar correspondiente, la cual se usa, pero sin limitación, para la síntesis de etanol. La enzima beta- glucosidasa actúa sobre los enlaces β1 ->4 que unen dos glucosas o moléculas sustituidas con glucosa (es decir, el disacárido celobiosa). Es una exocelulasa con especificidad por una variedad de sustratos beta-D-glucósido. Cataliza la hidrólisis de residuos terminales no reductores en los beta-D-glucósidos con liberación de glucosa. d) Select those variants of beta-glucosidase whose values measured in step (b) are higher than the reference value. The term "beta-glucosidase," as used herein, refers to an enzyme that catalyzes the hydrolysis of a sugar dimer, including, but not limited to, cellobiose, with the release of a corresponding sugar monomer, which is used. , but without limitation, for the synthesis of ethanol. The beta-glucosidase enzyme acts on the β1 -> 4 bonds that bind two glucoses or glucose-substituted molecules (i.e. cellobiose disaccharide). It is an exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of non-reducing terminal residues in beta-D-glycosides with glucose release.
El término "vanante", como se usa aquí, se refiere a una enzima que procede de una enzima nativa mediante una o más deleciones, inserciones y/o sustituciones de uno o más aminoácidos en los punto(s) dentro de su secuencia de aminoácidos y, por tanto, tiene una secuencia diferente a la de la enzima nativa. Como se usa aquí, la expresión "vanante de beta-glucosidasa" significa un polipéptido que tiene actividad beta-glucosidasa producido por un organismo que expresa una secuencia de nucleótidos modificada que codifica una beta-glucosidasa nativa. Dicha secuencia de nucleótidos modificada se obtiene mediante intervención humana mediante modificación de la secuencia de nucleótidos que codifica una beta-glucosidasa nativa. El término "modificación" significa en el presente documento cualquier modificación química de la secuencia de aminoácidos o de ácido nucleico de una beta- glucosidasa nativa. The term "vanant", as used herein, refers to an enzyme that comes from a native enzyme by one or more deletions, insertions and / or substitutions of one or more amino acids at the point (s) within its amino acid sequence. and, therefore, has a different sequence from that of the native enzyme. As used herein, the term "vacancy of beta-glucosidase" means a polypeptide that has beta-glucosidase activity produced by an organism that expresses a modified nucleotide sequence encoding a native beta-glucosidase. Said modified nucleotide sequence is obtained by human intervention by modification of the nucleotide sequence encoding a native beta-glucosidase. The term "modification" means herein any chemical modification of the amino acid or nucleic acid sequence of a native beta-glucosidase.
La expresión "beta-glucosidasa nativa" se refiere a una enzima beta- glucosidasa o su preproteína, expresada por un microorganismo tal como bacterias u hongos filamentosos. Preferentemente, la enzima beta-glucosidasa nativa a la que se hace referencia en la presente invención es expresada por un hongo filamentoso, más preferiblemente por un hongo que pertenece al género Myceliophthora, aún más preferiblemente por Myceliophthora thermophila, aún más preferiblemente la enzima beta-glucosidasa nativa es la enzima de SEQ ID NO: 1 (también denominada BgM ) o SEQ ID NO: 2. La SEQ ID NO: 2 es la preproteína de la SEQ ID NO: 1 y consiste en un péptido señal correspondiente a los aminoácidos 1 a 19 de la SEQ ID NO: 2 unido a la SEQ ID NO: 1 . The term "native beta-glucosidase" refers to a beta-glucosidase enzyme or its preprotein, expressed by a microorganism such as bacteria or filamentous fungi. Preferably, the native beta-glucosidase enzyme referred to in the present invention is expressed by a filamentous fungus, more preferably by a fungus belonging to the genus Myceliophthora, even more preferably by Myceliophthora thermophila, even more preferably the enzyme beta- Native glucosidase is the enzyme of SEQ ID NO: 1 (also called BgM) or SEQ ID NO: 2. SEQ ID NO: 2 is the preprotein of SEQ ID NO: 1 and consists of a signal peptide corresponding to amino acids 1 to 19 of SEQ ID NO: 2 linked to SEQ ID NO: 1.
La "actividad de transglicosilación" de las beta-glucosidasas consiste en la formación inicial de un complejo glicosil covalente con la enzima y su posterior descomposición en la segunda etapa de la reacción mediante un azúcar aceptor, en lugar de producirse mediante una molécula de agua (actividad hidrolítica). En la reacción de transglicosilación más sencilla, el azúcar aceptor es el propio sustrato. The "transglycosylation activity" of beta-glucosidases consists in the initial formation of a covalent glycosyl complex with the enzyme and its subsequent decomposition in the second stage of the reaction by means of an acceptor sugar, instead of being produced by a water molecule ( hydrolytic activity). In the simplest transglycosylation reaction, the acceptor sugar is the substrate itself.
El sustrato p-nitro-fenil-glucopiranósido también se denomina pNGP. Este sustrato es hidrolizado por la beta-glucosidasa. Por tanto, este sustrato se incuba en condiciones que permiten que las variantes de beta-glucosidasa realicen el proceso hidrolítico en la etapa (a) del primer procedimiento de la invención. Adicionalmente, dicha incubación se realiza en presencia de celobiosa, ya que este disacárido se ha descrito como sustrato preferencial para retener beta-glucosidasas en su actividad de transglicosilación. Por tanto, en presencia de celobiosa, la actividad hidrolítica de beta-glucosidasa sobre pNGP muestra una reducción debido a la actividad de transglicosilación. Un porcentaje elevado de capacidad hidrolítica, medido mediante el p-nitrofenol liberado en presencia del sustrato celobiosa altamente susceptible a la transglicosilación, se usa como indicación de una baja capacidad de transglicosilación. Por tanto, cuanto más p-nitrofenol se mide en la etapa (b) del primer procedimiento de la invención, menor es la capacidad de transglicosilación de la vanante de beta-glucosidasa analizada. The p-nitro-phenyl-glucopyranoside substrate is also called pNGP. This substrate is hydrolyzed by beta-glucosidase. Therefore, this substrate is incubated under conditions that allow beta-glucosidase variants to perform the hydrolytic process in step (a) of the first process of the invention. Additionally, said incubation is performed in the presence of cellobiose, since this disaccharide has been described as a preferential substrate to retain beta-glucosidases in their transglycosylation activity. Therefore, in the presence of cellobiose, the hydrolytic activity of beta-glucosidase on pNGP shows a reduction due to the transglycosylation activity. A high percentage of hydrolytic capacity, measured by the p-nitrophenol released in the presence of the cellobiose substrate highly susceptible to transglycosylation, is used as an indication of a low transglycosylation capacity. Therefore, the more p-nitrophenol is measured in step (b) of the first process of the invention, the lower the transglycosylation capacity of the beta-glucosidase vane analyzed.
La expresión "valor de referencia" se refiere a la medición de p-nitrofenol liberado por una beta-glucosidasa nativa, preferiblemente la SEQ ID NO: 1 o la SEQ ID NO: 2, incubada con pNGP en presencia de celobiosa. Una beta- glucosidasa nativa incubada con pNGP en presencia de celobiosa tiene una producción baja de p-nitrofenol, dado que la enzima utilizará la celobiosa como sustrato para realizar el proceso de transglicosilación en lugar de utilizar pNGP para llevar a cabo el proceso hidrolítico que genera p-nitrofenol. Por tanto, la medición del p-nitrofenol liberado tras la incubación en la etapa (a) y su comparación con la medición del p-nitrofenol liberado tras la incubación de una beta-glucosidasa nativa con pNGP en presencia de celobiosa permite la selección de las vanantes de beta-glucosidasa con menor capacidad de transglicosilación que la de una beta-glucosidasa nativa. La comparación en la etapa (c) se puede realizar manualmente o por ordenador. The term "reference value" refers to the measurement of p-nitrophenol released by a native beta-glucosidase, preferably SEQ ID NO: 1 or SEQ ID NO: 2, incubated with pNGP in the presence of cellobiose. A native beta-glucosidase incubated with pNGP in the presence of cellobiose has a low production of p-nitrophenol, since the enzyme will use cellobiose as substrate to carry out the transglycosylation process instead of using pNGP to carry out the hydrolytic process that generates p-nitrophenol. Therefore, the measurement of p-nitrophenol released after incubation in step (a) and its comparison with the measurement of p-nitrophenol released after incubation of a native beta-glucosidase with pNGP in the presence of cellobiose allows the selection of beta-glucosidase vanants with lower transglycosylation capacity than that of a native beta-glucosidase. The comparison in step (c) can be performed manually or by computer.
También se puede reconocer una baja actividad de transglicosilación cuando se mide en la etapa (b) una capacidad hidrolítica en pNGP de entre 30-70%. A low transglycosylation activity can also be recognized when a hydrolytic capacity in pNGP of between 30-70% is measured in step (b).
Las vanantes de la beta-glucosidasa usadas en el primer procedimiento de la invención pueden derivar bien de una librería de mutantes ya conocidos en el estado de la técnica o disponibles comercialmente o bien se pueden diseñar por medio de cualquier procedimiento conocido por los expertos en la materia para generar una librería de mutantes de una enzima. Los mutantes que constituyen dicha librería pueden comprender sustituciones, deleciones y/o inserciones de uno o más aminoácidos en sus secuencias de aminoácidos, así como sustitución de una o más cadenas laterales de aminoácido. Por tanto, otro aspecto de la invención hace referencia a un procedimiento para producir variantes de beta-glucosidasa con actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa, en lo sucesivo "segundo procedimiento de la invención", que comprende el diseño de una librería de mutantes de enzimas beta-glucosidasa y la selección de vanantes de beta- glucosidasa con actividad de transglicosilación reducida de acuerdo con las etapas (a) a (d) del primer procedimiento de la invención The beta-glucosidase vanants used in the first process of the invention can be derived either from a library of mutants already known in the state of the art or commercially available or can be designed by any method known to those skilled in the art. matter to generate a library of mutants of an enzyme. The mutants that constitute said library may comprise substitutions, deletions and / or insertions of one or more amino acids in their amino acid sequences, as well as substitution of one or more amino acid side chains. Therefore, another aspect of the invention refers to a process for producing beta-glucosidase variants with reduced transglycosylation activity compared to native beta-glucosidase, hereinafter "second process of the invention", which comprises the design of a library of beta-glucosidase enzyme mutants and the selection of beta-glucosidase vanants with reduced transglycosylation activity according to steps (a) to (d) of the first method of the invention
Otro aspecto de la invención hace referencia a una vanante de beta- glucosidasa aislada producida por el segundo procedimiento de la invención. Another aspect of the invention refers to an isolated beta-glucosidase vanant produced by the second process of the invention.
Otro aspecto de la invención hace referencia a una vanante de beta- glucosidasa aislada que comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% o 99% con la SEQ ID NO: 2 y comprende una sustitución de aminoácido en la posición Q21 1 correspondiente a las posiciones 1 a 871 de la SEQ ID NO: 2, donde la vanante de beta-glucosidasa tiene una actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa, en lo sucesivo denominada "vanante de beta-glucosidasa de la invención". La actividad de transglicosilación reducida en comparación con la beta- glucosidasa nativa se mide, preferiblemente, por medio del primer procedimiento de la invención descrito arriba. Another aspect of the invention refers to a beta-vacancy Isolated glucosidase comprising an amino acid sequence having a sequence identity of at least 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% with SEQ ID NO: 2 and comprises an amino acid substitution at position Q21 1 corresponding to positions 1 to 871 of SEQ ID NO: 2, where the beta-glucosidase vanant has a reduced transglycosylation activity compared to native beta-glucosidase, hereinafter referred to as "beta-glucosidase vanant of the invention". The reduced transglycosylation activity compared to native beta-glucosidase is preferably measured by the first method of the invention described above.
En una realización preferida, la sustitución de aminoácido de dicha vanante es Q21 1 H. In a preferred embodiment, the amino acid substitution of said vane is Q21 1 H.
El término "identidad", como se usa aquí, en el contexto de describir dos o más secuencias polipeptídicas, hace referencia a un porcentaje especificado de coincidencias de residuos de aminoácidos en las posiciones desde una alineación de dos secuencias de aminoácidos. Los procedimientos de alineación de secuencias para comparar son bien conocidos en la técnica. El grado de identidad se puede determinar mediante el método de Clustal (Higgins, 1989, CABIOS 5: 151 -153), el método de Wilbur-Lipman (Wilbur y Lipman, 1983, Proceedings of the National Academy of Science USA 80: 726- 730), el programa GAG, incluyendo GAP (Devereux et al. 1984, Nucleic Acids Research 12: 287 Genetics Computer Group University of Wisconsin, Madison, (Wl)); BLAST o BLASTN, EMBOSS Needle y FASTA (Altschul et al. 1999, J. Mol. Biol. 215: 403-410). Además, se puede usar el algoritmo de Smüth Waterman con el fin de determinar el grado de identidad entre dos secuencias. The term "identity", as used herein, in the context of describing two or more polypeptide sequences, refers to a specified percentage of amino acid residue matches at positions from an alignment of two amino acid sequences. Sequence alignment procedures for comparison are well known in the art. The degree of identity can be determined by the Clustal method (Higgins, 1989, CABIOS 5: 151-153), the Wilbur-Lipman method (Wilbur and Lipman, 1983, Proceedings of the National Academy of Science USA 80: 726- 730), the GAG program, including GAP (Devereux et al. 1984, Nucleic Acids Research 12: 287 Genetics Computer Group University of Wisconsin, Madison, (Wl)); BLAST or BLASTN, EMBOSS Needle and FASTA (Altschul et al. 1999, J. Mol. Biol. 215: 403-410). In addition, the Smüth Waterman algorithm can be used in order to determine the degree of identity between two sequences.
La vahante de beta-glucosidasa de la invención puede exhibir cambios limitados en su secuencia de aminoácidos. Estos cambios permiten el mantenimiento de la función de la variante de beta-glucosidasa y la actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa. Estos cambios pueden ser sustituciones, deleciones o adiciones. Las sustituciones son por aminoácidos conservados que son aminoácidos con cadenas laterales y propiedades similares con respecto a, por ejemplo, propiedades hidrofóbicas o aromáticas. Estas sustituciones incluyen, pero no se limitan a, sustituciones entre Glu y Asp, Lys y Arg, Asn y Gln, Ser y Thr, y/o entre los aminoácidos incluidos en la lista siguiente: Ala, Leu, Val e lie. Los cambios no conducen a modificaciones relevantes en las características o propiedades esenciales de la variante beta-glucosidasa de la invención. The beta-glucosidase vahant of the invention may exhibit limited changes in its amino acid sequence. These changes allow maintenance of the beta-glucosidase variant function and reduced transglycosylation activity compared to native beta-glucosidase. These changes may be substitutions, deletions or additions. The substitutions are conserved amino acids that are amino acids with side chains and similar properties with respect to, for example, hydrophobic or aromatic properties. These substitutions include, but are not limited to, substitutions between Glu and Asp, Lys and Arg, Asn and Gln, Ser and Thr, and / or among the amino acids included in the following list: Ala, Leu, Val e lie. The changes do not lead to relevant modifications in the essential characteristics or properties of the beta-glucosidase variant of the invention.
Asimismo, la sustitución de aminoácido en la posición Q21 1 , correspondiente a las posiciones 1 a 871 de la SEQ ID NO: 2, es por aminoácidos que tienen las mismas propiedades, sobre, por ejemplo, las propiedades hidrofóbicas o aromáticas, que el aminoácido H. Por tanto, dichas sustituciones permiten que las vanantes de beta-glucosidasa de la invención mantengan la misma función que la vanante preferida de SEQ ID NO: 4, incluyendo la actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa. Likewise, the amino acid substitution at position Q21 1, corresponding to positions 1 to 871 of SEQ ID NO: 2, is by amino acids having the same properties, on, for example, hydrophobic or aromatic properties, as the amino acid H. Thus, such substitutions allow the beta-glucosidase vanants of the invention to maintain the same function as the preferred vanant of SEQ ID NO: 4, including reduced transglycosylation activity compared to native beta-glucosidase.
En una realización más preferida, la vanante de beta-glucosidasa de la invención comprende la secuencia de aminoácidos SEQ ID NO: 4. Un ejemplo de variante de beta-glucosidasa de la invención que comprende la secuencia de aminoácidos SEQ ID NO: 4 es el polipéptido de SEQ ID NO: 5, que es la preproteína de SEQ ID NO: 4, que consiste en un péptido señal correspondiente a los aminoácidos 1 a 19 de la SEQ ID NO: 5 unido a la SEQ ID NO: 4. Por tanto, en una realización más preferida, la vanante de beta- glucosidasa de la invención consiste en la secuencia de aminoácidos SEQ ID NO: 5. Esta SEQ ID NO: 5 corresponde a la beta-glucosidasa nativa de SEQ ID NO: 2, que comprende la sustitución de aminoácido Q21 1 H. Como se muestra en los ejemplos más abajo, la sustitución Q21 1 H reduce la actividad de transglicosilación de la enzima, lo que incrementa la concentración final de azúcares fermentables en un proceso hidrolítico a partir de material celulósico. Dicha secuencia SEQ ID NO: 5 también se denominará en lo sucesivo preproteína Bgl1 Q21 1 H. En una realización aún más preferida, la vanante de beta-glucosidasa de la invención consiste en la secuencia de aminoácidos SEQ ID NO: 4. Esta SEQ ID NO: 4 corresponde a la beta-glucosidasa madura de la SEQ ID NO: 5. Dicha secuencia SEQ ID NO: 4 también se denominará en lo sucesivo proteína madura de Bgl1 Q21 1 H. In a more preferred embodiment, the beta-glucosidase variant of the invention comprises the amino acid sequence SEQ ID NO: 4. An example of a beta-glucosidase variant of the invention comprising the amino acid sequence SEQ ID NO: 4 is the polypeptide of SEQ ID NO: 5, which is the preprotein of SEQ ID NO: 4, which consists of a signal peptide corresponding to amino acids 1 to 19 of SEQ ID NO: 5 linked to SEQ ID NO: 4. Therefore In a more preferred embodiment, the beta-glucosidase vanant of the invention consists of the amino acid sequence SEQ ID NO: 5. This SEQ ID NO: 5 corresponds to the native beta-glucosidase of SEQ ID NO: 2, which comprises amino acid substitution Q21 1 H. As shown in the examples below, substitution Q21 1 H reduces the activity of transglycosylation of the enzyme, which increases the final concentration of fermentable sugars in a hydrolytic process from cellulosic material. Said sequence SEQ ID NO: 5 will also be referred to hereinafter as Bgl1 Q21 1 H preprotein. In an even more preferred embodiment, the beta-glucosidase vanant of the invention consists of the amino acid sequence SEQ ID NO: 4. This SEQ ID NO: 4 corresponds to the mature beta-glucosidase of SEQ ID NO: 5. Said sequence SEQ ID NO: 4 will also be referred to as mature Bgl1 Q21 1 H protein.
La vanante de beta-glucosidasa de la invención puede sintetizarse, por ejemplo, pero sin limitaciones, in vitro. Por ejemplo, por medio de la síntesis de péptidos en fase sólida o abordajes de ADN recombinante. La variante de beta- glucosidasa de la invención puede producirse de forma recombinante, incluida su producción como péptido maduro o como una preproteína que incluye un péptido señal. The beta-glucosidase vanant of the invention can be synthesized, for example, but without limitations, in vitro. For example, through the synthesis of solid phase peptides or recombinant DNA approaches. The beta-glucosidase variant of the invention can be produced recombinantly, including its production as a mature peptide or as a preprotein that includes a signal peptide.
La preparación de la vanante de beta-glucosidasa de la invención se puede realizar por cualquier medio conocido en la técnica, tales como modificación de una secuencia de ADN que codifica una beta-glucosidasa nativa, tal como, por ejemplo, pero sin limitarnos, la SEQ ID NO: 3, que codifica la preproteína de SEQ ID NO: 2, transformación de la secuencia de ADN modificada en una célula huésped adecuada y la expresión de la secuencia de ADN modificada para formar la vanante enzimática. The preparation of the beta-glucosidase vanant of the invention can be carried out by any means known in the art, such as modification of a DNA sequence encoding a native beta-glucosidase, such as, for example, but not limited to, the SEQ ID NO: 3, which encodes the preprotein of SEQ ID NO: 2, transformation of the modified DNA sequence into a suitable host cell and expression of the modified DNA sequence to form the enzymatic vanant.
Debido a la degeneración del código genético, varias secuencias de nucleótidos pueden codificar la misma secuencia de aminoácidos. Por tanto, en otro aspecto, la invención proporciona una secuencia de ácido nucleico aislada que codifica la vanante de beta-glucosidasa de la invención o la vahante beta- glucosidasa producida por el segundo procedimiento de la invención, en lo sucesivo "secuencia de ácido nucleico de la invención", y la secuencia de ácido nucleico complementaria a la misma. Due to the degeneracy of the genetic code, several nucleotide sequences can encode the same amino acid sequence. Therefore, in another aspect, the invention provides an isolated nucleic acid sequence encoding the beta-glucosidase vanant of the invention or the beta-glucosidase vahant produced by the second process of the invention, hereinafter referred to as "nucleic acid sequence of the invention ", and the nucleic acid sequence complementary thereto.
De acuerdo con la presente invención, una "molécula de ácido nucleico aislada", "secuencia de nucleótidos", "secuencia de ácido nucleico" o "polinucleótido" es una molécula de ácido nucleico (polinucleótido) que se ha eliminado de su medio natural (es decir, que se ha sometido a manipulación humana) y puede incluir ADN, ARN o derivados de ADN o ARN, incluyendo ADNc. La secuencia de nucleótidos de la presente invención puede estar o no química o bioquímicamente modificada, y se puede obtener artificialmente por medio de clonación y procedimientos de selección o mediante secuenciación. La secuencia de ácido nucleico de la invención puede codificar el polipéptido maduro o una preproteína que consiste en un péptido señal unido a la enzima madura que tendrá que procesarse después. In accordance with the present invention, an "isolated nucleic acid molecule", "nucleotide sequence", "nucleic acid sequence" or "polynucleotide" is a nucleic acid molecule (polynucleotide) that has been removed from its natural environment (ie, that has undergone human manipulation) and may include DNA, RNA or derivatives of DNA or RNA, including cDNA. The nucleotide sequence of the present invention may or may not be chemically or biochemically modified, and may be obtained artificially by cloning and selection procedures or by sequencing. The nucleic acid sequence of the invention can encode the mature polypeptide or a preprotein consisting of a signal peptide bound to the mature enzyme that will have to be further processed.
La secuencia de nucleótidos de la presente invención también puede comprender otros elementos, tales como intrones, secuencias no codificantes en los extremos 3' y/o 5', sitios de unión al ribosoma, etc. Esta secuencia de nucleótidos también puede incluir secuencias codificantes para aminoácidos adicionales que son útiles para la purificación o estabilidad del péptido codificado. The nucleotide sequence of the present invention may also comprise other elements, such as introns, non-coding sequences at the 3 'and / or 5' ends, ribosome binding sites, etc. This nucleotide sequence may also include coding sequences for additional amino acids that are useful for purification or stability of the encoded peptide.
En una realización preferida, la secuencia de ácido nucleico de la invención es la SEQ ID NO: 6, que es la secuencia de ácido nucleico que codifica la secuencia de aminoácidos de SEQ ID NO: 5 (preproteína de SEQ ID NO: 4). In a preferred embodiment, the nucleic acid sequence of the invention is SEQ ID NO: 6, which is the nucleic acid sequence encoding the amino acid sequence of SEQ ID NO: 5 (preprotein of SEQ ID NO: 4).
La expresión, "secuencia de ácido nucleico complementaria" de una secuencia de ácido nucleico que codifica la variante de beta-glucosidasa de la invención o la vanante de beta-glucosidasa producida por el segundo procedimiento de la invención, hace referencia a la secuencia de ácido nucleico de la hebra complementaria a la que codifica la vanante de beta-glucosidasa de la invención, o la vanante de beta-glucosidasa producida por el segundo procedimiento de la invención. Se apreciará que un ADN bicatena o que codifica una secuencia de aminoácidos dada comprende un ADN monocatenaho y su hebra complementaria, que tiene una secuencia que es complementaria al ADN monocatenaho. The expression, "complementary nucleic acid sequence" of a nucleic acid sequence encoding the beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second process of the invention, refers to the acid sequence nucleic of the strand complementary to that encoding the beta-glucosidase vanant of the invention, or the beta-glucosidase vanant produced by the second method of the invention. It will be appreciated that a double-stranded DNA or encoding a given amino acid sequence comprises a monocatenaho DNA and its complementary strand, which has a sequence that is complementary to the monocatenaho DNA.
La Tabla 1 siguiente muestra una descripción detallada de algunas de las secuencias mencionadas a lo largo de la presente invención. Table 1 below shows a detailed description of some of the sequences mentioned throughout the present invention.
Figure imgf000014_0001
Figure imgf000014_0001
Tabla 1 . Descripción de algunas de las secuencias mencionadas en la presente invención. Table 1 . Description of some of the sequences mentioned in the present invention.
La secuencia de ácido nucleico de la invención se puede incluir en una construcción genética, preferiblemente en un vector de expresión. Dicha construcción genética puede comprender además una o más secuencias reguladoras de la expresión génica, tales como promotores, terminadores etc. Por tanto, en otro aspecto, la invención proporciona una construcción genética que comprende la secuencia de ácido nucleico de la invención o la secuencia de ácido nucleico complementaria a la misma, en lo sucesivo "construcción génica de la invención". En una forma de realización preferida, dicha construcción génica es un vector de expresión. The nucleic acid sequence of the invention can be included in a genetic construct, preferably in an expression vector. Said genetic construct may further comprise one or more gene expression regulatory sequences, such as promoters, terminators etc. Therefore, in another aspect, the invention provides a genetic construct comprising the nucleic acid sequence of the invention or the nucleic acid sequence complementary thereto, hereinafter "gene construct of the invention". In a preferred embodiment, said gene construct is an expression vector.
La expresión "construcción génica" o "construcción de ácido nucleico" como se usa aquí hace referencia a una unidad funcional necesaria para la transferencia o la expresión de un gen de interés, en el presente documento, la secuencia de ácido nucleico de la invención como se ha descrito, y secuencias reguladoras, incluyendo, por ejemplo, un promotor, operativamente unidas a la secuencia que codifica la proteína. Se refiere a una molécula de ácido nucleico, mono o bicatenaria, que se encuentra aislada de un gen natural o que se modifica para que contenga segmentos de ácidos nucleicos de un modo que, de otro modo, no existirían en la naturaleza. La expresión construcción de ácido nucleico es sinónima a la expresión "cásete de expresión", cuando la construcción de ácido nucleico contiene las secuencias control requeridas para la expresión de la secuencia codificante. The expression "gene construct" or "nucleic acid construct" as used herein refers to a functional unit necessary for the transfer or expression of a gene of interest, herein, the nucleic acid sequence of the invention as described, and regulatory sequences, including, for example, a promoter , operably linked to the sequence encoding the protein. It refers to a single or double stranded nucleic acid molecule that is isolated from a natural gene or that is modified to contain nucleic acid segments in a way that would not otherwise exist in nature. The term "nucleic acid construct" is synonymous with the expression "expression cassette," when the nucleic acid construct contains the control sequences required for the expression of the coding sequence.
La expresión "vector de expresión", también conocida como "construcción de expresión" o "plásmido", hace referencia a una molécula de ADN, lineal o circular, que comprende la secuencia de ácido nucleico de la invención y que está operativamente unida a segmentos adicionales que proporcionan la transcripción del péptido codificado. Generalmente, un plásmido se usa para introducir un gen específico en una célula diana. Una vez que el vector de expresión está en el interior de la célula, la proteína que está codificada por el gen es producida mediante los complejos ribosómicos de la maquinaria de transcripción y traducción celular. Con frecuencia el plásmido se somete a ingeniería para que contenga secuencias reguladoras que actúan como regiones potenciadoras y promotoras y que conducen a una transcripción eficiente del gen portado en el vector de expresión. El objetivo de un vector de expresión bien diseñado es la producción de grandes cantidades de ARN mensajero estable y, por tanto, de proteínas. Los vectores de expresión son herramientas básicas de biotecnología y de la producción de proteínas, tales como enzimas. El vector de expresión de la invención se introduce en una célula huésped de modo que el vector se mantiene como integrante cromosómico o como vector autoreplicante extracromosómico. The term "expression vector", also known as "expression construct" or "plasmid," refers to a linear or circular DNA molecule, which comprises the nucleic acid sequence of the invention and is operably linked to segments. additional that provide transcription of the encoded peptide. Generally, a plasmid is used to introduce a specific gene into a target cell. Once the expression vector is inside the cell, the protein that is encoded by the gene is produced by the ribosomal complexes of the cell transcription and translation machinery. Often the plasmid is engineered to contain regulatory sequences that act as enhancer and promoter regions and that lead to efficient transcription of the gene carried in the expression vector. The objective of a well-designed expression vector is the production of large amounts of stable messenger RNA and, therefore, of proteins. Expression vectors are basic tools of biotechnology and protein production, such as enzymes. The expression vector of the invention is introduced into a host cell so that the vector is maintained as a chromosomal integrant or as an extrachromosomal self-replicating vector.
Ejemplos de vectores de expresión son fagos, cósmidos, fagémidos, cromosomas artificiales de levaduras (YAC), cromosomas artificiales bacterianos (BAC), cromosomas artificiales humanos (HAC) o vectores virales, tales como adenovirus, retrovirus o lentivirus. Examples of expression vectors are phages, cosmids, phagemids, artificial yeast chromosomes (YAC), artificial chromosomes. bacterial (BAC), human artificial chromosomes (HAC) or viral vectors, such as adenovirus, retrovirus or lentivirus.
Las construcciones génicas de la presente invención abarcan un vector de expresión, donde el vector de expresión se puede usar para transformar una célula huésped u hospedadora adecuada para que el huésped pueda expresar la vanante de beta-glucosidasa de la invención o la vanante de beta- glucosidasa producida por el segundo procedimiento de la invención. Los procedimientos para la expresión recombinante de proteínas en hongos y otros organismos son bien conocidos en la técnica y se dispone de numerosos vectores de expresión o se pueden construir usando procedimientos de rutina. The gene constructs of the present invention encompass an expression vector, where the expression vector can be used to transform a suitable host or host cell so that the host can express the beta-glucosidase vanant of the invention or the beta-vanant glucosidase produced by the second process of the invention. Methods for recombinant protein expression in fungi and other organisms are well known in the art and numerous expression vectors are available or can be constructed using routine procedures.
La expresión "secuencias control" se define aquí para incluir todos los componentes que son necesarios o ventajosos para la expresión de la secuencia de ácido nucleico de la presente invención. Dichas secuencias control incluyen, pero sin limitarse, un líder, una secuencia de poliadenilación, una secuencia propéptido, un promotor, una secuencia de péptido señal y un terminador de la transcripción. Como mínimo, las secuencias control incluyen un promotor y señales de terminación de la transcripción y de la traducción. Las secuencias control se pueden proporcionar con ligadores con el fin de introducir sitios de restricción específicos que facilitan la unión de las secuencias control con la región codificante de la secuencia de ácido nucleico de la presente invención. La expresión "operativamente unido" indica en el presente documento una configuración en la que una secuencia control se coloca en una posición adecuada respecto a la secuencia de ácido nucleico de la presente invención, de un modo tal que la secuencia control dirige la expresión de la secuencia de ácido nucleico de la presente invención. The term "control sequences" is defined herein to include all components that are necessary or advantageous for the expression of the nucleic acid sequence of the present invention. Such control sequences include, but are not limited to, a leader, a polyadenylation sequence, a propeptide sequence, a promoter, a signal peptide sequence and a transcription terminator. At a minimum, the control sequences include a promoter and termination signals of transcription and translation. Control sequences can be provided with linkers in order to introduce specific restriction sites that facilitate the binding of control sequences with the coding region of the nucleic acid sequence of the present invention. The term "operably linked" indicates herein a configuration in which a control sequence is placed in a suitable position relative to the nucleic acid sequence of the present invention, such that the control sequence directs the expression of the nucleic acid sequence of the present invention.
El vector de expresión de la invención puede ser un vector de replicación autónoma, es decir un vector que existe como entidad extracromosómica, cuya replicación es independiente de la replicación del cromosoma, por ejemplo un plásmido, un elemento extracromosómico, un minicromosoma o un cromosoma artificial. El vector puede contener cualquier medio para garantizar la autoreplicacion. Como alternativa, el vector puede ser uno que, cuando se introduce en la célula huésped, se integra en el genoma y se replica junto con el(los) cromosoma(s) en el(los) que se ha integrado. The expression vector of the invention can be an autonomous replication vector, that is a vector that exists as an extrachromosomal entity, whose replication is independent of chromosome replication, for example a plasmid, an extrachromosomal element, a minichromosome or a chromosome. artificial. The vector may contain any means to guarantee self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome (s) in which it has been integrated.
Además se puede usar un único vector o plásmido o dos o más vectores o plásmidos que juntos contienen el ADN total que se va a introducir en el genoma de la célula huésped, o un transposon. In addition, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon can be used.
Los vectores usados en la presente invención contienen, preferiblemente, uno o más marcadores seleccionabas que permitan la fácil selección de las células transformadas, transfectadas, transducidas o similares. Un marcador seleccionable es un producto génico que proporciona resistencia a un biocida o a un virus, a metales pesados, prototrofia a los auxótrofos y similares. Los marcadores seleccionabas para usar en una célula huésped de un hongo filamentoso incluyen, pero sin limitarse, amdS (acetamidasa), argB (ornitina carbamoiltransferasa), bar (fosfinotricina acetiltransferasa), hph (higromicina fosfotransferasa), niaD (nitrato reductasa), pyrG (orotidin-5'-fosfato descarboxilasa), cysC (sulfato adeniltransferasa), y trpC (antranilato sintasa), así como equivalentes de los mismos. The vectors used in the present invention preferably contain one or more selectable markers that allow easy selection of transformed, transfected, transduced or similar cells. A selectable marker is a gene product that provides resistance to a biocide or a virus, to heavy metals, prototrophy to auxotrophs and the like. Markers selected for use in a host cell of a filamentous fungus include, but are not limited to, amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG ( orotidin-5'-phosphate decarboxylase), cysC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof.
Los vectores usados en la presente invención contienen, preferiblemente, uno o más elementos que permiten la integración del vector en el genoma de la célula huésped o la replicación autónoma del vector en la célula con independencia del genoma. Para la integración en el genoma de la célula huésped, el vector puede depender de la secuencia de ácido nucleico de la presente invención o de cualquier otro elemento del vector para la integración en el genoma mediante recombinación homologa o no homologa. Como alternativa, el vector puede contener secuencias adicionales de nucleótidos para dirigir la integración mediante recombinación homologa en el genoma de la célula huésped en una o más localización(es) precisas en el(los) cromosoma(s). Para la replicación autónoma, el vector puede comprender además un origen de replicación que permite que el vector se replique de forma autónoma en la célula huésped en cuestión. El origen de replicación puede ser cualquier replicador plasmídico que participe en la replicación autónoma que funciona en una célula. La expresión "origen de replicación" o "replicador plasmídico" se define aquí como una secuencia de nucleótidos que permite que un plásmido o vector se replique in vivo. Ejemplos de orígenes de replicación útiles en una célula fúngica filamentosa son AMAI y ANSI. The vectors used in the present invention preferably contain one or more elements that allow the integration of the vector into the genome of the host cell or the autonomous replication of the vector into the cell irrespective of the genome. For integration into the genome of the host cell, the vector may depend on the nucleic acid sequence of the present invention or any other element of the vector for integration into the genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional nucleotide sequences to direct integration by homologous recombination into the genome of the host cell at one or more precise location (s) on the chromosome (s). For autonomous replication, the vector may further comprise an origin of replication that allows the vector to replicate autonomously in the host cell in question. The origin of replication can be any plasmid replicator that participates in autonomous replication that works in a cell. The term "origin of replication" or "plasmid replicator" is defined herein as a nucleotide sequence that allows a plasmid or vector to replicate in vivo. Examples of useful origins of replication in a filamentous fungal cell are AMAI and ANSI.
En la célula huésped se puede insertar más de una copia de la secuencia de ácido nucleico de la presente invención para aumentar la producción del producto génico. Se puede obtener un incremento del número de copias del polinucleótido mediante integración de al menos una copia adicional de la secuencia en el genoma de la célula huésped o incluyendo un gen marcador selecciónatele amplificable con el polinucleótido, donde las células que contienen copias amplificadas del gen marcador selecciónatele y, por consiguiente, copias adicionales del polinucleótido, se pueden seleccionar cultivando las células en presencia del agente selecciónatele adecuado. Los procedimientos usados para ligar los elementos descritos anteriormente para construir los vectores de expresión recombinante a los que se hace referencia en la presente invención son bien conocidos por un experto en la técnica. More than one copy of the nucleic acid sequence of the present invention can be inserted into the host cell to increase the production of the gene product. An increase in the number of copies of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the genome of the host cell or by including a selectable marker gene amplifiable with the polynucleotide, where cells containing amplified copies of the marker gene select it and, consequently, additional copies of the polynucleotide, can be selected by culturing the cells in the presence of the appropriate selection agent. The methods used to link the elements described above to construct the recombinant expression vectors referred to in the present invention are well known to one skilled in the art.
En otro aspecto, la invención proporciona una célula huésped que comprende la construcción génica de la invención, en adelante denominada "célula huésped de la invención". Por tanto, dicha célula huésped expresa la vanante de beta-glucosidasa de la invención. La "célula huésped", como se usa aquí, incluye cualquier tipo celular que es susceptible de transformación, transfección, transducción y similar con la construcción génica de la invención. La célula huésped puede ser eucariota, tal como una célula de mamífero, insecto, vegetal o fúngica. En una realización preferida, la célula huésped es una célula de hongo filamentoso. Los hongos filamentosos generalmente se caracterizan por una pared miceliar compuesta por quitina, celulosa, glucano, quitosano, mañano y otros polisacáridos complejos. En una realización más preferida, la célula huésped de hongo filamentoso es una célula de Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, o Trichoderma. En una realización más preferida, la célula huésped de hongo filamentoso es una célula de Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger o Aspergillus oryzae. En otra realización más preferida, la célula huésped de hongo filamentoso es una célula de Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium pseudograminearum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, o Fusarium venenatum. En otra realización más preferida, la célula huésped de hongo filamentoso es una célula de Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis su b rufa, Ceriporiopsis subvermispora, Coprinus cinereus, Coriolus hirsutus, Gibberella zeae, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes vi llosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei o Trichoderma viride. En otra realización aún más preferida, la célula huésped de la invención es cualquier cepa de la especie Myceliophthora thermophila. En una realización aún más preferida, la célula huésped de la invención es la cepa C1 de la especie Myceliophthora thermophila. Se entenderá que, para las especies mencionadas anteriormente, la invención abarca estados tanto perfectos como imperfectos y otros equivalentes taxonómicos, por ejemplo anamorfos, con independencia del nombre de la especie por el que se conocen. Los expertos en la técnica reconocerán fácilmente la identidad de los equivalentes adecuados. Por ejemplo, Myceliophthora thermophila es equivalente a Chrysosporium lucknowense. In another aspect, the invention provides a host cell comprising the gene construct of the invention, hereinafter referred to as "host cell of the invention". Therefore, said host cell expresses the beta-glucosidase vanant of the invention. The "host cell", as used herein, includes any cell type that is susceptible to transformation, transfection, transduction and the like with the gene construct of the invention. The host cell can be eukaryotic, such as a mammalian, insect, plant or fungal cell. In a preferred embodiment, the host cell is a filamentous fungus cell. Filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, morning and other complex polysaccharides. In a more preferred embodiment, the filamentous fungus host cell is a cell of Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Neceliophthora, Neceliophthora, Myceliophthora Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma. In a more preferred embodiment, the filamentous fungus host cell is a cell of Aspergillus awamori, Aspergillus fumigatus, Aspergillus foetidus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger or Aspergillus oryzae. In another more preferred embodiment, the filamentous fungus host cell is a Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium pseusgramusarum Fusarium, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, or Fusarium venenatum. In another more preferred embodiment, the host cell of filamentous fungus is a cell of Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis su b rufa, Ceriprepsus corustrous, Ceriporiopsus corusorus, Ceriporiopsis corusorus Cerustrous , Gibberella zeae, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes trichoderma, Trichoderma, trichoderma, Trichoderma, trichoderma, Trichoderma trichtema, Trichoderma trichtema, Trichoderma trichtema, Trichoderma trichtema, Trichoderma trichtema, Trichoderma trichtema, Trichoderma trichtema, Trichtema trichite, Trichtema, Trichtema, Trichromatum, Trichtema, Trichimus, Trichimus Trichoderma reesei or Trichoderma viride. In another even more preferred embodiment, the host cell of the invention is any strain of the Myceliophthora thermophila species. In an even more preferred embodiment, the host cell of the invention is strain C1 of the Myceliophthora thermophila species. It will be understood that, for the aforementioned species, the invention encompasses both perfect and imperfect states and other taxonomic equivalents, for example anamorphs, regardless of the name of the species by which they are known. Those skilled in the art will readily recognize the identity of suitable equivalents. For example, Myceliophthora thermophila is equivalent to Chrysosporium lucknowense.
La vanante de beta-glucosidasa de la invención o la vanante de beta- glucosidasa producida por el segundo procedimiento de la invención tiene una actividad de transglicosilación reducida, por lo que su uso en una composición enzimática para la etapa de hidrólisis del material celulósico en azúcares fermentables en los procesos para la producción de un bioproducto, preferiblemente etanol, es interesante para mejorar la actividad de toda la composición enzimática. The beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second process of the invention has a reduced transglycosylation activity, whereby its use in an enzymatic composition for the stage of hydrolysis of the cellulosic material in sugars Fermentable in the processes for the production of a bioproduct, preferably ethanol, it is interesting to improve the activity of the entire enzyme composition.
Por tanto, en otro aspecto de la invención se proporciona una composición enzimática que comprende la vanante de beta-glucosidasa de la invención o la variante de beta-glucosidasa producida por el segundo procedimiento de la invención, de ahora en adelante conocida como "composición enzimática de la invención". En una realización preferida, la composición enzimática de la invención comprende además otras enzimas celulolíticas. Therefore, in another aspect of the invention there is provided an enzymatic composition comprising the beta-glucosidase vanant of the invention or the beta-glucosidase variant produced by the second method of the invention, hereinafter referred to as "enzymatic composition of the invention ". In a preferred embodiment, the enzyme composition of the invention further comprises other cellulolytic enzymes.
Se debe entender que la vanante de beta-glucosidasa de la invención o la variante de beta-glucosidasa producida por el segundo procedimiento de la invención se pueden combinar con una o más de las enzimas celulolíticas descritas en el presente documento o con cualquier otra enzima disponible y adecuada para producir una composición multienzimática. Uno o más componentes de la composición multienzimática (aparte de las enzimas descritas en la presente invención) se pueden obtener o derivar de una fuente microbiana, vegetal o de otro tipo o combinación de las mismas, y contendrán enzimas capaces de degradar el material celulósico. La expresión "enzimas celulolíticas", también conocidas como "celulasas" hace referencia a una categoría de enzimas capaces de hidrolizar la celulosa (enlaces p-1 ,4-glucano o β-D-glucosídico) en oligosacáridos más cortos, celobiosa y/o glucosa. Ejemplos de enzimas celulolíticas son, pero sin limitarnos, endoglucanasas, beta-glucosidasas, celobiohidrolasas o beta- xilosidasas. Por tanto, en una realización más preferida, estas enzimas celulolíticas se seleccionan de la lista que consiste en: endoglucanasas, beta- glucosidasas, celobiohidrolasas, beta-xilosidasas o cualquier combinación de las mismas. Estas enzimas celulolíticas pueden derivar de la célula huésped de la invención u otros microorganismos productores de enzimas celulolíticas distintos a la célula huésped de la invención. Asimismo, se pueden producir de forma natural o recombinante. It should be understood that the beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second process of the invention can be combined with one or more of the cellulolytic enzymes described herein or with any other available enzyme. and suitable to produce a multienzyme composition. One or more components of the multienzyme composition (apart from the enzymes described in the present invention) can be obtained or derived from a microbial, plant or other source or combination thereof, and will contain enzymes capable of degrading the cellulosic material. The term "cellulolytic enzymes", also known as "cellulases" refers to a category of enzymes capable of hydrolyzing cellulose (p-1, 4-glucan or β-D-glucosidic bonds) in shorter, cellobiose and / or oligosaccharides glucose. Examples of cellulolytic enzymes are, but are not limited to, endoglucanases, beta-glucosidases, cellobiohydrolases or beta-xylosidases. Therefore, in a more preferred embodiment, these cellulolytic enzymes are selected from the list consisting of: endoglucanases, beta-glucosidases, cellobiohydrolases, beta-xylosidases or any combination thereof. These cellulolytic enzymes can be derived from the host cell of the invention or other microorganisms producing cellulolytic enzymes other than the host cell of the invention. They can also be produced naturally or recombinantly.
El término "endoglucanasa" o "EG" hace referencia a un grupo de enzimas celulasas clasificadas como E.C. 3.2.1 .4. Estas enzimas hidrolizan los enlaces β-1 ,4 glucosídicos de la celulosa. The term "endoglucanase" or "EG" refers to a group of cellulase enzymes classified as E.C. 3.2.1 .4. These enzymes hydrolyse the glucosidic β-1, 4 cellulose bonds.
El término "celobiohidrolasa" hace referencia a una proteína que cataliza la hidrólisis de la celulosa en celobiosa mediante una actividad exoglucanasa, liberando secuencialmente moléculas de celobiosa a partir de los extremos reductores o no reductores de la celulosa o los celooligosacáridos. The term "cellobiohydrolase" refers to a protein that catalyzes the hydrolysis of cellulose in cellobiose through an exoglucanase activity, sequentially releasing cellobiose molecules from the reducing or non-reducing ends of cellulose or cellooligosaccharides.
El término "β-xilosidasa" se refiere a una proteína que hidroliza los 1 ,4-β-ϋ- xilooligómeros cortos en xilosa. The term "β-xylosidase" refers to a protein that hydrolyzes the short 1,4-β-ϋ-xylo-oligomers in xylose.
En una realización preferida, la composición enzimática de la invención comprende además la célula huésped de la invención. In a preferred embodiment, the enzyme composition of the invention further comprises the host cell of the invention.
La composición de la invención se puede preparar de acuerdo con procedimientos conocidos en la técnica y puede estar en forma de un líquido o una composición seca. Por ejemplo, la composición puede estar en forma de un granulado o un microgranulado. Las enzimas que se van a incluir en la composición se pueden estabilizar de acuerdo con procedimientos conocidos en la técnica. The composition of the invention can be prepared according to methods known in the art and can be in the form of a liquid or a dry composition. For example, the composition may be in the form of a granulate or a microgranulate. The enzymes to be included in the Composition can be stabilized according to procedures known in the art.
La vanante de beta-glucosidasa de la invención o la vanante de beta- glucosidasa producida mediante el segundo procedimiento de la invención, así como la célula huésped o la composición de la presente invención se pueden usar en la producción de monosacáridos, disacáridos y polisacáridos como reservas químicas o de fermentación a partir de material celulósico para la producción de etanol, plásticos u otros productos o intermedios. The beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second method of the invention, as well as the host cell or the composition of the present invention can be used in the production of monosaccharides, disaccharides and polysaccharides as chemical or fermentation reserves from cellulosic material for the production of ethanol, plastics or other products or intermediates.
La célula huésped de la presente invención se puede usar como fuente de la variante de beta-glucosidasa de la invención o la vanante de beta-glucosidasa producida mediante el segundo procedimiento de la invención y otras enzimas celulolíticas, en un proceso de fermentación a partir del material celulósico. The host cell of the present invention can be used as a source of the beta-glucosidase variant of the invention or the beta-glucosidase variant produced by the second method of the invention and other cellulolytic enzymes, in a fermentation process from the cellulosic material
Por tanto, otro aspecto de la invención hace referencia a una composición enzimática obtenida mediante la célula huésped de la invención. Therefore, another aspect of the invention refers to an enzymatic composition obtained by the host cell of the invention.
La degradación o hidrólisis del material celulósico en azúcares fermentables, proceso también conocido como "sacarificación", por medio de la variante de beta-glucosidasa de la invención, la vahante de beta-glucosidasa producida mediante el segundo procedimiento de la invención, la célula huésped de la invención o la composición de la invención puede acompañarse después de un proceso de fermentación en el que los azúcares fermentables obtenidos se usan con el fin de obtener finalmente un bioproducto tal como bioetanol. The degradation or hydrolysis of the cellulosic material in fermentable sugars, a process also known as "saccharification", by means of the beta-glucosidase variant of the invention, the beta-glucosidase vahant produced by the second method of the invention, the host cell of the invention or the composition of the invention can be accompanied after a fermentation process in which the fermentable sugars obtained are used in order to finally obtain a bioproduct such as bioethanol.
Por tanto, en otro aspecto, la presente invención se refiere a un procedimiento para producir azúcares fermentables, en lo sucesivo "tercer procedimiento de la invención", que comprende: a) Incubar el material celulósico con la vahante de beta-glucosidasa de la invención, la vahante de beta-glucosidasa producida mediante el segundo procedimiento de la invención, la célula huésped de la invención o la composición enzimática de la invención, y Therefore, in another aspect, the present invention relates to a process for producing fermentable sugars, hereinafter referred to as "third process of the invention", which comprises: a) Incubate the cellulosic material with the beta-glucosidase steamer of the invention , the beta-glucosidase vahante produced by the second method of the invention, the host cell of the invention or the enzymatic composition of the invention, and
b) Recuperar el azúcar fermentable obtenido tras la incubación en la etapa (a).  b) Recover the fermentable sugar obtained after the incubation in step (a).
La expresión "azúcar fermentable", como se usa en el presente documento, se refiere a azúcares simples, tales como glucosa, xilosa, arabinosa, galactosa, mañosa, ramnosa, sacarosa o fructosa. The term "fermentable sugar", as used herein, refers to simple sugars, such as glucose, xylose, arabinose, galactose, mannose, rhamnose, sucrose or fructose.
En otro aspecto, la presente invención se refiere a un procedimiento de producir un bioproducto, en lo sucesivo "cuarto procedimiento de la invención", que comprende: a) Incubar el material celulósico con la vanante de beta-glucosidasa de la invención, la vanante de beta-glucosidasa producida mediante el segundo procedimiento de la invención, la célula huésped de la invención o la composición enzimática de la invención, In another aspect, the present invention relates to a method of producing a bioproduct, hereafter referred to as "fourth process of the invention", comprising: a) Incubate the cellulosic material with the beta-glucosidase vanant of the invention, the vanant of beta-glucosidase produced by the second method of the invention, the host cell of the invention or the enzymatic composition of the invention,
b) Fermentar los azúcares fermentables obtenidos tras la incubación de la etapa (a) con al menos un microorganismo fermentador, y  b) Ferment the fermentable sugars obtained after the incubation of step (a) with at least one fermenting microorganism, and
c) Recuperar el bioproducto obtenido tras la fermentación en la etapa (b).  c) Recover the bioproduct obtained after fermentation in step (b).
La expresión "material celulósico" significa la fracción biodegradable de productos, residuos y desechos de origen biológico de la agricultura (incluidos vegetales, tales como residuos de cosechas y sustancias animales), forestales (como recursos madereros) e industrias relacionadas, incluidas pescaderías y acuicultura, así como la fracción biodegradable de residuos industriales y municipales, tales como residuos sólidos municipales o papeleras. En una realización preferida, el material celulósico es paja o fracción orgánica de residuos sólidos municipales. En una realización más preferida, el material celulósico es biomasa vegetal, más preferiblemente seleccionada de la lista que consiste en: biomasa rica en azúcares fermentables, tales como caña de azúcar, biomasa de almidón, por ejemplo, grano de trigo o paja de maíz. Aún más preferentemente, la biomasa vegetal es grano de cereales, tales como almidón, trigo, cebada o mezclas de los mismos. The term "cellulosic material" means the biodegradable fraction of products, residues and wastes of biological origin from agriculture (including vegetables, such as crop residues and animal substances), forestry (such as timber resources) and related industries, including fishmongers and aquaculture , as well as the biodegradable fraction of industrial and municipal waste, such as municipal solid waste or paper. In a preferred embodiment, the cellulosic material is straw or organic fraction of municipal solid waste. In a more preferred embodiment, the cellulosic material is plant biomass, more preferably selected from the list consisting of: biomass rich in fermentable sugars, such as sugar cane, starch biomass, for example, wheat grain or corn straw. Yet more preferably, the plant biomass is grain of cereals, such as starch, wheat, barley or mixtures thereof.
En algunas realizaciones, el tercero y/o cuarto procedimiento de la invención comprende, preferiblemente, un proceso de pretratamiento antes de la etapa (a). En general, un proceso de pretratamiento dará como resultado que los componentes del material celulósico sean más accesibles para las etapas posteriores o sean más digeribles por las enzimas tras el tratamiento en ausencia de hidrólisis. El pretratamiento puede ser un pretratamiento químico, físico o biológico, o cualquier mezcla de los mismos. In some embodiments, the third and / or fourth process of the invention preferably comprises a pretreatment process before step (a). In general, a pretreatment process will result in the cellulosic material components being more accessible for later stages or more digestible by enzymes after treatment in the absence of hydrolysis. The pretreatment can be a chemical, physical or biological pretreatment, or any mixture thereof.
El término "recuperación", como se usa aquí, se refiere a la recuperación de los azúcares fermentables obtenidos tras la incubación en la etapa (a) del tercer procedimiento de la invención o el bioproducto obtenido tras la fermentación de la etapa (b) del cuarto procedimiento de la invención. La recuperación se puede producir por cualquier procedimiento conocido en la técnica, incluidos mecánicos o manuales. The term "recovery", as used herein, refers to the recovery of fermentable sugars obtained after incubation in step (a) of the third process of the invention or the bioproduct obtained after fermentation of step (b) of Fourth process of the invention. Recovery may occur by any procedure known in the art, including mechanical or manual.
El término " fermentación", como se usa aquí, se refiere a un proceso de transformación biológica causada por la actividad de algunos microorganismos en el que azúcares tales como glucosa, fructosa y sacarosa se convierten en etanol. Por tanto, los microorganismos usados son microorganismos fermentadores que tienen una capacidad de fermentación, tales como levaduras, preferiblemente Saccharomyces cerevisiae. The term "fermentation", as used herein, refers to a process of biological transformation caused by the activity of some microorganisms in which sugars such as glucose, fructose and sucrose are converted into ethanol. Therefore, the microorganisms used are fermenting microorganisms that have a fermentation capacity, such as yeasts, preferably Saccharomyces cerevisiae.
En otra realización preferida, las etapas (a) y (b) del cuarto procedimiento de la invención se pueden realizar simultáneamente. In another preferred embodiment, steps (a) and (b) of the fourth process of the invention can be performed simultaneously.
El término "bioproducto" o "productos biológicos" se refiere a los materiales, químicos y derivados de energía de recursos biológicos renovables. Ejemplos de estos bioproductos son, pero sin limitarnos, compuestos de hidrocarburos en sus diferentes formas, tales como hidrocarburos alifáticos (saturados, insaturados, cíclicos) o aromáticos, como alcanos, alquenos, alquinos, formas cíclicas de estos compuestos o hidrocarburos aromáticos; sustancias oxigenadas como alcoholes, éteres, aldehidos, cetonas o ácidos carboxílicos; sustancias nitrogenadas como aminas, amidas, compuestos de nitrógeno o nit los; sustancias halogenadas como haluros. El término "bioproductos" también incluye cualquier combinación de los compuestos descritos arriba, compuestos que además derivan de los compuestos descritos arriba mediante cualquier tipo de tratamiento físico, químico o biológico, polímeros de los compuestos descritos arriba, compuestos descritos anteriormente sustituidos por cualquier grupo o elemento funcional en uno o más de sus enlaces y formas ramificadas de los compuestos descritos arriba. The term "bioproduct" or "biological products" refers to the materials, chemicals and energy derivatives of renewable biological resources. Examples of these bioproducts are, but are not limited to, hydrocarbon compounds in their different forms, such as aliphatic hydrocarbons (saturated, unsaturated, cyclic) or aromatic, such as alkanes, alkenes, alkynes, cyclic forms of these compounds or aromatic hydrocarbons; oxygenated substances such as alcohols, ethers, aldehydes, ketones or carboxylic acids; nitrogenous substances such as amines, amides, nitrogen compounds or nit; halogenated substances such as halides. The term "bioproducts" also includes any combination of the compounds described above, compounds that also derive from the compounds described above by any type of physical, chemical or biological treatment, polymers of the compounds described above, compounds described above substituted by any group or functional element in one or more of its bonds and branched forms of the compounds described above.
El etanol se puede producir mediante degradación enzimática del material celulósico y la conversión de los sacá dos liberados en etanol. Este tipo de etanol a menudo se denomina bioetanol. Se puede usar como aditivo de combustible o como expansor en mezclas de menos de 1 % y de hasta 100% (un sustituto del combustible). Ethanol can be produced by enzymatic degradation of cellulosic material and the conversion of saccharides released into ethanol. This type of ethanol is often called bioethanol. It can be used as a fuel additive or as an expander in mixtures of less than 1% and up to 100% (a fuel substitute).
Por tanto, en una forma de realización más preferida, el bioproducto es biocombustible. El término "biocombustible", como se usa aquí, hace referencia a un hidrocarburo, o una mezcla de los mismos, que se puede usar como combustible y se obtiene usando material celulósico fermentable como material de partida. Ejemplos de biocombustibles incluyen, pero sin limitarse, etanol o bioetanol y biodiésel. En una forma de realización preferida, el biocombustible es bioetanol. Therefore, in a more preferred embodiment, the bioproduct is biofuel. The term "biofuel," as used herein, refers to a hydrocarbon, or a mixture thereof, that can be used as fuel and is obtained using fermentable cellulosic material as the starting material. Examples of biofuels include, but are not limited to, ethanol or bioethanol and biodiesel. In a preferred embodiment, the biofuel is bioethanol.
El término "bioetanol" o "etanol" hace referencia a un alcohol realizado mediante fermentación, principalmente a partir de material celulósico fermentable tal como hidratos de carbono producido mediante la vanante de beta-glucosidasa de la invención o la vanante de beta-glucosidasa producida mediante el segundo procedimiento de la invención, o cultivos de almidón tales como maíz o caña de azúcar. A menos que se defina otra cosa, todos los términos técnicos y científicos usados en el presente documento tienen el mismo significado que el que les daría un experto en la técnica a la que esta invención pertenece. En la práctica de la presente invención se pueden usar procedimientos y materiales similares o equivalentes a los descritos en el presente documento. A lo largo de la descripción y las reivindicaciones, con la palabra "comprende" y sus variaciones no se pretende excluir otras características técnicas, aditivos, componentes o etapas. Otros objetos, ventajas y características adicionales de la invención serán obvias para los expertos en la técnica a partir del análisis de la descripción o se pueden aprender mediante la práctica de la invención. Los ejemplos y dibujos siguientes y el listado de secuencias se proporcionan a modo de ilustración y no se pretende que sean limitantes de la presente invención. The term "bioethanol" or "ethanol" refers to an alcohol made by fermentation, mainly from fermentable cellulosic material such as carbohydrates produced by the beta-glucosidase vanant of the invention or the beta-glucosidase vanant produced by the second process of the invention, or starch cultures such as corn or sugarcane. Unless otherwise defined, all the technical and scientific terms used in this document have the same meaning as that given by an expert in the art to which this invention belongs. In the practice of the present invention procedures and materials similar or equivalent to those described herein can be used. Throughout the description and the claims, the word "comprises" and its variations is not intended to exclude other technical characteristics, additives, components or steps. Other objects, advantages and additional features of the invention will be obvious to those skilled in the art from the analysis of the description or can be learned through the practice of the invention. The following examples and drawings and the sequence listing are provided by way of illustration and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Fig. 1. Vector de expresión con Tcbhl como secuencia de terminación y pyr5 como marcador de selección. SacI y Notl fueron los sitios de restricción elegidos para la clonación del fragmento Pcbh1-bgl1. Fig. 1. Expression vector with Tcbhl as termination sequence and pyr5 as selection marker. SacI and Notl were the restriction sites chosen for the cloning of the Pcbh1-bgl1 fragment.
Fig. 2. Plásmido de expresión del ADNc de bgll de Myceliophthora thermophila C1. Fig. 2. Myceliophthora thermophila C1 bgll cDNA expression plasmid.
Fig. 3. Actividad relativa beta-glucosidasa de 31 L2D y otros transformantes analizada usando pNGP como sustrato en presencia y en ausencia de celobiosa. Fig. 3. Relative activity beta-glucosidase of 31 L2D and other transformants analyzed using pNGP as a substrate in the presence and absence of cellobiose.
Fig. 4. Plásmido de expresión de bgl1Q211H amplificado de la cepa 31 L2D. Fig. 4. Amplified bgl1Q211H expression plasmid of strain 31 L2D.
Fig. 5. SDS-PAGE de las enzimas beta-glucosidasa purificadas. Se cargaron 20 g de proteína en cada carril. Carril 1 : Marcador; Carril 2: Bgl1 ; Carril 3: proteína madura de Bgl1 Q21 1 H. Fig. 5. SDS-PAGE of the purified beta-glucosidase enzymes. 20 g of protein were loaded in each lane. Lane 1: Marker; Lane 2: Bgl1; Lane 3: mature Bgl1 Q21 1 H protein.
Fig. 6. Ensayo de transglicosilación indirecta de la enzima BgM y la proteína madura de Bgl1Q211 H. Todas las mediciones se analizaron por triplicado y las barras de error corresponden a la desviación estándar. Fig. 6. Indirect transglycosylation assay of the BgM enzyme and the mature Bgl1Q211 H protein. All measurements were analyzed in triplicate and the error bars correspond to the standard deviation.
Fig. 7. Estudios térmicos usando la enzima BgM y la proteína madura de Bgl1Q211 H. A. Determinación de la temperatura de desnaturalización. B. Resistencia térmica en condiciones de hidrólisis de la biomasa. Todas las mediciones se analizaron por triplicado y las barras de error corresponden a la desviación estándar. Fig. 7. Thermal studies using the BgM enzyme and the mature Bgl1Q211 H protein. A. Determination of the denaturation temperature. B. Thermal resistance in biomass hydrolysis conditions. All measurements were analyzed in triplicate and the error bars correspond to the standard deviation.
EJEMPLOS EXAMPLES
Ejemplo 1. Mutagénesis de bgll. Construcción de un vector de expresión, mutagénesis, amplificación de los bancos con mutaciones en bgll. Example 1. Mutagenesis of bgll. Construction of an expression vector, mutagenesis, amplification of the banks with bgll mutations.
Se ha descrito a M. thermophila C1 como un sistema de transformación de buena calidad para expresar y secretar proteínas y polipéptidos heterólogos. El gen bgll de la beta-glucosidasa de M. thermophila C1 fue el elegido para mejorar su calidad enzimática en la presente invención. Esta enzima muestra un elevado perfil de transglicosilación, de modo que el objetivo de la mutagénesis era reducir esta actividad de transglicosilación sin afectar a la actividad hidrolítica de la beta-glucosidasa per se. M. thermophila C1 has been described as a good quality transformation system for expressing and secreting heterologous proteins and polypeptides. The bgll gene of M. thermophila C1 beta-glucosidase was chosen to improve its enzymatic quality in the present invention. This enzyme shows a high transglycosylation profile, so that the objective of mutagenesis was to reduce this transglycosylation activity without affecting the hydrolytic activity of beta-glucosidase per se.
La secuencia de ADNc de bgll se sintetizó in vitro tras optimización, para eliminar sitios de reconocimiento para las enzimas de restricción más habituales sin alterar la secuencia de aminoácidos. La secuencia de nucleótidos de ADNc de bgll y la secuencia de aminoácidos deducida se muestran en la SEQ ID NO: 3 y la SEQ ID NO: 2, respectivamente. La secuencia codificante tiene una longitud de 2616 incluido el codón de terminación. La proteína codificada por esta secuencia tiene una longitud de 871 aminoácidos con una masa molecular prevista de 95 KDa y un punto isoléctrico de 5.10. Usando el programa Signal IP (Petersen et al., 201 1 , Nature Methods, 8:785-786), se predijo un péptido señal de 19 residuos. La proteína madura prevista (SEQ ID NO: 1 ) contiene 852 aminoácidos con una masa molecular prevista de 93 KDa y un punto isoléctrico de 5.04. The bgll cDNA sequence was synthesized in vitro after optimization, to eliminate recognition sites for the most common restriction enzymes without altering the amino acid sequence. The bgll cDNA nucleotide sequence and the deduced amino acid sequence are shown in SEQ ID NO: 3 and SEQ ID NO: 2, respectively. The coding sequence has a length of 2616 including the termination codon. The protein encoded by this sequence has a length of 871 amino acids with an expected molecular mass of 95 KDa and an islectric point of 5.10. Using the Signal IP program (Petersen et al., 201 1, Nature Methods, 8: 785-786), a signal peptide of 19 residues was predicted. The predicted mature protein (SEQ ID NO: 1) contains 852 amino acids with an expected molecular mass of 93 KDa and an islectric point of 5.04.
El gen bgll se sintetizó in vitro junto con el promotor del gen de la celobiohidrolasa 1 (Pcbhl) de M. thermophila C1 . La secuencia de Pcbhl incluye una región de 1796 pb aguas arriba del gen de la celobiohidrolasa 1 de M. thermophila C1 (cbhl, número de registro en NCBI XP_003660789.1 ). Este fragmento (Pcbh1-bgl1) se sintetizó in vitro, incluyendo la secuencia de las enzimas de restricción Sacl y Notl en los extremos (Sacl en el extremo 5' y Notl en el extremo 3') para clonarse en un vector de expresión denominado pBASEI . El vector de expresión pBASEI también contenía la secuencia terminadora del gen de la celobiohidrolasa 1 de Myceliophthora thermophila C1 (Tcbhl, correspondiente a una región de 1014 pb aguas abajo de cbhl) y el gen pyr5 (número de acceso en NCBI XP_003660657.1 ) de la misma cepa como marcador de selección. El gen pyr5 codifica una orotato-fosforibosil transferasa funcional y su vector de expresión permite la complementacion de la auxotrofía de uridina en la correspondiente cepa huésped auxotrófica, M. thermophila C1 pyr5-. El vector de expresión pBASEI se muestra en la figura 1 . The bgll gene was synthesized in vitro together with the promoter of the cellobiohydrolase 1 (Pcbhl) gene of M. thermophila C1. The Pcbhl sequence includes a region of 1796 bp upstream of the cellobiohydrolase 1 gene of M. thermophila C1 (cbhl, NCBI registration number XP_003660789.1). This fragment (Pcbh1-bgl1) was synthesized in vitro, including the sequence of the Sacl and Notl restriction enzymes at the ends (Sacl at the 5 ' end and Notl at the 3 ' end) to be cloned into an expression vector called pBASEI . The pBASEI expression vector also contained the terminator sequence of the Myceliophthora thermophila C1 cellobiohydrolase 1 gene (Tcbhl, corresponding to a region of 1014 bp downstream of cbhl) and the pyr5 gene (accession number in NCBI XP_003660657.1) of the same strain as a selection marker. The pyr5 gene encodes a functional orotate phosphoribosyl transferase and its expression vector allows the complement of uridine auxotrophy in the corresponding auxotrophic host strain, M. thermophila C1 pyr5-. The expression vector pBASEI is shown in Figure 1.
El fragmento Pcbhl -bgll se digirió con las enzimas de restricción Sacl y Not\ y se clonó en pBASEI , digerido previamente con las mismas enzimas de restricción. El vector de expresión pBASEI y el cásete Pcbhl -bgll se ligaron y el producto de la unión se transformó en células electrocompetentes de Escherichia coli XLI Blue MRF siguiendo el protocolo proporcionado por el fabricante (Agilent Technologies Inc.). El plásmido recombinante obtenido se denominó pABC334 y se muestra en la Figura 2. The Pcbhl-bgll fragment was digested with the restriction enzymes Sacl and Not \ and cloned into pBASEI, previously digested with the same restriction enzymes. The pBASEI expression vector and the Pcbhl-bgll cassette were ligated and the binding product was transformed into electrocompetent cells of Escherichia coli XLI Blue MRF following the protocol provided by the manufacturer (Agilent Technologies Inc.). The recombinant plasmid obtained was named pABC334 and is shown in Figure 2.
El gen bgll clonado en pABC344 se sometió a mutagénesis al azar mediante amplificación con PCR usando el kit de mutagénesis GeneMorpholl EZClone Domain Mutagenesis Kit (Agilent Technologies Inc.). La amplificación mutagénica se realizó usando los oligonucleótidos 1 y 2 que se muestran a continuación. El péptido señal y el codón de terminación se excluyeron de la amplificación mutagénica. Por tanto, estos oligonucleótidos amplifican un fragmento de 2553 pb correspondiente a la secuencia de bgll sin péptido señal ni codón de terminación. The bgll gene cloned in pABC344 was subjected to random mutagenesis by PCR amplification using the GeneMorpholl EZClone mutagenesis kit Domain Mutagenesis Kit (Agilent Technologies Inc.). Mutagenic amplification was performed using oligonucleotides 1 and 2 shown below. The signal peptide and termination codon were excluded from mutagenic amplification. Thus, these oligonucleotides amplify a 2553 bp fragment corresponding to the bgll sequence without signal peptide or termination codon.
Oligonucleótido 1 (SEQ ID NO: 7): Oligonucleotide 1 (SEQ ID NO: 7):
5'-GCTGACAATCATCGTCAGGTTCACCAGAAGCCCCTCGCGA-3' Oligonucleótido 2 (SEQ ID NO: 8): 5 ' -GCTGACAATCATCGTCAGGTTCACCAGAAGCCCCTCGCGA-3 ' Oligonucleotide 2 (SEQ ID NO: 8):
5'-AGGAAGCTCAATCTTGAGATCCAACTTCCGGCTGCTCCTC-3 5 ' -AGGAAGCTCAATCTTGAGATCCAACTTCCGGCTGCTCCTC-3
El sistema GeneMorpholl EZClone Domain Mutagenesis permite diferentes tasas de mutación dependiendo de la cantidad de ADN diana y los ciclos de amplificación usados durante el proceso. Con estas premisas se generaron dos bancos mutantes diferentes: el primero con una frecuencia de mutación entre 0-1 mutaciones/kb y el segundo con una frecuencia de mutación entre 1 -4,5 mutaciones/kb. La cantidad diana inicial fue 2 g y 0,8 g de pABC344 respectivamente para cada banco. Las condiciones para la reacción de amplificación fueron un ciclo de 95 °C durante 2 minutos; y 30 ciclos cada uno a 95 °C durante 30 segundos, 57 °C durante 30 segundos y 72 °C durante 3 minutos. El bloque de calor se mantuvo a 72 °C durante 10 minutos, seguido de un ciclo de retención a 12 °C. Los productos de PCR correspondiente a versiones mutadas de bgll se purificaron en gel de agarosa con un kit de extracción de gel QIAquick (Qiagen) y se usaron como megacebadores en una segunda PCR para amplificar el pABC344 completo usando las condiciones siguientes: un ciclo a 95°C durante 1 minuto y 25 ciclos de 95 °C durante 50 segundos, 60 °C durante 50 segundos y 68 °C durante 10 minutos. Se realizó una digestión de las reacciones de amplificación con Dpn\ (10U/ L) durante 2 horas a 37 °C para eliminar el plásmido de expresión parental pABC344 usado como diana, ya que Dpn\ solo reconoce ADN metilado. Por tanto, solo los plásmidos amplificados durante esta segunda reacción de PCR permanecen tras la digestión con Dpn\. The GeneMorpholl EZClone Domain Mutagenesis system allows different mutation rates depending on the amount of target DNA and the amplification cycles used during the process. With these premises, two different mutant banks were generated: the first with a mutation frequency between 0-1 mutations / kb and the second with a mutation frequency between 1 -4.5 mutations / kb. The initial target amount was 2 g and 0.8 g of pABC344 respectively for each bank. The conditions for the amplification reaction were a 95 ° C cycle for 2 minutes; and 30 cycles each at 95 ° C for 30 seconds, 57 ° C for 30 seconds and 72 ° C for 3 minutes. The heat block was maintained at 72 ° C for 10 minutes, followed by a 12 ° C retention cycle. The PCR products corresponding to mutated versions of bgll were purified on agarose gel with a QIAquick gel extraction kit (Qiagen) and used as mega primers in a second PCR to amplify the complete pABC344 using the following conditions: one cycle at 95 ° C for 1 minute and 25 cycles of 95 ° C for 50 seconds, 60 ° C for 50 seconds and 68 ° C for 10 minutes. The amplification reactions were digested with Dpn? (10U / L) for 2 hours at 37 ° C to remove the parental expression plasmid pABC344 used as the target, since Dpn only recognizes methylated DNA. Therefore, only amplified plasmids during this second PCR reaction remain after digestion with Dpn.
Ambos bancos de mutaciones se transformaron en células ultracompetentes Escherichia coli XL-10 Gold siguiendo el protocolo proporcionado por el fabricante (Agilent Technologies Inc.) y el ADN del plásmido a partir de un total de 320.000 colonias transformadas con ambos bancos de mutantes se purificó usando el kit Plasmid Maxi (Omega bio-tek, Inc). Both mutation banks were transformed into ultracompetent Escherichia coli XL-10 Gold cells following the protocol provided by the manufacturer (Agilent Technologies Inc.) and the plasmid DNA from a total of 320,000 colonies transformed with both mutant banks was purified using the Plasmid Maxi kit (Omega bio-tek, Inc).
Ejemplo 2. Transformación de los bancos de mutantes de bgll en Myceliophthora thermophila C1 y selección de una versión mejorada de bgll. Example 2. Transformation of the bgll mutant banks in Myceliophthora thermophila C1 and selection of an improved version of bgll.
El ADN plasmídico de los bancos que contenían las diferentes versiones mutadas de bgll se transformaron en la cepa huésped auxótrofa M. thermophila C1 pyr5- (Verdoes et al., 2007, Ind. Biotechnol., 3 (1 )), usada previamente en otras selecciones de alto rendimiento en M. thermophila. El ADN se introdujo en la cepa huésped usando un método de transformación en protoplastos (US7399627B2). Los transformantes se sembraron en placas de agar sin suplemento de uridina. Tras 5 días de incubación a 35 °C se analizaron los transformantes prototróficos resultantes (que expresan el gen pyrS). Los transformantes obtenidos se inocularon en cultivos de placas de microtitulación (PMT) de 96 pocilios para llevar a cabo la detección selectiva de alto rendimiento o high throughput screening (US7794962B2). The plasmid DNA of the banks containing the different mutated versions of bgll were transformed into the auxotrophic host strain M. thermophila C1 pyr5- (Verdoes et al., 2007, Ind. Biotechnol., 3 (1)), previously used in others High performance selections in M. thermophila. DNA was introduced into the host strain using a protoplast transformation method (US7399627B2). The transformants were seeded on agar plates without uridine supplement. After 5 days of incubation at 35 ° C, the resulting prototrophic transformants (expressing the pyrS gene) were analyzed. The transformants obtained were inoculated in 96-well microtiter plate (PMT) cultures to carry out high-throughput screening (US7794962B2).
El objetivo de la selección o screening era identificar las versiones mutadas de bgll con baja actividad de transglicosilación. Por tanto, se estableció un ensayo indirecto para estimar la capacidad de transglicosilación de una enzima BGL (beta-glucosidasa). La actividad hidrolítica en pNGP (p-nitro-fenil- glucopiranósido) se midió en presencia y ausencia de celobiosa (5,5, mM). La celobiosa se ha descrito como sustrato preferencial de las BGL con mecanismo de retención o "retainining" en su reacción de transglicosilación. Por tanto, en presencia de celobiosa, la actividad de BGL sobre pNGP muestra una reducción debido a la actividad de transglicosilación. El porcentaje de capacidad hidrolítica, medido mediante el p-nitrofenol liberado (y el consiguiente incremento de la A4-10) en presencia del sustrato celobiosa altamente susceptible a la transglicosilación, se usó como indicación de una baja capacidad de transglicosilación. La actividad beta-glucosidasa se mide en unidades por litro de cultivo (U/1). Una unidad de actividad de hidrólisis de pNGP se definió como la cantidad de enzima equivalente a la liberación de 1 pmol de p-nitrofenol por minuto. The objective of the selection or screening was to identify the mutated versions of bgll with low transglycosylation activity. Therefore, an indirect assay was established to estimate the transglycosylation capacity of a BGL enzyme (beta-glucosidase). Hydrolytic activity in pNGP (p-nitro-phenyl-glucopyranoside) was measured in the presence and absence of cellobiose (5.5, mM). Cellobiose has been described as a preferential substrate of BGL with retention mechanism or "retainining" in its transglycosylation reaction. Therefore in Presence of cellobiose, BGL activity on pNGP shows a reduction due to transglycosylation activity. The percentage of hydrolytic capacity, measured by the released p-nitrophenol (and the consequent increase in A4-10) in the presence of the cellobiose substrate highly susceptible to transglycosylation, was used as an indication of low transglycosylation capacity. Beta-glucosidase activity is measured in units per liter of culture (U / 1). One unit of pNGP hydrolysis activity was defined as the amount of enzyme equivalent to the release of 1 pmol of p-nitrophenol per minute.
La actividad de beta-glucosidasa de 5 μΙ de sobrenadantes de cada transformante se analizó con 100 mg/l de pNGP (Sigma N7006) durante 10 minutos a 50 °C en un volumen final de 100 μΙ. La reacción se detuvo añadiendo a las mezclas de reacción 100 μΙ de carbonato sódico 1 M. Cada reacción también se llevó a cabo en presencia de celobiosa (5,5 mM), La capacidad hidrolítica se midió mediante la liberación de p-nitrofenol en presencia y en ausencia de celobiosa como indicación de baja capacidad de transglicosilación. The 5 μΙ beta-glucosidase activity of supernatants of each transformant was analyzed with 100 mg / l pNGP (Sigma N7006) for 10 minutes at 50 ° C in a final volume of 100 μΙ. The reaction was stopped by adding 100 μΙ of 1 M sodium carbonate to the reaction mixtures. Each reaction was also carried out in the presence of cellobiose (5.5 mM). Hydrolytic capacity was measured by the release of p-nitrophenol in the presence and in the absence of cellobiose as an indication of low transglycosylation capacity.
Para seleccionar los mutantes de bgll que muestran actividad de transglicosilación reducida, se estableció que una baja actividad de transglicosilación correspondía a la disminución de su capacidad hidrolítica sobre pNGP entre 30-70% cuando había celobiosa en la reacción. De entre los 6.900 transformantes analizados, uno de ellos, denominado 31 L2D, mostró una capacidad hidrolítica sobre pNGP del 62% en presencia de celobiosa. Todos los transformantes con la actividad deseada se confirmaron en una segunda ronda de ensayos en PMT. La producción de proteínas de los mejores transformantes, incluido 31 L2D, también se realizó a escala de producción en matraz (Verdoes et al., 2007, Ind. Biotechnoi. 3(1 ); Visser et al., 201 1 , Ind. Biotechnoi., 7 (3)) y se confirmó que el transformante 31 L2D mostraba el mejor perfil de acuerdo con las condiciones de screenlng (62% de actividad beta- glucosidasa hidrolítica en presencia de celobiosa). La actividad de beta- glucosidasa de la cepa 31 L2D seleccionada y otros transformantes analizados en presencia y en ausencia de celobiosa se muestra en la Figura 3. To select the bgll mutants that show reduced transglycosylation activity, it was established that a low transglycosylation activity corresponded to the decrease of their hydrolytic capacity on pNGP between 30-70% when there was cellobiose in the reaction. Among the 6,900 transformants analyzed, one of them, called 31 L2D, showed a 62% pNGP hydrolytic capacity in the presence of cellobiose. All transformants with the desired activity were confirmed in a second round of PMT tests. Protein production of the best transformants, including 31 L2D, was also carried out at a flask production scale (Verdoes et al., 2007, Ind. Biotechnoi. 3 (1); Visser et al., 201 1, Ind. Biotechnoi ., 7 (3)) and it was confirmed that the 31 L2D transformant showed the best profile according to screenlng conditions (62% hydrolytic beta-glucosidase activity in the presence of cellobiose). Beta- activity Glucosidase of strain 31 L2D selected and other transformants analyzed in the presence and absence of cellobiose is shown in Figure 3.
Para determinar la secuencia del gen bgll expresado en 31 L2D, se amplificó un fragmento de ADN que contenía Pcbh1-bgl1 a partir del ADN genómico usando los oligonucleótidos 3 y 4. To determine the sequence of the bgll gene expressed in 31 L2D, a DNA fragment containing Pcbh1-bgl1 was amplified from the genomic DNA using oligonucleotides 3 and 4.
Oligonucleotido 3 (SEQ ID NO: 9): El sitio de restricción Sacl está subrayado. 5'-CGAGGAGCTCCTTACAAAAAAAAGGTATCC-3' Oligonucleotide 3 (SEQ ID NO: 9): The Sacl restriction site is underlined. 5 ' -CGAGGAGCTCCTTACAAAAAAAAGGTATCC-3 '
Oligonucleotido 4 (SEQ ID NO: 10): Los sitios de restricción SamHI, Smal y Pst\ están subrayados. El codón de terminación está en recuadro. Oligonucleotide 4 (SEQ ID NO: 10): The restriction sites SamHI, Smal and Pst \ are underlined. The termination codon is in box.
5TTCCTGCAGCCCGGGGGATCCITCAAGGAAGCTCAATCTTGAGATCCAAC TTCC-3' 5TTCCTGCAGCCCGGGGGATCCITCAAGGAAGCTCAATCTTGAGATCCAAC TTCC-3 '
El oligonucleotido 3 incluye el sitio de restricción Sacl e híbrida en el extremo 3' de Pcbhl. El oligonucleotido 4 híbrida en el extremo 3' de bgll e incluye el codón de terminación de bgll y los sitios de restricción SamHI, Smal y Pst\ para clonar en el plásmido de expresión pBASEI . Los oligonucleótidos 3 y 4 se usaron para amplificar el fragmento Pcbhl -bgll usando ADN genómico de la cepa 31 L2D como diana (obtenido usando el kit DNeasy Plant Mini Kit de Qiagen) con la ADN polimerasa ¡Proof High-Fidelity (BioRad) y se programaron durante un ciclo a 98 °C durante 2 minutos y 30 ciclos de 98 °C durante 10 segundos, 72 °C durante 90 segundos y 72 °C durante 10 minutos. El fragmento de ADN amplificado se digirió con las enzimas de restricción Sacl y SamHI y se clonó en pABC344 digerido previamente con las mismas enzimas de restricción. La mezcla de ligación se transformo en células electrocompetentes de Escherichia coli XLI Blue MRF siguiendo el protocolo proporcionado por el fabricante (Stratagene). El plásmido recombinante se denominó pABC410 y se muestra en la Figura 4. Oligonucleotide 3 includes the Sacl and hybrid restriction site at the 3 'end of Pcbhl. The oligonucleotide 4 hybrid at the 3 'end of bgll and includes the bgll termination codon and the restriction sites SamHI, Smal and Pst \ to clone in the pBASEI expression plasmid. Oligonucleotides 3 and 4 were used to amplify the Pcbhl-bgll fragment using genomic DNA from strain 31 L2D as the target (obtained using the Qiagen DNeasy Plant Mini Kit) with the Proof High-Fidelity DNA polymerase (BioRad) and were programmed during a cycle at 98 ° C for 2 minutes and 30 cycles of 98 ° C for 10 seconds, 72 ° C for 90 seconds and 72 ° C for 10 minutes. The amplified DNA fragment was digested with the restriction enzymes Sacl and SamHI and cloned into pABC344 previously digested with the same restriction enzymes. The ligation mixture was transformed into electrocompetent cells of Escherichia coli XLI Blue MRF following the protocol provided by the manufacturer (Stratagene). The recombinant plasmid was named pABC410 and is shown in Figure 4.
El gen bgll de pABC410 se secuenció. El bgll mutado mostró una mutación: la guanina de la posición 633 de la secuencia de nucleótidos de bgll nativo SEQ ID NO: 3 se había mutado a timina, dando, por tanto, una secuencia de nucleótidos de SEQ ID NO: 6, que codificaba una preproteína (SEQ ID NO: 5, preproteína Bgl1 Q21 1 H), en la que la glutamina (Q) en el residuo 21 1 de la preproteína nativa SEQ ID NO: 2 se había intercambiado por histidina (H), de modo que 31 L2D expresaba una versión madura mutada (SEQ ID NO: 4) de BgM madura en la que la glutamina (Q) en el residuo 192 de la proteína nativa madura de SEQ ID NO: 1 se había intercambiado por histidina (H), denominada proteína madura de Bgl1 Q21 1 H. La secuencia de nucleótidos que codifica la preproteína Bgl1 Q21 1 H y la secuencia de aminoácidos de la proteína madura se muestran en la SEQ ID NO: 6 y la SEQ ID NO: 4, respectivamente. La secuencia codificante tiene una longitud de 2616 incluido el codón de terminación. La preproteína predicha codificada tiene 871 aminoácidos (SEQ ID NO: 5) con una masa molecular prevista de 95 KDa y un punto isoeléctrico de 5.14. El plásmido pABC410 se transformó en M. thermophila C1 con el fin de confirmar el fenotipo de baja actividad de transglicosilación observado en la cepa 31 L2D. La transformación, detección selectiva y medición de la actividad BGL se llevó a cabo como se ha descrito anteriormente en la presente invención. Todos los transformantes que expresaban Bgl1 Q21 1 H de pABC410 mostraron la misma actividad de transglicosilación baja que la cepa 31 L2D. The bgll gene of pABC410 was sequenced. The mutated bgll showed a mutation: the guanine from position 633 of the native bgll nucleotide sequence SEQ ID NO: 3 had been mutated to thymine, thus giving a nucleotide sequence of SEQ ID NO: 6, which encoded a preprotein (SEQ ID NO: 5 , Bgl1 Q21 1 H), in which the glutamine (Q) in residue 21 1 of the native preprotein SEQ ID NO: 2 had been exchanged for histidine (H), so that 31 L2D expressed a mutated mature version ( SEQ ID NO: 4) of mature BgM in which the glutamine (Q) in residue 192 of the mature native protein of SEQ ID NO: 1 had been exchanged for histidine (H), called mature Bgl1 protein Q21 1 H. The nucleotide sequence encoding the Bgl1 Q21 1 H preprotein and the amino acid sequence of the mature protein are shown in SEQ ID NO: 6 and SEQ ID NO: 4, respectively. The coding sequence has a length of 2616 including the termination codon. The predicted encoded preprotein has 871 amino acids (SEQ ID NO: 5) with an expected molecular mass of 95 KDa and an isoelectric point of 5.14. Plasmid pABC410 was transformed into M. thermophila C1 in order to confirm the phenotype of low transglycosylation activity observed in strain 31 L2D. The transformation, selective detection and measurement of BGL activity was carried out as described previously in the present invention. All transformants expressing Bgl1 Q21 1 H of pABC410 showed the same low transglycosylation activity as strain 31 L2D.
Ejemplo 3. Análisis comparativo de BgM de la cepa C1 de Myceliophthora thermophila y la Bgl1Q211 H mutante. Example 3. Comparative analysis of BgM of strain C1 of Myceliophthora thermophila and the mutant Bgl1Q211 H.
Producción de las enzimas Bgl1 y BgM Q21 1 H . Production of enzymes Bgl1 and BgM Q21 1 H.
La producción de las mezclas enzimáticas se realizó como se describe en Verdoes et al., 2007, Ind. Biotechnol. 3 (1 ), y Visser et al., 201 1 , Ind. Biotechnol., 7 (3), usando la plataforma de expresión para enzimas industriales basada en M. tehrmophila C1 desarrollada por Dyadic Netherlands. The production of the enzyme mixtures was carried out as described in Verdoes et al., 2007, Ind. Biotechnol. 3 (1), and Visser et al., 201 1, Ind. Biotechnol., 7 (3), using the expression platform for industrial enzymes based on M. tehrmophila C1 developed by Dyadic Netherlands.
Purificación de las enzimas Bgl1 y Bgl1 Q21 1 H . Tanto la enzima nativa Bgl1 (SEQ ID NO: 1 ) como la proteína madura de Bgl1 Q21 1 H (SEQ ID NO: 4) se purificaron usando una cromatografía de intercambio iónico. Las muestras se prepararon centrifugando a 4.000xg durante 10 minutos producciones en matraz. Los sedimentos se descartaron y los sobrenadantes se filtraron a través de un filtro de celulosa en jeringa estéril de 0.45 pm (VWR). Las preparaciones enzimáticas resultantes (muestras de 15 mi) se desalaron después en una columna HiPrep Desalting Sephadex G-25 (GE Helthcare) en tampón Tris-HCI 100 mM, a pH 7,0 a un caudal de 15 mi min"1. Purification of the enzymes Bgl1 and Bgl1 Q21 1 H. Both the native Bgl1 enzyme (SEQ ID NO: 1) and the mature Bgl1 Q21 1 H protein (SEQ ID NO: 4) were purified using ion exchange chromatography. Samples were prepared by centrifuging at 4,000xg for 10 minutes flask productions. The sediments were discarded and the supernatants filtered through a 0.45 pm sterile syringe cellulose filter (VWR). The resulting enzyme preparations (15 ml samples) were then desalted on a HiPrep Desalting Sephadex G-25 column (GE Helthcare) in 100 mM Tris-HCI buffer, at pH 7.0 at a flow rate of 15 ml min "1 .
Posteriormente se aplicó una muestra que contenía 150 mg de proteína total en una columna HiLoad 26/10 Q-Sepharose HP (GE Helthcare) equilibrada con el mismo tampón. La columna se lavó con el tampón de partida y las proteínas unidas a la misma se eluyeron con un gradiente de NaCI a un caudal de 5 mL min"1 usando un perfil de elución lineal de 0 a 30 %. En total se realizaron nueve ciclos de purificación para cada enzima. De este modo se obtuvieron puras 109 y 1 16 mg de las enzimas Bgl1 nativa y muíante Q21 1 H, respectivamente. A sample containing 150 mg of total protein was subsequently applied on a HiLoad 26/10 Q-Sepharose HP column (GE Helthcare) equilibrated with the same buffer. The column was washed with the starting buffer and the proteins bound thereto were eluted with a NaCI gradient at a flow rate of 5 mL min "1 using a linear elution profile of 0 to 30%. In total nine cycles were performed of purification for each enzyme, thus pure 109 and 11 mg of the native Bgl1 enzymes and Q21 1 H, respectively, were obtained.
Las BGLs purificadas se cargaron en geles de electroforesis SDS-PAGE con una concentración del 7,5% de acrilamida, con el fin de comprobar la homogeneidad de las muestras (Fig. 5). De acuerdo con la secuencia de aminoácidos de Bgl1 , cabe esperar que esta enzima tenga un tamaño molecular de 93kDa. No obstante, las glicósido hidrolasas fúngicas y otras enzimas pertenecientes a diferentes familias de proteínas a menudo están glicosiladas, portando tanto glicanos O-unidos como N-unidos. De hecho, la glicosilación es la modificación postraduccional más frecuente en estas proteínas. Se detectó una única banda de 1 16 kDa para ambas muestras, lo que indica que se han obtenido enzimas electroforéticamente puras y que las versiones glicosiladas de las enzimas se han purificado con éxito. The purified BGLs were loaded on SDS-PAGE electrophoresis gels with a concentration of 7.5% acrylamide, in order to check the homogeneity of the samples (Fig. 5). According to the amino acid sequence of Bgl1, this enzyme can be expected to have a molecular size of 93kDa. However, fungal glycoside hydrolases and other enzymes belonging to different protein families are often glycosylated, bearing both O-linked and N-linked glycans. In fact, glycosylation is the most frequent post-translational modification in these proteins. A single band of 11-16 kDa was detected for both samples, indicating that electrophoretically pure enzymes have been obtained and that glycosylated versions of the enzymes have been successfully purified.
Caracterización cinética de la actividad hidrolítica de la proteína Bgl1 nativa y madura mutante de Bgl1 Q21 1 H. Kinetic characterization of the hydrolytic activity of the native Bgl1 protein and mature mutant of Bgl1 Q21 1 H.
Las beta-glucosidasas (BGLs, EC 3.2.1 .21 ) catalizan la transferencia de grupos glicosil entre nucleófilos de oxígeno sobre diferentes tipos de sustratos. Las BGLs con un mecanismo de retención, como es el caso de Bgl1 , tienen actividad hidrolítica reducida a concentraciones elevadas de sustrato o de producto y esto depende al menos de la existencia de dos fenómenos diferentes: inhibición y transglicosilación. La caracterización cinética de Bgl1 y de la proteína madura mutante de Bgl1 Q21 1 H se realizó en base a su capacidad hidrolítica. Beta-glucosidases (BGLs, EC 3.2.1 .21) catalyze the transfer of glycosyl groups between oxygen nucleophiles on different types of substrates. BGLs with a retention mechanism, as in the case of Bgl1, have reduced hydrolytic activity at high concentrations of substrate or product and this depends at least on the existence of two different phenomena: inhibition and transglycosylation. The kinetic characterization of Bgl1 and the mature mutant protein of Bgl1 Q21 1 H was performed based on its hydrolytic capacity.
La actividad hidrolítica de BGL se determinó usando p-nitrofenil-beta-D- glucopiranósido (pNGP, Sigma) como sustrato. Para este ensayo de pNGP, las mezclas de la reacción enzimática (1 mi volumen final) que contienen 100 pmol de tampón acetato sódico (pH 5,0), 100 g de pNGP (0,33 pmol) y una cantidad adecuada de la enzima purificada, se incubaron a 50 °C durante 10 minutos. La cantidad de p-nitrofenol liberada se midió a A410 (ε4ι 0= 15,2 mM"1 cm"1) tras la adición de 100 g de carbonato sódico a las mezclas de reacción. Una unidad de actividad de hidrólisis sobre pNGP se definió como la cantidad de enzima equivalente a la liberación de 1 pmol de p-nitrofenol por minuto. Cuando se estudia el efecto de un compuesto soluble (glucosa o xilosa) sobre la actividad de Bgl, a la mezcla de reacción enzimática se añaden cantidades adecuadas del azúcar correspondiente. The hydrolytic activity of BGL was determined using p-nitrophenyl-beta-D-glucopyranoside (pNGP, Sigma) as a substrate. For this pNGP assay, the enzymatic reaction mixtures (1 ml final volume) containing 100 pmol of sodium acetate buffer (pH 5.0), 100 g of pNGP (0.33 pmol) and an adequate amount of the enzyme purified, incubated at 50 ° C for 10 minutes. The amount of p-nitrophenol released was measured at A410 (ε 4 ι 0 = 15.2 mM "1 cm " 1 ) after the addition of 100 g of sodium carbonate to the reaction mixtures. One unit of hydrolysis activity on pNGP was defined as the amount of enzyme equivalent to the release of 1 pmol of p-nitrophenol per minute. When the effect of a soluble compound (glucose or xylose) on Bgl activity is studied, appropriate amounts of the corresponding sugar are added to the enzyme reaction mixture.
Las BGLs purificadas se caracterizaron en términos de actividad enzimática (Vmax), afinidad por el sustrato (Km), resistencia térmica y efecto sobre la actividad enzimática de la glucosa, que es el compuesto más abundante al final de los procesos de hidrólisis enzimática de biomasa. Vmax y Km se calcularon usando un gráfico de Hanes-Woolf. La cinética de inhibición se calculó usando un gráfico de Eadie-Hofstee. Los resultados se muestran en la tabla 2. Enzima Km (mM) Vmax (U mg" ) K¡, Glucosa (mM) The purified BGLs were characterized in terms of enzymatic activity (V max ), affinity for the substrate (K m ), thermal resistance and effect on the enzymatic activity of glucose, which is the most abundant compound at the end of the enzymatic hydrolysis processes. of biomass V max and K m were calculated using a Hanes-Woolf graph. Inhibition kinetics was calculated using an Eadie-Hofstee graph. Results are shown in table 2. Enzyme K m (mM) V max (U mg " ) K¡, Glucose (mM)
Bgl1 0,66 20,02 3,83  Bgl1 0.66 20.02 3.83
Proteína  Protein
madura de  mature of
Bgl1 Q21 1 H 0,25 25,36 1 ,38  Bgl1 Q21 1 H 0.25 25.36 1, 38
Tabla 2. Caracterización cinética de las beta-glucosidasas purificadas. Table 2. Kinetic characterization of purified beta-glucosidases.
No se obtuvieron indicios de un impacto directo de la afinidad por el sustrato (Km) sobre el rendimiento de hidrólisis enzimática de la correspondiente mezcla enzimática que contiene BGL. No obstante, se observó un impacto razonable de la actividad enzimática (Vmax) sobre la reducción de la dosis. La Bgl1 Q21 1 H muíante se seleccionó como una enzima más activa sobre pNGP y esto se confirmó usando enzimas purificadas: proteína madura de BgM Q21 1 H mostró un incremento del 25% de la actividad específica de beta-glucosidasa en comparación con la Bgl1 purificada (25,36 Vs. 20,02 U mg prot"1). No evidence of a direct impact of affinity for the substrate (K m ) on the enzymatic hydrolysis performance of the corresponding BGL-containing enzyme mixture was obtained. However, a reasonable impact of enzyme activity (V max ) on dose reduction was observed. Mutant Bgl1 Q21 1 H was selected as a more active enzyme on pNGP and this was confirmed using purified enzymes: mature BgM protein Q21 1 H showed a 25% increase in specific beta-glucosidase activity compared to purified Bgl1 (25.36 Vs. 20.02 mg mg prot "1 ).
La glucosa es un potente inhibidor competitivo de la mayoría de las BGLs. Esto también fue cierto para la enzima nativa y para la proteína madura de Bgl1 Q21 1 H purificada. Los ensayos en presencia de diferentes concentraciones de glucosa se ajustaban a una inhibición de patrón competitivo por la glucosa usando un gráfico de Eadie-Hofstee. Las K¡ calculadas fueron de 3,83 y 1 ,38 mM"1 para la enzima Bgl1 y la proteína madura de Bgl1 Q21 1 H, indicando una potente inhibición competitiva por la glucosa para ambas enzimas. Glucose is a potent competitive inhibitor of most BGLs. This was also true for the native enzyme and for the purified Bgl1 Q21 1 H mature protein. Assays in the presence of different glucose concentrations adjusted to a competitive pattern inhibition by glucose using an Eadie-Hofstee graph. The calculated K¡ were 3.83 and 1.38 mM "1 for the Bgl1 enzyme and the mature Bgl1 Q21 1 H protein, indicating a potent competitive glucose inhibition for both enzymes.
Estudios de transglicosilación usando la enzima Bgl1 nativa y la proteína madura de Bgl1 Q21 1 H. Transglycosylation studies using the native Bgl1 enzyme and the mature Bgl1 Q21 1 H protein.
En Bgl1 , el mecanismo de retención forma inicialmente un complejo glicosil covalente con la enzima. Este intermedio se descompone en la segunda etapa de la reacción, lo que se puede producir mediante una molécula de agua (actividad hidrolítica) o mediante un azúcar aceptor (actividad de transglicosilacion). En la reacción de transglicosilacion más sencilla, el aceptor es el propio sustrato. No obstante, la celobiosa se ha descrito como sustrato preferencial de las BGLs con mecanismo de retención en su reacción de transglicosilacion. In Bgl1, the retention mechanism initially forms a covalent glycosyl complex with the enzyme. This intermediate decomposes in the second stage of the reaction, which can be produced by a water molecule (hydrolytic activity) or by means of an acceptor sugar (transglycosylation activity). In the simplest transglycosylation reaction, the acceptor is the substrate itself. However, cellobiose has been described as a preferential substrate for BGLs with retention mechanism in their transglycosylation reaction.
Por tanto, se estableció un ensayo indirecto para estimar la capacidad de transglicosilacion de una enzima BGL. La actividad hidrolítica sobre el pNGP se midió en presencia de concentraciones crecientes de celobiosa. El porcentaje de capacidad hidrolítica, medido mediante el p-nitrofenol liberado (y el consiguiente incremento de la A4-10) en presencia del sustrato celobiosa altamente susceptible a la transglicosilacion, se usó como indicación de una baja capacidad de transglicosilacion. Este ensayo se llevó a cabo para la Bgl1 nativa y para la proteína madura muíante de Bgl1 Q21 1 H. Los resultados se muestran en la Figura 6. Se determinó una mayor capacidad de transglicosilacion para la enzima Bgl1 nativa. Therefore, an indirect assay was established to estimate the ability to transglycosylate a BGL enzyme. Hydrolytic activity on pNGP was measured in the presence of increasing concentrations of cellobiose. The percentage of hydrolytic capacity, measured by the released p-nitrophenol (and the consequent increase in A4-10) in the presence of the cellobiose substrate highly susceptible to transglycosylation, was used as an indication of low transglycosylation capacity. This assay was carried out for native Bgl1 and for the mature mutant protein of Bgl1 Q21 1 H. The results are shown in Figure 6. A greater transglycosylation capacity for the native Bgl1 enzyme was determined.
Con el fin de comprobar si estos ensayos indirectos se correlacionaban con la capacidad de transglicosilacion real, se llevaron a cabo ensayos de medición de la formación real de oligómeros. Las mezclas de reacción enzimáticas (volumen final de 1 mi) que contienen celobiosa 138 mM (50 g/L), tampón de acetato sódico 100 mM (pH 5,0) y 0,1 U (actividad de la celobiosa) de la Bgl1 nativa o la proteína madura muíante de Bgl1 Q21 1 H se incubaron a 50 °C durante 24 horas. Las reacciones se deíuvieron iras 24 horas de incubación mediante la adición de 100 g de carbonato a las mezclas de reacción. Después, las mezclas se analizaron mediante HPLC (Agilent Technologies, 1200 Series) usando un detector del índice de refracción (DIR) y una columna Aminex HPX-87 H. Los tiempos de retención y el pico de las áreas obtenidas debido a la formación de cada azúcar se muestran en la Tabla 3. Tiempo de In order to verify whether these indirect tests correlated with the actual transglycosylation capacity, tests were carried out to measure the actual formation of oligomers. Enzymatic reaction mixtures (final volume of 1 ml) containing 138 mM cellobiose (50 g / L), 100 mM sodium acetate buffer (pH 5.0) and 0.1 U (cellobiose activity) of Bgl1 native or mature mutant Bgl1 Q21 1 H protein was incubated at 50 ° C for 24 hours. The reactions were stopped after 24 hours of incubation by adding 100 g of carbonate to the reaction mixtures. The mixtures were then analyzed by HPLC (Agilent Technologies, 1200 Series) using a refractive index detector (DIR) and an Aminex HPX-87 H column. Retention times and peak areas obtained due to the formation of Each sugar is shown in Table 3. Time of
Área relativa (%)  Relative area (%)
retención  retention
Azúcar Proteína  Sugar Protein
(min) Bgl1 madura de  (min) Mature Bgl1 of
Bgl1 Q21 1 H  Bgl1 Q21 1 H
Glucosa 9,23 59, 13 78,81  Glucose 9.23 59, 13 78.81
Celobiosa 7,49 38,36 21 , 18  Cellobiose 7.49 38.36 21, 18
Celotriosa 6,79 2,50 0,00  Celotriose 6.79 2.50 0.00
Tabla 3. Tiempos de retención y áreas relativas para los azúcares detectados tras el ensayo de transglicosilación. El área relativa representa el porcentaje de cada azúcar en la concentración total en la mezcla de reacción tras el ensayo de transglicosilación. Table 3. Retention times and relative areas for sugars detected after the transglycosylation test. The relative area represents the percentage of each sugar in the total concentration in the reaction mixture after the transglycosylation test.
En este ensayo de transglicosilación, la glucosa es el producto de la capacidad hidrolítica de las BGLs sobre el sustrato real, celobiosa. La celotriosa solo se puede formar dentro de una reacción de transglicosilación por la cual una molécula de celobiosa actúa como aceptor para la glucosa retenida en el sitio activo de la enzima BGL. La celobiosa puede ser el resultado de (1 ) sustrato no hidrolizado que permanece en la mezcla de reacción o (2) el producto de una reacción de transglicosilación, siendo la glucosa tanto el aceptor como el donante. Dado que tras la incubación de la proteína madura muíante de Bgl1 Q21 1 H con celobiosa no se determinó celotriosa y se determinó una concentración significativamente menor de celobiosa, se puede concluir que esta enzima muíante tiene una capacidad de íransglicosilación reducida y una acíividad hidrolííica mejorada a conceníraciones elevadas de celobiosa. In this transglycosylation assay, glucose is the product of the hydrolytic capacity of BGLs on the real, cellobiose substrate. Celotriose can only be formed within a transglycosylation reaction whereby a cellobiose molecule acts as an acceptor for glucose retained at the active site of the BGL enzyme. Cellobiose can be the result of (1) non-hydrolyzed substrate that remains in the reaction mixture or (2) the product of a transglycosylation reaction, with glucose being both the acceptor and the donor. Since after incubation of the mature Bgl1 Q21 1 H mutant protein with cellobiose, celotriose was not determined and a significantly lower concentration of cellobiose was determined, it can be concluded that this mutant enzyme has a reduced ability to transglycosylate and improved hydrolytic activity at high concentrations of cellobiose.
Considerando esíos resulíados, se ha demosírado que la enzima madura muíaníe de Bgl1 Q21 1 H íiene una capacidad de íransglicosilación menor en comparación con Bgl1 de M. thermophila C1 . En el ensayo acoplado a HPLC direcío, se demosíró la anulación compleía de la formación de oligómeros para la proteína madura de Bgl1 Q21 1 H, y fue detectable para Bgl1 . Considerando el método indirecto para la estimación de la transglicosilación se estimó un intervalo de reducción del 75% de la capacidad de transglicosilación. Considering these results, it has been shown that the mature muieie enzyme of Bgl1 Q21 1 H has a lower capacity for transglycosylation compared to Bgl1 of M. thermophila C1. In the direct HPLC coupled test, complete cancellation of oligomer formation was demonstrated for the mature protein of Bgl1 Q21 1 H, and was detectable for Bgl1. Considering the indirect method for estimating transglycosylation, a reduction interval of 75% of transglycosylation capacity was estimated.
La reducción de la capacidad de transglicosilación de la proteína madura de la enzima BgM Q21 1 H parece ser responsable de una mejora de esta enzima en términos de eficiencia en la hidrólisis enzimática de la biomasa, proceso en el cual hay una elevada concentración de sustratos de transglicosilación que perjudica la hidrólisis de dichos sustratos en azúcares fermentables. The reduction of the transglycosylation capacity of the mature protein of the BgM Q21 1 H enzyme seems to be responsible for an improvement of this enzyme in terms of efficiency in the enzymatic hydrolysis of biomass, a process in which there is a high concentration of substrates of transglycosylation that impairs the hydrolysis of said substrates in fermentable sugars.
Estudios térmicos usando la enzima Bgl1 y la proteína madura mutante de Bgl1 Q21 1 H. Thermal studies using the Bgl1 enzyme and the mature Bgl1 Q21 1 H mutant protein.
La enzima Bgl1 y la proteína madura de Bgl1 Q21 1 H purificadas se analizaron en términos de la estabilidad térmica en base al ensayo de pNGP. Se llevaron a cabo dos tipos de ensayos: determinación de la temperatura de desnaturalización y estudios de estabilidad en condiciones de hidrólisis de la biomasa. The purified Bgl1 enzyme and the mature Bgl1 Q21 1 H protein were analyzed in terms of thermal stability based on the pNGP assay. Two types of tests were carried out: determination of the denaturation temperature and stability studies in biomass hydrolysis conditions.
Para la determinación de la temperatura de desnaturalización, las enzimas purificadas se incubaron durante 10 minutos a temperaturas que vanaban entre 30 y 80 °C, después se realizaron ensayos convencionales de pNGP usando enzimas tratadas y la actividad se representó como porcentaje relativo en comparación con la ausencia de tratamiento. En estos estudios se puede calcular un parámetro característico por el cual se determina la temperatura responsable de un 50% de pérdida de actividad enzimática (T1/2). Los resultados se muestran en la Figura 7A. En el estudio de estabilidad en condiciones de hidrólisis de la biomasa, las mezclas de reacción (1 mi de volumen final) conteniendo 0,1 mg de enzima purificada y 100 pmol de tampón acetato sódico (pH 5,0) se incubaron a 50 °C durante 72 horas y en condiciones de agitación (300 rpm, Thermomixer Confort, Eppendorf). Se tomaron muestras a 24, 48 y 72 horas y se realizaron ensayos de pNGP convencionales. Los resultados se muestran en la Figura 7B. For the determination of the denaturation temperature, the purified enzymes were incubated for 10 minutes at temperatures ranging between 30 and 80 ° C, then conventional pNGP assays were performed using treated enzymes and the activity was represented as a relative percentage compared to the lack of treatment In these studies a characteristic parameter can be calculated by which the temperature responsible for a 50% loss of enzymatic activity (T1 / 2) is determined. The results are shown in Figure 7A. In the stability study under biomass hydrolysis conditions, the reaction mixtures (1 ml of final volume) containing 0.1 mg of purified enzyme and 100 pmol of sodium acetate buffer (pH 5.0) were incubated at 50 ° C for 72 hours and under agitation conditions (300 rpm, Thermomixer Comfort, Eppendorf). Samples were taken at 24, 48 and 72 hours and pNGP assays were performed conventional. The results are shown in Figure 7B.
No se observaron diferencias significativas en términos de temperatura de desnaturalización entre Bgl1 y la proteína madura de BgM Q21 1 H. T1/2 se calculó que era 65 y 62 °C para la enzima Bgl1 y la proteína madura de Bgl1 Q21 1 H, respectivamente, ambos por encima de la temperatura de hidrólisis de la biomasa (50 °C). Respecto a la estabilidad térmica en las condiciones de hidrólisis de biomasa ambas enzimas permanecieron activas tras 72 h a 50 °C. Además, para la enzima muíante se determinó un 20% de activación. No significant differences were observed in terms of denaturation temperature between Bgl1 and the mature BgM protein Q21 1 H. T1 / 2 was calculated to be 65 and 62 ° C for the enzyme Bgl1 and the mature protein of Bgl1 Q21 1 H, respectively. , both above the biomass hydrolysis temperature (50 ° C). Regarding the thermal stability in the biomass hydrolysis conditions both enzymes remained active after 72 h at 50 ° C. In addition, 20% activation was determined for the mutant enzyme.

Claims

REIVINDICACIONES
1 . Una vanante de beta-glucosidasa que comprende una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80% con la SEQ ID NO: 2 y comprende una sustitución de aminoácido en la posición Q21 1 correspondiente a las posiciones 1 a 871 de la SEQ ID NO: 2, donde la vanante de beta-glucosidasa tiene una actividad de transglicosilación reducida en comparación con la beta-glucosidasa nativa. one . A beta-glucosidase vanant comprising an amino acid sequence that has a sequence identity of at least 80% with SEQ ID NO: 2 and comprises an amino acid substitution at position Q21 1 corresponding to positions 1 to 871 of SEQ ID NO: 2, where the beta-glucosidase vanant has reduced transglycosylation activity compared to native beta-glucosidase.
2. La vahante de beta-glucosidasa de acuerdo con la reivindicación 1 , donde la sustitución del aminoácido es Q21 1 H. 2. The beta-glucosidase vahant according to claim 1, wherein the amino acid substitution is Q21 1 H.
3. La variante de beta-glucosidasa de acuerdo con cualquiera de las reivindicaciones 1 ó 2, que comprende la secuencia de aminoácidos SEQ ID NO: 4. 3. The beta-glucosidase variant according to any one of claims 1 or 2, which comprises the amino acid sequence SEQ ID NO: 4.
4. La variante de beta-glucosidasa de acuerdo con la reivindicación 3, que consiste en la secuencia de aminoácidos SEQ ID NO: 4. 4. The beta-glucosidase variant according to claim 3, which consists of the amino acid sequence SEQ ID NO: 4.
5. La variante de beta-glucosidasa de acuerdo con la reivindicación 3, que consiste en la secuencia de aminoácidos SEQ ID NO: 5. 5. The beta-glucosidase variant according to claim 3, which consists of the amino acid sequence SEQ ID NO: 5.
6. Una secuencia de ácido nucleico aislada que codifica la vanante de beta-glucosidasa de acuerdo con cualquiera de las reivindicaciones 1 a 5. 6. An isolated nucleic acid sequence encoding the beta-glucosidase vanant according to any one of claims 1 to 5.
7. Una secuencia de ácido nucleico aislada complementaria a la secuencia de ácido nucleico de acuerdo con la reivindicación 6. 7. An isolated nucleic acid sequence complementary to the nucleic acid sequence according to claim 6.
8. Una construcción génica que comprende la secuencia de ácido nucleico de acuerdo con cualquiera de las reivindicaciones 6 ó 7. 8. A gene construct comprising the nucleic acid sequence according to any of claims 6 or 7.
9. La construcción génica de la reivindicación 8, donde la construcción génica es un vector de expresión. 9. The gene construct of claim 8, wherein the construct Gene is an expression vector.
10. Una célula huésped que comprende la construcción génica de acuerdo con cualquiera de las reivindicaciones 8 ó 9. 10. A host cell comprising the gene construct according to any of claims 8 or 9.
1 1 . La célula huésped de la reivindicación 10, donde dicha célula es Myceliophthora thermophila C1 . eleven . The host cell of claim 10, wherein said cell is Myceliophthora thermophila C1.
12. Una composición enzimática que comprende la vanante de beta- glucosidasa de acuerdo con cualquiera de las reivindicaciones 1 a 5. 12. An enzymatic composition comprising the beta glucosidase vanant according to any one of claims 1 to 5.
13. La composición enzimática de la reivindicación 12, que además comprende otras enzimas celulolíticas. 13. The enzymatic composition of claim 12, further comprising other cellulolytic enzymes.
14. La composición enzimática de acuerdo con la reivindicación 13, donde las otras enzimas celulolíticas se seleccionan de la lista que consiste en: endoglucanasas, beta-glucosidasas, celobiohidrolasas, beta-xilosidasas o cualquier combinación de las mismas. 14. The enzyme composition according to claim 13, wherein the other cellulolytic enzymes are selected from the list consisting of: endoglucanases, beta-glucosidases, cellobiohydrolases, beta-xylosidases or any combination thereof.
15. La composición enzimática de acuerdo con cualquiera de las reivindicaciones 12 a 14 que además comprende la célula de acuerdo con cualquiera de las reivindicaciones 10 u 1 1 . 15. The enzyme composition according to any of claims 12 to 14 further comprising the cell according to any of claims 10 or 1 1.
16. Un procedimiento para la selección de la vanante de beta-glucosidasa con actividad de transglicosilación reducida en comparación con la beta- glucosidasa nativa, según cualquiera de las reivindicaciones 1 a 5, que comprende: 16. A method for the selection of the beta-glucosidase vanant with reduced transglycosylation activity compared to the native beta-glucosidase, according to any one of claims 1 to 5, comprising:
a. Incubar vanantes de beta-glucosidasa que comprenden una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80% con la SEQ ID NO: 2 y comprende una sustitución de aminoácido en la posición Q21 1 correspondiente a las posiciones 1 a 871 de la SEQ ID NO: 2, con p-nitro-fenil- glucopiranósido en presencia de celobiosa, b. Medir la liberación de p-nitrofenol, to. Incubate beta-glucosidase vanants comprising an amino acid sequence that has a sequence identity of at least 80% with SEQ ID NO: 2 and comprises an amino acid substitution at position Q21 1 corresponding to positions 1 to 871 of SEQ ID NO: 2, with p-nitro-phenyl glucopyranoside in the presence of cellobiose, b. Measure the release of p-nitrophenol,
c. Comparar el valor del p-nitrofenol medido en la etapa (b) con un valor de referencia, y C. Compare the value of p-nitrophenol measured in step (b) with a reference value, and
d. Seleccionar aquellas vanantes de beta-glucosidasa cuyos valores medidos en la etapa (b) son más elevados que el valor de referencia. d. Select those vacancies of beta-glucosidase whose values measured in step (b) are higher than the reference value.
17. Un procedimiento para producir la vanante de beta-glucosidasa según cualquiera de las reivindicaciones 1 a 5, que comprende el diseño de una librería de mutantes de enzimas beta-glucosidasa que presentan una secuencia de aminoácidos que tiene una identidad de secuencia de al menos un 80% con la SEQ ID NO: 2 y comprenden una sustitución de aminoácido en la posición Q21 1 correspondiente a las posiciones 1 a 871 de la SEQ ID NO: 2, y la selección de la vanante de beta-glucosidasa con actividad de transglicosilación reducida, de acuerdo con las etapas (a) a (d) del procedimiento de la reivindicación 16. 17. A method for producing the beta-glucosidase vanant according to any one of claims 1 to 5, comprising the design of a library of beta-glucosidase enzyme mutants having an amino acid sequence having a sequence identity of at least 80% with SEQ ID NO: 2 and comprise an amino acid substitution at position Q21 1 corresponding to positions 1 to 871 of SEQ ID NO: 2, and the selection of the beta-glucosidase vanant with transglycosylation activity reduced, according to steps (a) to (d) of the process of claim 16.
18. Un procedimiento para producir azúcar fermentable, que comprende: a. Incubar material celulósico con la vanante de beta-glucosidasa de acuerdo con cualquiera de las reivindicaciones 1 a 5, con la célula huésped de acuerdo con cualquiera de las reivindicaciones 10 u 1 1 o con la composición enzimática de acuerdo con cualquiera de las reivindicaciones 12 a 15 y b. Recuperar el azúcar fermentable obtenido tras la incubación en la etapa (a). 18. A process for producing fermentable sugar, comprising: a. Incubate cellulosic material with the beta-glucosidase vane according to any one of claims 1 to 5, with the host cell according to any one of claims 10 or 1 or with the enzyme composition according to any of claims 12 to 15 and b. Recover the fermentable sugar obtained after the incubation in step (a).
19. Un procedimiento para producir un bioproducto que comprende: 19. A process for producing a bioproduct comprising:
a. Incubar material celulósico con la vanante de beta-glucosidasa de acuerdo con cualquiera de las reivindicaciones 1 a 5, con la célula huésped de acuerdo con cualquiera de las reivindicaciones 10 u 1 1 o con la composición enzimática de acuerdo con cualquiera de las reivindicaciones 12 a 15, b. Fermentar los azúcares fermentables obtenidos tras la incubación de la etapa (a) con al menos un microorganismo fermentador, y to. Incubate cellulosic material with the beta-glucosidase vane according to any one of claims 1 to 5, with the host cell according to any one of claims 10 or 1 or with the enzyme composition according to any of claims 12 to 15, b. Ferment the fermentable sugars obtained after the incubation of step (a) with at least one fermenting microorganism, and
c. Recuperar el bioproducto obtenido tras la fermentación en la etapa (b). C. Recover the bioproduct obtained after fermentation in step (b).
20. El procedimiento de acuerdo con la reivindicación 19, donde el bioproducto es etanol. 20. The process according to claim 19, wherein the bioproduct is ethanol.
PCT/ES2014/070391 2013-05-10 2014-05-09 Beta-glucosidase variants having reduced transglycosylation activity WO2014181023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330678A ES2521940B1 (en) 2013-05-10 2013-05-10 Beta-glucosidase variants with reduced transglycosylation activity
ESP201330678 2013-05-10

Publications (1)

Publication Number Publication Date
WO2014181023A1 true WO2014181023A1 (en) 2014-11-13

Family

ID=50928133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070391 WO2014181023A1 (en) 2013-05-10 2014-05-09 Beta-glucosidase variants having reduced transglycosylation activity

Country Status (2)

Country Link
ES (1) ES2521940B1 (en)
WO (1) WO2014181023A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399627B2 (en) 1998-10-06 2008-07-15 Dyadic International (Usa), Inc. Transformation system in the field of filamentous fungal hosts
US7794962B2 (en) 2000-04-13 2010-09-14 Dyadic International (Usa), Inc. High-throughput screening of expressed DNA libraries in filamentous fungi
WO2011063308A2 (en) 2009-11-20 2011-05-26 Danisco Us Inc. Beta-glucosidase i variants with improved properties
WO2011066457A2 (en) * 2009-11-25 2011-06-03 Codexis, Inc. Recombinant beta-glucosidase variants for production of soluble sugars from cellulosic biomass
WO2013028701A1 (en) * 2011-08-22 2013-02-28 Codexis, Inc. Gh61 glycoside hydrolase protein variants and cofactors that enhance gh61 activity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2483415B1 (en) * 2009-09-30 2015-01-21 Codexis, Inc. Recombinant c1 b-glucosidase for production of sugars from cellulosic biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399627B2 (en) 1998-10-06 2008-07-15 Dyadic International (Usa), Inc. Transformation system in the field of filamentous fungal hosts
US7794962B2 (en) 2000-04-13 2010-09-14 Dyadic International (Usa), Inc. High-throughput screening of expressed DNA libraries in filamentous fungi
WO2011063308A2 (en) 2009-11-20 2011-05-26 Danisco Us Inc. Beta-glucosidase i variants with improved properties
WO2011066457A2 (en) * 2009-11-25 2011-06-03 Codexis, Inc. Recombinant beta-glucosidase variants for production of soluble sugars from cellulosic biomass
WO2013028701A1 (en) * 2011-08-22 2013-02-28 Codexis, Inc. Gh61 glycoside hydrolase protein variants and cofactors that enhance gh61 activity

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1999, pages 403 - 410
ANTHI KARNAOURI ET AL: "Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase", PEERJ, vol. 47, no. 1, 26 February 2013 (2013-02-26), pages 8, XP055138463, ISSN: 2167-8359, DOI: 10.1360/02yc0163 *
BOHLIN ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 97, no. 1, 2013, pages 159 - 169
DEVEREUX ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 287
EKPERIGIN, M.M., AFRICAN JOURNAL OF BIOTECHNOLOGY, vol. 6, no. 1, 2007, pages 028 - 033
HIGGINS, CABIOS, vol. 5, 1989, pages 151 - 153
KUHAD R. C. ET AL., ENZYME RESEARCH, 2011
N. MOSIER ET AL., BIORESOURCE TECHNOLOGY, vol. 96, 2005, pages 673 - 686
PETERSEN ET AL., NATURE METHODS, vol. 8, 2011, pages 785 - 786
RYE ET AL., CURR. OPIN. CHEM. BIOL., vol. 4, 2000
VERDOES ET AL., IND. BIOTECHNOL., vol. 3, no. 1, 2007
VERDOES, IND. BIOTECHNOL., vol. 3, no. 1, 2007
VISSER ET AL., IND. BIOTECHNOL., vol. 7, no. 3, 2011
WILBUR; LIPMAN, PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE USA, vol. 80, 1983, pages 726 - 730

Also Published As

Publication number Publication date
ES2521940B1 (en) 2015-09-09
ES2521940A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US20190161772A1 (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
US20180030492A1 (en) Fungal cells and fermentation processes
WO2013029176A1 (en) Novel cellobiohydrolase enzymes
Fang et al. Heterologous expression and production of Trichoderma reesei cellobiohydrolase II in Pichia pastoris and the application in the enzymatic hydrolysis of corn stover and rice straw
KR20150079676A (en) Beta-glucosidase from magnaporthe grisea
CN105829530A (en) Compositions comprising a beta-glucosidase polypeptide and methods of use
ES2727390T3 (en) Expression of recombinant beta-xylosidases enzymes
Volkov et al. Homologous cloning, purification and characterization of highly active cellobiohydrolase I (Cel7A) from Penicillium canescens
Belova et al. Xylanase and cellulase of fungus Cerrena unicolor VKM F-3196: Production, properties, and applications for the saccharification of plant material
Sinitsyn et al. The production of highly effective enzyme complexes of cellulases and hemicellulases based on the Penicillium verruculosum strain for the hydrolysis of plant raw materials
WO2015118205A1 (en) Polypeptides with polysaccharide monooxygenase activity and use thereof for the production of fermentable sugars
WO2014181023A1 (en) Beta-glucosidase variants having reduced transglycosylation activity
WO2018142002A1 (en) Polypeptides with polysaccharide monooxygenase activity and use thereof for the production of fermentable sugars
ES2589186B1 (en) IMPROVED CELOBIOHIDROLASA VARIANTS 1
ES2697920B2 (en) CELLULAS WITH IMPROVED CELLULOLIC ACTIVITY
RU2646136C2 (en) Recombinant strain of mycelial fungus penicillium verruculosum (versions) and a method of producing enzyme preparation with its use (variants)
WO2016207448A1 (en) Cellulolytic compositions comprising monooxygenase polysaccharide enzymes with improved activity
CN105754973A (en) Mutant W233D of beta-glucosidase and application of mutant W233D
ES2527368B1 (en) Myceliophthora thermophila host cell that expresses a heterologous alpha-xylosidase enzyme and its use in a biomass degradation process
ES2545161B1 (en) Polypeptides with cellulase activity
KR101791564B1 (en) A nobel β-glucosidase gene Bgls6 with persistent activity in the aqueous organic solvents and the recombinant β-glucosidase from transformed strain using thereof
ES2647322A1 (en) Host cell myceliophthora thermophila with improved cellulolytic activity and enzymatic compositions obtained by it (Machine-translation by Google Translate, not legally binding)
BR112016028559B1 (en) ENZYME COMPOSITION, RECOMBINANT FUNGAL HOST CELL, AND, PROCESSES FOR PRODUCING AN ENZYME COMPOSITION AND A FERMENTATION PRODUCT, FOR DEGRADATION OF A CELLULOSIC OR HEMICELLULOSIC MATERIAL AND FOR FERMENTATION OF A CELLULOSIC OR HEMICELLULOSIC MATERIAL.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14729375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14729375

Country of ref document: EP

Kind code of ref document: A1