WO2014180098A1 - 一种管状光伏发电组件的应用方法 - Google Patents

一种管状光伏发电组件的应用方法 Download PDF

Info

Publication number
WO2014180098A1
WO2014180098A1 PCT/CN2013/085662 CN2013085662W WO2014180098A1 WO 2014180098 A1 WO2014180098 A1 WO 2014180098A1 CN 2013085662 W CN2013085662 W CN 2013085662W WO 2014180098 A1 WO2014180098 A1 WO 2014180098A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
photovoltaic power
tubular photovoltaic
tubular
array
Prior art date
Application number
PCT/CN2013/085662
Other languages
English (en)
French (fr)
Inventor
刘庆云
Original Assignee
Liu Qingyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Qingyun filed Critical Liu Qingyun
Publication of WO2014180098A1 publication Critical patent/WO2014180098A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a method for applying a tubular photovoltaic power generation assembly, in particular to a distributed application of a tubular photovoltaic power generation assembly, a combination of a tubular photovoltaic power generation assembly and a building, a tubular photovoltaic power generation assembly combined with an agricultural animal husbandry, and a tubular photovoltaic power generation assembly.
  • a tubular photovoltaic power generation assembly combined with road traffic and infrastructure.
  • the current mainstream photovoltaic modules are all plate-shaped, on the one hand, they are easily affected by the wind, and need to be fixed by a solid metal bracket, and the cost is high; on the other hand, a large shaded area is formed at the rear of the light receiving surface of the photovoltaic module. Lighting that seriously affects the rear space will also hinder the installation of photovoltaic modules.
  • the tubular structure of the photovoltaic module has good mechanical strength, especially the transparent glass tube has the advantages of light weight, low cost, excellent sealing performance, good weather resistance, high mechanical strength, strong self-supporting force and long service life.
  • Packaging and self-supporting structural materials for photovoltaic or photovoltaic devices can significantly reduce costs and extend service life.
  • the object of the present invention is to provide an application method of a tubular photovoltaic power generation component in order to solve the above-mentioned problems caused by the adverse effects of the sun light being too strong in a natural state while performing solar photovoltaic power generation.
  • the invention provides a method for applying a tubular photovoltaic power generation assembly, characterized in that the method utilizes an array formed by a plurality of tubular photovoltaic power generation components (ie, a tubular photovoltaic power generation module array) to implement solar stratification, wherein tubular photovoltaic power generation
  • the assembly receives sunlight incident on the tubular photovoltaic power generation assembly, and the remaining solar light passes through the gap of the tubular photovoltaic power generation assembly array to the rear region or the lower region of the tubular photovoltaic power generation assembly array to reduce illumination or continue to perform daylighting utilization.
  • the tubular photovoltaic power generation component is packaged by using a glass tube, which has high light transmittance, good self-supporting strength, low cost, long service life, and can reliably block the damage of the photovoltaic cell caused by the external environment for a long time.
  • the length of the tubular photovoltaic power generation component exceeds 2.5 meters; preferably, the length of the tubular photovoltaic power generation component exceeds 5 meters, which can fully utilize the strength and self-supporting capability of the glass tube, simplify the installation process, save materials and labor Cost
  • the glass tube has a diameter ranging from 30 mm to 180 mm.
  • the glass tube has a diameter ranging from 50 mm to 120 mm.
  • the tubular photovoltaic power generation component is a flat photovoltaic module or a concentrating photovoltaic module, wherein the flat photovoltaic module encapsulates a common photovoltaic cell in the glass tube; the concentrating photovoltaic module encapsulates the concentrating photovoltaic system in the glass tube.
  • tubular photovoltaic power generation assembly is rotatable about an axis to perform solar ray tracing.
  • the glass tube of the tubular photovoltaic power generation assembly is fixed, and the components in the glass tube can rotate and track the sunlight line.
  • the gap size between the tubular photovoltaic power generation components in the array is selectively adjusted according to the lighting requirements of the rear area of the array or the lower area.
  • a scattering hooking device is disposed at a gap between each of the tubular photovoltaic power generation components in the array, which is capable of uniformly scattering sunlight incident on the rear or lower region.
  • the scattering hooking device selects a color of the scattering hook as needed to facilitate plant or animal growth or to make the living environment more comfortable and natural.
  • the array of tubular photovoltaic power generation components is arranged on a building lighting roof or a building light-receiving wall, and an additional photovoltaic power generation amount is obtained while ensuring proper lighting of the building. Further, the array of tubular photovoltaic power generation components is arranged in an area in agriculture, industry or life where it is desirable to reduce the intensity of natural radiation.
  • tubular photovoltaic power generation component array is arranged above the animal breeding, the planting ground or the greenhouse, the tubular photovoltaic power generation component array further comprises a supporting structure, and the supporting structure height is not lower than animal breeding, planting The minimum height required for growth or normal human work; providing sunlight for the growth of plants and animals while obtaining solar power.
  • tubular photovoltaic power generation component array is arranged in an area where the irradiation is required to be reduced and the wind speed is reduced; while obtaining photovoltaic power generation, the evaporation of water caused by solar radiation can be reduced, the wind speed can be reduced, and the ecological influence caused by the dust can be reduced.
  • tubular photovoltaic power generation component array is arranged above the road, and the installation height thereof is not lower than the minimum height of the normal use of the road; while obtaining solar power generation, the normal service life of the road can be improved, and the strong solar light is alleviated. Adverse effects on the line of sight of the transporter when illuminated.
  • tubular photovoltaic power generation module array is disposed above a road close to the electric vehicle charging station, which can supply electric power to the electric vehicle charging station economically and conveniently.
  • tubular photovoltaic power generation component array is arranged above the surface or underground oil or gas pipeline to provide distributed power for heat preservation or pressurization of the oil or gas pipeline.
  • tubular photovoltaic power generation component array is used as a fence, a fence or a fence, and functions as a barrier protection while performing photovoltaic power generation.
  • tubular photovoltaic power generation component array is arranged in a swimming pool, a natural bath, a playground, a stadium, a square, a dock, a station, a stadium, an upper space of the exhibition hall, and the installation height thereof is not lower than a minimum height for normal use; Under the premise of the use of lighting, it can prevent excessive sun damage and provide photovoltaic power generation.
  • the rear or lower area of the tubular photovoltaic power generation module array does not move with the movement of the sun position. It will form a continuous fixed shadow.
  • the cumulative amount of received light at each position is not much different, and it is weaker than the natural light. It can be regarded as a basically normal lighting environment, but the cumulative irradiation amount is reduced, and it can be used in the tubular photovoltaic module array.
  • a scattering hooking device is arranged at the gap between the components to further improve the lighting conditions.
  • the application of the tubular photovoltaic power generation component of the invention has the following advantages: (1)
  • the application range is wide, and is suitable for the production and living fields, and can basically reduce the normal lighting function of the installation area while reducing the photovoltaic power generation, and can also reduce Negative effects due to strong solar radiation.
  • This application method is not affected by the geographical aspect, and can be installed not only in the open desert or In the suburbs, it can also be installed in the upper space close to densely populated areas, such as roads, fields, swimming pools, natural baths, playgrounds, stadiums, plazas, docks, stations, stadiums, exhibition halls, oil and gas pipelines, etc.
  • the application range of photovoltaics enables photovoltaic power generation devices to be very close to the load center, greatly reducing the transmission pressure of the power grid, and providing a large-scale promotion of distributed photovoltaics.
  • Figure 1-1 is a schematic view of a tubular photovoltaic power generation assembly arrangement - a common cross-sectional structure.
  • Figure 1-2 is a schematic view of a tubular photovoltaic power generation assembly arrangement two-transmissive cross-sectional structure.
  • Figure 1-3 is a schematic diagram of a cross-sectional structure of a tubular photovoltaic power generation module arrangement two-one-side reflective type.
  • Figure 1-4 is a schematic diagram of a cross-sectional structure of a tubular photovoltaic power generation assembly arrangement two-double reflective.
  • Figure 2-1 is a schematic diagram of a tubular photovoltaic power generation module array application example 1 road level application.
  • Figure 2-2 shows an application example of a tubular photovoltaic power generation module array.
  • Figure 3 is a schematic view of the application of the tubular photovoltaic power generation module array.
  • FIG. 4 is a schematic diagram of a tubular photovoltaic power generation module array application example 3 - house and courtyard application. detailed description
  • the tubular photovoltaic power generation component in the invention is a flat photovoltaic module or a concentrated photovoltaic module, wherein the flat photovoltaic module encapsulates a common photovoltaic cell in the glass tube; the concentrated photovoltaic module encapsulates the concentrated photovoltaic system in the glass tube.
  • the tubular photovoltaic power generation component is packaged by a glass tube, has high light transmittance, good self-supporting strength, low cost, long service life, and can reliably block the damage of the photovoltaic cell caused by the external environment for a long time.
  • the arrangement of the tubular photovoltaic power generation assembly adopts an ordinary type, a transmissive type, a single-side reflective type, and a double-sided reflective type.
  • FIG. 1-1 is a schematic view of a tubular photovoltaic power generation assembly arrangement - a common cross-sectional structure.
  • the tubular photovoltaic power generation assembly is capable of converting solar energy into electrical energy and outputting it, as shown in FIG. 1-1, which is mainly composed of a glass tube 101 and a photovoltaic battery pack 103 disposed in the glass tube 101; the photovoltaic battery pack 103 receives The sunlight incident on the surface through the glass tube 101 converts the sunlight into an external power output system.
  • the photovoltaic cell stack 103 is rotated about a central axis of the glass tube 101 of the tubular photovoltaic power generation assembly or the tubular photovoltaic power generation assembly is integrally rotated about the central axis of the glass tube 101 to perform one-dimensional linear tracking.
  • the tubular photovoltaic power generation assembly may further include a collecting optical system, and the collecting optical system can The incident sunlight is reflected on the photovoltaic cell; achieving one-dimensional linear concentrating for better power generation efficiency.
  • the concentrating optical system may be a Fresnel transmissive concentrating optical system.
  • the tubular photovoltaic power generation assembly includes a glass tube 101, a photovoltaic battery assembly 103, and a transmissive concentrating optical system 102.
  • the sunlight incident on the inside of the tubular photovoltaic power generation assembly passes through the collection of the transmissive collecting optical system 102, and is reflected to the photovoltaic battery pack 103 for power generation.
  • the concentrating optical system 102 can also be a single-side concentrating optical system, that is, the concentrating optical system 102 is disposed on one side of the glass tube 101, as shown in FIGS. 1-3, the arrangement of the unilateral collecting optical system can be The optical refraction design of the refraction generated when the light passes through the glass tube wall enhances the condensing effect, and the sunlight incident on the glass tube 101 is fully utilized.
  • the concentrating optical system 102 can also be a double-sided concentrating optical system, as shown in FIG. 1-4, that is, the concentrating optical system 102 is symmetrically arranged on both sides of the glass tube 101, and the arrangement is arranged to reduce the poly Light optics system 102 affects the shading of the battery pack.
  • the photovoltaic cells 103 of the above four tubular photovoltaic power generation assemblies can rotate around the central axis of the glass tube 101 of the tubular photovoltaic power generation assembly or the tubular photovoltaic power generation assembly can be rotated around the central axis of the glass tube 101 to implement one-dimensional linear tracking. .
  • the photovoltaic cell stack 103 can also be arranged at an oblique angle or the tubular photovoltaic power generating assembly is tilted at an angle to the whole, which is capable of receiving more radiation of sunlight to optimize the radiation area.
  • FIG. 2-1 is a schematic diagram of a tubular photovoltaic power generation module array application example 1 road application.
  • the tubular photovoltaic power generation module array can be disposed above a road or highway 206, and its installation height is not lower than the minimum height of the road or highway 206 normally used, which can reduce the sun exposure. Cracking of the road surface improves the normal service life of the road or highway 206 and reduces the maintenance and maintenance costs of the road or highway 206.
  • the tubular photovoltaic power generation module array of Embodiment 1 mainly includes a plurality of tubular photovoltaic power generation components 211 to 210 tubular photovoltaic power generation components 213, a scattering hook lighter 204, and a support structure 205.
  • the tubular photovoltaic power generation assembly 211 to the tubular photovoltaic power generation assembly 213 in Embodiment 1 are horizontally arranged above the road or highway 206 by using the support structure 205, for example, the tubular photovoltaic power generation assembly 211 to the tubular photovoltaic power generation assembly 213 are perpendicular to the road or the highway 206.
  • the directional arrangement may also arrange the tubular photovoltaic power generation component 221 to the tubular photovoltaic power generation component 223 along the direction in which the road or highway 206 is advanced.
  • Embodiment 1 adopts solar stratification, wherein the tubular photovoltaic power generation module array receives sunlight incident to the inside of the tubular photovoltaic power generation assembly, and the remaining solar light reaches the tubular photovoltaic power generation component array through the gap between the components in the tubular photovoltaic power generation assembly array.
  • the rear area (road or highway 206) or the lower area (road or highway 206) to reduce light or implement daylighting.
  • the size of the gap between the components in the array of tubular photovoltaic modules can be based on the lighting in the area behind or below the array. The demand is adjusted to make the best use of sunlight.
  • the length of the tubular photovoltaic power generation assembly 211 exceeds 2.5 m; preferably, the length of the tubular photovoltaic power generation assembly 211 exceeds 5 m, for example, greater than the width of the road or the highway 206, and the strength and self-supporting ability of the glass tube can be fully utilized to simplify installation. Process, saving material and labor costs, so as to avoid the normal operation of traffic during installation and maintenance.
  • the glass tube has a diameter ranging from 30 mm to 180 mm, and preferably, the glass tube has a diameter ranging from 50 to 120 mm.
  • the glass tube itself has good self-supporting ability, and the wall thickness is suitable.
  • the wall thickness of the oversized glass tube is thicker, which leads to more use of the glass material per unit of light-collecting area, and the cost increases; province, but the intensity is low, lacking sufficient self-supporting ability.
  • the thickness of the tube wall is 1.5 mm to 3 mm, and the glass tube is a common size, the process is mature, and the processing cost is low, which is particularly suitable for the application of the tubular photovoltaic module.
  • a scattering hooking device 204 is arranged at a gap between the components in the array of tubular photovoltaic power generation modules, which can disperse the sunlight that is not incident on the tubular photovoltaic power generation component, and illuminate the space below the tubular photovoltaic power generation component array. Sunlight, and prevents eye dizziness caused by strong sunlight and sunburn to the skin.
  • the array of tubular photovoltaic modules can also be slanted over the road or highway 206 using the support structure 205, as in Figure 2-2, for example parallel to the direction of travel of the road or highway 206.
  • the tubular photovoltaic power generation component 221 is also rotatable about its central axis for solar tracking. Such an arrangement can improve the concentrating efficiency of the tubular photovoltaic power generation component 221, thereby increasing the power generation of the tubular photovoltaic power generation component array and improving the sunlight. Utilization and power generation efficiency.
  • the tubular photovoltaic power generation module array can also be placed horizontally or obliquely above the road near the electric vehicle charging station, and the electric vehicle charging station can be supplemented with electric energy economically and conveniently.
  • FIG. 3 is a schematic diagram of the application of the tubular photovoltaic power generation module array embodiment 2 to the field.
  • the tubular photovoltaic power generation assembly 311 to the tubular photovoltaic power generation assembly 313 are disposed on the support structure 305, and the support structure 305 is under the crop; the embodiment 2 adopts the solar layer stratification, wherein the tubular photovoltaic power generation component array receives The sunlight incident on the inside of the tubular photovoltaic power generation component, and the remaining sunlight rays reach the rear region or the lower region (farm field 300) of the tubular photovoltaic power generation module array through the gap between the components in the tubular photovoltaic power generation assembly array to reduce illumination or implement lighting use.
  • the tubular photovoltaic power generation module array can install a tubular photovoltaic power generation component above the farmland 300, particularly the farmland 300 in the suburbs of the city, and can perform photovoltaic power generation without affecting the growth of the crop.
  • a practical example of operation is that on a 1 acre farmland, half of the area is assumed to be used for solar power generation, and a single axis of rotation is used to track sunlight, and the other half is used for crop lighting; for example, local direct sunlight is 0.8kw/m 2 ; its photovoltaic efficiency is, for example, 0.16, the working hours are 6 hours per day, and the annual working day is 250 days, then the total theoretical power generation for one year is 64MWh, actually above 30MWh, plant growth is basically unaffected.
  • a scattering hooking device 304 may also be disposed between the components of the array of tubular photovoltaic cell modules, and the scattering hooking device 304 may select a color of the scattering hook according to the needs of the crop to facilitate plant growth. This arrangement not only solves the problem of high power generation cost of photovoltaic power generation due to occupying a large area of land; it also provides powerful growth conditions for plants that do not require intense illumination.
  • the tubular photovoltaic power generation assembly array may also be disposed at an oblique angle above the planting area, preferably in the north hemisphere, south, low, and north, with the tilt angle being the local dimension.
  • the tubular photovoltaic power generation module array may also be arranged above a greenhouse or an animal culture ground, and the height of the support structure is not lower than the minimum height required for plant cultivation and growth, animal breeding or normal human work; At the same time as obtaining solar power, it provides the illumination needed for the growth of plants and animals.
  • FIG. 4 is a schematic view of a tubular photovoltaic power generation module array application embodiment 3 - house and courtyard application.
  • the house and the courtyard include a house 400, a leisure area 407, and a fence 408; wherein the house 400 is provided with a tubular photovoltaic power generation component 411 to a tubular photovoltaic power generation component 414 having an inclined angle arrangement;
  • the array can also be placed in the building's sun-receiving wall to ensure that the building has the right amount of daylight and the additional photovoltaic power generation.
  • the fence 408 is a tubular photovoltaic power generation component 421 to a tubular photovoltaic power generation component 424 arranged vertically; further, the fence 408 may also be a tubular photovoltaic power generation component 431 to a tubular photovoltaic power generation component 434 arranged in parallel with the ground.
  • a diffuse light-hooking device 404 is disposed between the tubular photovoltaic power generation assembly 431 and its adjacent tubular photovoltaic power generation assembly, and can scatter the sunlight incident on the area below or behind the tubular photovoltaic power generation assembly.
  • the fence 408 can also be a fence or a wall; the tubular photovoltaic power generation assembly can rotate or track the sunlight around its central axis to obtain more photovoltaic power generation; the tubular photovoltaic power generation component can also be arranged on the leisure area 407. Array. It should be noted that: the tubular photovoltaic power generation component array is arranged in an area where agricultural, industrial, living or ecological needs to reduce the natural irradiation intensity of the sun.
  • the array may also be disposed in an area where wind speed is reduced or dust is reduced, and the wind speed is reduced while the photovoltaic power generation is obtained, thereby further reducing the impact of the dust on the ecological environment;
  • the tubular photovoltaic power generation module array is arranged above the road of the electric vehicle charging station, which is economical and convenient Replenishing electric vehicle charging station with electric energy; said tubular photovoltaic power generation component array cloth
  • the upper space of a building such as a swimming pool, a natural bath, a playground, a stadium, a square, a dock, a station, a stadium, a pavilion, etc., and its installation height is not lower than the minimum height for normal use of the building; It can prevent sunburn from excessive light, not only for photovoltaic power generation, but also for people's travel and health.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种管状光伏发电组件(211-213)阵列的应用方法,禾佣若干管状光伏发电组件(211-213)形成的阵列实施太阳光分层利用,其中管状光伏发电组件(211-213)接收入射至管状光伏发电组件(211-213)的太阳光,其余太阳光线通过管状光伏发电组件(211-213)阵列的间隙到达管状光伏发电组件(211-213)阵列的后方区域或下方区域,以减少光照或继续实施采光利用。

Description

一种管状光伏发电组件的应用方法
技术领域
本发明涉及一种管状光伏发电组件的应用方法, 尤其涉及一种管状光伏发电组件的 分布式应用, 管状光伏发电组件与建筑相结合、 管状光伏发电组件与农业牧业相结合、 管状光伏发电组件与环境治理及土地改良相结合、 管状光伏发电组件与道路交通及基础 设施相结合等多种应用方式。 背景技术
随着光伏技术的应用普及, 在光照强烈的荒漠地区建设了越来越多的光伏电站, 由 于距离电力负荷中心区域较远, 对电网的输送能力提出了很高要求, 贴近负荷的分布式 光伏应用被认为是解决此问题的有效方式。 但由于电力负荷中心地区往往建设及居住密 度较大, 难以具备可以大面积安装常规光伏电池板的空间位置, 给分布式光伏的大规模 推广带来障碍。 另外, 目前的主流光伏模组均为板状, 一方面很容易受风力影响, 需要 坚固的金属支架予以固定, 成本较高; 另一方面, 光伏模组受光面后部会形成大块阴影 区域, 严重影响到后部空间的采光, 也会阻碍光伏模组的安装。
管状结构的光伏组件具有很好的机械强度, 特别是透明玻璃管具有重量轻、成本低、 密封性能优异、 耐候性好、 机械强度大、 自支撑力强及使用寿命长的显著优点, 作为对 光伏器件或光伏装置的封装及自支撑结构材料, 可以大幅降低成本, 延长使用寿命。
太阳光线的强度与农业、 工业、 生活和生态等各方面息息相关。 例如: 在农业方面, 不同的植物种类 (喜阳植物、 普通植物、 耐阴植物) 对阳光的需求差别达到数倍甚至数 十倍, 在阳光充裕区域, 过多的阳光照射远远超出一般植物生长的光饱和点, 不但对非 喜阳植物生长不利, 甚至对喜阳植物都会产生抑制或损伤; 在工业和生活方面, 如室内 照明、 道路及场地采光等, 一般对光线的强度要求并不高, 在日常生活中, 人眼对光照 强度有很好的调节适应能力, 光照强度适应范围可达到 100倍以上, 适应范围很宽, 过 多的阳光照射不但会增加日常空调用电损耗, 并且对其他方面也会产生负面影响, 例如 降低道路材料寿命, 剌激眼睛影响道路行车安全, 场地户外活动时暴晒对皮肤产生损伤 等; 在生态方面, 很多的荒漠形成原因往往与过量的光照有关, 水分的大量蒸发使土壤 湿度下降到很低水平, 在较高风速下容易被吹走造成水土流失甚至沙尘暴。 发明内容
本发明目的在于为解决上述因自然状态下太阳光线太强所造成的不利影响等问题的 同时能进行太阳光伏发电而具体提供一种管状光伏发电组件的应用方法。
本发明提供的一种管状光伏发电组件的应用方法, 其特征在于, 所述方法利用若干 管状光伏发电组件形成的阵列 (即, 管状光伏发电组件阵列) 实施太阳光分层利用, 其 中管状光伏发电组件接收入射至管状光伏发电组件的太阳光, 其余太阳光线通过管状光 伏发电组件阵列的间隙到达管状光伏发电组件阵列的后方区域或下方区域, 以减少光照 或继续实施采光利用。
进一步地, 所述管状光伏发电组件采用玻璃管进行封装, 其透光率高, 自支撑强度 好, 成本低, 使用寿命长, 能长期可靠地阻隔外界环境对光伏电池产生的破坏。
进一步地, 所述管状光伏发电组件的长度超过 2.5米; 优选地, 所述管状光伏发电组 件的长度超过 5米, 可充分利用玻璃管的强度和自支撑能力, 简化安装工序, 节省材料 及人工成本
进一步地, 所述玻璃管直径范围为 30毫米〜 180毫米。
优选地, 所述玻璃管直径范围为 50毫米〜 120毫米。
进一步地, 所述管状光伏发电组件为平板光伏模组或聚光光伏模组, 其中平板光伏 模组在玻璃管内封装普通光伏电池; 聚光光伏模组在玻璃管内封装聚光光伏系统。
进一步地, 所述管状光伏发电组件可绕轴心旋转, 实施太阳光线跟踪。
进一步地, 所述管状光伏发电组件的玻璃管固定, 玻璃管内的零部件可旋转跟踪太 阳光线。
进一步地, 所述阵列中各管状光伏发电组件之间的间隙尺寸根据所述阵列后方区域 或下方区域采光需求进行选择调整。
进一步地, 所述阵列中各管状光伏发电组件之间的间隙处布置散射勾光装置, 其能 够将射入到所述后方或下方区域的太阳光均勾分散。
优选地, 所述散射勾光装置根据需要选择散射勾光颜色, 以利于植物或动物生长或 让生活环境更加舒适和自然。
进一步地, 所述管状光伏发电组件阵列布置于建筑采光屋顶或建筑受光墙体, 在保 证建筑适量采光的同时, 还可获得额外的光伏发电量。 进一步地, 所述管状光伏发电组件阵列布置于农业、 工业或生活中需要减少自然辐 照强度的区域。
进一步地, 所述管状光伏发电组件阵列布置于动物养殖、 植物种植地面上方或温室 大棚上方, 所述管状光伏发电组件阵列还包括支撑结构, 且所述支撑结构高度不低于动 物养殖、 植物种植生长或人类正常劳作所需的最低高度; 在获得太阳光发电的同时, 提 供动植物生长所需光照。
进一步地, 所述管状光伏发电组件阵列布置于需要降低辐照并降低风速的区域; 在 获得光伏发电的同时, 可减少太阳辐射造成的水分蒸发, 降低风速, 减少沙尘带来的生 态影响。
进一步地, 所述管状光伏发电组件阵列布置于道路上方, 且其安装高度不低于道路 正常使用的最低高度; 在获得太阳光发电的同时, 可提高道路的正常使用寿命, 缓解因 强太阳光线照射时对运输人员的视线产生的不利影响。
进一步地, 所述管状光伏发电组件阵列布置于靠近电动车充电站的道路上方, 其能 够经济方便地给电动车充电站补充电能。
进一步地, 所述管状光伏发电组件阵列布置于地表或地下的输油或输气管线上方, 为输油或输气管线的保温或加压提供分布式电源。
进一步地, 所述管状光伏发电组件阵列作为栅栏、 围挡或围墙使用, 在进行光伏发 电的同时, 起到阻隔防护作用。
进一步地, 所述管状光伏发电组件阵列布置于泳池、 天然浴场、 操场、 球场、 广场、 码头、 车站、 体育场、 展馆上部空间, 且其安装高度不低于正常使用的最低高度; 在满 足正常使用的采光需求前提下, 可防止过强光线晒伤, 同时提供光伏发电功能。
由于管状光伏发电组件的玻璃管直径不大, 且管状光伏发电组件阵列中各组件之间 留有透光间隙, 因此随着太阳位置的移动, 所述管状光伏发电组件阵列的后方或下方区 域不会形成持续固定的阴影, 各个位置的累计受光量差异不大, 比自然光照情况有所减 弱, 可以视为基本正常的采光环境, 只是累计辐照量有所减少, 可在管状光伏发电组件 阵列中各组件间隙处布置散射勾光装置, 能够进一步改善采光条件。 因此, 本发明的管 状光伏发电组件的应用存在以下优势: (1 ) 应用范围较广, 适用于生产和生活领域, 能 够在光伏发电的同时, 基本不影响安装区域的正常采光功能, 还能减少因强烈太阳光辐 射带来的负面影响。 (2) 此应用方法不受地域方面的影响, 不仅可安装在空旷的荒漠或 郊区, 还可以安装在靠近人口密集区域的道路、 田地、 泳池、 天然浴场、 操场、 球场、 广场、 码头、 车站、 体育场、 展馆, 输油输气管线等上部空间, 极大扩展了分布式光伏 的应用范围, 使得光伏发电装置能够非常靠近负荷中心, 大大减轻电网传输压力, 为分 布式光伏的大规模推广提供了可能。 附图说明
图 1-1为管状光伏发电组件布置方式一 -普通式的横截面结构的示意图。
图 1-2为管状光伏发电组件布置方式二 -透射式的横截面结构的示意图。
图 1-3为管状光伏发电组件布置方式二-单侧反光式的横截面结构的示意图。
图 1-4为管状光伏发电组件布置方式二-双侧反光式的横截面结构的示意图。
图 2-1为管状光伏发电组件阵列应用实施例 1-道路水平应用示意图。
图 2-2为管状光伏发电组件阵列应用实施例 1-道路倾斜应用示意图。
图 3为管状光伏发电组件阵列应用实施例 2-田地应用示意图。
图 4为管状光伏发电组件阵列应用实施例 3-房屋及院落应用示意图。 具体实施方式
下面结合附图作进一步的说明。
本发明中的管状光伏发电组件为平板光伏模组或聚光光伏模组, 其中平板光伏模组 在玻璃管内封装普通光伏电池; 聚光光伏模组在玻璃管内封装聚光光伏系统。 所述管状 光伏发电组件采用玻璃管进行封装, 透光率高, 自支撑强度好, 成本低, 使用寿命长, 能长期可靠地阻隔外界环境对光伏电池产生的破坏。 所述管状光伏发电组件的布置方式 采用普通式、 透射式、 单侧反光式以及双侧反光式。
图 1-1为管状光伏发电组件布置方式一 -普通式的横截面结构的示意图。 所述管状光 伏发电组件能够将太阳能转化成电能并输出, 如图 1-1所示, 其主要由玻璃管 101以及 布置于玻璃管 101内的光伏电池组 103组成; 所述光伏电池组 103接收穿过玻璃管 101 入射至其表面的太阳光, 将太阳光转化成电能输出系统外部。 更为优选地是, 所述光伏 电池组 103绕管状光伏发电组件的玻璃管 101的中心轴线旋转或者该管状光伏发电组件 整体绕玻璃管 101中心轴线旋转, 实施一维的线性跟踪。
优选地, 所述管状光伏发电组件还可以包括聚光光学系统, 所述聚光光学系统能将 入射的太阳光反射至光伏电池组上; 实现一维的线性聚光, 获得更加良好的发电效率。 所述聚光光学系统可以为菲涅尔透射式聚光光学系统, 如图 1-2所示, 所述管状光伏发 电组件包括玻璃管 101、光伏电池组 103以及透射式聚光光学系统 102, 入射至管状光伏 发电组件内部的太阳光经过透射式聚光光学系统 102的汇集, 反射至光伏电池组 103进 行发电。 另外, 聚光光学系统 102还可以为单侧聚光光学系统, 即聚光光学系统 102布 置于玻璃管 101的一侧, 如图 1-3所示, 单侧聚光光学系统的布置可以根据光线透过玻 璃管壁时发生的折射进行光学修正设计, 提高聚光效果, 使入射到玻璃管 101上的太阳 光得到充分的利用。 进一步地, 聚光光学系统 102还可为双侧聚光光学系统, 如图 1-4 中所示布置方式, 即玻璃管 101两侧对称布置聚光光学系统 102, 如此布置, 可减小聚光 光学系统 102对电池组的遮光影响。
以上所述四种管状光伏发电组件中的光伏电池组 103均可绕管状光伏发电组件的玻 璃管 101中心轴线旋转或者该管状光伏发电组件整体绕玻璃管 101中心轴线旋转, 实施 一维的线性跟踪。 所述光伏电池组 103还可倾斜一定角度布置或管状光伏发电组件整体 倾斜一定角度布置, 此布置方式能够接受更多太阳光的辐射, 使辐射面积达到最优化。
本发明实施例 1
图 2-1为管状光伏发电组件阵列应用实施例 1-道路应用示意图。如图 2-1所示,所述 管状光伏发电组件阵列可布置于道路或高速公路 206上方, 且其安装高度不低于道路或 高速公路 206正常使用的最低高度, 其可减少太阳曝晒导致的路面开裂, 提高道路或高 速公路 206的正常使用寿命, 减少道路或高速公路 206的养护以及维修费用。 实施例 1 中的管状光伏发电组件阵列主要包括若干个管状光伏发电组件 211〜管状光伏发电组件 213、 散射勾光装置 204以及支撑结构 205。
实施例 1中的管状光伏发电组件 211〜管状光伏发电组件 213利用支撑结构 205水平 布置于道路或高速公路 206上方, 例如管状光伏发电组件 211〜管状光伏发电组件 213 垂直于道路或高速公路 206前进方向布置,也可以将管状光伏发电组件 221〜管状光伏发 电组件 223沿道路或高速公路 206前进方向布置。 实施例 1采取太阳光分层利用, 其中 管状光伏发电组件阵列接收入射至管状光伏发电组件内部的太阳光, 其余太阳光线通过 管状光伏发电组件阵列中各组件之间的间隙到达管状光伏发电组件阵列的后方区域 (道 路或高速公路 206) 或下方区域 (道路或高速公路 206), 以减少光照或实施采光利用。 管状光伏发电组件阵列中各组件之间的间隙尺寸可根据阵列后方区域或下方区域的采光 需求进行调整选择, 使太阳光的利用达到最佳效果。 所述管状光伏发电组件 211的长度 超过 2.5m; 优选地, 管状光伏发电组件 211的长度超过 5m, 例如大于道路或高速公路 206的宽度, 可充分利用玻璃管的强度和自支撑能力, 简化安装工序, 节省材料及人工成 本, 以便于安装以及维修时不影响交通的正常运行。 进一步地, 所述玻璃管直径范围在 30毫米到 180毫米之间, 优选地, 所述玻璃管直径范围在 50-120毫米之间。 玻璃管本身 具有良好的自支撑能力, 同时壁厚比较适宜, 过大直径的玻璃管壁厚较厚, 导致单位采 光面积的玻璃材料用量较多, 成本上升; 过小直径的玻璃管虽然材料较省, 但强度偏低, 缺乏足够的自支撑能力。 例如管壁厚度为 1.5mm〜3mm, 且该玻璃管为常见的尺寸, 工 艺成熟, 加工成本低廉, 特别适合所述管状光伏组件的应用。
所述管状光伏发电组件阵列中各组件之间的间隙处布置散射勾光装置 204,其能够将 未入射至管状光伏发电组件的太阳光均勾分散, 使管状光伏发电组件阵列下方空间均勾 照射太阳光, 并且防止太阳光强烈照射引起的眼晕以及对皮肤的晒伤。
在另一实施例中, 管状光伏发电组件阵列还可以利用支撑结构 205倾斜布置于道路 或高速公路 206上方, 如图 2-2, 例如平行于道路或高速公路 206运行方向的布置方式。 所述管状光伏发电组件 221还可绕其中心轴旋转以进行太阳光跟踪, 如此布置可以提高 管状光伏发电组件 221的聚光效率, 进而增大管状光伏发电组件阵列的发电量, 提高太 阳光的利用率以及发电效率。 进一步地, 所述管状光伏发电组件阵列还可水平或倾斜布 置于靠近电动车充电站的道路上方, 能够经济方便地给电动车充电站补充电能。
本发明实施例 2
图 3为管状光伏发电组件阵列应用实施例 2-田地应用示意图。 如图 3所示, 所述管 状光伏发电组件 311〜管状光伏发电组件 313布置于支撑结构 305上,支撑结构 305下方 为农作物; 实施例 2采取太阳光分层利用, 其中管状光伏发电组件阵列接收入射至管状 光伏发电组件内部的太阳光, 其余太阳光线通过管状光伏发电组件阵列中各组件之间的 间隙到达管状光伏发电组件阵列的后方区域或下方区域 (农田 300), 以减少光照或实施 采光利用。该管状光伏发电组件阵列可以在农田 300,特别是城市近郊的农田 300上方安 装管状光伏发电组件, 在不影响作物生长的同时, 可进行光伏发电。 一个实际的运行例 子为, 1亩农田上,假定其中有一半的面积用来太阳光发电,且实施单轴旋转跟踪太阳光, 其中另一半用于农作物采光使用; 例如当地的太阳光直辐射为 0.8kw/m2 ; 其光伏效率例 如为 0.16, 每天工作小时数为 6小时, 全年工作日为 250天, 则一年的总的理论发电为 64MWh, 实际会在 30MWh以上, 植物生长基本不受影响。 与此同时管状光伏发电组件 下方的农作物也基本不会受到影响。 该管状光伏电池组件阵列的各组件之间还可以布置 散射勾光装置 304,该散射勾光装置 304可以根据农作物需要选择散射勾光颜色, 以利于 植物生长。 如此布置不仅解决了光伏发电因占用大面积土地, 发电成本高的问题; 另外 还为不需强烈光照的植物提供了有力的生长条件。
另一实施例中, 该管状光伏发电组件阵列还可倾斜一定角度布置于种植区域上方, 优选地, 在北半球南低北高布置, 倾斜角度为当地维度。 进一步地, 所述管状光伏发电 组件阵列还可布置于温室大棚或动物养殖地面的上方, 且其支撑结构的高度不低于植物 种植以及生长、 动物养殖或人类正常劳作所需的最低高度; 在获得太阳光发电的同时, 提供动植物生长所需光照。
本发明实施例 3
图 4为管状光伏发电组件阵列应用实施例 3-房屋及院落应用示意图。 如图 4所示, 所述房屋及院落包括房屋 400、休闲区 407和栅栏 408; 其中房屋 400上布置具有倾斜角 度布置的管状光伏发电组件 411〜管状光伏发电组件 414; 所述管状光伏发电组件阵列除 了布置于建筑采光屋顶外, 还可布置于建筑向阳受光墙体, 保证建筑适量采光的同时, 获得额外光伏发电量。所述栅栏 408为垂直地面布置的管状光伏发电组件 421〜管状光伏 发电组件 424;进一步地,所述栅栏 408还可为与地面平行布置的管状光伏发电组件 431〜 管状光伏发电组件 434,所述管状光伏发电组件 431与其相邻的管状光伏发电组件之间布 置有散射勾光装置 404,可以将入射至管状光伏发电组件下方或后方区域的太阳光均勾散 射。 该栅栏 408还可以为围挡或围墙; 所述的管状光伏发电组件可以静止或绕其中心轴 旋转跟踪太阳光, 以获得更多的光伏发电量; 休闲区 407上同样可以布置管状光伏发电 组件阵列。 需要说明的是: 所述管状光伏发电组件阵列布置于农业、 工业、 生活或生态等需要 减少太阳自然辐照强度的区域。 具体地, 所述阵列还可以布置于需要降低风速或者降低 沙尘的区域, 在获得光伏发电的同时, 减小风速, 进一步减少沙尘对生态环境的影响; 所述管状光伏发电组件阵列布置于地表或地下的输油或输气管线上方, 为输油或输气管 线的保温或加压提供分布式电源; 所述管状光伏发电组件阵列布置于靠近电动车充电站 的道路上方, 能够经济方便地给电动车充电站补充电能; 所述管状光伏发电组件阵列布 置于泳池、 天然浴场、 操场、 球场、 广场、 码头、 车站、 体育场、 展馆等建筑的上部空 间, 且其安装高度不低于所述建筑正常使用的最低高度; 在满足正常使用的前提下, 可 防止过强光线晒伤, 不仅可以进行光伏发电, 还可为人们的出行和健康带来便利条件。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本发明可以有 许多变化。 因此, 所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要 求书所涵盖的范围之内。 本发明所要求保护的范围仅由所述的权利要求书进行限定。

Claims

权利 要 求
1. 一种管状光伏发电组件的应用方法, 其特征在于, 所述方法利用若干管状光伏发 电组件形成的阵列实施太阳光分层利用, 其中管状光伏发电组件接收入射至管状光伏发 电组件的太阳光, 其余太阳光线通过管状光伏发电组件阵列的间隙到达管状光伏发电组 件阵列的后方区域或下方区域, 以减少光照或继续实施采光利用。
2. 根据权利要求 1所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述管 状光伏发电组件采用玻璃管进行封装。
3. 根据权利要求 1所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述管 状光伏发电组件的长度超过 2.5米。
4. 根据权利要求 3所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述管 状光伏发电组件的长度超过 5米。
5. 根据权利要求 2所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述玻 璃管直径范围为 30毫米〜 180毫米。
6. 根据权利要求 5所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述玻 璃管直径范围为 50毫米〜 120毫米。
7. 根据权利要求 1所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述管 状光伏发电组件为平板光伏模组或聚光光伏模组。
8. 根据权利要求 1所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述阵 列中各管状光伏发电组件之间的间隙尺寸根据所述阵列后方区域或下方区域的采光需求 进行调整。
9. 根据权利要求 8所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述阵 列中各管状光伏发电组件之间的间隙处布置散射勾光装置。
10. 根据权利要求 9所述的一种管状光伏发电组件的应用方法,其特征在于,所述散 射勾光装置根据需要选择散射勾光颜色。
11. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于建筑采光屋顶或建筑受光墙体。
12. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于动物养殖、 植物种植地面上方或温室大棚上方, 所述管状光 伏发电组件阵列还包括支撑结构, 且所述支撑结构高度不低于动物养殖、 植物种植生长 或人类正常劳作所需的最低高度。
13. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于农业、 工业或生活中需要减少自然辐照强度的区域。
14. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于需要降低辐照强度并降低风速的区域。
15. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于地表或地下的输油或输气管线上方。
16. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于道路上方, 且其安装高度不低于道路正常使用的最低高度。
17. 根据权利要求 16所述的一种管状光伏发电组件的应用方法, 其特征在于, 所述 管状光伏发电组件阵列布置于靠近电动车充电站的道路上方。
18. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列作为栅栏、 围挡或围墙使用。
19. 根据权利要求 1所述的一种管状光伏发电组件的应用方法,其特征在于,所述管 状光伏发电组件阵列布置于泳池、 天然浴场、 操场、 球场、 广场、 码头、 车站、 体育场、 展馆的上部空间, 且其安装高度不低于正常使用的最低高度。
PCT/CN2013/085662 2013-05-08 2013-10-22 一种管状光伏发电组件的应用方法 WO2014180098A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310167224.7 2013-05-08
CN201310167224.7A CN103456816B (zh) 2013-05-08 2013-05-08 一种管状光伏发电组件的应用方法

Publications (1)

Publication Number Publication Date
WO2014180098A1 true WO2014180098A1 (zh) 2014-11-13

Family

ID=49738985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085662 WO2014180098A1 (zh) 2013-05-08 2013-10-22 一种管状光伏发电组件的应用方法

Country Status (2)

Country Link
CN (1) CN103456816B (zh)
WO (1) WO2014180098A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750119A (zh) * 2013-12-31 2015-07-01 邱丽琴 一种农田轨基太阳能装置
CN104300022A (zh) * 2014-08-18 2015-01-21 杭州慈源科技有限公司 双面发电太阳能电池组件
CN107291107A (zh) * 2017-08-15 2017-10-24 河南福拓太科机电安装工程有限公司 斜单轴式光伏廊道

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080034684A1 (en) * 2006-07-18 2008-02-14 Morris Benedict G Building component
US20110030285A1 (en) * 2009-08-06 2011-02-10 Wattlots Llc Open-air parking shelter with photovoltaic elements and improved airflow characteristics
CN102099930A (zh) * 2008-05-16 2011-06-15 坦索尔能源有限责任公司 太阳能电池阵列支承方法和系统
CN102177591A (zh) * 2008-09-04 2011-09-07 摩根阳光公司 用于聚光太阳能板的交错开的光收集器
CN203218300U (zh) * 2013-04-28 2013-09-25 刘庆云 一种管状聚光光伏电池组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080034684A1 (en) * 2006-07-18 2008-02-14 Morris Benedict G Building component
CN102099930A (zh) * 2008-05-16 2011-06-15 坦索尔能源有限责任公司 太阳能电池阵列支承方法和系统
CN102177591A (zh) * 2008-09-04 2011-09-07 摩根阳光公司 用于聚光太阳能板的交错开的光收集器
US20110030285A1 (en) * 2009-08-06 2011-02-10 Wattlots Llc Open-air parking shelter with photovoltaic elements and improved airflow characteristics
CN203218300U (zh) * 2013-04-28 2013-09-25 刘庆云 一种管状聚光光伏电池组件

Also Published As

Publication number Publication date
CN103456816A (zh) 2013-12-18
CN103456816B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
US7557292B2 (en) Modular shade system with solar tracking panels
US10404206B2 (en) Grid assembly intelligent photovoltaic power generation system
TWI643447B (zh) 一種組合柵式智慧光伏發電系統
KR20140106649A (ko) 낮은 바람 저항 자가 밸러스팅 광발전 모듈 장착 시스템
CN116058205A (zh) 利用柔性光伏板和匀光板组合的智能大棚及其运行方法
WO2014009541A2 (en) Solar panel array
WO2014180098A1 (zh) 一种管状光伏发电组件的应用方法
KR101131571B1 (ko) 투광량 조절 태양 전지 모듈 및 투광량 조절 시스템
TWI708401B (zh) 一種透光性太陽能光電板的發電系統
CZ2020617A3 (cs) Prostorová struktura fotovoltaického článku nebo koncentrátoru slunečního záření
WO2023116506A1 (zh) 一种智能型光伏玻璃温室及其运行方法和应用
CN202095331U (zh) 等腰三角顶光伏大棚
CN202095329U (zh) 等腰顶连栋光伏大棚
CN201637869U (zh) 一种透镜及太阳能设备
CN102986477B (zh) 一种农业大棚的复合利用方法
CN203708185U (zh) 降低太阳能发电系统热岛效应的装置
CN113078874A (zh) 一种考虑清洁能源的发电优化方法
CN202095332U (zh) 平面顶光伏大棚
JP2020184987A (ja) ソーラーシェアリングシステム
CN203217382U (zh) 一种自动转向定位的太阳能电池装置
Siedliska Photovoltaics–the present and the future
CN205694625U (zh) 砖墙体日光温室
JP2008291455A (ja) 建造物の壁面等に取り付ける太陽光利用機器
CN206563439U (zh) 一种利用反射叠加原理的住宅组团太阳能利用装置
Martín Coto Review of the Different Building-Integrated Solar Technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884244

Country of ref document: EP

Kind code of ref document: A1