WO2014180006A1 - 参数优化方法、装置和通信系统 - Google Patents

参数优化方法、装置和通信系统 Download PDF

Info

Publication number
WO2014180006A1
WO2014180006A1 PCT/CN2013/075519 CN2013075519W WO2014180006A1 WO 2014180006 A1 WO2014180006 A1 WO 2014180006A1 CN 2013075519 W CN2013075519 W CN 2013075519W WO 2014180006 A1 WO2014180006 A1 WO 2014180006A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
domain value
detection result
cell
information
Prior art date
Application number
PCT/CN2013/075519
Other languages
English (en)
French (fr)
Inventor
李兆俊
汪巍崴
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/CN2013/075519 priority Critical patent/WO2014180006A1/zh
Priority to CN201380071383.5A priority patent/CN104937981B/zh
Publication of WO2014180006A1 publication Critical patent/WO2014180006A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications, and in particular, to a parameter optimization method, apparatus, and communication system. Background technique
  • the time value plays an important role in the handover failure ('switching too late', 'switching too early' and 'switching to the wrong cell') detection mechanism.
  • Different time values are used in the failure detection mechanism after the RRC (Radio Resource Control) link re-establishment and the failure detection mechanism after the RRC link is newly created. In both mechanisms, the time value is used to compare against the pre-configured domain value (Tstore_UE_cntxt).
  • the pre-configured domain value (Tstore_UE_cntxt) indicates the minimum time interval expected for two consecutive handovers of a user terminal in the same cell.
  • the mobile robust optimization MRO may be misjudged. .
  • the embodiment of the invention provides a parameter optimization method, a device and a communication system.
  • the inter-base station interaction domain value and the detection result can be used to adjust the misconfigured domain value to solve the problem of misjudgment.
  • a parameter optimization method comprising: receiving, by a first base station, a handover report sent by a second base station; wherein the handover report includes a reason why the second base station detects a link failure The second domain value and the test result used;
  • the first base station is the first based on the detection result of the first base station and the detection result of the second base station
  • the first domain value used by the base station is processed accordingly.
  • a parameter optimization method comprising: The second base station detects the cause of the link failure according to the received link failure indication message; and sends a handover report to the first base station when the reason for detecting the link failure is that the handover is too early or the handover to the wrong cell; the handover report The second domain value and the detection result used when the second base station detects the cause of the link failure.
  • a parameter optimization apparatus comprising: a first receiving unit, configured to receive a handover report sent by a second base station; wherein the handover report includes the 2 the second domain value and the detection result used by the base station when detecting the cause of the link failure;
  • a first detecting unit configured to detect a link failure of the first base station by using a first domain value of the first base station, to obtain a detection result of the first base station
  • the first processing unit is configured to perform corresponding processing on the first domain value used by the first base station according to the detection result of the first base station and the detection result of the second base station.
  • a parameter optimization apparatus includes: a second detecting unit, configured to detect a cause of a link failure according to the received link failure indication message;
  • a second sending unit configured to send a handover report to the first base station when the detection result is that the handover is too early or the handover to the wrong cell; the handover report includes the reason why the second base station detects the link failure The second field value and test result used.
  • a base station comprising the apparatus of the third aspect of the embodiments of the present invention.
  • a base station comprising the apparatus of the fourth aspect of the embodiments of the present invention.
  • a communication system including a terminal device, wherein the system further includes the base station according to the fifth aspect and the sixth aspect of the embodiments of the present invention.
  • Embodiments of the present invention also provide a computer readable program, wherein when the program is executed in a parameter optimization device or a base station, the program causes a computer to execute the parameter optimization method in the parameter optimization device or base station.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the parameter optimization method described above in a parameter optimization device or a base station.
  • the beneficial effects of the embodiment of the present invention are: through the interaction domain value and the detection result between the first base station and the second base station,
  • the misconfigured domain values can be adjusted to solve the problem of misjudgment, thereby obtaining more accurate mobile robustness optimization and improving network performance.
  • FIG. 1A to FIG. 1C are schematic diagrams of a typical two consecutive switching occurrences
  • Figure 1D is a flow chart of a failure detection method in the existing mechanism
  • FIG. 2A is a flowchart of a parameter optimization method according to Embodiment 1 of the present invention.
  • Figure 2B is a flow chart of step 203 of Figure 2A;
  • Embodiment 3 is a flowchart of a parameter optimization method according to Embodiment 2 of the present invention.
  • Figure 4 is a block diagram showing a configuration of a parameter optimization apparatus according to a fifth embodiment of the present invention.
  • Figure 5 is a block diagram showing a configuration of a parameter optimization apparatus according to a sixth embodiment of the present invention.
  • FIG. 6 is a flowchart of a parameter optimization method according to Embodiment 10 of the present invention.
  • Fig. 7 is a flow chart showing the parameter optimization method of the eleventh embodiment of the present invention. detailed description
  • FIG. 1A to 1C are schematic diagrams of a typical two-switching scenario.
  • the terminal device is first successfully switched from the macro cell (Mcell) A to the Pico cell B (first handover), and then switched out of the Pico cell B again (second Sub-switching) The link failed before.
  • MRO Mobility Robustness Optimization
  • Pico cell B performs mobile robustness optimization on the link failure after receiving the radio link failure indication (RLF Indication) message (MRO).
  • RLF Indication radio link failure indication
  • MRO Mobility Robustness Optimization
  • the link failure is associated with the first handover, thereby determining that the link failure is 'switching too early' or 'Switch to the wrong cell'.
  • the link failure is related to the second switch and should be judged as 'switch too late'.
  • FIG. 1A shows the scenario shown in FIG. 1A as an example to describe the failure detection method in the existing mechanism.
  • FIG. 1D is a flow chart of the failure detection method in the existing mechanism.
  • the method includes the following steps:
  • the base station A sends a handover command (Handover Command) to the terminal device UE (see step 101); the UE successfully switches to the base station B (see step 102); the UE fails to generate a radio link ( RLF), at this time, the time from when the base station A sends the handover command to the UE to the RLF of the UE is T1 (see step 103);
  • Handover Command handover command
  • RLF radio link
  • the UE performs the connection re-establishment or the connection is successfully established.
  • the cell is re-established or newly established as the cell of the base station A (see step 104), and receives the RLF report (Report) sent by the UE, where the RLF report includes the time T1 (see step 105).
  • the base station A sends an RLF indication (Indication) message to the base station B, the RLF indication message includes the RLF report (see step 106); the base station B detects the link failure reason (see step 107); When switching to the wrong cell early, send a handover report message to base station A (see step 108) and correct the error by base station A (see step 109); when the link failure reason is too late, the base station B corrects Error (see step 110).
  • step 107 the base station B compares its domain value (T, such as Tstore_UE_cntxt) with T1.
  • T domain value
  • Tstore_UE_cntxt its domain value
  • T1 may always be less than T, so that the cause of the link failure is always determined to be too early to switch or to switch to the wrong cell. . If the real cause of the link failure at this time is that the handover is too late, then the existing mechanism will lead to an erroneous conclusion.
  • an embodiment of the present invention provides a parameter optimization method, apparatus, and communication system, which are capable of a preset domain.
  • the values are optimized to avoid false positives caused by improper domain values, thereby obtaining more accurate mobile robustness optimization and improving network performance.
  • the parameter optimization method of the embodiment of the present invention will be described below by taking the MRO detection process as an example with reference to the accompanying drawings. However, the above is only an embodiment of the present invention, and is applicable to scenarios involving parameter optimization.
  • the first base station, the second base station, and the third base station are involved.
  • the base stations participating in the MRO failure detection and parameter optimization are the first base station and the second base station.
  • the first base station is a base station that causes a link failure and/or a base station that corrects a link failure and/or a base station that receives a handover report.
  • the second base station is a base station serving the terminal device before the failure of the terminal device link and/or a base station transmitting a handover report message and/or a base station receiving an RLF indication message.
  • the third base station is a base station that performs a link re-establishment attempt after the link device fails, or successfully re-establishes, or newly establishes a base station and/or transmits an RLF indication message.
  • the first base station and/or the second base station and/or the third base station may be different base stations or may be the same base station.
  • Step 201 A first base station receives a handover report sent by a second base station; where the handover report includes a second domain value used by the second base station to detect a cause of a terminal device link failure. And test results;
  • the detection result is also referred to as a failure identification result
  • Each of the base stations may correspond to a domain value, which may be pre-set by a functional entity on the network side, such as an Operation Administration and Maintenance (OAM) entity.
  • OAM Operation Administration and Maintenance
  • the detection result may include switching too early or switching. To the wrong cell; or it can be too late to switch;
  • the domain value used in detecting the cause of the link failure is a time domain value related to detecting a link failure, and the domain value is represented as Tstore_UE_cntxt, but is not limited to this representation.
  • Step 202 Detect a cause of the link failure, and obtain a detection result of the first base station.
  • the first base station can detect the cause of the link failure by using the first domain value corresponding to the first base station, and can combine other available information, such as the measurement report reported by the UE, the UE motion speed, Information such as QoS requirements to detect the cause of the link failure is similar to the existing mechanism and will not be described here.
  • Step 203 The first base station performs corresponding processing on the first domain value of the first base station according to the detection result of the first base station and the detection result of the second base station.
  • the first base station can perform the corresponding processing on the first domain value in combination with the detection result of the first base station and the detection result of the second base station, thereby avoiding the failure misjudgment caused by the improper domain value.
  • the first base station may perform corresponding processing on the first domain value of the first base station according to the detection result of the first base station and the correctness or error of the detection result of the second base station. . Processing can be performed in the manner as shown in Fig. 2B.
  • step 203 includes:
  • Step 203a Determine the correctness or error of the detection result of the first base station and the detection result of the second base station; Step 203b, perform corresponding processing on the first domain value of the first base station according to the determined result.
  • the first base station obtains the detection result of one base station 1 every time after receiving the handover report of the second base station (see steps 201 and 202), and then the first base station determines the detection result of the first base station and the second base station. Correct or not (see step 203a); Finally, the subsequent processing is performed based on the judgment of the correctness of the two detection results (see step 203b).
  • the detection result of the second base station and the first base station may be the detection result of the second base station currently received by the first base station and the detection result of the first base station currently obtained by itself;
  • the first base station can determine the correctness of the detection result according to the currently received and currently obtained detection result, and other available information, such as related historical information, and is similar to the existing mechanism, and is not described herein again; Ways:
  • the first base station After receiving the handover report of the second base station, the first base station obtains the detection result of one base station 1 by itself, and then determines the correct detection result of the first base station and the second base station by using statistical information for a period of time. Otherwise (see step 203a), the subsequent processing is performed (see step 203b).
  • the detection result of the second base station and the detection result of the first base station are detection results received within a predetermined time and obtained within a predetermined time, and the detection result may be one or more;
  • the first base station may be based on the detection result of the second base station received within the predetermined time and the detection result (one or more) of the first base station obtained within the predetermined time, and Other available information, such as related historical information, to determine the correctness of the test results, similar to the existing mechanism, will not be described here.
  • step 203b when the detection result of the first base station is correct and the detection result of the second base station is incorrect, the first domain value is kept unchanged; the detection result of the first base station is incorrect and the detection result of the second base station is correct.
  • the first base station adjusts the first domain value according to the second domain value; the detection result of the first base station and the second base station When the detection results are all wrong, the first base station adjusts the first domain value.
  • the method may further include the step 204: returning corresponding information to the second base station;
  • the information includes the correct detection result and the used domain value; or the information includes the adjusted first domain value;
  • the detection result of the first base station when the detection result of the first base station is correct, the detection result of the first base station and the first domain value used are returned; when the detection result of the second base station is correct, the detection result of the second base station is returned and used.
  • the second domain value when the authentication results of the first base station and the second base station are both incorrect, the adjusted first domain value is returned.
  • the second base station performs corresponding processing on the second domain value according to the information returned by the first base station to avoid failure misjudgment caused by improper setting of the domain value.
  • the step 204 is an optional step, shown by a dashed box. For example, when the detection result of the second base station is correct, the step may not be performed.
  • step 204 may be performed in the following manner, but is not limited to the following manner: For example, when the first manner is used to determine the correctness of the detection result in step 203a, step 204 may be completed in step 203a or 203b. Execution is performed; or it is completed in step 203b, and then step 204 is performed after a predetermined time elapses.
  • step 204 may be performed after step 203a or 203b is completed.
  • the first base station may carry the information by using a HO Report Acknowledgement message, but is not limited to the above message, and any other message may be used to notify the second base station.
  • the first base station can perform corresponding processing on the first domain value in combination with the detection result of the first base station and the detection result of the second base station, and return corresponding information to the second base station, thereby avoiding the domain. Misjudgment of failure due to improper value, resulting in more accurate mobile robust optimization and improved network performance.
  • Step 301 The second base station detects a cause of the link failure according to the received link failure indication message.
  • the second base station can use the second base station to be used.
  • the information of the second domain value is used to detect the cause of the link failure.
  • other available information such as the measurement report reported by the UE, the UE motion speed, and the QoS requirement are used to detect the link failure. The reason is similar to the existing mechanism and will not be described here.
  • Step 302 when detecting that the link failure is caused by the handover being too early or switching to the wrong cell, sending a handover report to the first base station; wherein the handover report (HO Report) includes the second base station detecting the link failure The reason for using the 2nd field value and the test result.
  • step 301 the second domain value corresponding to the second base station is used to detect the cause of the failure of the terminal device link.
  • the detection method is as described in step 107 of FIG. 1D, and details are not described herein again.
  • the handover report can be sent to the first base station, so that the first base station combines the first base station and the first base station. 2
  • the detection result of the base station is processed correspondingly to the first domain value to obtain an appropriate first domain value.
  • the method further includes:
  • Step 303 Receive information returned by the first base station, where the information includes a correct link failure cause detection result and a used domain value; or, the adjusted first domain value used by the first base station;
  • the first base station may carry the information by using a HO Report Acknowledgement message, but is not limited to the above message, and any other message may be used to notify the second base station.
  • Step 304 Perform corresponding processing on the second domain value according to the information
  • the second base station when the information includes the correct detection result and the used domain value, when the correct detection result is the detection result of the second base station, the second base station keeps the second domain value unchanged; When the correct detection result is the detection result of the first base station, the second base station adjusts the second domain value according to the first domain value used by the first base station; and when the information includes the adjusted first domain value, The second base station adjusts the second domain value based on the first domain value in the information.
  • steps 303 and 304 are optional steps.
  • the reason why the link failure is detected in step 301 is that the second base station can also adjust the configuration of the domain value when the handover is too late, which is similar to the existing mechanism, and is not described here.
  • the second base station can also process the second domain value according to the information returned by the first base station, thereby avoiding the misjudgment caused by the improper domain value, thereby obtaining more accurate mobile robust optimization. And improve network performance.
  • the configuration of the interaction domain value (Tstore_UE_cntx) between the base stations (the first base station and the second base station) that is allowed to participate in the failure detection can avoid the misjudgment of the failure of each base station due to the improper domain value, thereby obtaining more accurate Mobile robust optimization and improved network performance.
  • Embodiment 3 of the present invention also provides a parameter optimization method.
  • the parameter optimization method according to the first embodiment differs from the first embodiment in that the first domain value and the second domain value are domain values corresponding to information related to the terminal and/or the cell.
  • the information related to the terminal includes one or more of the following information:
  • terminal equipment speed (relative to the cell scale), such as slow, medium or fast;
  • QoS quality of service
  • the information related to the cell includes one or more of the following information:
  • Cell Pair information such as cell A and cell B
  • the cell pair and handover direction such as handover from the cell A to the cell B, or from the cell B to the cell A.
  • the information related to the terminal and/or the cell may also be combined with each other, such as the speed of the terminal device combined with the cell size, that is, the slow user in the small cell, and the like.
  • the corresponding domain value may be set corresponding to different terminal and/or cell-related type information.
  • the network side entity uses the domain used to detect the cause of the link failure.
  • the value may be configured as one or more for the terminal and/or cell related information. .
  • the handover report transmitted by the second base station to the first base station may include indication information of the terminal and/or the cell in addition to the detection result of the second base station and the second domain value.
  • the second domain value is domain value information corresponding to information related to the terminal and/or the cell;
  • the information returned by the first base station to the second base station may include information related to the terminal and/or the cell in addition to the correct detection result, the used field value, or the adjusted first domain value. Instructing information, where the first domain value or the second domain value is a domain value corresponding to information related to the terminal and/or the cell;
  • the first base station When the first base station detects the cause of the link failure, it can detect based on its domain value and related information related to the terminal or the cell.
  • Example 1 The differences between the third embodiment and the first embodiment will be described in detail below with reference to FIG. For the same as in Example 1, reference can be made to Example 1.
  • the difference from the first embodiment is that the handover report includes a second domain value used by the second base station to detect a cause of a failure of the terminal device link, a detection result, and a terminal corresponding to the second domain value. And/or indication information of the cell related information.
  • the first base station may detect the cause of the link failure by using the available information, for example, the available information includes the first domain value, Further, information related to the terminal and/or the cell corresponding to the first domain value may be included.
  • returning the corresponding information to the second base station includes: a correct detection result, a used domain value, and indication information of the terminal and/or the cell-related information corresponding to the used domain value.
  • the indication information including the adjusted first domain value and information related to the terminal and/or the cell corresponding to the first domain value.
  • the indication information may be identification information corresponding to information related to the terminal and/or the cell, such as an ID.
  • Embodiment 4 of the present invention also provides a parameter optimization method.
  • the parameter optimization method according to the second embodiment is different from the second embodiment in that the first domain value and the second domain value are domain values corresponding to information related to the terminal and/or the cell.
  • the difference from the second embodiment is that, when the second base station detects the cause of the link failure of the terminal device, the second base station can detect the cause of the link failure by using the available information, for example, the available information includes
  • the available information includes
  • the second domain value may further include information related to the terminal and/or the cell corresponding to the second domain value.
  • the difference from the second embodiment is that the handover report includes a second domain value used by the second base station to detect a cause of a failure of the terminal device link, a detection result, and a second domain value corresponding to the second domain value. Indicates information about the terminal and/or cell related information.
  • step 303 the difference from the second embodiment is that receiving the information returned by the first base station includes correct detection result, used domain value, and information about the terminal and/or the cell corresponding to the domain value. Instructions. Or the indication information including the adjusted first domain value and information related to the terminal and/or the cell corresponding to the first domain value.
  • the interaction between the first base station and the second base station is related to the terminal type and/or the cell.
  • the configuration of the associated domain value (Tst 0re _UE_ Cn t X ) enables the first base station or the second base station to obtain an appropriate domain value configuration, avoiding misjudgment caused by improper configuration of the domain value, thereby obtaining a more accurate mobile Lu Great performance and improved network performance.
  • Fig. 4 is a block diagram showing the configuration of a parameter optimizing apparatus according to a fifth embodiment of the present invention.
  • the apparatus 400 includes: a first receiving unit 401, a first detecting unit 402, and a first processing unit 402;
  • the first receiving unit 401 is configured to receive a handover report sent by the second base station, where the handover report includes a second domain value and a detection result used by the second base station to detect a cause of the link failure;
  • the first domain value of the first base station is used to detect the cause of the link failure to obtain the detection result of the first base station;
  • the first processing unit 403 is configured to detect the result of the link failure detected by the first base station and The detection result of the second base station performs corresponding processing on the first domain value of the first base station.
  • the first domain value and the second domain value are time domain values related to detecting a link failure.
  • the detection manner of the first detecting unit 402 is as described in Embodiment 1, and details are not described herein again. It can be seen from the above embodiment that the first base station can detect the cause of the link failure, and adjust the domain value according to the detection result of the second base station, so as to avoid misjudgment caused by inappropriate domain value configuration, thereby obtaining more Accurate mobile robustness optimization and improved network performance.
  • the first processing unit 403 may perform corresponding processing on the first domain value of the first base station according to the detection result of the first base station and the correctness or error of the detection result of the second base station.
  • the processing can be performed in the manner as shown in Fig. 2B.
  • the first processing unit 403 includes: a determining unit and a processing unit (not shown); wherein the determining unit is configured to determine whether the detection result of the first base station and the detection result of the second base station are correct or incorrect; The processing unit performs corresponding processing on the first domain value of the first base station according to the determined result.
  • the determining unit may determine the correctness of the detection result in the following two ways: The first way:
  • the first detecting unit 402 can obtain the detection result of the base station 1 by itself; then the processing unit determines the detection result of the first base station and the second base station. Correct or not;
  • the processing unit performs subsequent processing based on the judgment of the correctness of the two detection results.
  • the detection result of the second base station and the first base station used by the determining unit may be the first The detection result of the second base station currently received by the base station and the detection result of the first base station currently obtained by the base station; thus, the determining unit may be based on the currently received and currently obtained detection result, and other available information, such as related historical information, etc. To determine the correctness of the test results, similar to the existing mechanism, will not be repeated here; the second way:
  • the first receiving unit 401 receives the switching report of the second base station every time for a predetermined time, and accordingly, the first detecting unit 402 obtains the detection result of the corresponding base station 1 by itself, and then the first processing unit 403 passes the predetermined
  • the statistical information of the time determines whether the detection result of the first base station and the second base station is correct or not.
  • the detection result of the second base station and the detection result of the first base station are detection results received within the predetermined time and obtained within the predetermined time, and the detection result may be one or one.
  • the determining unit may, according to the detection result of the second base station received within the predetermined time, the detection result of the first base station obtained in the predetermined time, and other available information, such as related Historical information, etc. to determine the correctness of the test results, similar to the existing mechanism, will not be repeated here.
  • the processing unit is configured to keep the first domain value unchanged when the detection result of the first base station is correct and the detection result of the second base station is incorrect; the detection result of the first base station is incorrect and When the detection result of the base station is correct, the first domain value is adjusted based on the second domain value; and when the detection result of the first base station and the detection result of the second base station are both incorrect, the first domain value is adjusted.
  • the apparatus 400 may further include a first sending unit 404. After the first processing unit 403 performs corresponding processing on the first domain value, the first sending unit 404 returns corresponding information to the second base station.
  • the information includes the correct detection result and the used domain value; or the information includes the adjusted first domain value;
  • the detection result of the first base station when the detection result of the first base station is correct, the detection result of the first base station and the first domain value used are returned; when the detection result of the second base station is correct, the detection result of the second base station is returned and used.
  • the second domain value when the authentication results of the first base station and the second base station are both incorrect, the adjusted first domain value is returned.
  • the second base station performs corresponding processing on the second domain value according to the information returned by the first base station to avoid failure misjudgment caused by improper setting of the domain value.
  • the first transmitting unit 404 is an optional component, shown in dashed boxes. For example, when the detection result of the second base station is correct, the step may not be performed.
  • the timing at which the first sending unit 404 sends the information is as described in Embodiment 1, and is not further herein. Said.
  • the interaction domain value and the detection result between the first base station and the second base station are such that the second base station adjusts the domain value based on the information fed back by the first base station to avoid inappropriate domain value configuration.
  • the misjudgment results in more accurate mobile robustness optimization and improved network performance.
  • the first domain value and the second domain value are domain values corresponding to information related to the terminal and/or the cell.
  • the handover report received by the first receiving unit 401 further includes indication information corresponding to the information related to the terminal and/or the cell; and the corresponding information returned by the first sending unit 404 to the second base station further includes Indication information corresponding to the terminal and/or cell related information.
  • the first detecting unit 403 may detect the domain value and the information related to the terminal and/or the cell corresponding to the domain value. Similar to Embodiment 3, it will not be described here.
  • Fig. 5 is a view showing the configuration of a parameter optimizing apparatus according to a sixth embodiment of the present invention.
  • the apparatus 500 includes: a second detecting unit 501, a second receiving unit 502, and a second transmitting unit 503;
  • the second detecting unit 501 is configured to detect the cause of the link failure according to the received link failure report; the specific detection process is as described in Embodiment 2, and details are not described herein again;
  • the second sending unit 502 is configured to: when the reason for detecting the link failure is that the handover is too early or to switch to the wrong cell, send a handover report to the first base station; where the handover report is used when detecting the cause of the link failure. 2nd field value and test result.
  • the apparatus 500 may further include a second receiving unit 503, configured to receive a link failure indication message sent by the third base station (which may include a link failure report, or may not include a link failure report);
  • the second sending unit 502 sends the handover report to the first base station, the first detection result is compared with the detection result thereof, and the first domain value is performed. Feedback related information after processing.
  • the apparatus 500 further includes a third receiving unit 504 and a second processing unit 505.
  • the third receiving unit 504 is configured to receive information returned by the first base station, where the information includes correct link failure cause detection.
  • the second processing unit 505 is configured to process the second domain value accordingly according to the information.
  • the second processing unit 505 is configured to keep the second domain value unchanged when the correct detection result is the detection result of the second base station; and the correct detection result is the detection result of the first base station, Or, when the adjusted first domain value is received, the second domain value is adjusted based on the first domain value in the information.
  • the second processing unit 505 can also adjust the configuration of the domain value when the second detection unit 501 detects that the link is too late, which is similar to the existing mechanism, and is not described here.
  • the second base station can adjust the domain value based on the information fed back by the first base station to avoid misjudgment caused by inappropriate domain value configuration, thereby obtaining more accurate mobile robust optimization and improving. Network performance.
  • the first domain value and the second domain value are domain values corresponding to information related to the terminal and/or the cell, as described in Embodiment 4.
  • the handover report sent by the second sending unit 502 further includes indication information about the terminal device and/or the cell corresponding to the second domain value.
  • the information received by the third receiving unit 504 further includes the first domain value or the second domain.
  • the second detecting unit 503 detects based on the second domain value and information related to the terminal and/or the cell corresponding to the second domain value.
  • the second processing unit 505 is configured to, based on the first domain value and the terminal and the first domain value, when the correct detection result is the detection result of the first base station or the first domain value after the adjustment is received / or indication information of the cell related information to adjust the second domain value.
  • the first base station or the second base station can be configured by the configuration of the domain value (T S t 0re _UE_ C nt X ) associated with the terminal type and/or the cell type by the first base station and the second base station.
  • the base station obtains the configuration of the appropriate domain value to avoid misjudgment caused by improper configuration of the domain value, thereby obtaining more accurate mobile robustness optimization and improving network performance.
  • Embodiment 7 of the present invention provides a base station, corresponding to a first base station on a network side, including the apparatus described in Embodiment 5.
  • Embodiment 8 of the present invention provides a base station, corresponding to a second base station on the network side, including the apparatus described in Embodiment 6. Further, the base stations described in Embodiment 7 and Embodiment 8 can be used in combination, and the components of the first base station and the second base station can be provided at the same time.
  • Example 9 An embodiment of the present invention provides a communication system, including a terminal device, where the system may further include an embodiment.
  • a third base station can also be included.
  • the third base station may also be the first base station.
  • Fig. 6 is a flow chart showing the parameter optimization method of the embodiment 10 of the present invention. As shown in FIG. 6, the method includes: Steps 601 to 607 are similar to the steps 101 to 107 shown in FIG. 1D, and details are not described herein again.
  • the step 604 reconstructs or newly establishes a connected cell as a cell of the third base station.
  • step 607 the second base station performs the detection by using the available information including its domain value, as described in Embodiment 2, and details are not described herein again.
  • Step 608 When the detection result is that the handover is too early or the handover to the wrong cell, the second base station sends a handover report to the first base station.
  • the second domain value and the detection result are included in the handover report.
  • Step 609 The first base station detects a cause of the link failure.
  • the first base station performs the detection by using the available information, including its domain value, as described in Embodiment 1, and details are not described herein again.
  • Step 610 Process the first domain value according to the detection result of the first base station and the detection result of the second base station;
  • Step 611 Send a handover report acknowledgement (Handover eportAcknowledgement) message to the second base station;
  • the handover report acknowledgement message may include the correct detection result and the used domain value, or the adjusted first domain value, as described in Embodiment 1, and details are not described herein again.
  • Step 612 After receiving the handover report acknowledgement message, the second base station adjusts the second domain value.
  • the specific processing procedure is as described in Embodiment 2, and details are not described herein again.
  • step 607 The reason for detecting the link failure in step 607 is that the handover is too late, and the processing is similar to the existing mechanism, and details are not described herein again.
  • the first field node can be configured by the interaction field value between the first base station and the second base station.
  • the base station and the second base station obtain appropriate domain values to avoid false positives caused by inappropriate domain values.
  • Fig. 7 is a flow chart showing the parameter optimization method of the eleventh embodiment of the present invention. Based on the embodiment 10, the difference between the embodiment and the embodiment 10 is that the information related to the terminal and/or the cell is considered, similar to the embodiment 3 and the embodiment 4, and the same content as that of the embodiment 10 is omitted. Explain the differences.
  • Step 704 Reestablish or newly establish a connected cell as a cell of the third base station.
  • step 707 different from step 607, when detecting the cause of the link failure, the available information, that is, the information related to the terminal and/or the cell, is considered, for example, the second base station may be based on the terminal and/or The cell-related information is used to select the corresponding domain value, and then the domain value is used to determine the cause of the link failure, as described in Embodiment 3, and details are not described herein again.
  • step 708 the difference from step 608 is that the indication information of the terminal and/or the cell is also included in the handover report.
  • step 709 the difference from step 609 is that information related to the terminal and/or the cell is also considered when detecting the cause of the link failure.
  • Step 710 is similar to step 610, and details are not described herein again.
  • step 711 the difference from step 611 is that the handover report notification further includes indication information about the terminal and/or the cell.
  • the second base station may process the domain value corresponding to the information related to the terminal and/or the cell.
  • the first base station and the second base station can obtain the appropriate domain value by the domain value corresponding to the type information related to the terminal and/or the cell between the first base station and the second base station, thereby avoiding inappropriateness.
  • the misjudgment caused by the domain value can be seen from the above embodiment.
  • Embodiments of the present invention also provide a computer readable program, wherein the program causes a computer to execute Embodiments 2, 3, 4 in the parameter optimization device or base station when the program is executed in a parameter optimization device or a base station The parameter optimization method described in 5.
  • Embodiments of the present invention also provide a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform the parameter optimization method described in Embodiments 2, 3, and 4 in a parameter optimization device or a base station.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参数优化方法、装置和通信系统。该方法包括:第1基站接收第2基站发送的切换报告;其中该切换报告包括该第2基站在检测链路失败的原因时使用的第2域值和检测结果;使用该第1基站的第1域值检测链路失败的原因,以获得该第1基站的检测结果;该第1基站根据该第1基站的检测结果和第2基站的检测结果对该第1基站使用的第1域值进行相应的处理。通过本发明实施例,该第1基站和第2基站可交互域值的配置,可避免域值不当而导致的失败误判,从而获得更精确的移动鲁棒性优化,并提升网络性能。

Description

参数优化方法、 装置和通信系统 技术领域
本发明涉及通信领域, 特别涉及一种参数优化方法、 装置和通信系统。 背景技术
基于现有的第三代合作伙伴计划(3GPP)标准,时间值在切换失败( '切换太晚', '切换太早' 及 '切换到错误小区') 检测机制中起着重要作用。 不同的时间值被使 用在无线资源控制(RRC, Radio Resource Control)链接重建后失败检测机制和 RRC 链接新建后的失败检测机制中。在这两种机制中, 时间值都被用于与预先配置的域值 (Tstore_UE_cntxt) 做比较。 该预先配置的域值 (Tstore_UE_cntxt) 指示出在同一小 区内针对一个用户终端的连续两次切换所期待的最小时间间隔。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
由于所期待的连续两次切换的时间间隔可能随一些因素而变化, 例如随小区大 小, 终端速度或终端运行轨道等因素变化, 如果该域值配置不当, 可能造成移动鲁棒 性优化 MRO误判。
本发明实施例提供一种参数优化方法、装置和通信系统,通过基站间交互域值和 检测结果, 可对配置不当的域值进行调整, 解决误判的问题。
根据本发明实施例的第一方面, 提供了一种参数优化方法, 该方法包括: 第 1基站接收第 2基站发送的切换报告;其中该切换报告包括该第 2基站在检测 链路失败的原因时使用的第 2域值和检测结果;
使用该第 1基站的第 1域值检测链路失败的原因,以获得该第 1基站的检测结果; 该第 1基站根据该第 1基站的检测结果和第 2基站的检测结果对该第 1基站使用 的第 1域值进行相应的处理。
根据本发明实施例的第二方面, 提供了一种参数优化方法, 该方法包括: 第 2基站根据接收到的链路失败指示消息检测链路失败的原因; 在检测到链路失败的原因是切换过早或切换到错误的小区时,向第 1基站发送切 换报告;该切换报告包括该第 2基站在检测链路失败的原因时使用的第 2域值和检测 结果。
根据本发明实施例的第三方面, 提供了一种参数优化装置, 该装置包括: 第一接收单元, 该第一接收单元用于接收第 2基站发送的切换报告; 其中该切换 报告包括该第 2基站在检测链路失败的原因时使用的第 2域值和检测结果;
第一检测单元,该第一检测单元用于使用第 1基站的第 1域值检测链路失败的原 因, 以获得该第 1基站的检测结果;
第一处理单元,该第一处理单元用于根据该第 1基站的检测结果和第 2基站的检 测结果对该第 1基站使用的第 1域值进行相应的处理。
根据本发明实施例的第四方面, 提供了一种参数优化装置, 该装置包括: 第二检测单元,该第二检测单元用于根据接收到的链路失败指示消息检测链路失 败的原因;
第二发送单元,该第二发送单元用于在检测结果是切换过早或切换到错误的小区 时, 向第 1基站发送切换报告; 该切换报告包括该第 2基站在检测链路失败的原因时 使用的第 2域值和检测结果。
根据本发明实施例的第五方面,提供了一种基站,包括本发明实施例的第三方面 所述的装置。
根据本发明实施例的第六方面,提供了一种基站,包括本发明实施例的第四方面 所述的装置。
根据本发明实施例的第七方面, 提供了一种通信系统, 包括终端设备, 其中, 该 系统还包括本发明实施例的第五方面和第六方面所述的基站。
本发明实施例还提供一种计算机可读程序,其中当在参数优化装置或基站中执行 所述程序时,所述程序使得计算机在所述参数优化装置或基站中执行上述参数优化方 法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在参数优化装置或基站中执行上述参数优化方法。
本发明实施例的有益效果在于:通过第 1基站和第 2基站间交互域值和检测结果, 可对配置不当的域值进行调整,解决误判的问题,从而获得更精确的移动鲁棒性优化, 并提升网络性能。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部 分, 用于例示本发明的实施方式, 并与文字描述一起来阐释本发明的原理。显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 在附图中: 图 1 A至图 1C是典型的连续两次切换发生的场景示意图;
图 1D是现有机制中失败检测方法流程图;
图 2A是本发明实施例 1的参数优化方法流程图;
图 2B是图 2A中步骤 203的流程图;
图 3是本发明实施例 2的参数优化方法流程图;
图 4是本发明实施例 5的参数优化装置构成图;
图 5是本发明实施例 6的参数优化装置构成图;
图 6是本发明实施例 10的参数优化方法流程图;
图 7是本发明实施例 11的参数优化方法流程图。 具体实施方式
下面结合附图对本发明的各种实施方式进行说明。 这些实施方式只是示例性的, 不是对本发明的限制。 首先通过实际的例子来分析在目前的域值配置中存在的问题。
图 1A至图 1C是典型的连续两次切换发生的场景示意图。如图 1A至图 1C所示, 终端设备首先成功地从宏小区 (Mcell) A被切换到微小区 (Pico cell) B (第一次 切换), 然后在被再次切换出 Pico cell B (第二次切换) 之前经历链接失败。 根据现 有的移动鲁棒性优化(MRO , Mobility Robustness Optimization)检测机制, Pico cell B在收到无线链路失败指示(RLF Indication)消息后, 对该链路失败进行移动鲁棒性 优化(MRO , Mobility Robustness Optimization)检测。如果在检测中使用的预先配 置的域值(TSt0re_UE_Cntxt)配置不当, 极有可能将该链接失败与第一次切换联系起 来, 从而判断该链接失败为 '切换太早' 或 '切换到错误小区'。 事实上, 该链接 失败与第二次切换有关, 应判断为 '切换太晚'。 下面以图 1A所示的场景为例来对 现有机制中失败检测方法进行说明。
图 1D是现有机制中失败检测方法流程图。 如图 1D所示, 包括以下步骤: 基站 A发送切换命令 (Handover Command) 至终端设备 UE (见步骤 101 ); 该 UE成功切换到基站 B (见步骤 102); 该 UE发生无线链路失败 (RLF), 此时, 从基 站 A向该 UE发送切换命令到该 UE发生 RLF的时间为 T1 (见步骤 103 );
该 UE进行连接重建或连接新建成功,例如,重建或新建小区为基站 A的小区(见 步骤 104), 接收该 UE发送的 RLF报告(Report), 该 RLF Report中包括时间 T1 (见 步骤 105 ); 基站 A向基站 B发送 RLF指示 (Indication) 消息, 该 RLF指示消息中 包含该 RLF报告(见步骤 106); 基站 B检测链路失败原因 (见步骤 107); 在链路失 败原因为切换过早或切换到错误的小区时,向基站 A发送切换报告消息(见步骤 108) 并由基站 A来纠正错误 (见步骤 109); 在链路失败原因为切换过晚时, 则由基站 B 纠正错误 (见步骤 110)。
在步骤 107中, 基站 B将其域值 (T, 如 Tstore_UE_cntxt) 与 T1进行比较, 在 T1大于 T时, 确定链路失败原因是切换过晚; 在 T1小于 T时, 确定切换过早或切 换到错误小区。
在图 1D所示的场景下, 如果该域值 T设置的过大, 则在步骤 107中, T1可能 总小于 T, 这样, 链路失败原因总被判断为切换过早或切换到错误的小区。 如果此时 导致链路失败的真正原因是切换太晚, 则按照现有机制则会得出错误的结论。
因此, 本发明实施例提供一种参数优化方法、装置和通信系统, 能够对预设的域 值进行优化,尽可能避免域值不当而导致的失败误判, 从而获得更精确的移动鲁棒性 优化, 并提升网络性能。 下面将结合附图、 以 MRO检测过程为例对本发明实施例的 参数优化方法进行说明。但上述仅为本发明实施例,对于涉及参数优化的场景均适用。
在下述实施例中, 涉及到第 1基站、 第 2基站和第 3基站。 其中, 参与 MRO失 败检测和参数优化的基站为第 1基站和第 2基站。其中, 该第 1基站是导致链路失败 的基站和 /或对链路失败进行纠正的基站和 /或接收切换报告的基站。 该第 2基站是在 终端设备链路失败前为该终端设备服务的基站和 /或发送切换报告消息的基站和 /或接 收 RLF指示消息的基站。 此外, 第 3基站是在终端设备发生链路失败后进行链接重 建尝试、 或重建成功、 或新建成功的基站和 /或发送 RLF指示消息的基站。 第 1基站 和 /或第 2基站和 /或第 3基站可以为不同的基站, 也可以为相同的基站。
实施例 1
图 2A是本发明实施例 1的参数优化方法流程图。 如图 2A所示, 该方法包括: 步骤 201, 第 1基站接收第 2基站发送的切换报告; 其中该切换报告包括该第 2 基站在检测终端设备链路失败的原因时使用的第 2域值和检测结果;
在本实施例中, 该检测结果也称为失败鉴定结果;
其中, 每个基站可对应一个域值, 该域值可由网络侧的功能实体, 如操作管理和 维护 ( OAM, Operation Administration and Maintenance) 实体预先酉己置, 该检测结果 可包括切换太早或切换到错误的小区; 或者还可为切换过晚;
其中, 在检测链路失败原因时使用的域值是一个与检测链路失败有关的时间域 值, 如该域值表示为 Tstore_UE_cntxt, 但不限于这种表示方式。
步骤 202, 检测链路失败的原因, 以获得该第 1基站的检测结果;
其中, 该第 1基站可使用该第 1基站对应的第 1域值来检测链路失败的原因,此 夕卜, 在检测时可结合其他可用信息如该 UE上报的测量报告、 UE运动速度、 QoS要 求等信息来检测链路失败的原因, 与现有机制类似, 此处不再赘述。
步骤 203, 该第 1基站根据第 1基站的检测结果和第 2基站的检测结果对该第 1 基站的第 1域值进行相应的处理。
由上述实施例可知,该第 1基站可结合该第 1基站的检测结果和第 2基站的检测 结果对该第 1域值进行相应的处理, 可避免域值不当而导致的失败误判, 从而获得更 精确的移动鲁棒性优化, 并提升网络性能。 在本实施例中, 在步骤 203中, 该第 1基站可根据该第 1基站的检测结果和第 2 基站的检测结果的正确或错误来对该第 1基站的第 1域值进行相应的处理。可采用如 图 2B所示的方式进行处理。
如图 2B所示, 步骤 203包括:
步骤 203a, 确定该第 1基站的检测结果和第 2基站的检测结果的正确或错误; 步骤 203b, 根据确定的结果对该第 1基站的第 1域值进行相应的处理。
在本实施例中, 可采用以下两种方式确定检测结果的正误:
第一种方式:
该第 1基站每次收到第 2基站的切换报告后就自行获得一个基站 1 的检测结果 (见步骤 201和 202), 然后该第 1基站会判定该第 1基站和第 2基站的检测结果的 正确与否 (见步骤 203a); 最后根据对两个检测结果的正确与否的判断来进行随后的 处理 (见步骤 203b)。
这种情况下, 在步骤 203a中, 该第 2基站和第 1基站的检测结果可为该第 1基 站当前接收的第 2基站的检测结果和当前自行获得的第 1基站的检测结果;
这样, 该第 1基站可根据该当前接收的和当前获得的检测结果、 以及其他可用信 息, 如相关历史信息等来确定检测结果的正误, 与现有机制类似, 此处不再赘述; 第二种方式:
该第 1基站每次收到该第 2基站的切换报告后,就自行获得一个基站 1的检测结 果,然后通过一段时间的统计信息来确定该第 1基站和该第 2基站的检测结果的正确 与否 (见步骤 203a), 最后再进行随后的处理 (见步骤 203b)。
在这种情况下,该第 2基站的检测结果和该第 1基站的检测结果为在预定时间内 接收到和在预定时间内获得的检测结果, 该检测结果可为一个或一个以上;
这种情况下, 在步骤 203a中, 该第 1基站可根据在预定时间内接收到的第 2基 站的检测结果和在预定时间内获得的第 1基站的检测结果 (一个或多个)、 以及其他 可用信息, 如相关历史信息等来确定检测结果的正误, 与现有机制类似, 此处不再赘 述。
在步骤 203b中, 在该第 1基站的检测结果正确且第 2基站的检测结果错误时, 保持该第 1域值不变; 在该第 1基站的检测结果错误且第 2基站的检测结果正确时, 该第 1基站根据该第 2域值调整该第 1域值;在该第 1基站的检测结果和第 2基站的 检测结果均错误时, 该第 1基站调整该第 1域值。
在本实施例中, 在步骤 203中, 对该第 1域值进行相应的处理后, 该方法还可包 括步骤 204: 向该第 2基站返回相应的信息;
其中, 该信息包括正确的检测结果和所用的域值; 或者该信息包括调整后的第 1 域值;
例如,在该第 1基站的检测结果正确时, 返回该第 1基站的检测结果和所用的第 1域值; 在该第 2基站的检测结果正确时, 返回该第 2基站的检测结果和所用的第 2 域值; 在该第 1基站和第 2基站的鉴定结果均错误时, 返回调整后的第 1域值。
这样,使得该第 2基站根据该第 1基站返回的信息对该第 2域值进行相应的处理, 以避免域值设置不当而导致的失败误判。
在本实施例中, 该步骤 204为可选步骤, 以虚线框示出。 例如, 在该第 2基站的 检测结果正确时, 可不执行该步骤。
在本实施例中, 步骤 204执行的时机可采用如下方式, 但不限于下述方式: 如, 在步骤 203a中采用第一种方式确定检测结果的正误时, 步骤 204可在步骤 203a或 203b完成后执行;或者在步骤 203b完成,再经过预定时间后再执行步骤 204。
如, 在步骤 203a中采用第二种方式确定检测结果的正误时, 步骤 204可在步骤 203a或 203b完成后执行。
在本实施例中, 该第 1基站可通过切换报告确认 (HO Report Acknowledgement) 消息来承载该信息, 但不限于上述消息, 也可采用其他任何消息来通知该第 2基站。
由上述实施例可知,该第 1基站可结合该第 1基站的检测结果和第 2基站的检测 结果对该第 1域值进行相应的处理, 并向第 2基站返回相应的信息, 可避免域值不当 而导致的失败误判, 从而获得更精确的移动鲁棒性优化, 并提升网络性能。
实施例 2
图 3是本发明实施例 2的参数优化方法流程图。 如图 2所示, 该方法包括: 步骤 301, 第 2基站根据接收到的链路失败指示消息检测链路失败的原因; 在本实施例中,该第 2基站可使用包括该第 2基站对应的第 2域值在内的可用信 息来检测链路失败的原因, 除了该第 2域值外, 其他可用信息如该 UE上报的测量报 告、 UE运动速度、 QoS要求等信息来检测链路失败的原因, 与现有机制类似, 此处 不再赘述。 步骤 302,, 在检测到链路失败的原因是切换过早或切换到错误的小区时, 向第 1 基站发送切换报告; 其中该切换报告 (HO Report) 包括该第 2基站在检测链路失败 的原因时使用的第 2域值和检测结果。
在本实施例中,在步骤 301中,利用该第 2基站对应的第 2域值来检测该终端设 备链路失败的原因。 检测方法如图 1D的步骤 107所述, 此处不再赘述。
由上述实施例可知,在第 2基站检测到链路失败原因是切换过早或者是切换到错 误的小区时, 可向第 1基站发送切换报告, 使得该第 1基站结合该第 1基站和第 2 基站的检测结果对第 1域值相应的处理, 以获得适当的第 1域值。
在本实施例中, 如图 3所示, 该方法还包括:
步骤 303, 接收该第 1基站返回的信息, 该信息包括正确的链路失败原因检测结 果和所用的域值; 或者, 调整后的该第 1基站所用的第 1域值;
在本实施例中, 该第 1基站可通过切换报告确认 (HO Report Acknowledgement) 消息来承载该信息, 但不限于上述消息, 也可采用其他任何消息来通知该第 2基站。
步骤 304, 根据该信息对该第 2域值进行相应地处理;
在本实施例中,在该信息中包含正确的检测结果和所用的域值时,在正确的检测 结果是第 2基站的检测结果时, 该第 2基站保持该第 2域值不变; 在正确的检测结果 是第 1基站的检测结果时, 该第 2基站根据该第 1基站所用的第 1域值来调整该第 2 域值; 在该信息包括调整后的第 1域值时, 该第 2基站根据该信息中的第 1域值调整 该第 2域值。
在本实施例中, 上述步骤 303和 304为可选步骤。
在本实施例中,在步骤 301中检测到链路失败的原因是切换过晚时, 该第 2基站 还可对其域值的配置进行调整, 与现有机制类似, 此处不再赘述。
由上述可知,该第 2基站还可根据该第 1基站返回的信息对其第 2域值进行处理, 可避免域值不当而导致的失败误判, 从而获得更精确的移动鲁棒性优化, 并提升网络 性能。
由上述可知, 允许参与失败检测的基站 (第 1基站和第 2基站) 之间交互域值 (Tstore_UE_cntx) 的配置, 可避免各基站由于域值不当而导致的失败误判, 从而获 得更精确的移动鲁棒性优化, 并提升网络性能。
此外, 在本实施例中, 允许参与失败检测的基站之间交互与终端类型和 /或小区 类型相关联的域值 (TSt0re_UE_Cntx) 的配置。 这种情况在下述实施例中进行说明。 实施例 3
本发明实施例 3还提供一种参数优化方法。基于实施例 1的参数优化方法, 与实 施例 1的不同之处在于, 该第 1域值、 第 2域值是与终端和 /或小区相关的信息对应 的域值。
在本实施例中, 该与终端相关的信息包括以下信息其中之一或一个以上:
1 ) 终端设备速度 (相对于小区尺度), 如慢速、 中速或快速;
2) 终端设备相对于小区的运行轨道, 如穿越小区中心, 或停留于小区边缘等;
3 ) 终端设备所用服务的特征, 如服务质量 (QoS) 要求;
4 ) 是否为小区扩展区域 (CRE, Ccell Range Extension) 终端;
在本实施例中, 该与小区相关的信息包括以下信息其中之一或一个以上:
1 ) 小区尺寸;
2) 小区对 (Cell Pair) 信息, 如小区 A和小区 B;
3 ) 小区对与切换方向, 如由该小区 A向小区 B切换, 或由小区 B向小区 A切 换。
在本实施例中, 上述与终端和 /或小区相关的信息还可以相互结合, 如终端设备 速度与小区尺寸相结合, 即小小区中的慢速用户, 等。
在本实施例中, 对应不同的终端和 /或小区相关的类型信息均可设置对应的域值, 这种情况下,对于一个基站,网络侧实体在配置检测链路失败的原因时所用的域值时, 可针对该与终端和 /或小区相关的信息, 将该域值配置为一个或多个。。
相应地,在第 2基站发送给该第 1基站的切换报告中, 除了包括该第 2基站的检 测结果和该第 2域值外, 还可包括与终端和 /或小区相关的信息的指示信息, 其中, 该第 2域值为与终端和 /或小区相关的信息对应的域值信息;
在该第 1基站返回给该第 2基站的信息中,除了包括正确的检测结果和所用的域 值、 或者调整后的第 1 域值外, 还可包括与终端和 /或小区相关的信息的指示信息, 其中, 该第 1域值或第 2域值为与终端和 /或小区相关的信息对应的域值;
在第 1基站检测链路失败原因时,可基于其域值和相关的与终端或小区相关的信 息来检测。
以下参照附图 2对本实施例 3与实施例 1的不同之处进行详细说明,对于与实施 例 1的相同之处可参照实施例 1。
在步骤 201中, 与实施例 1的不同在于, 该切换报告包括该第 2基站在检测终端 设备链路失败的原因时使用的第 2域值、 检测结果、 与该第 2域值对应的终端和 /或 小区相关的信息的指示信息。
在本实施例中, 在步骤 202中, 该第 1基站检测该终端设备链路失败原因时, 该 第 1基站可结合可用信息检测链路失败的原因, 如该可用信息包括第 1域值,此外还 可包括与该第 1域值对应的终端和 /或小区相关的信息。
在步骤 204中, 向该第 2基站返回相应的信息包括: 正确的检测结果、所用的域 值、 以及与该所使用的域值对应的终端和 /或小区相关的信息的指示信息。 或者包括 调整后的第 1域值、 以及与该第 1域值对应的终端和 /或小区相关的信息的指示信息。
在本实施例中, 该指示信息可为与终端和 /或小区相关的信息对应的标识信息, 如 ID。
实施例 4
本发明实施例 4还提供一种参数优化方法。基于实施例 2的参数优化方法, 与实 施例 2的不同之处在于, 该第 1域值、 第 2域值是与终端和 /或小区相关的信息对应 的域值。
以下参照附图 3对本实施例 4与实施例 2的不同之处进行详细说明,对于与实施 例 2的相同之处参照实施例 2。
在步骤 301中, 与实施例 2的不同之处在于,在该第 2基站检测该终端设备链路 失败原因时, 该第 2基站可结合可用信息检测链路失败的原因, 如该可用信息包括第 2域值, 此外还可包括与该第 2域值对应的终端和 /或小区相关的信息。
在步骤 302中, 与实施例 2的不同之处在于, 该切换报告包括该第 2基站在检测 终端设备链路失败的原因时使用的第 2域值、检测结果、与该第 2域值对应的终端和 /或小区相关的信息的指示信息。
在步骤 303中, 与实施例 2的不同之处在于,接收该第 1基站返回的信息包括正 确的检测结果、 所用的域值、 以及与该域值对应的终端和 /或小区相关的信息的指示 信息。 或者包括调整后的第 1域值、 以及与该第 1域值对应的终端和 /或小区相关的 信息的指示信息。
由上述实施例可知, 通过该第 1基站和第 2基站交互与终端类型和 /或小区相关 联的域值 (Tst0re_UE_CntX) 的配置, 可使第 1基站或第 2基站获得适当的域值的配 置, 避免该域值配置不当引起的误判, 从而获得更精确的移动鲁棒性优化, 并提升网 络性能。
实施例 5
图 4是本发明实施例 5的参数优化装置构成示意图。如图 4所示,装置 400包括: 第一接收单元 401、 第一检测单元 402、 以及第一处理单元 402; 其中,
第一接收单元 401, 用于接收第 2基站发送的切换报告; 其中该切换报告包括该 第 2基站在检测链路失败的原因时使用的第 2域值和检测结果; 第一检测单元 402 用于使用第 1基站的第 1域值检测链路失败的原因,以获得所述第 1基站的检测结果; 第一处理单元 403用于根据第 1基站检测的链路失败的原因的检测结果和第 2基站的 检测结果对该第 1基站的第 1域值进行相应的处理。
在本实施例中, 所述第 1域值和第 2域值是与检测链路失败有关的时间域值。 在本实施例中, 第一检测单元 402的检测方式如实施例 1所述, 此处不再赘述。 由上述实施例可知,第 1基站可对链路失败的原因进行检测, 并结合第 2基站的 检测结果对其域值进行调整, 以避免不适当的域值配置造成的误判, 从而获得更精确 的移动鲁棒性优化, 并提升网络性能。
在本实施例中,第一处理单元 403可根据该第 1基站的检测结果和第 2基站的检 测结果的正确或错误来对该第 1基站的第 1域值进行相应的处理。 可采用如图 2B所 示的方式进行处理。 这样, 第一处理单元 403包括: 确定单元和处理单元(图中未示 出); 其中, 该确定单元用于确定该第 1基站的检测结果和第 2基站的检测结果的正 确或错误; 该处理单元根据确定的结果对该第 1基站的第 1域值进行相应的处理。
在本实施例中, 该确定单元可采用以下两种方式确定检测结果的正误: 第一种方式:
第一接收单元 401每次收到第 2基站的切换报告后,第一检测单元 402即可自行 获得一个基站 1的检测结果;然后该处理单元确定该第 1基站和第 2基站的检测结果 的正确与否;
这样,在获得确定结果后, 该处理单元根据对两个检测结果的正确与否的判断来 进行随后的处理。
这种情况下, 该确定单元所用的该第 2基站和第 1 基站的检测结果可为该第 1 基站当前接收的第 2基站的检测结果和当前自行获得的第 1基站的检测结果; 这样, 该确定单元可根据该当前接收的和当前获得的检测结果、 以及其他可用信 息, 如相关历史信息等来确定检测结果的正误, 与现有机制类似, 此处不再赘述; 第二种方式:
在预定的时间内, 第一接收单元 401每次接收该第 2基站的切换报告, 相应地, 第一检测单元 402自行获得相应的基站 1的检测结果,然后第一处理单元 403通过该 预定的时间的统计信息 (一个或一个以上的检测结果) 来确定该第 1 基站和该第 2 基站的检测结果的正确与否。
在这种情况下,该第 2基站的检测结果和该第 1基站的检测结果为在该预定的时 间内接收到和在该预定的时间内获得的检测结果, 该检测结果可为一个或一个以上; 这种情况下,该确定单元可根据在该预定的时间内接收到的第 2基站的检测结果 和在该预定的时间内获得的第 1基站的检测结果、 以及其他可用信息, 如相关历史信 息等来确定检测结果的正误, 与现有机制类似, 此处不再赘述。
在本实施例中,该处理单元用于在该第 1基站的检测结果正确且第 2基站的检测 结果错误时,保持该第 1域值不变; 在该第 1基站的检测结果错误且第 2基站的检测 结果正确时,根据该第 2域值调整该第 1域值; 在该第 1基站的检测结果和第 2基站 的检测结果均错误时, 调整该第 1域值。
在本实施例中, 装置 400还可包括第一发送单元 404, 在第一处理单元 403对该 第 1域值进行相应的处理后, 第一发送单元 404向该第 2基站返回相应的信息; 其中, 该信息包括正确的检测结果和所用的域值; 或者该信息包括调整后的第 1 域值;
例如,在该第 1基站的检测结果正确时, 返回该第 1基站的检测结果和所用的第 1域值; 在该第 2基站的检测结果正确时, 返回该第 2基站的检测结果和所用的第 2 域值; 在该第 1基站和第 2基站的鉴定结果均错误时, 返回调整后的第 1域值。
这样,使得该第 2基站根据该第 1基站返回的信息对该第 2域值进行相应的处理, 以避免域值设置不当而导致的失败误判。
在本实施例中, 第一发送单元 404为可选部件, 以虚线框示出。 例如, 在该第 2 基站的检测结果正确时, 可不执行该步骤。
在本实施例中,第一发送单元 404发送信息的时机如实施例 1所述,此处不再赘 述。
由上述实施例可知, 第 1基站和第 2基站之间交互域值和检测结果, 使得该第 2 基站基于第 1基站反馈的信息对其域值进行调整,以避免不适当的域值配置造成的误 判, 从而获得更精确的移动鲁棒性优化, 并提升网络性能。
在本实施例中, 该第 1域值、 第 2域值是与终端和 /或小区相关的信息对应的域 值。
在这种情况下, 第一接收单元 401 接收到的切换报告还包括与终端和 /或小区相 关的信息对应的指示信息;并且第一发送单元 404向第 2基站返回的相应的信息还包 括与终端和 /或小区相关的信息对应的指示信息。
在这种情况下, 第一检测单元 403在检测链路失败的原因时, 可结合其域值、 以 及与该域值对应的终端和 /或小区相关的信息进行检测。 与实施例 3类似, 此处不再 赘述。
实施例 6
图 5是本发明实施例 6的参数优化装置构成图。如图 5所示, 装置 500包括: 第 二检测单元 501、 第二接收单元 502和第二发送单元 503 ; 其中,
第二检测单元 501用于根据接收到的链路失败报告检测链路失败的原因;其具体 的检测过程如实施例 2所述, 此处不再赘述;
第二发送单元 502 用于在检测到链路失败的原因是切换过早或切换到错误的小 区时, 向第 1基站发送切换报告; 其中该切换报告包括在检测链路失败的原因时使用 的第 2域值和检测结果。
如图 5所示, 装置 500还可包括第二接收单元 503, 用于接收第 3基站发送的链 路失败指示消息 (其中可能包括链路失败报告, 也可能不包括链路失败报告); 在本 实施例中, 在第二发送单元 502将该切换报告发送到该第 1基站后, 可使得该第 1 基于接收到的检测结果和其的检测结果进行比较,并对其第 1域值进行处理后反馈相 关的信息。
在这种情况下, 装置 500还包括第三接收单元 504和第二处理单元 505 ; 其中, 第三接收单元 504用于接收该第 1基站返回的信息,该信息包括正确的链路失败原因 检测结果和所用的域值; 或者, 调整后的该第 1基站所用的第 1域值; 第二处理单元 505用于根据该信息对该第 2域值进行相应地处理。 在本实施例中,第二处理单元 505用于,在正确的检测结果是第 2基站的检测结 果时, 保持该第 2域值不变; 在正确的检测结果是第 1基站的检测结果、或者接收到 调整后的第 1域值时, 根据该信息中的第 1域值调整该第 2域值。
此外,在第二检测单元 501检测到链路失败的原因是切换过晚时,第二处理单元 505还可对其域值的配置进行调整, 与现有机制类似, 此处不再赘述。
由上述实施例可知,第 2基站可基于第 1基站反馈的信息对其域值进行调整, 以 避免不适当的域值配置造成的误判, 从而获得更精确的移动鲁棒性优化, 并提升网络 性能。
在本实施例中, 该第 1域值、 第 2域值是与终端和 /或小区相关的信息对应的域 值, 如实施例 4所述。
第二发送单元 502发送的切换报告还包括与第 2域值对应的与终端设备和 /或小 区相关的信息的指示信息; 第三接收单元 504接收的信息还包括与第 1 域值或第 2 域值对应的与终端设备和 /或小区相关的信息的指示信息。
第二检测单元 503在检测链路失败的原因时, 基于其第 2域值、 以及与该第 2 域值对应的与终端和 /或小区相关的信息进行检测。
第二处理单元 505用于在正确的检测结果是第 1基站的检测结果、或者接收到调 整后的第 1域值时, 根据该第 1域值以及与该第 1域值对应的与终端和 /或小区相关 的信息的指示信息来调整该第 2域值。
由上述实施例可知, 通过该第 1基站和第 2基站交互与终端类型和 /或小区类型 相关联的域值 (TSt0re_UE_CntX) 的配置, 可使第 1基站或第 2基站获得适当的域值 的配置, 避免该域值配置不当引起的误判, 从而获得更精确的移动鲁棒性优化, 并提 升网络性能。
实施例 7
本发明实施例 7提供一种基站,对应网络侧第 1基站,包括实施例 5所述的装置。 实施例 8
本发明实施例 8提供一种基站,对应网络侧第 2基站,包括实施例 6所述的装置。 此外,还可将实施例 7和实施例 8所述的基站合并使用, 同时具备第 1基站和第 2基站的部件。
实施例 9 本发明实施例提供一种通信系统, 包括终端设备, 其中, 该系统还可包括实施例
7和实施例 8所述的基站。 此外, 还可包括第 3基站。
在上述实施例中, 该第 3基站也可以是第 1基站。
以下结合实施例 9所述的系统, 以 MRO失败检测为例来对本发明实施例的参数 优化进行详细说明。
实施例 10
图 6是本发明实施例 10的参数优化方法流程图。 如图 6所示, 包括: 步骤 601〜步骤 607与图 1D所示的步骤 101~107类似, 此处不再赘述。其中, 步 骤 604重建或新建连接的小区为第 3基站的小区。
在步骤 607中, 第 2基站使用包括其域值在内的可用信息进行检测, 如实施例 2 所述, 此处不再赘述。
步骤 608, 在检测结果为切换过早或切换到错误小区时, 该第 2基站向该第 1基 站发送切换报告 ( Handover Report);
其中, 该切换报告中包括该第 2域值和检测结果。
步骤 609, 该第 1基站检测链路失败的原因;
其中,该第 1基站使用包括其域值在内的可用信息来进行检测,如实施例 1所述, 此处不再赘述。
步骤 610, 根据该第 1基站的检测结果和该第 2基站的检测结果对该第 1域值进 行处理;
其中, 具体的处理过程和时机如实施例 1所述, 此处不再赘述。
步骤 611, 向该第 2基站发送切换报告确认 (Handover eportAcknowledgement ) 消息;
其中, 该切换报告确认消息可包括正确的检测结果和使用的域值、或者调整后的 第 1域值, 如实施例 1所述, 此处不再赘述。
步骤 612, 该第 2基站接收到该切换报告确认消息后, 对该第 2域值进行调整; 其中, 具体的处理过程如实施例 2所述, 此处不再赘述。
在步骤 607中检测到链路失败的原因是切换过晚, 处理过程与现有机制类似,此 处不再赘述。
由上述实施例可知, 通过第 1 基站和第 2基站之间交互域值的配置, 可使第 1 基站和第 2基站获得适当的域值, 避免不适当的域值导致的误判。
实施例 11
图 7是本发明实施例 11的的参数优化方法流程图。 基于实施例 10, 本实施例与 实施例 10的不同之处在于, 考虑了与终端和 /或小区相关的信息, 与实施例 3和实施 例 4类似, 对于与实施例 10相同的内容省略, 对不同之处进行说明。
如图 11所示, 包括:
步骤 701〜步骤 706与实施例 10的步骤 601〜步骤 606类似,此处不再赘述。其中, 步骤 704重建或新建连接的小区为第 3基站的小区。
在步骤 707中, 与步骤 607的不同之处, 在检测链路失败原因时, 还考虑可用信 息, 即与终端和 /或小区相关的信息, 例如, 该第 2基站会根据与终端和 /或小区相关 的信息选择与之对应的域值, 然后用这个域值来判断链路失败的原因, 如实施例 3 所述, 此处不再赘述。
在步骤 708中, 与步骤 608的不同之处在于, 在切换报告中还包括与终端和 /或 小区相关的信息的指示信息。
在步骤 709中, 与步骤 609的不同之处在于, 在检测链路失败的原因时, 还考虑 了与终端和 /或小区相关的信息。
步骤 710与步骤 610类似, 此处不再赘述。
在步骤 711中, 与步骤 611的不同之处在于, 该切换报告通知中还包括与终端和 /或小区相关的信息的指示信息。
在步骤 712中, 该第 2基站可对与该终端和 /或小区相关的信息对应的域值进行 处理。
由上述实施例可知, 通过第 1基站和第 2基站之间交互与终端和 /或小区相关的 类型信息对应的域值, 可使第 1基站和第 2基站获得适当的域值, 避免不适当的域值 导致的误判。
本发明实施例还提供一种计算机可读程序,其中当在参数优化装置或基站中执行 所述程序时,所述程序使得计算机在所述参数优化装置或基站中执行实施例 2、 3、 4、 5所述的参数优化方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在参数优化装置或基站中执行实施例 2、3、4所述的参数优化方法。 本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种参数优化方法, 所述方法包括:
第 1基站接收第 2基站发送的切换报告;其中所述切换报告包括所述第 2基站在 检测链路失败的原因时使用的第 2域值和检测结果;
使用所述第 1基站的第 1域值检测链路失败的原因,以获得所述第 1基站的检测 结果;
所述第 1基站根据所述第 1基站的检测结果和第 2基站的检测结果对所述第 1 基站使用的第 1域值进行相应的处理。
2、 根据权利要求 1所述的方法, 其中, 所述第 1域值和第 2域值是与检测链路 失败有关的时间域值。
3、 根据权利要求 1或 2所述的方法, 其中, 所述第 1基站根据第 1基站的检测 结果和第 2基站的检测结果对所述第 1基站使用的第 1域值进行相应的处理, 包括: 确定第 1基站的检测结果和第 2基站的检测结果的正确或错误;
根据确定结果对所述第 1基站的第 1域值进行相应的处理。
4、 根据权利要求 1或 2或 3所述的方法, 其中, 在进行一次切换报告的接收以 及该第 1基站的链路失败的检测后,所述第 1基站根据当前一次的第 1基站的检测结 果和第 2基站的检测结果对所述第 1基站使用的第 1域值进行相应的处理。
5、 根据权利要求 1或 2或 3所述的方法, 其中, 在预定时间进行一次以上切换 报告的接收以及该第 1基站的链路失败的检测后,所述第 1基站根据在所述预定时间 内接收到的第 2基站的检测结果、所述第 1基站的检测结果对所述第 1基站使用的第 1域值进行相应的处理。
6、 根据权利要求 3或 4或 5所述的方法, 其中, 所述根据确定结果对所述第 1 基站的第 1域值进行相应的处理, 包括:
在所述第 1 基站的检测结果正确且第 2基站的检测结果错误时, 保持所述第 1 域值不变;
在所述第 1基站的检测结果错误且第 2基站的检测结果正确时,所述第 1基站根 据所述第 2域值调整所述第 1域值;
在所述第 1基站的检测结果和第 2基站的检测结果均错误时,所述第 1基站调整 所述第 1域值。
7、 根据权利要求 1或 2或 3所述的方法, 其中, 在对所述第 1域值进行相应的 处理后, 所述方法还包括: 向所述第 2基站返回相应的信息;
其中, 所述信息包括: 正确的检测结果和所用的域值; 或者, 调整后的所述第 1 域值。
8、 根据权利要求 7所述的方法, 其中, 在对所述第 1域值进行相应的处理后, 向所述第 2基站返回相应的信息; 或者, 在对所述第 1域值进行相应的处理的预定时 间后, 向所述第 2基站返回相应的信息。
9、 根据权利要求 1至 8的任一项权利要求所述的方法, 所述第 1域值、 第 2域 值是与终端和 /或小区相关的信息对应的域值;
并且所述第 1基站利用所述第 1域值、 以及所述第 1域值对应的与终端和 /或小 区相关的信息检测链路失败的原因。
10、根据权利要求 9所述的方法, 其中, 所述与终端相关的信息包括以下信息其 中之一或一个以上:
终端设备速度、终端设备相对于小区的运行轨道、终端设备所用服务的特征、是 否为小区扩展区域 (CRE) 终端;
所述与小区相关的信息包括以下信息其中之一或一个以上:
小区尺寸、 小区对信息、 小区对和切换方向。
11、 根据权利要求 9所述的方法, 其中, 所述切换报告还包括与终端和 /或小区 相关的信息对应的指示信息;
所述向第 2基站返回的相应的信息还包括与终端和 /或小区相关的信息对应的指 示信息。
12、 一种参数优化方法, 所述方法包括:
第 2基站根据接收到的链路失败指示消息检测链路失败的原因;
在检测到链路失败的原因是切换过早或切换到错误的小区时,向第 1基站发送切 换报告;所述切换报告包括所述第 2基站在检测链路失败的原因时使用的第 2域值和 检测结果。
13、 根据权利要求 12所述的方法, 其中, 所述方法还包括:
接收所述第 1基站返回的信息,所述信息包括正确的链路失败原因检测结果和所 用的域值; 或者, 调整后的所述第 1基站所用的第 1域值;
根据返回的所述信息对所述第 2域值进行相应地处理。
14、 根据权利要求 13所述的方法, 其中, 根据返回的所述信息对所述第 2域值 进行相应地处理, 包括:
在正确的检测结果是第 2基站的检测结果时, 保持所述第 2域值不变; 在正确的检测结果是第 1基站的检测结果、或者接收到调整后的第 1域值时,根 据返回的所述信息调整所述第 2域值。
15、 根据权利要求 12或 13或 14所述的方法, 其中, 所述第 1域值、 第 2域值 是与终端和 /或小区相关的信息对应的域值。
16、 根据权利要求 15所述的方法, 其中, 所述第 2基站利用所述第 2域值、 以 及所述第 2域值对应的与终端和 /或小区相关的信息检测链路失败的原因;
所述切换报告还包括与第 2域值对应的与终端和 /或小区相关的信息对应的指示 信息;
接收的第 1基站返回的信息还包括与第 1域值或第 2域值对应的、 与终端和 /或 小区相关的信息对应的指示信息。
17、 根据权利要求 15所述的方法, 其中, 所述与终端相关的信息包括以下信息 其中之一或一个以上:
终端设备速度、终端设备相对于小区的运行轨道、终端设备所用服务的特征、是 否为小区扩展区域 (CRE) 终端;
所述与小区相关的信息包括以下信息其中之一或一个以上:
小区尺寸、 小区对信息、 小区对和切换方向。
18、 根据权利要求 1至 17的任一项权利要求所述的方法, 其中, 该第 1基站是 导致链路失败的基站和 /或对链路失败进行纠正的基站和 /或接收切换报告的基站; 所 述第 2基站是在终端设备链路失败前为所述终端设备服务的基站和 /或发送切换报告 消息的基站和 /或接收无线链路失败指示消息的基站。
19、 一种参数优化装置, 所述装置包括:
第一接收单元,所述第一接收单元用于接收第 2基站发送的切换报告; 其中所述 切换报告包括所述第 2基站在检测链路失败的原因时使用的第 2域值和检测结果; 第一检测单元,所述第一检测单元用于使用第 1基站的第 1域值检测链路失败的 原因, 以获得所述第 1基站的检测结果;
第一处理单元,所述第一处理单元用于根据所述第 1基站的检测结果和第 2基站 的检测结果对所述第 1基站使用的第 1域值进行相应的处理。
20、 根据权利要求 19所述的装置, 其中, 所述第 1域值和第 2域值是与检测链 路失败有关的时间域值。
21、 根据权利要求 19或 20所述的装置, 其中, 所述第一处理单元包括: 确定单元,所述确定单元用于确定第 1基站的检测结果和第 2基站的检测结果的 正确或错误;
处理单元,所述处理单元用于根据确定结果对所述第 1基站的第 1域值进行相应 的处理。
22、 根据权利要求 19或 20或 21所述的装置, 其中, 在所述第一接收单元进行 一次切换报告的接收以及所述第一检测单元进行的链路失败的检测后,所述第一处理 单元根据当前一次的第 1基站的检测结果和第 2基站的检测结果对所述第 1基站使用 的第 1域值进行相应的处理。
23、 根据权利要求 19或 20或 21所述的装置, 其中, 在预定时间内, 所述第一 接收单元进行一次以上切换报告的接收以及所述第一检测单元进行链路失败的检测 后, 所述处理单元根据在所述预定时间内接收到的第 2 基站的检测结果、 所述第 1 基站的检测结果对所述第 1基站使用的第 1域值进行相应的处理。
24、 根据权利要求 21或 22或 23所述的装置, 其中, 所述处理单元用于: 在所述第 1 基站的检测结果正确且第 2基站的检测结果错误时, 保持所述第 1 域值不变;
在所述第 1基站的检测结果错误且第 2基站的检测结果正确时,所述第 1基站根 据所述第 2域值调整所述第 1域值;
在所述第 1基站的检测结果和第 2基站的检测结果均错误时,所述第 1基站调整 所述第 1域值。
25、 根据权利要求 19或 20或 21所述的装置, 其中, 所述装置还包括: 第一发送单元,所述第一发送单元用于在所述第一处理单元对第 1域值进行相应 的处理后, 向所述第 2基站返回相应的信息;
所述信息包括: 正确的检测结果和所用的域值; 或者, 调整后的所述第 1域值。
26、 根据权利要求 25所述的装置, 其中, 所述第一发送单元在对所述第 1域值 进行相应的处理后向所述第 2基站返回相应的信息; 或者,在对所述第 1域值进行相 应的处理后的预定时间后, 向所述第 2基站返回相应的信息。
27、 根据权利要求 19至 26的任一项权利要求所述的装置, 所述第 1域值、 第 2 域值是与终端和 /或小区相关的信息对应的域值;
并且所述第一检测单元利用所述第 1域值、 以及所述第 1域值对应的与终端和 / 或小区相关的信息检测链路失败的原因。
28、 根据权利要求 27所述的装置, 其中, 所述切换报告还包括与终端和 /或小区 相关的信息对应的指示信息;
所述向第 2基站返回的相应的信息还包括与终端和 /或小区相关的信息对应的指 示信息。
29、 一种参数优化装置, 所述装置包括:
第二检测单元,所述第二检测单元用于根据接收到的链路失败指示消息检测链路 失败的原因;
第二发送单元,所述第二发送单元用于在检测结果是切换过早或切换到错误的小 区时, 向第 1基站发送切换报告; 所述切换报告包括所述第 2基站在检测链路失败的 原因时使用的第 2域值和检测结果。
30、 根据权利要求 29所述的装置, 其中, 所述装置还包括:
第二接收单元,所述第二接收单元用于接收所述第 1基站返回的信息,所述信息 包括正确的链路失败原因检测结果和所用的域值; 或者,调整后的所述第 1基站所用 的第 1域值;
第二处理单元,所述第二处理单元用于根据返回的所述信息对所述第 2域值进行 相应地处理。
31、 根据权利要求 30所述的装置, 其中, 所述第二处理单元用于:
在正确的检测结果是第 2基站的检测结果时, 保持所述第 2域值不变; 在正确的检测结果是第 1基站的检测结果、或者接收到调整后的第 1域值时,根 据返回的所述信息调整所述第 2域值。
32、 根据权利要求 29或 30或 31所述的装置, 其中, 所述第 1域值、 第 2域值 是与终端和 /或小区相关的信息对应的域值。
33、根据权利要求 32所述的装置, 其中, 所述第二检测单元利用所述第 2域值、 以及所述第 2域值对应的与终端和 /或小区相关的信息检测链路失败的原因;
所述切换报告还包括与第 2域值对应的与终端和 /或小区相关的信息对应的指示 信息;
接收的第 1基站返回的信息还包括与第 1域值或第 2域值对应的、 与终端和 /或 小区相关的信息对应的指示信息。
34、 根据权利要求 32所述的装置, 其中, 所述与终端相关的信息包括以下信息 其中之一或一个以上:
终端设备速度、终端设备相对于小区的运行轨道、终端设备所用服务的特征、是 否为小区扩展区域 (CRE) 终端;
所述与小区相关的信息包括以下信息其中之一或一个以上:
小区尺寸、 小区对信息、 小区对和切换方向。
35、根据权利要求 12至 34的任一项权利要求所述的装置, 其中, 该第 1基站是 导致链路失败的基站和 /或对链路失败进行纠正的基站和 /或接收切换报告的基站; 所 述第 2基站是在终端设备链路失败前为所述终端设备服务的基站和 /或发送切换报告 消息的基站和 /或接收无线链路失败指示消息的基站。
36、 一种基站, 包括权利要求 18至 28、 35的任一项权利要求所述的装置。
37、 一种基站, 包括权利要求 29至 35的任一项权利要求所述的装置。
38、 一种通信系统, 包括终端设备, 其中, 所述系统还包括权利要求 36 和 37 所述的基站。
39、 根据权利要求 38所述的系统, 其中, 所述系统还包括第 3基站, 所述第 3 基站是在终端设备发生链路失败后进行链接重建尝试、或重建成功、或新建成功的基 站和 /或发送 RLF指示消息的基站。
40、 一种计算机可读程序, 其中当在参数优化装置或基站中执行所述程序时, 所 述程序使得计算机在所述参数优化装置或基站中执行权利要求 1至 17的任一项权利 要求所述的参数优化方法。
41、一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算 机在参数优化装置或基站中执行权利要求 1至 17的任一项权利要求所述的参数优化 方法。
PCT/CN2013/075519 2013-05-10 2013-05-10 参数优化方法、装置和通信系统 WO2014180006A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/075519 WO2014180006A1 (zh) 2013-05-10 2013-05-10 参数优化方法、装置和通信系统
CN201380071383.5A CN104937981B (zh) 2013-05-10 2013-05-10 参数优化方法、装置和通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/075519 WO2014180006A1 (zh) 2013-05-10 2013-05-10 参数优化方法、装置和通信系统

Publications (1)

Publication Number Publication Date
WO2014180006A1 true WO2014180006A1 (zh) 2014-11-13

Family

ID=51866667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075519 WO2014180006A1 (zh) 2013-05-10 2013-05-10 参数优化方法、装置和通信系统

Country Status (2)

Country Link
CN (1) CN104937981B (zh)
WO (1) WO2014180006A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943868A (zh) * 2019-12-13 2020-03-31 新誉轨道交通科技有限公司 增加周期通信鲁棒性的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080849A2 (en) * 2009-01-06 2010-07-15 Qualcomm Incorporated Adaptation of handover parameters
CN101959262A (zh) * 2009-07-15 2011-01-26 中兴通讯股份有限公司 切换失败指示信息的通知方法与装置
WO2011134108A1 (en) * 2010-04-27 2011-11-03 Nokia Siemens Networks Oy Method of determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, access node for determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, and user equipment
CN102256318A (zh) * 2011-08-11 2011-11-23 新邮通信设备有限公司 一种切换参数的调整方法
CN102630389A (zh) * 2010-08-13 2012-08-08 华为技术有限公司 用于在蜂窝式无线通信系统中提供信息的方法
CN102958116A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 一种控制参数的调整方法、终端及基站和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080849A2 (en) * 2009-01-06 2010-07-15 Qualcomm Incorporated Adaptation of handover parameters
CN101959262A (zh) * 2009-07-15 2011-01-26 中兴通讯股份有限公司 切换失败指示信息的通知方法与装置
WO2011134108A1 (en) * 2010-04-27 2011-11-03 Nokia Siemens Networks Oy Method of determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, access node for determining a radio link failure associated with a handover of a user equipment from a source access node to a target access node, and user equipment
CN102630389A (zh) * 2010-08-13 2012-08-08 华为技术有限公司 用于在蜂窝式无线通信系统中提供信息的方法
CN102256318A (zh) * 2011-08-11 2011-11-23 新邮通信设备有限公司 一种切换参数的调整方法
CN102958116A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 一种控制参数的调整方法、终端及基站和系统

Also Published As

Publication number Publication date
CN104937981B (zh) 2019-03-01
CN104937981A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
US20220386204A1 (en) Dual active protocol stack handover reports
US20180092005A1 (en) Method, apparatus, and system for detecting a radio network problem
US9942804B2 (en) Method for processing radio link failure report and method for adjusting mobile parameter
EP2955962B1 (en) Handover failure detection device, handover parameter adjustment device, and handover optimization system
KR102044019B1 (ko) 이동성 매개변수 조정 방법 및 장치
WO2015000184A1 (zh) 参数获取方法、参数优化方法及其装置、系统
WO2013152708A1 (zh) 无线链路失败报告处理方法、异常事件统计处理方法及设备和系统
WO2013010464A1 (zh) 小区信息上报和小区移动性参数调整的方法及设备
WO2013071856A1 (zh) 一种无线链路失败统计方法和相关装置及通信系统
EP2724562A2 (en) Methods, apparatuses and computer program products for providing an optimized handover preparation and execution operation
WO2014187389A1 (zh) 小区切换方法及装置
WO2013134955A1 (zh) 判定切换失败类型的方法及其装置
WO2014135061A1 (zh) 一种进行rrc连接重建的方法及用户设备
WO2015062042A1 (zh) 无线链路失败报告处理方法及装置、系统
WO2014000547A1 (zh) 获取终端的位置信息的方法、装置及终端
CN107105464B (zh) 一种网络切换的方法、装置及用户设备
US20220182911A1 (en) Conditional Mobility in a Wireless Communication Network
CN104604279B (zh) 报告连接重建信息的方法、装置和系统
WO2014180006A1 (zh) 参数优化方法、装置和通信系统
KR20150026950A (ko) 이동 통신 시스템에서의 무선 링크 오류 복구 방법 및 장치
WO2016095593A1 (zh) 移动鲁棒性优化方法和基站设备
WO2024067624A1 (zh) 信息报告方法以及用户设备
WO2013134947A1 (zh) 切换标识的上报方法、用户设备以及基站
CN118338348A (zh) 无线链路失败报告方法以及用户设备
CN117395732A (zh) 切换信息报告方法以及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883876

Country of ref document: EP

Kind code of ref document: A1