WO2014178663A1 - 단말 제공 제어신호를 통한 셀간 간섭 제어 - Google Patents

단말 제공 제어신호를 통한 셀간 간섭 제어 Download PDF

Info

Publication number
WO2014178663A1
WO2014178663A1 PCT/KR2014/003880 KR2014003880W WO2014178663A1 WO 2014178663 A1 WO2014178663 A1 WO 2014178663A1 KR 2014003880 W KR2014003880 W KR 2014003880W WO 2014178663 A1 WO2014178663 A1 WO 2014178663A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signal
channel
interference
information
transmitting
Prior art date
Application number
PCT/KR2014/003880
Other languages
English (en)
French (fr)
Inventor
곽진삼
손주형
Original Assignee
인텔렉추얼디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130048986A external-priority patent/KR20140129986A/ko
Priority claimed from KR1020130048984A external-priority patent/KR20140129984A/ko
Priority claimed from KR20130048982A external-priority patent/KR20140129982A/ko
Application filed by 인텔렉추얼디스커버리 주식회사 filed Critical 인텔렉추얼디스커버리 주식회사
Priority to US14/787,804 priority Critical patent/US20160094323A1/en
Publication of WO2014178663A1 publication Critical patent/WO2014178663A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for transmitting a control signal in a wireless communication system.
  • 3GPP 3rd Generation Partnership Project
  • WCDMA Wideband Code Division Multiple Access
  • High Speed Downlink Packet Access which can be defined as the first evolutionary step of WCDMA, provides 3GPP with a highly competitive wireless access technology in the mid-term future.
  • E-UMTS is to provide high competitiveness in the long term future.
  • E-UMTS is an evolution from the existing WCDMA UMTS and is being standardized in 3GPP.
  • E-UMTS is also called a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the E-UMTS is largely composed of an access gateway (AG) located at an end of a user equipment (UE), a base station, and an network (E-UTRAN) and connected to an external network.
  • AG access gateway
  • UE user equipment
  • E-UTRAN network
  • a base station can transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • OFDM orthogonal frequency divisional multiplexing
  • MIMO multi-input multi-out
  • OFDM represents a high speed data downlink access system.
  • the advantage of OFDM is the high spectral efficiency that the entire spectrum allocated can be used by all base stations.
  • OFDM modulation the transmission band is divided into a plurality of orthogonal subcarriers in the frequency domain and divided into a plurality of symbols in the time domain. Since OFDM divides a transmission band into a plurality of subcarriers, bandwidth per subcarrier is reduced and modulation time per carrier is increased. Since the plurality of subcarriers are transmitted in parallel, the digital data or symbol rate of a particular subcarrier is lower than that of a single carrier.
  • MIMO Multiple input multiple output
  • the MIMO system can linearly increase the channel capacity without increasing the additional frequency bandwidth as the number of transmit / receive antennas increases.
  • MIMO technology uses spatial diversity to improve transmission reliability using symbols that pass through various channel paths, and multiple antennas simultaneously transmit separate data streams to improve transmission rates. There is a method of increasing spatial multiplexing.
  • the MIMO technology can be broadly classified into an open-loop MIMO technology and a closed-loop MIMO technology according to whether the transmitter knows channel information.
  • the transmitting end does not know channel information.
  • Examples of the open-loop MIMO technique include per antenna rate control (PARC), per common basis rate control (PCBRC), BLAST, STTC, random beamforming, and the like.
  • PARC per antenna rate control
  • PCBRC per common basis rate control
  • BLAST per common basis rate control
  • STTC random beamforming
  • random beamforming random beamforming
  • the closed-loop MIMO technology the transmitting end knows channel information.
  • the performance of a closed loop MIMO system depends on how accurately the channel information is known.
  • Examples of the closed-loop MIMO technology include per stream rate control (PSRC), TxAA, and the like.
  • Channel information refers to radio channel information (eg, attenuation, phase shift, or time delay) between a plurality of transmit antennas and a plurality of receive antennas.
  • radio channel information eg, attenuation, phase shift, or time delay
  • various stream paths exist by a combination of a plurality of transmit / receive antennas, and have a fading characteristic in which a channel state changes irregularly in a time / frequency domain due to a multipath time delay. Therefore, the transmitter calculates channel information through channel estimation.
  • Channel estimation estimates channel information necessary to recover a distorted transmission signal. For example, channel estimation refers to estimating the magnitude and reference phase of a carrier. That is, channel estimation estimates a frequency response of a radio section or a radio channel.
  • the channel for transmitting the control signal is called a control channel.
  • the uplink control signal includes an acknowledgment (ACK) / negative-acknowledgement (NACK) signal, a response to downlink data transmission, a channel quality indicator (CQI) indicating downlink channel quality, a precoding matrix index (PMI), and a rank (RI)
  • ACK acknowledgment
  • NACK negative-acknowledgement
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank
  • control channels use more limited time-frequency resources than data channels.
  • PAPR Peak-to-Average Power Ratio
  • CM Cubic Metric
  • 3GPP TS 36.211 V8.4.0 (2008-09) "Evolved Universal Terrestrial Radio Access” in the long term evolution (LTE) mobile communication standards based on 3rd Generation Partnership Project (3GPP) Technical Specification (TS) Release 8 and later.
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • a physical channel in LTE is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical uplink shared channel (PUSCH), and a physical channel (PDSCH), which is a control channel. It can be divided into Downlink Control Channel) and PUCCH (Physical Uplink Control Channel).
  • the PDCCH which is a downlink control channel, carries a downlink grant for PDSCH reception of the UE and an uplink grant for PUSCH transmission of the UE.
  • the PUCCH which is an uplink control channel, is an uplink control signal, for example, a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for a hybrid automatic repeat request (HARQ), and a channel quality indicating a downlink channel state. indicator) and SR (scheduling request) for requesting radio resource allocation for uplink transmission.
  • ACK positive-acknowledgement
  • ACK negative-acknowledgement
  • HARQ hybrid automatic repeat request
  • SR scheduling request
  • the payload of the control channel is limited to several bits to several tens of bits.
  • the uplink control channel has a PAPR (Peak-to-Average Power Ratio) / CM (cubic metric) characteristic for power management of the UE.
  • PAPR Peak-to-Average Power Ratio
  • CM cubic metric
  • An object of the present invention is to provide a method for transmitting a reference signal suitable for a small cell using a common reference signal.
  • Another object of the present invention is to provide an apparatus for common reference signal, demodulation reference signal transmission, and data additional resource allocation suitable for a channel environment of a small cell.
  • the communication system evolves, rather than defining a new system for each communication technique, it adopts a method to achieve the goal at the minimum cost by improving the performance of the existing system.
  • a new version of the communication system is an existing system.
  • the main requirement is to provide the functionality of the new system without compromising the performance of the existing system. This situation arises in the current relationship of LTE / LTE-A release 8/9/10 / and later.
  • the reliability of the control signal is related to the reliability of the system, it is necessary to increase the reliability of the detection of the control signal in the control channel.
  • various cell topologies with cell coverage of less than 100m such as picocells and femtocells, such as small cells, the delay characteristics of radio channels experienced by each cell are different from those of large coverage cells. Therefore, it is necessary to design the control channel structure.
  • Frequency selectivity of the radio channel A radio channel defined as delay spread receives signals with various delay times through multiple paths. For this reason, the radio channel is not defined by an impulse function, but has a delay profile defined by a plurality of delays. This does not provide a constant channel gain in the frequency domain and causes a channel change in frequency, which is said to have a frequency selective characteristic.
  • the delay spread time may be reduced to several ns or less as the coverage is small and the channel characteristics such as indoors are different from the poor environment of mobile communication. As a result, since the frequency selective characteristic is not serious, the coherent bandwidth is large, resulting in similar channel characteristics between adjacent subcarriers.
  • Time selectivity of the wireless channel In order to reduce the occurrence of frequent handover due to the small cell, it is preferable that the small cell is used by a pedestrian or a stationary user. It can be limited to a stop. In this case, the Doppler effect affecting the change of the radio channel is reduced, so that the time selectivity of the channel is reduced, unlike the high-speed moving object, the amount of channel change between adjacent symbols. This results in a long coherent time, resulting in less channel variation between adjacent subcarriers in time.
  • the terminal in the small cell is smaller than the macro cell, it is necessary to reconsider the multiplexing characteristics of the control channel.
  • to reduce the overhead of the control channel resources for efficient use of resources in the legacy control channel structure, and to support a small number of terminals with a minimum of resources in the control channel structure that can be supported in the small cell coverage need.
  • an object of the present invention is to efficiently utilize the resources of the uplink control channel in consideration of the small cell environment in a wireless communication system for transmitting the uplink control signal. It utilizes to transmit control information and to provide a signaling method thereof.
  • Another object of the present invention is to provide a new uplink control channel transmission method by extending dedicated control information for a small cell support terminal.
  • Another object of the present invention is to provide a method for transmitting / receiving a reference signal with backward compatibility and a signaling method thereof when extending an uplink control channel.
  • a control signal transmission channel and a data transmission channel coexist in one time-frequency resource allocation region.
  • the one time-frequency resource allocation region is characterized by one Physical Resource Block
  • the control signal transmission channel is characterized by a PUCCH as an uplink control channel.
  • the coexistence of the control signal transmission channel and the data transmission channel is characterized by not using slot-based frequency hopping of the control channel, and the coexistence of the control signal transmission channel and the data transmission channel is time division multiplexing in one subframe. Is provided through.
  • the present invention provides a method for transmitting a control signal in a wireless communication system, the method comprising: assigning an OFDM symbol in a slot for transmitting the control signal; Allocating an OFDM symbol in a slot for data transmission;
  • the present invention provides a method of transmitting a control signal, the method including allocating a common reference signal for control and data transmission.
  • the number of OFDM symbols in slots allocated for the control signal and data transmission is 4 or less, and the number of OFDM symbols in slots allocated for the reference signal transmission is 3 or less.
  • the present invention provides a control signal transmission method characterized by transmitting 1 or 2 bit information control information as an SR.
  • the present invention provides a method for transmitting a control signal in a wireless communication system, comprising: allocating an OFDM symbol in a slot for transmitting the control signal; Allocating an OFDM symbol in a slot for data transmission; Provided are a control signal transmission method comprising allocating a common reference signal to different symbols for control and data transmission.
  • the number of OFDM symbols in a slot allocated for the control signal and data signal transmission is 4 or less, and the number of OFDM symbols in the slot allocated for the reference signal transmission is 3 or less. It is not allowed to allocate a control and a data channel to the same user in the same time-frequency resources, and uses a time domain spreading code of length 4 or less for transmitting control signals.
  • the control signal is characterized by including the ACK / NACK, SR, CQI.
  • the present invention provides a method for transmitting a plurality of control signals and data in one subframe in a wireless communication system, comprising the steps of: configuring the first control signal transmission resource and the transmission resource of the second control signal the same symbol; Allocating a reference signal in the first control signal transmission resource and a reference signal in the second control signal transmission resource to the same symbol; Allocating a cyclic shift of a specific sequence differently to distinguish the first control signal and the second transmission signal; And it provides a control signal and data transmission method comprising the step of transmitting the subframe.
  • the first control signal and the second control signal are characterized by the PUCCH format 1, 2, or 3, and the specific sequence has a specific root index of the Zad-off Chu sequence.
  • the control signal transmission resource provides a control signal and data transmission method characterized in that it does not overlap with the data transmission resources in one subframe.
  • the present invention provides a cellular communication system including a plurality of base stations including a macro cell, the terminal comprising: obtaining interference information of a neighbor cell from signals received from the plurality of base stations; Transmitting, by the terminal, interference information of the neighbor cell to the serving base station; Determining a neighbor cell interference control request based on interference information received from one or more terminals; A cellular communication system for transmitting interference control information to neighboring base stations.
  • the interference information of the neighbor cell includes a picocell, a microcell, and a femtocell as a small cell, and the time-frequency resource for transmitting the neighbor cell information to the base station is used as a common resource between the terminals and is received as the common resource.
  • the interference information of the plurality of terminals provides a cellular communication system, characterized in that to obtain information through the detection of power or energy level.
  • the present invention provides a cellular communication system including a plurality of base stations including a macro cell, the method comprising: allocating, by the base station, radio resources for signal detection of the terminal to the terminal; Transmitting additional control information of the terminal through the allocated resources; It provides a cellular communication system comprising the step of generating and transmitting a control signal by the base station based on the received control information of the terminal.
  • the resource allocated by the base station indicates a region of a PUCCH, and the additional control information is characterized by detecting the signal strength of the terminal or providing interference information of neighboring cells to the base station.
  • the control signal generated by the base station is characterized in that the terminal request information for checking the access state of the terminal, the control signal generated by the base station is characterized in that it includes information for interference control of the neighboring base station,
  • the new control information of the base station selectively operates based on the additional control information transmitted by the terminal.
  • the new control information of the base station is characterized in that the transmission after achieving the maximum number of HARQ retransmissions.
  • the present invention provides a method for transmitting a control signal in a wireless communication system, comprising: allocating four OFDM symbols in a slot for transmitting the control signal; To provide a control signal transmission method comprising the step of time-domain using a [+1, +1, -1, -1] sequence of length 4 to transmit the control signal.
  • the control signal is characterized by cell-specific control information with low coverage, and the control signal includes a signal for detecting user signal strength and information indicating interference of neighboring cells.
  • the control signal may be transmitted through M-QAM modulation or modulated by a change in energy or power level, and may coexist with PUCCH Format 1 or 2.
  • the overhead of the uplink control signal can be minimized and the efficiency of data and control signal resources can be improved.
  • the present invention provides a control signal channel structure and operation principle for measuring interference between neighboring cells and effectively managing the interference.
  • 1 shows a structure of a radio frame used in 3GPP LTE.
  • FIG. 2 shows a resource grid for a downlink slot.
  • 3 shows a structure of a downlink radio frame.
  • FIG. 4 shows a time-frequency resource structure for transmitting an uplink control signal in 3GPP LTE.
  • FIG. 5 shows a control channel structure in one slot for scheduling request (SR) signal and ACK / NACK transmission in PUCCH format 1 / 1a / 1b.
  • SR scheduling request
  • FIG. 6 shows a conceptual diagram of ACK / NACK transmission supporting downlink carrier combining.
  • FIG. 7 shows a control channel structure in one slot for transmitting Channel Quality Information (CQI) as PUCCH format 2.
  • CQI Channel Quality Information
  • FIG. 10 illustrates a method of additionally assigning a PUSCH after removing frequency hopping with a new PUCCH structure suitable for a small cell.
  • FIG. 11 shows a method of considering frequency hopping with a new PUCCH structure suitable for a small cell and additionally assigning a PUSCH.
  • FIG. 13 shows a new PUCCH format 1 structure per slot suitable for a small cell to which a PUSCH dedicated reference signal is allocated.
  • 16 illustrates an interference scenario considering adjacent macro cells in a small cell environment.
  • 17 illustrates an example of cooperation between base stations based on feedback of a terminal as a method for controlling interference between macro-small cells.
  • FIG. 18 illustrates a process of controlling interference by a base station grasping an interference state of a terminal in a method for controlling interference between macro-small cells.
  • FIG. 19 illustrates a detailed operation of a base station for detecting a user signal.
  • the wireless communication system may support at least one of an SC-FDMA scheme, an MC-FDMA scheme, and an OFDMA scheme.
  • SC-FDMA scheme an SC-FDMA scheme
  • MC-FDMA scheme an MC-FDMA scheme
  • OFDMA scheme an OFDMA scheme
  • a method of allocating an additional reference signal through various channels will be described.
  • the present specification is based on the channel of 3GPP LTE, an example of the present specification may be applied to a reference signal resource allocation method using a control channel of IEEE 802.16 (or a revision thereof) or a control channel of another system.
  • CDD Cyclic Delay Diversity
  • CRS cell specific reference signal or cell common reference signal
  • CSI-RS Channel state information reference signal
  • DM-RS Demodulation reference signal for data channel demodulation
  • MIMO Multi-input multi-output
  • PBCH Physical broadcast channel
  • PCFICH Physical control format indicator channel
  • PDCCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • PRACH Physical Random Access Channel
  • PUCCH Physical uplink control channel
  • PUSCH Physical uplink shared channel
  • 1 shows a structure of a radio frame used in 3GPP LTE.
  • a radio frame has a length of 10 ms (327200 x Ts) and consists of 10 equally sized subframes.
  • Each subframe has a length of 1 ms and consists of two slots.
  • Each slot has a length of 0.5 ms (15360 x Ts).
  • a slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks in the frequency domain.
  • Transmission time interval (TTI) which is a unit time for transmitting data, may be determined in units of one or more subframes.
  • TTI Transmission time interval
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
  • the downlink slot includes N DL symb OFDM symbols in the time domain and N DL RB resource blocks in the frequency domain. Since each resource block includes N RB sc subcarriers, the downlink slot includes N DL RB ⁇ N RB sc subcarriers in the frequency domain. 2 illustrates that a downlink slot includes 7 OFDM symbols and a resource block includes 12 subcarriers, but is not limited thereto.
  • the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • Each element on the resource grid is called a resource element and is indicated by one OFDM symbol index and one subcarrier index.
  • One resource block is composed of N DL symb ⁇ N RB sc resource elements. The number of resource blocks (N DL RB ) included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
  • 3 shows a structure of a downlink radio frame.
  • the downlink radio frame includes 10 subframes having an equal length.
  • Each subframe includes an L1 / L2 control region (Layer 1 / Layer 2 control region) and a data region.
  • the L1 / L2 control region is simply referred to as a control region.
  • the control region begins with the first OFDM symbol of the subframe and includes one or more OFDM symbols.
  • the size of the control region may be set independently for each subframe.
  • the control area is used to transmit the L1 / L2 control signal.
  • control channels such as PCFICH, PHICH, PDCCH, etc. are allocated to the control region.
  • the data area is used to transmit downlink traffic.
  • the PDSCH is allocated to the data area.
  • FIG. 4 shows a time-frequency resource structure for transmitting an uplink control signal in 3GPP LTE.
  • a channel structure is designed by allocating a part of both end bands of the entire system band and considering diversity gain through slot-based frequency hopping.
  • OFDM OFDM
  • state information feedback of the wireless channel is required, and an efficient channel structure for high capacity feedback in a broadband system. Design is inevitable.
  • FIG. 5 shows a control channel structure in one slot for scheduling request (SR) signal and ACK / NACK transmission in PUCCH format 1 / 1a / 1b.
  • SR scheduling request
  • a frequency diversity gain of about 3 dB is obtained by repeatedly transmitting the same signal through slot-based frequency hopping in one subframe.
  • the control channel region previously allocated for the time-frequency spread ACK / NACK signal transmission is transmitted in the same structure even when the UE transmits SR for uplink data transmission.
  • the ACK / NACK channel is a control channel through which an acknowledgment (ACK) / negative-acknowledgment (NACK) signal for performing a hybrid automatic repeat request (HARQ) of downlink data is transmitted.
  • the ACK / NACK signal is a transmission and / or reception acknowledgment signal for downlink data.
  • ACK acknowledgment
  • NACK negative-acknowledgment
  • HARQ hybrid automatic repeat request
  • the ACK / NACK signal is a transmission and / or reception acknowledgment signal for downlink data.
  • RS reference signal
  • the reference signal is carried in three contiguous OFDM symbols in the middle of the slot.
  • a frequency domain spreading sequence is used as a base sequence.
  • a Zadoff-Chu (ZC) sequence which is one of the constant amplitude zero auto-correlation (CAZAC) sequences, may be used.
  • the k th element c (k) of the ZC sequence having the index M may be represented as follows.
  • N is the length of the ZC sequence
  • index M is a natural number less than or equal to N
  • M and N are relatively prime.
  • Each control channel can be distinguished by applying a basic sequence having different cyclic shift values. Depending on the delay spread of the channel, the number of usable cyclic shifts may vary.
  • the frequency domain spread ACK / NACK signal is spread in the time domain using the time domain sequence after performing the IFFT. For example, the ACK / NACK signal is spread using orthogonal sequences w0, w1, w2, and w3 of length 4 for 4 OFDM symbols.
  • the reference signal is also spread through an orthogonal sequence of length 3. This is called orthogonal covering. Through this, three orthogonal covering bundles are generated in the time domain, and when up to 12 cyclic shifts of ZC are used, a total of 36 people can be multiplexed in one PUCCH Format 1 structure.
  • FIG. 6 shows a conceptual diagram of ACK / NACK transmission supporting downlink carrier combining.
  • ACK / NACK information transmission is closely related to a downlink carrier.
  • one PDSCH is allocated to one UE and one or more PDSCHs are simultaneously scheduled. Can be. Therefore, a plurality of acknowledgments (one per downlink component carrier or two acknowledgments in case of spatial multiplexing) should be transmitted in uplink.
  • PUCCH format 1 may be used to support more than 2 bits of acknowledgment in uplink using resource selection. Assume that 4 bits should be transmitted on the uplink. Through resource selection, two bits indicate which PUCCH resources are used and the remaining two bits are transmitted using the normal PUCCH structure on the resources indicated by the first two bits.
  • FIG. 7 shows a control channel structure in one slot for transmitting Channel Quality Information (CQI) as PUCCH format 2.
  • CQI Channel Quality Information
  • a frequency diversity gain of about 3 dB is obtained by repeatedly transmitting the same signal through slot-based frequency hopping in one subframe.
  • a control signal transmission method considering a plurality of users is classified by spreading codes in time and frequency domains, or by assigning different spreading codes to adjacent cells in consideration of correlation characteristics.
  • QPSK modulated different CQI information is mapped to every OFDM symbol, thereby transmitting 10 bits per slot.
  • a terminal capable of supporting more than two downlink component carriers that is, a terminal capable of transmitting more bits than 4 bits with HARQ acknowledgment, must support PUCCH format 3.
  • the basis of PUCCH format 3 is OFDM precoded with the same DFT as the transmission scheme used for PUSCH.
  • the acknowledgment bit which is 1 or 2 bits per downlink component carrier, is concatenated with the scheduling request bit and forms a bit string according to the transmission mode configured for the corresponding component carrier. In this case, bits corresponding to unscheduled transport blocks are set to zero.
  • Frequency selectivity of the radio channel A radio channel defined as delay spread receives signals with various delay times through multiple paths. For this reason, the radio channel is not defined by an impulse function, but has a delay profile defined by a plurality of delays. This does not provide a constant channel gain in the frequency domain and causes a channel change in frequency, which is said to have a frequency selective characteristic.
  • the delay spread time may be reduced to several ns or less as the coverage is small and the channel characteristics such as indoors are different from the poor environment of mobile communication. As a result, since the frequency selective characteristic is not serious, the coherent bandwidth is large, resulting in similar channel characteristics between adjacent subcarriers.
  • Time selectivity of the wireless channel In order to reduce the occurrence of frequent handover due to the small cell, it is preferable that the small cell is used by a pedestrian or a stationary user. It can be limited to a stop. In this case, the Doppler effect affecting the change of the radio channel is reduced, so that the time selectivity of the channel is reduced, unlike the high-speed moving object, the amount of channel change between adjacent symbols. This results in a long coherent time, resulting in less channel variation between adjacent subcarriers in time.
  • the number of terminals in the small cell is smaller than that of the macro cell, and it is necessary to reconsider the multiplexing capability of the control channel.
  • to reduce the overhead of the control channel resources for efficient use of resources in the legacy control channel structure, and to support a small number of terminals with a minimum of resources in the control channel structure that can be supported in the small cell coverage need.
  • the conventional PUCCH obtains a frequency diversity gain of about 3 dB through frequency hopping.
  • the time-frequency channel characteristic is relatively superior to that of the macro cell, and it is desirable to minimize the PUCCH resources to increase resource efficiency.
  • the small cell does not use the frequency hopping function in order to double the PUCCH resources in the same PRB.
  • the structure per slot of the existing PUCCH format 1/2/3 can be reused as it is.
  • FIG. 10 illustrates a method of additionally assigning a PUSCH after removing frequency hopping with a new PUCCH structure suitable for a small cell.
  • the conventional PUCCH obtains a frequency diversity gain of about 3 dB through frequency hopping.
  • the time-frequency channel characteristic is relatively superior to that of the macro cell, and it is desirable to minimize the PUCCH resources to increase resource efficiency.
  • the small cell does not use the frequency hopping function.
  • the structure per slot of the existing PUCCH format 1/2/3 can be reused as it is.
  • a PUSCH resource of about one slot can be additionally generated.
  • FIG. 11 shows a method of considering frequency hopping with a new PUCCH structure suitable for a small cell and additionally assigning a PUSCH.
  • the time-frequency channel characteristic is relatively superior to that of the macro cell, and it is desirable to minimize the PUCCH resources to increase resource efficiency.
  • the same PUCCH resource may be allocated in the same PRB and frequency hopping may be maintained, and a new PUCCH format suitable for a small cell may be newly designed to secure additional PUSCH resources.
  • half of the existing PUCCH resources are used as new PUCCH resources, and the rest are additionally allocated to PUSCH.
  • a new PUCCH per slot in FIG. 11 may maintain frequency diversity through frequency hopping, it may be further applicable to remove frequency hopping in order to increase resource efficiency by doubling the PUCCH resource.
  • 1 or 2 bit information is transmitted by applying an orthogonal code having a length of 4 by considering 4 OFDM symbols in a time domain.
  • a reference signal has a total of three orthogonal resources in the time domain to configure a PUCCH format.
  • FIG. 12 a structure in which time-domain spreading for transmission of conventional PUCCH information is reduced from 4 symbols to 2 symbols in a PUCCH format 1 suitable for a small cell, and an interval of about 2 symbols additionally generated in a slot is allocated as PUSCH data.
  • the reference signal sharing technique can be applied.
  • the reference signal can be used for both PUCCH and PUSCH demodulation. Therefore, it is also possible to use the existing PUCCH reference signal as it is without further classification. In this case, there are more reference signal OFDM symbols in the time domain, and it is also possible to divide and use resources of the reference signal exclusively for PUSCH.
  • the new PUCCH format 1 as the orthogonal spreading length is changed from 3 to 2, the UE multiplexing allowance is reduced from the existing 36 UE support to 24 UE support in consideration of the maximum cyclic shift 12.
  • the UE when frequency hopping is additionally removed, the UE can be extended to support 48 UEs.
  • the added PUSCH channel can be transmitted by applying the DFT-S-OFDM scheme applied in the existing uplink.
  • FIG. 13 shows a new PUCCH format 1 structure per slot suitable for a small cell to which a PUSCH dedicated reference signal is allocated.
  • 1 or 2 bit information is transmitted by applying an orthogonal code having a length of 4 by considering 4 OFDM symbols in a time domain.
  • a reference signal has a total of three orthogonal resources in the time domain to configure a PUCCH format.
  • FIG. 12 a structure in which time-domain spreading for transmission of conventional PUCCH information is reduced from 4 symbols to 2 symbols in a PUCCH format 1 suitable for a small cell, and an interval of about 2 symbols additionally generated in a slot is allocated as PUSCH data.
  • the PUSCH dedicated reference signal allocation is possible.
  • the corresponding reference signal is used for both the PUCCH and PUSCH demodulation. Can't. Therefore, it is desirable to allocate a dedicated RS for the new PUCCH format 1 and to separately allocate the added PUSCH dedicated RS.
  • the new PUCCH format 1 uses a spread code having a length of 2, it is preferable to maintain a one-to-one mapping relationship for user multiplexing by applying a time spread of the same length even for a PUCCH dedicated reference signal.
  • the PUSCH includes transmitting data other than the information defined in the existing PUCCH format 1/2/3, including transmission of new control information not previously defined.
  • the present invention proposes a method of allocating some symbols of the existing PUCCH format 2 as PUSCH resources and simultaneously transmitting the PUCCH and the PUSCH in the same PRB. As shown in FIG.
  • three OFDM symbols and one reference signal are defined as a new PUCCH format 2, and two OFDM symbols and one reference signal symbol are allocated to a PUSCH.
  • the number of symbols between the PUCCH and the PUSCH can be arbitrarily set.
  • the PUCCH and the PUSCH are not distinguished, and the user can use them to demodulate the PUCCH and the PUSCH.
  • PUCCH formats 1 and 2 new structures for PUCCH formats 1 and 2 are proposed.
  • the new PUCCH formats 1 and 2 coexist in the same PRB.
  • the distinction between PUCCH formats can be distinguished by applying different cyclic shifts of ZC sequences. Therefore, the PUCCH region to which the ZC sequence is applied is preferably kept the same between formats 1 and 2. For example, in FIG. 13 and FIG. 14, if the previous four symbol periods are set to the PUCCH region and cyclic shifts of different ZC sequences are used, they can coexist in the same PRB.
  • PUSCH can be distinguished from each other since it is assigned to a specific UE.
  • the reference signal can be distinguished by the same ZC sequence cyclic shift, it may be desirable to adjust the position and number of reference signals between PUCCH formats in consideration of the importance of the reference signals. Further, even in the case of coexistence with the legacy PUCCH, it is possible to coexist by differently changing the cyclic shift of the ZC sequence. In this case, in order to minimize interference in the legacy PUCCH, it is preferable to consider a ZC sequence spreading scheme in which the PUSCH structure is the same.
  • 16 illustrates an interference scenario considering adjacent macro cells in a small cell environment.
  • BS1, BS2 is a base station of the macro cell
  • MS2 and MS5 is a macro MS connected to BS1
  • MS3 is a macro MS connected to BS2
  • MS1 is a femto MS connected to Femto1
  • MS4 is a MS connected to Femto2.
  • Large circles and small circles represent the coverage of Macro BS and Femto BS, respectively. That is, since the macro BS transmits at a large power and the femto BS transmits at a small power, coverages are different.
  • Such a network layout can cause the following problems.
  • Downlink and Femto of Macro also Downlink: When downlink transmission of Macro BS to MS2, downlink performance of MS2 is degraded by downlink signal of BS of Femto1 (Femto near MS2).
  • Downlink and Femto of Macro Uplink Downlink performance of MS2 is degraded by the signal of Femto1's MS1 (Femto MS near MS2) when Macro BS transmits downlink to MS2.
  • Uplink and Femto of Macro are Downlink and Femto1 is close to BS1: When uplink transmission of macro MS2 to BS1, downlink signal of Femto1 (Femto close to BS1) degrades uplink performance of MS2.
  • the terminal In order to effectively mitigate the interference between the various macro-small cells (assuming femtocell here), it is necessary for the terminal to transmit the information of the peripheral interference to the base station (macro or femtocell base station). For example, when a terminal accessing a femtocell is difficult to receive an uplink signal of a corresponding terminal to a femtocell due to an uplink signal of a terminal to which a neighboring macro or an accessing terminal is connected (case 4 of FIG. 16), the corresponding femtocell A user signal detection & indicator for distinguishing whether the signal of the terminal is weak or a temporary problem or the surrounding interference is strong is necessary.
  • Such a signal is transmitted by the terminal periodically or aperiodically (according to the request of the terminal / base station) through a resource allocated in advance from the small cell base station, and the small cell base station receiving the signal is received as a neighboring interference based on the signal strength of the corresponding terminal. It can be used to determine whether a signal detection error has occurred or is a temporary error.
  • an effective mechanism for obtaining a degree of interference directly felt by a terminal connected to the small cell is also required.
  • a terminal connected to a macro becomes difficult to receive a signal from a macro cell due to a strong signal of a neighboring small cell base station (case 1 of FIG. 16)
  • the small base station is notified to the macro base station of the surrounding interference.
  • the transmission power or resources of the cell can be readjusted to mitigate or eliminate interference.
  • a new uplink information transmission channel capable of indicating the degree of interference at a fast time is required for the terminal, and even though various terminals transmit simultaneously, the base station can measure the degree of interference of the entire terminal through the strength of the received signal.
  • the grouped terminal may transmit the corresponding information through different new transmission channels, thereby allowing the base station to measure the degree of interference for each group.
  • 17 illustrates an example of cooperation between base stations based on feedback of a terminal as a method for controlling interference between macro-small cells.
  • a plurality of terminals receive signals from a plurality of base stations and measure the degree of interference of neighboring base stations (eg, I UE1 or I UE2 ).
  • a terminal that senses interference above a certain level transmits interference information to a serving base station accessed through a newly defined interference information transmission channel.
  • Receiving the base station determines whether the interference control of the neighboring cell is necessary based on the interference information received from one or more terminals, and if necessary to transmit the control information or interference information to the neighboring base station through the interface between the base stations, such as x2 interface send.
  • FIG. 18 illustrates a process of controlling interference by a base station grasping an interference state of a terminal in a method for controlling interference between macro-small cells.
  • a terminal allowed for uplink resource allocation and scheduling from a base station transmits uplink data through a PUSCH and fails in the process of demodulating the uplink data.
  • the UE In the case of the base station, the UE is considered to have transmitted the uplink data through the PUSCH, but the terminal that missed the UL grant may not have transmitted the PUSCH, and also transmitted the PUSCH, but because the interference of the neighboring base stations is too large The base station may not have demodulated the PUSCH. Therefore, it is important for the base station to determine whether the corresponding terminal is experiencing interference in order to receive the uplink data of the terminal.
  • the base station requests the terminal to transmit a preset user signal detection signal (User Signal Detection Signal), and the terminal receives the transmission through the newly designed USD channel.
  • a preset user signal detection signal User Signal Detection Signal
  • the base station may determine whether the corresponding terminal is experiencing interference or a simple link failure, and may perform reconnection or access state check, such as checking the keep alive of the terminal, or may perform an interference control request to a neighboring base station.
  • FIG. 19 illustrates a detailed operation of a base station for detecting a user signal.
  • the USD signal may obtain specific modulated information or may be in the form of power / energy detection indicating the strength of a detection signal.
  • the base station determines whether the USD signal is present (DTX detection). In this case, when detecting by DTX, when the base station performs the maximum retransmission, the process of rechecking the access state of the terminal is performed.
  • interference information (or link level information between a corresponding UE and a base station) is obtained through a USD signal rather than a DTX, and based on this, it is determined whether interference control of a neighboring cell is performed. If interference control is required, an interference control request is made to a neighboring base station through an x2 interface or the like, HARQ retransmission is performed based on the maximum retransmission, or the connection state of the UE is rechecked.
  • 3GPP TS 36.211 V11.1.0 2012-12
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 11
  • the conventional PUCCH format 1 applies time-domain spreading to orthogonal codes of length 4 in four OFDM symbol intervals for ACK / NACK or SR transmission, and orthogonal codes of length 3 Is used for time spreading of the reference signal region.
  • the orthogonal code used is shown through Table 1 and Table 2.
  • Table 1 and Table 2 the number of symbols in the reference signal and the information transmission interval are different, and one of length 4 orthogonal codes is not used to maintain one-to-one mapping between time-domain spreading codes.
  • sequence indexes 0, 1, and 2 selectively maintain one-to-one mapping of three sequences between orthogonal code lengths 4 and 3, as shown in Tables 1 and 2. Therefore, [+1 +1 -1 -1], which is an orthogonal code of length 4, can be used for further other purposes.
  • a modulation scheme considering a demodulation method such as noncoherent is used to convert the above-described interference level information into an energy / power level. It is possible to modulate and transmit interference information of limited (eg, 1 to 2 bit information) level.
  • the existing PUCCH Format 1 is reused, and the interference, control information, etc. suitable for the small cell are transmitted by using [+1 +1 -1 -1], which is not currently used, as a time domain spreading code. Can be.
  • the reference signal uses all three DFT codes in PUCCH Format 1, so that a new channel of the corresponding length 4 can be transmitted without the reference signal.
  • the small cell dedicated control information may transmit the user signal detection information mentioned above, or may transmit power / energy level interference information that measures a degree of interference as a sum of power / energy levels transmitted by a plurality of terminals. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신에 관한 것으로 더욱 상세하게는 무선통신 시스템에서 제어신호를 전송하는 방법에 관한 것이다. 이를 위해 본 발명은, 하나의 시간-주파수 자원내에 제어채널과 데이터 채널이 공존 가능한 새로운 구조를 제안하고, 이를 통해 무선자원의 효율을 높인다. 데이터와 제어채널은 시분할방식으로 상호 공존하며, 공존하는 제어채널은 제어신호와 참조신호의 영역을 새로이 할당하여, 제어신호의 신뢰도를 유지하도록 제안하고 있다. 또한, 인접셀 간의 간섭을 측정하거나, 이를 제어하기 위한 보조 제어 신호를 새로이 제안하고, 이를 통해 기지국/단말의 간섭 제어 방법을 제안한다. 또한 제안된 보조 제어 신호를 전송하기 위한 새로운 제어 채널 구조를 설계하고, 이를 통해 기존의 레거시 단말과 공존이 가능하도록 제안하여, 레거시 단말의 오동작을 방지하기 위한 기지국-단말간의 관련 정보 송수신 방법을 제안하고 있다.

Description

단말 제공 제어신호를 통한 셀간 간섭 제어
본 발명은 무선 통신에 관한 것으로 더욱 상세하게는 무선통신 시스템에서 제어신호를 전송하는 방법에 관한 것이다.
WCDMA(Wideband Code Division Multiple Access) 무선 접속(radio access) 기술을 기반으로 하는 3GPP(3rd Generation Partnership Project) 무선 통신 시스템은 전세계에서 광범위하게 전개되고 있다. WCDMA의 첫번째 진화 단계로 정의할 수 있는 HSDPA (High Speed Downlink Packet Access)는 중기적인(mid-term) 미래에 높은 경쟁력을 가지는 무선 접속 기술을 3GPP에 제공한다.
장기적인 미래에서 높은 경쟁력을 제공하기 위한 것으로서 E-UMTS가 있다. E-UMTS는 기존의 WCDMA UMTS에서 진화한 시스템으로 3GPP에서 표준화 작업을 진행하고 있다. E-UMTS는 LTE(Long Term Evolution) 시스템이라 불리기도 한다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 8 또는 그 이후 release를 참조할 수 있다.
E-UMTS는 크게 단말(User Equipment; UE)과 기지국, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway; AG)로 구성된다. 통상적으로 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시 송신할 수 있다. LTE 시스템에서는 다양한 서비스를 하향 전송하기 위해 직교주파수 분할 다중화 방식(Orthogonal frequency divisional multiplexing; OFDM)과 다중안테나(Multi-input Multi-out; MIMO)를 사용하고 있다.
OFDM은 고속 데이터 하향링크 접속 시스템을 대표한다. OFDM의 이점은 할당된 전체 스펙트럼이 모든 기지국에 의해 사용될 수 있는 높은 스펙트럼 효율성이다. OFDM 변조에서 전송 대역은 주파수 영역에서 복수의 직교하는 부반송파로 나누어지고, 시간 영역에서 복수의 심볼로 나누어진다. OFDM은 전송 대역을 복수의 부반송파로 분할하므로 부반송파 당 대역폭은 감소하고 반송파당 변조 시간은 증가한다. 상기 복수의 부반송파가 병렬로 전송되므로, 특정 부반송파의 디지털 데이터 또는 심볼 전송률은 단일 반송파보다 낮아진다.
다중안테나(Multiple input multiple output; MIMO) 시스템은 복수의 송수신 안테나를 사용하는 통신 시스템이다. MIMO 시스템은 송수신 안테나의 수가 증가함에 따라 추가적인 주파수 대역폭의 증가 없이 채널 용량을 선형적으로 증가시킬 수 있다. MIMO 기술은 다양한 채널 경로를 통과한 심볼을 이용하여 전송 신뢰도를 높일 수 있는 공간 다이버시티(spatial diversity) 방식과, 복수의 송신 안테나를 사용하여 각 안테나가 동시에 별개의 데이터 스트림을 전송하여 전송 레이트를 증가시키는 공간 멀티플렉싱(spatial multiplexing) 방식이 있다.
MIMO 기술은 송신단에서 채널 정보를 알고 있는지 여부에 따라 크게 개-루프(open-loop) MIMO 기술과 폐-루프(closed-loop) MIMO 기술로 분류될 수 있다. 상기 개-루프 MIMO 기술에서 송신단은 채널 정보를 알고 있지 않다. 상기 개-루프 MIMO 기술의 예로는 PARC(per antenna rate control), PCBRC(per common basis rate control), BLAST, STTC, 랜덤 빔포밍(random beamforming) 등이 있다. 반면, 상기 폐-루프 MIMO 기술에서 송신단은 채널 정보를 알고 있다. 폐-루프 MIMO 시스템의 성능은 상기 채널 정보를 얼마나 정확하게 알고 있느냐에 따라 좌우된다. 상기 폐-루프 MIMO 기술의 예로는 PSRC(per stream rate control), TxAA 등이 있다.
채널 정보란 복수의 송신 안테나 및 복수의 수신 안테나 간의 무선 채널 정보(예, 감쇄, 위상 편이 또는 시간지연 등)를 의미한다. MIMO 시스템에서는, 복수의 송수신 안테나 조합에 의한 다양한 스트림 경로가 존재하고, 다중 경로 시간 딜레이로 인해 채널 상태가 시간에 따라 시간/주파수 영역에서 불규칙하게 변하는 페이딩 특성을 갖는다. 따라서, 송신단은 채널 추정을 통하여 채널 정보를 산출한다. 채널 추정이란 왜곡된 전송 신호를 복원 하기 위해 필요한 채널 정보를 추정하는 것이다. 예를 들어, 채널 추정은 반송파의 크기 및 기준 위상을 추정하는 것을 말한다. 즉, 채널 추정은 무선구간 또는 무선채널의 주파수 응답을 추정하는 것이다.
고속의 패킷 전송을 위한 다양한 송신 또는 수신 기법들을 구현하기 위해서는 시간, 공간 및 주파수 영역에 대한 제어신호 전송이 필수불가결한 요소이다. 제어신호를 전송하는 채널을 제어 채널이라 한다. 상향링크 제어신호로는 하향링크 데이터 전송에 대한 응답인 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호, 하향링크 채널품질을 가리키는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), RI(Rank Indicator) 등 여러 가지 종류가 있을 수 있다.
일반적으로 제어 채널은 데이터 채널에 비해 더 한정된 시간-주파수 자원을 사용한다. 시스템의 주파수 효율(spectral efficiency) 및 다중 사용자 다이버시티 이득을 높이기 위해서는 무선 채널의 상태 정보 피드백이 필요하다. 따라서, 고용량의 피드백을 위한 효율적인 제어채널 설계는 불가피하다. 또한, 단말의 전력 소모를 낮추기 위해 좋은 PAPR(Peak-to-Average Power Ratio)/CM(Cubic Metric) 특성을 갖도록 제어채널이 설계되어야 한다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8 및 이후를 기반으로 하는 LTE(long term evolution) 이동통신 표준에서는 3GPP TS 36.211 V8.4.0 (2008-09) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 나타난 바와 같이, LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDSCH(Physical Downlink Control Channel)과 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
하향링크 제어채널인 PDCCH는 단말의 PDSCH 수신을 위한 하향링크 그랜트(grant)와 단말의 PUSCH 전송을 위한 상향링크 그랜트를 나른다. 상향링크 제어채널인 PUCCH는 상향링크 제어신호, 예를 들어, HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호, 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 전송을 위한 무선 자원 할당을 요청하는 SR(scheduling request) 등을 나른다. 제어채널은 전송 용량보다 전송 신뢰성이 중요하다고 할 수 있다. 제어채널의 전송에 오류가 발생하면, 데이터 채널을 아예 수신할 수 없거나, 스케줄링이나 HARQ 수행에 심각한 영향을 초래할 수 있기 때문이다. 따라서, 일반적으로 제어채널의 페이로드(payload)는 수 비트 내지 수십 비트 이내로 한정적이다. 또한, 상향링크 제어채널은 단말의 전원 관리를 위해 PAPR(Peak-to-Average Power Ratio)/CM(cubic metric) 특성이 중요하다. 긴 대기 시간과 낮은 배터리 소모를 위해 상향링크 제어채널은 낮은 PAPR/CM 특성을 가지는 것이 필요하다.
본 발명의 목적은 공통 참조 신호를 이용하여 스몰셀에 적합한 참조 신호 전송을 위한 방법을 제공하는 것이다.
본 발명의 다른 목적은 스몰셀의 채널 환경에 적합한 공통참조 신호, 복조 참조 신호 전송 및 데이터 추가 자원할당을 위한 장치를 제공하는 것이다.
통신 시스템이 발전하면서 매번 통신 기법에 대해서 새로운 시스템을 정의하기 보다는 기존 시스템의 성능을 개선시켜서 최소의 비용으로 목표를 달성하는 방법을 채용한다. 특히 통신시스템의 경우에는 단순히 단말이나 기지국의 RF 인터페이스 뿐만 아니라 모든 기반 시설에 영향을 줄 수 있으므로, 이의 변경을 최소화하는 방안이 상업적으로 의미를 갖게 되고, 이러한 환경에서 새로운 버전의 통신 시스템은 기존 시스템의 특징을 유지해야 하는 제약을 가지게 된다. 특히 주요 요구사항은 기존 시스템의 성능을 떨어뜨리지 않고 새로운 시스템의 기능을 제공하는 것이며 이러한 상황은 현재 LTE/LTE-A release 8/9/10/이후 버전의 관계에서 발생하고 있다. 이러한 상황은 IEEE 802.16m이나 그 외 통신 시스템에서도 레거시 시스템 (legacy system)의 동작을 보장해 줘야 한다는 조건이 있을 때 마찬가지로 발생한다. 성능 개선의 기본은 변조 오더 (order)를 증가시키거나 안테나 수를 늘리거나 간섭으로 인한 영향을 줄이거나 하는 등의 기법들이 필요하게 되는데, 이 경우 더 많은 피드백 정보가 필요하게 된다. 다시 말해서, 고속의 패킷 전송을 위한 다양한 송신 또는 수신 기법들을 구현하기 위해서는 시간, 공간 및 주파수 영역에 대한 제어신호 전송이 필수불가결한 요소이다. 제어신호를 전송하는 채널을 제어채널이라 한다. 수신기에서의 귀환 정보를 기반으로 전송기에서 효과적인 재전송을 수행함으로써 한정된 무선자원의 효율을 극대화하는 방안들이 활발히 논의되고 있다.
제어신호의 신뢰성은 시스템의 신뢰성과 관련이 있으므로 제어채널에서 제어신호의 검출에 따른 신뢰성을 높여야 한다. 단말 용량 및 전송 용량을 증가시키면서 변화하는 채널 환경에 강인한 제어채널 구조가 필요하다. 나아가, 스몰셀과 같이 피코셀, 펨토셀 등 100m이내의 셀 커버리지를 갖는 다양한 셀 토폴로지에서는 각 셀에서 겪는 무선채널의 지연 특성이 큰 커버리지의 셀과 상이하고, 이로 인해 크게 2가지의 채널 특성을 고려하여 제어채널 구조 설계가 필요하다.
1)무선 채널의 주파수 선택적 특성 (frequency selectivity): 지연 확산 (delay spread)으로 정의되는 무선 채널은 다중 경로를 통해 다양한 지연 시간을 가지고 신호가 수신되게 된다. 이로 인해, 무선 채널은 임펄스 함수 (impulse function)으로 정의되지 않고, 복수의 delay로 정의되는 지연 프로파일을 갖는다. 이는 주파수 영역에서 일정한 채널 이득을 제공하지 못하고, 주파수에서의 채널 변화를 야기하게 되어, 이를 주파수 선택적 특성을 갖는다고 한다. 스몰셀의 경우, 커버리지가 작고, 대부분 실내 등 채널 특성이 이동통신의 열악한 환경과 달라 지연확산 시간이 수 ns이하로 줄어들 수 도 있다. 이는 결국 주파수 선택적 특성이 심각하지 않아 코히어런트 대역폭 (coherent bandwidth)를 크게 갖게 되어, 인접 부반송파간의 채널 특성이 유사하게 된다.
2)무선 채널의 시간 선택적 특성 (time selectivity): 스몰셀로 인해 빈번한 핸드오버 발생을 줄이기 위해서 해당 스몰셀의 경우 보행자 또는 정지된 사용자가 사용하는 것이 바람직하고, 이로 인해 단말의 이동 특성이 저속/정지로 제한될 수 있다. 이 경우, 무선채널의 변화에 영향을 주는 도플러효과가 감소하게 되어 채널의 시간 선택적 특성 (time selectivity)이 고속 이동체와 달리 인접 심볼간의 채널 변화량이 감소하게 된다. 이는 코히어런트 시간 (coherent time)이 길어져서 시간상으로 인접한 부반송파 간의 채널 변화가 적게된다.
위와 같이 스몰셀이 갖는 시간-주파수 채널 변화의 강점과 함께, 스몰셀내에 단말은 매크로셀 대비 작아, 제어채널의 멀티플렉싱 특징에 대해서도 재고려 필요하다. 다시 말해서, 현재 레거시 제어채널 구조에서 자원의 효율적 활용을 위해 제어채널 자원의 오버헤드를 줄이고, 스몰셀의 커버리지에서 지원 가능한 제어채널 구조에서 최소한의 자원으로 매크로 대비 작은 수의 단말을 지원하는 방안이 필요하다. 또한, 스몰셀 만을 지원하기 위한 단말의 신규 제어 채널 정보를 전송하기 위한 새로운 자원 확보도 병행되어 설계되는 것이 바람직하다.
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 상향링크 제어 신호를 전송하는 무선 통신 시스템에서 스몰셀 환경을 고려하여 상향링크 제어채널의 자원을 효율적으로 활용하여 제어정보를 전송 및 그의 시그널링 방법을 제공하는 것이다.
본 발명의 다른 목적은 스몰셀 지원 단말을 위한 전용 제어 정보를 확장하여 새로운 상향 링크 제어채널 전송 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상향링크 제어 채널을 확장하는 경우에 역지원성(backward compatibility)을 가지면서 참조 신호를 전송/수신하는 방법 및 그의 시그널링 방법을 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위해, 본 발명의 실시예에 따른 상향 링크용 제어 신호들을 사용하는 셀룰러 통신 시스템에 있어서, 하나의 시간-주파수 자원 할당 영역 내에 제어신호전송 채널과 데이터 전송 채널이 공존하는 셀룰러 통신 시스템을 제공한다. 상기 하나의 시간-주파수 자원 할당영역은 하나의 Physical Resource Block을 특징으로 하며, 상기 제어신호전송채널은 상향링크 제어 채널로서 PUCCH를 특징으로 한다. 상기 제어신호전송채널과 데이터 전송 채널의 공존은 제어 채널의 슬롯 단위 주파수 홉핑을 사용하지 않는 것을 특징으로 하며, 상기 제어신호전송채널과 데이터 전송 채널의 공존은 하나의 서브프레임 내에서 Time Division Multiplexing을 통해 제공된다.
일 측면에서 본 발명은 무선 통신 시스템에서의 제어신호를 전송하는 방법에 있어서, 상기 제어 신호 전송을 위해 슬롯 (slot)내의 OFDM 심볼을 할당하는 단계; 데이터 전송을 위해 슬롯 내의 OFDM 심볼을 할당하는 단계; 제어 및 데이터 전송을 위해 공통 참조 신호를 할당하는 단계를 포함하는 제어 신호 전송 방법을 제공한다. 상기 제어신호 및 데이터 전송을 위해 할당하는 슬롯내의 OFDM 심볼의 수는 4 이하인 것을 특징으로 하며, 상기 참조 신호 전송을 위해 할당하는 슬롯 내의 OFDM 심볼의 수는 3 이하인 것을 특징으로 한다. 동일한 시간-주파수 자원 내에서 제어 및 데이터 채널을 동일한 사용자에게 할당하는 것을 허용하며, 제어신호 전송을 위해 길이 4이하의 시간영역 확산 부호를 사용하는 것을 특징으로 할 뿐만 아니라, 제어신호는 ACK/NACK, SR로서 1 또는 2 bit 정보 제어 정보 전송을 특징으로 하는 제어 신호 전송 방법을 제공한다.
다른 측면에서, 본 발명은 무선 통신 시스템에서의 제어신호를 전송하는 방법에 있어서, 상기 제어 신호 전송을 위해 슬롯 (slot)내의 OFDM 심볼을 할당하는 단계; 데이터 전송을 위해 슬롯 내의 OFDM 심볼을 할당하는 단계; 제어 및 데이터 전송을 위해 공통 참조 신호를 서로 다른 심볼에 할당하는 단계를 포함하는 제어 신호 전송 방법을 제공한다. 상기 제어신호 및 데이터 신호 전송을 위해 할당하는 슬롯내의 OFDM 심볼의 수는 4 이하이며, 상기 참조 신호 전송을 위해 할당하는 슬롯 내의 OFDM 심볼의 수는 3 이하인 것을 특징으로 한다. 동일한 시간-주파수 자원 내에서 제어 및 데이터 채널을 동일한 사용자에게 할당하는 것을 허용하지 않으며, 제어신호 전송을 위해 길이 4이하의 시간영역 확산 부호를 사용하는 것을 특징으로 한다. 제어신호는 ACK/NACK, SR, CQI을 포함하는 것을 특징으로 한다.
다른 측면에서, 본 발명은 무선 통신 시스템에서의 복수의 제어 신호 및 데이터를 하나의 서브프레임에 전송 방법에 있어서, 제 1 제어 신호 전송 자원과 제 2 제어신호의 전송 자원 동일한 심볼로 구성하는 단계; 제 1 제어 신호 전송 자원 내의 참조신호와 제 2 제어 신호 전송 자원 내의 참조 신호를 동일한 심볼에 할당하는 단계; 제 1 제어 신호와 제 2 전송 신호를 구분하기 위해 특정 시퀀스의 순환 시프트를 서로 다르게 할당하는 단계; 및 상기 서브프레임을 전송하는 단계를 포함하는 제어 신호 및 데이터 전송 방법을 제공한다. 상기 제 1 제어 신호 및 제 2 제어 신호는 PUCCH format 1, 2, 또는 3을 특징으로 하며, 상기 특정 시퀀스는 Zad-off Chu 시퀀스의 특정 root index를 가진다. 또한, 상기 제어 신호 전송 자원은 하나의 서브프레임내의 데이터 전송 자원과 겹치지 않는 것을 특징으로 하는 제어 신호 및 데이터 전송 방법을 제공한다.
다른 측면에서, 본 발명은 매크로 셀을 포함하는 복수의 기지국이 존재하는 셀룰러 통신 시스템에 있어서, 단말이 복수의 기지국으로부터 수신하는 신호로부터 인접 셀의 간섭 정보를 획득하는 단계; 단말이 인접셀의 간섭 정보를 serving 기지국으로 전송하는 단계; 하나 또는 그 이상의 단말로부터 수신한 간섭 정보를 기반으로 주변 셀 간섭 제어 요청을 결정하는 단계; 간섭 제어 정보를 주변 기지국에 전송하는 셀룰러 통신 시스템을 제공한다. 상기 인접 셀의 간섭 정보는 스몰셀로서 피코셀, 마이크로셀, 펨토셀을 포함하며, 상기 단말이 인접셀 정보를 기지국에게 전송하는 시간-주파수 자원은 단말간에 공통 자원으로 사용하며, 상기 공통 자원으로 수신하는 복수 단말의 간섭 정보는 전력 또는 에너지 수준의 검출을 통해 정보를 획득하는 것을 특징으로 하는 셀룰러 통신 시스템을 제공한다.
다른 측면에서, 본 발명은 매크로 셀을 포함하는 복수의 기지국이 존재하는 셀룰러 통신 시스템에 있어서, 기지국이 단말의 신호 검출을 위한 무선 자원을 단말에게 할당하는 단계; 할당된 자원을 통해 단말의 추가 제어 정보를 전송하는 단계; 수신된 단말의 제어 정보를 기반으로 기지국이 제어 신호를 생성하고 전송하는 단계를 포함하는 셀룰러 통신 시스템을 제공한다. 상기 기지국이 할당하는 자원은 PUCCH의 영역을 지시하는 것을 특징으로 하며, 상기 추가 제어 정보는 기지국에게 단말의 신호 세기를 검출하거나, 주변 셀의 간섭 정보를 제공하는 것을 특징으로 한다. 상기 기지국이 생성하는 제어 신호는 단말의 접속상태를 확인하기 위한 단말 요청 정보인 것을 특징으로 하며, 상기 기지국이 생성하는 제어 신호는 주변 기지국의 간섭 제어를 위한 정보를 포함하는 것을 특징으로 하고, 상기 기지국의 새로운 제어 정보는 단말이 전송한 추가 제어 정보를 기반으로 선택적으로 동작한다. 또한, 상기 기지국의 새로운 제어 정보는 HARQ 재전송의 최대 횟수를 달성한 이후에 전송하는 것을 특징으로 한다.
다른 측면에서, 본 발명은 무선 통신 시스템에서의 제어신호를 전송하는 방법에 있어서, 상기 제어 신호 전송을 위해 슬롯 (slot)내의 4개의 OFDM 심볼을 할당하는 단계; 제어 신호를 전송하기 위해 길이 4의 [+1, +1, -1, -1] 시퀀스를 이용하여 시간영역 하는 단계를 포함하는 제어 신호 전송 방법을 제공한다. 상기 제어신호는 커버리지가 작은 셀 전용 제어정보를 특징으로 하며, 상기 제어 신호는 사용자 신호 세기를 검출하는 신호, 주변 셀의 간섭을 나타내는 정보를 포함한다. 제어신호는 M-QAM 변조를 통해 전송하거나 에너지 또는 전력 수준의 변화로 변조하는 것을 특징으로 하며, PUCCH Format 1 또는 2와 공존이 가능한 것을 특징으로 한다.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.
본 발명의 실시예에 따르면, 상향링크 제어 신호의 오버헤드를 최소화 하고, 데이터와 제어 신호 자원의 효율을 향상 시킬 수 있다.
또한 본 발명의 실시예에 따르면, 주변셀간의 간섭을 측정하고, 이를 효과적으로 관리하기 위한 제어 신호 채널 구조 및 동작원리를 제공한다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 3GPP LTE에서 사용되는 라디오 프레임의 구조를 나타낸다.
도 2는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸다.
도 3은 하향링크 라디오 프레임의 구조를 나타낸다.
도 4는 3GPP LTE에서 상향링크 제어신호 전송을 위한 시간-주파수 자원 구조를 나타낸다.
도 5는 PUCCH 포맷 1/1a/1b로서 스케쥴링 요청 (scheduling request, 이하 SR) 신호 및ACK/NACK 전송을 위한 한 슬롯에서의 제어채널 구조를 나타낸다.
도 6은 하향링크 반송파 결합을 지원하는 ACK/NACK 전송 개념도를 나타내고 있다.
도 7는 PUCCH 포맷 2로서 채널상태정보 (Channel Quality Information, 이하 CQI) 전송을 위한 한 슬롯에서의 제어채널 구조를 나타낸다.
도 8는 PUCCH 포맷 3로서 복수 반송파 결합에 대한 ACK/NACK 정보 전송을 위한 제어채널 구조를 나타낸다.
도 9는 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 제거한 방법을 나타낸다.
도 10은 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 제거 후 PUSCH를 추가할당 하는 방법을 나타낸다.
도 11은 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 고려하고, PUSCH를 추가할당 하는 방법을 나타낸다.
도 12는 참조신호 공유를 적용한 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 1 구조를 나타낸다.
도 13은 PUSCH 전용 참조신호를 할당한 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 1 구조를 나타낸다.
도 14는 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 2 구조를 나타낸다.
도 15는 ZC 시퀀스의 순환 시프트를 이용하여 동일 PRB내에 서로 다른 PUCCH 포맷 및PUSCH가 공존하는 예를 나타낸다.
도 16는 스몰셀 환경에서 인접 매크로 셀을 고려한 간섭 시나리오를 나타내고 있다.
도 17은 매크로-스몰셀간의 간섭 제어 방법으로 단말의 피드백 기반의 기지국간 협력의 예를 보이고 있다.
도 18은 매크로-스몰셀간의 간섭 제어 방법으로 기지국이 단말의 간섭 상태를 파악하여 간섭을 제어하는 과정을 나타내고 있다.
도 19은 사용자 신호 검출을 위한 기지국의 구체적인 동작과정을 나타내고 있다.
도 20는 사용자 신호 검출과 같이 스몰셀 전용 제어 정보 전송 채널 구조를 제안하고 있다.
본 명세서에 기재된 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 명확히 설명하기 위한 것이므로, 본 발명이 본 명세서에 기재된 실시예에 의해 한정되는 것은 아니며, 본 발명의 범위는 본 발명의 사상을 벗어나지 아니하는 수정예 또는 변형예를 포함하는 것으로 해석되어야 한다.
본 명세서에서 사용되는 용어와 첨부된 도면은 본 발명을 용이하게 설명하기 위한 것이고, 도면에 도시된 형상은 필요에 따라 본 발명의 이해를 돕기 위하여 과장되어 표시된 것이므로, 본 발명이 본 명세서에서 사용되는 용어와 첨부된 도면에 의해 한정되는 것은 아니다.
본 명세서에서 본 발명에 관련된 공지의 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에 이에 관한 자세한 설명은 필요에 따라 생략한다.
첨부된 도면을 참조하여 설명되는 본 발명의 바람직한 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징이 무선 통신 시스템에 적용된 예들이다. 바람직하게, 상기 무선 통신 시스템은 SC-FDMA 방식, MC-FDMA 및 OFDMA 방식 중에서 적어도 하나를 지원할 수 있다. 이하, 각종 채널을 통해 추가 참조 신호를 할당하는 방법에 대해 예시한다. 본 명세서는 3GPP LTE의 채널을 기본으로 설명하지만, 본 명세서의 예시는 IEEE 802.16(또는 이의 리비전 버전)의 제어채널이나 다른 시스템의 제어 채널을 활용한 참조 신호 자원할당 방법에도 적용될 수 있다.
본 명세서에서 사용되는 약어는 다음과 같다.
RE: 자원요소 (Resource element)
REG: 자원요소 그룹 (Resource element group)
CCE: 제어 채널 요소 (Control channel element)
CDD: 순환 딜레이 다이버시티 (Cyclic delay diversity)
RS: 참조 신호 (Reference signal)
CRS: 셀 특정 참조 신호 (Cell specific reference signal) 또는 셀 공통 참조 신호 (Cell common reference signal)
CSI-RS: 채널 측정용 참조 신호 (Channel state information reference signal)
DM-RS: 데이터 채널 복조용 참조 신호 (Demodulation reference signal)
MIMO: 다중-입력 다중-출력 (Multi-input multi-output)
PBCH: 물리 방송 채널 (Physical broadcast channel)
PCFICH: 물리 제어 포맷 지시자 채널 (Physical control format indicator channel)
PDCCH: 물리 하향링크 제어 채널 (Physical downlink control channel)
PDSCH: 물리 하향링크 공유 채널 (Physical downlink shared channel)
PHICH: 물리 H-ARQ 지시자 채널 (Physical hybrid-ARQ indicator channel)
PMCH: 물리 멀티캐스트 채널 (Physical multicast channel)
PRACH: 물리 랜덤 액세스 채널 (Physical random access channel)
PUCCH: 물리 상향링크 제어 채널 (Physical uplink control channel)
PUSCH: 물리 상향링크 공유 채널 (Physical uplink shared channel)
도 1은 3GPP LTE에서 사용되는 라디오 프레임의 구조를 나타낸다.
도 1을 참조하면, 라디오 프레임은 10ms (327200×Ts)의 길이를 가지며 10개의 균등한 크기의 서브프레임으로 구성되어 있다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성되어 있다. 각각의 슬롯은 0.5ms(15360×Ts)의 길이를 가진다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8 (약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(resource block)을 포함한다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 하나 이상의 서브프레임 단위로 정해질 수 있다. 상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸다. 도 2를 참조하면, 하향링크 슬롯은 시간 영역에서 NDL symb OFDM 심볼을 포함하고 주파수 영역에서 NDL RB 자원블록을 포함한다. 각각의 자원블록이 NRB sc 부반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서 NDL RB × NRB sc 부반송파를 포함한다. 도 2는 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부반송파를 포함하는 것으로 예시하고 있지만 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치 (Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다. 자원 그리드 상의 각 요소를 자원요소(resource element)라 하고, 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지시된다. 하나의 자원블록은 NDL symb × NRB sc 자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수 (NDL RB)은 셀에서 설정되는 하향링크 전송 대역폭 (bandwidth)에 종속한다.
도 3은 하향링크 라디오 프레임의 구조를 나타낸다.
도 3을 참조하면, 하향링크 라디오 프레임은 균등한 길이를 가지는 10개의 서브프레임을 포함한다. 각각의 서브프레임은 L1/L2 제어 영역 (Layer 1/Layer 2 control region)과 데이터 영역(data region)을 포함한다. 이하의 설명에서 특별히 다르게 언급하지 않는 한, L1/L2 제어 영역을 간단히 제어 영역으로 지칭하도록 한다. 제어 영역은 서브프레임의 첫 번째 OFDM 심볼로부터 시작되며 하나 이상의 OFDM 심볼을 포함한다. 제어 영역의 크기는 서브프레임 별로 독립적으로 설정될 수 있다. 제어 영역은 L1/L2 제어 신호를 전송하는데 사용된다. 이를 위해, 제어 영역에는 PCFICH, PHICH, PDCCH 등과 같은 제어 채널이 할당된다. 한편, 데이터 영역은 하향링크 트래픽을 전송하는데 사용된다. 데이터 영역에는 PDSCH가 할당된다.
도 4는 3GPP LTE에서 상향링크 제어신호 전송을 위한 시간-주파수 자원 구조를 나타낸다.
도 4를 참조하면, 전 시스템 대역의 양 끝 대역의 일부를 할당하여 채널구조를 설계하도록 되어 있고, 슬롯 기반의 주파수 도약을 통한 다이버시티 이득을 고려하고 있다. 이와 같은 한정된 제어 채널용 시간-주파수 자원에 대해 OFDM(A)의 주파수 효율 및 다중사용자 다이버시티 이득을 극대화하기 위해서는 무선채널의 상태 정보 피드백이 필요하고, 광대역 시스템에서 고용량의 피드백을 위한 효율적인 채널 구조 설계는 불가피하다.
도 5는 PUCCH 포맷 1/1a/1b로서 스케쥴링 요청 (scheduling request, 이하 SR) 신호 및ACK/NACK 전송을 위한 한 슬롯에서의 제어채널 구조를 나타낸다.
도 5를 참조하면, 도 4에서와 같이 하나의 서브프레임에서 슬롯 기반의 주파수도약을 통해 동일신호를 반복하여 전송함으로써 3dB 수준의 주파수 다이버시티 이득을 획득하게 된다. 위와 같은 시간-주파수 확산 ACK/NACK 신호 전송을 위해 기할당된 제어채널 영역은 단말이 상향링크 데이터 전송을 위한 SR 전송시에도 동일한 구조로 전송된다.
ACK/NACK 채널은 하향링크 데이터의 HARQ(Hybrid Automatic Repeat Request)를 수행하기 위한 ACK(Acknowledgment)/NACK(Negative-Acknowledgment) 신호가 전송되는 제어 채널이다. ACK/NACK 신호는 하향링크 데이터에 대한 송신 및/또는 수신 확인 신호이다. 도 5를 참조하면, 하나의 슬롯에 포함되는 7 OFDM 심벌 중 중간 부분의 3개의 연속되는 OFDM 심벌에는 참조신호(reference signal, RS)가 실리고, 나머지 4 OFDM 심벌에는 ACK/NACK 신호가 실린다. 참조신호는 슬롯 중간의 3개의 인접하는(contiguous) OFDM 심벌에 실린다.
미리 할당되는 대역 내에서 제어신호를 전송할 때, 다중화 가능한 단말 수 또는 제어 채널의 수를 높이기 위해 주파수 영역 확산과 시간 영역 확산을 동시에 적용한다. ACK/NACK 신호를 주파수 영역에서 확산시키기 위해 주파수 영역 확산 시퀀스를 기본 시퀀스(base sequence)로 사용한다. 주파수 영역 시퀀스로는 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스 중 하나인 Zadoff-Chu (ZC) 시퀀스를 사용할 수 있다.
인덱스 M인 ZC 시퀀스의 k번째 요소(element) c(k)는 다음과 같이 나타낼 수 있다.
수학식 1
Figure PCTKR2014003880-appb-M000001
Figure PCTKR2014003880-appb-I000001
여기서, N은 ZC 시퀀스의 길이로, 인덱스 M은 N이하의 자연수이고, M과 N은 서로(relatively) 소수(prime)이다. 서로 다른 순환 쉬프트(cyclic shift) 값을 갖는 기본 시퀀스를 적용하여 각 제어채널을 구분할 수 있다. 채널의 지연 확산(delay spread)에 따라 사용가능한 순환 쉬프트의 수는 달라질 수 있다. 주파수 영역 확산된 ACK/NACK 신호는 IFFT를 수행한 후 다시 시간 영역 시퀀스를 이용하여 시간 영역에서 확산된다. 예를 들어, ACK/NACK 신호는 4 OFDM 심벌에 대해 길이 4의 직교 시퀀스(w0, w1, w2, w3)를 이용하여 확산시킨다. 또한, 기준신호도 길이 3의 직교 시퀀스를 통해 확산시킨다. 이를 직교 커버링(orthogonal covering)이라 한다. 이를 통해 시간 영역에서 3개의 직교 커버링 묶음이 생성되고, ZC의 순환 쉬프트를 최대 12개를 사용하게 되면, 총 36명을 하나의 PUCCH Format 1 구조에서 멀티플렉싱 가능하다.
도 6은 하향링크 반송파 결합을 지원하는 ACK/NACK 전송 개념도를 나타내고 있다.
도 6을 참조하면, ACK/NACK 정보 전송은 하향링크 반송파와 밀접한 관련이 있어, 복수의 하향링크 반송파 결합의 경우에는 하나의 단말에 대하여 하향링크 component 반송파 당 하나씩, 전체적으로는 복수 개의 PDSCH가 동시에 스케줄링될 수 있다. 따라서 상향링크로 복수 개의 acknowledgement(하향링크 component 반송파 당 1개 혹은 공간다중화의 경우에는 2개의 acknowledgement)가 전달되어야 한다. PUCCH 포맷 1은 자원 선택(resource selection)을 사용하여 상향링크로 2비트보다 더 많은 acknowledgement를 지원하는데 사용될 수 있다. 상향링크로 4비트가 전송되어야 한다고 가정하자. 자원 선택을 통하여, 2비트는 어떠한 PUCCH 자원을 사용하는지를 알려주며 나머지 2비트는 첫 번째 2비트가 알려준 자원 위에서 정상적인 PUCCH 구조를 사용하여 전송된다. 도 6을 전체적으로는 총 4개의 PUCCH 자원이 필요할 때, 하나의 자원은 반송파 결합이 없는 경우에서와 동일한 규칙을 사용하여 첫 번째 CCE를 통하여 알려지게 되며(이때 스케줄링 할당은 primary component 반송파 위에서 전송되며 primary component 반송파에 관계된 것임을 가정), 나머지 자원들은 RRC 시그널링을 통하여 준 정적으로 설정된다. 4비트보다 더 많은 경우에는 LTE release 10에 추가된 PUCCH 포맷 3이 사용된다.
도 7는 PUCCH 포맷 2로서 채널상태정보 (Channel Quality Information, 이하 CQI) 전송을 위한 한 슬롯에서의 제어채널 구조를 나타낸다.
도 7을 참조하면, 도 4에서와 같이 하나의 서브프레임에서 슬롯 기반의 주파수도약을 통해 동일신호를 반복하여 전송함으로써 3dB 수준의 주파수 다이버시티 이득을 획득하게 된다. 위와 같은 제어 신호용 자원 구조에서 복수의 사용자를 고려한 제어신호 전송 방식은 시간 및 주파수 영역에서의 확산 부호를 통해 사용자를 구분하거나, 인접셀에 서로 다른 (상관특성을 고려하여) 확산부호를 할당하여 인접 셀간 간섭의 영향을 분산시키는 방법을 적용할 수 있게 된다. 예를 들면, 도 6에서와 같이 하나 또는 복수의 RB (1RB=12 subcarriers)에서 참조신호를 위해 2개의 OFDM 심볼을 사용하므로, 주파수 영역에 ZC 시퀀스의 순환 쉬프트를 활용하여 6 UE를 구분하고, 매 OFDM 심볼마다 QPSK변조된 상이한 CQI 정보를 매핑하여, 매 slot당 10 bits을 전송하게 된다. 다시 말해서, 하나의 subframe(1TTI = 1msec)에서 1/2 부호율을 갖는 채널부호를 적용하고, QPSK 변조방식을 적용하여 최대 10bits의 information bits을 전송하게 된다.
도 8는 PUCCH 포맷 3로서 복수 반송파 결합에 대한 ACK/NACK 정보 전송을 위한 제어채널 구조를 나타낸다.
도 8을 참조하면, 하향링크 반송파 결합에서 복수 개의 component 반송파 위로 동시에 전송이 이루어진 경우에는 복수 개의 HARQ acknowledgement가 피드백되어야 한다. 2개보다 더 많은 개수의 하향링크 component 반송파를 지원할 수 있는 단말은, 즉 HARQ acknowledgement로 4비트보다 더 많은 비트를 전송할 수 있는 단말은 PUCCH 포맷 3을 지원하여야 한다. PUCCH 포맷 3의 기본은 PUSCH에 사용되는 전송 방식과 동일한 DFT로 프리코딩된 OFDM이다. 해당 component 반송파에 대하여 설정된 전송모드에 따라 하향링크 component 반송파 당 1 혹은 2비트인 acknowledgement 비트는 스케줄링 요청 비트가 존재하는 경우에는 스케줄링 요청 비트와 연접이 되어 비트열을 이룬다. 이때 스케줄링되지 않은 전송블록들에 해당하는 비트들은 0으로 설정된다. 여기에 블록 코딩(block coding)이 가해진 뒤에 셀간 간섭을 랜덤하게 하기 위하여 셀-특정 스크램블링 시퀀스를 사용한 스크램블링이 수행된다. 이게 만들어진 48비트는 QPSK 변조된 이후에 2개의 그룹으로 나누어져서, 한 슬롯 당 12개의 QPSK 심볼을 전송하게 된다. 일반 CP를 가정하면 슬롯 당 7개의 OFDM 심볼이 있다. PUCCH 포맷 2의 경우와 유사하게 슬롯 당 2개의(확장 CP의 경우는 1개의) OFDM 심볼이 reference signal 전송에 사용되어, 5개의 심볼이 데이터 전송에 사용된다. 각 슬롯에서는 12개의 DFT로 프리코딩된 QPSK 심볼들이 5개의 가용한 DFTS-OFDM 심볼에서 전송된다. 셀간 간섭을 더욱 랜덤하게 하기 위하여, DFT 프리코딩 이전에 12개의 QPSK 심볼의 블록에 대하여 셀별로 다른 패턴으로 OFDM 심볼별로 달라지는 cyclic shift가 적용된다.
스몰셀과 같이 피코셀, 펨토셀 등 100m이내의 셀 커버리지를 갖는 다양한 셀 토폴로지에서는 각 셀에서 겪는 무선채널의 지연 특성이 큰 커버리지의 셀과 상이하고, 이로 인해 크게 2가지의 채널 특성을 고려하여 제어채널 구조 설계가 필요하다.
1)무선 채널의 주파수 선택적 특성 (frequency selectivity): 지연 확산 (delay spread)으로 정의되는 무선 채널은 다중 경로를 통해 다양한 지연 시간을 가지고 신호가 수신되게 된다. 이로 인해, 무선 채널은 임펄스 함수 (impulse function)으로 정의되지 않고, 복수의 delay로 정의되는 지연 프로파일을 갖는다. 이는 주파수 영역에서 일정한 채널 이득을 제공하지 못하고, 주파수에서의 채널 변화를 야기하게 되어, 이를 주파수 선택적 특성을 갖는다고 한다. 스몰셀의 경우, 커버리지가 작고, 대부분 실내 등 채널 특성이 이동통신의 열악한 환경과 달라 지연확산 시간이 수 ns이하로 줄어들 수 도 있다. 이는 결국 주파수 선택적 특성이 심각하지 않아 코히어런트 대역폭 (coherent bandwidth)를 크게 갖게 되어, 인접 부반송파간의 채널 특성이 유사하게 된다.
2)무선 채널의 시간 선택적 특성 (time selectivity): 스몰셀로 인해 빈번한 핸드오버 발생을 줄이기 위해서 해당 스몰셀의 경우 보행자 또는 정지된 사용자가 사용하는 것이 바람직하고, 이로 인해 단말의 이동 특성이 저속/정지로 제한될 수 있다. 이 경우, 무선채널의 변화에 영향을 주는 도플러효과가 감소하게 되어 채널의 시간 선택적 특성 (time selectivity)이 고속 이동체와 달리 인접 심볼간의 채널 변화량이 감소하게 된다. 이는 코히어런트 시간 (coherent time)이 길어져서 시간상으로 인접한 부반송파 간의 채널 변화가 적게 된다.
위와 같이 스몰셀이 갖는 시간-주파수 채널 변화의 강점과 함께, 스몰셀 내에 단말의 수는 매크로 셀 대비 작아, 제어채널의 멀티플렉싱 능력에 대해서도 재고려 필요하다. 다시 말해서, 현재 레거시 제어채널 구조에서 자원의 효율적 활용을 위해 제어채널 자원의 오버헤드를 줄이고, 스몰셀의 커버리지에서 지원 가능한 제어채널 구조에서 최소한의 자원으로 매크로 대비 작은 수의 단말을 지원하는 방안이 필요하다. 또한, 스몰셀 만을 지원하기 위한 단말의 신규 제어 채널 정보를 전송하기 위한 새로운 자원 확보도 병행되어 설계되는 것이 바람직하다.
위와 같은 스몰셀의 채널 특징과 함께, 현재 PUCCH 구조를 살펴보면, 포맷1의 경우, ZC 시퀀스의 순환시프트를 최대로 고려하면, 36 UE를 멀티플렉싱 가능하고, 포맷 2의 경우, 12 UE 멀티플렉싱이 가능하다. 스몰셀 시나리오의 경우, 일반적으로 매크로 셀 대비 사용자 UE가 많지 않으며, PUCCH 자원의 많은 부분이 사용하지 않고 낭비되는 경우가 발생한다. 따라서, 스몰셀을 위한 자원 효율을 극대화하고, 채널 특성을 고려한 최적화된 PUCCH 설계가 요구된다. 보다 구체적으로는 자원할당의 기본 단위를 보다 세분화하여 자원의 활용도를 높이고, PUCCH와 PUSCH를 동시에 같은 PRB에 정의하는 것도 고려할 필요가 있다. 단일 캐리어 (single carrier)특성을 유지하여 RF의 증폭기의 부담을 덜어주면서, 스몰셀에 적합한 새로운 구조에 대한 제안이 요구된다.
도 9는 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 제거한 방법을 나타낸다.
도 4에서와 같이 기존 PUCCH는 주파수 홉핑을 통해 3dB 정도의 주파수 다이버시티 이득을 획득한다. 하지만, 스몰셀의 경우 위에 언급한 바와 같이 시간-주파수 채널특성이 매크로셀 대비 상대적으로 우수하고, PUCCH 자원을 최소화하여 자원 효율을 높이는 것이 바람직하다. 따라서, 도 9에서와 같이 동일 PRB내에 PUCCH 자원을 2배로 할당하기 위해 스몰셀에서는 주파수 홉핑 기능을 사용하지 않는 것을 고려할 수 있다. 이 경우에는 기존의 PUCCH 포맷 1/2/3의 슬롯당 구조를 그대로 재사용할 수 있다.
도 10은 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 제거 후 PUSCH를 추가할당 하는 방법을 나타낸다.
도 4에서와 같이 기존 PUCCH는 주파수 홉핑을 통해 3dB 정도의 주파수 다이버시티 이득을 획득한다. 하지만, 스몰셀의 경우 위에 언급한 바와 같이 시간-주파수 채널특성이 매크로셀 대비 상대적으로 우수하고, PUCCH 자원을 최소화하여 자원 효율을 높이는 것이 바람직하다. 따라서, 도 10에서와 같이 동일 PRB내에 동일한 PUCCH 자원을 할당하고 추가 PUSCH 자원을 확보하기 위해 스몰셀에서는 주파수 홉핑 기능을 사용하지 않는 것을 고려할 수 있다. 이 경우에는 기존의 PUCCH 포맷 1/2/3의 슬롯당 구조를 그대로 재사용할 수 있다. 주파수 홉핑을 사용하지 않음으로써 한 슬롯 정도의 PUSCH 자원이 추가적으로 생성가능하다.
도 11은 스몰셀에 적합한 새로운 PUCCH 구조로 주파수 홉핑을 고려하고, PUSCH를 추가할당 하는 방법을 나타낸다.
스몰셀의 경우 위에 언급한 바와 같이 시간-주파수 채널특성이 매크로셀 대비 상대적으로 우수하고, PUCCH 자원을 최소화하여 자원 효율을 높이는 것이 바람직하다. 따라서, 도 11에서와 같이 동일 PRB내에 동일한 PUCCH 자원을 할당하고 주파수 홉핑을 그대로 유지하면서, 추가 PUSCH 자원을 확보하기 위해 스몰셀에 적합한 슬롯 당 PUCCH 포맷을 새로이 설계할 수 있다. 이 경우에는 기존 PUCCH 자원의 반을 새로운 PUCCH 자원으로 활용하고, 나머지를 PUSCH로 추가 할당하고 있다. 또한, 도 11에서 슬롯당 새로운 PUCCH는 주파수 홉핑(Hopping))을 통해 주파수 다이버시티를 유지할 수 도 있으나, PUCCH 자원을 기존 대비 두배로 자원 효율을 높이기 위해서 주파수 홉핑을 제거하는 것도 추가 적용 가능하다.
도 12는 참조신호 공유를 적용한 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 1 구조를 나타낸다.
기존의 PUCCH 포맷 1의 경우, 시간 영역에서 4개의 OFDM 심볼을 고려하여 길이 4의 직교 부호를 적용하여 1 또는 2 비트 정보를 전송하였다. 참조신호는 3개의 OFDM 심볼을 고려하여, 총 3개의 직교 자원을 시간영역에서 확보하여 PUCCH 포맷을 구성하였다. 도 12를 참조하면, 스몰셀에 적합한 PUCCH 포맷 1으로 기존의 PUCCH 정보 전송을 위한 시간영역 확산을 4심볼에서 2심볼로 줄이고, 슬롯내에 추가로 생기는 2 심볼정도의 구간을 PUSCH 데이터로 할당하는 구조를 제안하고 있다. 여기서 참조신호 공유 (Reference signal sharing) 기법 적용이 가능하다. 새로운 PUCCH 및 PUSCH 동시 전송 구조의 경우, 동일 사용자 (UE)에게 PUCCH 및 PUSCH할당이 동시에 이루어지는 경우, 해당 참조신호는 PUCCH와 PUSCH 복조시에 모두 활용할 수 있다. 따라서, 추가적인 구분없이 기존의 PUCCH 참조신호를 그대로 사용하는 것도 가능하다. 이 경우, 시간영역으로 참조신호 OFDM 심볼이 더 많아, 참조신호의 자원을 PUSCH전용으로 나누어 활용하는 것도 가능하다. 이와 같이 새로운 PUCCH 포맷 1의 경우, 직교 확산 길이를 3에서 2로 변경함에 따라, UE multiplexing 허용 범위는 최대 순환 시프트 12를 고려하여 기존 36 UE지원에서 24 UE 지원으로 감소된다. 도 11에서와 언급한 바와 같이 추가적으로 주파수 홉핑을 제거한 경우에는 48 UE지원으로 확대 가능하다. 추가된 PUSCH 채널은 기존의 상향링크에서 적용한 DFT-S-OFDM 기법을 그대로 적용하여 전송 가능하다.
도 13은 PUSCH 전용 참조신호를 할당한 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 1 구조를 나타낸다.
기존의 PUCCH 포맷 1의 경우, 시간 영역에서 4개의 OFDM 심볼을 고려하여 길이 4의 직교 부호를 적용하여 1 또는 2 비트 정보를 전송하였다. 참조신호는 3개의 OFDM 심볼을 고려하여, 총 3개의 직교 자원을 시간영역에서 확보하여 PUCCH 포맷을 구성하였다. 도 12를 참조하면, 스몰셀에 적합한 PUCCH 포맷 1으로 기존의 PUCCH 정보 전송을 위한 시간영역 확산을 4심볼에서 2심볼로 줄이고, 슬롯내에 추가로 생기는 2 심볼정도의 구간을 PUSCH 데이터로 할당하는 구조를 제안하고 있다. 여기서 PUSCH 전용 참조신호 할당이 가능하다. 새로운 PUCCH 및 PUSCH 동시 전송 구조의 경우, 동일 사용자 (UE)에게 PUCCH 및 PUSCH할당이 동시에 이루어지지 않고, 서로 다른 사용자가 PUCCH와 PUSCH를 사용하는 경우, 해당 참조신호는 PUCCH와 PUSCH 복조 시에 모두 활용할 수 없다. 따라서, 새로운 PUCCH 포맷 1을 위해 전용 참조신호를 할당하고, 추가된 PUSCH 전용 참조신호를 구분하여 할당하는 것이 바람직하다. 이 경우, 새로운 PUCCH 포맷 1이 길이 2의 확산 부호를 사용하는 것을 가정하면, PUCCH 전용 참조신호의 경우에도 동일한 길이의 시간확산을 적용하여 사용자 멀티플렉싱을 위한 일대일 매핑 관계를 유지하는 것이 바람직하다. 또한, 최소 1 심볼 이상의 참조신호를 PUSCH 전용으로 할당하여 PUSCH 복조시에 활용하도록 하는 것이 가능하다. 본 발명에서 PUSCH는 기존에 정의되지 않은 새로운 제어 정보 전송을 포함하여 기존의 PUCCH 포맷 1/2/3에서 정의된 정보 이외의 데이터를 전송하는 것을 모두 포함하고 있다.
도 14는 스몰셀에 적합한 슬롯당 새로운 PUCCH 포맷 2 구조를 나타낸다.
기존의 PUCCH 포맷 2의 경우, 슬롯 당 5개의 OFDM 심볼을 QPSK 정보 전송을 위해 사용하였다. RM code와 같은 블록코드로 채널화부호화가 적용되는 CQI의 경우 부호화율을 높여 채널 부호를 통해 전송가능한 정보량을 늘리는 것이 가능하다. 따라서, 스몰셀의 경우, 부호화율을 높이고, PUCCH 점유 자원을 최소화하여 PUCCH 자원의 효율성을 높이는 것이 가능하다. 본 발명에서는 기존의 PUCCH 포맷 2의 일부 심볼을 PUSCH 자원으로 할당하여, 동일 PRB내에서 PUCCH와 PUSCH를 동시에 전송할 수 있는 방법을 제안하고 있다. 도 14에서와 같이 3개의 OFDM 심볼과 하나의 참조신호를 새로운 PUCCH 포맷 2로 정의하고, 2개의 OFDM 심볼과 하나의 참조신호 심볼을 PUSCH로 할당하는 예를 보이고 있다. PUCCH와 PUSCH 간의 심볼 수는 임의로 설정 가능하며, 참조신호의 경우 PUCCH와 PUSCH를 구분하지 않고, 사용자가 이를 모두 활용하여 PUCCH 및 PUSCH 복조에 사용하는 것도 가능하다.
도 15는 ZC 시퀀스의 순환 시프트를 이용하여 동일 PRB내에 서로 다른 PUCCH 포맷 및PUSCH가 공존하는 예를 나타낸다.
도 12에서 14의 경우, PUCCH 포맷 1과 2에 대한 새로운 구조를 제안하고 있다. 자원의 효율성을 높이기 위해서는 동일 PRB 내에서 새로운 PUCCH 포맷 1과 2가 공존하는 것도 고려하여야 한다. PUCCH 포맷간에 구분은 ZC 시퀀스의 순환시프트를 다르게 적용하여 구분 가능하다. 따라서, ZC 시퀀스가 적용되는 PUCCH영역은 포맷 1과 2 간에 동일하게 유지하는 것이 좋다. 예를 들어 도 13과 도 14는 앞의 4심볼 구간을 PUCCH영역으로 설정하고, 서로 다른 ZC 시퀀스의 순환시프트를 사용하게 되면, 동일 PRB 내에 공존하는 것이 가능하다. PUSCH의 경우 특정 UE에게 할당되므로 상호 구분이 가능하다. 여기서, 참조신호의 경우에도 동일한 ZC 시퀀스 순환시프트로 구분가능하지만, 참조신호의 중요도를 고려하여 PUCCH 포맷간의 참조신호의 위치 및 개수를 맞추는 것이 바람직할 수 있다. 나아가, 레거시 PUCCH와의 공존의 경우에도 동일하게 ZC 시퀀스의 순환 시프트를 다르게 하여 공존 가능하다. 이 경우에는 레거시 PUCCH에 간섭을 최소화하기 위해서 PUSCH의 구조도 동일한 ZC 시퀀스 확산 방식을 고려하는 것이 바람직하다.
도 16는 스몰셀 환경에서 인접 매크로 셀을 고려한 간섭 시나리오를 나타내고 있다.
도 16를 참조하면, BS1, BS2는 macro cell의 Base station, MS2와 MS5는 BS1에 연결된 macro MS, MS3는 BS2에 연결된 macro MS, MS1은 Femto1에 연결된 femto MS, MS4는 Femto2에 연결된 MS이다. 큰 원과 작은 원은 각각 Macro BS, Femto BS의 coverage를 나타낸다. 즉, Macro BS는 큰 power로 전송하고, Femto BS는 작은 power로 전송하기 때문에 각각 coverage가 다르다. 이와 같은 Network layout에서는 다음과 같은 문제가 생길 수 있다.
- Case1. Macro의 Downlink 및 Femto도 Downlink: Macro BS가 MS2로 Downlink 전송을 할 때 Femto1(MS2와 가까이에 있는 Femto)의 BS의 downlink signal에 의해서 MS2의 downlink 성능이 저하됨.
- Case2. Macro의 Downlink 및 Femto는 Uplink: Macro BS가 MS2로 Downlink 전송을 할 때 Femto1의 MS1(MS2와 가까이에 있는 Femto MS)의 signal에 의해서 MS2의 downlink 성능이 저하됨.
- Case3. Macro의 Uplink 및 Femto는 Downlink, Femto1이 BS1에 가까이 있을 때: macro MS2가 BS1으로 uplink 전송을 할 때 Femto1(BS1과 가까이에 있는 Femto)의 downlink signal에 의해서 MS2의 uplink 성능이 저하됨.
- Case4. Macro의 Uplink 및 Femto도 Uplink, Femto1이 BS1에 가까이 있을 때: macro MS2가 BS1으로 uplink 전송을 할 때 Femto1의 MS1(BS1과 가까이에 있는 Femto MS)의 uplink signal에 의해서 MS2의 성능이 저하됨.
위와 같은 다양한 매크로-스몰셀 (여기서는 펨토셀로 가정) 간의 간섭을 효과적으로 완화하기 위해서는 단말이 주변 간섭의 정보를 해당 기지국 (매크로 또는 펨토셀 기지국)에 전달하는 것이 필요하다. 예를 들어, 펨토셀에 접속하고 있는 단말이 주변 매크로로 접속하고자 하는 단말 또는 접속한 단말의 상향링크 신호로 인해 펨토셀로의 해당 단말의 상향 신호 수신이 어려운 경우 (도 16의 case 4) 해당 펨토셀은 해당 단말의 신호가 약해서 또는 일시적인 문제 인지, 주변의 간섭이 강해서 인지를 구분하는 사용자 신호 인지/감별 신호 (User Signal Detection & Indicator)가 필요하다. 이와 같은 신호는 스몰셀 기지국으로부터 미리 할당받은 자원을 통해 주기적 또는 비주기적 (단말/기지국 요청에 따라)으로 단말이 전송하여, 이를 수신한 스몰셀 기지국은 해당 단말의 신호 세기를 기준값으로 주변 간섭으로 신호 검출 오류가 발생한 것인지, 일시적인 오류인지를 판단하는 데에 이용할 수 있다.
또한, 스몰셀/매크로셀간의 간섭을 보다 효과적으로 관리하기 위해서 스몰셀에 접속한 단말이 직접적으로 느끼는 간섭의 정도를 기지국이 획득하는 효과적인 매커니즘도 요구된다. 예를 들어, 매크로에 접속한 단말이 주변 스몰셀 기지국의 강한 신호로 인해 매크로 셀로부터의 신호를 수신하기 어려워 지는 경우 (도 16의 case 1), 주변 간섭의 정도를 매크로 기지국에 알려주어 해당 스몰셀의 전송 전력 또는 자원을 재조정, 간섭을 완화, 제거 시킬 수 있다. 이를 위해서는 단말이 빠른 시점에 간섭의 정도를 나타낼 수 있는 신규 상향링크 정보 전송 채널이 필요하고, 이러한 채널은 다양한 단말이 동시에 전송하더라도, 기지국에서 수신신호의 세기를 통해 전체 단말의 간섭 정도를 측정할 수도 있고, 그룹핑된 단말이 서로 다른 신규 전송 채널을 통해 해당 정보를 전송하게 하여, 이를 통해 기지국은 그룹별 간섭 정도를 측정할 수 있다.
도 17은 매크로-스몰셀간의 간섭 제어 방법으로 단말의 피드백 기반의 기지국간 협력의 예를 보이고 있다.
도 17을 참조하면, 복수의 단말은 복수의 기지국으로부터 신호를 수신하여 주변 기지국의 간섭 정도를 측정한다 (e.g., IUE1 or IUE2). 각 단말에서의 간섭 정도를 고려하여 특정 수준 이상의 간섭을 느끼는 단말은 새로이 정의된 간섭 정보 전송 채널을 통해 접속한 기지국 (serving base station)으로 간섭 정보를 전송한다. 이를 수신한 기지국은 하나 또는 그 이상의 단말로부터 수신한 간섭 정보를 기준으로 주변셀의 간섭 제어가 필요할 지를 판단하고, 필요한 경우 x2 interface와 같이 기지국간 인터페이스를 통해 해당 제어 정보 또는 간섭 정보를 주변 기지국에 전송한다.
도 18은 매크로-스몰셀간의 간섭 제어 방법으로 기지국이 단말의 간섭 상태를 파악하여 간섭을 제어하는 과정을 나타내고 있다.
도 18을 참조하면, 기지국으로부터 상향링크 자원 할당 및 스케줄링이 허용된 단말이 상향링크 데이터를 PUSCH를 통해 전송하였고, 이를 복조하는 과정에서 기지국이 fail하는 경우를 가정하고 있다. 기지국의 경우, PUSCH를 통해 단말이 상향링크 데이터를 송신하였을 것으로 간주하고 있지만, UL Grant를 놓친 단말은 해당 PUSCH를 전송하지 않았을 수도 있고, 또한, PUSCH를 전송하였으나, 주변 기지국의 간섭이 너무 커서 해당 PUSCH를 기지국이 복조하지 못했을 수도 있다. 따라서, 기지국 입장에서는 단말의 상향링크 데이터를 수신하기 위해서는 해당 단말이 간섭을 겪고 있는지의 여부를 판단하는 것이 중요하다. 이를 위해 기지국은 미리 설정한 사용자 검출 신호 (User Signal Detection Signal)을 단말이 전송하도록 요청하고, 이를 수신한 단말은 새로이 설계된 USD 채널을 통해 해당 신호를 전송한다. 이를 검출한 기지국은 해당 단말이 간섭을 겪는지, 단순 링크 실패인지를 판단하여, 단말의 keep alive 확인과 같이 재접속 또는 접속 상태 점검을 수행하거나, 주변 기지국으로 간섭 제어 요청을 수행할 수 있다.
도 19은 사용자 신호 검출을 위한 기지국의 구체적인 동작과정을 나타내고 있다.
도 19을 참조하면, 해당 USD 신호는 특정 변조된 정보를 얻을 수도 있고, 검출 신호의 세기를 나타내는 전력/에너지 검출의 형태일 수 있다. 이를 검출한 기지국은 USD신호가 존재하는 지의 여부를 판단한다 (DTX 검출). 이를 통해 DTX로 검출한 경우에는 해당 기지국이 최대 재전송을 수행한 경우에는 단말의 접속 상태를 재점검하는 과정을 수행하게 된다. USD 신호 검출에서 DTX가 아닌 USD 신호를 통해 간섭 정보 (또는 해당 단말과 기지국 간의 링크 수준 정보)를 획득하고, 이를 기반으로 주변 셀의 간섭 제어 여부를 판단한다. 간섭 제어가 필요하면, x2 interface등을 통해 주변 기지국에 간섭 제어 요청을 하거나, 최대 재전송 여부를 기반으로 HARQ 재전송을 수행하거나 단말의 접속상태를 재점검하게 된다.
위와 같이 스몰셀 간섭 제어를 위해서는 간섭정보를 직간접적으로 측정할 수 있는 정보 전송 채널이 필요하다. 3GPP LTE Release 8 및 그 이후의 단말과 공존이 가능하고, 차별화된 추가 정보를 전송하는 기능을 얻기 위해서는 기존 레거시 시스템을 최대한 재활용하면서 추가적으로 채널 할당이 가능한 자원을 찾는 것이 바람직하다. 3GPP TS 36.211 V11.1.0 (2012-12) “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 11)”에 따르면, 기존의 PUCCH 포맷 1은 길이 4의 직교 부호를 ACK/NACK 또는 SR전송을 위한 4개의 OFDM 심볼 구간에 시간영역확산을 적용하며, 길이 3의 직교 부호는 참조신호 영역의 시간확산을 위해 사용된다. 이 때, 사용하는 직교 부호는 표 1과 표 2를 통해 나타내고 있다. 표에서 알 수 있듯이, PUCCH 포맷 1의 경우, 참조 신호와 정보 전송 구간의 심볼 수가 상이하고, 시간 영역 확산 부호간의 일대일 매핑을 유지하기 위해 길이 4의 직교 부호 중 하나는 사용하지 않고 있다. 다시 말해서, 시퀀스 인덱스 0, 1, 2는 표 1과 2에서와 같이 직교 부호 길이 4와 3간의 시퀀스 3개를 선택적으로 일대일 매핑을 유지하고 있다. 따라서, 길이 4의 직교 부호인 [+1 +1 -1 -1]는 추가적인 다른 용도 사용하는 것이 가능하다.
표 1
Figure PCTKR2014003880-appb-T000001
표 2
Figure PCTKR2014003880-appb-T000002
이와 같이, 길이 4의 추가적인 시간 영역 확산 부호는 길이 3의 참조 신호의 확산 부호 매핑이 어려우므로, 논코히어런트와 같은 복조방식을 고려한 변조 기법으로 위에서 언급한 간섭 수준의 정보를 에너지/전력 수준으로 전송하는 방식이나, 한정된 (e.g., 1~2bit 정보) 수준의 간섭 정보를 변조하여 전송하는 것이 가능하다.
도 20는 사용자 신호 검출과 같이 스몰셀 전용 제어 정보 전송 채널 구조를 제안하고 있다.
도 20을 참조하면, 기존의 PUCCH Format 1을 재사용하고, 현재 사용하고 있지 않은 [+1 +1 -1 -1]을 시간영역 확산 부호로 사용하여, 스몰셀에 적합한 간섭, 제어 정보 등을 전송할 수 있다. 도면에서 알 수 있듯이, 참조신호는 PUCCH Format 1에서 3개의 DFT 코드를 모두 사용하고 있어, 해당 길이 4의 새로운 채널은 참조신호 없이 전송될 수 있다. 또한, 스몰셀 전용 제어 정보는 위에서 언급한 사용자신호검출 정보를 전송할 수도 있고, 간섭의 정도를 복수의 단말이 전송하는 전력/에너지 수준의 합으로 측정하는 전력/에너지 수준의 간섭 정보 전송도 가능하다. 나아가, 임의의 제어정보를 M-QAM과 같은 변조 기법을 통해 수bit 이하의 정보를 전송하는 것도 가능하다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 04월 30일 한국에 출원한 특허출원번호 제 10-2013-0048982 호, 제 10-2013-0048984 호 및 제 10-2013-0048986 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (8)

  1. 매크로 셀을 포함하는 복수의 기지국이 존재하는 셀룰러 통신 방법에 있어서,
    단말이 복수의 기지국으로부터 수신하는 신호로부터 인접 셀의 간섭 정보를 획득하는 단계;
    단말이 인접셀의 간섭 정보를 serving 기지국으로 전송하는 단계;
    하나 또는 그 이상의 단말로부터 수신한 간섭 정보를 기반으로 주변 셀 간섭 제어 요청을 결정하는 단계; 및
    간섭 제어 정보를 주변 기지국에 전송하는 단계를 포함하는 셀룰러 통신 방법.
  2. 제1항에 있어서,
    상기 인접 셀의 간섭 정보는 스몰셀로서 피코셀, 마이크로셀 및 펨토셀 중 적어도 하나를 포함하는 것을 특징으로 하는 셀룰러 통신 방법.
  3. 제1항에 있어서,
    상기 단말이 인접셀 정보를 기지국에게 전송하는 시간-주파수 자원은 단말간에 공통 자원으로 사용하는 것을 특징으로 하는 셀룰러 통신 방법.
  4. 제3항에 있어서,
    상기 공통 자원으로 수신하는 복수 단말의 간섭 정보는 전력 또는 에너지 수준의 검출을 통해 정보를 획득하는 것을 특징으로 하는 셀룰러 통신 방법.
  5. 무선 통신 시스템에서의 제어신호를 전송하는 방법에 있어서,
    상기 제어 신호 전송을 위해 슬롯 (slot)내의 4개의 OFDM 심볼을 할당하는 단계; 및
    상기 제어 신호를 전송하기 위해 길이 4의 [+1, +1, -1, -1] 시퀀스를 이용하여 시간영역에서 확산하는 단계를 포함하는 제어 신호 전송 방법.
  6. 제5항에 있어서,
    상기 제어신호는 커버리지가 작은 셀 전용 제어정보를 특징으로 하는 제어 신호 전송 방법.
  7. 제6항에 있어서,
    상기 제어 신호는 사용자 신호 세기를 검출하는 신호 및 주변 셀의 간섭을 나타내는 정보를 포함하는 것을 특징으로 하는 제어 신호 전송 방법.
  8. 제5항에 있어서,
    상기 제어신호는 M-QAM 변조를 통해 전송하는 것을 특징으로 하는 제어 신호 전송 방법.
PCT/KR2014/003880 2013-04-30 2014-04-30 단말 제공 제어신호를 통한 셀간 간섭 제어 WO2014178663A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/787,804 US20160094323A1 (en) 2013-04-30 2014-04-30 Intercell interference control through control signal provided by terminal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0048982 2013-04-30
KR1020130048986A KR20140129986A (ko) 2013-04-30 2013-04-30 간섭 제어를 위해 스몰셀에 적합한 제어신호 구조
KR1020130048984A KR20140129984A (ko) 2013-04-30 2013-04-30 사용자신호검출을 위한 제어신호를 통한 셀간 간섭 제어
KR10-2013-0048984 2013-04-30
KR10-2013-0048986 2013-04-30
KR20130048982A KR20140129982A (ko) 2013-04-30 2013-04-30 단말 제공 제어신호를 통한 셀간 간섭 제어

Publications (1)

Publication Number Publication Date
WO2014178663A1 true WO2014178663A1 (ko) 2014-11-06

Family

ID=51843707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003880 WO2014178663A1 (ko) 2013-04-30 2014-04-30 단말 제공 제어신호를 통한 셀간 간섭 제어

Country Status (2)

Country Link
US (1) US20160094323A1 (ko)
WO (1) WO2014178663A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065355A1 (ko) * 2015-10-16 2017-04-20 고려대학교 산학협력단 다중 시퀀스 확산을 이용한 랜덤 접속 및 다중 사용자 검출 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10382174B2 (en) * 2014-07-25 2019-08-13 Lg Electronics Inc. Method and apparatus for inter-cell interference cancellation in wireless communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298488A1 (en) * 2007-06-04 2008-12-04 Zukang Shen Allocation of Block Spreading Sequences
WO2012003643A1 (en) * 2010-07-09 2012-01-12 Zte Wistron Telecom Ab Method and apparatus for receiving physical uplink control channel in lte system
US20120021753A1 (en) * 2010-01-18 2012-01-26 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
EP2525541A2 (en) * 2010-01-17 2012-11-21 LG Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
EP2533595A1 (en) * 2011-06-06 2012-12-12 Alcatel Lucent Apparatuses and methods for inter-cell interference coordination (ICIC)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590589B2 (en) * 2004-09-10 2009-09-15 Hoffberg Steven M Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
KR101113433B1 (ko) * 2005-08-01 2012-03-21 샤프 가부시키가이샤 셀룰러 이동 통신 시스템
CA2648005C (en) * 2006-04-12 2013-01-15 Lg Electronics Inc. Method for allocating reference signals in mimo system
US8228782B2 (en) * 2006-12-22 2012-07-24 Lg Electronics Inc. Sequence generation and transmission method based on time and frequency domain transmission unit
JP5284459B2 (ja) * 2008-03-28 2013-09-11 エルジー エレクトロニクス インコーポレイティド 多重セル環境におけるセル間干渉回避方法
KR20100019947A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298488A1 (en) * 2007-06-04 2008-12-04 Zukang Shen Allocation of Block Spreading Sequences
EP2525541A2 (en) * 2010-01-17 2012-11-21 LG Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
US20120021753A1 (en) * 2010-01-18 2012-01-26 Qualcomm Incorporated Methods and apparatus for facilitating inter-cell interference coordination via over the air load indicator and relative narrowband transmit power
WO2012003643A1 (en) * 2010-07-09 2012-01-12 Zte Wistron Telecom Ab Method and apparatus for receiving physical uplink control channel in lte system
EP2533595A1 (en) * 2011-06-06 2012-12-12 Alcatel Lucent Apparatuses and methods for inter-cell interference coordination (ICIC)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065355A1 (ko) * 2015-10-16 2017-04-20 고려대학교 산학협력단 다중 시퀀스 확산을 이용한 랜덤 접속 및 다중 사용자 검출 방법 및 장치
US10567033B2 (en) 2015-10-16 2020-02-18 Korea University Research And Business Foundation Method and apparatus for detecting random access and multiuser using multiple sequence spreading

Also Published As

Publication number Publication date
US20160094323A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
WO2018038525A1 (ko) 무선 통신 시스템에서 단말의 pscch 및 pssch 송수신 방법 및 장치
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2010120106A2 (en) Multi-user mimo transmissions in wireless communication systems
WO2011010904A2 (ko) CoMP 참조신호 송수신 방법
WO2016209056A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 신호 송수신 방법 및 장치
WO2012115366A1 (en) Method of performing measurement at ue in wireless communication system and apparatus thereof
WO2012144842A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2014069941A1 (ko) 통신 시스템에서 간섭 측정을 위한 방법 및 그 장치
WO2013055173A2 (ko) 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
WO2011136523A2 (en) Resource mapping method and apparatus of ofdm system
WO2015065048A1 (en) Method and apparatus of controlling periodic csi reporting
WO2011025278A2 (ko) 다중 사용자 mimo 전송을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2013055126A1 (ko) 복수의 네트워크 노드로 구성된 셀을 포함하는 무선통신 시스템에서 채널품질상태를 측정하는 방법 및 이를 위한 장치
WO2014116039A1 (ko) 무선 통신 시스템에서 기지국 간 채널 측정 방법 및 장치
WO2017026777A1 (ko) 무선 통신 시스템에서 하향링크 채널 수신 또는 상향링크 채널 전송 방법 및 이를 위한 장치
WO2016190631A1 (ko) 무선 통신 시스템에서 채널 센싱 및 그에 따른 전송을 위한 방법 및 이를 위한 장치
WO2012115427A2 (ko) 다중 셀 협력 무선 통신 시스템에서 제어 채널 송수신 방법 및 이를 위한 장치
WO2011031079A2 (ko) MU-MIMO 방식을 지원하는 무선 통신 시스템에서 CoMP 동작에서의 참조신호 송수신 방법 및 이를 이용하는 단말 장치와 기지국 장치
WO2013112020A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2014178662A1 (ko) 공통참조신호를 이용한 스몰셀 네트워크 데이터 자원 추가 구성
WO2013183946A1 (ko) 채널 상태 정보를 보고하는 방법 및 장치
WO2013115550A1 (ko) CoMP 시스템에서 상향링크 제어채널 및 상향링크 데이터 채널 전송 방법 및 장치
WO2017074083A1 (ko) 무선 통신 시스템에서 단말의 채널상태정보 보고 방법 및 이를 위한 장치
WO2014178664A1 (ko) 상향링크 집중 전송을 위한 새로운 tdd 프레임 구조
WO2017175938A1 (ko) 무선 통신 시스템에서 셀 순환 하향링크 송신 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14787804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791526

Country of ref document: EP

Kind code of ref document: A1