WO2014178543A1 - Effective operation of circulating fluidized bed for preparing light olefins from methanol through real time monitoring of intermediates - Google Patents

Effective operation of circulating fluidized bed for preparing light olefins from methanol through real time monitoring of intermediates Download PDF

Info

Publication number
WO2014178543A1
WO2014178543A1 PCT/KR2014/002926 KR2014002926W WO2014178543A1 WO 2014178543 A1 WO2014178543 A1 WO 2014178543A1 KR 2014002926 W KR2014002926 W KR 2014002926W WO 2014178543 A1 WO2014178543 A1 WO 2014178543A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
selectivity
dimethyl ether
light olefins
regeneration
Prior art date
Application number
PCT/KR2014/002926
Other languages
French (fr)
Korean (ko)
Inventor
김주완
채호정
정광은
김태완
김철웅
정순용
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014178543A1 publication Critical patent/WO2014178543A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to an efficient operation of a circulating fluidized bed process for preparing light olefins from methane through monitoring the selectivity of intermediates. Specifically, the degree of deactivation of the catalyst used by monitoring the selectivity of dimethyl ether (DME) By predicting the efficiency of the catalyst and maintaining the optimized coke level by adjusting the air flow rate for catalyst regeneration, the present invention relates to a method for effectively increasing the productivity of light olefin hydrocarbons and, in particular, maintaining excellent selectivity to ethylene and propylene.
  • DME dimethyl ether
  • Light olefins are ethylene, propylene, and butenes obtained by naphtha cracking, and are the basic raw materials for the petrochemical industry, which are essential for the manufacture of various chemical products such as synthetic resins, synthetic rubbers, and alcohols. Recently, some of the light olefins are also produced in the ethanol pyrolysis process or the fluidized bed catalytic cracking process, but the production scale is much smaller than that of naphtha.
  • Patent Document 1 discloses carbon on a catalyst that returns from contacting the catalyst with a regeneration medium to recontacting the regenerated catalyst with various oxygenates as reactants. By controlling the amount of vaginal deposits, there is proposed a method for increasing the amount of ethylene and propylene produced by catalytic conversion of oxygenated compounds such as methanol in a fluidized bed reaction system.
  • Patent Document 2 (US Pat. No. 6,166, 282) is a process type for preparing olefins from oxygenated compounds, which can reduce the amount of bed residue of a catalyst compared to a conventional bubbling bed. It is proposed a fast fluidized bed reaction process that can reduce the size, and especially in the fast fluidized bed process for producing light olefins, the conversion of olefins is greatly influenced by reaction variables such as temperature, catalyst activity, and space velocity. Doing.
  • Patent Document 3 (US Pat. No. 5, 952, 538) presents the effect of the space velocity on the olefin selectivity and the optimum range of space velocity among the process variables in the conversion of oxygenated compounds to elefin. Doing.
  • Patent Document 4 U.S. Patent No. 6,023,005 discloses that maintaining the average coke content at a level in the process of producing light olefins from methane increases the selectivity of light olefins. It is reported to affect.
  • the present inventors have been interested in the efficient operation of the circulating fluidized bed process for producing hard lephine from methane, and the selectivity of the intermediate product dimethyl ether and the coke content of the catalyst in the light olefin conversion reaction.
  • An object of the present invention is to provide a method for predicting the deactivation of the catalyst used by monitoring the selectivity of the intermediate dimethyl ether in preparing light olefins from methanol.
  • an object of the present invention is a catalyst regenerated to improve the yield of light olefins and especially the selectivity of ethylene and propylene by monitoring the selectivity of intermediate dimethyl ether in preparing light olefins from methanol. It is to provide a method for preparing a hard lepin that can optimize the coke content of.
  • the present invention aims to monitor the selectivity of the dimethyl ether as an extra product in the production of light olefins from methanol to optimize the yield of light olefins and in particular the selection of ethylene and propylene by optimizing the coke content of the regenerated catalyst. It is to provide a method for improving the degree.
  • step 1 Contacting the methanol supercatalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1); And
  • step 1 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 1)
  • step 1 Preparing light olefins by contacting methanol with the catalyst in a circulating fluidized bed reactor equipped with a catalyst regeneration unit and a product separation unit (step 1);
  • step 1 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 1)
  • step 3 Extruding the injected air flow rate according to the selectivity of the dimethyl ether of step 2 (step 3); It provides a method for producing a light olefin comprising a.
  • step 1 Contacting the catalyst with a catalyst to produce light olefins (step 1);
  • step 2 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 2);
  • Step K to adjust the injected air flow rate according to the selectivity of the dimethyl ether of step 2; It provides a method for improving the yield of light olefin comprising a.
  • ⁇ 52> Further, according to the present invention is to control the air flow rate for catalyst regeneration by real-time monitoring of the selectivity of the ether, by maintaining the degree of optimum coke, and can increase the yield of light oleic hydrocarbon effectively, particularly ethylene And it has the effect of maintaining excellent selectivity for propylene.
  • FIG. 1 is a schematic diagram of a circulating fluidized bed reaction vessel having a catalyst regeneration unit and a product separation unit according to an embodiment of the present invention.
  • the present invention relates to an efficient operation of a circulating fluidized bed process for preparing light olefins from methanol through monitoring the selectivity of intermediates, specifically, dimethyl ether.
  • the present invention relates to a method capable of maintaining excellent selectivity to.
  • step 1 Contacting methanol with the catalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1); And
  • step 1 Monitoring the selectivity of the dimethyl ether which is the intermediate product of step 1 (step 1)
  • step 1 is contacted with methanol in a circulating fluidized bed reactor equipped with a catalyst regeneration unit and a product separation unit. It is a step to prepare a hard olepin.
  • FIG. 1 a schematic diagram of the circulating fluidized bed reactor having the catalyst regeneration part and the product separation part of step 1 is shown in FIG. 1.
  • vaporized methane is injected into the riser (1) through the methanol injection line (11), Quality injected through riser nitrogen injection line 12 to ascend the catalyst . It is injected into the ascension tube 1 together with the cow. In the riser (1), the reaction proceeds between the circulating catalyst and the methane introduced from the bottom.
  • the effluent passing through the riser 1 flows into the stripper 3, where the catalyst and the product gas are separated.
  • volatile hydrocarbons are recovered by the contact of the catalyst with nitrogen, and the catalyst separated in the stripper 3 is sent to the regenerator 2.
  • the regenerator 2 the catalyst is regenerated by contact of the catalyst with air.
  • the regenerated catalyst in the regenerator is transferred to the bottom of the riser and reacted with methanol again in the riser.
  • the circulation of the catalyst and the reaction of methanol proceed continuously and repeatedly.
  • step 2 is monitoring the selectivity of the dimethyl ether which is the intermediate product of step 1.
  • the suntec degree of dimethyl ether which is the intermediate product of step 2 is performed through reaction product analysis, for example, gas chromatography analysis.
  • methane is dehydrated in this acid catalyst to be an intermediate product, dimethyl ether, and then converted into light olefins such as ethylene, propylene, butene, and the like.
  • the converted light olefins undergo various reactions such as polymerization, ring polymerization, and dehydrogenation.
  • the reaction product may be dimethyl ether, ethylene, propylene, butene, saturated hydrocarbon of -C 3 , hydrocarbon of C 5 or more, and the like. have.
  • the deactivation of the catalyst used in the production of light lepin from methane using a circulating fluidized bed process, the deactivation of the catalyst used, i.e., deposited on the catalyst
  • the coke content can be predicted in real time through the correlation analysis with the selectivity of the dimethyl ether, which is the extra product.
  • the activity of the catalyst i.e. the coke content deposited on the catalyst
  • the activity of the catalyst is an important parameter in improving the yield of light olefins, in particular the selectivity of ethylene propylene,
  • a method of controlling the reaction conditions space velocity, reaction temperature
  • the catalyst sample, catalyst thermal analysis, catalyst coke content analysis, process reaction conditions Because of the process of adjustment, it is difficult to adjust the coke content quickly and effectively because the response time to analysis of the coke content and the adjustment of the process variables becomes long.
  • methane is analyzed in real time by gas chromatography (within 20 minutes), and dimethyl ether (DME By monitoring the selectivity of), it is possible to effectively analyze the degree of deactivation of the catalyst and to significantly reduce the step speed of the light olefin production process from methanol maintaining a certain level of coke. .
  • step 1 Contacting methane with a supercatalyst in a circulating fluidized bed reactor having a catalyst regeneration section and a product separation section to produce light olefins (step 1);
  • step 1 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 1)
  • Adjusting the flow rate of the injected air according to the selectivity of the dimethyl ether of step 2 (step 3); It provides a method for producing a light olefin comprising a.
  • step 1 and step 2 in the method for preparing light olefins according to the present invention may be carried out in the same manner as described in the method for predicting the deactivation of the catalyst used for the production of light olefins.
  • the catalyst of step 1 is not particularly limited in the case of a catalyst generally used in the MT0 reaction, for example, a silicoaluminophosphate system.
  • a silicoaluminophosphate system for example, a silicoaluminophosphate system.
  • SAPO silicoaluminophosphate
  • zeolites zeol ite
  • step 3 is to inject air for regeneration of the catalyst by separating the used catalyst of step 1, the injected air flow rate to selectivity of the dimethyl ether of step 2 According to the steps to adjust.
  • the air flow rate injected for the catalyst reassembly of step 2 may be adjusted to maintain the dimethyl selectivity at '0.2-10.5 3 ⁇ 4', more preferably at 0.5-8.1%. If the flow rate of the air injected for the catalyst regeneration is injected such that the dimethyl selectivity is less than 0.2%, there is a problem that the selectivity of ethylene is significantly lowered, and when it is injected to be maintained above 10.5%, light olefins (ethylene, propylene ) Selectivity and methane conversion rate is low, it is good to maintain the above range.
  • the air flow rate injected for the regeneration of the catalyst of step 2 is preferably adjusted so that the average coke content of the regenerated catalyst is 0.2-5.9 weight 3 ⁇ 4>, more preferably 0.5-4.6 weight 3 ⁇ 4. If the flow rate of air injected for regenerating the catalyst is injected such that the average coke content of the regenerated catalyst is less than 0.2 wt%, there is a problem that the ethylene selectivity is significantly lowered, and if it is injected more than 5.9 wt%, it is hard. There is a problem that the selectivity of olefins (ethylene, propylene) and methanol conversion are lowered, and it is better to maintain the range of addition.
  • olefins ethylene, propylene
  • the temperature of the reaction vessel is 300 V-600 ° C
  • the circulation rate of the catalyst in the reactor is 1-100 kg / h
  • the space velocity of the methane injected into the reactor is 0.5-300 h "1 If the reaction temperature is less than 300 V, the conversion of methanol is lowered and secondary dehydration does not occur, so dimethyl ether is mainly produced, resulting in a significantly lower harden selectivity. There is a problem that the deactivation rate of the catalyst is increased rapidly, and it is preferable to maintain the temperature range.
  • the circulation rate of the catalyst at less than lkg / h is a problem that the fluidity of the catalyst in which the circulating fluidized bed reaction is slowly developed, and the catalyst residence time in the catalyst regenerator is greatly increased if it is more than 100 kg / h There is a problem that the reduced regeneration does not occur, it is preferable to maintain the circulation rate.
  • the space velocity of methanol injected into the reactor is less than 0.5 h 1 , the throughput of methane is very low, making it difficult to secure economic productivity, and when it exceeds 300 h 1 , the conversion rate of the catalytic reaction is greatly reduced. It is good to maintain the space velocity.
  • the temperature of the catalyst regenerator is 500-700 ° C, and the air flow rate injected for regenerating the catalyst is 5-50 1 / min.
  • the temperature of the catalyst regenerator is less than 500 ° C, there is a problem that regeneration of the deposited coke is not performed, and if the temperature of the catalyst regenerator is higher than 700 ° C, the catalyst crystal structure collapses, so that the temperature is maintained within the above range. good.
  • the flow rate of air injected for catalyst regeneration is less than 5 1 / min, there is a problem that the catalyst is not sufficiently regenerated, and if it is more than 50 1 / min, there is a problem that can not maintain the coke state of the catalyst is not preferable.
  • step 1 Contacting methanol with the catalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1);
  • step 1 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 1)
  • steps 1 to 3 may be performed in the same manner as described in the method for preparing the hard leucine.
  • the selectivity of the intermediate dimethyl ether is monitored in real time to adjust the air flow rate for the rearing of the corpus, maintaining the optimum coke level, thereby effectively increasing the productivity of the light olefin hydrocarbons. Has the effect of maintaining excellent selectivity for
  • the catalyst used in the examples of the present invention is a micro-spherical SAP0-34 molding catalyst
  • the SAP0-34 powder, alumina sol, and Karlan binder were uniformly mixed under acidic conditions, and then spray dried to form.
  • the average density of the shaped catalyst is 670 kg / m 3 , the wear rate is 4.5%, the particle size is within 53-200.
  • the methanol used in the present embodiment is vaporized through a preheater at a flow rate of 604 g / h, and the vaporized methanol has an internal diameter with nitrogen introduced at a flow rate of 6 L / min for the catalyst to rise. It enters the bottom of the riser at 14.24 ⁇ and 4 m in height.
  • the catalyst circulated at a rate of 30 kg / h and methanol flowing from the bottom meet and the reaction proceeds.
  • the temperature of the riser is maintained at 420 ° C by the heater.
  • the effluent which has passed through the chamber, flows to the stripper, where the catalyst and product gas are separated.
  • volatile hydrocarbons are recovered by contact of the catalyst with nitrogen, and the catalyst separated from the stripper is sent to the regenerator.
  • the regenerator the catalyst is regenerated by contact of the catalyst with air, and the regenerator's silver is maintained at 600 ° C by the heater.
  • the rate of inflow of air into the regenerator is controlled by the degree of coke and olefin selectivity distribution of the regenerated catalyst.
  • the catalyst regenerated in the regenerator is then transferred to the bottom of the riser, which again reacts with methane.
  • the product gas separated from the stripper is gas Olefin selectivity and methanol conversion are analyzed by chromatography.
  • Carbon monoxide, carbon dioxide, and oxygen components of the flue-gases discharged from the regenerator are analyzed by a gas analyzer, and the flow rate of the flue-gases is analyzed by a dry flow meter.
  • the coke content of the catalyst is measured by extracting the catalyst from the bottom of the regenerator and stripper.
  • the regenerator air flow was injected at 15.5 L / min to prevent the formation of dimethyl ether.
  • the air flow rate of the regenerator was injected at 12 L / min to maintain the selectivity of dimethyl ether at 0.2%.
  • the air flow rate of the regenerator was injected at 11.8 L / min to maintain the selectivity of dimethyl ether at 1.2%.
  • Air flow rate of regenerator ⁇ 11.4 L / min is injected to increase the selectivity of dimethyl ether.
  • Example 1 is a thorough injection of the regenerator inlet air flow rate for complete regeneration of the catalyst, while the methanol conversion rate is reduced while the dimethyl ether selectivity is maintained at 0%.
  • Example 2 shows that the regenerator air inflow is reduced compared to Example 1, even though the selectivity of dimethyl ether is maintained at 0.2%.
  • the increased selectivity of dimethyl ether results in partial coke formation on the catalyst surface, resulting in deactivation of the catalyst. It means what started.
  • the degree of coke of the regenerator outflow catalyst was 0.2%, and the degree of coke of the stripper effluent catalyst was 1.9%, which is 0.2-0.6% higher than that of Example 1.
  • Ethylene selectivity compared with Example 1 by maintaining a certain amount of coke on the basis of the selectivity of dimethyl ether It was increased to 17.1%, and selectivity of propylene and butene was 40.9% and 13.4%, respectively.
  • Example 3 reduced the regenerator air inflow from Example 2 so that the selectivity of dimethyl ether was maintained at 1.2%, the degree of coke of the regenerator effluent catalyst was 2.2%, and the degree of coke of the stripper effluent catalyst was maintained at 4.9%. It can be seen that an increase of 2-3% compared to Example 2. In addition, the increased coke content is the leupin formation reaction intermediate derived inside the catalyst micropore, and as a result, ethylene selectivity was greatly increased to 42.5% compared to Example 2, and propylene and butene and selectivity were 40.3%, respectively. %, 5.9%.
  • Example 4 reduced the regenerator air inflow from Experimental Example 3 so that the selectivity of dimethyl ether was maintained at 2.8 3 ⁇ 4, and the coke degree of the regenerator effluent catalyst was 3.1% and the coke degree of the stripper effluent catalyst was 5.2%. Coke content could be maintained, ethylene selectivity increased to 43.0% additionally, and propylene and butene selectivity were 40.1% and 5.4%, respectively. In addition, the methane conversion was 99.0%.
  • Example 5 reduced the regenerator air inflow from Example 4 so that the selectivity of dimethyl ether was maintained at 8.1%, and the degree of coke of the regenerator outflow catalyst was 4.6 ⁇ , which was 4.4% higher than that of Example 2.
  • both ethylene and propylene selectivity was 39.3%, which was lower than those of Examples 3 and 4.
  • the high coke content the methanol exchange rate is also lowered to 97%.
  • Example 6 the selectivity of dimethyl ether was maintained at 10.5%, and the inlet regenerator air inflow amount was reduced from Experimental Example 5, and the coke degree of the regenerator effluent catalyst was 5.9%, which was 5.7 higher than that in Example 2.
  • ethylene and propylene selectivity was 35.6% and 38.1%, respectively.
  • the high coke content lowers the methanol conversion to 93.7%.
  • the optimization of the coke content of the catalyst through the control of the degree of regeneration of the used catalyst is very important for improving the yield of hard lepin, and because the coke content and dimethyl ether are correlated, the regeneration degree is selected from dimethyl ether. Monitoring the road You can see that it can be adjusted.
  • a circulating fluidized bed process for producing hard olephine was operated by directly diluting a catalyst and analyzing a coke deposition amount. Specifically, since the coke content of the catalyst plays a very important role in the control of the olefin fin selectivity, the catalyst before and after the reaction is partially recovered from the regenerator and the lower part of the stripper, and the coke content is analyzed to confirm the degree of coke. Space velocity, reaction temperature, regenerator airflow).
  • the coke content analysis of the catalyst uses thermal analysis methods such as thermal gravimetric analysis (TGA) / differential thermal analysis (DTA) and generally takes more than 8 hours, including sample pretreatment. do.
  • the conventional methods undergo catalyst sampling, catalyst thermal analysis, catalyst coke content analysis, and process reaction condition control, and the response time to analysis of coke content and control of process variables becomes long. Coke content is difficult to control quickly and effectively.
  • the product of methanol conversion reaction was analyzed in real time by gas chromatography (within 20 minutes), and dimethyl ether (DME) selectivity monitoring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to an effective operation of a circulating fluidized bed for preparing light olefins from methanol by monitoring the selectivity of intermediates, and specifically, to a method for predicting the extent of inactivation of a used catalyst by monitoring the selectivity of dimethyl ether (DME) and maintaining the optimized coke level by controlling the flux of air for catalyst regeneration, thereby effectively enhancing the productivity of a light olefin-based hydrocarbon, and particularly, maintaining the remarkable selectivity for ethylene and propylene.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
중간생성물의 실시간 모니터링을 통한 메탄을로부터 경질올레핀 제조용 순환 유동층 공정의 효율적 운전 ' Efficient Operation of a Circulating Fluidized Bed Process for the Production of Light Olefins from Methane with Real-time Monitoring of Intermediates ''
[기술분야】  [Technical Field]
<ι> 본 발명은 중간생성물의 선택도 모니터링을 통한 메탄을로부터 경질올레핀을 제조하는 순환유동층 공정의 효율적 운전에 관한 것으로, 구체적으로 디메틸에테르 (DME) 선택도를 모니터링하여 사용된 촉매의 비활성화 정도를 예측하고 촉매 재생 을 위한공기 유량을 조절하여 최적화된 코크 정도를 유지시킴으로써 경질올레핀계 탄화수소의 생산성을 효과적으로 증진할 수 있고, 특히 에틸렌 및 프로필렌에 대한 우수한 선택성을 유지할 수 있는 방법에 관한 것이다ᅳ  The present invention relates to an efficient operation of a circulating fluidized bed process for preparing light olefins from methane through monitoring the selectivity of intermediates. Specifically, the degree of deactivation of the catalyst used by monitoring the selectivity of dimethyl ether (DME) By predicting the efficiency of the catalyst and maintaining the optimized coke level by adjusting the air flow rate for catalyst regeneration, the present invention relates to a method for effectively increasing the productivity of light olefin hydrocarbons and, in particular, maintaining excellent selectivity to ethylene and propylene.
<2>  <2>
[배경기술】 . BACKGROUND OF THE INVENTION .
<3> 경질 올레핀은 나프타 분해로 얻어지는 에틸렌, 프로필렌, 부텐을 말하는 것 으로 합성수지, 합성고무, 알코올 등과 같은 다양한 화학제품 제조에 필수인 석유 화학 산업 기초 원료로서, 주로 나프타를 열분해하여 제조한다. 최근에 에탄올의 열분해 공정이나 유동층 접촉분해 공정에서도 경질올레핀을 일부 생산하지만, 나프 타의 열분해 공정에 비하면 생산규모가 매우 작다.  Light olefins are ethylene, propylene, and butenes obtained by naphtha cracking, and are the basic raw materials for the petrochemical industry, which are essential for the manufacture of various chemical products such as synthetic resins, synthetic rubbers, and alcohols. Recently, some of the light olefins are also produced in the ethanol pyrolysis process or the fluidized bed catalytic cracking process, but the production scale is much smaller than that of naphtha.
<4>  <4>
<5> 나프타 열분해 공정은 석유화학공장에서 사용하는 에너지의 40% 정도를 쓸 정도로 에너지를 많이 사용하지만, 공정이 단순하고 조작이 간편하여 널리 사용하 고 있다. 그러나 원유 가격의 급격한 상승으로 원료인 나프타의 가격이 같이 오르 고, 열분해 공정에서 필요한 에너지의 비용 부담이 커지면서 대체 공정을 다양하게 개발하고 있으며, 에너지 생산 과정에서 방출되는 막대한 이산화탄소를 줄이기 위 해 원유 이외의 자원에서 에너자를 적게 사용하며 경질올레핀을 생산하는 공정의 개발이 매우 절실해졌다.  <5> The naphtha pyrolysis process uses a lot of energy to use about 40% of the energy used in petrochemical plants, but it is widely used because of its simple process and easy operation. However, due to the sharp rise in the price of crude oil, the price of naphtha, a raw material, has risen, and the cost burden of the energy required for the pyrolysis process increases, and various alternative processes are being developed.In addition, to reduce the huge amount of carbon dioxide emitted during energy production, The development of a process to produce light olefins using less energy from the resources of the company is very urgent.
<6>  <6>
<7> 최근, 경질 올레핀을 제조하기 위해 나프타 열분해를 대체할 공정으로서 메 탄올로부터 경질올레핀 제조 (methano卜 to-olefin, ΜΤ0)를 위한 순환 유동층 공정에 대한 연구가 많이 진행되고 있다. 구체적으로, MTO 반응은 메탄올이 산 촉매에서 탈수되어 중간생성물인 디메틸에테르가 되고, 이어 에틸렌, 프로필렌, 부텐 등 경 질을레핀으로 전환되며, 전환된 상기 경질올레핀은 증합, 고리화, 탈수소화 등 여 러 반응을 거쳐 가지 달린 포화 탄화수소와 방향족 탄화수소가 된다. Recently, much research has been conducted on a circulating fluidized bed process for manufacturing light olefins (methano 卜 to-olefin, ΜΤ0) from methanol as a process to replace naphtha pyrolysis to prepare light olefins. Specifically, in the MTO reaction, methanol is dehydrated in an acid catalyst to be an intermediate product, dimethyl ether, followed by conversion of light ethylene, propylene, butene and the like into lepin, and the converted light olefin is polymerized, cyclized, dehydrogenated, etc. female The reaction then yields branched saturated and aromatic hydrocarbons.
<8>  <8>
<9> 따라서, MT0 반웅에서는 경질올레핀의 생성을 촉진하면서도 경질올레핀의 추 가 반응을 억제하여 경질올레핀에 대한 선^도를 극대화시키는 것이 주요한 과제이 며, 상기 과제를 해결하기 위하여 많은 연구 결과가 보고된바 있다.  Therefore, in the MT0 reaction, it is a major task to maximize the goodness of light olefins by promoting the production of light olefins and suppressing the addition reaction of light olefins, and many studies have been reported to solve the above problems. It has been done.
<10> - <10>-
<ιι> 종래 특허문헌 1(미국 특허 제 4,873,390호)은 촉매를 재생 매질과 접촉시 키는 단계로부터 재생된 촉매를 반응물인 다양한 함산소화합물 (oxygenate)과 재접 촉시키는 단계로 복귀하는 촉매 상의 탄소질 침적물의 양을 제어함으로써, 유동상 반응계에서 메탄올 등의 함산소화합물들의 촉매적 전환으로 제조되는 에틸렌 및 프 로필렌의 양을 증가시키는 방법을 제사하고 있다. Conventional Patent Document 1 (US Pat. No. 4,873,390) discloses carbon on a catalyst that returns from contacting the catalyst with a regeneration medium to recontacting the regenerated catalyst with various oxygenates as reactants. By controlling the amount of vaginal deposits, there is proposed a method for increasing the amount of ethylene and propylene produced by catalytic conversion of oxygenated compounds such as methanol in a fluidized bed reaction system.
<12>  <12>
<13> 또한, 특허문헌 2(미국특허 제 6,166, 282호)는 함산소화합물로부터 올레핀을 제조하는 공정타입으로 기존의 버블링 베드 (bubbling bed)에 비해 촉매의 층잔양을 줄일 수 있고, 반응기 크기를 감소시킬 수 있는 고속 유동층 반응 공정을 제시하고 있으며, 특히 경질올레핀을 제조하는 고속 유동층 공정에 있어서 올레핀의 전환은 온도, 촉매의 활성, 공간속도 등의 반응 변수들에 크게 영향을 받는다고 보고하고 있다.  In addition, Patent Document 2 (US Pat. No. 6,166, 282) is a process type for preparing olefins from oxygenated compounds, which can reduce the amount of bed residue of a catalyst compared to a conventional bubbling bed. It is proposed a fast fluidized bed reaction process that can reduce the size, and especially in the fast fluidized bed process for producing light olefins, the conversion of olefins is greatly influenced by reaction variables such as temperature, catalyst activity, and space velocity. Doing.
<14>  <14>
<15> 나아가, 특허문헌 3(미국특허 제 5, 952, 538호)는 함산소화합물로부터 을레핀 전환 공정에서 공정변수들 중 공간속도가 올레핀 선택도에 미치는 영향과 최적의 공간속도 범위를 제시하고 있다.  <15> Further, Patent Document 3 (US Pat. No. 5, 952, 538) presents the effect of the space velocity on the olefin selectivity and the optimum range of space velocity among the process variables in the conversion of oxygenated compounds to elefin. Doing.
<16>  <16>
<17> 또한, 특허문헌 4(미국특허 제 6,023,005호)는 메탄을로부터 경질올레핀을 제 조하는 공정에서 일정수준의 평균 코크 함량을 유지하는 것이 경질올레핀의 선택도 를 높이는데 큰 영향을 준다고 보고하고 있다.  In addition, Patent Document 4 (U.S. Patent No. 6,023,005) discloses that maintaining the average coke content at a level in the process of producing light olefins from methane increases the selectivity of light olefins. It is reported to affect.
<18>  <18>
<19> 나아가, 비특허문헌 KFuel Processing Technology, 88 (2009) 437-441)에서 <19> Furthermore, in the non-patent document KFuel Processing Technology, 88 (2009) 437-441)
Guozhen Qi 등은 메탄올로부터 경질올레핀을 제조하는 공정에서 코크 함량에 따라 올레핀 선택도가 크게 변화하며 이러한 코크 함량은 공간속도와 반웅온도에 의존한 다고 보고하고 있다. Guozhen Qi et al. Reported that olefin selectivity varies greatly with the coke content in the process of producing light olefins from methanol, and the coke content depends on the space velocity and reaction temperature.
<20> <21> 상기 선행연구들을 통해서 코크 함량이 경질을레핀의 수물 및 선 ^도 조질어 I 매우 중요한 역할을 함을 알 수 있다. 따라서, 함산소화합물로부터 경질올레핀을 제조하는 순환유동층 반응 공정에서 경질올레핀의 수율을 높이고 선택도를 향상시 키기 위해서는 코킹 (탄소침적)에 의해서 비활성화된 촉매의 재생 공정 최적화가 매 우 중요하다. <20> Through the preceding studies, it can be seen that the coke content plays a very important role in the coarse I and hard water of hard lepin. Therefore, in the circulating fluidized bed reaction process for preparing light olefins from oxygenated compounds, optimization of the regeneration process of catalysts deactivated by coking (carbon deposition) is very important to increase the yield of light olefins and improve selectivity.
<22>  <22>
<23> ' 경질올레핀을 제조하는데 사용된 촉매를 완전히 재생할 경우 반응물의 전환 율은 높으나 에틸렌, 프로필렌 등의 경질올레핀의 수율이 낮아지고, 재생이 부족하 여 촉매에 코크가 너부 많이 남아 있는 경우에는 전체적으로 수율아 낮아질 뿐만 아니라 반응물의 전환을 ,또한 낮아져 문제가 되므로 최적의 재생 정도를 확보하여 안정적으로 운전하는 것이 매우 중요한 것이다. <23>"conversion ratio of the reaction product, if completely reproduce the catalyst used for the production of light olefins is high but ethylene, is the yield of light olefins decreases and propylene, the reproduction is insufficient to open if the coke on the catalyst remains much neobu has In addition to lowering the yield as a whole, the conversion of the reactants is also lowered, which is a problem, so it is very important to operate stably with an optimum degree of regeneration.
<24>  <24>
<25> 그러나, 현재까지는 반웅 후의 촉매를 일부 회수하여 코크 함량 분석을 통 하여, 촉매의 코크 정도를 확인하고 이에 따라 반응조건 (공간속도, 반응온도)을 조 절하는 방법이 사용되고 있는데, 이 경우 촉매시료의 채취, 촉매 열분석., 촉매 코 크함량 분석, 공정반응조건의 조절의 과정을 거치게 되며, 코크 함량의 분석과 공 정변수의 조절까지의 응답시간이 길어지기 때문에 코크 함량을 신속하고 효과적으 로 조절하는 것이 어려운 문제점이 있다.  However, until now, some of the catalyst after reaction has been recovered to determine the degree of coke of the catalyst through the coke content analysis, and accordingly, a method of adjusting the reaction conditions (space velocity and reaction temperature) has been used. Through the process of collecting catalyst sample, catalytic thermal analysis, catalytic coke content analysis, process reaction condition control, response time from analysis of coke content and control of process variables is long, so There is a problem that it is difficult to adjust effectively.
<26>  <26>
<27> 이에, 본 발명자들은 메탄을로부터 경질을레핀 제조용 순환유동층 공정의 효 율적 운전에 대해 관심을 가지고 연구를 진행하던 중, 경질올레핀 전환 반응에서 중간 생성물인 디메틸에테르의 선택도와 촉매의 코크 함량의 상관관계를 발견하고, 디메틸에테르의 선택도를 모니터링하여 촉매의 비활성화 정도를 신속하게 예측하고 촉매 재생을 위한 공기 유량을 조절하여 최적화된 코크함량을 유지함으로써 경질을 레핀의 수율을 효과적으로 증진할 수 있고, 특히 에틸렌 및 프로필렌에 대한 우수 한 선택성을 유지할수 있는 효과가 있음을 확인하고 본 발명을 완성하였다.  Therefore, the present inventors have been interested in the efficient operation of the circulating fluidized bed process for producing hard lephine from methane, and the selectivity of the intermediate product dimethyl ether and the coke content of the catalyst in the light olefin conversion reaction. To predict the deactivation rate of the catalyst by monitoring the selectivity of dimethyl ether, and to improve the yield of hardpin by effectively maintaining the optimum coke content by adjusting the air flow rate for catalyst regeneration. In particular, it was confirmed that there is an effect that can maintain excellent selectivity to ethylene and propylene, and completed the present invention.
<28>  <28>
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<29> 본 발명의 목적은 메탄올로부터 경질올레핀 제조함에 있어서, 중간생성물인 디메틸에테르의 선택도를 모니터링하여 사용된 촉매의 비활성화를 예측하는 방법을 제공하는 데 있다. <30> An object of the present invention is to provide a method for predicting the deactivation of the catalyst used by monitoring the selectivity of the intermediate dimethyl ether in preparing light olefins from methanol. <30>
<31> 또한, 본 발명의 목적은 메탄올로부터 경질올레핀 제조함에 있어서, 중간생 성물인 디메틸에테르의 선택도를 모니터링하여 경질올레핀의 수율 및 특히 에틸렌 및 프로필렌의 선택도를 향상시킬 수 있도록 재생된 촉매의 코크 함량을 최적화할 수 있는 경질을레핀의 제조방법을 제공하는 데 있다.  In addition, an object of the present invention is a catalyst regenerated to improve the yield of light olefins and especially the selectivity of ethylene and propylene by monitoring the selectivity of intermediate dimethyl ether in preparing light olefins from methanol. It is to provide a method for preparing a hard lepin that can optimize the coke content of.
<32>  <32>
<33> 나아가, 본 발명은 목적은 메탄올로부터 경질올레핀 제조함에 있어서, 증간 생성물인 디메틸에테르의 선택도를 모니터링하여 재생된 촉매의 코크 함량을 최적 화함으로써 경질올레핀의 수율 및 특히 에틸렌 및 프로필렌의 선택도를 향상시키는 방법을 제공하는 데 있다.  Furthermore, the present invention aims to monitor the selectivity of the dimethyl ether as an extra product in the production of light olefins from methanol to optimize the yield of light olefins and in particular the selection of ethylene and propylene by optimizing the coke content of the regenerated catalyst. It is to provide a method for improving the degree.
<34>  <34>
[기술적 해결방법】  [Technical Solution]
<35> 상기 목적을 달성하기 위하여, 본 발명은  In order to achieve the above object, the present invention
<36> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내에서 메탄올 과촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1); 및  Contacting the methanol supercatalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1); And
<37> . 단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계  <37>. Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step
2); 를 포함하는 경질 올레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법을 제공한다.  2); provides a method for predicting the deactivation of the catalyst used to prepare light olefins.
<38>  <38>
<39> 또한, 본 발명은  In addition, the present invention
<40> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반웅기 내에서 메탄올 과 촉매를 _접촉시켜 경질 올레핀을 제조하는 단계 (단계 1);  Preparing light olefins by contacting methanol with the catalyst in a circulating fluidized bed reactor equipped with a catalyst regeneration unit and a product separation unit (step 1);
<41> 단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step
2); 및  2); And
<42> 단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, Injecting air for regeneration of the catalyst by separating the used catalyst of step 1,
<43> 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 초절하는 단 계 (단계 3); 를 포함하는 경질 올레핀의 제조방법을 제공한다 . Extruding the injected air flow rate according to the selectivity of the dimethyl ether of step 2 (step 3); It provides a method for producing a light olefin comprising a.
<44>  <44>
<45> 나아가, 본 발명은  Furthermore, the present invention
<46> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반웅기 내에서 메탄올 Methanol in a circulating fluidized bed reactor with catalyst regeneration and product separation
' 과 촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1); ' Contacting the catalyst with a catalyst to produce light olefins (step 1);
<47> 단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계 2); 및 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step 2); And
<48> 단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, In order to regenerate the catalyst by separating the used catalyst of step 1,
<49> 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단 겨 K단계 3); 를 포함하는 경질 올레핀의 수율 향상방법을 제공한다. Step K) to adjust the injected air flow rate according to the selectivity of the dimethyl ether of step 2; It provides a method for improving the yield of light olefin comprising a.
<50>  <50>
[유리한 효과】  Advantageous Effects
<51> 본 발명에 따르면 메탄을 등의 함산소화합물로부터 순환유동층 공정을 사용 하여 경질을레핀을 생산하는 공정에 있어서, 반응 후 생성되는 증간생성물인 디메 틸에테르의 선택도와의 상관관계 분석을 틍하여 촉매의 비활성화 (코크 정도)를 실 시간으로 예측할수 있는 효과가 있다.  According to the present invention, in the process of producing hard lepine from methane and other oxygen-containing compounds by using a circulating fluidized bed process, a correlation analysis with the selectivity of dimethyl ether, which is an intermediate product produced after the reaction, is performed. Thus, the deactivation of the catalyst (coke level) can be predicted in real time.
<52> 또한, 본 발명에 따르면 다메틸에테르의 선택도를 실시간 모니터링하여 촉매 재생을 위한 공기 유량을 조절하여, 최적의 코크 정도를 유지시킴으로써 경질올레 계 탄화수소의 수율을 효과적으로 증진할수 있고, 특히 에틸렌 및 프로팔렌에 대 한우수한 선택성을 유지할 수 있는 효과가 있다. <52> Further, according to the present invention is to control the air flow rate for catalyst regeneration by real-time monitoring of the selectivity of the ether, by maintaining the degree of optimum coke, and can increase the yield of light oleic hydrocarbon effectively, particularly ethylene And it has the effect of maintaining excellent selectivity for propylene.
<53>  <53>
【도면의 간단한 설명】  [Brief Description of Drawings]
<54> 도 1은 본 발명의 일 실시예에 따른 촉매 재생부 및 생성물 분리부를 구비한 순환유동층 반웅기의 모식도이다.  1 is a schematic diagram of a circulating fluidized bed reaction vessel having a catalyst regeneration unit and a product separation unit according to an embodiment of the present invention.
<56> [부호의 설명] <56> [Description of the Sign]
<57> 1: 상승관 (riser)  1 : riser
<58> 2: 스트리퍼. (stripper) <58> 2: stripper . (stripper)
<59> 3: 재생기 (regenerator) '  3: regenerator ''
<60> 4: 스트리퍼 슬라이드 벨브 (stripper slide valve)  4 : stripper slide valve
<6i> 5: 재생기 슬라이드 밸브 (regenerator slide valve)  <6i> 5: Regenerator slide valve
<62> 6: 스트리퍼 이송 라인 (stripper transfer line)  6: stripper transfer line
<63> 7: 재생기 이송 라인 (regenerator transfer line)  7: regenerator transfer line
<64> 8: 배가스 제어 밸브 (flue gas control valve)  8: flue gas control valve
<65> 9: 생성물가스 제어 밸브 (product gas control valve)  9 : product gas control valve
<66> 10: 재생기 공기 주입 라인 (regenerator air inlet)  10: regenerator air inlet
<67> 11: 메탄올 주입 라인 (methanol feed inlet)  11: methanol feed inlet
<68> 12: 상승관 ¾소 주입라인 (riser nitrogen inlet)  12: riser nitrogen inlet line (riser nitrogen inlet)
<69> 13: 스트리퍼 질소 주입라인 (stripper nitrogen inlet) <70> 14: 배가스 유출라인 (flue gas outlet) 13 : stripper nitrogen inlet 14: flue gas outlet
<7i> 15: 생성물가스 유출라인 (product gas outlet)  15: product gas outlet
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<73> 본 발명은 중간생성물의 선택도 모니터링을 통한 메탄올로부터 경질올레핀을 제조하는 순환유동층 공정의 효율적 운전에 관한 것으로, 구체적으로 디메틸에테르 The present invention relates to an efficient operation of a circulating fluidized bed process for preparing light olefins from methanol through monitoring the selectivity of intermediates, specifically, dimethyl ether.
(DME) 선택도를 모니터링하여 사용된 촉매의 비활성화 정도를 예측하고 촉매 재생 을 위한 공기 유량을 조절하여 최적화된 코크 정도를 유지시킴으로써 경질올레핀계 탄화수소의 생산성을 효과적으로 증진할 수 있고, 특히 에틸렌 및 프로필렌에 대한 우수한 선택성을 유지할 수 있는 방법에 관한 것이다. (DME) selectivity can be monitored to predict the degree of deactivation of the catalyst used and to control the air flow for catalyst regeneration to maintain the optimum coke level, effectively increasing the productivity of light olefin hydrocarbons, especially ethylene and propylene The present invention relates to a method capable of maintaining excellent selectivity to.
<74>  <74>
<75> 이하, 본 발명을 구체적으로 설명한다.  Hereinafter, the present invention will be described in detail.
<76>  <76>
<77> 먼저, 본 발명은  First, the present invention
<78> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내쎄서 메탄올 과 촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1); 및  Contacting methanol with the catalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1); And
<79> 단계 1의 증간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계 Monitoring the selectivity of the dimethyl ether which is the intermediate product of step 1 (step
2); 를 포함하는 경질 을레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법을 제공한다. 2); It provides a method for predicting the deactivation of the catalyst used in the preparation of hard olepin.
<80>  <80>
<81> 이하, 본 발명에 따른 경질 을레핀 제조에 사용된 촉매의 비활성화를 예측하 는 방법을 각 단계별로 더욱 구체적으로 설명한다/  Hereinafter, the method for predicting the deactivation of the catalyst used in the preparation of hard lepin according to the present invention will be described in more detail in each step.
<82>  <82>
<83> 먼저, 본 발명에 따른 경질 을레핀 제조에 사용된 촉매의 비활성화를 예측하 는 방법에 있어서, 단계 1은 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반웅기 내에서 메탄올과 촉매를 접촉시켜 경질 을레핀을 제조하는 단계이다.  First, in the method for predicting the deactivation of the catalyst used in the preparation of light leulev according to the present invention, step 1 is contacted with methanol in a circulating fluidized bed reactor equipped with a catalyst regeneration unit and a product separation unit. It is a step to prepare a hard olepin.
<84>  <84>
<85> 구체적으로, 단계 1의 상기.촉매 재생부 및 생성물 분리부를 구비한 순환 유 동층 반응기의 모식도를 도 1에 나타내었다 .  Specifically, a schematic diagram of the circulating fluidized bed reactor having the catalyst regeneration part and the product separation part of step 1 is shown in FIG. 1.
<86>  <86>
<87> 도 1을 참조하여, 상기 단계 1의 순환 유동층 반응기에 의한 경질 을레핀 제 조단계를 설명하면, 기화된 메탄을이 메탄올 주입라인 (11)을 통하여 상승관 (1)으로 주입되며, 촉매의 상승을 위하여 상승관 질소 주입 라인 (12)을 통하여 주입되는 질 . 소와 함께 상승관 (1)으로 주입된다. 상승관 (1)에서는 순환되고 있는촉매와 하부에 서 유입되는 메탄을이 만나 반응이 진행된다. Referring to Figure 1, when explaining the step of manufacturing a hard relefin by the circulating fluidized bed reactor of step 1, vaporized methane is injected into the riser (1) through the methanol injection line (11), Quality injected through riser nitrogen injection line 12 to ascend the catalyst . It is injected into the ascension tube 1 together with the cow. In the riser (1), the reaction proceeds between the circulating catalyst and the methane introduced from the bottom.
<88> 다음으로, 상승관 (1)을 거친 유출물은스트리퍼 (3)으로 흐르고, 스트리퍼 (3) 에서는 촉매와 생성물 가스가 분리된다. 스트리퍼 (3)의 하부에서는 촉매와 질소의 접촉에 의해 휘발성 탄화수소가 회수되며, 스트리퍼 (3)에서 분리된 촉매는 재생기 (2)로 보내진다. 재생기 (2)에서는 촉매와 공기의 접촉으로 촉매의 재생이 일어나게 된다. 재생기에서 재생된 촉매는 상승관 하부로 이송되며, 상승관에서 다시 메탄올 과 반응하게 된다. 순환 유동층 반응기 내에서 촉매의 순환과 메탄올의 반응은 연 속적, 반복적으로 진행된다.  Next, the effluent passing through the riser 1 flows into the stripper 3, where the catalyst and the product gas are separated. In the lower part of the stripper 3, volatile hydrocarbons are recovered by the contact of the catalyst with nitrogen, and the catalyst separated in the stripper 3 is sent to the regenerator 2. In the regenerator 2, the catalyst is regenerated by contact of the catalyst with air. The regenerated catalyst in the regenerator is transferred to the bottom of the riser and reacted with methanol again in the riser. In the circulating fluidized bed reactor, the circulation of the catalyst and the reaction of methanol proceed continuously and repeatedly.
<89>  <89>
<90> 다음으로, 본 발명에 따른 경질 올레핀 제조에 사용된 촉매의 비활성화를 예 측하는 방법에 있어서, 단계 2는 단계 1의 증간생성물인 디메틸에테르의 선택도를 모니터링하는 단계이다.  Next, in the method for predicting the deactivation of the catalyst used to prepare the light olefin according to the present invention, step 2 is monitoring the selectivity of the dimethyl ether which is the intermediate product of step 1.
<91>  <91>
<92> 구체적으로, 상기 단계 2의 중간생성물인 디메틸에테르의 선텍도는 반응 생 성물 분석, 예를 들어 가스크로마토그래피 분석을 통하여 이루어진다. MT0 반응은 메탄을이 산 촉매에서 탈수되어 중간생성물인 다메틸에테르가 되고, 이어 에틸렌, 프로필렌, 부텐 등 경질올레핀으로 전환되며, 전환된 상기 경질올레핀은 중합, 고 리화, 탈수소화 등 여러 반웅을 거쳐 예를 들어, d - C3의 포화 탄화수소 및 C5 이 상의 탄화수소가 되는 것이므로, 상기 반웅 생성물은 디메틸에테르, 에틸렌, 프로 필렌, 부텐, - C3의 포화 탄화수소 및 C5 이상의 탄화수소 등 일 수 있다. Specifically, the suntec degree of dimethyl ether, which is the intermediate product of step 2, is performed through reaction product analysis, for example, gas chromatography analysis. In the MT0 reaction, methane is dehydrated in this acid catalyst to be an intermediate product, dimethyl ether, and then converted into light olefins such as ethylene, propylene, butene, and the like. The converted light olefins undergo various reactions such as polymerization, ring polymerization, and dehydrogenation. For example, since it is a saturated hydrocarbon of d-C 3 and hydrocarbon of C 5 or more, the reaction product may be dimethyl ether, ethylene, propylene, butene, saturated hydrocarbon of -C 3 , hydrocarbon of C 5 or more, and the like. have.
<93>  <93>
<94> 본 발명의 경질 올레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법에 따르면, 순환유동층 공정을 이용하여 메탄을로부터 경질을레핀을 제조함에 있어서, 사용된 촉매의 비활성화, 즉 촉매에 침적되는 코크 함량을 증간생성물인 디메틸에 테르의 선택도와의 상관관계 분석을 통하여 실시간으로 예측할수 있다.  According to the method for predicting the deactivation of the catalyst used in the production of light olefins of the present invention, in the production of light lepin from methane using a circulating fluidized bed process, the deactivation of the catalyst used, i.e., deposited on the catalyst The coke content can be predicted in real time through the correlation analysis with the selectivity of the dimethyl ether, which is the extra product.
<95>  <95>
<96> 순환유동층 공정을 이용하여 메탄올로부터 경질올레핀을 제조함에 있어서, 촉매의 활성, 즉 촉매에 침적되는 코크 함량은 경질올레핀의 수율 특히, 에틸렌 프 로필렌의 선택도를 향상시키는데 중요한 변수이며, 이를 위해 탄소 침적에 의해 비 활성화된 재생 공정 최적화가 매우 중요하다 . <98> . 종래, 촉매에 침적되는 코크 함량을 확인하기 위하여 반끙 우위 In the production of light olefins from methanol using a circulating fluidized bed process, the activity of the catalyst, i.e. the coke content deposited on the catalyst, is an important parameter in improving the yield of light olefins, in particular the selectivity of ethylene propylene, For this purpose, it is very important to optimize the regeneration process, which is deactivated by carbon deposition. <98>. Conventionally, in order to confirm the coke content deposited on the catalyst
회수하고 촉매의 코크 정도를 확인한 후, 이에 따라 반응조건 (공간속도, 반응온도) 을 조절하는 방법이 사용되고 있는데, 이 경우 촉매시료의 채취, 촉매 열분석, 촉 매 코크함량 분석, 공정반응조건의 조절의 과정을 거치게 되므로, 코크 함량의 분 석과 공정변수의 조절까지의 웅답시간이 길어지기 때문에 코크 함량을 신속하고 효 과적으로 조절하는 것이 어려운 문제점이 있다.  After recovering and confirming the degree of coke of the catalyst, a method of controlling the reaction conditions (space velocity, reaction temperature) is used accordingly. In this case, the catalyst sample, catalyst thermal analysis, catalyst coke content analysis, process reaction conditions Because of the process of adjustment, it is difficult to adjust the coke content quickly and effectively because the response time to analysis of the coke content and the adjustment of the process variables becomes long.
<99>  <99>
:100> 반면, 본 발명의 경질 올레핀 제조에 사용된 촉매의 비활성화를 예측하는 방 법에 따르면 메탄을 전환반옹의 생성물을 가스크로마토그래피에 의해 실시간으로 분석 (20분 이내)하고, 디메틸에테르 (DME)의 선택도를 모니터링 함으로써, 촉매의 비활성화 정도를 효과적으로 분석하고, 일정수준의 코크 정도를 유지시키는 메탄올 로부터 경질올레핀 생산 공정의 웅답속도를 현저하게 단축할 수 있는 유리한 효과 가 있다. . On the other hand, according to the method for predicting the deactivation of the catalyst used in the production of light olefins of the present invention, methane is analyzed in real time by gas chromatography (within 20 minutes), and dimethyl ether (DME By monitoring the selectivity of), it is possible to effectively analyze the degree of deactivation of the catalyst and to significantly reduce the step speed of the light olefin production process from methanol maintaining a certain level of coke. .
:101> . . : 101>. .
102> 또한, 본 발명은 102> In addition, the present invention
103> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내에서 메탄을 과촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1);  Contacting methane with a supercatalyst in a circulating fluidized bed reactor having a catalyst regeneration section and a product separation section to produce light olefins (step 1);
104> 단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step
2); 및 2); and
105> 단계 1의 사용된 촉매를 분리하여 촉매와 재생을 위해 공기를 주입하되,  105> separate the spent catalyst from step 1 and inject air for regeneration and
106> 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단 계 (단계 3); 를 포함하는 경질 올레핀의 제조방법을 제공한다.  Adjusting the flow rate of the injected air according to the selectivity of the dimethyl ether of step 2 (step 3); It provides a method for producing a light olefin comprising a.
107>  107>
108> 이하, 본 발명에 따른 경질 을레핀의 제조방법을 각 단계별로 더욱 구체적으 로 설명한다. ᅳ  108> Hereinafter, a method for preparing hard olepin according to the present invention will be described in more detail at each step. ᅳ
109>  109>
ιιο> 먼저, 본 발명에 따른 경질 을레핀의 제조방법에 있어서 단계 1과 단계 2는 상기 경질 올레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법에서 설명한 것 과 동일하게 수행될 수 있다. First, step 1 and step 2 in the method for preparing light olefins according to the present invention may be carried out in the same manner as described in the method for predicting the deactivation of the catalyst used for the production of light olefins.
111>  111>
ii2> 구체적으로, 단계 1의 상기 촉매는 MT0 반응쎄 일반적으로 사용되는 촉매인 경우 특별히 제한하지 않으나, 예를 들어 실리코알루미노포스페이트계 (silicoaluminophosphate, SAPO) 또는 제올라이트계 (zeol ite)들 선택하0 卜뭉 ¾μ 수 있으며, 바람직하게는 SAPO-34, SAP0-18 또는 ZSM-5를 선택하여 사용할 수 있 다. ᅳ 다음으로, 본 발명에 따른 경질 올레핀의 제조방법에 있어서 단계 3은 단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단계이다. 구체적으로, 단계 2의 상기 촉매 재쌩을 위해 주입되는 공기 유량은 디메틸 선택도가' 0.2 - 10.5 ¾»로, 더욱 바람직하게는 0.5 - 8.1 %로 유지되도록 조절되는 것이 좋다. 만약 상기 촉매 재생을 위해 주입되는 공기 유량이 디메틸 선택도가 0.2 % 미만이 되도록 주입되는 경우 에틸렌의 선택도가 현저히 낮아지는 문제점이 있고, 10.5 % 초과로 유지되도록 주입되는 경우 경질올레핀 (에틸렌, 프로필렌)의 선택도 및 메탄을 전환율이 낮아지는 문제점이 있어, 상기 범위를 유지하는 것이 좋다. 또한, 단계 2의 상기 촉매 재생을 위해 주입되는 공기 유량은 재생된 촉매의 평균 코크 함량이 0.2 - 5.9 중량 ¾>, 더욱 바람직하게는 0.5 - 4.6 중량¾가 되도록 조절되는 것이 좋다. 만약 상기 촉매 재생을 위해 주입되는 공기 유량이 재생된 촉 매의 평균 코크 함량이 0.2 중량 % 미만이 되도록 주입되는 경우 에틸렌 선택도가 크게 낮아지는 문제점이 있고, 5.9 중량 % 초과가 되도록 주입되는 경우 경질올레핀 (에틸렌, 프로필렌)의 선택도 및 메탄올 전환율이 낮아지는 문제점이 있어, 상가 범위를 유지하는 것이 좋다. 나아가, 상기 반웅기의 온도는 300 V - 600 °C이고, 반응기에서 촉매의 순 환속도는 1 - 100 kg/h이고, 반응기에 주입되는 메탄을의 공간속도는 0.5 - 300 h"1 인 것이 바람직하다. 만약 상기 반웅기의 온도가 300 V 미만인 경우 메탄올의 전환율이 낮아지고 이차탈수반응이 일어나지 않아 디메틸에테르가 주로 생산되어 경질을레핀 선택도가 크게 낮아지는 문제점이 있고ᅳ 600 V 초과인 경우 촉매의 비활성화 속도가 급격하 게 증가하는 문제점이 있어, 상기 온도 범위를 유지하는 것이 좋다. 또한, 반응기 에서의 촉매의 순환 속도가 lkg/h 미만인 경우 순환유동충 반웅기가 얀¾적으로 문 전되는 촉매의 유동성이 확보되지 않는 문제점이 있고, 100 kg/h 초과인 경우 촉매 재생기 내의 촉매 체류시간이 크게 감소하여 층분한 재생이 일어나지 않는 문제점 이 있어, 상기 순환 속도를 유지하는 것이 좋다. 또한, 반응기에 주입되는.메탄올 의 공간 속도가 0.5 h1 미만인 경우 메탄을 처리량이 매우 낮아 경제적인 생산성 확보가 어려운 문제점이 있고, 300 h1 초과인 경우 촉매 반응의 전환율이 크게 감 소하는 문제점이 있어 상기 공간속도를 유지하는 것이 좋다. ii2> Specifically, the catalyst of step 1 is not particularly limited in the case of a catalyst generally used in the MT0 reaction, for example, a silicoaluminophosphate system. (silicoaluminophosphate, SAPO) or zeolites (zeol ite) can be selected to 0 ¾ μ , preferably SAPO-34, SAP0-18 or ZSM-5 can be selected and used. ᅳ Next, in the method for preparing light olefin according to the present invention, step 3 is to inject air for regeneration of the catalyst by separating the used catalyst of step 1, the injected air flow rate to selectivity of the dimethyl ether of step 2 According to the steps to adjust. Specifically, the air flow rate injected for the catalyst reassembly of step 2 may be adjusted to maintain the dimethyl selectivity at '0.2-10.5 ¾', more preferably at 0.5-8.1%. If the flow rate of the air injected for the catalyst regeneration is injected such that the dimethyl selectivity is less than 0.2%, there is a problem that the selectivity of ethylene is significantly lowered, and when it is injected to be maintained above 10.5%, light olefins (ethylene, propylene ) Selectivity and methane conversion rate is low, it is good to maintain the above range. In addition, the air flow rate injected for the regeneration of the catalyst of step 2 is preferably adjusted so that the average coke content of the regenerated catalyst is 0.2-5.9 weight ¾>, more preferably 0.5-4.6 weight ¾. If the flow rate of air injected for regenerating the catalyst is injected such that the average coke content of the regenerated catalyst is less than 0.2 wt%, there is a problem that the ethylene selectivity is significantly lowered, and if it is injected more than 5.9 wt%, it is hard. There is a problem that the selectivity of olefins (ethylene, propylene) and methanol conversion are lowered, and it is better to maintain the range of addition. Furthermore, the temperature of the reaction vessel is 300 V-600 ° C, the circulation rate of the catalyst in the reactor is 1-100 kg / h, the space velocity of the methane injected into the reactor is 0.5-300 h "1 If the reaction temperature is less than 300 V, the conversion of methanol is lowered and secondary dehydration does not occur, so dimethyl ether is mainly produced, resulting in a significantly lower harden selectivity. There is a problem that the deactivation rate of the catalyst is increased rapidly, and it is preferable to maintain the temperature range. If the circulation rate of the catalyst at less than lkg / h is a problem that the fluidity of the catalyst in which the circulating fluidized bed reaction is slowly developed, and the catalyst residence time in the catalyst regenerator is greatly increased if it is more than 100 kg / h There is a problem that the reduced regeneration does not occur, it is preferable to maintain the circulation rate. In addition, when the space velocity of methanol injected into the reactor is less than 0.5 h 1 , the throughput of methane is very low, making it difficult to secure economic productivity, and when it exceeds 300 h 1 , the conversion rate of the catalytic reaction is greatly reduced. It is good to maintain the space velocity.
:123> : 123>
:124> 또한, 상기 촉매 재생기의 온도는 500 - 700 °C 이고, 촉매 재생을 위해 주 입되는 공기 유량은 5 - 50 1/min인 것이 바람직하다ᅳ In addition, it is preferable that the temperature of the catalyst regenerator is 500-700 ° C, and the air flow rate injected for regenerating the catalyst is 5-50 1 / min.
125>  125>
126> 만약 상기 촉매 재생기의 온도가 500 °C 미만인 경우 침적된 코크의 재생이 이루어지지 않는 문제점이 있고, 700 °C 초과인 경우 촉매 결정 구조가 붕괴되는 문제점이 있어 온도는 상기 범위를 유지하는 것이 좋다. 또한, 촉매 재생을 위해 주입되는 공기 유량이 5 1/min 미만인 경우 촉매가 충분히 재생되지 않는 문제점이 있고, 50 1/min 초과인 경우 촉매의 코크 상태를 유지할 수 없는 문제점이 있어 바 람직하지 못하다. 126> If the temperature of the catalyst regenerator is less than 500 ° C, there is a problem that regeneration of the deposited coke is not performed, and if the temperature of the catalyst regenerator is higher than 700 ° C, the catalyst crystal structure collapses, so that the temperature is maintained within the above range. good. In addition, when the flow rate of air injected for catalyst regeneration is less than 5 1 / min, there is a problem that the catalyst is not sufficiently regenerated, and if it is more than 50 1 / min, there is a problem that can not maintain the coke state of the catalyst is not preferable.
127>  127>
128> 나아가, 본 발명은  128> Furthermore, the present invention
129> 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내에서 메탄올 과 촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1);  Contacting methanol with the catalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit to produce light olefins (step 1);
130> 단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계130> Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step
2); 및 2); and
131> 단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, 131> separate the catalyst used in step 1 and inject air for regeneration of the catalyst,
132> 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단 계 (단계 3); 를 포함하는 경질 올레핀의 수율 향상방법을 제공한다. Adjusting the injected air flow rate according to the selectivity of the dimethyl ether of step 2 (step 3); It provides a method for improving the yield of light olefin comprising a.
133>  133>
134> 구체적으로, 본 발명에 따른 경질 을레핀의 수율 향상방법에 있어서 단계 1 내지 단계 3은 상기 경질 을레핀의 제조방법에서 설명한 것과 동일하게 수행될 수 있다.  Specifically, in the method for improving the yield of hard leucine according to the present invention, steps 1 to 3 may be performed in the same manner as described in the method for preparing the hard leucine.
135>  135>
136> 본 발명에 따른 경질 올레핀의 제조방법 또는 경질 을레핀의 수율 향상방법 에 따르면, 중간생성물인 디메틸에테르의 선택도를 실시간 모니터 ¾하여 족매 재생 을 위한 공기 유량을 조절하여, 최적의 코크 정도를 유지시킴으로써 경질올레핀계 탄화수소의 생산성을 효과적으로 증진할 수 있고, 특히 에틸렌 및 프로필렌에 대한 우수한 선택성을 유지할 수 있는 효과가 있다 136> Method for producing light olefins or improving the yield of light olefins according to the present invention According to the present invention, the selectivity of the intermediate dimethyl ether is monitored in real time to adjust the air flow rate for the rearing of the corpus, maintaining the optimum coke level, thereby effectively increasing the productivity of the light olefin hydrocarbons. Has the effect of maintaining excellent selectivity for
:137>  : 137>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
:138> 이하, 본 발명을 실시예에 의하여 상세히 설명한다. 단, 하기의 실시예는 발 명을 예시하는 것일 뿐, 내용이 하기의 실시예에 의하여 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the invention, the content is not limited by the following examples.
:139> : 139>
140> <실시예 >중간생성물의 실시간모니터링을통한메탄을로부터 경질올레핀 제 조용 순환유동층 공정  Example> Circulating fluidized bed process for the production of light olefins from methane through real-time monitoring of intermediate products
141> 본 발명 실시예에 사용되는 촉매는 미소 구형의 SAP0-34 성형 촉매이며, 141> The catalyst used in the examples of the present invention is a micro-spherical SAP0-34 molding catalyst,
SAP0-34 분말, 알루미나졸, 카을란 바인더를 산 (acidic) 조건 하에 균일하게 섞은 후, 분무 건조하여 성형하였다. 상기 성형 촉매의 평균밀도는 670 kg/m3이고, 마모 율은 4.5 %이며, 입자크기가 53 - 200 이내이다. The SAP0-34 powder, alumina sol, and Karlan binder were uniformly mixed under acidic conditions, and then spray dried to form. The average density of the shaped catalyst is 670 kg / m 3 , the wear rate is 4.5%, the particle size is within 53-200.
142>  142>
143> 또한, 본 실시예에 사용되는 메탄올은 604 g/h의 유속으로 예열기를 거쳐서 기화되며, 기화된 메탄올은 촉매의 상승올 위해서 6 L/min의 유속으로 유입되는 질 소와 함께 내부직경이 14.24 画이고, 높이가 4 m인 상승관의 하부로 유입된다. 상 승관에서는 30 kg/h의 속도로 순환되고 있는 촉매와 하부에서 유입되는 메탄올이 만나 반응이 진행되며, 상승관의 온도는 전열기에 의해 420 °C로 유지된다. In addition, the methanol used in the present embodiment is vaporized through a preheater at a flow rate of 604 g / h, and the vaporized methanol has an internal diameter with nitrogen introduced at a flow rate of 6 L / min for the catalyst to rise. It enters the bottom of the riser at 14.24 画 and 4 m in height. In the riser, the catalyst circulated at a rate of 30 kg / h and methanol flowing from the bottom meet and the reaction proceeds. The temperature of the riser is maintained at 420 ° C by the heater.
144>  144>
145> 다음으로, 상숭관을 거친 유출물은 스트리퍼로 흐르고, 스트리퍼에서 촉매와 생성물 가스가 분리된다. 스트리퍼 하부에서는 촉매와 질소의 접촉에 의해 휘발성 탄화수소가 회수되며, 스트리퍼에서 분리된 촉매는 재생기로 보내진다. 재생기에서 는 촉매와 공기의 접촉으로 촉매의 재생이 일어나며, 재생기의 은도는 전열기에 의 해 600 °C로 유지된다. 재생기로 유입되는 공기의 유입속도는 재생된 촉매의 코크 정도 및 올레핀 선택도 분포에 따라 조절된다. Next, the effluent, which has passed through the chamber, flows to the stripper, where the catalyst and product gas are separated. Under the stripper, volatile hydrocarbons are recovered by contact of the catalyst with nitrogen, and the catalyst separated from the stripper is sent to the regenerator. In the regenerator, the catalyst is regenerated by contact of the catalyst with air, and the regenerator's silver is maintained at 600 ° C by the heater. The rate of inflow of air into the regenerator is controlled by the degree of coke and olefin selectivity distribution of the regenerated catalyst.
146>  146>
147> 다음으로 재생기에서 재생된 촉매는 상승관 하부로 이송되며, 상승관에서 다시 메탄을과 반옹하게 된다. 순환 유동층 반웅기 내에서 촉매의 순환과 메탄을의 반웅은 연속적, 반복적으로 진행된다. 스트리퍼에서 분리된 생성물 가스는 가스크 로마토그래피에 의해 올레핀 선택도 및 메탄올 전환율이 분석된다. 재생기에서 배 출되는 배가스 중에서 일산화탄소, 이산화탄소, 산소 성분은 가스 분석기를 통하여 분석되며, 배가스의 유량은 건조유량기에 의해서 분석된다. 또한, 촉매의 코크 함 량은 재생기와 스트리퍼 하단에서 촉매를 채취함으로써 측정된다. The catalyst regenerated in the regenerator is then transferred to the bottom of the riser, which again reacts with methane. In a circulating fluidized bed reaction, the circulation of the catalyst and the reaction of methane proceed continuously and repeatedly. The product gas separated from the stripper is gas Olefin selectivity and methanol conversion are analyzed by chromatography. Carbon monoxide, carbon dioxide, and oxygen components of the flue-gases discharged from the regenerator are analyzed by a gas analyzer, and the flow rate of the flue-gases is analyzed by a dry flow meter. In addition, the coke content of the catalyst is measured by extracting the catalyst from the bottom of the regenerator and stripper.
:148>  : 148>
:149> 이하, 상기에서 언급한 공정과 동일한 반웅조건에서 재생기 유입 공기량만 달리하여 이에 따른 디메틸에테르 선택도를 모니터링하였다.  In the same reaction conditions as the above-mentioned process, only the amount of regenerator inlet air was changed to monitor the dimethyl ether selectivity accordingly.
150>  150>
151> <실시예 1> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 1 151> <Example 1> Dimethel ether selectivity monitoring according to the amount of regenerator inlet air-1
152> 촉매에 침적된 한소를 모두 제거하기 위해, 재생기 공기유량을 15.5 L/min 으로 층분히 주입하여 디메틸에테르가 생성되지 않도록 하였다. In order to remove all of the arsenic deposited on the catalyst, the regenerator air flow was injected at 15.5 L / min to prevent the formation of dimethyl ether.
153>  153>
154> <실시예 2> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 2 154> <Example 2> Dimethel ether selectivity monitoring according to the amount of regenerator inlet air-2
155> 재생기의 공기유량을 12 L/min으로주입하여 디메틸에테르의 선택도를 0.2 % 로 유지하였다. The air flow rate of the regenerator was injected at 12 L / min to maintain the selectivity of dimethyl ether at 0.2%.
156>  156>
157> <실시예 3> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 3 157> <Example 3> Dimethel ether selectivity monitoring according to the regenerator intake air volume-3
158> 재생기의 공기유량을 11.8 L/min으로 주입하여 디메틸에테르의 선택도를 1.2 %로 유지하였다. The air flow rate of the regenerator was injected at 11.8 L / min to maintain the selectivity of dimethyl ether at 1.2%.
159>  159>
160> <실시예 4> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 4 160> <Example 4> Dimethel ether selectivity monitoring according to the regenerator intake air volume-4
161> 재생기의 공기유량을 11.6 L/min 으로 주입하여 디메틸에테르의 선택도를161> Inject the air flow rate of the regenerator at 11.6 L / min to improve the selectivity of dimethyl ether.
2.8 %로 유지하였다. Maintained at 2.8%.
162>  162>
163> <실시예 5> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 5 163> <Example 5> Dimethel ether selectivity monitoring according to the regenerator intake air volume-5
164> 재생기의 공기유량윷 11.4 L/min 으로 주입하여 디메틸에테르의 선택도를164> Air flow rate of regenerator 기 11.4 L / min is injected to increase the selectivity of dimethyl ether.
8.1 %로 유지하였다. Kept at 8.1%.
165>  165>
166> <실시예 6> 재생기 유입 공기량에 따른 디메텔에테르 선택도 모니터링 - 6 166> <Example 6> Dimethel ether selectivity monitoring according to the regenerator intake air volume-6
167> 재생기의 공기유량을 11.0 L/min 으로 주입하여 디메틸에테르의 선택도를167> The selectivity of dimethyl ether was increased by injecting air flow rate of regenerator at 11.0 L / min.
10.5 %로 유지하였다. Kept at 10.5%.
168> > <실험예 > 메탄올로부터 경질을레핀 제조를 위한순환유동충 실험 결과 > 상기 실시예 1 - 6은 생성물 가스에 포함된 디메틸에테르의 선택도를 일정 수준으로 유지시키기 위하여 재생기 유입 공기유량을 조절한 것이다. 이쌔 따른 하 기 표 1의 실험결과를 참조하여 MT0 반웅 전과 후, 촉매의 코크 정도와 생성물 선 택도 분포를 통하여, 촉매의 코크 정도를 일정수준으로 유지시켜 경질을레핀계 탄 화수소의 수율을 효과적으로 증진하고, 특히 에틸렌 및 프로필렌에 대한 우수한 선 택성을 유지할수 있는 본 발명의 효과에 대해 설명한다.168> <Experimental Example> Experimental Results of Circulating Fluidized Bed for Production of Light Lephine from Methanol> Examples 1 to 6 above were controlled by adjusting the inflow air flow rate of the regenerator in order to maintain the selectivity of the dimethyl ether contained in the product gas. will be. According to the experiment results in Table 1, before and after the MT0 reaction, the coke degree of the catalyst and the product selectivity distribution were used to maintain the coke degree of the catalyst at a constant level, thereby effectively increasing the yield of hard lephine hydrocarbons. The effect of the present invention, which enhances and particularly maintains good selectivity to ethylene and propylene, is described.
> ' >'
> 【표 1】 .Table 1.
> 메탄올로부터 경질올레핀 제조를 위한 순환유동층 실험 결과 Experimental Results of Circulating Fluidized Bed for the Production of Light Olefin from Methanol
Figure imgf000015_0001
Figure imgf000015_0001
> 실시예 1은 촉매의 완전한 재생을 위하여 재생기 유입 공기 유량을 층분히 주입한 것으로 , 디메틸에테르의 선택도가 0%로 유지되는 동안, 메탄올 전환율은Example 1 is a thorough injection of the regenerator inlet air flow rate for complete regeneration of the catalyst, while the methanol conversion rate is reduced while the dimethyl ether selectivity is maintained at 0%.
99.5 ¾>로 나타났으며, 에틸렌. 프로필렌, 부텐의 선택도는 각각 14.2 %, 41.0 %, 14.3 ¾>로 나타났다. 메탄올로부터 경질올레핀 전환 반응에서 중간유도체의 미생성 으로 인하여 촉매의 표면에서의 탈수반응이 주로 진행되어 포화탄화수소와 C5 이상 의 탄화수소가 많이 생성되어 총 경질 올레핀의 선택도가 매우 낮음올 알수 있다. >99.5 ¾>, ethylene. The selectivity of propylene and butene was 14.2%, 41.0% and 14.3 ¾>, respectively. In the conversion of methanol to light olefins, depolymerization of the intermediate derivatives mainly leads to the dehydration reaction on the surface of the catalyst, resulting in the generation of saturated hydrocarbons and C 5 or more hydrocarbons, resulting in very low total light olefin selectivity. >
> 실시예 2는 디메틸에테르의 선택도가 0.2 %로 유지되도특 재생기 공기유입량 올 실시예 1보다 감소시킨 것으로, 디메틸에테르의 선택도가 증가한 것은 촉매표면 에 부분적인 코크가 생성되어 촉매의 비활성화가 시작된 것을 의미한다. 재생기 유 출 촉매의 코크 정도는 0.2 %, 스트리퍼 유출 촉매의 코크 정도는 1.9 %로 실시예 1에 비해 0.2 - 0.6 % 증가한 것올 알 수 있다. 디메틸에테르의 선택도를 기준으로 일정량의 코크 정도를 유지함으로써 실시예 1과 비교했을 때, 에틸렌 선택도가 17.1 %로 증가하였으며, 프로필렌, 부텐의 선택도는 각각 40.9 %, 13.4 %임을 알 수 있다. 또한, 메탄을 전환율도 99.7 %로 큰 저하를 보이지 않음을 알수 있었다. 실시예 3은 디메틸에테르의 선택도가 1.2 %로 유지되도록 재생기 공기유입량 을 실시예 2보다 감소시킨 것으로, 재생기 유출 촉매의 코크 정도는 2.2 %, 스트리 퍼 유출 촉매의 코크 정도는 4.9 %로 유지되었으며 실시예 2에 비해 2 - 3 % 증가 한 것을 알 수 있다. 또한, 증가된 코크 함량은 촉매 미세세공 내부에서 생성되는 을레핀생성반응 중간유도체이며 이로 인하여 실시예 2와 비교했을 때, 에틸렌 선택 도가 42.5 %로 크게 증가하였으며, 프로필렌, 부텐와선택도는 각각 40.3 %, 5.9 % 임을 알 수 있었다. 또한, 메탄올 전환율은 99.3 %로 큰 저하를 보이지 않았다. 실시예 4는 디메틸에테르의 선택도가 2.8 ¾가유지되도록 재생기 공기유입량 을 실험예 3보다 감소시킨 것으로, 재생기 유출 촉매의 코크 정도는 3.1 %, 스트리 퍼 유출 촉매의 코크 정도는 5.2 %로 일정량의 코크 함량을 유지할 수 있었으며, 에틸렌 선택도가 추가적으로 43.0 %까지 증가하였으며, 프로필렌, 부텐의 선택도는 각각 40.1 %, 5.4 %로 나타났다. 또한, 메탄을 전환율은 99.0 %로 나타났다. 실시예 5는 디메틸에테르의 선택도가 8.1 %로 유지 되도록 재생기 공기유입 량을 실시예 4보다 감소시킨 것으로, 재생기 유출 촉매의 코크 정도는 4.6Λ로 실 시예 2보다 4.4 %증가하였다. 그 결과 에틸렌과 프로필렌 선택도는 모두 39.3 %로 실시예 3, 4 보다 낮아지는 결과를 나타내었다. 또한 코크 함량이 많아 메탄올 전 환율도 97 %로 낮아짐을 알 수 있다. 실시예 6은 디메틸에테르의 선택도가 10.5 %로 유지 되도톡 재생기 공기유입 량을 실험예 5보다 감소시킨 것으로, 재생기 유출 촉매의 코크 정도는 5.9 %로 실 시예 2에서 보다 5.7 증가하였다. 그 결과 에틸렌과 프로필렌 선택도는 각각 35.6 %과 38.1 %로 실시예 3, 4, 5 보다 낮아지는 결과를 나타내었다. 또한 코크 함량이 많아 메탄올 전환을도 93.7 %로 낮아짐을 알 수 있다. 상기 실험결과로부터, 사용된 촉매의 재생 정도 조절을 통한 촉매의 코크 함 량 최적화는 경질을레핀 수율 향상을 위해서 매우 증요하며, 코크 함량과 디메틸에 테르는 상관관계가 있으므로 재생 정도는 디메틸에테르의 선택도를 모니터링을 함 으로써 조절할수 있음을 알수 있다. > Example 2 shows that the regenerator air inflow is reduced compared to Example 1, even though the selectivity of dimethyl ether is maintained at 0.2%. The increased selectivity of dimethyl ether results in partial coke formation on the catalyst surface, resulting in deactivation of the catalyst. It means what started. The degree of coke of the regenerator outflow catalyst was 0.2%, and the degree of coke of the stripper effluent catalyst was 1.9%, which is 0.2-0.6% higher than that of Example 1. Ethylene selectivity compared with Example 1 by maintaining a certain amount of coke on the basis of the selectivity of dimethyl ether It was increased to 17.1%, and selectivity of propylene and butene was 40.9% and 13.4%, respectively. In addition, it was found that the conversion rate of methane did not show a great decrease to 99.7%. Example 3 reduced the regenerator air inflow from Example 2 so that the selectivity of dimethyl ether was maintained at 1.2%, the degree of coke of the regenerator effluent catalyst was 2.2%, and the degree of coke of the stripper effluent catalyst was maintained at 4.9%. It can be seen that an increase of 2-3% compared to Example 2. In addition, the increased coke content is the leupin formation reaction intermediate derived inside the catalyst micropore, and as a result, ethylene selectivity was greatly increased to 42.5% compared to Example 2, and propylene and butene and selectivity were 40.3%, respectively. %, 5.9%. In addition, the methanol conversion was 99.3%, showing no significant decrease. Example 4 reduced the regenerator air inflow from Experimental Example 3 so that the selectivity of dimethyl ether was maintained at 2.8 ¾, and the coke degree of the regenerator effluent catalyst was 3.1% and the coke degree of the stripper effluent catalyst was 5.2%. Coke content could be maintained, ethylene selectivity increased to 43.0% additionally, and propylene and butene selectivity were 40.1% and 5.4%, respectively. In addition, the methane conversion was 99.0%. Example 5 reduced the regenerator air inflow from Example 4 so that the selectivity of dimethyl ether was maintained at 8.1%, and the degree of coke of the regenerator outflow catalyst was 4.6Λ, which was 4.4% higher than that of Example 2. As a result, both ethylene and propylene selectivity was 39.3%, which was lower than those of Examples 3 and 4. In addition, the high coke content, the methanol exchange rate is also lowered to 97%. In Example 6, the selectivity of dimethyl ether was maintained at 10.5%, and the inlet regenerator air inflow amount was reduced from Experimental Example 5, and the coke degree of the regenerator effluent catalyst was 5.9%, which was 5.7 higher than that in Example 2. As a result, ethylene and propylene selectivity was 35.6% and 38.1%, respectively. In addition, it can be seen that the high coke content lowers the methanol conversion to 93.7%. From the above experimental results, the optimization of the coke content of the catalyst through the control of the degree of regeneration of the used catalyst is very important for improving the yield of hard lepin, and because the coke content and dimethyl ether are correlated, the regeneration degree is selected from dimethyl ether. Monitoring the road You can see that it can be adjusted.
<187>  <187>
<188> <비교예 >촉매를 직접 회수하여 코크 침적량을 분석하는 방법  Comparative Example Analyzing Coke Deposition by Directly Recovering Catalyst
<189> 종래, 촉매를 직접 희수하여 코크 침적량을 분석하는 방법을 통하여 경질올 레핀 제조용 순환유동층 공정을 운전하였다. 구체적으로, 촉매의 코크 함량이 올레 핀 선택도 조절에 매우 중요한 역할을 하기 때문에 반응 전, 후의 촉매를 재생기와 스트리퍼 하단부에서 일부 회수하여 코크 함량 분석을 통하여 코크 정도를 확인하 고 이에 따라 반응조건 (공간속도, 반응온도, 재생기 유입 공기유량)을 조절하게 된 다. 촉매의 코크 함량분석은 열중량분석 (thermal gravimetric analysis, TGA)/시차 열분석 (differential thermal analysis, DTA)등의 열 분석 방법을 사용하며 일반적 으로 시료의 전처리를 포함하여 8시간 이상이 시간이 소요된다.  Conventionally, a circulating fluidized bed process for producing hard olephine was operated by directly diluting a catalyst and analyzing a coke deposition amount. Specifically, since the coke content of the catalyst plays a very important role in the control of the olefin fin selectivity, the catalyst before and after the reaction is partially recovered from the regenerator and the lower part of the stripper, and the coke content is analyzed to confirm the degree of coke. Space velocity, reaction temperature, regenerator airflow). The coke content analysis of the catalyst uses thermal analysis methods such as thermal gravimetric analysis (TGA) / differential thermal analysis (DTA) and generally takes more than 8 hours, including sample pretreatment. do.
<190> 따라서 종래의 방법은 촉매시료의 채취, 촉매 열분석, 촉매 코크함량 분석, 공정반응조건의 조절의 과정을 거치게 되며, 코크 함량의 분석과 공정변수의 조절 까지의 웅답시간이 길어지기 때문에 코크 함량올 신속하고 효과적으로 조절하는 것 이 어려운 문제점이 있다. Therefore, the conventional methods undergo catalyst sampling, catalyst thermal analysis, catalyst coke content analysis, and process reaction condition control, and the response time to analysis of coke content and control of process variables becomes long. Coke content is difficult to control quickly and effectively.
(191>  (191>
d92> 반면, 본 발명에 따르면 , 상기 실시예 및 실험에에서 살펴본 바와 같이 메탄 올 전환반웅의 생성물을 가스크로마토그래피에 의해 실시간으로 분석 (20분 이내)하 고, 디메틸에테르 (DME) 선택도 모니터링을 함으로써, 촉매의 비활성화 정도를 분석 하고 일정수준의 코크 정도를 유지시키는 메탄을로부터 경질올레핀 생산 공정의 응 답속도를 현저하게 단축시킬 수 있는 유리한 효과가 있다. On the other hand, according to the present invention, as described in the above examples and experiments, the product of methanol conversion reaction was analyzed in real time by gas chromatography (within 20 minutes), and dimethyl ether (DME) selectivity monitoring. By doing so, there is an advantageous effect of analyzing the degree of deactivation of the catalyst and significantly reducing the response speed of the light olefin production process from methane, which maintains the level of coke.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반웅기 내에서 메탄올 과촉매를 접촉시켜 경질 을레핀을 제조하는 단계 (단계 1); 및  Contacting the methanol supercatalyst in a circulating fluidized bed reaction vessel having a catalyst regeneration portion and a product separation portion to prepare a hard elephine (step 1); And
단계 1의 증간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계 2); 를 포함하는 경질 을레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법.  Monitoring the selectivity of the dimethyl ether which is the intermediate product of step 1 (step 2);
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 촉매의 비활성화는 사용된 촉매의 탄소 침적 (coking)인 것을 특징으로 하는 경질 올레핀 제조에 사용된 촉매의 비활성화를 예측하는 방법.  The deactivation of the catalyst is a carbon coking of the catalyst used.
【청구항 3】 [Claim 3]
촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내에서 메탄올 과 촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1);  Preparing light olefins by contacting methanol with a catalyst in a circulating fluidized bed reactor having a catalyst regeneration unit and a product separation unit (step 1);
단계 1의 중간생성물인 디메틸에테르의 선택도를 모니터링하는 단계 (단계 Monitoring the selectivity of dimethyl ether, an intermediate of step 1 (step
2); 및 2); and
단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단 계 (단계 3); 를 포함하는 경질 을레핀의 제조방법.  Separating the used catalyst of step 1 and injecting air for regeneration of the catalyst, and adjusting the injected air flow rate according to the selectivity of the dimethyl ether of step 2 (step 3); Method for producing a hard olepin comprising a.
【청구항 4】 [Claim 4]
제 3항에 있어서'  The method of claim 3
단계 1의 상기 촉매는 실리코알루미노포스페이트계 (silicoaluminophosphate, SAP0) 또는 제을라이트계 (zeolite)인 것을 특징으로 하는 경질 을레핀의 제조방법.  The catalyst of step 1 is a silicoaluminophosphate system (silicoaluminophosphate, SAP0) or zeolite system (zeolite), characterized in that the preparation of hard elepin.
[청구항 5】 . [Claim 5] .
제 3항에 있어서,  The method of claim 3,
단계 2의 상기 촉매 재생을 위해 주입되 ^ 공기 유량은 디메틸에테르의 선택- 도가 0.2 - 10.5 % 로 유지되도록 조절되는 것올 특징으로 하는 경질 올레핀의 제 조방법 . The process for producing light olefins, characterized in that the air flow injected for the catalyst regeneration of step 2 is adjusted to maintain the selectivity of dimethyl ether at 0.2-10.5%.
[청구항 6】 [Claim 6]
제 3항에 있어서,  The method of claim 3,
단계 2의 상기 촉매 재생을 위해 주입되는 공기 유량은 디메틸에테르의 선택 도가 0.5 - 8.1 % 로 유지되도톡 조절되는 것을 특징으로 하는 경질 올레핀의 제조 방법.  Air flow injected for the catalyst regeneration of step 2 is a method for producing light olefins, characterized in that the dimethyl ether selectivity is maintained to be maintained at 0.5-8.1%.
[청구항 7】 [Claim 7]
제 3항에 있어서,  The method of claim 3, wherein
단계 2의 상기 촉매 재생을 위해 주입되는 공기 유량은 재생된 촉매의 평균 코크 함량이 0.2 - 5.9 증량 %가 되도록 조절되는 것을 특징으로 하는 경질 올레핀 의 제조방법.  Air flow injected for the catalyst regeneration of step 2 is a method for producing a light olefin, characterized in that the average coke content of the regenerated catalyst is adjusted to 0.2 to 5.9% by weight.
[청구항 8】 [Claim 8]
제 3항에 있어서,  The method of claim 3, wherein
단계 2의 상기 촉매 재생을 위해 주입되는 공기 유량은 재생된 촉매의 평균 코크 함량이 0.5 - 4.6 증량 ¾>가 되도록 조절되는 것을 특징으로 하는 경질 올레핀 의 제조방법.  Air flow injected for the catalyst regeneration of step 2 is a method for producing light olefins, characterized in that the average coke content of the regenerated catalyst is adjusted to 0.5-4.6 increase ¾>.
【청구항 9】 [Claim 9]
제 3항에 있어서'  The method of claim 3
상기 반응기의 온도는 300 - 600 °C이고, 반웅기에서 촉매의 순환속도는 1 - 100 kg/h이고, 반응기에 주입되는 메탄올의 공간속도는 0.5 - 300 hᅳ1이고 상기 촉 매 재생기의 온도는 500 - 700 V 이고, 촉매 재생을 위해 주입되는 공기 유량은 5 -.50 1/min인 것을 특징으로 하는 경질 올레핀의 제조방법. The temperature of the reactor is 300-600 ° C, the circulation rate of the catalyst in the reaction vessel is 1-100 kg / h, the space velocity of methanol injected into the reactor is 0.5-300 h ᅳ 1 and the temperature of the catalyst regenerator Is 500-700 V, and the air flow rate injected for catalyst regeneration is 5 -.50 1 / min.
【청구항 10】 - 촉매 재생부 및 생성물 분리부를 구비한 순환 유동층 반응기 내에서 메탄을 과촉매를 접촉시켜 경질 올레핀을 제조하는 단계 (단계 1); [Claim 10]-preparing light olefins by contacting methane with a supercatalyst in a circulating fluidized bed reactor equipped with a catalyst regeneration unit and a product separation unit (step 1);
단계 1의 중간생성물인 디메탈에테르의 선택도를 모니터링하는 단계 (단계 Monitoring the selectivity of the dimetal ether, intermediate of step 1 (step
2); 및 2); And
단계 1의 사용된 촉매를 분리하여 촉매의 재생을 위해 공기를 주입하되, 주입되는 공기 유량을 단계 2의 디메틸에테르의 선택도에 따라 조절하는 단 계 (단계 3); 를 포함하는 경질 을레핀의 수율 향상방법. Injecting air for regeneration of the catalyst by separating the used catalyst of step 1, but adjusting the flow rate of the injected air according to the selectivity of the dimethyl ether of step 2 System (step 3); The method of improving the yield of hard olepin.
PCT/KR2014/002926 2013-05-01 2014-04-04 Effective operation of circulating fluidized bed for preparing light olefins from methanol through real time monitoring of intermediates WO2014178543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130049071A KR101494229B1 (en) 2013-05-01 2013-05-01 An effective operating circulating fluidized bed process for preparation of light olefin from methanol by monitoring intermediates in real time
KR10-2013-0049071 2013-05-01

Publications (1)

Publication Number Publication Date
WO2014178543A1 true WO2014178543A1 (en) 2014-11-06

Family

ID=51843627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002926 WO2014178543A1 (en) 2013-05-01 2014-04-04 Effective operation of circulating fluidized bed for preparing light olefins from methanol through real time monitoring of intermediates

Country Status (2)

Country Link
KR (1) KR101494229B1 (en)
WO (1) WO2014178543A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183299A (en) * 2019-05-30 2019-08-30 中国神华煤制油化工有限公司 Improve the method and system of methanol-to-olefins product yield
CN113493366A (en) * 2020-03-19 2021-10-12 中国石油化工股份有限公司 Method and reaction recharging device for improving safety of conversion process of methanol to light olefin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102664148B1 (en) 2016-12-22 2024-05-10 코웨이 주식회사 Humidification type air cleaner
WO2019109237A1 (en) * 2017-12-05 2019-06-13 中国科学院大连化学物理研究所 Method for partially regenerating methanol to olefin catalyst and methanol to olefin process
KR102573887B1 (en) * 2021-09-10 2023-09-04 한국화학연구원 Circulating fluidized bed reactor using electric heating furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004077B1 (en) * 1983-04-25 1991-06-22 더 배브콕 앤드 윌콕스 캄파니 Automatic catalyst regeneration and catalyst selectivity estimation
KR100598270B1 (en) * 1999-01-11 2006-07-07 카살레 케미칼스 에스.에이. Catalytic process for the preparation of light olefins from methanol in a fluidised bed reactor
KR20080096675A (en) * 2006-01-24 2008-10-31 유오피 엘엘씨 Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst system
KR20110139740A (en) * 2009-03-20 2011-12-29 루머스 테크놀로지 인코포레이티드 Process for the production of olefins
KR101127732B1 (en) * 2004-06-25 2012-03-26 유오피 엘엘씨 Conversion of oxygenate to propylene using moving bed technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910004077B1 (en) * 1983-04-25 1991-06-22 더 배브콕 앤드 윌콕스 캄파니 Automatic catalyst regeneration and catalyst selectivity estimation
KR100598270B1 (en) * 1999-01-11 2006-07-07 카살레 케미칼스 에스.에이. Catalytic process for the preparation of light olefins from methanol in a fluidised bed reactor
KR101127732B1 (en) * 2004-06-25 2012-03-26 유오피 엘엘씨 Conversion of oxygenate to propylene using moving bed technology
KR20080096675A (en) * 2006-01-24 2008-10-31 유오피 엘엘씨 Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst system
KR20110139740A (en) * 2009-03-20 2011-12-29 루머스 테크놀로지 인코포레이티드 Process for the production of olefins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183299A (en) * 2019-05-30 2019-08-30 中国神华煤制油化工有限公司 Improve the method and system of methanol-to-olefins product yield
CN113493366A (en) * 2020-03-19 2021-10-12 中国石油化工股份有限公司 Method and reaction recharging device for improving safety of conversion process of methanol to light olefin

Also Published As

Publication number Publication date
KR101494229B1 (en) 2015-02-17
KR20140130603A (en) 2014-11-11

Similar Documents

Publication Publication Date Title
EP1011860B1 (en) Process for converting oxygenates to olefins using molecular sieve catalysts comprising desirable carbonaceous deposits
AU780552B2 (en) Process to control conversion of C4+ and heavier stream to lighter products in oxygenate conversion reactions
DE60013254T2 (en) CATALYTIC PROCESS FOR IMPLEMENTING OXYGEN COMPOUNDS IN OLEFINES
KR100757613B1 (en) Making an olefin product from an oxygenate
US20150175897A1 (en) Catalyst for conversion of methanol to hydrocarbons
US8148587B2 (en) Method for producing light olefins from methanol or/and dimethyl ether
RU2712274C1 (en) Reactor with a turbulent fluidized bed, apparatus and method, which use an oxygen-containing compound for producing propene and c4 hydrocarbons
MXPA99011724A (en) Process for converting oxygenates to olefins using molecular sieve catalysts comprising desirable carbonaceous deposits
WO2014178543A1 (en) Effective operation of circulating fluidized bed for preparing light olefins from methanol through real time monitoring of intermediates
RU2726483C1 (en) Method and apparatus for producing propene and c4 hydrocarbons
CN103446959B (en) A kind of fluidized-bed reactor with charging heat exchange, reaction regeneration device and application thereof
RU2727699C1 (en) Method and apparatus for producing propene and c4 hydrocarbons
MXPA02008221A (en) Catalyst pretreatment in an oxygenate to olefins reaction system.
KR102520195B1 (en) Oxygenate Conversion Method in Fluid Catalytic Cracker
CN103121889A (en) Warm-taking method for preparing low-carbon olefin through conversion of oxygenated chemicals
CN105669339B (en) The production method of converting oxygen-containing compound to low-carbon olefins
CN101333139B (en) Method for enhancing medium-low olefin yield in catalytic conversion reaction of oxygen-containing compounds
MXPA01008397A (en) Catalytic conversion of oxygenates to olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791294

Country of ref document: EP

Kind code of ref document: A1