WO2014178213A1 - Exhaust gas stirring device - Google Patents

Exhaust gas stirring device Download PDF

Info

Publication number
WO2014178213A1
WO2014178213A1 PCT/JP2014/053286 JP2014053286W WO2014178213A1 WO 2014178213 A1 WO2014178213 A1 WO 2014178213A1 JP 2014053286 W JP2014053286 W JP 2014053286W WO 2014178213 A1 WO2014178213 A1 WO 2014178213A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
blades
exhaust gas
flow path
central axis
Prior art date
Application number
PCT/JP2014/053286
Other languages
French (fr)
Japanese (ja)
Inventor
好伸 永田
鈴木 誠
Original Assignee
フタバ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フタバ産業株式会社 filed Critical フタバ産業株式会社
Publication of WO2014178213A1 publication Critical patent/WO2014178213A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4315Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being deformed flat pieces of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust stirrer that stirs exhaust gas in an exhaust passage.
  • the exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (NO x ) that are air pollutants.
  • an exhaust gas purification system for purifying such exhaust gas an exhaust gas purification system having a configuration in which an SCR (Selective Catalytic Reduction) type catalyst is provided in an exhaust flow path and urea water is injected into the exhaust gas on the upstream side thereof.
  • SCR Selective Catalytic Reduction
  • urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas, and ammonia (NH 3 ) generated by the hydrolysis is supplied to the catalyst together with the exhaust gas.
  • Nitrogen oxides in the exhaust gas react with ammonia in the catalyst and are reduced and purified.
  • an exhaust stirrer that stirs the exhaust gas flowing through the exhaust flow path so as to swirl is provided upstream of the catalyst so that the distribution of the exhaust gas flowing into the catalyst is less likely to be biased.
  • the structure provided in the side is proposed (refer patent document 1).
  • the exhaust stirrer (static mixer) described in Patent Document 1 includes a main body (annular body) and a plurality of blades (guide vanes) extending from the main body in the central axis direction. When viewed from the direction along the central axis of the main body, each of the plurality of blades has a shape that is almost constant in width, and is densely packed toward the central axis of the main body.
  • the exhaust stirrer described in Patent Document 1 described above has a problem that the flow of exhaust gas is biased toward the outer peripheral portion of the exhaust flow path.
  • An exhaust stirrer is an exhaust stirrer that guides exhaust gas flowing through an exhaust flow path so as to swivel, and is a cylindrical main body that is fixed to the inner surface of a flow path member that forms the exhaust flow path And a guide portion formed with a plurality of blades extending from the main body portion toward the central axis of the main body portion and toward the downstream side of the exhaust flow path.
  • a first type of blade and a second type of blade having a shape different from that of the first type of blade
  • the guide portion includes the blade as viewed from a direction along the central axis.
  • An opening that is a non-existing portion is formed, and the opening has a total width along the circumferential direction centered on the central axis as viewed from the direction along the central axis. Includes shapes that increase and then decrease as they move away.
  • the total width value has a shape that increases as the distance from the central axis increases. With such a shape, the flow of the exhaust gas tends to be biased toward the outer peripheral portion of the exhaust passage.
  • the total value of the width of the opening includes a shape that decreases after increasing from the central axis, it is compared with a shape that simply increases as the distance from the central axis increases. Thus, it is possible to suppress the flow of the exhaust gas from being biased toward the outer peripheral portion in the exhaust passage. Therefore, it is possible to guide the exhaust gas flowing through the exhaust flow path so as to turn while suppressing the uneven flow of the exhaust gas in the exhaust flow path.
  • the plurality of blades may be formed so as not to overlap each other when viewed from the direction along the central axis. According to such a structure, it can manufacture by bending a several blade
  • the main body part and the guide part may be formed from a single metal plate. According to such a structure, it can manufacture by rounding the single metal plate which has a part corresponding to a main-body part and a guide part to a cylinder shape, and bend
  • the main body portion and the guide portion may be formed of a plurality of metal plates (for example, a combination of a plurality of metal plates such as a tailored material).
  • the exhaust stirrer may be formed from two types of metal plates having different thicknesses, the main body portion may be formed from a thin metal plate, and the guide portion may be formed from a thick metal plate. In this case, since the rigidity of a blade
  • the guide portion includes M (M is an integer of 1 or more) first type blades and N sheets (N is an integer of 1 or more) shorter than the first type blades.
  • the second type blades may be arranged alternately. According to such a configuration, as viewed from the direction along the central axis of the main body, the portion sandwiched between the first type blades adjacent to each other (the portion that becomes the opening if there is no second type blade) Part of the main body (close to the outer periphery of the exhaust passage) is blocked by the second type blade. Therefore, it is possible to realize a shape in which the total value of the widths of the openings becomes smaller on the outer peripheral side in the exhaust flow path. Moreover, according to such a configuration, the swirling flow caused by the first type blades and the swirling flow caused by the second type blades are generated, thereby improving the effect of suppressing the deviation of the flow of the exhaust gas.
  • Wc (R) 2 ⁇ ⁇ ⁇ R ⁇ (W1 (R) + W2 (R)) ⁇ N, and decreases as R increases You may make it do.
  • the degree of change with respect to the radius R can be varied. As a result, it is possible to suppress an uneven flow of exhaust gas in the exhaust passage.
  • the tips of the first type blades may be joined to each other. According to such a structure, it can suppress that exhaust gas passes through the clearance gap formed in the vicinity of the central axis in a main-body part.
  • one aspect of the present invention can be realized in various forms such as the above-described exhaust agitation apparatus, an exhaust purification system including the exhaust agitation apparatus as a constituent element, and a method for suppressing an uneven flow of exhaust gas.
  • FIG. 1A is a top view of the exhaust purification system of the embodiment
  • FIG. 1B is a side view of the exhaust purification system of the embodiment
  • 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1A
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 1B
  • FIG. 3A is a perspective view of the diffusion plate of the embodiment
  • FIG. 3B is a view of the diffusion plate of the embodiment as viewed from the downstream side of the exhaust passage along the central axis. It is a figure for demonstrating the shape of the diffusion plate seen from the direction along a central axis.
  • FIG. 1A is a top view of the exhaust purification system of the embodiment
  • FIG. 1B is a side view of the exhaust purification system of the embodiment
  • 2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1A
  • FIG. 2B is a cross-sectional view
  • FIG. 5A is a diagram illustrating the angle of the blades of the diffusion plate of the embodiment
  • FIG. 5B is a diagram illustrating the angle of the blades of the conventional diffusion plate. It is a figure which shows the manufacturing method of a diffusion plate.
  • FIG. 7A is a diagram showing an analysis model
  • FIG. 7B is a diagram showing a flow line of exhaust gas by the diffusion plate of the comparative example
  • FIG. 7C is a diagram showing distribution of exhaust gas on the catalyst end face by the diffusion plate of the comparative example.
  • FIG. 8A is a diagram showing a flow line of exhaust gas according to the configuration of the embodiment
  • FIG. 8B is a diagram showing distribution of exhaust gas on the catalyst end surface according to the configuration of the embodiment.
  • FIG. 9A is a perspective view of the diffusion plate of the first modification
  • FIG. 9B is a view of the diffusion plate of the first modification as viewed from the downstream side of the exhaust passage along the central axis
  • FIG. 10A is a perspective view of the diffusion plate of the second modification
  • FIG. 10B is a view of the diffusion plate of the second modification as viewed from the downstream side of the exhaust passage along the central axis
  • FIG. 11A is a perspective view of the diffusion plate of the third modification
  • FIG. 11B is a view of the diffusion plate of the third modification as viewed from the downstream side of the exhaust passage along the central axis
  • FIG. 12A is a perspective view of the diffusion plate of the fourth modification
  • FIG. 12B is a view of the diffusion plate of the fourth modification as viewed from the downstream side of the exhaust passage along its central axis.
  • FIG. 13A is a perspective view of a diffusion plate according to a fifth modification
  • FIG. 13B is a view of the diffusion plate according to the fifth modification as viewed from the downstream side of the exhaust passage along its central axis.
  • the exhaust purification system 1 shown in FIGS. 1A, 1B, and 2A is for purifying exhaust gas discharged from an internal combustion engine (for example, a diesel engine) of an automobile.
  • the exhaust purification system 1 includes a first flow path member 2, a second flow path member 3, a catalyst 4, an injection device 5, and a diffusion plate 10.
  • the vertical and horizontal directions are expressed with reference to FIG. 2A, but are merely expressed for convenience of description, and the direction in which the exhaust purification system 1 is provided is not particularly limited.
  • the first flow path member 2 forms a part of the exhaust flow path for guiding the exhaust gas discharged from the internal combustion engine to the outside of the automobile, specifically, the exhaust flow path to the catalyst 4.
  • the first flow path member 2 includes, in order from the upstream side (left side in FIG. 2A) in the exhaust flow path, the first pipe portion 2A, the second pipe portion 2B, the third pipe portion 2C, 4 pipe part 2D and the 5th pipe part 2E are provided.
  • the first to fifth pipe portions 2A to 2E are sections for convenience of explanation, and the sections of the parts constituting the first flow path member 2 are not particularly limited.
  • the first tube portion 2A is a straight circular tube portion.
  • the third tube portion 2C is a linear circular tube portion having the same inner diameter as the first tube portion 2A.
  • the third pipe 2C is different from the first pipe 2A in the direction in which the exhaust gas flows.
  • the first pipe portion 2A forms a flow path where the exhaust gas flows obliquely downward
  • the third pipe portion 2C forms a flow path where the exhaust gas flows in the horizontal direction.
  • the 1st pipe part 2A and the 3rd pipe part 2C are gently connected by the 2nd pipe part 2B of the shape curved in circular arc shape in the side view.
  • the second tube portion 2B is formed, for example, by bonding two exteriors up and down.
  • the exhaust flow path formed by the second pipe part 2B (the part into which the second flow path member 3 is inserted) has a first pipe part 2A and a third pipe in top view. It is expanded so as to expand (swell) to both sides in the width direction (vertical direction in FIG. 1A) than the part 2C.
  • the width direction here refers to a first direction that is a flow direction (an obliquely downward direction) of exhaust gas that collides with an outer surface (specifically, an upper surface) of the second flow path member 3, and a second flow path member.
  • the first direction is a direction along the first axis C1 that is the central axis of the first tube portion 2A
  • the second direction is the central axis of the third tube portion 2C.
  • the direction is along the second axis C2.
  • the first axis C1 and the second axis C2 are in a positional relationship where they intersect each other.
  • the fifth tube portion 2E is a straight circular tube portion that is coaxial with the third tube portion 2C (with the second axis C2 as a central axis). However, the fifth tube portion 2E is formed to have an inner diameter larger than that of the third tube portion 2C in order to accommodate the columnar catalyst 4 having an outer diameter larger than the inner diameter of the third tube portion 2C. .
  • the 3rd pipe part 2C and the 5th pipe part 2E are the 4th pipe
  • the second flow path member 3 has a reducing agent flow path that guides the reducing agent injected by the injection device 5 (diffused from the small holes 5A outside the exhaust flow path) to the exhaust flow path upstream of the catalyst 4. It is a so-called dosing pipe to be formed.
  • the second flow path member 3 is a circular pipe portion that is coaxial with the third pipe portion 2C (with the second axis C2 as a central axis).
  • the second flow path member 3 is formed in a truncated cone shape in which the inner diameter of the reducing agent flow path is gradually enlarged toward the exhaust flow path, and the injected reducing agent is directly applied to the inner surface. It is configured so that it is hard to hit (so as not to corrode).
  • the 2nd flow path member 3 is connected to the 2nd pipe part 2B in the 1st flow path member 2, and the reducing agent injected by the injection apparatus 5 is the waste gas which flows through the inside of the 2nd pipe part 2B.
  • the second flow path member 3 passes through the side wall of the second pipe portion 2B and protrudes into the exhaust flow path (the end of the second flow path member 3 is the center of the exhaust flow path). Is inserted).
  • the portion where the second flow path member 3 is inserted in the exhaust flow path is expanded so as to spread to both sides in the width direction when viewed from above, as shown in FIG. 1A.
  • the exhaust flow path formed between the first flow path member 2 and the second flow path member 3 is wider at the side portions on both sides in the width direction than at the top. Is formed. Therefore, the exhaust gas flowing from the first pipe portion 2A is likely to flow around the region R shown in FIG. 2C (regions formed on both sides in the width direction of the second flow path member 3). A flow that scoops the reducing agent from the second flow path member 3 is generated.
  • the catalyst 4 is an SCR (Selective Catalytic) having a function of reducing nitrogen oxides (NO x ).
  • Reduction: selective catalyst reduction) type catalyst which is provided on the downstream side of the expanded diameter passage in the exhaust passage (specifically, in the fifth pipe portion 2E).
  • the injection device 5 injects a liquid reducing agent and reduces it to the upstream side of the diffusion plate 10 in the exhaust flow path (specifically, in the second pipe portion 2B) via the second flow path member 3. It functions as a supply device for supplying the agent.
  • urea water is injected as a reducing agent. Strictly speaking, the urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas to generate ammonia (NH 3 ), and the ammonia thus generated functions as a reducing agent.
  • urea water is also referred to as a reducing agent.
  • the diffusing plate 10 is provided on the upstream side (inside the third pipe portion 2C) of the enlarged flow passage in the exhaust flow passage, and diffuses into the enlarged flow passage by guiding the exhaust gas that has flowed in to swirl (stir).
  • the exhaust gas stirrer suppresses the deviation of the exhaust gas flowing into the catalyst 4 and makes it closer to uniform.
  • the diffusion plate 10 is a metal (for example, stainless steel) member, and includes a main body 11 and a guide 12 as shown in FIGS. 3A and 3B.
  • the arrow F indicates the flow direction of the exhaust gas at the position where it flows into the diffusion plate 10 (the direction along the second axis C2).
  • the main body 11 is a portion that is joined and fixed to the inner peripheral surface of the first flow path member 2 (specifically, the third tube portion 2C) by welding or the like, and corresponds to the inner diameter of the third tube portion 2C. (For example, the same or slightly smaller dimension than the inner diameter of the third tube portion 2C).
  • the main body 11 is arranged so as to be coaxial with the third tube 2C (so that the second axis C2 is the central axis).
  • the guide unit 12 includes a plurality of blades 121 and 122 for guiding the exhaust gas to turn.
  • Each of the plurality of blades 121 and 122 is formed so as to extend from the downstream side of the exhaust passage in the main body 11 to the direction approaching the second axis C2 and toward the downstream side of the exhaust passage. .
  • the plurality of blades 121 and 122 are formed so as not to overlap each other when viewed from the direction along the second axis C2 (see FIG. 3B).
  • the opening part 123 which is a part where the blades 121 and 122 do not exist when viewed from the direction along the second axis C2 is formed in the guide part 12. After the opening 123 is viewed from the direction along the second axis C2, the total value of the width along the circumferential direction around the second axis C2 increases as the distance from the second axis C2 increases. It is a decreasing shape.
  • the guide portion 12 has four first-type blades 121 and a shorter length in the radial direction than the first-type blades 121 (in other words, from the second axis C2 to the tip end). And four blades 122 of the second type (which have a large interval up to).
  • the first type blades 121 and the second type blades 122 are arranged at equal intervals, and the first type blades 121 and the second type blades 122 are alternately arranged one by one.
  • FIG. 4 when viewed from the direction along the second axis C2, the circles of the first type blade 121 and the second type blade 122 at the radius R from the second axis C2.
  • W1 (R) and W2 (R) are functions of R.
  • Rt the maximum value of R at which W2 (R) is 0 (the radius at which the apex of the second type blade 122 is located)
  • Wc (R) be the total value of the widths along the circumferential direction of the opening 123 at a radius R from the central axis.
  • the second type blade 122 is adjacent to the first type blade 121 on one side with almost no gap, and an opening is formed between the second type blade 122 and the first type blade 121 on the other side.
  • Wp (R) Wp (R) ⁇ 4.
  • Wc (R) and Wp (R) are functions of R.
  • R1 is substantially 0, and R2 is substantially equal to the inner diameter of the main body portion 11.
  • Wc (R) in the range of R1 ⁇ R ⁇ R2 increases with increasing R and then decreases.
  • Wc (R) 2 ⁇ ⁇ ⁇ R ⁇ W1 (R) ⁇ 4, and increases as R increases.
  • the angle ⁇ 1 of the blades 121 and 122 with respect to the flow direction F of the exhaust gas is exemplified by the angle of the blade of a conventional diffusion plate (for example, the configuration described in Patent Document 1 described above) (FIG. 5B). It is designed to be larger than (angle ⁇ 2) ( ⁇ 1> ⁇ 2). That is, in the diffusing plate 10 of the present embodiment, the blades 121 and 122 are formed at an angle at which it is more difficult to inhibit the flow of exhaust gas as compared with the conventional configuration.
  • the diffusion plate 10 (the main body 11 and the guide 12) is formed from a single metal plate 10M. Specifically, the diffusion plate 10 performs a process of bending a plurality of blades 121 and 122 to a desired angle with respect to a single metal plate 10M having portions corresponding to the main body portion 11 and the guide portion 12 (S1). After (S2A), it is manufactured by rounding into a cylindrical shape (S3). The processing of S1 ⁇ S2A is realized by, for example, pressing from a direction perpendicular to the plate surface of the metal plate 10M. In the present embodiment, the first type blade 121 and the second type blade 122 are bent at the same angle.
  • the diffusion plate 10 performs a process of rounding into a cylindrical shape (S2B) on a single metal plate 10M (S1), and then bends the plurality of blades 121 and 122 to a desired angle. It is also possible to manufacture by processing (S3). In this case, the processing of S2B ⁇ S3 is realized by pressing from the direction along the central axis of the main body 11. Note that when the plurality of blades 121 and 122 overlap each other when viewed from the direction along the central axis of the main body 11, it is difficult to press the direction from the direction along the central axis of the main body 11.
  • the two manufacturing patterns (S1 ⁇ S2A ⁇ S3 and S1 ⁇ Any of S2B ⁇ S3) can be employed.
  • the portion of the second flow path member 3 inserted into the exhaust flow path collides with the upper surface of the outer surface of the second flow path member 3 in the exhaust gas flowing from the first pipe portion 2A to the second pipe portion 2B. It has a function of guiding the exhausted gas so as to go around along the outer surface. For this reason, the reducing agent flowing out from the second flow path member 3 is scooped up and dispersed in the exhaust flow path.
  • the exhaust gas that has flowed into the diffusion plate 10 is guided so as to turn by the diffusion plate 10, flows out so as to diffuse into the diameter-enlarged flow path, and flows into the catalyst 4 in a state where the bias is suppressed.
  • the diffuser plate 10 has an opening 123 whose second width is the sum of the widths along the circumferential direction centered on the second axis C2 when viewed from the direction along the second axis C2.
  • the shape decreases after increasing as the distance from the axis C2 increases. Therefore, according to the diffusion plate 10, it is possible to guide the exhaust gas flowing in the exhaust flow path so as to turn while suppressing the deviation of the flow of the exhaust gas in the exhaust flow path.
  • the total value of the widths of the openings increases as the distance from the second axis C2 increases.
  • the shape is wide (in the outer periphery). With such a shape, the flow of the exhaust gas tends to be biased toward the outer peripheral portion of the exhaust passage.
  • the total value of the widths of the openings 123 is a shape that decreases after increasing with increasing distance from the second axis C2, and therefore simply with increasing distance from the second axis C2.
  • the first type blades 121 and the second type blades 122 shorter than the first type blades 121 are alternately arranged one by one (one first sheet Seed blades 121 and one second type blade 122 are alternately arranged). Therefore, according to the diffusion plate 10, when viewed from the direction along the central axis of the main body 11, the portion sandwiched between the first type blades 121 adjacent to each other (if there is no second type blade, it becomes an opening. Part) is blocked by the second type blades 122. Specifically, since the second type blade 122 is shorter than the first type blade 121, the portion closer to the main body 11 (outer peripheral side in the exhaust flow path) is blocked.
  • the plurality of blades 121 and 122 are formed so as not to overlap each other when viewed from the direction along the second axis C2. Therefore, according to the diffusing plate 10, it is manufactured by bending the plurality of blades 121 and 122 to a desired angle from the state in which the main body portion 11 is formed in a cylindrical shape by press working along the second axis C2. can do.
  • the main body part 11 and the guide part 12 are formed of a single metal plate 10M. Therefore, according to the diffusing plate 10, the single metal plate 10 ⁇ / b> M having portions corresponding to the main body portion 11 and the guide portion 12 can be rolled into a cylindrical shape, and the plurality of blades 121 and 122 can be bent.
  • the total width Wc (R) of the opening 123 increases as R increases when R1 ⁇ R ⁇ Rt, and decreases as R increases when Rt ⁇ R ⁇ R2. Therefore, according to the diffusing plate 10, the width of the opening 123 is larger than the tip of the second type blade 122 (on the second axis C ⁇ b> 2 side) and outside the tip of the second type blade 122.
  • the degree of change of the total value Wc (R) with respect to the radius R can be varied. As a result, it is possible to suppress an uneven flow of exhaust gas in the exhaust passage.
  • the diffusing plate 10 is formed such that the blades 121 and 122 are at an angle at which the flow of exhaust gas is more difficult to inhibit compared to the conventional configuration. Therefore, according to the diffusion plate 10, the pressure loss can be reduced.
  • the configuration in which the second flow path member 3 (dosing pipe) is inserted so as to protrude into the exhaust flow path is compared with the configuration in which the dosing pipe does not protrude into the exhaust flow path.
  • the pressure loss in the exhaust passage increases.
  • the diffusion plate 10 of the present embodiment is suitable for a configuration in which the dosing pipe protrudes into the exhaust passage because the pressure loss is smaller than that of the conventional diffusion plate.
  • the detection points of pressure loss and uniformity described below are as in the analysis model shown in FIG. 7A, and the pressure loss represents the differential pressure ⁇ P between the upstream side and the downstream side with respect to the diffusion plate 10A.
  • the uniformity represents the distribution of exhaust gas on the upstream end face (DD cross section) of the catalyst 4.
  • the diffusion plate 10A shown in FIG. 7A means the diffusion plate described in Patent Document 1 (hereinafter referred to as “comparative example diffusion plate”) or the diffusion plate 10 of this embodiment.
  • the blades are formed at an angle that does not obstruct the flow, so the pressure loss is small and the differential pressure ⁇ P is P2 ( ⁇ P1). there were. Further, since the pressure loss is small, the flow velocity is slowed down and the turning force is suppressed. In addition, the actual area of the opening is narrow at the outer periphery (wide near the center in the radial direction). Therefore, the flow of the exhaust gas is less likely to be biased toward the outer periphery, and the index value indicating the uniformity of the exhaust gas flowing into the catalyst (the value that increases as the uniformity increases) was A2 (> A1). That is, according to the diffusion plate 10 of the present embodiment, the pressure loss can be reduced by 35% while improving the uniformity compared to the diffusion plate of the comparative example.
  • the tips of the first type blade 121 and the second type blade 122 may be rounded. According to such a configuration, the gap in the vicinity of the central axis in the exhaust passage is larger than the configuration of the above embodiment (FIGS. 3A and 3B), and the area of the entire opening 123 is increased. Pressure loss can be further reduced.
  • the gap between the first type blade 121 and the second type blade 122 may be increased. According to such a configuration, the pressure loss can be further reduced as the entire area of the opening 123 is increased as compared with the configuration of the above embodiment (FIGS. 3A and 3B).
  • a twist may be formed at the tip of the first type blade 121.
  • the swirl flow by the first type blade 121 can be made different from the configuration of the above embodiment (FIGS. 3A and 3B).
  • the first type of blades 121 and the second type of blades 122 are not limited to a generally triangular shape.
  • the tip of the first type blade 121 may be cut off (substantially trapezoidal).
  • the gap near the central axis in the exhaust flow path is larger than in the configuration of the above embodiment (FIGS. 3A and 3B), and the overall area of the opening 123 is increased, resulting in a pressure loss. Can be made smaller.
  • the first type blade 121 and the second type blade 122 may have different bending angles. According to such a configuration, the swirl flow caused by the first type blades 121 and the swirl flow caused by the second type blades 122 can be made greatly different to further suppress the deviation of the exhaust gas flow.
  • the tips of the first type blades 121 may be joined (fixed) by welding or the like. According to such a structure, it can suppress that exhaust gas passes through the clearance gap formed in the exhaust-flow path vicinity of the central axis.
  • the second type blade 122 is biased to one of the two first type blades 121 adjacent to each other when viewed from the direction along the central axis of the main body 11.
  • bias may be sufficient.
  • the first type blades 121 and the second type blades 122 are not limited to being alternately arranged one by one.
  • two first type blades 121 and 2 are provided.
  • a plurality of sheets of the second type of blades 122 may be alternately arranged, and a plurality of sheets may be alternately arranged.
  • the number of the first type blades 121 and the second type blades 122 may be different.
  • M first-type blades 121 and N second-type blades are arranged such that one first-type blade 121 and two second-type blades 122 are alternately arranged.
  • 122 may be alternately arranged.
  • the types of blades are not limited to two, and may be three or more, for example.
  • the cross-sectional shape of the main body 11 is not limited to a circle, and may be, for example, an ellipse or a polygon.
  • the main body 11 and the guide 12 may be formed of a plurality of metal plates (for example, a combination of a plurality of metal plates such as tailored materials). For example, even if the diffusion plate 10 is formed from two types of metal plates having different plate thicknesses, the main body portion 11 is formed of a thin metal plate, and the guide portion 12 is formed of a thick metal plate. Good. In this case, since the rigidity of the blades 121 and 122 is increased, the blades 121 and 122 are not easily deformed and the durability is improved.
  • a partial cross-sectional shape of the first flow path member 2 is a horizontally long shape. At least a part of the cross-sectional shape of the road member 3 may be a vertically long shape. Further, for example, the second flow path member 3 may be configured not to protrude into the exhaust flow path, and the cross-sectional shapes of the first flow path member 2 and the second flow path member 3 may be circular.
  • first tube portion 2A and the third tube portion 2C may have different inner diameters, and the third tube portion 2C, the fifth tube portion 2E, and the second flow path member 3 are It need not be coaxial.
  • the exhaust flow path is not limited to having an enlarged diameter flow path, and may be an exhaust flow path not having an enlarged diameter flow path.
  • the reducing agent is not limited to urea water, but may be any one that contributes to purification of exhaust gas in the catalyst.
  • the present invention may also be applied to an exhaust system other than an exhaust purification system using a reducing agent.
  • Each component of the present invention is conceptual and is not limited to the above embodiment.
  • the functions of one component may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component.
  • at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.

Abstract

An exhaust gas stirring device guides exhaust gas while swirling the exhaust gas, the exhaust gas flowing through an exhaust gas flow passage. The exhaust gas stirring device is provided with: a cylindrical body section which is affixed to the inner surface of a flow passage member which forms the exhaust gas flow passage; and a guide section which has blades formed thereon, the blades extending from the body section in the direction approaching the center axis of the body section and toward the downstream side of the exhaust gas flow passage. The blades include first-type blades and second-type blades, the second-type blades having a different shape from the first-type blades. The guide section has formed therein openings in which the blades are not present in a view of the guide section in the direction of the center axis. In the view of the guide section in the direction of the center axis, the openings include a shape which is configured in such a manner that the sum of the widths of the openings measured in the circumferential direction about the center axis increases and then decreases in the direction away from the center axis.

Description

排気攪拌装置Exhaust stirrer 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2013年4月30日に日本国特許庁に出願された日本国特許出願第2013-95773号に基づく優先権を主張するものであり、日本国特許出願第2013-95773号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-95773 filed with the Japan Patent Office on April 30, 2013, and is based on Japanese Patent Application No. 2013-95773. The entire contents are incorporated into this international application.
 本発明は、排気流路において排ガスを攪拌する排気攪拌装置に関する。 The present invention relates to an exhaust stirrer that stirs exhaust gas in an exhaust passage.
 ディーゼルエンジン等の内燃機関から排出される排ガス中には、大気汚染物質である窒素酸化物(NOx)が含まれている。こうした排ガスを浄化するための排気浄化システムとして、SCR(Selective Catalytic Reduction:選択触媒還元)方式の触媒を排気流路に設け、その上流側の排ガス中に尿素水を噴射する構成の排気浄化システムが知られている。排ガス中に噴射された尿素水は、排ガスの熱により加水分解し、加水分解により生じたアンモニア(NH3)が排ガスとともに触媒へ供給される。排ガス中の窒素酸化物は、触媒においてアンモニアと反応し、還元浄化される。 The exhaust gas discharged from an internal combustion engine such as a diesel engine contains nitrogen oxides (NO x ) that are air pollutants. As an exhaust gas purification system for purifying such exhaust gas, an exhaust gas purification system having a configuration in which an SCR (Selective Catalytic Reduction) type catalyst is provided in an exhaust flow path and urea water is injected into the exhaust gas on the upstream side thereof. Are known. The urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas, and ammonia (NH 3 ) generated by the hydrolysis is supplied to the catalyst together with the exhaust gas. Nitrogen oxides in the exhaust gas react with ammonia in the catalyst and are reduced and purified.
 ところで、この種の排気浄化システムとしては、触媒に流入する排ガスの分布に偏りを生じにくくするため、排気流路を流れる排ガスを旋回するように案内することで攪拌する排気攪拌装置が触媒の上流側に設けられた構成が提案されている(特許文献1参照)。特許文献1に記載の排気攪拌装置(スタティックミキサ)は、本体部(環状体)と、本体部からその中心軸方向へ延びる複数の羽根(案内羽根)と、を備える。本体部の中心軸に沿った方向から見て、複数の羽根は、それぞれ幅が一定に近い形状であり、本体部の中心軸へ向かうにつれて密集する。 By the way, in this type of exhaust purification system, an exhaust stirrer that stirs the exhaust gas flowing through the exhaust flow path so as to swirl is provided upstream of the catalyst so that the distribution of the exhaust gas flowing into the catalyst is less likely to be biased. The structure provided in the side is proposed (refer patent document 1). The exhaust stirrer (static mixer) described in Patent Document 1 includes a main body (annular body) and a plurality of blades (guide vanes) extending from the main body in the central axis direction. When viewed from the direction along the central axis of the main body, each of the plurality of blades has a shape that is almost constant in width, and is densely packed toward the central axis of the main body.
特開2013-2446号公報JP 2013-2446 A
 しかしながら、前述した特許文献1に記載されているような排気攪拌装置では、排ガスの流れが排気流路における外周部に偏ってしまうという問題があった。
 本発明の一側面においては、排気流路における排ガスの流れの偏りを抑制しつつ、排気流路を流れる排ガスを旋回するように案内することが望ましい。
However, the exhaust stirrer described in Patent Document 1 described above has a problem that the flow of exhaust gas is biased toward the outer peripheral portion of the exhaust flow path.
In one aspect of the present invention, it is desirable to guide the exhaust gas flowing through the exhaust flow path so as to swivel while suppressing an uneven flow of the exhaust gas in the exhaust flow path.
 本発明の一側面の排気攪拌装置は、排気流路を流れる排ガスを旋回するように案内する排気攪拌装置であって、排気流路を形成する流路部材の内面に固定される筒状の本体部と、前記本体部から、当該本体部の中心軸へ近づく方向であって排気流路の下流側へ向かう方向へ延びる複数の羽根が形成された案内部と、を備え、前記複数の羽根には、第1種の羽根と、前記第1種の羽根とは形状の異なる第2種の羽根と、が含まれ、前記案内部には、前記中心軸に沿った方向から見て前記羽根が存在しない部分である開口部が形成され、前記開口部は、前記中心軸に沿った方向から見て、前記中心軸を中心とする円周方向に沿った幅の合計値が、前記中心軸から離れるにつれて増大した後に減少する形状を含む。 An exhaust stirrer according to one aspect of the present invention is an exhaust stirrer that guides exhaust gas flowing through an exhaust flow path so as to swivel, and is a cylindrical main body that is fixed to the inner surface of a flow path member that forms the exhaust flow path And a guide portion formed with a plurality of blades extending from the main body portion toward the central axis of the main body portion and toward the downstream side of the exhaust flow path. Includes a first type of blade and a second type of blade having a shape different from that of the first type of blade, and the guide portion includes the blade as viewed from a direction along the central axis. An opening that is a non-existing portion is formed, and the opening has a total width along the circumferential direction centered on the central axis as viewed from the direction along the central axis. Includes shapes that increase and then decrease as they move away.
 例えば、本体部の中心軸に沿った方向から見て、複数の羽根のそれぞれの幅(中心軸を中心とする円周方向に沿った幅)が一定又は一定に近い形状の場合、開口部の幅の合計値は、中心軸から離れるほど増大する形状となる。このような形状では、排ガスの流れが排気流路における外周部に偏りやすくなってしまう。これに対し、本発明の一側面の排気攪拌装置では、開口部の幅の合計値が、中心軸から離れるにつれて増大した後に減少する形状を含むため、中心軸から離れるにつれて単に増大する形状と比較して、排ガスの流れが排気流路における外周部に偏ることを抑制することができる。したがって、排気流路における排ガスの流れの偏りを抑制しつつ、排気流路を流れる排ガスを旋回するように案内することができる。 For example, when the width of each of the plurality of blades (the width along the circumferential direction around the central axis) is constant or nearly constant when viewed from the direction along the central axis of the main body, The total width value has a shape that increases as the distance from the central axis increases. With such a shape, the flow of the exhaust gas tends to be biased toward the outer peripheral portion of the exhaust passage. On the other hand, in the exhaust stirrer according to one aspect of the present invention, since the total value of the width of the opening includes a shape that decreases after increasing from the central axis, it is compared with a shape that simply increases as the distance from the central axis increases. Thus, it is possible to suppress the flow of the exhaust gas from being biased toward the outer peripheral portion in the exhaust passage. Therefore, it is possible to guide the exhaust gas flowing through the exhaust flow path so as to turn while suppressing the uneven flow of the exhaust gas in the exhaust flow path.
 また、上記構成において、前記複数の羽根は、前記中心軸に沿った方向から見て互いに重なり合わないように形成されていてもよい。このような構成によれば、本体部が筒状に形成された状態から、本体部の中心軸に沿ったプレス加工などにより、複数の羽根を所望の角度に折り曲げることにより製造することができる。 In the above configuration, the plurality of blades may be formed so as not to overlap each other when viewed from the direction along the central axis. According to such a structure, it can manufacture by bending a several blade | wing to a desired angle from the state in which the main-body part was formed in the cylinder shape by the press work along the central axis of a main-body part.
 また、上記構成において、前記本体部及び前記案内部は、単一の金属板から形成されていてもよい。このような構成によれば、本体部及び案内部に対応する部分を有する単一の金属板を筒状に丸め、複数の羽根を折り曲げることにより製造することができる。また、前記本体部及び前記案内部は、複数の金属板(例えばテーラード材のように、複数の金属板を組み合わせたもの)から形成されていてもよい。例えば、板厚の異なる2種類の金属板から排気攪拌装置を形成するようにし、本体部を板厚の薄い金属板で形成し、案内部を板厚の厚い金属板で形成してもよい。この場合、羽根の剛性が高くなるため、変形しにくく、耐久性が向上する。 Further, in the above configuration, the main body part and the guide part may be formed from a single metal plate. According to such a structure, it can manufacture by rounding the single metal plate which has a part corresponding to a main-body part and a guide part to a cylinder shape, and bend | folding a some blade | wing. Further, the main body portion and the guide portion may be formed of a plurality of metal plates (for example, a combination of a plurality of metal plates such as a tailored material). For example, the exhaust stirrer may be formed from two types of metal plates having different thicknesses, the main body portion may be formed from a thin metal plate, and the guide portion may be formed from a thick metal plate. In this case, since the rigidity of a blade | wing becomes high, it is hard to deform | transform and durability improves.
 また、上記構成において、前記案内部には、M枚(Mは1以上の整数)の前記第1種の羽根と、前記第1種の羽根よりも短いN枚(Nは1以上の整数)の前記第2種の羽根と、が交互に配置されていてもよい。このような構成によれば、本体部の中心軸に沿った方向から見て、互いに隣り合う第1種の羽根により挟まれた部分(第2種の羽根がなければ開口部となる部分)の一部であって、本体部寄り(排気流路における外周部側)の部分が、第2種の羽根によって遮られる。したがって、開口部の幅の合計値が排気流路における外周部側において小さくなる形状を実現することができる。しかも、このような構成によれば、第1種の羽根による旋回流と第2種の羽根による旋回流とが生じることにより、排ガスの流れの偏りを抑制する効果を向上させることができる。 In the above configuration, the guide portion includes M (M is an integer of 1 or more) first type blades and N sheets (N is an integer of 1 or more) shorter than the first type blades. The second type blades may be arranged alternately. According to such a configuration, as viewed from the direction along the central axis of the main body, the portion sandwiched between the first type blades adjacent to each other (the portion that becomes the opening if there is no second type blade) Part of the main body (close to the outer periphery of the exhaust passage) is blocked by the second type blade. Therefore, it is possible to realize a shape in which the total value of the widths of the openings becomes smaller on the outer peripheral side in the exhaust flow path. Moreover, according to such a configuration, the swirling flow caused by the first type blades and the swirling flow caused by the second type blades are generated, thereby improving the effect of suppressing the deviation of the flow of the exhaust gas.
 また、上記構成において、前記中心軸に沿った方向から見て、前記中心軸から半径Rの位置での前記第1種の羽根及び前記第2種の羽根の円周方向に沿った幅をそれぞれW1(R),W2(R)とし、W2(R)が0となるRの最大値をRtとし、前記中心軸から半径Rの位置での前記合計値をWc(R)とした場合、R1≦R≦R2の範囲(R1<Rt,Rt<R2)におけるWc(R)は、R1≦R≦Rtにおいては、Wc(R)=2×π×R-W1(R)×Nと表され、Rの増加に伴い増加し、Rt<R≦R2においては、Wc(R)=2×π×R-(W1(R)+W2(R))×Nと表され、Rの増加に伴い減少するようにしてもよい。このような構成によれば、第2種の羽根の先端よりも内側(中心軸側)と、第2種の羽根の先端よりも外側と、で開口部の幅の合計値Wc(R)の半径Rに対する変化度合いを異ならせることができる。その結果、排気流路における排ガスの流れの偏りを抑制することができる。 Further, in the above configuration, when viewed from the direction along the central axis, the width along the circumferential direction of the first type blade and the second type blade at the position of the radius R from the central axis, respectively. When W1 (R) and W2 (R) are set, the maximum value of R at which W2 (R) is 0 is Rt, and the total value at the position of radius R from the central axis is Wc (R), R1 Wc (R) in the range of ≦ R ≦ R2 (R1 <Rt, Rt <R2) is expressed as Wc (R) = 2 × π × R−W1 (R) × N in R1 ≦ R ≦ Rt. , R increases as R increases, and when Rt <R ≦ R2, it is expressed as Wc (R) = 2 × π × R− (W1 (R) + W2 (R)) × N, and decreases as R increases You may make it do. According to such a configuration, the total value Wc (R) of the widths of the opening portions on the inner side (center axis side) than the tip of the second type blade and on the outer side than the tip of the second type blade. The degree of change with respect to the radius R can be varied. As a result, it is possible to suppress an uneven flow of exhaust gas in the exhaust passage.
 また、上記構成において、前記第1種の羽根の先端同士が接合されていてもよい。このような構成によれば、本体部における中心軸付近に形成された隙間から排ガスが通り抜けてしまうことを抑制することができる。 In the above configuration, the tips of the first type blades may be joined to each other. According to such a structure, it can suppress that exhaust gas passes through the clearance gap formed in the vicinity of the central axis in a main-body part.
 なお、本発明の一側面は、前述した排気攪拌装置の他、排気攪拌装置を構成要素とする排気浄化システム、排ガスの流れの偏りを抑制する方法など、種々の形態で実現することができる。 Note that one aspect of the present invention can be realized in various forms such as the above-described exhaust agitation apparatus, an exhaust purification system including the exhaust agitation apparatus as a constituent element, and a method for suppressing an uneven flow of exhaust gas.
図1Aは実施形態の排気浄化システムの上面図、図1Bは実施形態の排気浄化システムの側面図である。FIG. 1A is a top view of the exhaust purification system of the embodiment, and FIG. 1B is a side view of the exhaust purification system of the embodiment. 図2Aは図1AのIIA-IIA断面図、図2Bは図1BのIIB-IIB断面図、図2Cは図2Bにおける一部の領域を強調した図である。2A is a cross-sectional view taken along the line IIA-IIA in FIG. 1A, FIG. 2B is a cross-sectional view taken along the line IIB-IIB in FIG. 1B, and FIG. 図3Aは実施形態の拡散板の斜視図、図3Bは実施形態の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。FIG. 3A is a perspective view of the diffusion plate of the embodiment, and FIG. 3B is a view of the diffusion plate of the embodiment as viewed from the downstream side of the exhaust passage along the central axis. 中心軸に沿った方向から見た拡散板の形状を説明するための図である。It is a figure for demonstrating the shape of the diffusion plate seen from the direction along a central axis. 図5Aは実施形態の拡散板の羽根の角度を示す図、図5Bは従来の拡散板の羽根の角度を示す図である。FIG. 5A is a diagram illustrating the angle of the blades of the diffusion plate of the embodiment, and FIG. 5B is a diagram illustrating the angle of the blades of the conventional diffusion plate. 拡散板の製造方法を示す図である。It is a figure which shows the manufacturing method of a diffusion plate. 図7Aは解析モデルを示す図、図7Bは比較例の拡散板による排ガスの流線を示す図、図7Cは比較例の拡散板による触媒端面における排ガスの分布を示す図である。FIG. 7A is a diagram showing an analysis model, FIG. 7B is a diagram showing a flow line of exhaust gas by the diffusion plate of the comparative example, and FIG. 7C is a diagram showing distribution of exhaust gas on the catalyst end face by the diffusion plate of the comparative example. 図8Aは実施形態の構成による排ガスの流線を示す図、図8Bは実施形態の構成による触媒端面における排ガスの分布を示す図である。FIG. 8A is a diagram showing a flow line of exhaust gas according to the configuration of the embodiment, and FIG. 8B is a diagram showing distribution of exhaust gas on the catalyst end surface according to the configuration of the embodiment. 図9Aは第1の変形例の拡散板の斜視図、図9Bは第1の変形例の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。9A is a perspective view of the diffusion plate of the first modification, and FIG. 9B is a view of the diffusion plate of the first modification as viewed from the downstream side of the exhaust passage along the central axis. 図10Aは第2の変形例の拡散板の斜視図、図10Bは第2の変形例の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。FIG. 10A is a perspective view of the diffusion plate of the second modification, and FIG. 10B is a view of the diffusion plate of the second modification as viewed from the downstream side of the exhaust passage along the central axis. 図11Aは第3の変形例の拡散板の斜視図、図11Bは第3の変形例の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。FIG. 11A is a perspective view of the diffusion plate of the third modification, and FIG. 11B is a view of the diffusion plate of the third modification as viewed from the downstream side of the exhaust passage along the central axis. 図12Aは第4の変形例の拡散板の斜視図、図12Bは第4の変形例の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。FIG. 12A is a perspective view of the diffusion plate of the fourth modification, and FIG. 12B is a view of the diffusion plate of the fourth modification as viewed from the downstream side of the exhaust passage along its central axis. 図13Aは第5の変形例の拡散板の斜視図、図13Bは第5の変形例の拡散板をその中心軸に沿って排気流路の下流側となる方向から見た図である。FIG. 13A is a perspective view of a diffusion plate according to a fifth modification, and FIG. 13B is a view of the diffusion plate according to the fifth modification as viewed from the downstream side of the exhaust passage along its central axis.
 1…排気浄化システム、2…第1の流路部材、3…第2の流路部材、4…触媒、5…噴射装置、10…拡散板、11…本体部、12…案内部、121…第1種の羽根、122…第2種の羽根、123…開口部、C1…第1の軸線、C2…第2の軸線。 DESCRIPTION OF SYMBOLS 1 ... Exhaust gas purification system, 2 ... 1st flow path member, 3 ... 2nd flow path member, 4 ... Catalyst, 5 ... Injection apparatus, 10 ... Diffusion plate, 11 ... Main-body part, 12 ... Guide part, 121 ... 1st type blade | wing, 122 ... 2nd type blade | wing, 123 ... opening part, C1 ... 1st axis, C2 ... 2nd axis.
 以下、本発明が適用された実施形態について、図面を用いて説明する。
 [1.構成]
 図1A、図1B及び図2Aに示す排気浄化システム1は、自動車の内燃機関(例えばディーゼルエンジン)から排出された排ガスを浄化するためのものである。排気浄化システム1は、第1の流路部材2と、第2の流路部材3と、触媒4と、噴射装置5と、拡散板10と、を備える。なお、以下の説明では、図2Aを基準に上下左右方向(鉛直方向及び水平方向)を表現するが、あくまでも説明の便宜上の表現であり、排気浄化システム1が設けられる向きは特に限定されない。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
[1. Constitution]
The exhaust purification system 1 shown in FIGS. 1A, 1B, and 2A is for purifying exhaust gas discharged from an internal combustion engine (for example, a diesel engine) of an automobile. The exhaust purification system 1 includes a first flow path member 2, a second flow path member 3, a catalyst 4, an injection device 5, and a diffusion plate 10. In the following description, the vertical and horizontal directions (vertical direction and horizontal direction) are expressed with reference to FIG. 2A, but are merely expressed for convenience of description, and the direction in which the exhaust purification system 1 is provided is not particularly limited.
 第1の流路部材2は、内燃機関から排出された排ガスを自動車の外部へ導くための排気流路の一部、具体的には触媒4へ至る排気流路を形成する。第1の流路部材2は、排気流路における上流側(図2Aでいう左側)から順に、第1の管部2Aと、第2の管部2Bと、第3の管部2Cと、第4の管部2Dと、第5の管部2Eと、を備える。なお、これら第1~第5の管部2A~2Eは、説明の便宜上の区分であり、第1の流路部材2を構成する部品の区分は特に限定されない。 The first flow path member 2 forms a part of the exhaust flow path for guiding the exhaust gas discharged from the internal combustion engine to the outside of the automobile, specifically, the exhaust flow path to the catalyst 4. The first flow path member 2 includes, in order from the upstream side (left side in FIG. 2A) in the exhaust flow path, the first pipe portion 2A, the second pipe portion 2B, the third pipe portion 2C, 4 pipe part 2D and the 5th pipe part 2E are provided. The first to fifth pipe portions 2A to 2E are sections for convenience of explanation, and the sections of the parts constituting the first flow path member 2 are not particularly limited.
 第1の管部2Aは、直線状の円管部である。
 第3の管部2Cは、第1の管部2Aと内径が同じ直線状の円管部である。ただし、第3の管部2Cは、排ガスの流れる方向が第1の管部2Aと異なる。具体的には、第1の管部2Aは、排ガスが斜め下方へ流れる流路を形成し、第3の管部2Cは、排ガスが水平方向へ流れる流路を形成する。このため、第1の管部2Aと第3の管部2Cとは、側面視において円弧状に湾曲した形状の第2の管部2Bによって、なだらかに連結されている。
The first tube portion 2A is a straight circular tube portion.
The third tube portion 2C is a linear circular tube portion having the same inner diameter as the first tube portion 2A. However, the third pipe 2C is different from the first pipe 2A in the direction in which the exhaust gas flows. Specifically, the first pipe portion 2A forms a flow path where the exhaust gas flows obliquely downward, and the third pipe portion 2C forms a flow path where the exhaust gas flows in the horizontal direction. For this reason, the 1st pipe part 2A and the 3rd pipe part 2C are gently connected by the 2nd pipe part 2B of the shape curved in circular arc shape in the side view.
 第2の管部2Bは、例えば2枚の外装を上下に貼り合わせて形成されている。第2の管部2Bによって形成された排気流路(第2の流路部材3が挿入された部分)は、図1Aに示すように、上面視で第1の管部2A及び第3の管部2Cよりも幅方向(図1Aでいう上下方向)両側へ広がる(膨れる)ように拡張されている。ここでいう幅方向とは、第2の流路部材3の外面(具体的には上面)に衝突する排ガスの流れ方向(斜め下方向)である第1の方向と、第2の流路部材3の軸方向である第2の方向(水平方向)と、のいずれにも直交する方向のことである。また、第1の方向とは、第1の管部2Aの中心軸線である第1の軸線C1に沿った方向であり、第2の方向とは、第3の管部2Cの中心軸線である第2の軸線C2に沿った方向である。なお、本実施形態では、第1の軸線C1と第2の軸線C2とが、互いに交差する位置関係にある。 The second tube portion 2B is formed, for example, by bonding two exteriors up and down. As shown in FIG. 1A, the exhaust flow path formed by the second pipe part 2B (the part into which the second flow path member 3 is inserted) has a first pipe part 2A and a third pipe in top view. It is expanded so as to expand (swell) to both sides in the width direction (vertical direction in FIG. 1A) than the part 2C. The width direction here refers to a first direction that is a flow direction (an obliquely downward direction) of exhaust gas that collides with an outer surface (specifically, an upper surface) of the second flow path member 3, and a second flow path member. It is a direction orthogonal to both of the second direction (horizontal direction) which is the axial direction of 3. The first direction is a direction along the first axis C1 that is the central axis of the first tube portion 2A, and the second direction is the central axis of the third tube portion 2C. The direction is along the second axis C2. In the present embodiment, the first axis C1 and the second axis C2 are in a positional relationship where they intersect each other.
 第5の管部2Eは、第3の管部2Cと同軸の(第2の軸線C2を中心軸線とする)直線状の円管部である。ただし、第5の管部2Eは、第3の管部2Cの内径よりも外径が大きい円柱状の触媒4を収容するために、第3の管部2Cよりも内径が大きく形成されている。このため、第3の管部2Cと第5の管部2Eとは、排気流路の内径を徐々に拡大するための拡径流路を形成する円錐台状の円管部である第4の管部2Dによって、なだらかに連結されている。つまり、触媒4へ至る排気流路として、触媒4の上流側に拡径流路を有する排気流路が、第1の流路部材2によって形成されている。 The fifth tube portion 2E is a straight circular tube portion that is coaxial with the third tube portion 2C (with the second axis C2 as a central axis). However, the fifth tube portion 2E is formed to have an inner diameter larger than that of the third tube portion 2C in order to accommodate the columnar catalyst 4 having an outer diameter larger than the inner diameter of the third tube portion 2C. . For this reason, the 3rd pipe part 2C and the 5th pipe part 2E are the 4th pipe | tubes which are a truncated cone-shaped circular pipe part which forms the diameter expansion flow path for enlarging the internal diameter of an exhaust flow path gradually. It is gently connected by the part 2D. That is, an exhaust passage having an enlarged passage on the upstream side of the catalyst 4 is formed by the first passage member 2 as an exhaust passage leading to the catalyst 4.
 第2の流路部材3は、噴射装置5により噴射された(排気流路外の小孔5Aから拡散された)還元剤を触媒4よりも上流側の排気流路へ導く還元剤流路を形成する、いわゆるドージングパイプである。第2の流路部材3は、第3の管部2Cと同軸の(第2の軸線C2を中心軸線とする)円管部である。本実施形態では、第2の流路部材3は、排気流路へ向かって還元剤流路の内径が徐々に拡大された円錐台状に形成されており、噴射された還元剤が内面に直接当たりにくいように(腐食しにくいように)構成されている。第2の流路部材3は、第1の流路部材2における第2の管部2Bに接続されており、噴射装置5により噴射された還元剤は、第2の管部2B内を流れる排ガスと合流する。具体的には、第2の流路部材3は、第2の管部2Bの側壁を貫通して排気流路に突出するように(第2の流路部材3の先端が排気流路における中心部に位置するように)挿入されている。 The second flow path member 3 has a reducing agent flow path that guides the reducing agent injected by the injection device 5 (diffused from the small holes 5A outside the exhaust flow path) to the exhaust flow path upstream of the catalyst 4. It is a so-called dosing pipe to be formed. The second flow path member 3 is a circular pipe portion that is coaxial with the third pipe portion 2C (with the second axis C2 as a central axis). In the present embodiment, the second flow path member 3 is formed in a truncated cone shape in which the inner diameter of the reducing agent flow path is gradually enlarged toward the exhaust flow path, and the injected reducing agent is directly applied to the inner surface. It is configured so that it is hard to hit (so as not to corrode). The 2nd flow path member 3 is connected to the 2nd pipe part 2B in the 1st flow path member 2, and the reducing agent injected by the injection apparatus 5 is the waste gas which flows through the inside of the 2nd pipe part 2B. To join. Specifically, the second flow path member 3 passes through the side wall of the second pipe portion 2B and protrudes into the exhaust flow path (the end of the second flow path member 3 is the center of the exhaust flow path). Is inserted).
 前述したように、排気流路における第2の流路部材3が挿入された部分は、図1Aに示すように、上面視で幅方向両側へ広がるように拡張されている。このため、図2Bに示すように、第1の流路部材2と第2の流路部材3との間に形成された排気流路は、上部よりも幅方向両側の側部の方が広く形成されている。したがって、第1の管部2Aから流れてきた排ガスは、図2Cに示す領域R(第2の流路部材3の幅方向両側に形成された領域)を回り込むように流れやすくなり、これにより、第2の流路部材3からの還元剤をすくい上げる流れが発生する。 As described above, the portion where the second flow path member 3 is inserted in the exhaust flow path is expanded so as to spread to both sides in the width direction when viewed from above, as shown in FIG. 1A. For this reason, as shown in FIG. 2B, the exhaust flow path formed between the first flow path member 2 and the second flow path member 3 is wider at the side portions on both sides in the width direction than at the top. Is formed. Therefore, the exhaust gas flowing from the first pipe portion 2A is likely to flow around the region R shown in FIG. 2C (regions formed on both sides in the width direction of the second flow path member 3). A flow that scoops the reducing agent from the second flow path member 3 is generated.
 触媒4は、窒素酸化物(NOx)を還元する機能を有するSCR(Selective Catalytic
 Reduction:選択触媒還元)方式の触媒であり、排気流路における拡径流路の下流側(具体的には第5の管部2E内)に設けられている。
The catalyst 4 is an SCR (Selective Catalytic) having a function of reducing nitrogen oxides (NO x ).
Reduction: selective catalyst reduction) type catalyst, which is provided on the downstream side of the expanded diameter passage in the exhaust passage (specifically, in the fifth pipe portion 2E).
 噴射装置5は、液状の還元剤を噴射し、第2の流路部材3を介して、排気流路における拡散板10よりも上流側(具体的には第2の管部2B内)へ還元剤を供給する供給装置として機能する。本実施形態では、還元剤として尿素水を噴射する。なお、厳密には、排ガス中に噴射された尿素水が排ガスの熱により加水分解してアンモニア(NH3)が生じ、こうして生じたアンモニアが還元剤として機能する。ただし、加水分解前の状態(尿素水)についても還元剤と称する。 The injection device 5 injects a liquid reducing agent and reduces it to the upstream side of the diffusion plate 10 in the exhaust flow path (specifically, in the second pipe portion 2B) via the second flow path member 3. It functions as a supply device for supplying the agent. In this embodiment, urea water is injected as a reducing agent. Strictly speaking, the urea water injected into the exhaust gas is hydrolyzed by the heat of the exhaust gas to generate ammonia (NH 3 ), and the ammonia thus generated functions as a reducing agent. However, the state before hydrolysis (urea water) is also referred to as a reducing agent.
 拡散板10は、排気流路における拡径流路の上流側(第3の管部2C内)に設けられ、流入した排ガスを旋回(攪拌)するように案内することで拡径流路へ拡散するように流出させ、触媒4に流入する排ガスの偏りを抑制する(均一に近づける)排気攪拌装置である。拡散板10は、金属製(例えばステンレス製)の部材であり、図3A及び図3Bに示すように、本体部11と、案内部12と、を備える。なお、矢印Fは、拡散板10への流入位置における排ガスの流れ方向(第2の軸線C2に沿った方向)を示す。 The diffusing plate 10 is provided on the upstream side (inside the third pipe portion 2C) of the enlarged flow passage in the exhaust flow passage, and diffuses into the enlarged flow passage by guiding the exhaust gas that has flowed in to swirl (stir). The exhaust gas stirrer suppresses the deviation of the exhaust gas flowing into the catalyst 4 and makes it closer to uniform. The diffusion plate 10 is a metal (for example, stainless steel) member, and includes a main body 11 and a guide 12 as shown in FIGS. 3A and 3B. The arrow F indicates the flow direction of the exhaust gas at the position where it flows into the diffusion plate 10 (the direction along the second axis C2).
 本体部11は、第1の流路部材2(具体的には第3の管部2C)の内周面に溶接等で接合固定される部分であり、第3の管部2Cの内径に対応した(例えば第3の管部2Cの内径と同じ又はやや小さい寸法の)外径の筒状に形成されている。本体部11は、第3の管部2Cと同軸となるように(第2の軸線C2が中心軸線となるように)配置される。 The main body 11 is a portion that is joined and fixed to the inner peripheral surface of the first flow path member 2 (specifically, the third tube portion 2C) by welding or the like, and corresponds to the inner diameter of the third tube portion 2C. (For example, the same or slightly smaller dimension than the inner diameter of the third tube portion 2C). The main body 11 is arranged so as to be coaxial with the third tube 2C (so that the second axis C2 is the central axis).
 案内部12は、排ガスを旋回するように案内するための複数の羽根121,122を備える。複数の羽根121,122は、それぞれ、本体部11における排気流路の下流側から、第2の軸線C2へ近づく方向であって排気流路の下流側へ向かう方向へ延びるように形成されている。複数の羽根121,122は、第2の軸線C2に沿った方向から見て互いに重なり合わないように形成されている(図3B参照)。 The guide unit 12 includes a plurality of blades 121 and 122 for guiding the exhaust gas to turn. Each of the plurality of blades 121 and 122 is formed so as to extend from the downstream side of the exhaust passage in the main body 11 to the direction approaching the second axis C2 and toward the downstream side of the exhaust passage. . The plurality of blades 121 and 122 are formed so as not to overlap each other when viewed from the direction along the second axis C2 (see FIG. 3B).
 案内部12には、第2の軸線C2に沿った方向から見て羽根121,122が存在しない部分である開口部123が形成される。開口部123は、第2の軸線C2に沿った方向から見て、第2の軸線C2を中心とする円周方向に沿った幅の合計値が、第2の軸線C2から離れるにつれて増大した後に減少する形状である。 The opening part 123 which is a part where the blades 121 and 122 do not exist when viewed from the direction along the second axis C2 is formed in the guide part 12. After the opening 123 is viewed from the direction along the second axis C2, the total value of the width along the circumferential direction around the second axis C2 increases as the distance from the second axis C2 increases. It is a decreasing shape.
 具体的には、案内部12は、4枚の第1種の羽根121と、第1種の羽根121よりも径方向に沿った長さが短い(換言すれば、第2の軸線C2から先端までの間隔が大きい)4枚の第2種の羽根122と、を備える。第1種の羽根121及び第2種の羽根122は、それぞれが等間隔に配置され、第1種の羽根121及び第2種の羽根122が1枚ずつ交互に配置されている。ここで、図4に示すように、第2の軸線C2に沿った方向から見て、第2の軸線C2から半径Rの位置での第1種の羽根121及び第2種の羽根122の円周方向に沿った幅をそれぞれW1(R),W2(R)とする。W1(R),W2(R)は、Rの関数である。本実施形態では、W1(R)はRにほぼ比例する。つまり、第1種の羽根121は、R=0を頂点とする概略三角形状に形成されている。一方、W2(R)が0となるRの最大値(第2種の羽根122の頂点が位置する半径)をRtとすると、本実施形態では、W2(R)はR-Rtにほぼ比例する。つまり、第2種の羽根122は、R=Rtを頂点とする概略三角形状に形成されている。 Specifically, the guide portion 12 has four first-type blades 121 and a shorter length in the radial direction than the first-type blades 121 (in other words, from the second axis C2 to the tip end). And four blades 122 of the second type (which have a large interval up to). The first type blades 121 and the second type blades 122 are arranged at equal intervals, and the first type blades 121 and the second type blades 122 are alternately arranged one by one. Here, as shown in FIG. 4, when viewed from the direction along the second axis C2, the circles of the first type blade 121 and the second type blade 122 at the radius R from the second axis C2. The widths along the circumferential direction are W1 (R) and W2 (R), respectively. W1 (R) and W2 (R) are functions of R. In the present embodiment, W1 (R) is substantially proportional to R. That is, the first type blade 121 is formed in a substantially triangular shape with R = 0 as the apex. On the other hand, assuming that the maximum value of R at which W2 (R) is 0 (the radius at which the apex of the second type blade 122 is located) is Rt, in this embodiment, W2 (R) is substantially proportional to R−Rt. . That is, the second type blades 122 are formed in a substantially triangular shape having R = Rt as a vertex.
 また、中心軸から半径Rの位置での開口部123の円周方向に沿った幅の合計値をWc(R)とする。本実施形態では、第2種の羽根122は、一側においては第1種の羽根121に対してほぼ隙間なく隣接しており、他側において第1種の羽根121との間に開口部を形成する。このため、本実施形態では、4つの三角形状の開口部123が形成される。したがって、第2の軸線C2から半径Rの位置での各開口部123の円周方向に沿った幅をそれぞれWp(R)とすると、Wc(R)=Wp(R)×4と表される。Wc(R),Wp(R)は、Rの関数である。 Also, let Wc (R) be the total value of the widths along the circumferential direction of the opening 123 at a radius R from the central axis. In the present embodiment, the second type blade 122 is adjacent to the first type blade 121 on one side with almost no gap, and an opening is formed between the second type blade 122 and the first type blade 121 on the other side. Form. For this reason, in this embodiment, four triangular openings 123 are formed. Therefore, when the width along the circumferential direction of each opening 123 at the position of the radius R from the second axis C2 is Wp (R), Wc (R) = Wp (R) × 4. . Wc (R) and Wp (R) are functions of R.
 また、第1種の羽根121の頂点が位置する半径をR1、Wc(R)>0となるRの最大値をR2とする。本実施形態では、R1はほぼ0であり、R2は本体部11の内径にほぼ等しい。この場合、R1≦R≦R2の範囲(R1<Rt,Rt<R2)におけるWc(R)は、Rの増加に伴い増加した後に減少する。具体的には、R1≦R≦Rtにおいては、Wc(R)=2×π×R-W1(R)×4と表され、Rの増加に伴い増加する。一方、Rt<R≦R2においては、Wc(R)=2×π×R-(W1(R)+W2(R))×4と表され、Rの増加に伴い減少する。なお、πは円周率である。 Suppose that the radius at which the apex of the first type blade 121 is located is R1, and the maximum value of R that satisfies Wc (R)> 0 is R2. In the present embodiment, R1 is substantially 0, and R2 is substantially equal to the inner diameter of the main body portion 11. In this case, Wc (R) in the range of R1 ≦ R ≦ R2 (R1 <Rt, Rt <R2) increases with increasing R and then decreases. Specifically, in R1 ≦ R ≦ Rt, it is expressed as Wc (R) = 2 × π × R−W1 (R) × 4, and increases as R increases. On the other hand, when Rt <R ≦ R2, it is expressed as Wc (R) = 2 × π × R− (W1 (R) + W2 (R)) × 4, and decreases as R increases. Note that π is the circumference ratio.
 また、図5Aに示すように、排ガスの流れ方向Fに対する羽根121,122の角度θ1は、従来の拡散板(例えば前述した特許文献1に記載の構成)の羽根の角度(図5Bに例示する角度θ2)と比較して、大きく設計されている(θ1>θ2)。つまり、本実施形態の拡散板10では、羽根121,122が、従来の構成と比較して、排ガスの流れをより阻害しにくい角度に形成されている。 Further, as shown in FIG. 5A, the angle θ1 of the blades 121 and 122 with respect to the flow direction F of the exhaust gas is exemplified by the angle of the blade of a conventional diffusion plate (for example, the configuration described in Patent Document 1 described above) (FIG. 5B). It is designed to be larger than (angle θ2) (θ1> θ2). That is, in the diffusing plate 10 of the present embodiment, the blades 121 and 122 are formed at an angle at which it is more difficult to inhibit the flow of exhaust gas as compared with the conventional configuration.
 また、図6に示すように、拡散板10(本体部11及び案内部12)は、単一の金属板10Mから形成されている。具体的には、拡散板10は、本体部11及び案内部12に対応する部分を有する単一の金属板10Mに対し(S1)、複数の羽根121,122を所望の角度に折り曲げる加工を行った後(S2A)、円筒状に丸める加工を行うことにより製造される(S3)。S1→S2Aの加工は、例えば、金属板10Mの板面に垂直な方向からのプレス加工により実現される。なお、本実施形態では、第1種の羽根121及び第2種の羽根122が同じ角度で折り曲げられる。 Further, as shown in FIG. 6, the diffusion plate 10 (the main body 11 and the guide 12) is formed from a single metal plate 10M. Specifically, the diffusion plate 10 performs a process of bending a plurality of blades 121 and 122 to a desired angle with respect to a single metal plate 10M having portions corresponding to the main body portion 11 and the guide portion 12 (S1). After (S2A), it is manufactured by rounding into a cylindrical shape (S3). The processing of S1 → S2A is realized by, for example, pressing from a direction perpendicular to the plate surface of the metal plate 10M. In the present embodiment, the first type blade 121 and the second type blade 122 are bent at the same angle.
 一方、これとは逆に、拡散板10は、単一の金属板10Mに対し(S1)、円筒状に丸める加工を行った後(S2B)、複数の羽根121,122を所望の角度に折り曲げる加工を行うことにより製造することも可能である(S3)。この場合、S2B→S3の加工は、本体部11の中心軸に沿った方向からのプレス加工により実現される。なお、複数の羽根121,122が、本体部11の中心軸に沿った方向から見て互いに重なり合う構成の場合、本体部11の中心軸に沿った方向からのプレス加工は困難である。本実施形態では、複数の羽根121,122が、本体部11の中心軸に沿った方向から見て互いに重なり合わない構成であるため、前述した2つの製造パターン(S1→S2A→S3及びS1→S2B→S3)のいずれも採用することができる。 On the other hand, on the other hand, the diffusion plate 10 performs a process of rounding into a cylindrical shape (S2B) on a single metal plate 10M (S1), and then bends the plurality of blades 121 and 122 to a desired angle. It is also possible to manufacture by processing (S3). In this case, the processing of S2B → S3 is realized by pressing from the direction along the central axis of the main body 11. Note that when the plurality of blades 121 and 122 overlap each other when viewed from the direction along the central axis of the main body 11, it is difficult to press the direction from the direction along the central axis of the main body 11. In the present embodiment, since the plurality of blades 121 and 122 are configured so as not to overlap each other when viewed from the direction along the central axis of the main body 11, the two manufacturing patterns (S1 → S2A → S3 and S1 → Any of S2B → S3) can be employed.
 [2.作用]
 次に、排気浄化システム1の作用について説明する。内燃機関から排出された排ガスは、排気流路によって拡散板10へ導かれ、拡散板10を通過した後に触媒4へ導かれる。一方、噴射装置5から噴射された還元剤は、還元剤流路によって排気流路の中心部まで導かれてから排ガスと合流する。
[2. Action]
Next, the operation of the exhaust purification system 1 will be described. The exhaust gas discharged from the internal combustion engine is guided to the diffusion plate 10 by the exhaust passage, and is guided to the catalyst 4 after passing through the diffusion plate 10. On the other hand, the reducing agent injected from the injection device 5 is led to the central portion of the exhaust passage by the reducing agent passage and then merges with the exhaust gas.
 第2の流路部材3における排気流路に挿入された部分は、第1の管部2Aから第2の管部2Bへ流れる排ガスのうち、第2の流路部材3の外面における上面に衝突した排ガスを、当該外面に沿って回り込むように案内する機能を有する。このため、第2の流路部材3から流れ出た還元剤がすくい上げられ、排気流路において分散される。そして、拡散板10へ流入した排ガスは、拡散板10により旋回するように案内されて拡径流路へ拡散するように流出し、偏りの抑制された状態で触媒4に流入する。 The portion of the second flow path member 3 inserted into the exhaust flow path collides with the upper surface of the outer surface of the second flow path member 3 in the exhaust gas flowing from the first pipe portion 2A to the second pipe portion 2B. It has a function of guiding the exhausted gas so as to go around along the outer surface. For this reason, the reducing agent flowing out from the second flow path member 3 is scooped up and dispersed in the exhaust flow path. The exhaust gas that has flowed into the diffusion plate 10 is guided so as to turn by the diffusion plate 10, flows out so as to diffuse into the diameter-enlarged flow path, and flows into the catalyst 4 in a state where the bias is suppressed.
 [3.効果]
 以上詳述した本実施形態によれば、以下の効果が得られる。
 [3A]拡散板10は、開口部123が、第2の軸線C2に沿った方向から見て、第2の軸線C2を中心とする円周方向に沿った幅の合計値が、第2の軸線C2から離れるにつれて増大した後に減少する形状である。したがって、拡散板10によれば、排気流路における排ガスの流れの偏りを抑制しつつ、排気流路を流れる排ガスを旋回するように案内することができる。
[3. effect]
According to the embodiment described above in detail, the following effects can be obtained.
[3A] The diffuser plate 10 has an opening 123 whose second width is the sum of the widths along the circumferential direction centered on the second axis C2 when viewed from the direction along the second axis C2. The shape decreases after increasing as the distance from the axis C2 increases. Therefore, according to the diffusion plate 10, it is possible to guide the exhaust gas flowing in the exhaust flow path so as to turn while suppressing the deviation of the flow of the exhaust gas in the exhaust flow path.
 すなわち、例えば前述した特許文献1に記載の構成のように、複数の羽根のそれぞれの幅が一定に近い形状の場合、開口部の幅の合計値は、第2の軸線C2から離れるほど増大する(つまり外周部において広い)形状となる。このような形状では、排ガスの流れが排気流路における外周部に偏りやすくなってしまう。これに対し、本実施形態の拡散板10では、開口部123の幅の合計値が、第2の軸線C2から離れるにつれて増大した後に減少する形状であるため、第2の軸線C2から離れるにつれて単に増大する形状と比較して、排ガスの流れが排気流路における外周部に偏ることを抑制することができる。したがって、排気流路における排ガスの流れの偏りを抑制しつつ、排気流路を流れる排ガスを旋回するように案内することができる。 That is, for example, when the width of each of the plurality of blades is nearly constant, as in the configuration described in Patent Document 1 described above, the total value of the widths of the openings increases as the distance from the second axis C2 increases. In other words, the shape is wide (in the outer periphery). With such a shape, the flow of the exhaust gas tends to be biased toward the outer peripheral portion of the exhaust passage. On the other hand, in the diffusing plate 10 of the present embodiment, the total value of the widths of the openings 123 is a shape that decreases after increasing with increasing distance from the second axis C2, and therefore simply with increasing distance from the second axis C2. Compared with the increasing shape, it is possible to suppress the flow of the exhaust gas from being biased toward the outer peripheral portion of the exhaust flow path. Therefore, it is possible to guide the exhaust gas flowing through the exhaust flow path so as to turn while suppressing the uneven flow of the exhaust gas in the exhaust flow path.
 [3B]案内部12には、第1種の羽根121と、第1種の羽根121よりも短い第2種の羽根122と、が1枚ずつ交互に配置されている(1枚の第1種の羽根121と1枚の第2種の羽根122とが交互に配置されている)。したがって、拡散板10によれば、本体部11の中心軸に沿った方向から見て、互いに隣り合う第1種の羽根121により挟まれた部分(第2種の羽根がなければ開口部となる部分)の一部が、第2種の羽根122によって遮られる。具体的には、第2種の羽根122は、第1種の羽根121よりも短いため、本体部11寄り(排気流路における外周部側)の部分が遮られる。したがって、開口部123の幅の合計値が排気流路における外周部側において小さくなる形状を実現することができる。しかも、このような構成によれば、第1種の羽根121による旋回流と第2種の羽根122による旋回流とが生じることにより、排ガスの流れの偏りを抑制する効果を向上させることができる。 [3B] In the guide section 12, the first type blades 121 and the second type blades 122 shorter than the first type blades 121 are alternately arranged one by one (one first sheet Seed blades 121 and one second type blade 122 are alternately arranged). Therefore, according to the diffusion plate 10, when viewed from the direction along the central axis of the main body 11, the portion sandwiched between the first type blades 121 adjacent to each other (if there is no second type blade, it becomes an opening. Part) is blocked by the second type blades 122. Specifically, since the second type blade 122 is shorter than the first type blade 121, the portion closer to the main body 11 (outer peripheral side in the exhaust flow path) is blocked. Accordingly, it is possible to realize a shape in which the total value of the widths of the openings 123 becomes smaller on the outer peripheral side in the exhaust passage. Moreover, according to such a configuration, the swirl flow caused by the first type blades 121 and the swirl flow caused by the second type blades 122 are generated, thereby improving the effect of suppressing the deviation of the flow of the exhaust gas. .
 [3C]複数の羽根121,122は、第2の軸線C2に沿った方向から見て互いに重なり合わないように形成されている。したがって、拡散板10によれば、本体部11が筒状に形成された状態から、第2の軸線C2に沿ったプレス加工などにより、複数の羽根121,122を所望の角度に折り曲げることにより製造することができる。 [3C] The plurality of blades 121 and 122 are formed so as not to overlap each other when viewed from the direction along the second axis C2. Therefore, according to the diffusing plate 10, it is manufactured by bending the plurality of blades 121 and 122 to a desired angle from the state in which the main body portion 11 is formed in a cylindrical shape by press working along the second axis C2. can do.
 [3D]本体部11及び案内部12は、単一の金属板10Mから形成されている。したがって、拡散板10によれば、本体部11及び案内部12に対応する部分を有する単一の金属板10Mを筒状に丸め、複数の羽根121,122を折り曲げることにより製造することができる。 [3D] The main body part 11 and the guide part 12 are formed of a single metal plate 10M. Therefore, according to the diffusing plate 10, the single metal plate 10 </ b> M having portions corresponding to the main body portion 11 and the guide portion 12 can be rolled into a cylindrical shape, and the plurality of blades 121 and 122 can be bent.
 [3E]開口部123の幅の合計値Wc(R)は、R1≦R≦RtにおいてはRの増加に伴い増加し、Rt<R≦R2においてはRの増加に伴い減少する。したがって、拡散板10によれば、第2種の羽根122の先端よりも内側(第2の軸線C2側)と、第2種の羽根122の先端よりも外側と、で開口部123の幅の合計値Wc(R)の半径Rに対する変化度合いを異ならせることができる。その結果、排気流路における排ガスの流れの偏りを抑制することができる。 [3E] The total width Wc (R) of the opening 123 increases as R increases when R1 ≦ R ≦ Rt, and decreases as R increases when Rt <R ≦ R2. Therefore, according to the diffusing plate 10, the width of the opening 123 is larger than the tip of the second type blade 122 (on the second axis C <b> 2 side) and outside the tip of the second type blade 122. The degree of change of the total value Wc (R) with respect to the radius R can be varied. As a result, it is possible to suppress an uneven flow of exhaust gas in the exhaust passage.
 [3F]拡散板10は、羽根121,122が、従来の構成と比較して、排ガスの流れをより阻害しにくい角度に形成されている。したがって、拡散板10によれば、圧力損失を小さくすることができる。特に、本実施形態のように、第2の流路部材3(ドージングパイプ)が排気流路に突出するように挿入された構成では、ドージングパイプが排気流路に突出していない構成と比較して、排気流路の圧力損失が大きくなる。この点、本実施形態の拡散板10は、従来の拡散板と比較して圧力損失が小さいため、ドージングパイプが排気流路に突出した構成にも適している。 [3F] The diffusing plate 10 is formed such that the blades 121 and 122 are at an angle at which the flow of exhaust gas is more difficult to inhibit compared to the conventional configuration. Therefore, according to the diffusion plate 10, the pressure loss can be reduced. In particular, as in the present embodiment, the configuration in which the second flow path member 3 (dosing pipe) is inserted so as to protrude into the exhaust flow path is compared with the configuration in which the dosing pipe does not protrude into the exhaust flow path. The pressure loss in the exhaust passage increases. In this respect, the diffusion plate 10 of the present embodiment is suitable for a configuration in which the dosing pipe protrudes into the exhaust passage because the pressure loss is smaller than that of the conventional diffusion plate.
 [4.シミュレーション結果]
 次に、CFD(Computational Fluid Dynamics)解析(数値流体力学解析)によるシミュレーション結果について説明する。なお、以下に説明する圧力損失及び一様性の検出箇所は、図7Aに示す解析モデルのとおりであり、圧力損失は拡散板10Aに対して上流側と下流側との差圧ΔPを表し、一様性は触媒4の上流側端面(D-D断面)における排ガスの分布を表す。なお、図7Aに示す拡散板10Aとは、前述した特許文献1に記載の拡散板(以下「比較例の拡散板」という。)又は本実施形態の拡散板10を意味する。
[4. simulation result]
Next, a simulation result by CFD (Computational Fluid Dynamics) analysis (computational fluid dynamics analysis) will be described. The detection points of pressure loss and uniformity described below are as in the analysis model shown in FIG. 7A, and the pressure loss represents the differential pressure ΔP between the upstream side and the downstream side with respect to the diffusion plate 10A. The uniformity represents the distribution of exhaust gas on the upstream end face (DD cross section) of the catalyst 4. The diffusion plate 10A shown in FIG. 7A means the diffusion plate described in Patent Document 1 (hereinafter referred to as “comparative example diffusion plate”) or the diffusion plate 10 of this embodiment.
 図7B及び図7Cに示すように、比較例の拡散板では、羽根が流れを遮りやすい角度に形成されているため、圧力損失が大きく、差圧ΔPはP1であった。また、圧力損失が大きいため、流速が速く、旋回力が強い。加えて、開口部の実面積が外周部において広い。したがって、排ガスの流れが外周部に偏りやすく、触媒へ流入する排ガスの一様性を示す指標値(一様性が高いほど高くなる値)はA1であった。 As shown in FIGS. 7B and 7C, in the diffusion plate of the comparative example, since the blades are formed at an angle at which the flow is easily blocked, the pressure loss is large and the differential pressure ΔP is P1. Moreover, since the pressure loss is large, the flow velocity is fast and the turning force is strong. In addition, the actual area of the opening is wide at the outer periphery. Therefore, the flow of the exhaust gas tends to be biased toward the outer periphery, and the index value indicating the uniformity of the exhaust gas flowing into the catalyst (the value that increases as the uniformity increases) was A1.
 一方、図8A及び図8Bに示すように、本実施形態の拡散板10では、羽根が流れを遮りにくい角度に形成されているため、圧力損失が小さく、差圧ΔPはP2(<P1)であった。また、圧力損失が小さいため、流速が遅くなり、旋回力が抑えられる。加えて、開口部の実面積が外周部において狭い(半径方向の中央部付近において広い)。したがって、排ガスの流れが外周部に偏りにくく、触媒へ流入する排ガスの一様性を示す指標値(一様性が高いほど高くなる値)はA2(>A1)であった。つまり、本実施形態の拡散板10によれば、比較例の拡散板よりも一様性を高めつつ、圧力損失を35%削減することができる。 On the other hand, as shown in FIGS. 8A and 8B, in the diffusing plate 10 of the present embodiment, the blades are formed at an angle that does not obstruct the flow, so the pressure loss is small and the differential pressure ΔP is P2 (<P1). there were. Further, since the pressure loss is small, the flow velocity is slowed down and the turning force is suppressed. In addition, the actual area of the opening is narrow at the outer periphery (wide near the center in the radial direction). Therefore, the flow of the exhaust gas is less likely to be biased toward the outer periphery, and the index value indicating the uniformity of the exhaust gas flowing into the catalyst (the value that increases as the uniformity increases) was A2 (> A1). That is, according to the diffusion plate 10 of the present embodiment, the pressure loss can be reduced by 35% while improving the uniformity compared to the diffusion plate of the comparative example.
 [5.他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されることなく、種々の形態を採り得ることは言うまでもない。
[5. Other Embodiments]
As mentioned above, although embodiment of this invention was described, it cannot be overemphasized that this invention can take a various form, without being limited to the said embodiment.
 [5A]図9A及び図9Bに示すように、第1種の羽根121及び第2種の羽根122の先端に丸みを持たせてもよい。このような構成によれば、上記実施形態の構成(図3A及び図3B)と比較して排気流路における中心軸付近の隙間が大きくなり、開口部123の全体としての面積が大きくなる分、圧力損失をより小さくすることができる。 [5A] As shown in FIGS. 9A and 9B, the tips of the first type blade 121 and the second type blade 122 may be rounded. According to such a configuration, the gap in the vicinity of the central axis in the exhaust passage is larger than the configuration of the above embodiment (FIGS. 3A and 3B), and the area of the entire opening 123 is increased. Pressure loss can be further reduced.
 [5B]図10A及び図10Bに示すように、第1種の羽根121及び第2種の羽根122の間の隙間を大きくしてもよい。このような構成によれば、上記実施形態の構成(図3A及び図3B)と比較して開口部123の全体としての面積が大きくなる分、圧力損失をより小さくすることができる。 [5B] As shown in FIGS. 10A and 10B, the gap between the first type blade 121 and the second type blade 122 may be increased. According to such a configuration, the pressure loss can be further reduced as the entire area of the opening 123 is increased as compared with the configuration of the above embodiment (FIGS. 3A and 3B).
 [5C]図11A及び図11Bに示すように、第1種の羽根121の先端にねじれを形成してもよい。このような構成では、第1種の羽根121による旋回流を、上記実施形態の構成(図3A及び図3B)とは異ならせることができる。 [5C] As shown in FIGS. 11A and 11B, a twist may be formed at the tip of the first type blade 121. In such a configuration, the swirl flow by the first type blade 121 can be made different from the configuration of the above embodiment (FIGS. 3A and 3B).
 [5D]第1種の羽根121及び第2種の羽根122は、概略三角形状に限定されるものではない。例えば図12A及び図12Bに示すように、第1種の羽根121の先端を切り落とした形状(概略台形状)としてもよい。このような構成では、上記実施形態の構成(図3A及び図3B)と比較して排気流路における中心軸付近の隙間が大きくなり、開口部123の全体としての面積が大きくなる分、圧力損失をより小さくすることができる。 [5D] The first type of blades 121 and the second type of blades 122 are not limited to a generally triangular shape. For example, as shown in FIGS. 12A and 12B, the tip of the first type blade 121 may be cut off (substantially trapezoidal). In such a configuration, the gap near the central axis in the exhaust flow path is larger than in the configuration of the above embodiment (FIGS. 3A and 3B), and the overall area of the opening 123 is increased, resulting in a pressure loss. Can be made smaller.
 [5E]第1種の羽根121及び第2種の羽根122は、折り曲げ角度が異なっていてもよい。このような構成によれば、第1種の羽根121による旋回流と第2種の羽根122による旋回流とを大きく異ならせて、排ガスの流れの偏りを一層抑制することが可能となる。 [5E] The first type blade 121 and the second type blade 122 may have different bending angles. According to such a configuration, the swirl flow caused by the first type blades 121 and the swirl flow caused by the second type blades 122 can be made greatly different to further suppress the deviation of the exhaust gas flow.
 [5F]例えば図13A及び図13Bに示すように、第1種の羽根121の先端同士(矢印Cで示す箇所)を溶接等により接合(固定)してもよい。このような構成によれば、排気流路における中心軸付近に形成された隙間から排ガスが通り抜けてしまうことを抑制することができる。 [5F] For example, as shown in FIGS. 13A and 13B, the tips of the first type blades 121 (locations indicated by arrows C) may be joined (fixed) by welding or the like. According to such a structure, it can suppress that exhaust gas passes through the clearance gap formed in the exhaust-flow path vicinity of the central axis.
 [5G]上記実施形態では、第2種の羽根122は、本体部11の中心軸から沿った方向から見て、両側に隣り合う2枚の第1種の羽根121のうちの一方へ偏った形状となっているが、これに限定されるものではなく、例えば偏りのない形状であってもよい。 [5G] In the above-described embodiment, the second type blade 122 is biased to one of the two first type blades 121 adjacent to each other when viewed from the direction along the central axis of the main body 11. Although it is a shape, it is not limited to this, For example, the shape without a bias | bias may be sufficient.
 [5H]第1種の羽根121と第2種の羽根122とは、1枚ずつ交互に配置されていることに限定されるものではなく、例えば、2枚の第1種の羽根121と2枚の第2種の羽根122とが交互に配置されるというように、複数枚ずつ交互に配置されてもよい。また、第1種の羽根121と第2種の羽根122とは、枚数が異なっていてもよい。例えば、1枚の第1種の羽根121と2枚の第2種の羽根122とが交互に配置されるというように、M枚の第1種の羽根121とN枚の第2種の羽根122とが交互に配置されてもよい。 [5H] The first type blades 121 and the second type blades 122 are not limited to being alternately arranged one by one. For example, two first type blades 121 and 2 are provided. A plurality of sheets of the second type of blades 122 may be alternately arranged, and a plurality of sheets may be alternately arranged. Further, the number of the first type blades 121 and the second type blades 122 may be different. For example, M first-type blades 121 and N second-type blades are arranged such that one first-type blade 121 and two second-type blades 122 are alternately arranged. 122 may be alternately arranged.
 [5I]羽根の種類は2種類に限定されるものではなく、例えば3種類以上としてもよい。
 [5J]本体部11の断面形状は円形に限定されるものではなく、例えば楕円状や多角形状などとしてもよい。
[5I] The types of blades are not limited to two, and may be three or more, for example.
[5J] The cross-sectional shape of the main body 11 is not limited to a circle, and may be, for example, an ellipse or a polygon.
 [5K]本体部11及び案内部12は、複数の金属板(例えばテーラード材のように、複数の金属板を組み合わせたもの)から形成されていてもよい。例えば、板厚の異なる2種類の金属板から拡散板10を形成するようにし、本体部11を板厚の薄い金属板で形成し、案内部12を板厚の厚い金属板で形成してもよい。この場合、羽根121,122の剛性が高くなるため、変形しにくく、耐久性が向上する。 [5K] The main body 11 and the guide 12 may be formed of a plurality of metal plates (for example, a combination of a plurality of metal plates such as tailored materials). For example, even if the diffusion plate 10 is formed from two types of metal plates having different plate thicknesses, the main body portion 11 is formed of a thin metal plate, and the guide portion 12 is formed of a thick metal plate. Good. In this case, since the rigidity of the blades 121 and 122 is increased, the blades 121 and 122 are not easily deformed and the durability is improved.
 [5L]上記実施形態の排気流路及び還元剤流路はあくまでも一例であり、これに限定されるものではない。例えば、上記実施形態では、第2の流路部材3が排気流路に突出する構成を前提として、第1の流路部材2における一部の断面形状を横長形状としているが、第2の流路部材3における少なくとも一部の断面形状を縦長形状としてもよい。また例えば、第2の流路部材3が排気流路に突出しない構成としてもよく、第1の流路部材2及び第2の流路部材3の断面形状をそれぞれ円形としてもよい。また例えば、第1の管部2Aと第3の管部2Cとは、内径が異なっていてもよく、第3の管部2C、第5の管部2E及び第2の流路部材3は、同軸である必要はない。また例えば、排気流路は、拡径流路を有していることに限定されるものではなく、拡径流路を有していない排気流路であってもよい。 [5L] The exhaust passage and the reducing agent passage in the above embodiment are merely examples, and are not limited thereto. For example, in the above embodiment, on the assumption that the second flow path member 3 protrudes into the exhaust flow path, a partial cross-sectional shape of the first flow path member 2 is a horizontally long shape. At least a part of the cross-sectional shape of the road member 3 may be a vertically long shape. Further, for example, the second flow path member 3 may be configured not to protrude into the exhaust flow path, and the cross-sectional shapes of the first flow path member 2 and the second flow path member 3 may be circular. Further, for example, the first tube portion 2A and the third tube portion 2C may have different inner diameters, and the third tube portion 2C, the fifth tube portion 2E, and the second flow path member 3 are It need not be coaxial. Further, for example, the exhaust flow path is not limited to having an enlarged diameter flow path, and may be an exhaust flow path not having an enlarged diameter flow path.
 [5M]還元剤は、尿素水に限定されるものではなく、触媒における排ガスの浄化に寄与するものであればよい。また、本発明は、還元剤を用いる排気浄化システム以外の排気系に適用してもよい。 [5M] The reducing agent is not limited to urea water, but may be any one that contributes to purification of exhaust gas in the catalyst. The present invention may also be applied to an exhaust system other than an exhaust purification system using a reducing agent.
 [5N]本発明の各構成要素は概念的なものであり、上記実施形態に限定されない。例えば、1つの構成要素が有する機能を複数の構成要素に分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。 [5N] Each component of the present invention is conceptual and is not limited to the above embodiment. For example, the functions of one component may be distributed to a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.

Claims (7)

  1.  排気流路を流れる排ガスを旋回するように案内する排気攪拌装置であって、
     排気流路を形成する流路部材の内面に固定される筒状の本体部と、
     前記本体部から、当該本体部の中心軸へ近づく方向であって排気流路の下流側へ向かう方向へ延びる複数の羽根が形成された案内部と、
     を備え、
     前記複数の羽根には、第1種の羽根と、前記第1種の羽根とは形状の異なる第2種の羽根と、が含まれ、
     前記案内部には、前記中心軸に沿った方向から見て前記羽根が存在しない部分である開口部が形成され、
     前記開口部は、前記中心軸に沿った方向から見て、前記中心軸を中心とする円周方向に沿った幅の合計値が、前記中心軸から離れるにつれて増大した後に減少する形状を含む
     ことを特徴とする排気攪拌装置。
    An exhaust stirrer for guiding the exhaust gas flowing through the exhaust flow path to swirl,
    A cylindrical main body fixed to the inner surface of the flow path member forming the exhaust flow path;
    From the main body portion, a guide portion formed with a plurality of blades extending in the direction approaching the central axis of the main body portion and toward the downstream side of the exhaust flow path;
    With
    The plurality of blades include a first type blade and a second type blade different in shape from the first type blade,
    The guide portion is formed with an opening which is a portion where the blade does not exist when viewed from the direction along the central axis.
    The opening includes a shape in which a total value of widths along a circumferential direction centering on the central axis increases and decreases as the distance from the central axis increases when viewed from the direction along the central axis. An exhaust stirrer characterized by.
  2.  請求項1に記載の排気攪拌装置であって、
     前記複数の羽根は、前記中心軸に沿った方向から見て互いに重なり合わないように形成されている
     ことを特徴とする排気攪拌装置。
    The exhaust stirrer according to claim 1,
    The plurality of blades are formed so as not to overlap each other when viewed from a direction along the central axis.
  3.  請求項2に記載の排気攪拌装置であって、
     前記本体部及び前記案内部は、単一の金属板から形成されている
     ことを特徴とする排気攪拌装置。
    An exhaust stirrer according to claim 2,
    The main body and the guide are formed from a single metal plate.
  4.  請求項2に記載の排気攪拌装置であって、
     前記本体部及び前記案内部は、複数の金属板から形成されている
     ことを特徴とする排気攪拌装置。
    An exhaust stirrer according to claim 2,
    The main body part and the guide part are formed of a plurality of metal plates.
  5.  請求項1から請求項4までのいずれか1項に記載の排気攪拌装置であって、
     前記案内部には、M枚(Mは1以上の整数)の前記第1種の羽根と、前記第1種の羽根よりも短いN枚(Nは1以上の整数)の前記第2種の羽根と、が交互に配置されている
     ことを特徴とする排気攪拌装置。
    An exhaust stirrer according to any one of claims 1 to 4, wherein
    The guide section includes M (M is an integer equal to or greater than 1) blades of the first type and N (N is an integer greater than or equal to 1) N types of the second type of blades shorter than the first type of blades. An exhaust stirrer characterized in that the blades are arranged alternately.
  6.  請求項5に記載の排気攪拌装置であって、
     前記中心軸に沿った方向から見て、前記中心軸から半径Rの位置での前記第1種の羽根及び前記第2種の羽根の円周方向に沿った幅をそれぞれW1(R),W2(R)とし、W2(R)が0となるRの最大値をRtとし、前記中心軸から半径Rの位置での前記合計値をWc(R)とした場合、R1≦R≦R2の範囲(R1<Rt,Rt<R2)におけるWc(R)は、
     R1≦R≦Rtにおいては、Wc(R)=2×π×R-W1(R)×Nと表され、Rの増加に伴い増加し、
     Rt<R≦R2においては、Wc(R)=2×π×R-(W1(R)+W2(R))×Nと表され、Rの増加に伴い減少する
     ことを特徴とする排気攪拌装置。
    The exhaust stirrer according to claim 5,
    When viewed from the direction along the central axis, the widths along the circumferential direction of the first type blade and the second type blade at the radius R from the central axis are respectively W1 (R) and W2 (R), the maximum value of R at which W2 (R) is 0 is Rt, and the total value at the position of radius R from the central axis is Wc (R), the range of R1 ≦ R ≦ R2 Wc (R) in (R1 <Rt, Rt <R2) is
    In R1 ≦ R ≦ Rt, it is expressed as Wc (R) = 2 × π × R−W1 (R) × N, and increases as R increases,
    In Rt <R ≦ R2, it is expressed as Wc (R) = 2 × π × R− (W1 (R) + W2 (R)) × N, and the exhaust stirrer decreases as R increases .
  7.  請求項1から請求項6までのいずれか1項に記載の排気攪拌装置であって、
     前記第1種の羽根の先端同士が接合されている
     ことを特徴とする排気攪拌装置。
    The exhaust stirrer according to any one of claims 1 to 6,
    The exhaust stirrer is characterized in that tips of the first type blades are joined to each other.
PCT/JP2014/053286 2013-04-30 2014-02-13 Exhaust gas stirring device WO2014178213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095773 2013-04-30
JP2013095773A JP6154185B2 (en) 2013-04-30 2013-04-30 Exhaust stirrer

Publications (1)

Publication Number Publication Date
WO2014178213A1 true WO2014178213A1 (en) 2014-11-06

Family

ID=51843352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053286 WO2014178213A1 (en) 2013-04-30 2014-02-13 Exhaust gas stirring device

Country Status (2)

Country Link
JP (1) JP6154185B2 (en)
WO (1) WO2014178213A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217357A1 (en) * 2015-09-10 2017-03-16 Volkswagen Aktiengesellschaft Mixing device and mixer system for an exhaust system of an internal combustion engine
JP2020020532A (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Temperature homogenization device, structure, and parabolic antenna device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205158A1 (en) 2014-03-19 2015-09-24 Eberspächer Exhaust Technology GmbH & Co. KG Mixer for an exhaust system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127529A2 (en) * 2006-04-24 2007-11-08 Fleetguard, Inc. Exhaust aftertreatment mixer with stamped muffler flange
US20080308083A1 (en) * 2007-06-18 2008-12-18 Georg Wirth Mixing and/or evaporating device and process for manufacturing same
JP2011525958A (en) * 2008-06-26 2011-09-29 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Exhaust gas additive / treatment system and exhaust mixing device for use therein
JP2013002446A (en) * 2011-06-16 2013-01-07 Bosch Emission Systems Gmbh & Co Kg Static mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007127529A2 (en) * 2006-04-24 2007-11-08 Fleetguard, Inc. Exhaust aftertreatment mixer with stamped muffler flange
US20080308083A1 (en) * 2007-06-18 2008-12-18 Georg Wirth Mixing and/or evaporating device and process for manufacturing same
JP2011525958A (en) * 2008-06-26 2011-09-29 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Exhaust gas additive / treatment system and exhaust mixing device for use therein
JP2013002446A (en) * 2011-06-16 2013-01-07 Bosch Emission Systems Gmbh & Co Kg Static mixer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217357A1 (en) * 2015-09-10 2017-03-16 Volkswagen Aktiengesellschaft Mixing device and mixer system for an exhaust system of an internal combustion engine
JP2020020532A (en) * 2018-08-01 2020-02-06 三菱電機株式会社 Temperature homogenization device, structure, and parabolic antenna device

Also Published As

Publication number Publication date
JP2014214742A (en) 2014-11-17
JP6154185B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
US11542847B2 (en) Systems and methods for mixing exhaust gases and reductant in an aftertreatment system
JP5977375B2 (en) Exhaust gas purification device
WO2015037559A1 (en) Diffusion plate and manufacturing method for same
JP6073659B2 (en) Exhaust gas purification device
JP5655046B2 (en) Mixing / vaporizing device
JP6158506B2 (en) Exhaust gas purification device
CN105189961A (en) Flow reversing exhaust gas mixer
US10632430B1 (en) Systems and methods for mixing exhaust gases and reductant in an aftertreatment system
WO2014178213A1 (en) Exhaust gas stirring device
JP6166468B2 (en) Exhaust stirrer
JP5839002B2 (en) Exhaust gas purification device for internal combustion engine
JP6916772B2 (en) Exhaust agitator
JP5760799B2 (en) Exhaust gas purification device for internal combustion engine
WO2014030489A1 (en) Exhaust mixer
JP6435055B2 (en) Exhaust pipe manufacturing method
JP2019120197A (en) Mixing device
KR101956459B1 (en) Manufacturing method of exhaust flow improving member for vehicle exhaust system and exhaust flow improving apparatus of vehicle exhaust system including the same
US20180245495A1 (en) Mixer assembly for mixing an additive with an exhaust gas flow
JP2020133443A (en) Exhaust emission control device of internal combustion engine
JP2013108438A (en) Exhaust gas agitating device
KR20190015162A (en) Manufacturing method of exhaust flow improving member for vehicle exhaust system and exhaust flow improving apparatus of vehicle exhaust system including the same
JP2018115616A (en) Swirl flow generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791980

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201507831

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 14791980

Country of ref document: EP

Kind code of ref document: A1