WO2014178205A1 - Surface flow control system and surface flow control method - Google Patents

Surface flow control system and surface flow control method Download PDF

Info

Publication number
WO2014178205A1
WO2014178205A1 PCT/JP2014/052105 JP2014052105W WO2014178205A1 WO 2014178205 A1 WO2014178205 A1 WO 2014178205A1 JP 2014052105 W JP2014052105 W JP 2014052105W WO 2014178205 A1 WO2014178205 A1 WO 2014178205A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
moving body
boundary layer
fluid
plasma actuator
Prior art date
Application number
PCT/JP2014/052105
Other languages
French (fr)
Japanese (ja)
Inventor
東潤 郭
良稲 上田
Original Assignee
独立行政法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51843345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014178205(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 独立行政法人宇宙航空研究開発機構 filed Critical 独立行政法人宇宙航空研究開発機構
Publication of WO2014178205A1 publication Critical patent/WO2014178205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/10Influencing air flow over aircraft surfaces by affecting boundary layer flow using other surface properties, e.g. roughness
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2439Surface discharges, e.g. air flow control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/002Influencing flow of fluids by influencing the boundary layer
    • F15D1/0065Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid
    • F15D1/0075Influencing flow of fluids by influencing the boundary layer using active means, e.g. supplying external energy or injecting fluid comprising electromagnetic or electrostatic means for influencing the state of the fluid, e.g. for ionising the fluid or for generating a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/12Boundary layer controls by using electromagnetic tiles, fluid ionizers, static charges or plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to a surface flow control system and a surface flow control including a moving body that moves relative to a fluid, a plasma actuator provided on a surface of the moving body, and a control unit that controls the plasma actuator. More particularly, the present invention relates to a surface flow control system and a surface flow control method suitable for aircraft wings.
  • the resistance acting on the moving body that moves relative to the fluid is divided into pressure resistance and frictional resistance.
  • Frictional resistance depends on the flow conditions in the boundary layer, and the laminar flow has a lower frictional resistance than the turbulent flow, and the flow around the aircraft in flight is maintained in a laminar flow, greatly reducing the frictional resistance.
  • the aerodynamic phenomenon in which boundary layer flow changes from laminar flow to turbulent flow can be broadly divided into two types: TS (Tollmien-Schrichting) instability and CF (Cross-Flow) instability. Can be mentioned.
  • transition due to C—F instability is a dominant factor causing transition in an object shape having a large receding angle (for example, a swept wing of an aircraft).
  • the transverse flow velocity component is large with respect to the direction of the boundary layer outer edge flow, the CF instability develops remarkably, and as a result, the boundary layer transitions from laminar flow to turbulent flow.
  • Patent Documents 1 to 3 and the like control the separation of the boundary layer or control the flow on the downstream side by generating an air flow in the direction perpendicular to the surface of the moving body. It was impossible to control the transition from laminar flow to turbulent flow, and laminarization of the boundary layer was still dependent on the relative velocity between the airframe shape and the fluid.
  • a method of injecting a jet stream into the boundary layer or sucking a flow in the boundary layer can be considered.
  • there is a structural and efficient problem that a lot of energy needs to be supplied.
  • the present inventor changes the CF instability by changing the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body by the plasma actuator, so that the instability can be changed regardless of the shape of the moving body.
  • a surface flow control system includes a moving body that moves relative to a fluid, a plasma actuator provided on a surface of the moving body, and a control means that controls the plasma actuator.
  • a front end edge of the moving body is formed to extend in a direction not perpendicular to a moving direction of the fluid
  • the plasma actuator is disposed in the vicinity of the front end edge
  • the control means is configured to control the plasma actuator so as to change the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body, thereby solving the problem.
  • a surface flow control method controls a plasma actuator provided on the surface of a moving body that moves relative to the fluid to change the boundary layer flow of the fluid on the surface of the moving body. And the said subject is solved by inducing the flow which changes the transverse flow velocity component of the boundary layer flow of the fluid of the said moving body surface with the said plasma actuator.
  • the front end edge of the moving body extends in a direction that is not perpendicular to the moving direction of the fluid.
  • the transition to the flow is a factor in which the CF instability dominates
  • the plasma actuator is arranged in the vicinity of the front edge, and changes the transverse flow velocity component of the boundary layer flow of the fluid on the moving body surface. Therefore, it is possible to control the laminar flow of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body, and it is possible to control it efficiently with a simple structure using only electrical means. It becomes.
  • the plasma actuator generates a volume force near the surface in the boundary layer, induces a flow along the surface (counder effect), and induces a flow by the plasma actuator in the opposite direction of the transverse flow velocity direction that induces the transition. It is possible to suppress the development of the velocity component, to suppress the transition caused by the lateral flow instability, and to reverse the transition by inducing the flow in the direction of the lateral flow velocity. Also, transitions due to cross-flow instability often predominate near the front edge of the wing, and when other devices are applied near the front edge where the boundary layer is very thin, the increase in pressure resistance depends on the device.
  • the unevenness may promote the boundary layer transition
  • the transverse direction component is slower than the mainstream direction velocity, a sufficient effect can be obtained by the control by the plasma actuator.
  • the plasma actuators are arranged in multiple stages at a predetermined interval from the vicinity of the front edge, so that the lateral flow velocity component can be controlled in a wider range in the flow direction. Further, it becomes possible to control more reliably.
  • the control means is configured to be able to control the plasma actuator so as to reduce the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body. Transition from laminar flow to turbulent flow due to the qualitative property can be suppressed, and frictional resistance can be reduced.
  • the moving body is a retreating wing of an aircraft, in a supersonic aircraft or the like, without being constrained by a wing shape for laminar wing in a certain flight state
  • Optimum aerodynamic performance can be obtained in the low-speed flight region during cruise flight from take-off and landing and in the wide flight region of the high-speed flight region.
  • the control means is configured to be able to control the operation of the plasma actuator in accordance with the relative velocity between the moving body and the fluid, so that the boundary in a wide range from low speed to high speed.
  • the laminar flow can be optimally controlled.
  • the plasma actuator provided on the surface of the moving body that moves relative to the fluid is controlled to control the lateral flow velocity of the boundary layer flow of the fluid on the surface of the moving body.
  • the configuration of the seventh aspect of the present invention by inducing a flow that reduces the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body by the plasma actuator, the layer of the boundary layer is surely caused by the instability of the transverse flow. Transition from flow to turbulent flow can be suppressed, and frictional resistance can be reduced.
  • the surface flow control system of the present invention is a surface flow control system comprising a moving body that moves relative to a fluid, a plasma actuator provided on the surface of the moving body, and a control means for controlling the plasma actuator.
  • the front end edge of the moving body is formed to extend in a direction not perpendicular to the moving direction of the fluid, the plasma actuator is disposed in the vicinity of the front end edge, and the control means is provided on the surface of the moving body.
  • the plasma actuator can be controlled so as to change the transverse flow velocity component of the boundary layer flow of the fluid. Laminarization of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body As long as it is controllable and efficient with a simple structure using only electric means, any specific embodiment may be used.
  • FIG. 1 For a wing having a width of 250 mm from the center, a receding angle of the front edge of 60 °, and an angle of attack (AOA) of 3 °, when the flow velocity (U) is 19 m / s, the blade is 100 mm from the center. In position, it creates a surface flow, roughly as shown by the dotted line. When the flow field at this position was analyzed by numerical analysis (CFD), it was found that there was a transverse flow velocity component as shown in FIG.
  • CFD numerical analysis
  • C is the blade length
  • X is the distance from the front edge
  • Z (mm) is the height from the blade surface
  • V (m / s) is the transverse flow (blade tip method (bottom of Fig. 1 Direction) is a positive speed component
  • the center direction (upward in FIG. 1) is a negative speed component.
  • transition analysis of a boundary layer flow (e n method) the result of, as shown in FIG. 3, and N value abruptly increases in the vicinity of the front edge of the wing, thereby, the front end It can be seen that a transition from laminar to turbulent flow is likely to occur near the edge.
  • the main factor of the N value shown in FIG. 3 can be determined from the characteristics of Psi shown in FIG. Since Psi in FIG. 4 is not 0, it is indicated that the N value in FIG. 3 is an N value developed by the transverse flow component. From these analysis results, in the case of a blade with a receding angle of 60 degrees, it is determined that the boundary layer transition is a transition caused by CF instability.
  • the boundary layer transition is a transition due to CF instability due to the lateral flow component, and it can be understood that the possibility of the boundary layer transition is greatly reduced when there is no lateral flow.
  • the surface flow control system is formed on the surface near the front edge of the above-described blade (width 250 mm from the center, receding angle 60 ° of the front edge).
  • a plasma actuator having a length of 100 mm centering on a position 100 mm from the center is provided, and a control means (not shown) controls the output of the plasma actuator to change the transverse flow velocity component of the boundary layer flow.
  • the plasma actuator 110 is a dielectric barrier discharge plasma actuator in which two electrodes 111 are provided on both surfaces of the dielectric layer 112 so as to be shifted in position, and is embedded along the surface of the blade 100. Is installed. Further, the voltage applied to the two electrodes 111 of the plasma actuator 110 is controlled by a control means (not shown).
  • a wind tunnel experiment was performed on the blade 100 equipped with the above-described surface flow control system under conditions of an angle of attack (AOA) of 4 ° and a flow velocity (U) of 10 m / s.
  • the transition position of the boundary layer flow from laminar flow to turbulent flow can be determined by the flow velocity (Up) of the blade surface measured by a Preston tube having a diameter of 1 mm.
  • the flow velocity (Up) measured by the Preston tube changes from the low level to the high level can be determined as the transition position from the laminar flow to the turbulent flow of the boundary layer flow.
  • the transition position of the boundary layer flow from the laminar flow to the turbulent flow was 250 mm from the front edge when the plasma actuator was not used.
  • the actuator When a voltage of 13 kV was applied to the actuator, the actuator retracted to a position 450 mm from the front edge.
  • a voltage of 13 kV is applied, a laminar flow profile is shown, and it can be confirmed that the transition position of the boundary layer flow from the laminar flow to the turbulent flow is retreated.
  • FIG. 11 and FIG. 12 show the results of wind tunnel experiments conducted under conditions of an angle of attack (AOA) of 4 °, a flow velocity (U) of 15 m / s, an angle of attack (AOA) of 4 °, and a flow velocity (U) of 19 m / s.
  • AOA angle of attack
  • U flow velocity
  • U flow velocity
  • the transition position from laminar to turbulent flow of the boundary layer flow should be displaced so as to be optimal in the low speed flight region during cruise flight from takeoff and landing, and in the wide flight region of the high speed flight region. Can be achieved and optimum aerodynamic performance can be obtained.
  • the surface flow control system of the present invention is preferably applied to an aircraft, particularly a supersonic aircraft having a swept wing, but may be applied to a ship or a land mobile body, and the mobile body itself is a structure. Etc., and may be used in applications where only the fluid moves. Further, the moving body may move relative to the fluid by rotating, such as a propeller or a windmill.

Abstract

The purpose of the present invention is to provide a surface flow control system, with which laminarization of the boundary layer can be controlled over a broad range from low velocity to high velocity regardless of the form of the moving body and which has good efficiency and a simple structure that comprises only electric means, and a surface flow control method. A surface flow control system for controlling a plasma actuator provided on the surface of a moving body that moves relative to a fluid, wherein the plasma actuator is disposed near the front edge and is configured so that the plasma actuator can be controlled so as to change the cross flow velocity component of the boundary layer flow of the fluid on the surface of the moving body.

Description

表面流制御システムおよび表面流制御方法Surface flow control system and surface flow control method
 本発明は、流体に対して相対的に移動する移動体と、前記移動体の表面に設けられたプラズマアクチュエータと、前記プラズマアクチュエータを制御する制御手段とを備えた表面流制御システムおよび表面流制御方法に関し、特に航空機の翼に好適な表面流制御システムおよび表面流制御方法に関する。 The present invention relates to a surface flow control system and a surface flow control including a moving body that moves relative to a fluid, a plasma actuator provided on a surface of the moving body, and a control unit that controls the plasma actuator. More particularly, the present invention relates to a surface flow control system and a surface flow control method suitable for aircraft wings.
 流体に対して相対的に移動する移動体に働く抵抗は、圧力抵抗と摩擦抵抗に分けられ、特に航空機の場合、これらの抵抗を小さくすることで燃費の向上を図ることが可能となる。
 摩擦抵抗は境界層内の流れの状態に依存し、層流の場合が乱流の場合より摩擦抵抗が小さく、飛行中の機体周りの流れを層流に維持させることで摩擦抵抗の低減に大きく貢献するため、翼などの機体周りの流れを層流化することが望ましい。
 層流から乱流に境界層流れが遷移を起こす空気力学的な現象は、大きく分けて、T-S(Tollmien-Schlichting)不安定とC-F(Cross-Flow;横流れ)不安定の2つが挙げられる。
 特に、C-F不安定による遷移は、後退角の大きい物体形状(例えば、航空機の後退翼)において遷移を起こす支配的な要因である。
 境界層外縁流れの方向に対して横流れ速度成分が大きいと、C-F不安定性は顕著に発達し、これに起因して境界層は層流から乱流へ遷移する。
The resistance acting on the moving body that moves relative to the fluid is divided into pressure resistance and frictional resistance. In particular, in the case of an aircraft, it is possible to improve fuel consumption by reducing these resistances.
Frictional resistance depends on the flow conditions in the boundary layer, and the laminar flow has a lower frictional resistance than the turbulent flow, and the flow around the aircraft in flight is maintained in a laminar flow, greatly reducing the frictional resistance. To contribute, it is desirable to laminate the flow around the aircraft, such as wings.
The aerodynamic phenomenon in which boundary layer flow changes from laminar flow to turbulent flow can be broadly divided into two types: TS (Tollmien-Schrichting) instability and CF (Cross-Flow) instability. Can be mentioned.
In particular, transition due to C—F instability is a dominant factor causing transition in an object shape having a large receding angle (for example, a swept wing of an aircraft).
When the transverse flow velocity component is large with respect to the direction of the boundary layer outer edge flow, the CF instability develops remarkably, and as a result, the boundary layer transitions from laminar flow to turbulent flow.
 超音速航空機のように後退角の大きい主翼形態を持つ場合、層流から乱流へ遷移は横流れ(Cross-Flow)不安定に起因する。
 これは翼スパン方向に圧力勾配があることから境界層内の横流れ成分が卓越することにより発生する遷移メカニズムである。
 そのため、従来の技術では翼スパン方向に圧力分布が発生しないような機体形状にすることにより、C-F不安定を抑制した層流翼化が主流であるが、このような方法では、ある飛行状態での層流翼化のため翼形状に拘束されるため、離着陸から巡航飛行時の低速から高速飛行領域の広い飛行領域において必ずしも最適な空力性能を持つことができないという問題があった。
When the main wing form has a large receding angle, such as a supersonic aircraft, the transition from laminar flow to turbulent flow is caused by cross-flow instability.
This is a transition mechanism that occurs due to the dominant cross-flow component in the boundary layer due to the pressure gradient in the blade span direction.
For this reason, in the conventional technology, laminar airfoil with suppressed CF instability has been mainstream by adopting a fuselage shape that does not generate pressure distribution in the blade span direction. Since it is constrained by the wing shape due to laminar wing in the state, there is a problem that it cannot always have the optimum aerodynamic performance in a wide flight region from low speed to high speed flight region during takeoff and landing and cruise flight.
 一方、流体に対して相対的に移動する移動体の表面に設けられたプラズマアクチュエータによって、流体の流れを制御するものが公知である(特許文献1、2、3等参照。)。
 これらの公知のものは、いずれも移動体の表面に対して鉛直方向の気流を発生させることにより移動体表面の流体の境界層の剥離を制御したり下流側の流れを制御するものである。
On the other hand, there is known one that controls the flow of fluid by a plasma actuator provided on the surface of a moving body that moves relative to the fluid (see Patent Documents 1, 2, 3, etc.).
All of these known ones control the separation of the boundary layer of the fluid on the surface of the moving body or the downstream flow by generating a vertical airflow with respect to the surface of the moving body.
特開2007-317656号公報JP 2007-317656 A 特開2008-290710号公報JP 2008-290710 A 特開2012-047067号公報JP 2012-047067 A
 特許文献1乃至3等で公知のものは、移動体の表面に対してその垂線方向の気流を発生させることで境界層の剥離を制御したり下流側の流れを制御するものであって、境界層の層流から乱流へ遷移を制御することは不可能であり、境界層の層流化は依然として機体形状と流体との相対速度に依存するという問題があった。
 また、C-F不安定を抑制することで境界層遷移を制御するために、ジェット流を境界層に噴き込んだり、境界層内の流れを吸い込んだりする方法が考えられるが、複雑な機構を有し、また、多くのエネルギーの供給が必要になるという、構造的、効率的な問題があった。
Known in Patent Documents 1 to 3 and the like control the separation of the boundary layer or control the flow on the downstream side by generating an air flow in the direction perpendicular to the surface of the moving body. It was impossible to control the transition from laminar flow to turbulent flow, and laminarization of the boundary layer was still dependent on the relative velocity between the airframe shape and the fluid.
In addition, in order to control boundary layer transition by suppressing CF instability, a method of injecting a jet stream into the boundary layer or sucking a flow in the boundary layer can be considered. In addition, there is a structural and efficient problem that a lot of energy needs to be supplied.
 そこで、本発明者は、プラズマアクチュエータによって、移動体表面の流体の境界層流れの横流れ速度成分を変化させることでC-F不安定性を変化させて、移動体の形状に関係なく、また低速から高速までの幅広い領域において境界層の層流化を制御可能であるという、従来にない全く新規な発想に至った。
 すなわち、本発明は、移動体の形状に関係なく、低速から高速までの幅広い領域において境界層の層流化を制御可能であり、かつ、電気的な手段のみの簡単な構造で効率のよい表面流制御システムおよび表面流制御方法を提供することを目的とする。
Therefore, the present inventor changes the CF instability by changing the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body by the plasma actuator, so that the instability can be changed regardless of the shape of the moving body. This led to a completely new idea that the laminarization of the boundary layer can be controlled in a wide range up to high speed.
That is, the present invention can control the laminarization of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body, and has an efficient surface with a simple structure using only electric means. It is an object to provide a flow control system and a surface flow control method.
 本発明に係る表面流制御システムは、流体に対して相対的に移動する移動体と、前記移動体の表面に設けられたプラズマアクチュエータと、前記プラズマアクチュエータを制御する制御手段とを備えた表面流制御システムであって、前記移動体の前方端縁部が、流体の移動方向に対して垂直でない方向に延びるように形成され、前記プラズマアクチュエータが、前記前方端縁部の近傍に配置され、前記制御手段が、前記移動体表面の流体の境界層流れの横流れ速度成分を変化させるようにプラズマアクチュエータを制御可能に構成されていることにより、前記課題を解決するものである。 A surface flow control system according to the present invention includes a moving body that moves relative to a fluid, a plasma actuator provided on a surface of the moving body, and a control means that controls the plasma actuator. In the control system, a front end edge of the moving body is formed to extend in a direction not perpendicular to a moving direction of the fluid, the plasma actuator is disposed in the vicinity of the front end edge, The control means is configured to control the plasma actuator so as to change the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body, thereby solving the problem.
 本発明に係る表面流制御方法は、流体に対して相対的に移動する移動体の表面に設けられたプラズマアクチュエータを制御して、移動体表面の流体の境界層流れを変化させる表面流制御方法であって、前記プラズマアクチュエータによって、前記移動体表面の流体の境界層流れの横流れ速度成分を変化させる流れを誘起することにより、前記課題を解決するものである。 A surface flow control method according to the present invention controls a plasma actuator provided on the surface of a moving body that moves relative to the fluid to change the boundary layer flow of the fluid on the surface of the moving body. And the said subject is solved by inducing the flow which changes the transverse flow velocity component of the boundary layer flow of the fluid of the said moving body surface with the said plasma actuator.
 本請求項1に係る表面流制御システムによれば、移動体の前方端縁部が流体の移動方向に対して垂直でない方向に延びている、すなわち、移動体の境界層流れの層流から乱流への遷移がC-F不安定が支配的な要因となるものであり、プラズマアクチュエータが前方端縁部の近傍に配置され、移動体表面の流体の境界層流れの横流れ速度成分を変化させることによって、移動体の形状に関係なく、低速から高速までの幅広い領域において境界層の層流化を制御可能であり、かつ、電気的な手段のみの簡単な構造で効率よく制御することが可能となる。 According to the surface flow control system of the first aspect of the present invention, the front end edge of the moving body extends in a direction that is not perpendicular to the moving direction of the fluid. The transition to the flow is a factor in which the CF instability dominates, and the plasma actuator is arranged in the vicinity of the front edge, and changes the transverse flow velocity component of the boundary layer flow of the fluid on the moving body surface. Therefore, it is possible to control the laminar flow of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body, and it is possible to control it efficiently with a simple structure using only electrical means. It becomes.
 プラズマアクチュエータは境界層内の表面近くに体積力を発生させ、表面に沿った流れを誘起(コアンダー効果)し、遷移を誘発する横流れ速度方向の逆方向にプラズマアクチュエータによる流れを誘起することにより横流れ速度成分の発達を抑制し、横流れ不安定性に起因する遷移を抑制することができ、横流れ速度方向に流れを誘起することで、逆に遷移を促進することも可能である。
 また、横流れ不安定性による遷移は翼の前方端縁部付近で卓越する場合が多く、境界層が非常に薄い前方端縁部付近での他のデバイスを適用した場合、圧力抵抗の増加がデバイスによる凸凹が境界層遷移を促進する恐れがあるが、プラズマアクチュエータを前方端縁部の近傍に配置することで、圧力抵抗に変化を与えることなく、横流れ速度成分のみを制御することが可能となる。
 さらに、主流方向速度に比べ横流れ方向成分が遅いことから、プラズマアクチュエータによる制御で、十分な効果を得ることができる。
The plasma actuator generates a volume force near the surface in the boundary layer, induces a flow along the surface (counder effect), and induces a flow by the plasma actuator in the opposite direction of the transverse flow velocity direction that induces the transition. It is possible to suppress the development of the velocity component, to suppress the transition caused by the lateral flow instability, and to reverse the transition by inducing the flow in the direction of the lateral flow velocity.
Also, transitions due to cross-flow instability often predominate near the front edge of the wing, and when other devices are applied near the front edge where the boundary layer is very thin, the increase in pressure resistance depends on the device. Although the unevenness may promote the boundary layer transition, it is possible to control only the lateral flow velocity component without changing the pressure resistance by arranging the plasma actuator in the vicinity of the front edge.
Furthermore, since the transverse direction component is slower than the mainstream direction velocity, a sufficient effect can be obtained by the control by the plasma actuator.
 本請求項2に記載の構成によれば、プラズマアクチュエータが前方端縁部の近傍から所定の間隔で多段に配置されていることにより、流れ方向のより広い範囲で横流れ速度成分の制御が可能となり、さらに確実に制御することが可能となる。
 本請求項3に記載の構成によれば、制御手段が移動体表面の流体の境界層流れの横流れ速度成分を減少させるようにプラズマアクチュエータを制御可能に構成されていることにより、確実に横流れ不安定性に起因する境界層の層流から乱流への遷移を抑制することができ、摩擦抵抗を低減することができる。
 本請求項4に記載の構成によれば、移動体が航空機の後退翼であることにより、超音速航空機等において、ある飛行状態での層流翼化のため翼形状に拘束されることなく、離着陸から巡航飛行時の低速飛行領域、さらに高速飛行領域の広い飛行領域において最適な空力性能を得ることができる。
 本請求項5に記載の構成によれば、制御手段が移動体と流体の相対速度に応じて前記プラズマアクチュエータの動作を制御可能に構成されていることにより、低速から高速までの幅広い領域において境界層の層流化を最適に制御可能となる。
According to the second aspect of the present invention, the plasma actuators are arranged in multiple stages at a predetermined interval from the vicinity of the front edge, so that the lateral flow velocity component can be controlled in a wider range in the flow direction. Further, it becomes possible to control more reliably.
According to the configuration of the third aspect of the present invention, the control means is configured to be able to control the plasma actuator so as to reduce the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body. Transition from laminar flow to turbulent flow due to the qualitative property can be suppressed, and frictional resistance can be reduced.
According to the configuration of the present invention, since the moving body is a retreating wing of an aircraft, in a supersonic aircraft or the like, without being constrained by a wing shape for laminar wing in a certain flight state, Optimum aerodynamic performance can be obtained in the low-speed flight region during cruise flight from take-off and landing and in the wide flight region of the high-speed flight region.
According to the configuration of the fifth aspect of the present invention, the control means is configured to be able to control the operation of the plasma actuator in accordance with the relative velocity between the moving body and the fluid, so that the boundary in a wide range from low speed to high speed. The laminar flow can be optimally controlled.
 本請求項6に係る表面流制御方法によれば、流体に対して相対的に移動する移動体の表面に設けられたプラズマアクチュエータを制御して、移動体表面の流体の境界層流れの横流れ速度成分を変化させることによって、移動体の形状に関係なく、低速から高速までの幅広い領域において境界層の層流化を制御可能であり、かつ、電気的な手段のみの簡単な構造で効率よく制御することが可能となる。
 本請求項7に記載の構成によれば、プラズマアクチュエータによって移動体表面の流体の境界層流れの横流れ速度成分を減少させる流れを誘起することにより、確実に横流れ不安定性に起因する境界層の層流から乱流への遷移を抑制することができ、摩擦抵抗を低減することができる。
According to the surface flow control method according to the sixth aspect of the present invention, the plasma actuator provided on the surface of the moving body that moves relative to the fluid is controlled to control the lateral flow velocity of the boundary layer flow of the fluid on the surface of the moving body. By changing the components, it is possible to control the laminarization of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body, and to control efficiently with a simple structure using only electrical means. It becomes possible to do.
According to the configuration of the seventh aspect of the present invention, by inducing a flow that reduces the transverse flow velocity component of the boundary layer flow of the fluid on the surface of the moving body by the plasma actuator, the layer of the boundary layer is surely caused by the instability of the transverse flow. Transition from flow to turbulent flow can be suppressed, and frictional resistance can be reduced.
翼外縁と中心から100mmの位置の流れの説明図。Explanatory drawing of the flow of the position of 100 mm from a wing outer edge and center. 図1の数値解析による横流れ成分のグラフ。The graph of the transverse flow component by the numerical analysis of FIG. 図2の状態の境界層流の遷移解析のグラフ。The graph of the transition analysis of the boundary layer flow of the state of FIG. 図3の状態のPsiのグラフ。The graph of Psi in the state of FIG. 横流れ0とした時の境界層流の遷移解析のグラフ。Graph of transition analysis of boundary layer flow when cross flow is zero. 図5の状態のPsiのグラフ。6 is a graph of Psi in the state of FIG. 本発明の一実施形態に係る表面流制御システムのモデル説明図。Model explanatory drawing of the surface flow control system which concerns on one Embodiment of this invention. 図7のプラズマアクチュエータの断面説明図。Sectional explanatory drawing of the plasma actuator of FIG. 翼の表面流速のグラフ。Graph of wing surface flow velocity. 境界層のプロファイルのグラフ。Boundary layer profile graph. 他の条件での翼の表面流速のグラフ。Graph of wing surface velocity at other conditions. さらに他の条件での翼の表面流速のグラフ。The graph of the surface velocity of the wing in other conditions.
100 ・・・翼
110 ・・・プラズマアクチュエータ
111 ・・・電極
112 ・・・誘電体層
100 ... Wing 110 ... Plasma actuator 111 ... Electrode 112 ... Dielectric layer
 本発明の表面流制御システムは、流体に対して相対的に移動する移動体と、移動体の表面に設けられたプラズマアクチュエータと、プラズマアクチュエータを制御する制御手段とを備えた表面流制御システムであって、移動体の前方端縁部が、流体の移動方向に対して垂直でない方向に延びるように形成され、プラズマアクチュエータが、前方端縁部の近傍に配置され、制御手段が、移動体表面の流体の境界層流れの横流れ速度成分を変化させるようにプラズマアクチュエータを制御可能に構成されるものであり、移動体の形状に関係なく、低速から高速までの幅広い領域において境界層の層流化を制御可能であり、かつ、電気的な手段のみの簡単な構造で効率のよいものであれば、その具体的な実施態様はいかなるものであっても良い。 The surface flow control system of the present invention is a surface flow control system comprising a moving body that moves relative to a fluid, a plasma actuator provided on the surface of the moving body, and a control means for controlling the plasma actuator. The front end edge of the moving body is formed to extend in a direction not perpendicular to the moving direction of the fluid, the plasma actuator is disposed in the vicinity of the front end edge, and the control means is provided on the surface of the moving body. The plasma actuator can be controlled so as to change the transverse flow velocity component of the boundary layer flow of the fluid. Laminarization of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body As long as it is controllable and efficient with a simple structure using only electric means, any specific embodiment may be used.
 本発明に係る表面流制御システムおよび表面流制御方法について、さらに詳しく説明する。
 例えば、図1に示すように、中心からの幅250mm、前方端縁部の後退角60°、迎角(AOA)3°の翼について、流速(U)19m/sの時、中心から100mmの位置では、おおよそ点線で示すような表面流れを形成する。
 この位置の流れ場について数値解析(CFD)により解析すると、図2のような横流れ速度成分が存在することが解った。
 ここで、Cは翼の長さ、Xは前方端縁部からの距離、Z(mm)は翼の表面からの高さ、V(m/s)は横流れ(翼端方法(図1の下方向)がプラス、中心方向(図1の上方)がマイナス)の速度成分である。
The surface flow control system and the surface flow control method according to the present invention will be described in more detail.
For example, as shown in FIG. 1, for a wing having a width of 250 mm from the center, a receding angle of the front edge of 60 °, and an angle of attack (AOA) of 3 °, when the flow velocity (U) is 19 m / s, the blade is 100 mm from the center. In position, it creates a surface flow, roughly as shown by the dotted line.
When the flow field at this position was analyzed by numerical analysis (CFD), it was found that there was a transverse flow velocity component as shown in FIG.
Where C is the blade length, X is the distance from the front edge, Z (mm) is the height from the blade surface, and V (m / s) is the transverse flow (blade tip method (bottom of Fig. 1 Direction) is a positive speed component, and the center direction (upward in FIG. 1) is a negative speed component.
 この条件で、境界層流の遷移解析(e法)を行った結果、図3に示すように、翼の前方端縁部付近でN値が急激に増加しており、これにより、前方端縁部付近で層流から乱流への遷移が発生する可能性が高いことがわかる。
 図3に示すN値の主たる要因は図4に示すPsiの特性から判断することができる。図4のPsiが0でないことから、図3のN値が横流れ成分により発達したN値であることを示している。
 これらの解析結果から後退角60度の翼の場合、境界層遷移はC-F不安定性に起因する遷移であると判断される。
 上記の条件で横流れ成分を強制的に0にした場合、図5に示すように、N値分布が急激に減少する。そして、図6に示すように、Psi値は0あり、図5のN値はT-S不安定に起因する遷移であると判断される。
 以上の解析結果を総合すると、境界層遷移は横流れ成分よるC-F不安定による遷移であり、横流れがない場合では境界層遷移の発生可能性が大幅に低減されることがわかる。
In this condition, transition analysis of a boundary layer flow (e n method) the result of, as shown in FIG. 3, and N value abruptly increases in the vicinity of the front edge of the wing, thereby, the front end It can be seen that a transition from laminar to turbulent flow is likely to occur near the edge.
The main factor of the N value shown in FIG. 3 can be determined from the characteristics of Psi shown in FIG. Since Psi in FIG. 4 is not 0, it is indicated that the N value in FIG. 3 is an N value developed by the transverse flow component.
From these analysis results, in the case of a blade with a receding angle of 60 degrees, it is determined that the boundary layer transition is a transition caused by CF instability.
When the lateral flow component is forcibly set to 0 under the above conditions, the N value distribution decreases rapidly as shown in FIG. Then, as shown in FIG. 6, the Psi value is 0, and the N value in FIG. 5 is determined to be a transition caused by TS instability.
When the above analysis results are combined, the boundary layer transition is a transition due to CF instability due to the lateral flow component, and it can be understood that the possibility of the boundary layer transition is greatly reduced when there is no lateral flow.
 本発明の1実施形態である表面流制御システムは、図7に示すように、上述した翼(中心からの幅250mm、前方端縁部の後退角60°)の前方端縁部の近傍表面に、中心から100mmの位置を中心として長さ100mmのプラズマアクチュエータを設け、制御手段(図示せず)にプラズマアクチュエータの出力を制御して境界層流れの横流れ速度成分を変化させるものである。
 プラズマアクチュエータ110は、図8に示すように、誘電体層112の両面に2つの電極111が位置をずらして設けられた誘電体バリア放電プラズマアクチュエータからなり、翼100の表面に沿って埋め込まれるように設置されている。
 また、プラズマアクチュエータ110の2つの電極111に印加される電圧は、制御手段(図示せず)によって制御される。
As shown in FIG. 7, the surface flow control system according to an embodiment of the present invention is formed on the surface near the front edge of the above-described blade (width 250 mm from the center, receding angle 60 ° of the front edge). A plasma actuator having a length of 100 mm centering on a position 100 mm from the center is provided, and a control means (not shown) controls the output of the plasma actuator to change the transverse flow velocity component of the boundary layer flow.
As shown in FIG. 8, the plasma actuator 110 is a dielectric barrier discharge plasma actuator in which two electrodes 111 are provided on both surfaces of the dielectric layer 112 so as to be shifted in position, and is embedded along the surface of the blade 100. Is installed.
Further, the voltage applied to the two electrodes 111 of the plasma actuator 110 is controlled by a control means (not shown).
 上記の表面流制御システムを備えた翼100に対し、迎角(AOA)4°、流速(U)10m/sの条件で風洞実験を行った。
 なお、境界層流れの層流から乱流への遷移位置は、直径1mmのプレストン管によって測定される翼の表面の流速(Up)により判定可能である。
 すなわち、層流の場合は、表面付近では流速は小さく、表面から離れるに連れて急激に流速が大きくなるが、乱流の場合は、表面付近での流速はやや大きく、表面から離れるに連れて徐々に流速が大きくなることがわかっている。
 従って、プレストン管によって測定される流速(Up)が低いレベルから高いレベルに変化する位置が、境界層流れの層流から乱流への遷移位置と判断できる。
A wind tunnel experiment was performed on the blade 100 equipped with the above-described surface flow control system under conditions of an angle of attack (AOA) of 4 ° and a flow velocity (U) of 10 m / s.
The transition position of the boundary layer flow from laminar flow to turbulent flow can be determined by the flow velocity (Up) of the blade surface measured by a Preston tube having a diameter of 1 mm.
In other words, in the case of laminar flow, the flow velocity is small near the surface, and the flow velocity suddenly increases as it moves away from the surface, but in the case of turbulent flow, the flow velocity near the surface is slightly larger and as it moves away from the surface. It is known that the flow rate gradually increases.
Therefore, the position where the flow velocity (Up) measured by the Preston tube changes from the low level to the high level can be determined as the transition position from the laminar flow to the turbulent flow of the boundary layer flow.
 風洞実験の結果、図9に示すように、境界層流れの層流から乱流への遷移位置は、プラズマアクチュエータを用いない場合、前方端縁部から250mmの位置であったのに対し、プラズマアクチュエータに13kVの電圧を印加した場合、前方端縁部から450mmの位置まで後退した。
 図7のX=400mm(X/C=0.39)の位置での境界層のプロファイルでも、図10に示すように、プラズマアクチュエータを用いない場合には、乱流のプロファイルを示し、プラズマアクチュエータに13kVの電圧を印加した場合には、層流のプロファイルを示しており、境界層流れの層流から乱流への遷移位置が後退しているのが確認できる。
As a result of the wind tunnel experiment, as shown in FIG. 9, the transition position of the boundary layer flow from the laminar flow to the turbulent flow was 250 mm from the front edge when the plasma actuator was not used. When a voltage of 13 kV was applied to the actuator, the actuator retracted to a position 450 mm from the front edge.
Even in the boundary layer profile at the position of X = 400 mm (X / C = 0.39) in FIG. 7, as shown in FIG. 10, when the plasma actuator is not used, a turbulent flow profile is shown. When a voltage of 13 kV is applied, a laminar flow profile is shown, and it can be confirmed that the transition position of the boundary layer flow from the laminar flow to the turbulent flow is retreated.
 迎角(AOA)4°、流速(U)15m/sおよび迎角(AOA)4°、流速(U)19m/sの条件で風洞実験を行った結果について、図11および図12に示す。
 これらの条件においても、境界層流れの層流から乱流への遷移位置は、プラズマアクチュエータを用いることで後退していることがわかる。
 すなわち、プラズマアクチュエータを用いて、横流れ速度成分を低減することで容易に境界層流れの層流から乱流への遷移位置を後退させることが可能である。
 なお、逆に、横流れ速度成分を増加させるようにプラズマアクチュエータを動作させれば、境界層流れの層流から乱流への遷移位置を前進させることも可能である。
FIG. 11 and FIG. 12 show the results of wind tunnel experiments conducted under conditions of an angle of attack (AOA) of 4 °, a flow velocity (U) of 15 m / s, an angle of attack (AOA) of 4 °, and a flow velocity (U) of 19 m / s.
Even under these conditions, it can be seen that the transition position of the boundary layer flow from laminar flow to turbulent flow is retreated by using the plasma actuator.
That is, it is possible to easily retreat the transition position from the laminar flow to the turbulent flow of the boundary layer flow by reducing the transverse flow velocity component using the plasma actuator.
Conversely, if the plasma actuator is operated so as to increase the transverse flow velocity component, the transition position of the boundary layer flow from laminar flow to turbulent flow can be advanced.
 また、上記実施形態においては、プラズマアクチュエータを前方端縁部に平行に1列のみ設けたが、横流れ速度成分を変化させることが可能であれば、どのような角度で取り付けてもよく、また、所定の間隔で多段に設けてもよく、各段それぞれ異なる電圧を印加可能としてもよい。
 このことで、翼長方向に広い範囲で横流れ速度成分を細かく制御することが可能となり、異なる条件下でも境界層流れの層流から乱流への遷移位置を最適に制御することが可能となる。例えば、超音速航空機等において、離着陸から巡航飛行時の低速飛行領域、さらに高速飛行領域の広い飛行領域において最適となるように、境界層流れの層流から乱流への遷移位置を変位させることが可能となり、最適な空力性能を得ることができる。
In the above embodiment, only one row of plasma actuators is provided parallel to the front edge, but any angle may be used as long as the lateral flow velocity component can be changed. Multiple stages may be provided at predetermined intervals, and different voltages may be applied to each stage.
This makes it possible to finely control the lateral flow velocity component over a wide range in the blade length direction, and to optimally control the transition position of the boundary layer flow from laminar flow to turbulent flow even under different conditions. . For example, in a supersonic aircraft, etc., the transition position from laminar to turbulent flow of the boundary layer flow should be displaced so as to be optimal in the low speed flight region during cruise flight from takeoff and landing, and in the wide flight region of the high speed flight region. Can be achieved and optimum aerodynamic performance can be obtained.
 以上のように、本発明によれば移動体の形状に関係なく、低速から高速までの幅広い領域において境界層の層流化を制御可能であり、かつ、電気的な手段のみの簡単な構造で効率よく表面流を制御することができる。
 本発明の表面流制御システムは、航空機、特に後退翼を有する超音速航空機に適用するのが好適であるが、船舶、あるいは、陸上の移動体に適用されてもよく、移動体自体は構造物等に固定され、流体のみが移動するような用途で用いられてもよい。
 また、移動体はプロペラや風車等のように、回転することで流体に対して相対的に移動するものであってもよい。
As described above, according to the present invention, it is possible to control laminarization of the boundary layer in a wide range from low speed to high speed regardless of the shape of the moving body, and with a simple structure using only electric means. The surface flow can be controlled efficiently.
The surface flow control system of the present invention is preferably applied to an aircraft, particularly a supersonic aircraft having a swept wing, but may be applied to a ship or a land mobile body, and the mobile body itself is a structure. Etc., and may be used in applications where only the fluid moves.
Further, the moving body may move relative to the fluid by rotating, such as a propeller or a windmill.

Claims (7)

  1.  流体に対して相対的に移動する移動体と、前記移動体の表面に設けられたプラズマアクチュエータと、前記プラズマアクチュエータを制御する制御手段とを備えた表面流制御システムであって、
     前記移動体の前方端縁部が、流体の移動方向に対して垂直でない方向に延びるように形成され、
     前記プラズマアクチュエータが、前記前方端縁部の近傍に配置され、
     前記制御手段が、前記移動体表面の流体の境界層流れの横流れ速度成分を変化させるようにプラズマアクチュエータを制御可能に構成されていることを特徴とする請求項1に記載の表面流制御システム。
    A surface flow control system comprising a moving body that moves relative to a fluid, a plasma actuator provided on a surface of the moving body, and a control unit that controls the plasma actuator,
    The front end edge of the moving body is formed to extend in a direction not perpendicular to the moving direction of the fluid,
    The plasma actuator is disposed near the front edge,
    2. The surface flow control system according to claim 1, wherein the control means is configured to control a plasma actuator so as to change a transverse flow velocity component of a boundary layer flow of a fluid on the surface of the moving body.
  2.  前記プラズマアクチュエータが、前記前方端縁部の近傍から所定の間隔で多段に配置されていることを特徴とする請求項1に記載の表面流制御システム。 2. The surface flow control system according to claim 1, wherein the plasma actuators are arranged in multiple stages at a predetermined interval from the vicinity of the front edge portion.
  3.  前記制御手段が、前記移動体表面の流体の境界層流れの横流れ速度成分を減少させるようにプラズマアクチュエータを制御可能に構成されていることを特徴とする請求項1または請求項2に記載の表面流制御システム。 3. The surface according to claim 1, wherein the control means is configured to control a plasma actuator so as to reduce a transverse flow velocity component of a boundary layer flow of a fluid on the surface of the moving body. Flow control system.
  4.  前記移動体が、航空機の後退翼であることを特徴とする請求項1乃至請求項3のいずれかに記載の表面流制御システム。 The surface flow control system according to any one of claims 1 to 3, wherein the moving body is a swept wing of an aircraft.
  5.  前記制御手段が、前記移動体と流体の相対速度に応じて前記プラズマアクチュエータの動作を制御可能に構成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の表面流制御システム。 5. The surface flow control according to claim 1, wherein the control unit is configured to be able to control an operation of the plasma actuator in accordance with a relative velocity between the moving body and the fluid. system.
  6.  流体に対して相対的に移動する移動体の表面に設けられたプラズマアクチュエータを制御して、移動体表面の流体の境界層流れを変化させる表面流制御方法であって、
     前記プラズマアクチュエータによって、前記移動体表面の流体の境界層流れの横流れ速度成分を変化させる流れを誘起することを特徴とする表面流制御方法。
    A surface flow control method for controlling a plasma actuator provided on a surface of a moving body that moves relative to a fluid to change a boundary layer flow of the fluid on the surface of the moving body,
    A surface flow control method characterized by inducing a flow that changes a transverse flow velocity component of a boundary layer flow of a fluid on the surface of the moving body by the plasma actuator.
  7.  前記プラズマアクチュエータによって、前記移動体表面の流体の境界層流れの横流れ速度成分を減少させる流れを誘起することを特徴とする請求項6に記載の表面流制御方法。 7. The surface flow control method according to claim 6, wherein the plasma actuator induces a flow that reduces a transverse flow velocity component of a boundary layer flow of the fluid on the surface of the moving body.
PCT/JP2014/052105 2013-04-30 2014-01-30 Surface flow control system and surface flow control method WO2014178205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-094903 2013-04-30
JP2013094903A JP6029068B2 (en) 2013-04-30 2013-04-30 Surface flow control system and surface flow control method

Publications (1)

Publication Number Publication Date
WO2014178205A1 true WO2014178205A1 (en) 2014-11-06

Family

ID=51843345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052105 WO2014178205A1 (en) 2013-04-30 2014-01-30 Surface flow control system and surface flow control method

Country Status (2)

Country Link
JP (1) JP6029068B2 (en)
WO (1) WO2014178205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000171A (en) * 2015-07-27 2015-10-28 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed stall control device for flying wing-configured aircraft and control method thereof
CN110388564A (en) * 2018-04-17 2019-10-29 通用汽车环球科技运作有限责任公司 It is controlled using the inner stream flow of plasma actuators
CN110636685A (en) * 2019-09-10 2019-12-31 空气动力学国家重点实验室 Wall drag reduction mechanism based on plasma generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6340752B2 (en) 2016-03-31 2018-06-13 マツダ株式会社 Flow control device in combustion chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038200A (en) * 1998-07-21 2000-02-08 Kawasaki Heavy Ind Ltd Wing for aircraft, and method for deciding on wind shape
JP2007317656A (en) * 2006-04-28 2007-12-06 Toshiba Corp Airflow generation device, airflow generating unit, wing, heat exchanger, micro machine, gas treatment device, airflow generating method and airflow controlling method
JP2008290710A (en) * 2007-05-25 2008-12-04 Boeing Co:The Flow control method and system
JP2012047067A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial Science & Technology Aerodynamic control blade device using dielectric barrier discharge
JP2012126205A (en) * 2010-12-14 2012-07-05 Japan Aerospace Exploration Agency Method for designing natural layer flow wing in real machine equivalent reynolds number of supersonic aircraft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320309A (en) * 1992-06-26 1994-06-14 British Technology Group Usa, Inc. Electromagnetic device and method for boundary layer control
US8016247B2 (en) * 2007-05-25 2011-09-13 The Boeing Company Plasma flow control actuator system and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038200A (en) * 1998-07-21 2000-02-08 Kawasaki Heavy Ind Ltd Wing for aircraft, and method for deciding on wind shape
JP2007317656A (en) * 2006-04-28 2007-12-06 Toshiba Corp Airflow generation device, airflow generating unit, wing, heat exchanger, micro machine, gas treatment device, airflow generating method and airflow controlling method
JP2008290710A (en) * 2007-05-25 2008-12-04 Boeing Co:The Flow control method and system
JP2012047067A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial Science & Technology Aerodynamic control blade device using dielectric barrier discharge
JP2012126205A (en) * 2010-12-14 2012-07-05 Japan Aerospace Exploration Agency Method for designing natural layer flow wing in real machine equivalent reynolds number of supersonic aircraft

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000171A (en) * 2015-07-27 2015-10-28 中国航空工业集团公司哈尔滨空气动力研究所 Low-speed stall control device for flying wing-configured aircraft and control method thereof
CN110388564A (en) * 2018-04-17 2019-10-29 通用汽车环球科技运作有限责任公司 It is controlled using the inner stream flow of plasma actuators
CN110636685A (en) * 2019-09-10 2019-12-31 空气动力学国家重点实验室 Wall drag reduction mechanism based on plasma generator
CN110636685B (en) * 2019-09-10 2021-09-28 空气动力学国家重点实验室 Wall drag reduction mechanism based on plasma generator

Also Published As

Publication number Publication date
JP6029068B2 (en) 2016-11-24
JP2014214851A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
EP2511175B1 (en) Systems and methods for attenuation of noise and wakes produced by aircraft
CN109665093B (en) Wing profile capable of delaying flow separation and exciter arranged on wing profile
JP5308349B2 (en) Vortex-generating pieces on the rotor blade to increase the maximum lift by delaying the generation of large vibration pitching moments
US9272772B2 (en) Surface element for an aircraft, aircraft and method for improving high-lift generation on a surface element
US10358208B2 (en) Hybrid flow control method for simple hinged flap high-lift system
US8226047B2 (en) Reduction of tip vortex and wake interaction effects in energy and propulsion systems
ATE528209T1 (en) WINGLESS FLOATING STATE OF A MICRO AIRCRAFT
Han et al. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator
JP2008290709A (en) Method of controlling flight of air movable platform and plasma actuator for affecting boundary layer flow on surface of object
JP6029068B2 (en) Surface flow control system and surface flow control method
WO2015198093A1 (en) Efficiency improvements for flow control body and system shocks
Liu et al. Aerodynamic control of NACA 0021 airfoil model with spark discharge plasma synthetic jets
CN202320772U (en) High lift device of double-aisle large-type passenger plane
CN113120218A (en) Composite plasma excitation method for flow separation control of high-subsonic wing
US20160152324A1 (en) Fluidic fence for performance enhancement
CN105000171A (en) Low-speed stall control device for flying wing-configured aircraft and control method thereof
EP2604517B1 (en) Airfoil comprising a minimally intrusive wingtip vortex mitigation device
Lihao et al. Experimental investigation on lift increment of a plasma circulation control airfoil
CN101913426B (en) Device and method for suppressing wingtip vortex
US9896192B2 (en) Minimally intrusive wingtip vortex wake mitigation using microvane arrays
CN107878728B (en) Wing structure and aircraft
US20220411046A1 (en) Vortex control on engine nacelle strake and other vortex generators
Kearney et al. Aero-effected flight control using distributed active bleed
Han et al. Experimental investigation on aerodynamic control of a wing with distributed plasma actuators
CN108100222B (en) Lifting surface for an aircraft for increasing the lifting force produced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791847

Country of ref document: EP

Kind code of ref document: A1