WO2014176842A1 - 基于无线电能传输系统的多负载控制方法及系统 - Google Patents

基于无线电能传输系统的多负载控制方法及系统 Download PDF

Info

Publication number
WO2014176842A1
WO2014176842A1 PCT/CN2013/080825 CN2013080825W WO2014176842A1 WO 2014176842 A1 WO2014176842 A1 WO 2014176842A1 CN 2013080825 W CN2013080825 W CN 2013080825W WO 2014176842 A1 WO2014176842 A1 WO 2014176842A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
unit
resonant
mcu
load information
Prior art date
Application number
PCT/CN2013/080825
Other languages
English (en)
French (fr)
Inventor
李聃
张从鹏
孙伟
董秀莲
刘宝
刁德鹏
Original Assignee
海尔集团技术研发中心
海尔集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团技术研发中心, 海尔集团公司 filed Critical 海尔集团技术研发中心
Publication of WO2014176842A1 publication Critical patent/WO2014176842A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to the field of radio energy transmission technologies, and in particular, to a multi-load control method and system based on a radio energy transmission system.
  • the general structure design of the transmitting end of the wireless energy transmission system capable of simultaneously performing multi-receiver charging is complicated, and is affected by the communication channel, and each additional receiving end is applied to the system circuit. It is necessary to add one communication channel and make other major changes, and the scalability is poor.
  • the existing transmitting end of the wireless energy transmission system capable of supporting multiple receiving ends cannot accurately exclude the foreign load, and cannot remove foreign matter, and when the effective load is completed, it cannot be stopped in time, resulting in waste of energy.
  • each resonant circuit needs to be designed independently and a communication channel is set for each resonant circuit, occupying valuable MCU (Micro Controller Unit) I/O resources.
  • MCU Micro Controller Unit
  • This design adds a lot of cost for each additional load, and the structure is complicated and the circuit is bulky, which is not conducive to practical operation and implementation.
  • the object of the present invention is to provide a multi-load control method, method and system based on a radio energy transmission system, which can realize multi-load control of a radio energy transmission system by dynamically switching communication channels and detecting communication data in real time.
  • a multi-load control method based on a radio energy transmission system comprising: a communication channel for transmitting data between the transmitting end MCU and the plurality of resonating units is allocated to each resonating unit in time slots; and a plurality of receiving ends corresponding to the transmitting end respectively acquire their load information and transmit to the transmitting end coupled thereto Resonant unit
  • the transmitting end MCU switches the communication channel to a resonating unit corresponding to the current time slot in a polling manner; reads, by the communication channel, load information received by the corresponding resonating unit, and loads the load information and the same
  • the coupled resonant unit is bound to the buffer and stored in the buffer;
  • step C Whether to poll all the resonant units, if not, return to step b; if yes, go to the next step; d.
  • the transmitting MCU reads the buffer data and analyzes it, and adjusts the working state of the corresponding resonant unit according to the analysis result. All of the resonant units are operated in respective states corresponding to the respective coupled receiving loads.
  • the resonance unit is composed of a plurality of transmitting coils
  • the communication channel transmits data at least 2 times in time nt to ensure that at least one load information transmitted by the receiving end is received every time t; wherein n is the number of receiving ends corresponding to the transmitting end, t is one The length of time slot.
  • the multiple receiving ends corresponding to the transmitting end respectively obtain the load information and send the resonant unit to the transmitting end coupled thereto:
  • the plurality of receiving ends corresponding to the transmitting end respectively acquire their load information and modulate according to a predetermined rule, and then modulate and transmit the signal to the resonant unit of the transmitting end coupled thereto in a binary code manner.
  • the load information received by the corresponding resonating unit is read by the communication channel in the step b, and the load information and the resonant unit coupled thereto are bound to the buffer and stored in the buffer.
  • the transmitting end MCU reads the load information received by the corresponding resonating unit into the MCU I/0 through the communication channel, and triggers the MCU to be interrupted;
  • the load information is demodulated, and the demodulated load information is bound to the coupled resonant unit and stored in a buffer.
  • the step d specifically includes:
  • the transmitting end MCU reads the data of the buffer and parses it;
  • the minimum power required to adjust the output power of the corresponding resonant unit to the standby state of the load is adjusted
  • the load identification process is entered, and the corresponding resonance unit is controlled to stop the output power;
  • the power transmission process is entered, and the corresponding resonant unit is controlled to transmit power to the load;
  • the full load flow is entered and the corresponding resonant unit is controlled to stop the output power.
  • the load information includes an ID, a power, and a temperature of the load.
  • a second aspect of the present invention provides a multi-load control system based on a radio energy transmission system, including: a data acquisition unit, configured to acquire load information of a plurality of receiving ends corresponding to a transmitting end, and send the load information to the receiving end a resonant unit at the transmitting end;
  • An MCU control unit configured to switch, in a polling manner, a communication channel for transmitting data between the transmitting end MCU and the plurality of resonating units to a resonating unit corresponding to the current time slot; and reading, by the communication channel, the corresponding resonating unit receives Loading information, and binding the load information and the resonant unit coupled thereto to the buffer;
  • the adjusting unit is configured to read and analyze the data of the buffer when the MCU control unit polls all the resonant units, and adjust the working state of the corresponding resonant unit according to the analysis result to make all the resonances
  • the units operate in a state corresponding to the respective coupled receiver loads.
  • the communication channel is allocated to each of the resonating units in time slots, and the communication channel transmits data at least 2 times in time nt to ensure that the load information sent by the receiving end is received at least once per time t; Where n is the number of receiving ends corresponding to the transmitting end, and t is the length of time of one time slot.
  • the resonance unit is composed of a plurality of transmitting coils.
  • the MCU control unit specifically includes:
  • An interrupt control module configured to read, by using the communication channel, load information received by the corresponding resonant unit into the MCU I/O, and trigger an MCU interrupt;
  • a buffer module configured to demodulate the load information, and bind the demodulated load information to a coupled resonant unit, and store the buffer information in a buffer;
  • the adjusting unit specifically includes:
  • the parsing module is configured to use the MCU to read the buffer data and parse the data
  • a first adjusting module configured to adjust a minimum power required for an output power of the corresponding resonant unit to be a standby state of the load if the load is resolved to be in a standby state;
  • a second adjusting module configured to enter a load identification process if the load is unrecognizable, and control the corresponding resonant unit to stop outputting power
  • a third adjusting module configured to enter a power transmission process if the load is resolved to be in a charging state, and control the corresponding resonant unit to transmit power to the load;
  • the fourth adjustment module is configured to enter a full load process if the load is fully charged, and control the corresponding resonance unit to stop outputting power.
  • the invention realizes the detection of the validity of the multi-channel receiving end by dynamically switching the communication channel to realize the single-channel communication channel, and the foreign object does not trigger the system to work, thereby realizing the power output control of the multi-load, and Real-time detection of multiple receiving ends, real-time detection of the current state of the receiving end (work, move, remove, etc.).
  • the present invention optimizes the wireless energy transmission system by simply adjusting the power and the inverter circuit design, and expanding the number of loads.
  • FIG. 1 is a schematic diagram of a multi-load control circuit based on a wireless power transmission system according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing an implementation of an embodiment of a multi-load control method based on a radio energy transmission system of the present invention
  • Figure 3A is a schematic view showing the arrangement of the transmitting coils of the present invention.
  • FIG. 3B is a schematic diagram showing the allocation of communication channels according to the present invention by time slots;
  • 4A is a flowchart showing an implementation of still another embodiment of the multi-load control method based on the radio energy transmission system of the present invention
  • 4B is a flow chart showing an implementation of another embodiment of the multi-load control method based on the radio energy transmission system of the present invention.
  • 4C is a flowchart showing an implementation of still another embodiment of the multi-load control system based on the radio energy transmission system of the present invention.
  • Fig. 5 is a block diagram showing an embodiment of a multi-load control system based on a radio energy transmission system of the present invention.
  • FIG. 1 is a schematic diagram of a multi-load control circuit based on a radio energy transmission system according to an embodiment of the present invention.
  • the MCU in the multi-load control system is based on feedback of a resonance unit selection circuit, that is, through an induction capacitor or a coil. Voltage changes at both ends close or open the coil and control DC/AD inverter Road (full bridge inverter) Powers the coil.
  • the specific working process of the multi-load control system in the embodiment of the present invention is: the transmitting end rectifies the energy generated by the coil in the magnetic field change to supply power to the receiving end, and the receiving end modulates the communication data according to a predetermined rule and then sends the data to the transmitting end;
  • the MCU control communication selection circuit sequentially connects the working coil to the communication circuit (ie, the communication channel), and performs demodulation operation on the communication data, and adjusts the output of the inverter circuit or turns off a certain path according to the demodulated communication data MCU.
  • the resonant unit in the embodiment of the present invention is formed by coupling a receiving end load and a transmitting end coil.
  • the multi-load control method based on the radio energy transmission system of the present invention includes the following steps Sl-S4.
  • Step S1 pre-assigning a communication channel for transmitting data between the transmitting end MCU and the plurality of resonating units to each resonating unit according to a time slot; and receiving, by the plurality of receiving ends corresponding to the transmitting end, load information and transmitting the same to the coupled transmission Resonant unit at the end.
  • the resonance unit is composed of a plurality of transmitting coils; as shown in FIG. 3A, an arrangement of the transmitting coils is shown, and each of the four transmitting coils operates as a resonant unit, sharing a set of communication selecting circuits.
  • the polling of all the resonant units can be completed very quickly.
  • the communication channel is allocated to each resonant unit by time slot.
  • the specific manner is as follows: the communication channel transmits data at least 2 times in time nt to ensure that it is received at least once every time t. Load information sent by the receiving end; where n is the number of receiving ends corresponding to the transmitting end, and t is the length of time of one time slot.
  • the plurality of receiving ends corresponding to the transmitting end respectively acquire the load information thereof and send the signal to the transmitting end of the transmitting end, and the plurality of receiving ends respectively obtain the load information of the receiving end.
  • modulating according to a predetermined rule modulating and transmitting to binary code A coupled resonant unit at the transmitting end.
  • the binary coded transmission method has a short code length and strong expandability.
  • the load information includes the ID, power, and temperature of the load.
  • the transmitting end MCU reads the load information received by the corresponding resonating unit into the MCU I/O through the communication channel, triggers the MCU to be interrupted; demodulates the load information, and demodulates the load.
  • the information is bound to its coupled resonant unit and stored in a buffer.
  • Step S3 Whether all the resonance units are polled, if not, return to step S2; if yes, proceed to the next step. It is ensured that the transmitting end sends the load information sent by the receiving end at least once in each time slot t.
  • Step S4 The transmitting end MCU reads the data of the buffer and parses it, and adjusts the working state of the corresponding resonant unit according to the parsing result, so that all the resonating units respectively work in a state corresponding to the respective coupled receiving end loads.
  • the transmitting end MCU reads the data of the buffer and parses it; if the load is parsed, the output power of the corresponding resonant unit is adjusted to be the minimum power required by the load standby state; The identified load enters the load identification process, and controls the corresponding resonant unit to stop outputting power; if the calculated load is in the charging state, the power transmission process is entered, and the corresponding resonant unit is controlled to transmit power to the load; if the load is resolved to be fully charged, Then enter the full load process, control the corresponding resonant unit to stop the output power.
  • FIG. 4A is a flow chart showing an implementation of another embodiment of the multi-load control method based on the radio energy transmission system of the present invention. Please refer to FIG. 4.
  • step S201 communication data modulated by the receiving end according to the load information is acquired.
  • the communication data in this step is a load identification signal, which can be the ID, power, temperature, etc. of the load.
  • step S202 the MCU controls the communication channel to switch to the resonant unit to be processed.
  • step S203 the communication circuit demodulates the current communication data and sends it to the MCU I/O, triggers the MCU interrupt and parses the current communication data.
  • step S204 is performed to mark the resonating unit as closed; if the parsing fails, step S205 is performed to mark the resonating unit as being disconnected.
  • step S204 and step S205 the process proceeds to step S206, and all the resonance units are polled until the MCU control communication channel dynamically switches all the resonance units.
  • information detection and power output control for multiple loads are implemented by polling through one communication channel.
  • step S207 all of the mark resonance units are closed or opened.
  • the embodiment of the invention realizes the power output control of the multi-load by the communication channel switching, which not only simplifies the control circuit design, but also has strong expandability, and plays a key role in the popularization and application of the radio energy transmission system.
  • FIG. 4B is a flow chart showing another implementation of the multi-load control method based on the radio energy transmission system provided by the present invention, see FIG. 4B:
  • step S301 the MCU controls the communication channel to switch to the to-be-marked symbol resonating unit.
  • step S302 the communication circuit demodulates the load information (communication data) returned by the marker resonance unit and sends it to the MCU I/0 to trigger the MCU interrupt.
  • step S303 the MCU binds the current load information to the tag resonating unit in which it is located, and stores it in the buffer.
  • step S304 all of the tag resonating units are polled until the MCU control communication channel dynamically switches all of the tag resonating units.
  • step S305 the MCU reads and parses the data in the buffer
  • step S306 the marker resonating unit is closed or opened according to the above analysis result and the power output to the receiving end is adjusted.
  • Embodiments of the present invention provide a multi-load control method based on a radio energy transmission system.
  • the dynamic switching channel flow and the load identification phase in the power transmission phase are both a part of a main loop process of a multi-load control method based on a radio energy transmission system. , combined to achieve multi-load control. For example, if two payloads are working at the same time, a third load is placed at this time, and the above process combination can be recognized while charging until all the payloads are working normally.
  • the dynamic switching channel in the present invention can also be applied in other stages of the wireless power transmission system, and the reason is the same.
  • the process of dynamically switching the communication channel is as follows:
  • the MCU switches the communication channel to the resonant unit to be processed, and the communication circuit demodulates the received various types of communication data, and the MCU parses and processes accordingly.
  • Figure 4C shows a further flow chart of the multi-load control method based on the radio energy transmission system of the present invention. see Figure 4C:
  • step S401 a closing operation is performed on the mark resonance unit.
  • step S402 it is detected whether the voltage or current of the current mark resonance unit is decreased. If it is decreased, step S403 is executed to switch the mark resonance unit to the induction circuit; otherwise, step S407 is executed to exit.
  • step S404 it is detected whether there is a change in the sensing capacitance of the mark resonance unit. If there is a change, step S405 is performed to detect whether the capacitance returns to the initial value; otherwise, step S407 is performed to exit. If the capacitor returns to the initial value, indicating that the receiving end load leaves the charging area, step S406 is executed to disconnect the marked resonating unit, and the number of loads is decreased by 1; otherwise, step S407 is performed to exit.
  • FIG. 5 is a structural diagram of a multi-load control system provided by the present invention.
  • the system includes: a data acquisition unit 100, configured to acquire load information of multiple receiving ends corresponding to a transmitting end, and send the information to the receiving end.
  • the resonating unit is composed of a plurality of transmitting coils; the communication channel is allocated to each resonating unit in time slots, and the communication channel transmits data at least 2 times in time nt to ensure each time At least one load information sent by the receiving end is received in t; wherein ⁇ is the number of receiving ends corresponding to the transmitting end, and t is the length of time of one time slot.
  • the MCU control unit 200 is configured to switch, in a polling manner, a communication channel that transmits data between the transmitting end MCU and the plurality of resonating units to a resonating unit corresponding to the current time slot; and read the corresponding resonant unit receiving by using the communication channel
  • the load information is obtained, and the load information and the resonating unit coupled thereto are bound to the buffer and stored in the buffer; as described in the foregoing embodiment, details are not described herein again.
  • the adjusting unit 300 is configured to read and analyze the data of the buffer when the MCU control unit polls all the resonant units, and adjust the working state of the corresponding resonant unit according to the analysis result, so that all the resonant units respectively work in coupling with each
  • the receiving end load corresponds to the state.
  • the MCU control unit 200 specifically includes:
  • the interrupt control module 201 is configured to read the load information received by the corresponding resonating unit into the MCU I/O through the communication channel, and trigger the MCU to be interrupted; as described in the foregoing embodiment, details are not described herein.
  • the cache module 202 is configured to demodulate the load information, and demodulate the load information with Its coupled resonant unit is bound and stored in a buffer. Specifically, as described in the foregoing embodiment, details are not described herein again.
  • the adjusting unit 300 specifically includes:
  • the parsing module 301 is configured to: the transmitter MCU reads the data of the buffer and parses the data;
  • the first adjusting module 302 is configured to adjust a minimum power required for the output power of the corresponding resonant unit to be a standby state of the load if the load is resolved to be in a standby state;
  • a second adjusting module 303 configured to enter a load identification process if the load is unrecognizable, and control the corresponding resonant unit to stop outputting power
  • the third adjusting module 304 is configured to enter a power transmission process if the load is resolved to be in a charging state, and control the corresponding resonant unit to transmit power to the load;
  • the fourth adjustment module 305 is configured to enter a full load process if the load is fully charged, and control the corresponding resonance unit to stop outputting power.
  • the communication channel is dynamically controlled by the MCU, and is sequentially connected to the resonating unit of the transmitting end to realize multi-channel receiving end detection, and the power of the multi-channel receiving end can be controlled according to feedback to optimize the charging process.
  • the dynamic channel switching method not only reduces the hardware cost, simplifies the circuit design, but also can be popularized in the field of radio energy transmission with its excellent scalability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于无线电能传输系统的多负载控制方法和系统。该方法包括:预先将发射端MCU与多个谐振单元之间传输数据的通信信道按时隙分配给每个谐振单元(S1),多个接收端分别获取其负载信息并发送给与其耦合的发射端的谐振单元(S1);发射端MCU以轮询的方式将通信信道切换到与当前时隙对应的谐振单元,通过通信信道读取对应谐振单元接收到的负载信息,并将负载信息及与其耦合的谐振单元绑定后存储到缓冲区(S2);发射端MCU读取缓冲区的数据并进行解析,根据解析结果调整对应谐振单元的工作状态,使所有谐振单元分别工作在各自耦合的接收端负载相对应的状态(S4)。通过动态切换通信信道实现了单路通信信道对多路接收端负载的有效性进行检测,进而实现了多负载的功率输出控制,优化了无线电能传输系统。

Description

说 明 书
基于无线电能传输系统的多负载控制方法及系统 技术领域
本发明涉及无线电能传输技术领域, 尤其涉及一种基于无线电能传输系统 的多负载控制方法及系统。
背景技术
对于基于感应耦合电能传输技术下的无线电能传输系统, 可以同时进行多 接收端充电的无线电能传输系统的发射端一般结构设计复杂, 而且受通信信道 影响, 每增加一接收端对系统电路而言都要增加一路通信信道并做其他较大改 变, 可扩展性差。
现存的可支持多路接收端的无线电能传输系统的发射端, 由于不能准确识 别各路负载的有效性, 无法排除异物, 且当有效负载充电完毕时, 也无法及时 停止, 造成能量浪费。
对于实现多负载控制的无线电能传输系统的发射端, 需要独立设计每一路 谐振回路并针对每一路谐振回路设置通信信道, 占用宝贵的 MCU ( Micro Controller Unit, 微控制器) I/O资源。 这种设计每增加一路负载都会增加很多 成本, 结构复杂且电路体积庞大, 不利于实际操作和实施。
发明内容
本发明的目的在于提出一种基于无线电能传输系统的多负载控制方、法及系 统, 通过动态切换通信信道, 实时检测通讯数据, 实现了无线电能传输系统的 多负载控制。
为达此目的, 本发明采用以下技术方案:
一种基于无线电能传输系统的多负载控制方法, 包括: a.预先将发射端 MCU与多个谐振单元之间传输数据的通信信道按时隙分 配给每个谐振单元; 与发射端对应的多个接收端分别获取其负载信息并发送给 与其耦合的发射端的谐振单元;
b. 发射端 MCU以轮询的方式将所述通信信道切换到与当前时隙对应的谐 振单元; 通过所述通信信道读取对应谐振单元接收到的负载信息, 并将所述负 载信息及与其耦合的谐振单元绑定后存储到缓冲区;
C. 是否轮询完所有谐振单元, 若否, 返回步骤 b; 若是, 进入下一步; d. 发射端 MCU读取缓冲区的数据并进行解析, 并根据解析结果调整对应 谐振单元的工作状态, 使所有谐振单元分别工作在与各自耦合的接收端负载相 对应的状态。
其中, 所述谐振单元由多个发射线圈组成;
所述通信信道在时间 nt内, 至少传输数据 2η次, 以保证每个时间 t内至少 收到一次接收端发送的负载信息;其中 n为与所述发射端对应的接收端的数量, t为一个时隙的时间长度。
其中, 所述步骤 a中, 所述的与发射端对应的多个接收端分别获取其负载 信息并发送给与其耦合的发射端的谐振单元具体为:
所述与发射端对应的多个接收端分别获取其负载信息并按预定的规则进行 调制, 调制后以二进制编码方式发送给与其耦合的发射端的谐振单元。
其中, 所述步骤 b中所述的通过所述通信信道读取对应谐振单元接收到的 负载信息, 并将所述负载信息及与其耦合的谐振单元绑定后存储到缓冲区具体 为:
发射端 MCU通过所述通信信道读取对应谐振单元接收到的负载信息到 MCU I/0中, 触发 MCU中断; 对所述负载信息进行解调, 并将解调后的负载信息与其耦合的谐振单元绑 定, 存储至缓冲区中。
其中, 所述步骤 d具体包括:
发射端 MCU读取缓冲区的数据并进行解析;
若解析出负载为待机状态, 则调整对应谐振单元的输出功率为负载待机状 态所需的最小功率;
若解析出负载为不可识别的负载, 则进入负载识别流程, 控制对应谐振单 元停止输出功率;
若解析出负载为充电状态, 则进入电能传输流程, 控制对应谐振单元向负 载传输电能;
若解析出负载为充满电状态, 则进入满负荷流程, 控制对应谐振单元停止 输出功率。
其中, 所述负载信息包括负载的 ID、 功率和温度。
本发明第二方面提供了一种基于无线电能传输系统的多负载控制系统, 包 括- 数据获取单元, 用于获取与发射端对应的多个接收端的负载信息并发送给 与所述接收端各自耦合的发射端的谐振单元;
MCU控制单元, 用于以轮询的方式将发射端 MCU与多个谐振单元之间传 输数据的通信信道切换到与当前时隙对应的谐振单元; 通过所述通信信道读取 对应谐振单元接收到的负载信息, 并将所述负载信息及与其耦合的谐振单元绑 定后存储到缓冲区;
调整单元, 用于当 MCU控制单元轮询完所有谐振单元时, 读取缓冲区的 数据并进行解析, 并根据解析结果调整对应谐振单元的工作状态, 使所有谐振 单元分别工作在与各自耦合的接收端负载相对应的状态。
其中, 所述通信信道预先按时隙分配给每个谐振单元, 且所述通信信道在 时间 nt内,至少传输数据 2n次, 以保证每个时间 t内至少收到一次接收端发送 的负载信息; 其中 n为与所述发射端对应的接收端的数量, t为一个时隙的时间 长度。
其中, 所述谐振单元由多个发射线圈组成。
其中, 所述 MCU控制单元具体包括:
中断控制模块, 用于通过所述通信信道读取对应谐振单元接收到的负载信 息到 MCU I/O中, 触发 MCU中断;
缓存模块, 用于对所述负载信息进行解调, 并将解调后的负载信息与其耦 合的谐振单元绑定, 存储至缓冲区中;
所述调整单元具体包括:
解析模块, 用于发射端 MCU读取缓冲区的数据并进行解析;
第一调整模块, 用于若解析出负载为待机状态, 则调整对应谐振单元的输 出功率为负载待机状态所需的最小功率;
第二调整模块, 用于若解析出负载为不可识别的负载, 则进入负载识别流 程, 控制对应谐振单元停止输出功率;
第三调整模块, 用于若解析出负载为充电状态, 则进入电能传输流程, 控 制对应谐振单元向负载传输电能;
第四调整模块, 用于若解析出负载为充满电状态, 则进入满负荷流程, 控 制对应谐振单元停止输出功率。
本发明通过动态切换通信信道实现单路通信信道实现对多路接收端负载有 效性进行检测, 异物不会触发系统工作, 进而实现多负载的功率输出控制, 并 实现对多路接收端的实时检测, 可实时侦测到接收端当前状态 (工作、 移动、 移除等)。 而且, 本发明通过简单调整功率、 逆变电路设计, 可扩展更多的负载 数量, 优化了无线电能传输系统。
附图说明
图 1示出的是本发明实施例的基于无线电能传输系统的多负载控制电路原 理图;
图 2示出的是本发明的基于无线电能传输系统的多负载控制方法的一实施 例的实现流程图;
图 3A示出的是本发明的发射线圈的排列示意图;
图 3B示出的是本发明的通信信道按时隙分配示意图;
图 4A示出的是本发明基于无线电能传输系统的多负载控制方法的又一实 施方式的实现流程图;
图 4B 示出的是本发明基于无线电能传输系统的多负载控制方法的另一实 施方式的实现流程图;
图 4C 示出的是本发明的基于无线电能传输系统的多负载控制方^ ^的再一 实施方式的实现流程图;
图 5示出的是本发明基于无线电能传输系统的多负载控制系统的一实施例 的结构图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
图 1示出的是本发明实施例的基于无线电能传输系统的多负载控制电路原 理图, 如图 1所示, 多负载控制系统中 MCU根据谐振单元选择电路的反馈, 即通过感应电容或线圈两端的电压变化闭合或断开线圈,并控制 DC/AD逆变电 路 (全桥逆变) 对线圈进行供电。
本发明实施例中多负载控制系统的具体工作流程为: 发射端将线圈在磁场 变化中产生的能量经整流后为接收端供电, 接收端根据预定规则调制通讯数据 后发送到发射端; 同时, MCU控制通讯选择电路依序将工作中的线圈连接到通 讯电路(即通信信道), 并对上述通讯数据进行解调操作, 根据解调后的通讯数 据 MCU进行调整逆变电路输出或关闭某路谐振单元的操作。 本发明实施例中 的谐振单元是接收端负载与发射端线圈耦合形成。
如图 2所示, 本发明的基于无线电能传输系统的多负载控制方法包括如下 步骤 Sl-S4。
步骤 Sl、 预先将发射端 MCU与多个谐振单元之间传输数据的通信信道按 时隙分配给每个谐振单元; 与发射端对应的多个接收端分别获取其负载信息并 发送给与其耦合的发射端的谐振单元。
其中, 所述谐振单元由多个发射线圈组成; 如图 3A所示, 展示了一种发 射线圈的排列方式, 每四个发射线圈作为一个谐振单元进行工作, 共享一套通 讯选择电路。 这样, 即使发射线圈较多时, 也可以很快的完成所有谐振单元的 轮询。
其中,如图 3B所示,所述通信信道按时隙分配给每个谐振单元具体方式为: 所述通信信道在时间 nt内, 至少传输数据 2n次, 以保证每个时间 t内至少 收到一次接收端发送的负载信息;其中 n为与所述发射端对应的接收端的数量, t为一个时隙的时间长度。
较佳地, 所述的与发射端对应的多个接收端分别获取其负载信息并发送给 与其耦合的发射端的谐振单元具体为: 所述与发射端对应的多个接收端分别获 取其负载信息并按预定的规则进行调制, 调制后以二进制编码方式发送给与其 耦合的发射端的谐振单元。采用二进制编码的传输方式, 码长较短、 扩充性强。 步骤 S2、 发射端 MCU以轮询的方式将所述通信信道切换到与当前时隙对应的 谐振单元; 通过所述通信信道读取对应谐振单元接收到的负载信息, 并将所述 负载信息及与其耦合的谐振单元绑定后存储到缓冲区。
所述负载信息包括负载的 ID、 功率和温度。
本实施例中, 发射端 MCU通过所述通信信道读取对应谐振单元接收到的 负载信息到 MCU I/O中, 触发 MCU中断; 对所述负载信息进行解调, 并将解 调后的负载信息与其耦合的谐振单元绑定, 存储至缓冲区中。
步骤 S3、 是否轮询完所有谐振单元, 若否, 返回步骤 S2; 若是, 进入下一 步。 保证每个时隙 t内发射端都会至少收到一次接收端发送过来的负载信息。
步骤 S4、 发射端 MCU读取缓冲区的数据并进行解析, 并根据解析结果调 整对应谐振单元的工作状态, 使所有谐振单元分别工作在与各自耦合的接收端 负载相对应的状态。
本实施例中, 发射端 MCU读取缓冲区的数据并进行解析; 若解析出负载 为待机状态,则调整对应谐振单元的输出功率为负载待机状态所需的最小功率; 若解析出负载为不可识别的负载, 则进入负载识别流程, 控制对应谐振单元停 止输出功率; 若解析出负载为充电状态, 则进入电能传输流程, 控制对应谐振 单元向负载传输电能; 若解析出负载为充满电状态, 则进入满负荷流程, 控制 对应谐振单元停止输出功率。
提供本实施例所述的多负载控制方法, 发射端和接收端建立通讯后, MCU 会根据当前通讯电路选择情况识别不同接收端的通讯数据, 这些数据包括接收 端的 ID、 功率、 温度等信息, 并可依据这些信息作出相应判断, 自动调整发射 端的谐振单元的发射功率的大小。 图 4A示出的是本发明基于无线电能传输系统的多负载控制方法的又一实 施方式的实现流程图, 请参见图 4。
在步骤 S201中, 获取接收端根据负载信息调制的通讯数据。
该步骤中的通讯数据为一负载识别信号, 可以是负载的 ID、 功率、 温度等 曰息。
在步骤 S202中, MCU控制通信信道切换到待处理谐振单元上。
在步骤 S203中, 通讯电路解调当前通讯数据并发送至 MCU I/O中, 触发 MCU中断并对当前通讯数据进行解析。
若解析成功, 则执行步骤 S204, 标记该谐振单元为闭合; 若解析失败, 则 执行步骤 S205, 标记该谐振单元为断开。
步骤 S204和步骤 S205之后都进入步骤 S206, 轮询所有谐振单元, 直至 MCU控制通信信道动态切换完所有谐振单元。
通过本发明实施例, 采用一路通信信道通过轮询的方式实现对多负载的信 息检测和功率输出控制。
在步骤 S207中, 对所有标记谐振单元进行闭合或者断开操作。
本发明实施例通过通信信道切换实现对多负载的功率输出控制, 不仅简化 了控制电路设计, 而且具有很强的扩展性, 对无线电能传输系统的推广应用起 到了关键性作用。
图 4B 示出的是本发明供的基于无线电能传输系统的多负载控制方法的另 一实施方式实现流程图, 参见图 4B:
在步骤 S301中, MCU控制通信信道切换到待处理标记谐振单元上。
在步骤 S302中, 通讯电路解调标记谐振单元返回的负载信息 (通讯数据) 并送至 MCU I/0中, 触发 MCU中断。 在步骤 S303中, MCU将当前负载信息与其所在标记谐振单元绑定, 并存 储至缓冲区中。
在步骤 S304中, 轮询所有标记谐振单元, 直至 MCU控制通信信道动态切 换完所有标记谐振单元。
在步骤 S305中, MCU读取并解析缓冲区中的数据;
在步骤 S306中,根据上述解析结果对标记谐振单元进行闭合或者断开操作 并对调整对接收端的功率输出。
本发明实施例提供了基于无线电能传输系统的多负载控制方法在电能传输 阶段的动态切换信道流程和负载识别阶段一样, 都是作为基于无线电能传输系 统的多负载控制方法主循环流程的一个部分, 组合在一起实现多负载控制。 比 如说, 同时有两个有效负载在工作, 此时放入第三个负载, 亦可由上述流程组 合进行边充电边识别直至实现所有有效负载均正常工作的状态。
本发明中的动态切换信道也可应用在无线电能传输系统的其他阶段, 道理 相同, 其动态切换通信信道流程如下:
根据需要, MCU将通信信道切换到待处理的谐振单元上, 并由通讯电路解 调收到的各类通讯数据, MCU解析后作出相应处理。
图 4C 示出的是本发明基于无线电能传输系统的多负载控制方法的再一实 现流程图; 参见图 4C:
在步骤 S401中, 对标记谐振单元进行闭合操作。
在步骤 S402中,检测当前标记谐振单元的电压或者电流是否下降,若下降, 执行步骤 S403 , 切换该标记谐振单元到感应回路; 否则执行步骤 S407, 退出。
在步骤 S404中,检测所述标记谐振单元的感应电容是否有变化,若有变化, 则执行步骤 S405 , 检测电容是否回到初始值; 否则执行步骤 S407, 退出。 若电容回到初始值, 表明接收端负载离开充电区, 则执行步骤 S406, 断开 所述标记谐振单元, 同时负载数量减 1 ; 否则执行步骤 S407, 退出。
图 5示出的是本发明提供的多负载控制系统结构图, 所述系统包括: 数据获取单元 100, 用于获取与发射端对应的多个接收端的负载信息并发 送给与所述接收端各自耦合的发射端的谐振单元。
较佳地, 所述谐振单元由多个发射线圈组成; 所述通信信道预先按时隙分 配给每个谐振单元, 且所述通信信道在时间 nt内, 至少传输数据 2η次, 以保 证每个时间 t内至少收到一次接收端发送的负载信息; 其中 η为与所述发射端 对应的接收端的数量, t为一个时隙的时间长度。具体如上述实施例所述, 在此 不再赘述。
MCU控制单元 200, 用于以轮询的方式将发射端 MCU与多个谐振单元之 间传输数据的通信信道切换到与当前时隙对应的谐振单元; 通过所述通信信道 读取对应谐振单元接收到的负载信息, 并将所述负载信息及与其耦合的谐振单 元绑定后存储到缓冲区; 具体如上述实施例所述, 在此不再赘述。
调整单元 300, 用于当 MCU控制单元轮询完所有谐振单元时, 读取缓冲区 的数据并进行解析, 并根据解析结果调整对应谐振单元的工作状态, 使所有谐 振单元分别工作在与各自耦合的接收端负载相对应的状态。 具体如上述实施例 所述, 在此不再赘述。
较佳地, 所述 MCU控制单元 200具体包括:
中断控制模块 201, 用于通过所述通信信道读取对应谐振单元接收到的负 载信息到 MCU I/O中, 触发 MCU中断; 具体如上述实施例所述, 在此不再赘 述。
缓存模块 202, 用于对所述负载信息进行解调, 并将解调后的负载信息与 其耦合的谐振单元绑定, 存储至缓冲区中。 具体如上述实施例所述, 在此不再 赘述。
所述调整单元 300具体包括:
解析模块 301, 用于发射端 MCU读取缓冲区的数据并进行解析;
第一调整模块 302, 用于若解析出负载为待机状态, 则调整对应谐振单元 的输出功率为负载待机状态所需的最小功率;
第二调整模块 303, 用于若解析出负载为不可识别的负载, 则进入负载识 别流程, 控制对应谐振单元停止输出功率;
第三调整模块 304, 用于若解析出负载为充电状态, 则进入电能传输流程, 控制对应谐振单元向负载传输电能;
第四调整模块 305, 用于若解析出负载为充满电状态, 则进入满负荷流程, 控制对应谐振单元停止输出功率。
上述各模块的具体实施方式可参照上述实施例所述, 在此不再赘述。
本发明实施例通过 MCU动态控制通信信道切换, 将其依序连接到发射端 的谐振单元上, 实现多路接收端检测, 并可根据反馈控制多路接收端的功率, 实现充电过程最优化。 动态信道切换方式不仅降低了硬件成本, 简化了电路设 计, 而且凭借其优良的可扩展性能够在无线电能传输领域普及推广。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1、 一种基于无线电能传输系统的多负载控制方法, 其特征在于, 包括: a.预先将发射端 MCU与多个谐振单元之间传输数据的通信信道按时隙分 配给每个谐振单元; 与发射端对应的多个接收端分别获取其负载信息并发送给 与其耦合的发射端的谐振单元;
b. 发射端 MCU以轮询的方式将所述通信信道切换到与当前时隙对应的 i皆 振单元; 通过所述通信信道读取对应谐振单元接收到的负载信息, 并将所述负 载信息及与其耦合的谐振单元绑定后存储到缓冲区;
c 是否轮询完所有谐振单元, 若否, 返回步骤 b; 若是, 进入下一步; d. 发射端 MCU读取缓冲区的数据并进行解析, 并根据解析结果调整对应 谐振单元的工作状态, 使所有谐振单元分别工作在与各自耦合的接收端负载相 对应的状态。
2、 根据权利要求 1所述的多负载控制方法, 其特征在于, 所述谐振单元由 多个发射线圈组成;
所述通信信道在时间 nt内, 至少传输数据 2η次, 以保证每个时间 t内至少 收到一次接收端发送的负载信息;其中 n为与所述发射端对应的接收端的数量, t为一个时隙的时间长度。
3、 根据权利要求 1所述的多负载控制方法, 其特征在于, 所述步骤 a中, 所述的与发射端对应的多个接收端分别获取其负载信息并发送给与其耦合的发 射端的谐振单元具体为:
所述与发射端对应的多个接收端分别获取其负载信息并按预定的规则进行 调制, 调制后以二进制编码方式发送给与其耦合的发射端的谐振单元。
4、 根据权利要求 3所述的多负载控制方法, 其特征在于, 所述步骤 b中所 述的通过所述通信信道读取对应谐振单元接收到的负载信息, 并将所述负载信 息及与其耦合的谐振单元绑定后存储到缓冲区具体为:
发射端 MCU 通过所述通信信道读取对应谐振单元接收到的负载信息到 MCU I/O中, 触发 MCU中断;
对所述负载信息进行解调, 并将解调后的负载信息与其耦合的谐振单元绑 定, 存储至缓冲区中。
5、 根据权利要求 1所述的多负载控制方法, 其特征在于, 所述步骤 d具体 包括:
发射端 MCU读取缓冲区的数据并进行解析;
若解析出负载为待机状态, 则调整对应谐振单元的输出功率为负载待机状 态所需的最小功率;
若解析出负载为不可识别的负载, 则进入负载识别流程, 控制对应谐振单 元停止输出功率;
若解析出负载为充电状态, 则进入电能传输流程, 控制对应谐振单元向负 载传输电能;
若解析出负载为充满电状态, 则进入满负荷流程, 控制对应谐振单元停止 输出功率。
6、 根据权利要求 1所述的多负载控制方法, 其特征在于, 所述负载信息包 括负载的 ID、 功率和温度。
7、 一种基于无线电能传输系统的多负载控制系统, 其特征在于, 包括: 数据获取单元, 用于获取与发射端对应的多个接收端的负载信息并发送给 与所述接收端各自耦合的发射端的谐振单元;
MCU控制单元, 用于以轮询的方式将发射端 MCU与多个谐振单元之间传 输数据的通信信道切换到与当前时隙对应的谐振单元; 通过所述通信信道读取 对应谐振单元接收到的负载信息, 并将所述负载信息及与其耦合的谐振单元绑 定后存储到缓冲区;
调整单元, 用于当 MCU控制单元轮询完所有谐振单元时, 读取缓冲区的 数据并进行解析, 并根据解析结果调整对应谐振单元的工作状态, 使所有谐振 单元分别工作在与各自耦合的接收端负载相对应的状态。
8、 根据权利要求 7所述的多负载控制系统, 其特征在于, 所述通信信道预 先按时隙分配给每个谐振单元, 且所述通信信道在时间 nt内, 至少传输数据 2η 次, 以保证每个时间 t内至少收到一次接收端发送的负载信息; 其中 n为与所 述发射端对应的接收端的数量, t为一个时隙的时间长度。
9、 根据权利要求 7所述的多负载控制系统, 其特征在于, 所述谐振单元由 多个发射线圈组成。
10、 根据权利要求 7所述的多负载控制系统, 其特征在于, 所述 MCU控 制单元具体包括:
中断控制模块, 用于通过所述通信信道读取对应谐振单元接收到的负载信 息到 MCU I/O中, 触发 MCU中断;
缓存模块, 用于对所述负载信息进行解调, 并将解调后的负载信息与其耦 合的谐振单元绑定, 存储至缓冲区中;
所述调整单元具体包括:
解析模块, 用于发射端 MCU读取缓冲区的数据并进行解析;
第一调整模块, 用于若解析出负载为待机状态, 则调整对应谐振单元的输 出功率为负载待机状态所需的最小功率;
第二调整模块, 用于若解析出负载为不可识别的负载, 则进入负载识别流 程, 控制对应谐振单元停止输出功率;
第三调整模块, 用于若解析出负载为充电状态, 则进入电能传输流程, 控 制对应谐振单元向负载传输电能;
第四调整模块, 用于若解析出负载为充满电状态, 则进入满负荷流程, 控 制对应谐振单元停止输出功率。
PCT/CN2013/080825 2013-04-28 2013-08-05 基于无线电能传输系统的多负载控制方法及系统 WO2014176842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310156887.9 2013-04-28
CN201310156887.9A CN104124770B (zh) 2013-04-28 2013-04-28 基于无线电能传输系统的多负载控制方法及系统

Publications (1)

Publication Number Publication Date
WO2014176842A1 true WO2014176842A1 (zh) 2014-11-06

Family

ID=51770081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080825 WO2014176842A1 (zh) 2013-04-28 2013-08-05 基于无线电能传输系统的多负载控制方法及系统

Country Status (2)

Country Link
CN (1) CN104124770B (zh)
WO (1) WO2014176842A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947286A (zh) * 2017-12-15 2018-04-20 北京联盛德微电子有限责任公司 一种支持负载识别的无线充电设备及其识别方法
CN112787415A (zh) * 2021-01-22 2021-05-11 中电海康无锡科技有限公司 一种用于无线充电解调解码性能测试的装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201816630T4 (tr) * 2015-04-29 2018-11-21 Anheuser Busch Inbev Sa Zaman dilimli iletişime sahip endüktif kablosuz güç aktarımı.
JP6540216B2 (ja) * 2015-05-13 2019-07-10 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
CN107124047B (zh) * 2017-06-27 2023-12-29 青岛鲁渝能源科技有限公司 无线电能传输系统及其射频通信方法
CN107834711A (zh) * 2017-12-15 2018-03-23 北京联盛德微电子有限责任公司 一种支持多负载的无线充电动态控制设备及其控制方法
CN112787413B (zh) * 2020-12-26 2023-07-21 西北工业大学 一种mimo型磁耦合谐振无线电能传输的功率分配方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091779A (en) * 1996-12-20 2000-07-18 Bayerische Motoren Werke Aktiengesellschaft Process for the wireless transmitting of energy and data
CN1835338A (zh) * 2006-03-03 2006-09-20 重庆大学 可分区控制的电源板
CN102934327A (zh) * 2011-03-11 2013-02-13 海尔集团公司 无线供电装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178387B2 (en) * 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
JP5478326B2 (ja) * 2010-03-30 2014-04-23 パナソニック株式会社 非接触給電システム
KR101255924B1 (ko) * 2011-09-30 2013-04-17 삼성전기주식회사 저전력 무선 충전 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091779A (en) * 1996-12-20 2000-07-18 Bayerische Motoren Werke Aktiengesellschaft Process for the wireless transmitting of energy and data
CN1835338A (zh) * 2006-03-03 2006-09-20 重庆大学 可分区控制的电源板
CN102934327A (zh) * 2011-03-11 2013-02-13 海尔集团公司 无线供电装置和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947286A (zh) * 2017-12-15 2018-04-20 北京联盛德微电子有限责任公司 一种支持负载识别的无线充电设备及其识别方法
CN112787415A (zh) * 2021-01-22 2021-05-11 中电海康无锡科技有限公司 一种用于无线充电解调解码性能测试的装置
CN112787415B (zh) * 2021-01-22 2024-06-11 中电海康无锡科技有限公司 一种用于无线充电解调解码性能测试的装置

Also Published As

Publication number Publication date
CN104124770A (zh) 2014-10-29
CN104124770B (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
WO2014176842A1 (zh) 基于无线电能传输系统的多负载控制方法及系统
US20170126071A1 (en) Multimode wireless power transmitters and related methods
US11936202B2 (en) Hybrid wireless power transmitting system and method therefor
US10355525B2 (en) Apparatus, system, and method for back-channel communication in an inductive wireless power transfer system
CN103580300B (zh) 接收器及执行接收器操作的方法
CN104620511A (zh) 无线发射器的静态调谐
GB2587051A (en) Wireless power systems with concurrently active data streams
CN105379054A (zh) 用于实现通用后盖无线充电解决方案的系统和方法
US20150091523A1 (en) Wireless charger system that has variable power / adaptive load modulation
CN104604083A (zh) 具有减少的功率耗散的无线电力过电压保护电路
CN103107709A (zh) 具有通信能力的自适应感应电源
CN103765797A (zh) 无线电力接收器及其控制方法
CN105379053B (zh) 用于扩展无线充电器的电力能力的系统和方法
CN104348236A (zh) 无线充电装置和方法
MX2008011504A (es) Control de red.
JP2013143908A (ja) フレーム基盤無線エネルギー送信方法及び送受信装置
CA2738206A1 (en) Combined antenna and inductive power receiver
US10027175B2 (en) Wireless power transfer system and wireless power transfer method
US11296556B2 (en) Power relay device and system
CN102356414A (zh) 用于对设备进行控制的系统
KR101055448B1 (ko) 통신 기능이 구비된 무선전력 송수신 장치 및 그 무선전력 송수신 방법
US20180183267A1 (en) Wireless power transmitter and wireless charging method
KR101677655B1 (ko) 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20160007332A (ko) 무선 전력 송신 장치 및 무선 전력 송신 시스템
WO2014176872A1 (zh) 无线电能传输系统的功率调节方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883492

Country of ref document: EP

Kind code of ref document: A1