WO2014175362A1 - Method for producing float plate glass - Google Patents

Method for producing float plate glass Download PDF

Info

Publication number
WO2014175362A1
WO2014175362A1 PCT/JP2014/061499 JP2014061499W WO2014175362A1 WO 2014175362 A1 WO2014175362 A1 WO 2014175362A1 JP 2014061499 W JP2014061499 W JP 2014061499W WO 2014175362 A1 WO2014175362 A1 WO 2014175362A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
glass
float
fluorine
gas containing
Prior art date
Application number
PCT/JP2014/061499
Other languages
French (fr)
Japanese (ja)
Inventor
興平 安田
泰夫 林
信彰 井川
竜麻 市川
聡史 宮坂
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157030298A priority Critical patent/KR102152196B1/en
Priority to JP2015513820A priority patent/JP6341199B2/en
Priority to CN201480023330.0A priority patent/CN105143132B/en
Publication of WO2014175362A1 publication Critical patent/WO2014175362A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • C03C15/02Surface treatment of glass, not in the form of fibres or filaments, by etching for making a smooth surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a float glass sheet.
  • the float method which is the main manufacturing method for flat glass, is called a float bath.
  • a glass ribbon is formed by continuously flowing molten glass on the surface of a molten metal bath filled with molten metal tin, and this glass ribbon is melted. This is a method of laminating along a metal bath surface while moving forward, and is excellent in producing a large amount of flat glass with high flatness.
  • top specs due to molten metal tin may occur on the upper surface side of the glass ribbon.
  • the top spec is that the tin component evaporated from the molten metal bath condenses on the ceiling or wall, which is the upper part of the bath, and the condensate or the condensate reduced to the metallic state falls as small particles onto the glass ribbon. In other words, it adheres to the upper surface of the glass ribbon as a tin defect having a size of several ⁇ m to several tens ⁇ m.
  • the glass substrate is immersed in a treatment solution comprising a hydrofluoric acid aqueous solution or an acidic aqueous solution containing divalent chromium ions.
  • a treatment solution comprising a hydrofluoric acid aqueous solution or an acidic aqueous solution containing divalent chromium ions.
  • Patent Document 3 discloses that a minute foreign substance existing on the surface of a float plate glass is decomposed and volatilized by sublimating ammonium halide at a high temperature in the vicinity of the foreign substance or in contact with the foreign substance. There is disclosed a method for removing foreign matter on the surface of a float plate glass, which is characterized by being removed.
  • Patent Documents 1 and 2 are off-line processing, and in order to remove tin defects to the extent that the standards required for glass substrates for flat panel displays can be satisfied, the immersion time in the processing solution is reduced. It is necessary to lengthen it.
  • Patent Document 3 it is necessary to sublimate ammonium halide at a high temperature in the vicinity of minute foreign substances existing on the surface of the float plate glass or in contact with the foreign substances. It is difficult to implement in this method, and it is necessary to provide equipment for carrying out this method outside the float bath.
  • ammonium halide has a function of corroding metals, corrosion of equipment used for processing is also a problem.
  • an object of the present invention is to provide a method for producing a float plate glass, in which, when a float plate glass is produced, a tin defect is removed from the glass surface by online processing to obtain a smooth surface.
  • the present invention provides a glass ribbon surface with a chlorine-containing gas and a fluorine-containing gas on the glass ribbon surface in a reducing atmosphere at 500 to 1200 ° C. in a float bath.
  • the float plate glass manufacturing method sprayed so that the conditions shown in (2) may be satisfied.
  • c1 is the chlorine concentration [vol%] of the gas containing chlorine
  • u1 is the flow velocity (linear velocity) [cm / s] of the gas containing chlorine
  • t1 is the spraying time of the gas containing chlorine [s ]
  • T1 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • c2 is the fluorine concentration [vol%] of the gas containing fluorine
  • u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine
  • t2 is the spraying time of the gas containing fluorine [s] ]
  • T2 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • the gas containing chlorine is preferably hydrogen chloride (HCl).
  • the gas containing fluorine is preferably hydrogen fluoride (HF).
  • the total c1 + c2 of the chlorine concentration c1 [vol%] of the gas containing chlorine and the fluorine concentration c2 [vol%] of the gas containing fluorine is greater than 5 [vol%]. Is preferred.
  • chlorine concentration c1 [vol%] of the gas containing chlorine is 2 [vol%] or more.
  • fluorine concentration c2 [vol%] of the gas containing fluorine is preferably 2 [vol%] or more.
  • the product c1 ⁇ t1 of the chlorine concentration c1 [vol%] of the gas containing chlorine and the spraying time t1 [s] of the gas containing chlorine, and the gas containing fluorine The sum (c1 ⁇ t1) + (c2 ⁇ t2) of the product c2 ⁇ t2 of the fluorine concentration c2 [vol%] and the spray time t2 [s] of the gas containing fluorine is larger than 120 [vol% ⁇ s]. preferable.
  • either the spraying time t1 [s] of the gas containing chlorine or the spraying time t2 [s] of the gas containing fluorine is less than 10 [s]. Is preferred.
  • the present invention also relates to a float plate glass obtained by the method of the present invention, wherein the chlorine content at a depth of 0.05 ⁇ m from the top surface facing the surface in contact with the molten metal in the float bath is Cl1 [wt%].
  • the chlorine content at a depth of 0.05 ⁇ m from the top surface facing the surface in contact with the molten metal in the float bath of the float plate glass is Cl1 [wt%], and more than 0.05 ⁇ m and 10 ⁇ m from the top surface.
  • Cl1 [wt%] the minimum value of the chlorine content at the following depth
  • Cl1> Cl2 the fluorine content at a depth of 0.05 ⁇ m from the top surface
  • F2 [wt%] the top
  • a float plate glass satisfying F1> F2 is provided.
  • the said float plate glass is the float plate glass manufactured by surface-treating by making the gas containing chlorine and the gas containing fluorine contact the glass surface of the said float plate glass in a float bath.
  • the chlorine or fluorine content at a depth of more than 0.05 ⁇ m and not more than 10 ⁇ m from the top surface includes a gas containing chlorine and a gas containing fluorine on the glass ribbon surface in the float bath. It is preferred to have a region that is higher than the chlorine or fluorine content of the float sheet glass that is not sprayed.
  • the slope of the chlorine content change at a depth of more than 0.05 ⁇ m and 10 ⁇ m or less from the top surface is [dCl] and the slope of the fluorine content change is [dHF]
  • the chlorine or fluorine content at a depth of more than 0.05 ⁇ m and not more than 10 ⁇ m from the top surface is higher than the chlorine or fluorine content in a portion deeper than 10 ⁇ m from the top surface. Is preferred.
  • tin defects can be removed from the glass surface by online processing in a float bath, and a smooth surface can be obtained. For this reason, the tin defect suitable for the glass substrate for FPD is removed, and the quality, yield, and productivity when producing a float plate glass having a smooth surface are improved.
  • FIGS. 1A and 1B are the results of observing the surface of a glass sample before and after mixed gas spraying with a laser microscope in Example 1, FIG. 1A is before gas spraying, and FIG. It is an observation result after gas spraying.
  • FIG. 2 is a graph showing profiles of chlorine content (wt%) in the depth direction from the glass sample surfaces of Examples 1 and 2 and Comparative Example 1.
  • FIG. 3 is an enlarged view of the graph of FIG. 1 from the glass sample surface to a depth of 3 ⁇ m.
  • FIG. 4 is a graph showing profiles of fluorine content (wt%) in the depth direction from the glass sample surfaces of Examples 1 and 2 and Comparative Example 1.
  • FIGS. 7A and 7B are the results of observing the surface of a glass sample before and after gas spraying with HCl diluted with nitrogen for Comparative Example 3 with a laser microscope.
  • FIG. 7 (b) is an observation result after gas spraying.
  • FIG. 8 (a) and 8 (b) show the results of observation of the surface of a glass sample before and after gas spraying in which HF was diluted with nitrogen in Comparative Example 4 with a laser microscope.
  • FIG. 8 (b) is an observation result after gas spraying.
  • 9 (a) and 9 (b) show the results of observation of the surface of a glass sample before and after gas spraying in which HF was diluted with nitrogen in Comparative Example 5 with a laser microscope.
  • FIG. 9 (b) is an observation result after gas spraying.
  • 10 (a) and 10 (b) are the results of observing the surface of the glass sample before and after the mixed gas spraying with the laser microscope in Example 2, FIG. 10 (a) is before the gas spraying, and FIG. 10 (b) is the result.
  • FIG. 11 (a) and 11 (b) are the results of observing the surface of the glass sample before and after the mixed gas spraying with the laser microscope in Example 3, FIG. 11 (a) is before the gas spraying, and FIG. 11 (b) is the result. It is an observation result after gas spraying.
  • a gas containing chlorine and a gas containing fluorine are sprayed on the surface of the glass ribbon moving in the float bath so as to satisfy the conditions described below.
  • the gas containing chlorine is hydrogen chloride (HCl) as an example
  • tin defects existing as a top spec on the glass ribbon surface are removed by the following reaction mechanism. Sn + 2HCl ⁇ SnCl 2 + H 2
  • the tin defect is removed by the same reaction mechanism as described above.
  • the above reaction mechanism proceeds because the inside of the float bath is maintained at a high temperature. The reason is because the vapor pressure of more SnCl 2 becomes high temperature becomes high, the SnCl 2 produced by the reaction because volatilized from the glass ribbon surface.
  • the temperature in the float bath varies depending on the part, but is maintained at 500 to 1200 ° C.
  • the inside of the float bath is filled with a mixed gas of hydrogen (usually 4 to 10% by volume) and nitrogen (usually 90 to 96% by volume) to form a reducing atmosphere.
  • HCl hydrogen chloride
  • chlorine Cl 2
  • silicon tetrachloride SiCl 4
  • sulfur dichloride Cl 2 S
  • disulfur dichloride S 2 Cl 2).
  • Phosphorus trichloride PCl 3
  • phosphorus pentachloride PCl 5
  • iodine trichloride I 2 Cl 6
  • nitrogen trichloride NCl 3
  • iodine monochloride ICl
  • bromine monochloride BrCl
  • Chlorine trifluoride ClF 3
  • hydrogen chloride (HCl) is preferable for reasons such as cost and handling methods are well known.
  • the entire surface of the glass ribbon is etched by spraying a gas containing fluorine to flatten the surface of the glass ribbon.
  • the etching of the glass ribbon surface by the spray of the gas containing fluorine is fast.
  • HF hydrogen fluoride
  • flon for example, chlorofluorocarbon (CFC), fluorocarbon (FC), hydrochlorofluorocarbon (HCFC), hydrofluorocarbon (HFC)
  • Hydrofluoric acid (HF) simple fluorine (F 2 ), trifluoroacetic acid (CF 3 COOH), carbon tetrafluoride (CF 4 ), silicon tetrafluoride (SiF 4 ), phosphorus pentafluoride (PF 5 ) Phosphorus trifluoride (PF 3 ), boron trifluoride (BF 3 ), nitrogen trifluoride (NF 3 ), chlorine trifluoride (ClF 3 ), or the like
  • hydrogen fluoride (HF) is preferred for reasons such as cost and handling methods are well known.
  • a gas containing chlorine is sprayed on the surface of the glass ribbon so as to satisfy the condition represented by the following formula (1).
  • c1 is the chlorine concentration [vol%] of the gas containing chlorine
  • u1 is the flow velocity (linear velocity) of the gas containing chlorine [cm / s]
  • t1 is the spraying time of the gas containing chlorine [s].
  • T1 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • r is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. If the spraying condition of the gas containing chlorine does not satisfy the above formula (1), there is a possibility that the tin defect existing as the top spec on the surface of the glass ribbon cannot be removed sufficiently.
  • a gas containing fluorine is sprayed on the surface of the glass ribbon so as to satisfy the condition represented by the following formula (2). (6.92u2 + 15.8) c2t2 ⁇ exp (-4303 / T2)> r (2)
  • c2 is the fluorine concentration [vol%] of the gas containing fluorine
  • u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine
  • t2 is the spraying time of the gas containing fluorine [s] ]
  • T2 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • r is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the chlorine-containing gas and the fluorine-containing gas may be sprayed on the surface of the glass ribbon as individual gases, but the corrosion of equipment such as nozzles used for spraying these gases is prevented.
  • an inert gas such as nitrogen or a rare gas
  • the gas containing chlorine and the gas containing fluorine may be sprayed from separate nozzles, or may be sprayed from the same nozzle as a mixed gas of both.
  • spraying both from separate nozzles either one may be sprayed upstream from the other in the moving direction of the glass ribbon, or both may be sprayed at the same position.
  • the gas containing chlorine and the gas containing fluorine may be sprayed on the surface of the glass ribbon at any position in the float bath.
  • the temperature on the uppermost stream side in the float bath is the highest, but if gas is sprayed at this position, a new top is formed on the glass ribbon surface after the removal of tin defects. Specs may occur.
  • spraying of these gases should be performed in a reducing atmosphere of Tg + 30 ° C. to Tg + 300 ° C. in the float bath. It is preferable to spray these gases in a reducing atmosphere of Tg + 30 ° C. to Tg + 200 ° C.
  • the distance between the tip of the nozzle used for spraying the gas containing chlorine and the gas containing fluorine and the glass ribbon surface is too wide, the gas sprayed from the nozzle is diffused, The intended spray amount per unit area may not be achieved.
  • the distance between the tip of the nozzle used for spraying these gases and the glass ribbon surface is preferably 50 mm or less, more preferably 20 mm or less, and even more preferably 10 mm or less.
  • the composition of the float plate glass produced by the method of the present invention is not particularly limited, and may be a glass containing an alkali metal component such as soda lime glass, or a non-alkali glass substantially free of an alkali metal component. There may be. However, it is suitable for the production of float glass with a non-alkali glass composition widely used as a glass substrate for FPD because the top spec is removed and a flat glass with a smooth surface is obtained.
  • the float glass obtained by the method of the present invention chlorine and fluorine intrude into the glass ribbon surface because a gas containing chlorine and a gas containing fluorine are sprayed on the glass ribbon surface in the manufacturing process. Therefore, the chlorine content and the fluorine content at a predetermined depth from the top surface of the float glass sheet are higher than those at a predetermined depth deeper from the top surface of the glass sheet.
  • the top surface of the float plate glass refers to a surface that faces the bottom surface in contact with the molten metal in the float bath in the manufacturing process.
  • the float glass sheet obtained by the method of the present invention has a chlorine content of Cl1 [wt%] at a depth of 0.05 ⁇ m from the top surface facing the surface in contact with the molten metal in the float bath.
  • Cl2 [wt%] When the minimum chlorine content at a depth of more than 0.05 ⁇ m and not more than 10 ⁇ m from the surface is Cl2 [wt%], Cl1> Cl2, and the fluorine content at a depth of 0.05 ⁇ m from the top surface is F1 [Wt%]
  • F2 [wt% When the minimum value of fluorine content at a depth of more than 0.05 ⁇ m and 20 ⁇ m or less from the top surface is F2 [wt%], it is a float plate glass where F1> F2.
  • chlorine and fluorine may be added to a glass raw material as a clarifier. In such a case, that is, even when chlorine or fluorine is contained as a fining agent, the above relations Cl1> Cl2 and F1> F2 are satisfied.
  • Example 1 a glass sample having a tin defect on its surface was placed in an experimental apparatus that simulated the atmosphere in the float bath, and removal of the tin defect was attempted by the following procedure.
  • Example 1 It was confirmed by a laser microscope that a tin defect having a radius of 5 ⁇ m was present on the surface of the glass sample to be used (FIG. 1 (a)).
  • the experimental condition was that the inside of the experimental apparatus was maintained in a reducing atmosphere filled with a mixed gas of 10 volume% hydrogen and 90 volume% nitrogen, and the temperature in the experimental apparatus was raised to 900 ° C. .
  • a mixed gas diluted with nitrogen gas so that HCl and HF each have a concentration of 500 ppm is sprayed on the surface of the glass sample for 80 minutes (4800 s) at a flow rate (linear velocity) of 0.5 cm / s.
  • the spray condition of HCl satisfies the formula (1). (6.92u1 + 15.8) c1t1 ⁇ exp (-4303 / T1)> r (1)
  • c1 is the chlorine concentration [vol%] of the gas containing chlorine
  • u1 is the flow velocity (linear velocity) of the gas containing chlorine [cm / s]
  • t1 is the spraying time of the gas containing chlorine [s].
  • T1 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • the spraying condition of HF satisfies the formula (2). (6.92u2 + 15.8) c2t2 ⁇ exp (-4303 / T2)> r (2)
  • c2 is the fluorine concentration [vol%] of the gas containing fluorine
  • u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine
  • t2 is the spraying time [s] of the gas containing fluorine.
  • T2 is the surface temperature [K] of the glass ribbon
  • r is the radius [ ⁇ m] of tin defects existing on the glass ribbon surface.
  • Example 2 The same procedure as in Example 1 was performed except that the spraying of HCl and HF was performed under the conditions described in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that the spraying of HCl and HF was performed under the conditions described in Table 1.
  • spraying is performed using a mixed gas obtained by diluting HCl and HF with nitrogen gas, but gas obtained by diluting HCl and HF with nitrogen gas may be sprayed separately.
  • FIG. 1B As a result of observing the glass sample surfaces of Examples 1 to 3 with a laser microscope, tin defects were almost removed, and the glass sample surfaces were almost flat (FIG. 1B, FIG. 10B and FIG. 11 (b)). Further, when the surface of the glass sample was confirmed with a scanning electron microscope (SEM-EDX), it was confirmed that tin defects were almost removed.
  • SEM-EDX scanning electron microscope
  • FIGS. 3 is the figure which expanded from the glass sample surface to the depth of 3 micrometers in FIG.
  • the chlorine content (Cl1) at a depth of 0.05 ⁇ m from the glass sample surface, and the minimum chlorine content (Cl2) at a depth of more than 0.05 ⁇ m and 10 ⁇ m or less from the glass sample surface. Satisfies the relationship Cl1> Cl2.
  • the fluorine content (F1) at a depth of 0.05 ⁇ m from the glass sample surface and the minimum fluorine content (F2) at a depth of more than 0.05 ⁇ m and 20 ⁇ m or less from the glass sample surface are F1> F2 Meet the relationship. 2 to 4 also show the measurement results of the glass sample of Comparative Example 1 in which nitrogen gas is sprayed instead of the mixed gas containing HCl and HF.
  • Comparative Example 1 the relationship is Cl1 ⁇ Cl2 and F1 ⁇ F2. Further, the content of chlorine or fluorine at a depth of more than 0.05 ⁇ m and 10 ⁇ m or less from the top surface of Examples 1 and 2 is higher than that of Comparative Example 1. At this time, Comparative Example 1 corresponds to a float plate glass in which a gas containing chlorine and a gas containing fluorine are not sprayed on the glass ribbon surface in the float bath in the present invention.
  • the slope of the chlorine content change at a depth of more than 0.05 ⁇ m and 10 ⁇ m or less from the top surface of Examples 1 and 2 is [dCl]
  • the slope of the fluorine content change is [dHF], [dCl] Or it has a region where [dHF] is negative.
  • the slope of the change in chlorine content and the slope of the change in fluorine content in Comparative Example 1 are always positive, that is, the chlorine content and the fluorine content increase monotonously from the top surface in the depth direction. is doing.
  • the chlorine or fluorine content at a depth of more than 0.05 ⁇ m and not more than 10 ⁇ m from the top surface is higher than the chlorine or fluorine content in a portion deeper than 10 ⁇ m from the top surface. .
  • Example 1 (Comparative Example 1) Implementation was performed except that nitrogen gas was sprayed at a flow rate (linear velocity) of 0.5 cm / s for 80 minutes (4800 s) instead of a mixed gas obtained by diluting HCl and HF with nitrogen gas so that each concentration became 500 ppm. The same procedure as in Example 1 was performed. After completion of gas spraying, the glass sample surface was cooled to room temperature and then confirmed with a laser microscope. As a result, tin defects were not removed (FIGS. 5A and 5B).
  • Example 2 A procedure similar to that in Example 1 was performed, except that a gas diluted with nitrogen gas so that the concentration was 5% was sprayed at a flow rate (linear velocity) of 20 cm / s for 10 seconds.
  • the spray condition of HCl satisfies the above formula (1).
  • the surface of the glass sample was confirmed with a laser microscope. As a result, the tin defect was removed, but a recess was confirmed at the site where the tin defect existed (FIG. 6 ( a), (b)).
  • Example 3 The same procedure as in Example 1 was carried out except that only HCl was diluted with nitrogen gas so as to have a concentration of 0.1% and sprayed at a flow rate (linear velocity) of 0.5 cm / s for 60 seconds. did. The spray condition of HCl does not satisfy the above formula (1). After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 7A and 7B).
  • Example 4 The same procedure as in Example 1 was carried out except that HF alone was sprayed with a gas diluted with nitrogen gas to a concentration of 0.1% at a flow rate (linear velocity) of 0.5 cm / s for 60 seconds. did. This HF spraying condition does not satisfy the above formula (2). After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 8A and 8B).
  • Example 5 The same as in Example 1 except that HF alone was sprayed with nitrogen gas diluted to a concentration of 0.1% for 20 minutes (1200 s) at a flow rate (linear velocity) of 0.5 cm / s. The procedure was carried out. This HF spraying condition satisfies the above formula (2). After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 9A and 9B).

Abstract

The present invention provides a method for producing float plate glass, in which tin blemishes are removed from the glass surface and a smooth surface is achieved by an online process when plate glass is produced by a float method. The present invention pertains to a method for producing float plate glass in which a gas containing chlorine and a gas containing fluorine are sprayed onto a glass ribbon surface in a reductive atmosphere in a float bath at 500 to 1200°C, so as to fulfill respective prescribed conditions.

Description

フロート板ガラス製造方法Float glass manufacturing method
 本発明は、フロート板ガラス製造方法に関する。 The present invention relates to a method for producing a float glass sheet.
 板ガラスの主要な製造方法であるフロート法は、フロートバスと呼ばれる、溶融金属スズを満たした溶融金属浴の浴面上に溶融ガラスを連続的に流してガラスリボンを形成し、このガラスリボンを溶融金属浴面に沿って浮かしながら前進させて成板する方法であり、平坦性の高い板ガラスを大量に生産する上で極めて優れている。 The float method, which is the main manufacturing method for flat glass, is called a float bath. A glass ribbon is formed by continuously flowing molten glass on the surface of a molten metal bath filled with molten metal tin, and this glass ribbon is melted. This is a method of laminating along a metal bath surface while moving forward, and is excellent in producing a large amount of flat glass with high flatness.
 しかし、このフロート法では、ガラスリボンの上面側に溶融金属スズによるトップスペックが発生する場合がある。トップスペックとは、溶融金属浴から蒸発したスズ成分が浴上部である天井部や壁部に凝縮し、凝縮物またはこの凝縮物が金属状態に還元されたものがガラスリボン上に小粒として落下してガラスリボンの上面に数μm~数10μmの大きさをしたスズ欠点として付着したものである。 However, in this float method, top specs due to molten metal tin may occur on the upper surface side of the glass ribbon. The top spec is that the tin component evaporated from the molten metal bath condenses on the ceiling or wall, which is the upper part of the bath, and the condensate or the condensate reduced to the metallic state falls as small particles onto the glass ribbon. In other words, it adheres to the upper surface of the glass ribbon as a tin defect having a size of several μm to several tens μm.
 板ガラスの用途が従来の建材の分野から電子材料の分野に拡大するにつれ、フロート法で製造される板ガラス表面のトップスペックが問題となってきた。例えば、液晶ディスプレイ、プラズマディスプレイパネル等のフラットパネルディスプレイ(FPD)のガラス基板として用いられる板ガラスの場合、製造された板ガラスに目視できるサイズのスズ欠点が見つかった場合、板ガラスのスズ欠点を含む部分は欠陥品として処分される。 As the use of sheet glass has expanded from the field of conventional building materials to the field of electronic materials, the top spec of the surface of the sheet glass produced by the float process has become a problem. For example, in the case of a plate glass used as a glass substrate of a flat panel display (FPD) such as a liquid crystal display and a plasma display panel, when a tin defect of a size that can be visually observed is found in the manufactured plate glass, Discarded as defective.
 近年、FPD用のガラス基板の高精細化により、板ガラスの表面に存在するスズ欠点の大きさに関する基準がより厳しくなっている。また、FPDの大型化に伴い、FPD用のガラス基板も大型化が進み、スズ欠点が発生した場合に、欠陥品として処分される板ガラスの面積がより大きくなり、生産性低下の要因になる可能性がある。 In recent years, the standard for the size of tin defects present on the surface of plate glass has become stricter due to the higher definition of glass substrates for FPD. In addition, as FPDs become larger, glass substrates for FPDs also become larger, and when a tin defect occurs, the area of the plate glass that is disposed of as a defective product becomes larger, which may cause a decline in productivity. There is sex.
 フロート法で製造される板ガラスの表面からトップスペック等の異物を除去する方法として、フッ化水素酸水溶液または2価のクロムイオンを含む酸性水溶液からなる処理液にガラス基板を浸漬して、異物を溶解および除去する方法が提案されており、例えば、特許文献1および特許文献2に開示されている。 As a method for removing foreign matters such as top specs from the surface of a plate glass produced by the float process, the glass substrate is immersed in a treatment solution comprising a hydrofluoric acid aqueous solution or an acidic aqueous solution containing divalent chromium ions. Methods for dissolution and removal have been proposed, and are disclosed in, for example, Patent Document 1 and Patent Document 2.
 また、特許文献3には、フロート板ガラスの表面に存在する微小な異物を、該異物付近で、または、該異物と接した状態で、ハロゲン化アンモニウムを高温で昇華させることにより、分解、揮散させて除去することを特徴とするフロート板ガラス表面の異物除去方法が開示されている。 Patent Document 3 discloses that a minute foreign substance existing on the surface of a float plate glass is decomposed and volatilized by sublimating ammonium halide at a high temperature in the vicinity of the foreign substance or in contact with the foreign substance. There is disclosed a method for removing foreign matter on the surface of a float plate glass, which is characterized by being removed.
日本国特開平9-295832号公報Japanese Laid-Open Patent Publication No. 9-295832 日本国特開平9-295833号公報Japanese Laid-Open Patent Publication No. 9-295833 日本国特開平10-085684号公報Japanese Patent Laid-Open No. 10-085684
 しかし、特許文献1、2の方法は、オフラインでの処理であり、かつ、フラットパネルディスプレイ用ガラス基板に求められる基準を満足できる程度までスズ欠点を除去するには、処理液への浸漬時間を長くすることが必要である。
 一方、特許文献3の方法では、フロート板ガラスの表面に存在する微小な異物付近で、または、該異物と接した状態で、ハロゲン化アンモニウムを高温で昇華させることが必要になるため、フロートバス内で実施することは難しく、フロートバス外に、この方法を実施するための設備を設ける必要がある。
 しかも、ハロゲン化アンモニウムは金属を腐食する作用があるため、処理に使用する設備の腐食も問題となる。
 さらに、上記それぞれの方法では、ガラス表面に異物が落下したことにより、異物除去後の基板表面に微小な凹部が生じていることがわかり、これが近年の高品質なディスプレイ用ガラス基板に影響を及ぼす可能性があることを発見した。
However, the methods of Patent Documents 1 and 2 are off-line processing, and in order to remove tin defects to the extent that the standards required for glass substrates for flat panel displays can be satisfied, the immersion time in the processing solution is reduced. It is necessary to lengthen it.
On the other hand, in the method of Patent Document 3, it is necessary to sublimate ammonium halide at a high temperature in the vicinity of minute foreign substances existing on the surface of the float plate glass or in contact with the foreign substances. It is difficult to implement in this method, and it is necessary to provide equipment for carrying out this method outside the float bath.
In addition, since ammonium halide has a function of corroding metals, corrosion of equipment used for processing is also a problem.
Furthermore, in each of the above methods, it can be seen that a foreign substance has fallen on the glass surface, and thus a minute concave portion is formed on the substrate surface after the foreign substance is removed, which affects a recent high-quality display glass substrate. Found that there is a possibility.
 本発明では、上記の問題を解決するため、フロート板ガラスを製造する際、オンライン処理により、ガラス表面からスズ欠点を除去し、平滑な表面を得る、フロート板ガラス製造方法を提供することを目的とする。 In the present invention, in order to solve the above problems, an object of the present invention is to provide a method for producing a float plate glass, in which, when a float plate glass is produced, a tin defect is removed from the glass surface by online processing to obtain a smooth surface. .
 本発明は、上記の目的を達成するため、フロートバス内の500~1200℃の還元雰囲気において、ガラスリボン表面に、塩素を含むガスと、フッ素を含むガスと、を、それぞれ下記式(1)、(2)に示す条件を満たすように噴霧する、フロート板ガラス製造方法を提供する。
(6.92u1+15.8)c1t1・exp(-4303/T1)>r  (1)
(式(1)中、c1は塩素を含むガスの塩素濃度[vol%]、u1は塩素を含むガスの流速(線速度)[cm/s]、t1は塩素を含むガスの噴霧時間[s]、T1はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。)
(6.92u2+15.8)c2t2・exp(-4303/T2)>r  (2)
(式(2)中、c2はフッ素を含むガスのフッ素濃度[vol%]、u2はフッ素を含むガスの流速(線速度)[cm/s]、t2はフッ素を含むガスの噴霧時間[s]、T2はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。)
 また、本発明のフロート板ガラス製造方法において、製造するガラスのガラス転移点をTgとするとき、フロートバス内のTg+30℃~Tg+300℃の還元雰囲気において、前記ガラスリボン表面に、前記塩素を含むガス、および、前記フッ素を含むガスを噴霧することが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記塩素を含むガスが塩化水素(HCl)であることが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記フッ素を含むガスがフッ化水素(HF)であることが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記塩素を含むガスの塩素濃度c1[vol%]と前記フッ素を含むガスのフッ素濃度c2[vol%]の合計c1+c2が5[vol%]より大きいことが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記塩素を含むガスの塩素濃度c1[vol%]が2[vol%]以上であることが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記フッ素を含むガスのフッ素濃度c2[vol%]が2[vol%]以上であることが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記塩素を含むガスの塩素濃度c1[vol%]と前記塩素を含むガスの噴霧時間t1[s]の積c1×t1と、前記フッ素を含むガスのフッ素濃度c2[vol%]と前記フッ素を含むガスの噴霧時間t2[s]の積c2×t2の和(c1×t1)+(c2×t2)が120[vol%×s]より大きいことが好ましい。
 また、本発明のフロート板ガラス製造方法において、前記塩素を含むガスの噴霧時間t1[s]または、前記フッ素を含むガスの噴霧時間t2[s]のいずれか一方が10[s]未満であることが好ましい。
In order to achieve the above object, the present invention provides a glass ribbon surface with a chlorine-containing gas and a fluorine-containing gas on the glass ribbon surface in a reducing atmosphere at 500 to 1200 ° C. in a float bath. The float plate glass manufacturing method sprayed so that the conditions shown in (2) may be satisfied.
(6.92u1 + 15.8) c1t1 · exp (-4303 / T1)> r (1)
(In the formula (1), c1 is the chlorine concentration [vol%] of the gas containing chlorine, u1 is the flow velocity (linear velocity) [cm / s] of the gas containing chlorine, t1 is the spraying time of the gas containing chlorine [s ], T1 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.
(6.92u2 + 15.8) c2t2 · exp (-4303 / T2)> r (2)
(In formula (2), c2 is the fluorine concentration [vol%] of the gas containing fluorine, u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine, t2 is the spraying time of the gas containing fluorine [s] ], T2 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.)
Further, in the method for producing a float plate glass of the present invention, when the glass transition point of the glass to be produced is Tg, a gas containing chlorine on the glass ribbon surface in a reducing atmosphere of Tg + 30 ° C. to Tg + 300 ° C. in the float bath, It is preferable to spray the gas containing fluorine.
In the method for producing a float plate glass of the present invention, the gas containing chlorine is preferably hydrogen chloride (HCl).
In the method for producing a float plate glass of the present invention, the gas containing fluorine is preferably hydrogen fluoride (HF).
Moreover, in the float glass manufacturing method of the present invention, the total c1 + c2 of the chlorine concentration c1 [vol%] of the gas containing chlorine and the fluorine concentration c2 [vol%] of the gas containing fluorine is greater than 5 [vol%]. Is preferred.
Moreover, in the float plate glass manufacturing method of this invention, it is preferable that chlorine concentration c1 [vol%] of the gas containing chlorine is 2 [vol%] or more.
In the method for producing a float plate glass of the present invention, the fluorine concentration c2 [vol%] of the gas containing fluorine is preferably 2 [vol%] or more.
Further, in the method for producing a float glass sheet of the present invention, the product c1 × t1 of the chlorine concentration c1 [vol%] of the gas containing chlorine and the spraying time t1 [s] of the gas containing chlorine, and the gas containing fluorine The sum (c1 × t1) + (c2 × t2) of the product c2 × t2 of the fluorine concentration c2 [vol%] and the spray time t2 [s] of the gas containing fluorine is larger than 120 [vol% × s]. preferable.
Moreover, in the float glass sheet manufacturing method of the present invention, either the spraying time t1 [s] of the gas containing chlorine or the spraying time t2 [s] of the gas containing fluorine is less than 10 [s]. Is preferred.
 また、本発明は、本発明の方法により得られるフロート板ガラスであって、フロートバス内で溶融金属と接する面に対向するトップ面から0.05μmの深さにおける塩素含有量をCl1[wt%]、前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量の最小値をCl2[wt%]とするとき、Cl1>Cl2であり、前記トップ面から0.05μmの深さにおけるフッ素含有量をF1[wt%]、前記トップ面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値をF2[wt%]とするとき、F1>F2であるフロート板ガラスを提供する。
 また、本発明は、フロート板ガラスのフロートバス内で溶融金属と接する面に対向するトップ面から0.05μmの深さにおける塩素含有量をCl1[wt%]、前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量の最小値をCl2[wt%]とするとき、Cl1>Cl2であり、前記トップ面から0.05μmの深さにおけるフッ素含有量をF1[wt%]、前記トップ面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値をF2[wt%]とするとき、F1>F2であるフロート板ガラスを提供する。
 また、前記フロート板ガラスは、前記フロート板ガラスのガラス表面に、塩素を含むガスと、フッ素を含むガスとをフロートバス内で接触させることにより表面処理を行い製造されたフロート板ガラスであることが好ましい。
また、本発明のフロート板ガラスにおいて、前記トップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、フロートバス内でガラスリボン表面に、塩素を含むガス及びフッ素を含むガスを噴霧しないフロート板ガラスの塩素またはフッ素含有量よりも、高い領域を有することが好ましい。
 また、本発明のフロート板ガラスにおいて、前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量変化の傾きを[dCl]、フッ素の含有量変化の傾きを[dHF]としたとき、[dCl]または[dHF]が負となる領域を有することが好ましい。
 また、本発明のフロート板ガラスにおいて、前記トップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、前記トップ面から10μmより深い部分の塩素またはフッ素含有量よりも、高いことが好ましい。
The present invention also relates to a float plate glass obtained by the method of the present invention, wherein the chlorine content at a depth of 0.05 μm from the top surface facing the surface in contact with the molten metal in the float bath is Cl1 [wt%]. When the minimum value of the chlorine content at a depth of more than 0.05 μm and not more than 10 μm from the top surface is Cl2 [wt%], Cl1> Cl2, and fluorine content at a depth of 0.05 μm from the top surface When the amount is F1 [wt%] and the minimum value of fluorine content at a depth of more than 0.05 μm and not more than 20 μm from the top surface is F2 [wt%], a float plate glass satisfying F1> F2 is provided.
Further, according to the present invention, the chlorine content at a depth of 0.05 μm from the top surface facing the surface in contact with the molten metal in the float bath of the float plate glass is Cl1 [wt%], and more than 0.05 μm and 10 μm from the top surface. When the minimum value of the chlorine content at the following depth is Cl2 [wt%], Cl1> Cl2, the fluorine content at a depth of 0.05 μm from the top surface is F1 [wt%], and the top When the minimum value of fluorine content at a depth of more than 0.05 μm and not more than 20 μm from the surface is F2 [wt%], a float plate glass satisfying F1> F2 is provided.
Moreover, it is preferable that the said float plate glass is the float plate glass manufactured by surface-treating by making the gas containing chlorine and the gas containing fluorine contact the glass surface of the said float plate glass in a float bath.
Further, in the float plate glass of the present invention, the chlorine or fluorine content at a depth of more than 0.05 μm and not more than 10 μm from the top surface includes a gas containing chlorine and a gas containing fluorine on the glass ribbon surface in the float bath. It is preferred to have a region that is higher than the chlorine or fluorine content of the float sheet glass that is not sprayed.
In the float plate glass of the present invention, when the slope of the chlorine content change at a depth of more than 0.05 μm and 10 μm or less from the top surface is [dCl] and the slope of the fluorine content change is [dHF], It is preferable to have a region where dCl] or [dHF] is negative.
Further, in the float plate glass of the present invention, the chlorine or fluorine content at a depth of more than 0.05 μm and not more than 10 μm from the top surface is higher than the chlorine or fluorine content in a portion deeper than 10 μm from the top surface. Is preferred.
 本発明の方法によれば、フロート板ガラスを製造する際、フロートバス内でオンライン処理により、ガラス表面からスズ欠点を除去し、平滑な表面を得ることができる。このため、FPD用のガラス基板に適した、スズ欠点が除去され、表面が平滑なフロート板ガラスを製造する際の品質、歩留まり、生産性が向上する。 According to the method of the present invention, when a float plate glass is produced, tin defects can be removed from the glass surface by online processing in a float bath, and a smooth surface can be obtained. For this reason, the tin defect suitable for the glass substrate for FPD is removed, and the quality, yield, and productivity when producing a float plate glass having a smooth surface are improved.
図1(a)、(b)は、実施例1について、混合ガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図1(a)はガス噴霧前、図1(b)はガス噴霧後の観察結果である。FIGS. 1A and 1B are the results of observing the surface of a glass sample before and after mixed gas spraying with a laser microscope in Example 1, FIG. 1A is before gas spraying, and FIG. It is an observation result after gas spraying. 図2は、実施例1及び2、比較例1のガラスサンプル表面から深さ方向における塩素含有量(wt%)のプロファイルを示したグラフである。FIG. 2 is a graph showing profiles of chlorine content (wt%) in the depth direction from the glass sample surfaces of Examples 1 and 2 and Comparative Example 1. 図3は、図1のグラフのうち、ガラスサンプル表面から深さ3μmまでを拡大した図である。FIG. 3 is an enlarged view of the graph of FIG. 1 from the glass sample surface to a depth of 3 μm. 図4は、実施例1及び2、比較例1のガラスサンプル表面から深さ方向におけるフッ素含有量(wt%)のプロファイルを示したグラフである。FIG. 4 is a graph showing profiles of fluorine content (wt%) in the depth direction from the glass sample surfaces of Examples 1 and 2 and Comparative Example 1. 図5(a)、(b)は、比較例1について、窒素ガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図5(a)はガス噴霧前、図5(b)はガス噴霧後の観察結果である。5 (a) and 5 (b) are the results of observation of the glass sample surface before and after nitrogen gas spraying with a laser microscope in Comparative Example 1, FIG. 5 (a) is before gas spraying, and FIG. It is an observation result after gas spraying. 図6(a)、(b)は、比較例2について、HClを窒素で希釈したガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図6(a)はガス噴霧前、図6(b)はガス噴霧後の観察結果である。6 (a) and 6 (b) show the results of observation of the surface of a glass sample before and after gas spraying in which HCl was diluted with nitrogen in Comparative Example 2 with a laser microscope. FIG. 6 (b) is an observation result after gas spraying. 図7(a)、(b)は、比較例3について、HClを窒素で希釈したガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図7(a)はガス噴霧前、図7(b)はガス噴霧後の観察結果である。FIGS. 7A and 7B are the results of observing the surface of a glass sample before and after gas spraying with HCl diluted with nitrogen for Comparative Example 3 with a laser microscope. FIG. 7 (b) is an observation result after gas spraying. 図8(a)、(b)は、比較例4について、HFを窒素で希釈したガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図8(a)はガス噴霧前、図8(b)はガス噴霧後の観察結果である。8 (a) and 8 (b) show the results of observation of the surface of a glass sample before and after gas spraying in which HF was diluted with nitrogen in Comparative Example 4 with a laser microscope. FIG. 8 (b) is an observation result after gas spraying. 図9(a)、(b)は、比較例5について、HFを窒素で希釈したガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図9(a)はガス噴霧前、図9(b)はガス噴霧後の観察結果である。9 (a) and 9 (b) show the results of observation of the surface of a glass sample before and after gas spraying in which HF was diluted with nitrogen in Comparative Example 5 with a laser microscope. FIG. 9 (b) is an observation result after gas spraying. 図10(a)、(b)は、実施例2について、混合ガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図10(a)はガス噴霧前、図10(b)はガス噴霧後の観察結果である。10 (a) and 10 (b) are the results of observing the surface of the glass sample before and after the mixed gas spraying with the laser microscope in Example 2, FIG. 10 (a) is before the gas spraying, and FIG. 10 (b) is the result. It is an observation result after gas spraying. 図11(a)、(b)は、実施例3について、混合ガス噴霧前後のガラスサンプル表面をレーザ顕微鏡で観察した結果であり、図11(a)はガス噴霧前、図11(b)はガス噴霧後の観察結果である。11 (a) and 11 (b) are the results of observing the surface of the glass sample before and after the mixed gas spraying with the laser microscope in Example 3, FIG. 11 (a) is before the gas spraying, and FIG. 11 (b) is the result. It is an observation result after gas spraying.
 以下、本発明の方法を説明する。
 本発明の方法では、フロートバスを移動するガラスリボン表面に、塩素を含むガスと、フッ素を含むガスと、を以下に述べる条件を満たすように噴霧する。
Hereinafter, the method of the present invention will be described.
In the method of the present invention, a gas containing chlorine and a gas containing fluorine are sprayed on the surface of the glass ribbon moving in the float bath so as to satisfy the conditions described below.
 本発明の方法において、塩素を含むガスが塩化水素(HCl)の場合を例にとると、ガラスリボン表面にトップスペックとして存在するスズ欠点を以下の反応機構により除去する。
Sn+2HCl → SnCl+H
 なお、塩素を含むガスが塩化水素(HCl)以外の場合も上記と同様の反応機構でスズ欠点が除去される。
 本発明の方法において、上記の反応機構が進行するのは、フロートバス内が高温に保持されているからである。その理由は、高温になるほどSnClの蒸気圧が高くなるため、反応によって生成したSnClがガラスリボン表面から揮散するからである。
 なお、フロートバス内の温度は、その部位によっても異なるが、500~1200℃に保持されている。また、溶融スズの酸化を防止するため、フロートバス内は水素(通常4~10体積%)と窒素(通常90~96体積%)の混合ガスで満たされて還元雰囲気となっている。
In the method of the present invention, taking the case where the gas containing chlorine is hydrogen chloride (HCl) as an example, tin defects existing as a top spec on the glass ribbon surface are removed by the following reaction mechanism.
Sn + 2HCl → SnCl 2 + H 2
Even when the gas containing chlorine is other than hydrogen chloride (HCl), the tin defect is removed by the same reaction mechanism as described above.
In the method of the present invention, the above reaction mechanism proceeds because the inside of the float bath is maintained at a high temperature. The reason is because the vapor pressure of more SnCl 2 becomes high temperature becomes high, the SnCl 2 produced by the reaction because volatilized from the glass ribbon surface.
Note that the temperature in the float bath varies depending on the part, but is maintained at 500 to 1200 ° C. In order to prevent oxidation of molten tin, the inside of the float bath is filled with a mixed gas of hydrogen (usually 4 to 10% by volume) and nitrogen (usually 90 to 96% by volume) to form a reducing atmosphere.
 本発明の方法では、塩素を含むガスとして、塩化水素(HCl)、塩素(Cl)、四塩化珪素(SiCl)、二塩化硫黄(ClS)、二塩化二硫黄(SCl)、三塩化リン(PCl)、五塩化リン(PCl)、三塩化ヨウ素(ICl)、三塩化窒素(NCl)、一塩化ヨウ素(ICl)、一塩化臭素(BrCl)、三フッ化塩素(ClF)等を用いることができる。
 これらの中でも、塩化水素(HCl)がコスト面、取扱い方法が周知等の理由から好ましい。
In the method of the present invention, as a gas containing chlorine, hydrogen chloride (HCl), chlorine (Cl 2 ), silicon tetrachloride (SiCl 4 ), sulfur dichloride (Cl 2 S), disulfur dichloride (S 2 Cl 2). ), Phosphorus trichloride (PCl 3 ), phosphorus pentachloride (PCl 5 ), iodine trichloride (I 2 Cl 6 ), nitrogen trichloride (NCl 3 ), iodine monochloride (ICl), bromine monochloride (BrCl), Chlorine trifluoride (ClF 3 ) or the like can be used.
Among these, hydrogen chloride (HCl) is preferable for reasons such as cost and handling methods are well known.
 上記の反応機構によりスズ欠点が除去されると、ガラスリボン表面のうち、スズ欠点が存在していた部位には凹部が残される。
 本発明の方法において、フッ素を含むガスの噴霧により、ガラスリボン表面全体をエッチングして、ガラスリボン表面を平坦化させる。
 本発明の方法において、フロートバス内が高温に保持されているため、フッ素を含むガスの噴霧によるガラスリボン表面のエッチングの進行が速い。
When the tin defect is removed by the above reaction mechanism, a concave portion is left in a portion of the glass ribbon surface where the tin defect existed.
In the method of the present invention, the entire surface of the glass ribbon is etched by spraying a gas containing fluorine to flatten the surface of the glass ribbon.
In the method of the present invention, since the inside of the float bath is maintained at a high temperature, the etching of the glass ribbon surface by the spray of the gas containing fluorine is fast.
 本発明の方法では、フッ素を含むガスとして、フッ化水素(HF)、フロン(例えば、クロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC))、ハロン、フッ化水素酸(HF)、フッ素単体(F)、トリフルオロ酢酸(CFCOOH)、四フッ化炭素(CF)、四フッ化ケイ素(SiF)、五フッ化リン(PF)、三フッ化リン(PF)、三フッ化ホウ素(BF)、三フッ化窒素(NF)、三フッ化塩素(ClF)等を用いることができる。
 これらの中でも、フッ化水素(HF)がコスト面、取扱い方法が周知等の理由から好ましい。
In the method of the present invention, as a gas containing fluorine, hydrogen fluoride (HF), flon (for example, chlorofluorocarbon (CFC), fluorocarbon (FC), hydrochlorofluorocarbon (HCFC), hydrofluorocarbon (HFC)), halon, Hydrofluoric acid (HF), simple fluorine (F 2 ), trifluoroacetic acid (CF 3 COOH), carbon tetrafluoride (CF 4 ), silicon tetrafluoride (SiF 4 ), phosphorus pentafluoride (PF 5 ) Phosphorus trifluoride (PF 3 ), boron trifluoride (BF 3 ), nitrogen trifluoride (NF 3 ), chlorine trifluoride (ClF 3 ), or the like can be used.
Among these, hydrogen fluoride (HF) is preferred for reasons such as cost and handling methods are well known.
 本発明の方法では、下記式(1)に示す条件を満たすように、塩素を含むガスをガラスリボン表面に噴霧する。
(6.92u1+15.8)c1t1・exp(-4303/T1)>r  (1)
 式(1)中、c1は塩素を含むガスの塩素濃度[vol%]、u1は塩素を含むガスの流速(線速度)[cm/s]、t1は塩素を含むガスの噴霧時間[s]、T1はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。
 rは好ましくは、15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
 塩素を含むガスの噴霧条件が、上記式(1)を満たさない場合、ガラスリボン表面にトップスペックとして存在するスズ欠点を十分除去できないおそれがある。
In the method of the present invention, a gas containing chlorine is sprayed on the surface of the glass ribbon so as to satisfy the condition represented by the following formula (1).
(6.92u1 + 15.8) c1t1 · exp (-4303 / T1)> r (1)
In formula (1), c1 is the chlorine concentration [vol%] of the gas containing chlorine, u1 is the flow velocity (linear velocity) of the gas containing chlorine [cm / s], and t1 is the spraying time of the gas containing chlorine [s]. , T1 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.
r is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less.
If the spraying condition of the gas containing chlorine does not satisfy the above formula (1), there is a possibility that the tin defect existing as the top spec on the surface of the glass ribbon cannot be removed sufficiently.
 本発明の方法では、下記式(2)に示す条件を満たすように、フッ素を含むガスをガラスリボン表面に噴霧する。
(6.92u2+15.8)c2t2・exp(-4303/T2)>r  (2)
(式(2)中、c2はフッ素を含むガスのフッ素濃度[vol%]、u2はフッ素を含むガスの流速(線速度)[cm/s]、t2はフッ素を含むガスの噴霧時間[s]、T2はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。)
 rは好ましくは、15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
 フッ素を含むガスの噴霧条件が、上記式(2)を満たさない場合、ガラスリボン表面を十分平滑化できないおそれがある。
In the method of the present invention, a gas containing fluorine is sprayed on the surface of the glass ribbon so as to satisfy the condition represented by the following formula (2).
(6.92u2 + 15.8) c2t2 · exp (-4303 / T2)> r (2)
(In formula (2), c2 is the fluorine concentration [vol%] of the gas containing fluorine, u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine, t2 is the spraying time of the gas containing fluorine [s] ], T2 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.)
r is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less.
When the spraying condition of the gas containing fluorine does not satisfy the above formula (2), the glass ribbon surface may not be sufficiently smoothed.
 本発明の方法において、塩素を含むガス、および、フッ素を含むガスは、それぞれ単独のガスとして、ガラスリボン表面に噴霧してもよいが、これらガスの噴霧に使用するノズル等の設備の腐食防止の観点から、窒素や希ガスといった不活性ガスをキャリアガスとして使用し、これらキャリアガスとの混合ガスとして噴霧することが好ましい。
 また、塩素を含むガス、および、フッ素を含むガスは、別々のノズルから噴霧してもよいし、両者の混合ガスとして、同一のノズルから噴霧してもよい。
 また、両者を別々のノズルから噴霧する場合、ガラスリボンの移動方向において、いずれか一方を他方よりも上流側で噴霧してもよいし、両者を同一の位置で噴霧してもよい。
 但し、いずれか一方を他方よりも上流側で噴霧する場合、それぞれのガスによる作用を考慮すると、塩素を含むガスをフッ素を含むガスよりも上流側で噴霧することが好ましい。
In the method of the present invention, the chlorine-containing gas and the fluorine-containing gas may be sprayed on the surface of the glass ribbon as individual gases, but the corrosion of equipment such as nozzles used for spraying these gases is prevented. From this point of view, it is preferable to use an inert gas such as nitrogen or a rare gas as a carrier gas and spray it as a mixed gas with these carrier gases.
Moreover, the gas containing chlorine and the gas containing fluorine may be sprayed from separate nozzles, or may be sprayed from the same nozzle as a mixed gas of both.
Moreover, when spraying both from separate nozzles, either one may be sprayed upstream from the other in the moving direction of the glass ribbon, or both may be sprayed at the same position.
However, when either one is sprayed upstream of the other, it is preferable to spray the gas containing chlorine upstream of the gas containing fluorine in consideration of the action of each gas.
 本発明の方法において、塩素を含むガス、および、フッ素を含むガスは、フロートバス内のいずれの位置でガラスリボン表面に噴霧してもよい。但し、以下の点を考慮して、これらのガスを噴霧する位置を選択することが好ましい。
・塩素を含むガスによるスズ欠点除去作用、および、フッ素を含むガスによるガラスリボン表面のエッチング作用は、高温で実施するほど高い。
・但し、ガラスリボンの移動方向について見た場合に、フロートバス内の最上流側の温度が最も高いが、この位置でガスの噴霧を実施すると、スズ欠点除去後のガラスリボン表面に新たなトップスペックは発生するおそれがある。
In the method of the present invention, the gas containing chlorine and the gas containing fluorine may be sprayed on the surface of the glass ribbon at any position in the float bath. However, it is preferable to select a position to spray these gases in consideration of the following points.
-The tin defect removing action by the gas containing chlorine and the etching action of the glass ribbon surface by the gas containing fluorine are higher as the temperature is higher.
・ However, when looking at the direction of movement of the glass ribbon, the temperature on the uppermost stream side in the float bath is the highest, but if gas is sprayed at this position, a new top is formed on the glass ribbon surface after the removal of tin defects. Specs may occur.
 また、本発明の方法で製造するガラスのガラス転移点(Tg)(℃)との関係で見た場合、フロートバス内のTg+30℃~Tg+300℃の還元雰囲気において、これらガスの噴霧を実施することが好ましく、Tg+30℃~Tg+200℃の還元雰囲気において、これらガスの噴霧を実施することがより好ましい。 Further, when viewed in relation to the glass transition point (Tg) (° C.) of the glass produced by the method of the present invention, spraying of these gases should be performed in a reducing atmosphere of Tg + 30 ° C. to Tg + 300 ° C. in the float bath. It is preferable to spray these gases in a reducing atmosphere of Tg + 30 ° C. to Tg + 200 ° C.
 本発明の方法において、塩素を含むガス、および、フッ素を含むガスの噴霧に使用するノズルの先端と、ガラスリボン表面と、の距離が広すぎると、ノズルから噴霧されたガスが拡散されて、意図した単位面積当たりの噴霧量を達成できなくなるおそれがある。
 これらガスの噴霧に使用するノズルの先端と、ガラスリボン表面と、の距離は50mm以下であることが好ましく、20mm以下であることがより好ましく、10mm以下であることがさらに好ましい。
In the method of the present invention, if the distance between the tip of the nozzle used for spraying the gas containing chlorine and the gas containing fluorine and the glass ribbon surface is too wide, the gas sprayed from the nozzle is diffused, The intended spray amount per unit area may not be achieved.
The distance between the tip of the nozzle used for spraying these gases and the glass ribbon surface is preferably 50 mm or less, more preferably 20 mm or less, and even more preferably 10 mm or less.
 本発明の方法で製造するフロート板ガラスの組成は特に限定されず、ソーダライムガラスのようなアルカリ金属成分を含有するガラスであってもよいし、アルカリ金属成分を実質的に含まない無アルカリガラスであってもよい。但し、トップスペックが除去され、表面が平滑な板ガラスが得られるという特徴から、FPD用ガラス基板として広く使用される、無アルカリガラス組成のフロート板ガラスの製造に好適である。 The composition of the float plate glass produced by the method of the present invention is not particularly limited, and may be a glass containing an alkali metal component such as soda lime glass, or a non-alkali glass substantially free of an alkali metal component. There may be. However, it is suitable for the production of float glass with a non-alkali glass composition widely used as a glass substrate for FPD because the top spec is removed and a flat glass with a smooth surface is obtained.
 本発明の方法で得られるフロート板ガラスは、その製造過程において、ガラスリボン表面に塩素を含むガス、および、フッ素を含むガスが噴霧されているため、ガラスリボン表面に塩素およびフッ素が侵入する。そのためフロート板ガラスのトップ面から所定の深さにおける塩素含有量、および、フッ素含有量が、該板ガラスのトップ面からさらに深い所定の深さの部位に比べて高くなる。
 フロート板ガラスのトップ面とは、その製造過程において、フロートバス内で溶融金属と接するボトム面に対向する面を言う。
 具体的には、本発明の方法で得られるフロート板ガラスは、フロートバス内で溶融金属と接する面に対向するトップ面から0.05μmの深さにおける塩素含有量をCl1[wt%]、該トップ面から0.05μm超10μm以下の深さにおける塩素含有量の最小値をCl2[wt%]とするとき、Cl1>Cl2であり、該トップ面から0.05μmの深さにおけるフッ素含有量をF1[wt%]、該トップ面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値をF2[wt%]とするとき、F1>F2であるフロート板ガラスである。
 なお、Cl2とF2でトップ面から深さの上限が異なるのは、ガラス中での拡散係数が塩素とフッ素では異なるためである。
 なお、FPD用ガラス基板として広く使用される、無アルカリガラス組成のフロート板ガラスを製造する際、清澄剤として塩素やフッ素をガラス原料に添加する場合がある。このような場合、すなわち、清澄剤として塩素やフッ素を含有されている場合においても、上記のCl1>Cl2、F1>F2の関係を満たす。
In the float glass obtained by the method of the present invention, chlorine and fluorine intrude into the glass ribbon surface because a gas containing chlorine and a gas containing fluorine are sprayed on the glass ribbon surface in the manufacturing process. Therefore, the chlorine content and the fluorine content at a predetermined depth from the top surface of the float glass sheet are higher than those at a predetermined depth deeper from the top surface of the glass sheet.
The top surface of the float plate glass refers to a surface that faces the bottom surface in contact with the molten metal in the float bath in the manufacturing process.
Specifically, the float glass sheet obtained by the method of the present invention has a chlorine content of Cl1 [wt%] at a depth of 0.05 μm from the top surface facing the surface in contact with the molten metal in the float bath. When the minimum chlorine content at a depth of more than 0.05 μm and not more than 10 μm from the surface is Cl2 [wt%], Cl1> Cl2, and the fluorine content at a depth of 0.05 μm from the top surface is F1 [Wt%] When the minimum value of fluorine content at a depth of more than 0.05 μm and 20 μm or less from the top surface is F2 [wt%], it is a float plate glass where F1> F2.
The reason why the upper limit of the depth differs from the top surface between Cl2 and F2 is that the diffusion coefficient in glass is different between chlorine and fluorine.
In addition, when manufacturing the float plate glass of an alkali free glass composition widely used as a glass substrate for FPD, chlorine and fluorine may be added to a glass raw material as a clarifier. In such a case, that is, even when chlorine or fluorine is contained as a fining agent, the above relations Cl1> Cl2 and F1> F2 are satisfied.
 以下に示す実施例では、フロートバス内の雰囲気を模擬した実験装置内に、表面にスズ欠点が存在するガラスサンプルを設置し、以下の手順でスズ欠点の除去を試みた。
(実施例1)
 使用するガラスサンプル表面には、半径5μmのスズ欠点が存在しているのをレーザ顕微鏡により確認した(図1(a))。
 実験条件は、表1に示したように実験装置内を水素10体積%、窒素90体積%の混合ガスで満たされた還元雰囲気に保持し、該実験装置内の温度を900℃まで昇温した。
 この状態で、ガラスサンプル表面に、HClおよびHFを、それぞれの濃度が500ppmになるように、窒素ガスで希釈した混合ガスを、流速(線速度)0.5cm/sで80分間(4800s)噴霧した。
 このHClの噴霧条件は式(1)を満たしている。
(6.92u1+15.8)c1t1・exp(-4303/T1)>r  (1)
 式(1)中、c1は塩素を含むガスの塩素濃度[vol%]、u1は塩素を含むガスの流速(線速度)[cm/s]、t1は塩素を含むガスの噴霧時間[s]、T1はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。
 一方、HFの噴霧条件は式(2)を満たしている。
(6.92u2+15.8)c2t2・exp(-4303/T2)>r  (2)
 式(2)中、c2はフッ素を含むガスのフッ素濃度[vol%]、u2はフッ素を含むガスの流速(線速度)[cm/s]、t2はフッ素を含むガスの噴霧時間[s]、T2はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。
 混合ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡及び走査型電子顕微鏡(SEM-EDX)で観察を行った。また、混合ガスの噴霧終了後、常温まで冷却した後のガラスサンプルについて、ガラスサンプル表面から深さ方向における塩素含有量およびフッ素含有量を四重極型二次イオン質量分析装置(SIMS)(PHI ADEPT-1010、アルバック・ファイ株式会社製)により測定した。
(実施例2)
 HClおよびHFの噴霧を表1に記載した条件とし、これ以外は、実施例1と同様の手順を実施した。
(実施例3)
 HClおよびHFの噴霧を表1に記載した条件とし、これ以外は、実施例1と同様の手順を実施した。
 なお、ここでは、HClおよびHFを窒素ガスで希釈した混合ガスを用いて噴霧を行ったが、HClとHFをそれぞれ窒素ガスで希釈したガスを別々に噴霧してもよい。
Figure JPOXMLDOC01-appb-T000001
In the following examples, a glass sample having a tin defect on its surface was placed in an experimental apparatus that simulated the atmosphere in the float bath, and removal of the tin defect was attempted by the following procedure.
(Example 1)
It was confirmed by a laser microscope that a tin defect having a radius of 5 μm was present on the surface of the glass sample to be used (FIG. 1 (a)).
As shown in Table 1, the experimental condition was that the inside of the experimental apparatus was maintained in a reducing atmosphere filled with a mixed gas of 10 volume% hydrogen and 90 volume% nitrogen, and the temperature in the experimental apparatus was raised to 900 ° C. .
In this state, a mixed gas diluted with nitrogen gas so that HCl and HF each have a concentration of 500 ppm is sprayed on the surface of the glass sample for 80 minutes (4800 s) at a flow rate (linear velocity) of 0.5 cm / s. did.
The spray condition of HCl satisfies the formula (1).
(6.92u1 + 15.8) c1t1 · exp (-4303 / T1)> r (1)
In formula (1), c1 is the chlorine concentration [vol%] of the gas containing chlorine, u1 is the flow velocity (linear velocity) of the gas containing chlorine [cm / s], and t1 is the spraying time of the gas containing chlorine [s]. , T1 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.
On the other hand, the spraying condition of HF satisfies the formula (2).
(6.92u2 + 15.8) c2t2 · exp (-4303 / T2)> r (2)
In formula (2), c2 is the fluorine concentration [vol%] of the gas containing fluorine, u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine, and t2 is the spraying time [s] of the gas containing fluorine. , T2 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.
After the spraying of the mixed gas, the glass sample surface was cooled to room temperature, and then the surface of the glass sample was observed with a laser microscope and a scanning electron microscope (SEM-EDX). Moreover, about the glass sample after cooling to normal temperature after completion | finish of spraying of mixed gas, the chlorine content and fluorine content in a depth direction from a glass sample surface are made into a quadrupole secondary ion mass spectrometer (SIMS) (PHI). ADEPT-1010, manufactured by ULVAC-PHI Co., Ltd.).
(Example 2)
The same procedure as in Example 1 was performed except that the spraying of HCl and HF was performed under the conditions described in Table 1.
(Example 3)
The same procedure as in Example 1 was performed except that the spraying of HCl and HF was performed under the conditions described in Table 1.
Here, spraying is performed using a mixed gas obtained by diluting HCl and HF with nitrogen gas, but gas obtained by diluting HCl and HF with nitrogen gas may be sprayed separately.
Figure JPOXMLDOC01-appb-T000001
 実施例1~3のガラスサンプル表面をレーザ顕微鏡による観察の結果、スズ欠点はほとんど除去されており、ガラスサンプル表面がほぼ平坦になっていた(図1(b)、図10(b)及び図11(b))。また、ガラスサンプル表面を走査型電子顕微鏡(SEM-EDX)で確認したところ、スズ欠点がほとんど除去されていることが確認された。
 ガラスサンプル表面から深さ方向における塩素含有量およびフッ素含有量のプロファイルを図2~4に示した。なお、図3は、図2中、ガラスサンプル表面から深さ3μmまでを拡大した図である。図から明らかなように、ガラスサンプル表面から0.05μmの深さにおける塩素含有量(Cl1)と、ガラスサンプル表面から0.05μm超10μm以下の深さにおける塩素含有量の最小値(Cl2)と、は、Cl1>Cl2の関係を満たしている。また、ガラスサンプル表面から0.05μmの深さにおけるフッ素含有量(F1)と、ガラスサンプル表面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値(F2)と、はF1>F2の関係を満たしている。
 図2~4には、HClおよびHFを含む混合ガスの代わりに、窒素ガスを噴霧した比較例1のガラスサンプルでの測定結果も示している。比較例1では、Cl1≦Cl2、F1≦F2の関係になっている。
 また、実施例1及び2のトップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、比較例1より高い領域を有している。このとき比較例1は、本発明における、フロートバス内でガラスリボン表面に、塩素を含むガス及びフッ素を含むガスを噴霧しないフロート板ガラスに相当する。
 また、実施例1及び2のトップ面から0.05μm超10μm以下の深さにおける塩素含有量変化の傾きを[dCl]、フッ素の含有量変化の傾きを[dHF]としたとき、[dCl]または[dHF]が負となる領域を有している。これに対し、比較例1の塩素含有量変化の傾きとフッ素の含有量変化の傾きは常に正であり、つまり、塩素含有量及びフッ素含有量はトップ面から深さ方向に向かって単調に増加している。
 また、実施例2においてはトップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、前記トップ面から10μmより深い部分の塩素またはフッ素含有量よりも高い値を示している。
As a result of observing the glass sample surfaces of Examples 1 to 3 with a laser microscope, tin defects were almost removed, and the glass sample surfaces were almost flat (FIG. 1B, FIG. 10B and FIG. 11 (b)). Further, when the surface of the glass sample was confirmed with a scanning electron microscope (SEM-EDX), it was confirmed that tin defects were almost removed.
The profiles of chlorine content and fluorine content in the depth direction from the glass sample surface are shown in FIGS. In addition, FIG. 3 is the figure which expanded from the glass sample surface to the depth of 3 micrometers in FIG. As is apparent from the figure, the chlorine content (Cl1) at a depth of 0.05 μm from the glass sample surface, and the minimum chlorine content (Cl2) at a depth of more than 0.05 μm and 10 μm or less from the glass sample surface. , Satisfies the relationship Cl1> Cl2. Further, the fluorine content (F1) at a depth of 0.05 μm from the glass sample surface and the minimum fluorine content (F2) at a depth of more than 0.05 μm and 20 μm or less from the glass sample surface are F1> F2 Meet the relationship.
2 to 4 also show the measurement results of the glass sample of Comparative Example 1 in which nitrogen gas is sprayed instead of the mixed gas containing HCl and HF. In Comparative Example 1, the relationship is Cl1 ≦ Cl2 and F1 ≦ F2.
Further, the content of chlorine or fluorine at a depth of more than 0.05 μm and 10 μm or less from the top surface of Examples 1 and 2 is higher than that of Comparative Example 1. At this time, Comparative Example 1 corresponds to a float plate glass in which a gas containing chlorine and a gas containing fluorine are not sprayed on the glass ribbon surface in the float bath in the present invention.
Further, when the slope of the chlorine content change at a depth of more than 0.05 μm and 10 μm or less from the top surface of Examples 1 and 2 is [dCl], and the slope of the fluorine content change is [dHF], [dCl] Or it has a region where [dHF] is negative. On the other hand, the slope of the change in chlorine content and the slope of the change in fluorine content in Comparative Example 1 are always positive, that is, the chlorine content and the fluorine content increase monotonously from the top surface in the depth direction. is doing.
In Example 2, the chlorine or fluorine content at a depth of more than 0.05 μm and not more than 10 μm from the top surface is higher than the chlorine or fluorine content in a portion deeper than 10 μm from the top surface. .
(比較例1)
 HClおよびHFをそれぞれの濃度が500ppmになるように窒素ガスで希釈した混合ガスの代わりに、窒素ガスを、流速(線速度)0.5cm/sで80分間(4800s)噴霧した以外は、実施例1と同様の手順を実施した。
 ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡により確認したところ、スズ欠点は除去されていなかった(図5(a)、(b))。
(Comparative Example 1)
Implementation was performed except that nitrogen gas was sprayed at a flow rate (linear velocity) of 0.5 cm / s for 80 minutes (4800 s) instead of a mixed gas obtained by diluting HCl and HF with nitrogen gas so that each concentration became 500 ppm. The same procedure as in Example 1 was performed.
After completion of gas spraying, the glass sample surface was cooled to room temperature and then confirmed with a laser microscope. As a result, tin defects were not removed (FIGS. 5A and 5B).
(比較例2)
 HClのみを、濃度が5%になるように、窒素ガスで希釈したガスを、流速(線速度)20cm/sで10秒間噴霧した以外は、実施例1と同様の手順を実施した。このHClの噴霧条件は上記式(1)を満たしている。
 ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡により確認したところ、スズ欠点は除去されていたが、スズ欠点が存在していた部位に凹部が確認された(図6(a)、(b))。
(Comparative Example 2)
A procedure similar to that in Example 1 was performed, except that a gas diluted with nitrogen gas so that the concentration was 5% was sprayed at a flow rate (linear velocity) of 20 cm / s for 10 seconds. The spray condition of HCl satisfies the above formula (1).
After completion of gas spraying, after cooling to room temperature, the surface of the glass sample was confirmed with a laser microscope. As a result, the tin defect was removed, but a recess was confirmed at the site where the tin defect existed (FIG. 6 ( a), (b)).
(比較例3)
 HClのみを、濃度が0.1%になるように、窒素ガスで希釈したガスを、流速(線速度)0.5cm/sで60秒間噴霧した以外は、実施例1と同様の手順を実施した。このHClの噴霧条件は上記式(1)を満たしていない。
 ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡により確認したところ、スズ欠点は除去されていなかった(図7(a)、(b))。
(Comparative Example 3)
The same procedure as in Example 1 was carried out except that only HCl was diluted with nitrogen gas so as to have a concentration of 0.1% and sprayed at a flow rate (linear velocity) of 0.5 cm / s for 60 seconds. did. The spray condition of HCl does not satisfy the above formula (1).
After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 7A and 7B).
(比較例4)
 HFのみを、濃度が0.1%になるように、窒素ガスで希釈したガスを、流速(線速度)0.5cm/sで60秒間噴霧した以外は、実施例1と同様の手順を実施した。このHFの噴霧条件は上記式(2)を満たしていない。
 ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡により確認したところ、スズ欠点は除去されていなかった(図8(a)、(b))。
(Comparative Example 4)
The same procedure as in Example 1 was carried out except that HF alone was sprayed with a gas diluted with nitrogen gas to a concentration of 0.1% at a flow rate (linear velocity) of 0.5 cm / s for 60 seconds. did. This HF spraying condition does not satisfy the above formula (2).
After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 8A and 8B).
(比較例5)
 HFのみを、濃度が0.1%になるように、窒素ガスで希釈したガスを、流速(線速度)0.5cm/sで20分間(1200s)噴霧した以外は、実施例1と同様の手順を実施した。このHFの噴霧条件は上記式(2)を満たしている。
 ガスの噴霧終了後、常温まで冷却した後、ガラスサンプル表面をレーザ顕微鏡により確認したところ、スズ欠点は除去されていなかった(図9(a)、(b))。
(Comparative Example 5)
The same as in Example 1 except that HF alone was sprayed with nitrogen gas diluted to a concentration of 0.1% for 20 minutes (1200 s) at a flow rate (linear velocity) of 0.5 cm / s. The procedure was carried out. This HF spraying condition satisfies the above formula (2).
After the gas spraying was finished, the glass sample surface was confirmed with a laser microscope after cooling to room temperature. As a result, tin defects were not removed (FIGS. 9A and 9B).
 本出願は、2013年4月24日出願の日本特許出願2013-091133に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-091133 filed on Apr. 24, 2013, the contents of which are incorporated herein by reference.

Claims (15)

  1.  フロートバス内の500~1200℃の還元雰囲気において、ガラスリボン表面に、塩素を含むガスと、フッ素を含むガスと、を、それぞれ下記式(1)、(2)に示す条件を満たすように噴霧する、フロート板ガラス製造方法。
    (6.92u1+15.8)c1t1・exp(-4303/T1)>r  (1)
    (式(1)中、c1は塩素を含むガスの塩素濃度[vol%]、u1は塩素を含むガスの流速(線速度)[cm/s]、t1は塩素を含むガスの噴霧時間[s]、T1はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。)
    (6.92u2+15.8)c2t2・exp(-4303/T2)>r  (2)
    (式(2)中、c2はフッ素を含むガスのフッ素濃度[vol%]、u2はフッ素を含むガスの流速(線速度)[cm/s]、t2はフッ素を含むガスの噴霧時間[s]、T2はガラスリボンの表面温度[K]、rはガラスリボン表面に存在するスズ欠点の半径[μm]である。)
    In a reducing atmosphere of 500 to 1200 ° C. in a float bath, a glass ribbon surface is sprayed with a gas containing chlorine and a gas containing fluorine so as to satisfy the conditions shown in the following formulas (1) and (2), respectively. A float plate glass manufacturing method.
    (6.92u1 + 15.8) c1t1 · exp (-4303 / T1)> r (1)
    (In the formula (1), c1 is the chlorine concentration [vol%] of the gas containing chlorine, u1 is the flow velocity (linear velocity) [cm / s] of the gas containing chlorine, t1 is the spraying time of the gas containing chlorine [s ], T1 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.
    (6.92u2 + 15.8) c2t2 · exp (-4303 / T2)> r (2)
    (In formula (2), c2 is the fluorine concentration [vol%] of the gas containing fluorine, u2 is the flow velocity (linear velocity) [cm / s] of the gas containing fluorine, t2 is the spraying time of the gas containing fluorine [s] ], T2 is the surface temperature [K] of the glass ribbon, and r is the radius [μm] of tin defects existing on the glass ribbon surface.)
  2.  製造するガラスのガラス転移点をTgとするとき、フロートバス内のTg+30℃~Tg+300℃の還元雰囲気において、前記ガラスリボン表面に、前記塩素を含むガス、および、前記フッ素を含むガスを噴霧する、請求項1に記載のフロート板ガラス製造方法。 When the glass transition point of the glass to be produced is Tg, the chlorine-containing gas and the fluorine-containing gas are sprayed on the surface of the glass ribbon in a reducing atmosphere of Tg + 30 ° C. to Tg + 300 ° C. in a float bath. The method for producing a float glass sheet according to claim 1.
  3.  前記塩素を含むガスが塩化水素(HCl)である請求項1または2に記載のフロート板ガラス製造方法。 The method for producing a float glass sheet according to claim 1 or 2, wherein the gas containing chlorine is hydrogen chloride (HCl).
  4.  前記フッ素を含むガスがフッ化水素(HF)である、請求項1または2に記載のフロート板ガラス製造方法。 The method for producing a float glass sheet according to claim 1 or 2, wherein the fluorine-containing gas is hydrogen fluoride (HF).
  5.  前記塩素を含むガスの塩素濃度c1[vol%]と前記フッ素を含むガスのフッ素濃度c2[vol%]の合計c1+c2が5[vol%]より大きい請求項1~4のいずれか1項に記載のフロート板ガラス製造方法。 The total c1 + c2 of the chlorine concentration c1 [vol%] of the gas containing chlorine and the fluorine concentration c2 [vol%] of the gas containing fluorine is larger than 5 [vol%]. Float glass manufacturing method.
  6.  前記塩素を含むガスの塩素濃度c1[vol%]が2[vol%]以上である請求項5に記載のフロート板ガラス製造方法。 The method for producing a float glass sheet according to claim 5, wherein a chlorine concentration c1 [vol%] of the gas containing chlorine is 2 [vol%] or more.
  7.  前記フッ素を含むガスのフッ素濃度c2[vol%]が2[vol%]以上である請求項5に記載のフロート板ガラス製造方法。 The method for producing a float sheet glass according to claim 5, wherein a fluorine concentration c2 [vol%] of the gas containing fluorine is 2 [vol%] or more.
  8.  前記塩素を含むガスの塩素濃度c1[vol%]と前記塩素を含むガスの噴霧時間t1[s]の積c1×t1と、前記フッ素を含むガスのフッ素濃度c2[vol%]と前記フッ素を含むガスの噴霧時間t2[s]の積c2×t2の和(c1×t1)+(c2×t2)が120[vol%×s]より大きい請求項1~7のいずれか1項に記載のフロート板ガラス製造方法。 A product c1 × t1 of a chlorine concentration c1 [vol%] of the gas containing chlorine and a spray time t1 [s] of the gas containing chlorine, a fluorine concentration c2 [vol%] of the gas containing fluorine, and the fluorine The sum of the product c2 × t2 (c1 × t1) + (c2 × t2) of the spraying time t2 [s] of the containing gas is greater than 120 [vol% × s]. Float plate glass manufacturing method.
  9.  前記塩素を含むガスの噴霧時間t1[s]または、前記フッ素を含むガスの噴霧時間t2[s]のいずれか一方が10[s]未満である請求項1~7のいずれか1項に記載のフロート板ガラス製造方法。 The spraying time t1 [s] of the gas containing chlorine or the spraying time t2 [s] of the gas containing fluorine is less than 10 [s]. Float glass manufacturing method.
  10.  請求項1~9のいずれか1項に記載のフロート板ガラス製造方法により得られるフロート板ガラスであって、フロートバス内で溶融金属と接する面に対向するトップ面から0.05μmの深さにおける塩素含有量をCl1[wt%]、前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量の最小値をCl2[wt%]とするとき、Cl1>Cl2であり、前記トップ面から0.05μmの深さにおけるフッ素含有量をF1[wt%]、前記トップ面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値をF2[wt%]とするとき、F1>F2であるフロート板ガラス。 A float plate glass obtained by the method for producing a float plate glass according to any one of claims 1 to 9, comprising chlorine at a depth of 0.05 µm from the top surface facing the surface in contact with the molten metal in the float bath When the amount is Cl1 [wt%] and the minimum chlorine content at a depth of 0.05 μm to 10 μm or less from the top surface is Cl2 [wt%], Cl1> Cl2, and 0.1% from the top surface. When the fluorine content at a depth of 05 μm is F1 [wt%] and the minimum value of the fluorine content at a depth of 0.05 μm to 20 μm from the top surface is F2 [wt%], F1> F2. Float plate glass.
  11.  フロート板ガラスのフロートバス内で溶融金属と接する面に対向するトップ面から0.05μmの深さにおける塩素含有量をCl1[wt%]、前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量の最小値をCl2[wt%]とするとき、Cl1>Cl2であり、前記トップ面から0.05μmの深さにおけるフッ素含有量をF1[wt%]、前記トップ面から0.05μm超20μm以下の深さにおけるフッ素含有量の最小値をF2[wt%]とするとき、F1>F2であるフロート板ガラス。 The chlorine content at a depth of 0.05 μm from the top surface facing the surface in contact with the molten metal in the float bath of the float plate glass is Cl1 [wt%], and chlorine at a depth of more than 0.05 μm and less than 10 μm from the top surface. When the minimum content value is Cl2 [wt%], Cl1> Cl2, the fluorine content at a depth of 0.05 μm from the top surface is F1 [wt%], and more than 0.05 μm from the top surface Float plate glass where F1> F2, where the minimum value of fluorine content at a depth of 20 μm or less is F2 [wt%].
  12.  前記フロート板ガラスは、前記フロート板ガラスのガラス表面に、塩素を含むガスと、フッ素を含むガスとをフロートバス内で接触させることにより表面処理を行い製造されたフロート板ガラスである請求項11に記載のフロートガラス板。 The float glass sheet according to claim 11, wherein the float glass sheet is a float glass sheet manufactured by performing a surface treatment by bringing a gas containing chlorine and a gas containing fluorine into contact with a glass surface of the float glass sheet in a float bath. Float glass plate.
  13.  前記トップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、フロートバス内でガラスリボン表面に、塩素を含むガス及びフッ素を含むガスを噴霧しないフロート板ガラスの塩素またはフッ素含有量よりも、高い領域を有する請求項11または12に記載のフロート板ガラス。 The chlorine or fluorine content of the float plate glass in which the chlorine or fluorine content at a depth of 0.05 μm or more and 10 μm or less from the top surface does not spray chlorine-containing gas and fluorine-containing gas on the glass ribbon surface in the float bath. The float glass sheet according to claim 11 or 12, having a region higher than the amount.
  14.  前記トップ面から0.05μm超10μm以下の深さにおける塩素含有量変化の傾きを[dCl]、フッ素の含有量変化の傾きを[dHF]としたとき、[dCl]または[dHF]が負となる領域を有する請求項11~13のいずれか1項に記載のフロート板ガラス。 [DCl] or [dHF] is negative when the slope of the chlorine content change at a depth of 0.05 μm to 10 μm from the top surface is [dCl] and the slope of the fluorine content change is [dHF]. The float glass sheet according to any one of claims 11 to 13, which has a region to be formed.
  15.  前記トップ面から0.05μm超10μm以下の深さにおける塩素またはフッ素の含有量が、前記トップ面から10μmより深い部分の塩素またはフッ素含有量よりも、高い請求項11~14のいずれか1項に記載のフロート板ガラス。
     
    15. The chlorine or fluorine content at a depth of more than 0.05 μm and 10 μm or less from the top surface is higher than the chlorine or fluorine content in a portion deeper than 10 μm from the top surface. The float plate glass as described in 2.
PCT/JP2014/061499 2013-04-24 2014-04-23 Method for producing float plate glass WO2014175362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157030298A KR102152196B1 (en) 2013-04-24 2014-04-23 Method for producing float plate glass
JP2015513820A JP6341199B2 (en) 2013-04-24 2014-04-23 Float glass manufacturing method
CN201480023330.0A CN105143132B (en) 2013-04-24 2014-04-23 Float flat glass manufacture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013091133 2013-04-24
JP2013-091133 2013-04-24

Publications (1)

Publication Number Publication Date
WO2014175362A1 true WO2014175362A1 (en) 2014-10-30

Family

ID=51791929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061499 WO2014175362A1 (en) 2013-04-24 2014-04-23 Method for producing float plate glass

Country Status (5)

Country Link
JP (1) JP6341199B2 (en)
KR (1) KR102152196B1 (en)
CN (1) CN105143132B (en)
TW (1) TW201500303A (en)
WO (1) WO2014175362A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045405A1 (en) * 2013-09-30 2015-04-02 日本板硝子株式会社 Method for producing glass sheet
WO2015115100A1 (en) * 2014-01-31 2015-08-06 日本板硝子株式会社 Process for producing glass plate, and glass plate
CN106242251A (en) * 2015-06-05 2016-12-21 旭硝子株式会社 Float glass making process and float glass manufacturing device
JPWO2015029455A1 (en) * 2013-09-02 2017-03-02 日本板硝子株式会社 Glass plate manufacturing method and glass plate
KR20180077166A (en) * 2015-10-29 2018-07-06 아사히 가라스 가부시키가이샤 Glass substrate for display, and method for manufacturing glass substrate for display
JP2022542479A (en) * 2020-06-08 2022-10-03 蚌埠中光▲電▼科技有限公司 High-generation TFT-LCD glass substrate production line

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106946474B (en) * 2017-04-10 2019-06-28 蚌埠玻璃工业设计研究院 A kind of electronical display glues the online minimizing technology of tin with float flat glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085684A (en) * 1996-09-11 1998-04-07 Asahi Glass Co Ltd Method for removing foreign matter on surface of float glass substrate
JP2007308331A (en) * 2006-05-18 2007-11-29 Nippon Sheet Glass Co Ltd Float bath

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09295833A (en) 1996-04-26 1997-11-18 Seimi Chem Co Ltd Method for smoothing float glass substrate
JPH09295832A (en) 1996-04-26 1997-11-18 Asahi Glass Co Ltd Method for removing foreign matter from surface of glass substrate
JP5359271B2 (en) * 2006-07-13 2013-12-04 旭硝子株式会社 Non-alkali glass substrate, method for producing the same, and liquid crystal display panel
KR101245278B1 (en) * 2009-08-07 2013-03-19 주식회사 엘지화학 Conductive substrate and method for manufacturing the same
JPWO2013011980A1 (en) * 2011-07-20 2015-02-23 旭硝子株式会社 Method for producing float glass
US20150122319A1 (en) * 2011-07-28 2015-05-07 David A. Strickler Apcvd of doped titanium oxide and the coated article made thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085684A (en) * 1996-09-11 1998-04-07 Asahi Glass Co Ltd Method for removing foreign matter on surface of float glass substrate
JP2007308331A (en) * 2006-05-18 2007-11-29 Nippon Sheet Glass Co Ltd Float bath

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015029455A1 (en) * 2013-09-02 2017-03-02 日本板硝子株式会社 Glass plate manufacturing method and glass plate
US10150696B2 (en) 2013-09-30 2018-12-11 Nippon Sheet Glass Company, Limited Method for producing glass sheet
WO2015045405A1 (en) * 2013-09-30 2015-04-02 日本板硝子株式会社 Method for producing glass sheet
JPWO2015045405A1 (en) * 2013-09-30 2017-03-09 日本板硝子株式会社 Manufacturing method of glass plate
WO2015115100A1 (en) * 2014-01-31 2015-08-06 日本板硝子株式会社 Process for producing glass plate, and glass plate
JPWO2015115100A1 (en) * 2014-01-31 2017-03-23 日本板硝子株式会社 Glass plate manufacturing method and glass plate
US10358381B2 (en) 2014-01-31 2019-07-23 Nippon Sheet Glass Company, Limited Method for producing glass sheet, and glass sheet
CN106242251B (en) * 2015-06-05 2022-01-04 Agc株式会社 Float glass production method and float glass production device
CN106242251A (en) * 2015-06-05 2016-12-21 旭硝子株式会社 Float glass making process and float glass manufacturing device
KR20180077166A (en) * 2015-10-29 2018-07-06 아사히 가라스 가부시키가이샤 Glass substrate for display, and method for manufacturing glass substrate for display
KR102594924B1 (en) 2015-10-29 2023-10-30 에이지씨 가부시키가이샤 Glass substrate for display, and method of manufacturing the glass substrate for display
JP2022542479A (en) * 2020-06-08 2022-10-03 蚌埠中光▲電▼科技有限公司 High-generation TFT-LCD glass substrate production line
JP7300553B2 (en) 2020-06-08 2023-06-29 蚌埠中光▲電▼科技有限公司 High-generation TFT-LCD glass substrate production line

Also Published As

Publication number Publication date
CN105143132A (en) 2015-12-09
TW201500303A (en) 2015-01-01
JPWO2014175362A1 (en) 2017-02-23
KR102152196B1 (en) 2020-09-04
KR20160004275A (en) 2016-01-12
CN105143132B (en) 2017-08-08
JP6341199B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6341199B2 (en) Float glass manufacturing method
JP6377053B2 (en) Glass plate and method for producing glass plate
KR100828112B1 (en) Surface treating solution for fine processing of glass base plate having a plurality of components
TWI707833B (en) Glass substrate for display and method for manufacturing glass substrate for display
WO2015046117A1 (en) Glass plate production method
JP6377604B2 (en) Glass plate and method for producing glass plate
JP6368942B2 (en) Manufacturing method of glass plate
US20180009707A1 (en) Glass sheet
JP2007053361A (en) Etching device of glass substrate
TWI666179B (en) Glass plate and manufacturing method thereof
JP6428630B2 (en) Glass plate
WO2014123089A1 (en) Glass manufacturing method
WO2015046107A1 (en) Glass plate
JP2016079081A (en) Method for manufacturing float plate glass
EP2679553B1 (en) Method for forming glass surface lubricating layer and method for manufacturing glass using same
JP2016064926A (en) Glass manufacturing method
JP7331628B2 (en) Cover glass manufacturing method and cover glass
KR101180517B1 (en) method of etching the glass surface by using liquid waste and etching composite
WO2015046106A1 (en) Glass plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480023330.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030298

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015513820

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14788009

Country of ref document: EP

Kind code of ref document: A1