WO2014175292A1 - Magnetic disk-use glass substrate fabrication method and magnetic disk fabrication method - Google Patents

Magnetic disk-use glass substrate fabrication method and magnetic disk fabrication method Download PDF

Info

Publication number
WO2014175292A1
WO2014175292A1 PCT/JP2014/061342 JP2014061342W WO2014175292A1 WO 2014175292 A1 WO2014175292 A1 WO 2014175292A1 JP 2014061342 W JP2014061342 W JP 2014061342W WO 2014175292 A1 WO2014175292 A1 WO 2014175292A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
cleaning
magnetic disk
polishing
ions
Prior art date
Application number
PCT/JP2014/061342
Other languages
French (fr)
Japanese (ja)
Inventor
秀造 徳光
尚宏 神谷
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG11201508659PA priority Critical patent/SG11201508659PA/en
Priority to CN201480021802.9A priority patent/CN105122363B/en
Priority to JP2015513777A priority patent/JP6081580B2/en
Publication of WO2014175292A1 publication Critical patent/WO2014175292A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for a magnetic disk mounted on a magnetic disk device such as a hard disk drive (HDD) and a method for manufacturing a magnetic disk.
  • a magnetic disk device such as a hard disk drive (HDD)
  • HDD hard disk drive
  • a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD).
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate.
  • the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
  • the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible.
  • the demand for further increase in recording capacity of HDDs has only increased, and in order to realize this, it has become necessary to further improve the quality of glass substrates for magnetic disks. A clean glass substrate surface is required.
  • Patent Document 1 discloses a method of cleaning a substrate with an alkali (pH 8 to 13) after polishing using a polishing liquid containing a polyvalent amine.
  • Patent Document 2 discloses a method of cleaning a substrate with an alkaline cleaner having a pH of 10 or more containing an alkaline agent and aldonic acids after polishing.
  • the influence of the substrate on the media characteristics becomes large for the following reasons.
  • the flying height of the magnetic head (the gap between the magnetic head and the surface of the medium (magnetic disk)) is greatly reduced (lower flying height).
  • the distance between the magnetic head and the magnetic layer of the medium is reduced, so that signals of smaller magnetic particles can be picked up, and high recording density can be achieved.
  • DFH Dynamic Flying Height
  • a heating unit such as a very small heater in the vicinity of the recording / reproducing element part of the magnetic head and projecting only the periphery of the recording / reproducing element part toward the medium surface.
  • the gap between the element portion of the magnetic head and the medium surface will be extremely small, less than 2 nm or less than 1 nm.
  • extremely small foreign matter for example, a small one having a length in the in-plane direction of the main surface of about 10 to 40 nm
  • the alkaline agent refers to a substance that exhibits alkalinity when dissolved in water.
  • the present invention has been made to solve such a conventional problem.
  • the object of the present invention is to perform a cleaning process without first degrading the smooth surface roughness obtained by precision polishing as much as possible. And, as a result, to provide a method for manufacturing a glass substrate for magnetic disk that can achieve low roughness (high smoothness).
  • glass for magnetic disk capable of performing highly clean cleaning It is to provide a method for manufacturing a substrate.
  • the present inventors sought a method for suppressing an increase in the surface roughness of the substrate while maintaining the cleaning power by alkali cleaning. As a result, it was ascertained that by using a specific alkaline agent, the increase in roughness can be specifically suppressed. It was also found that not only the alkalinity of the alkali agent used for washing but also the kind of cation paired with OH ions greatly affects the amount of increase in roughness. Furthermore, it was found that the degree of surface roughness after cleaning varies depending on the type of organic alkali agent and the product lot, due to the influence of different amounts of sodium ions and potassium ions present in the cleaning liquid.
  • organic alkalis such as tetramethylammonium hydroxide (TMAH) originally contain neither sodium nor potassium ions, but sodium and potassium are inevitably mixed in industrial production processes. It was considered that this was involved in the surface roughness of the glass substrate.
  • TMAH tetramethylammonium hydroxide
  • the present inventors completed the present invention as a result of intensive studies. That is, the present invention has the following configuration.
  • (Configuration 1) A method of manufacturing a glass substrate for a magnetic disk including a cleaning process of a glass substrate, wherein the cleaning process includes a process of bringing the glass substrate into contact with a cleaning liquid containing at least one of guanidine and imidazole.
  • the relationship between the amount of increase in the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the total concentration of sodium ions and potassium ions in the cleaning solution used for the cleaning treatment was determined in advance, Based on the relationship, the total concentration of sodium ions and potassium ions in the cleaning liquid is determined so that the increase in surface roughness (Ra) is 0.06 nm or less, and the total concentration of sodium ions and potassium ions in the cleaning liquid is determined.
  • (Configuration 2) A method for producing a glass substrate for a magnetic disk comprising a glass substrate cleaning treatment, wherein the glass substrate contains at least one of sodium and potassium in a glass component, and a cleaning liquid containing at least one of guanidine and imidazole. And performing a cleaning process on the glass substrate having a main surface mirror-polished while exchanging at least a part of the cleaning liquid so that the total amount of sodium ions and potassium ions in the cleaning liquid does not exceed 200 ppm.
  • a method for producing a glass substrate for a magnetic disk including a cleaning process for a glass substrate, wherein the cleaning process includes a process of bringing the glass substrate into contact with a cleaning liquid containing at least one of guanidine and imidazole, and sodium in the cleaning liquid
  • the cleaning treatment is performed while suppressing the total amount of ions and potassium ions to less than 200 ppm.
  • (Configuration 4) The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 3, wherein the glass substrate contains at least one of sodium and potassium in a glass component.
  • the cleaning liquid further contains at least one substance among a surfactant, a chelating agent, and a dispersing agent, and the cleaning process is performed while suppressing the total amount of sodium ions and potassium ions in the cleaning liquid to less than 200 ppm.
  • (Configuration 8) The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 7, wherein the pH of the cleaning liquid is 10 or more.
  • (Configuration 9) 9. The magnetic according to any one of configurations 1 to 8, wherein the cleaning process is a cleaning process performed after a final polishing process in a polishing process in which a main surface of the glass substrate is polished using polishing abrasive grains.
  • a method for producing a glass substrate for a disk. (Configuration 10) The method for producing a glass substrate for a magnetic disk according to claim 9, wherein the polishing liquid used for the final polishing is alkaline.
  • a magnetic disk manufacturing method comprising: forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 10.
  • a glass substrate for a magnetic disk capable of performing a cleaning process without degrading the smooth surface roughness obtained by precision polishing as much as possible and, as a result, achieving a low roughness (high smoothness).
  • the manufacturing method of can be provided.
  • cleaning can be provided.
  • a high-quality glass substrate for a magnetic disk that can further reduce the roughness of the main surface of the substrate and reduce surface defects due to adhesion of foreign substances or the like from the conventional product at low cost. It is possible to manufacture.
  • the glass substrate for a magnetic disk obtained by the present invention can be suitably used as a substrate for the next generation in which the demand for the surface quality of the substrate is particularly stricter than the present. Further, by using the glass substrate obtained by the present invention, a highly reliable magnetic disk capable of long-term stable operation even when combined with a magnetic head with an extremely low flying height design equipped with a DFH function is obtained. Can do.
  • the glass substrate for a magnetic disk is usually a rough grinding step (rough lapping step), a shape processing step, a fine grinding step (fine lapping step), an end surface polishing step, a main surface polishing step (first polishing step, second polishing step). It is manufactured through a chemical strengthening process.
  • a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing.
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
  • grinding lapping
  • This grinding process usually uses a double-sided lapping machine to grind the main surface of the glass substrate using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
  • polishing is performed to obtain a highly accurate flat surface (mirror surface).
  • a polishing pad such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica.
  • the polishing liquid in the present embodiment contains a pH adjusting agent for adjusting the pH of the polishing liquid and other additives as required in addition to the combination of the abrasive and water as a solvent. Also good.
  • polishing process (especially final grinding
  • polishing liquid for example, sulfuric acid is added to the polishing liquid to adjust the pH to a range of 2 to 4.
  • the reason why the polishing liquid adjusted to the acidic region is preferably used is from the viewpoint of productivity and cleanliness.
  • the pH of the polishing liquid when polishing under alkaline conditions is preferably 10 or more, and more preferably 11 or more. Moreover, it is preferable to set it as 13 or less from a viewpoint of ease of handling.
  • the abrasive grains such as colloidal silica contained in the polishing liquid those having an average particle diameter of about 10 to 100 nm are preferably used from the viewpoint of polishing efficiency.
  • the abrasive grains contained in the polishing liquid used in the final polishing step (second polishing step, which will be described later) have an average particle size of 10 from the viewpoint of further reducing the surface roughness. It is preferable to use a material having a thickness of about 40 nm, particularly a fine material having a size of about 10-20 nm.
  • the finer the abrasive grain the harder it is to remove once adsorbed to the glass substrate.
  • the cleaning treatment of the present invention is applied after polishing of ultrafine colloidal silica abrasive grains having an average particle diameter of 20 nm or less, the abrasive grains are cleaned and removed while maintaining a very low surface roughness. It is effective because it can be cleaned.
  • the average particle size is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”).
  • the cumulative average particle diameter (50% diameter) is specifically a value obtained by measurement using a particle diameter / particle size distribution measuring apparatus.
  • generated by hydrolyzing an organosilicon compound can be used for the colloidal silica abrasive grain used for this invention.
  • abrasive grains do not easily aggregate with each other, they easily adhere firmly to the glass substrate surface after the polishing step, and it is effective to apply the cleaning treatment according to the present invention.
  • the polishing method in the polishing step is not particularly limited.
  • the polishing pad and the glass substrate are brought into contact with the glass substrate and the polishing pad while supplying the polishing liquid containing the abrasive grains.
  • the surface of the glass substrate may be polished in a mirror shape by relatively moving.
  • FIG. 3 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a glass substrate polishing process.
  • the double-side polishing apparatus shown in FIG. 3 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3.
  • a polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between 5 and the lower surface plate 6.
  • the workpiece 1 held by the carrier 4, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6, and the upper and lower surface plates 5, 6 are polished.
  • the carrier 4 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished.
  • the polishing pad for finishing polishing is preferably a polishing pad (suede pad) of a soft polisher.
  • the polishing pad preferably has an Asker C hardness of 60 to 80.
  • the contact surface of the polishing pad with the glass substrate is preferably made of a foamed resin with an open foam pore, particularly foamed polyurethane. When polishing is performed in this manner, the surface of the glass substrate can be polished into a smooth mirror surface.
  • the cleaning process in a cleaning process for cleaning a glass substrate with a cleaning liquid containing a cleaning agent, which is performed after the polishing process of the main surface of the glass substrate, the cleaning process has an etching property with respect to the glass substrate. It is characterized by including a treatment of bringing a glass substrate into contact with a cleaning liquid containing a specific alkaline agent, specifically, at least one of guanidine and imidazole.
  • the present inventors have specifically increased the roughness by using a specific alkaline agent, that is, guanidine. I found out that it could be suppressed.
  • a specific alkaline agent that is, guanidine.
  • the above guanidine has a high alkalinity (for example, equivalent to KOH) and has a large effect of removing foreign substances due to the etching action on glass, there is little increase in the roughness of the substrate surface after cleaning. Therefore, by cleaning the glass substrate with a cleaning solution containing guanidine as an alkaline cleaner, low roughness (high smoothness) in the glass substrate after cleaning can be realized, and good cleanability can be obtained, and high cleanliness can be obtained. Can be achieved.
  • the content of guanidine in the cleaning liquid is not particularly limited, but is preferably in the range of 0.005 mol / liter to 1 mol / liter, for example.
  • the etching rate is lowered, so that it takes time to obtain the foreign matter removing effect by the etching action on the glass, and the productivity may be deteriorated.
  • the present inventors can suppress the increase in roughness specifically by using imidazole.
  • the imidazole also has high alkalinity (e.g., equivalent to KOH), and has a small increase in the roughness of the substrate surface after cleaning, despite the large effect of removing foreign matter due to the etching action on glass. Therefore, by washing the glass substrate with a cleaning solution containing imidazole as an alkali cleaning agent, low roughness (high smoothness) in the glass substrate after washing can be realized, and good cleanability can be obtained and high cleanliness can be obtained. Can be achieved.
  • the content of imidazole in the cleaning liquid is not particularly limited, but is preferably in the range of 0.005 mol / liter to 1 mol / liter, for example.
  • the etching rate becomes low, so that it takes time to obtain the foreign matter removing effect by the etching action on the glass, and the productivity is deteriorated.
  • the content of imidazole is more than 1 mol / liter, sufficient alkali cleaning action can be obtained, but the etching rate for glass becomes too fast, and there is a possibility that the increase in the roughness of the substrate surface after cleaning becomes large. .
  • the above organic alkali agents such as guanidine and imidazole are highly soluble in water, exhibit strong alkalinity when dissolved in water, and have a large foreign matter removing effect due to the etching action on glass, but the surface of the surface by etching is high. Roughness can be suppressed.
  • this mechanism is not necessarily clear, it is considered as follows. That is, in the case of potassium ions or sodium ions, bonding to OH groups on the glass substrate surface (external silanol groups or internal silanol groups generated by hydrolyzing siloxane bonds (O—Si—O bonds)) causes etching of the bonded portions.
  • the above guanidine is more effective than the above imidazole. This is presumed to be because the above-mentioned effects are large because the above-mentioned guanidine is more basic.
  • the guanidine and the imidazole may be used in combination.
  • the alkali agent when a strong alkali such as KOH or NaOH is used as the alkali agent, the effect of removing foreign matter by a good etching action can be obtained, but the roughness of the glass substrate surface after cleaning is greatly increased. According to the study by the present inventors, it has been found that in this case, not only the alkalinity of these alkali agents but also the presence of cations such as K ions and Na ions are involved in increasing the roughness of the substrate.
  • a strong alkali such as KOH or NaOH
  • the present inventors have found that it is preferable to perform the cleaning treatment while suppressing the total amount of Na ions and K ions in the alkaline cleaning liquid to less than 200 ppm. Thereby, the etching action by OH ions of the alkaline agent contained in the cleaning liquid is obtained, and on the other hand, by suppressing the abundance of Na ions and K ions in the cleaning liquid, the synergistic action of the alkali metal ions and OH ions. An increase in the roughness of the substrate can be suppressed.
  • the cleaning treatment while suppressing the total amount of Na ions and K ions in the alkaline cleaning liquid to 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less.
  • To control or control the content of sodium ions and potassium ions in the cleaning solution measure the content of these ions in the cleaning solution by sampling the cleaning solution at the start of cleaning or at a predetermined timing during cleaning. However, when it can exceed the predetermined value, it can be adjusted by reducing the content of these ions by means such as addition of a chelating agent or the like for trapping the ions, dilution with water, or replacement of the washing solution.
  • the relationship between the cleaning time and the number of batches (the number of cleaning processes) and the concentration of Na ions and K ions in the cleaning liquid is previously grasped, and based on the grasped relationship. You may perform the process which adjusts content of Na ion and K ion.
  • the cleaning step is performed while suppressing the total amount of Na ions and K ions in the alkali cleaning solution by elution of the glass component to less than 200 ppm.
  • the content of Na ions and K ions in the cleaning liquid can be examined by, for example, an ion chromatography method or an ICP method using the cleaning liquid sampled from the cleaning tank.
  • ppm means mass ppm (mass ratio expressed in parts per million).
  • the cleaning liquid contains an interface in addition to the guanidine or the imidazole.
  • cleaning agents such as an activator, a chelating agent, and a dispersing agent suitably.
  • the surfactant that can be preferably used in the present invention include anionic surfactants such as sodium alkyl sulfate ester, fatty acid sodium, and alkylaryl sulfonate, and nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene derivatives.
  • the chelating agent include aminocarboxylic acids such as EDTA, organic acids such as citric acid, and salts thereof.
  • examples of the dispersant include phosphates, sulfates, and polymer dispersants.
  • these detergents such as surfactants, chelating agents, and dispersants are usually formulated with alkali salts (potassium salts, sodium salts, etc.), even when these detergents are included in the cleaning liquid, It is preferable to perform the washing treatment while keeping the total amount of sodium ions and potassium ions below 200 ppm. More preferably, the washing treatment is performed while the amount is suppressed to 100 ppm or less, and more preferably 10 ppm or less. In such a case, it is preferable to use a quaternary ammonium cation such as tetramethylammonium ion to form a quaternary ammonium salt.
  • a quaternary ammonium cation such as tetramethylammonium ion
  • the amount added can be increased without increasing the amount of sodium ions or potassium ions.
  • the cleaning treatment is usually performed by, for example, contacting (for example, dipping) the glass substrate after the polishing step into a cleaning tank containing a cleaning liquid containing at least one of the guanidine and the imidazole and a necessary additive. . At this time, it is also preferable to apply ultrasonic waves in order to increase the cleaning effect.
  • the liquid temperature of the cleaning liquid, the cleaning time, and the like can be set as appropriate.
  • the difference between the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment may be within 0.06 nm. More preferably, it is 0.05 nm or less, more preferably 0.03 nm or less, and still more preferably 0.01 nm or less. That is, according to the present invention, it is possible to suppress an increase in roughness of the substrate surface due to alkali cleaning.
  • the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment is an ultra-smooth surface of 0.10 nm or less. According to the present invention, an increase in the surface roughness of the substrate due to alkali cleaning can be suppressed, so that the ultra-smooth substrate surface roughness obtained by the polishing process can be prevented from being deteriorated as much as possible.
  • the pH of the cleaning liquid is 10 or more. According to the present invention, even if the cleaning liquid has a high pH (strong alkali), since the increase in the roughness of the substrate surface is small, as a result, it is possible to perform highly clean cleaning while suppressing the increase in roughness. is there. More preferably, it is 11 or more. When the pH is less than 10, the etching rate becomes low, and thus it takes time to obtain the effect of removing foreign matter by the etching action on the glass, and the productivity may be deteriorated.
  • a preferred embodiment of the present invention is a method for manufacturing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the cleaning process contacts the glass substrate with a cleaning liquid containing at least one of guanidine and imidazole.
  • the amount of increase in surface roughness (Ra) of the main surface of the glass substrate after the cleaning process before the cleaning process and the total concentration of sodium ions and potassium ions in the cleaning liquid used for the cleaning process A relationship is obtained in advance, and based on the obtained relationship, a total concentration of sodium ions and potassium ions in the cleaning solution at which the increase amount of the surface roughness (Ra) is 0.06 nm or less is determined, and the cleaning solution
  • the main surface is mirrored while maintaining the condition that the total concentration of sodium ions and potassium ions is not more than the determined concentration.
  • a process for producing a glass substrate for a magnetic disk which comprises carrying out the cleaning process of the polished the glass substrate.
  • the cleaning process can be performed so that the amount of increase in the roughness of the glass substrate surface due to the cleaning becomes a predetermined value or less.
  • Another preferred embodiment of the present invention is a method for manufacturing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the glass substrate contains at least one component of sodium and potassium in the glass component. And cleaning the glass substrate whose main surface is mirror-polished while using a cleaning solution containing at least one of guanidine and imidazole and changing the solution when the total amount of sodium ions and potassium ions in the cleaning solution exceeds 200 ppm.
  • a method for manufacturing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the glass substrate contains at least one component of sodium and potassium in the glass component.
  • cleaning the glass substrate whose main surface is mirror-polished while using a cleaning solution containing at least one of guanidine and imidazole and changing the solution when the total amount of sodium ions and potassium ions in the cleaning solution exceeds 200 ppm.
  • the total amount of sodium ions and potassium ions in the washing solution is 200 ppm. If the amount exceeds the value, the total amount of sodium ions and potassium ions in the cleaning liquid can be suppressed to less than 200 ppm by exchanging the liquid with a new cleaning liquid, so that an increase in the roughness of the glass substrate surface can be suppressed.
  • a method for producing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the cleaning process is performed on a cleaning liquid containing at least one of guanidine and imidazole.
  • a method for producing a glass substrate for a magnetic disk comprising the step of bringing a glass substrate into contact, wherein the cleaning treatment is performed while the total amount of sodium ions and potassium ions in the cleaning liquid is suppressed to less than 200 ppm. According to such an embodiment, since the total amount of sodium ions and potassium ions in the cleaning liquid can be suppressed to less than 200 ppm, an increase in the roughness of the glass substrate surface can be suppressed.
  • the polishing process includes a first polishing process for removing scratches and distortions remaining in the lapping process as described above, and a glass substrate while maintaining a flat surface obtained in the first polishing process.
  • it is performed through two stages of the second polishing step that finishes the surface roughness of the main surface into a smooth mirror surface (however, multistage polishing of three or more stages may be performed).
  • the cleaning process of the present invention to a cleaning process performed after a polishing process for polishing a main surface of a glass substrate using a polishing liquid adjusted to an alkaline region containing abrasive grains of colloidal silica. is there.
  • a polishing process for polishing a main surface of a glass substrate using a polishing liquid adjusted to an alkaline region containing abrasive grains of colloidal silica. is there.
  • polishing the glass substrate with acid some elements are removed from the glass substrate surface by the leaching action with the acid, and then the etching action becomes uneven when the washing is performed with the alkali.
  • the glass substrate surface is greatly roughened. Such a phenomenon is not observed when polishing is performed under conditions adjusted to be alkaline, and the glass substrate surface roughness can be relatively lowered.
  • the glass (the glass type) constituting the glass substrate is preferably an aluminosilicate glass.
  • Amorphous aluminosilicate glass is more preferable.
  • Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good.
  • SiO 2 is 58 wt% to 75 wt%
  • Al 2 O 3 is 5 wt% to 23 wt%
  • Li 2 O is 3 wt% to 10 wt%
  • An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less can be used.
  • SiO 2 is 62 wt% to 75 wt%
  • Al 2 O 3 is 5 wt% to 15 wt%
  • Li 2 O is 4 wt% to 10 wt%
  • Na 2 O is 4 wt%.
  • the ZrO 2 5.5 wt% to 15 wt% or less, while containing as the main component, the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, Al 2 O 3
  • An amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of / ZrO 2 of 0.4 or more and 2.5 or less can be obtained.
  • heat resistance may be required as a characteristic of next-generation substrates.
  • the heat-resistant glass in this case are 50 to 75% SiO 2 , 0 to 6% Al 2 O 3 , 0 to 2% BaO, and 0 to 3% Li 2 O in terms of mol%.
  • the surface of the glass substrate after the polishing process has an arithmetic average surface roughness Ra of 0.20 nm or less, particularly 0.15 nm or less, more preferably 0.10 nm or less.
  • the maximum roughness Rmax is 2.0 nm or less, particularly 1.5 nm or less, more preferably 1.0 nm or less.
  • Ra and Rmax are roughnesses calculated in accordance with Japanese Industrial Standard (JIS) B0601: 1982. These surfaces are preferably mirror surfaces.
  • the surface roughness (for example, the maximum roughness Rmax, the arithmetic average roughness Ra) is measured by measuring the range of 1 ⁇ m ⁇ 1 ⁇ m with a resolution of 512 ⁇ 512 pixels using an atomic force microscope (AFM). It is practically preferable to obtain the surface roughness of the obtained surface shape.
  • AFM atomic force microscope
  • chemical strengthening treatment before or after the polishing process.
  • a method of chemical strengthening treatment for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range that does not exceed the temperature of the glass transition point, for example, a temperature of 300 degrees Celsius or more and 400 degrees Celsius or less is preferable.
  • the chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate.
  • the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.
  • alkali metal nitric acid such as potassium nitrate or sodium nitrate can be preferably used.
  • the disk-shaped glass substrate having both main surfaces 11, 11 and an outer peripheral side end surface 12 and an inner peripheral side end surface 13 therebetween as shown in FIG. 1 and FIG. 1 is obtained.
  • the outer peripheral side end surface 12 includes chamfered surfaces 12b and 12b between the side wall surface 12a and the main surfaces on both sides thereof.
  • the inner peripheral side end face 13 has the same shape.
  • the present invention also provides a method for producing a magnetic disk using the above glass substrate for a magnetic disk.
  • the magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention.
  • a material for the magnetic layer a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used.
  • a method of forming the magnetic layer it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
  • the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled.
  • the easy magnetization direction of the magnetic layer can be oriented along the normal line of the magnetic disk surface.
  • a perpendicular magnetic recording type magnetic disk is manufactured.
  • the underlayer can be formed by sputtering as with the magnetic layer.
  • a protective layer and a lubricating layer may be formed in this order on the magnetic layer.
  • the protective layer an amorphous hydrogenated carbon-based protective layer is suitable.
  • the protective layer can be formed by a plasma CVD method.
  • a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used.
  • the main component is a perfluoropolyether compound having a terminal hydroxyl group as a polar functional group.
  • the lubricating layer can be applied and formed by a dip method.
  • a glass substrate made of a disc-shaped amorphous aluminosilicate glass having a diameter of 66 mm ⁇ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die. .
  • a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method.
  • the aluminosilicate glass glass containing SiO 2 : 58 to 75% by weight, Al 2 O 3 : 5 to 23% by weight, Li 2 O: 3 to 10% by weight, Na 2 O: 4 to 13% by weight It was used.
  • a lapping process was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy.
  • This lapping process was performed using a double-sided lapping apparatus. Specifically, a glass substrate held by a carrier was brought into close contact between the upper and lower surface plates, and the carrier was lapped by rotating the sun gear and the internal gear of the wrapping device to move the planetary gear.
  • Fine wrapping step This fine wrapping step was performed using a double-sided wrapping apparatus as described above. Specifically, a glass substrate held by a carrier was brought into close contact between upper and lower surface plates to which pellets in which diamond abrasive grains were fixed with a resin were attached.
  • the first polishing step was performed using the double-side polishing apparatus shown in FIG.
  • the glass substrate held by the carrier 4 is closely attached between the upper and lower polishing surface plates 5 and 6 to which the polishing pad 7 is attached, and the carrier 4 is engaged with the sun gear 2 and the internal gear 3.
  • the glass substrate is sandwiched between upper and lower surface plates 5 and 6.
  • the polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, so that the glass substrate revolves while rotating on the surface plates 5 and 6, and both surfaces are polished simultaneously.
  • a hard polisher hard foamed urethane
  • polishing liquid a polishing liquid in which 10% by weight of cerium oxide (average particle diameter (50% diameter) 1 ⁇ m) was dispersed in water as an abrasive was used.
  • the load applied to the glass substrate surface was 100 g / cm 2 and the polishing time was 15 minutes.
  • the glass substrate after the first polishing step was washed and dried.
  • the load was 100 g / cm 2 and the polishing time was 10 minutes.
  • one substrate was extracted from the same lot, washed with water only for 1200 seconds, dried, and measured under the above conditions by AFM. .15 nm.
  • AFM .15 nm.
  • polishing process was implemented. Specifically, it is immersed for 600 seconds in a cleaning tank (liquid temperature: normal temperature) containing a cleaning liquid (pH 12.6) in which guanidine is added to pure water so as to have a concentration of 0.3 mol / liter as an alkaline cleaning agent. And washing with ultrasonic waves of 80 kHz. The cleaning liquid was used in a circulating manner. At this time, the guanidine used did not contain Na ions or K ions (below the detection limit). In addition, when this washing
  • a cleaning liquid pH 12.6
  • guanidine is added to pure water so as to have a concentration of 0.3 mol
  • sample 1 About 100 glass substrates (referred to as sample 1) obtained through each of the above steps, the surface roughness (Ra) of the main surface of the glass substrate after the cleaning process and immediately before the cleaning process (that is, the second polishing process). After completion, the surface roughness (Ra) of the main surface of the glass substrate was measured with an atomic force microscope (AFM), and the difference ( ⁇ Ra: value obtained by subtracting Ra before cleaning from Ra after cleaning) Are shown in Table 1.
  • the value of the surface roughness is an average value of 100 manufactured glass substrates.
  • the foreign material defect was evaluated with respect to another 100 glass substrate obtained on the same conditions.
  • the main surface of the obtained glass substrate was observed with a laser type surface inspection apparatus, and the detected surface defects were analyzed with an SEM and an atomic force microscope (AFM).
  • Table 2 shows the number of foreign matter defects (convex defects due to foreign matter adhesion). The count number is an average value of 100 manufactured glass substrates.
  • As a measurement condition of the surface inspection device by irradiating the main surface with a laser beam having a wavelength of 405 nm, a power of 80 mW, and a spot diameter of 6 ⁇ m, it is possible to observe a very small defect whose length in the main surface direction is about 10 to 40 nm. It is.
  • Sample 1 a glass substrate for a magnetic disk having a substrate surface in which the increase in substrate surface roughness due to alkali cleaning was suppressed to 0.06 nm or less was obtained.
  • samples 2 to 6 were prepared in the same manner as sample 1 except that the addition amounts of KOH and guanidine in the cleaning solution were variously changed, and the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 1 was used. A glass substrate was produced. When the pH deviated from 12.6, the amount of guanidine added was finely adjusted so that the pH became 12.6.
  • TMAH tetramethylammonium hydroxide
  • the anionic surfactant tetramethylammonium dodecylbenzenesulfonate (quaternary ammonium cation salt), hereinafter abbreviated as DBS
  • DBS quaternary ammonium cation salt
  • the glass substrates of Samples 101 to 106 were the same as Sample 1 except that the amount of imidazole added in the cleaning solution was variously changed and the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 3 was used.
  • TMAH tetramethylammonium hydroxide
  • Glass substrates of Samples 107 to 110 were produced in the same manner as Sample 101 except that it was used.
  • glass substrates of Samples 111 and 112 were produced in the same manner as Sample 101, except that a cleaning liquid obtained by adding KOH or NAOH, which is a conventional inorganic alkaline agent, to the cleaning liquid was used.
  • the sample 101 was used except that the DBS was added as a cleaning agent in addition to imidazole to the cleaning solution, and the addition amount was variously changed to use the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 3.
  • the nonionic surfactant was added as a cleaning agent, and the cleaning liquid having the alkali metal ion concentration in the cleaning liquid shown in Table 3 was used.
  • a glass substrate of Sample 118 was produced.
  • the following film formation steps were performed on the magnetic disk glass substrates obtained in Sample 1 and Sample 101 to obtain a magnetic disk for perpendicular magnetic recording. That is, on the glass substrate, an adhesion layer made of a CrTi alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, a seed layer made of NiW, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, carbon A protective layer and a lubricating layer were sequentially formed.
  • the protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance.
  • the lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
  • the obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

The present invention provides a fabrication method for a magnetic disk-use glass substrate on which ultraclean cleaning can be carried out without degrading, insofar as possible, the smooth surface obtained from precision polishing. In this magnetic disk-use glass substrate fabrication method, after the step in which the magnetic disk-use glass substrate has been given a mirror surface polish, the glass substrate is cleaned by being exposed to a cleaning solution that can etch the glass substrate and that contains at least guanidine or imidazole. In addition, the cleaning is performed while keeping the total quantity of sodium ions and potassium ions in the cleaning solution to under 200 ppm.

Description

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
 本発明は、ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for a magnetic disk mounted on a magnetic disk device such as a hard disk drive (HDD) and a method for manufacturing a magnetic disk.
 ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化が必要になってきており、より平滑でより清浄なガラス基板表面であることが求められている。 There is a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD). A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate. However, recently, in response to the pursuit of higher recording density, the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing. Further, the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible. In recent years, the demand for further increase in recording capacity of HDDs has only increased, and in order to realize this, it has become necessary to further improve the quality of glass substrates for magnetic disks. A clean glass substrate surface is required.
 上述したように高記録密度化にとって必要な低フライングハイト(浮上量)化のために磁気ディスク表面の高い平滑性は必要不可欠である。磁気ディスク表面の高い平滑性を得るためには、結局、高い平滑性の基板表面が求められるため、高精度にガラス基板表面を研磨する必要があるが、それだけでは十分ではなく、研磨後の洗浄によって基板表面の付着異物を取り除いて清浄な基板表面を得る必要がある。
 従来の方法としては、たとえば、特許文献1には、多価アミンを含有する研磨液を用いて研磨した後、基板をアルカリ(pH8~13)洗浄する方法が開示されている。また、特許文献2には、研磨後に、基板をアルカリ剤、アルドン酸類を含有するpH10以上のアルカリ洗浄剤で洗浄する方法が開示されている。
As described above, high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density. In order to obtain high smoothness of the magnetic disk surface, it is necessary to polish the surface of the glass substrate with high precision because the surface of the substrate is highly smooth. However, this is not sufficient, and cleaning after polishing is not sufficient. Therefore, it is necessary to remove the adhered foreign matter on the substrate surface to obtain a clean substrate surface.
As a conventional method, for example, Patent Document 1 discloses a method of cleaning a substrate with an alkali (pH 8 to 13) after polishing using a polishing liquid containing a polyvalent amine. Patent Document 2 discloses a method of cleaning a substrate with an alkaline cleaner having a pH of 10 or more containing an alkaline agent and aldonic acids after polishing.
特開2012-107226号公報JP 2012-107226 A 特開2010-86563号公報JP 2010-86563 A
 現在のHDDにおいては、1平方インチ当り500ギガビット程度の記録密度が実現できるまでに至っており、例えば2.5インチ型(直径65mm)の磁気ディスク1枚に320ギガバイト程度の情報を収納することが可能になっているが、更なる高記録密度化、例えば375~500ギガバイト、更には1テラバイトの実現が要求されるようになってきている。このような近年のHDDの大容量化の要求に伴い、基板表面品質の向上の要求は今まで以上に厳しいものとなってきている。上記のような例えば375~500ギガバイトの磁気ディスク向けの次世代基板においては、メディア特性に与える基板の影響が大きくなるので、基板表面の粗さだけでなく、異物付着等による表面欠陥が存在しないことについても現行品からの更なる改善が求められる。 In the current HDD, a recording density of about 500 gigabits per square inch has been achieved, and for example, about 320 gigabytes of information can be stored in one 2.5 inch type (65 mm diameter) magnetic disk. Although it is possible, there is a demand for further higher recording density, for example, 375 to 500 gigabytes, and further 1 terabyte. With the recent demand for larger capacity of HDDs, the demand for improvement of the substrate surface quality has become more severe than ever. In the next generation substrate for a magnetic disk of, for example, 375 to 500 gigabytes as described above, since the influence of the substrate on the media characteristics becomes large, not only the surface roughness of the substrate but also surface defects due to adhesion of foreign matters do not exist. In this regard, further improvement from the current product is required.
 次世代基板においてはメディア特性に与える基板の影響が大きくなるのは以下のような理由による。
 磁気ヘッドの浮上量(磁気ヘッドと媒体(磁気ディスク)表面との間隙)の大幅な低下(低浮上量化)が挙げられる。こうすることで、磁気ヘッドと媒体の磁性層との距離が近づくため、より小さい磁性粒子の信号も拾うことができるようになり、高記録密度化を達成することができる。近年、従来以上の低浮上量化を実現するために、DFH(Dynamic Flying Height)という機能が磁気ヘッドに搭載されている。これは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、記録再生素子部周辺のみを媒体表面方向に向けて突き出す機能である。今後、このDFH機能によって、磁気ヘッドの素子部と媒体表面との間隙は、2nm未満または1nm未満と極めて小さくなると見られている。このような状況下で、基板表面の平均粗さを極めて小さくしたところで、従来問題とならなかった極く小さな異物(例えば小さいもので主表面の面内方向の長さが10~40nm程度)の付着等によって僅かに凸状となる程度の表面欠陥が存在すると、そのまま媒体表面においても凸状欠陥となるので、磁気ヘッドの衝突の危険性が高まる。
In the next generation substrate, the influence of the substrate on the media characteristics becomes large for the following reasons.
For example, the flying height of the magnetic head (the gap between the magnetic head and the surface of the medium (magnetic disk)) is greatly reduced (lower flying height). By doing so, the distance between the magnetic head and the magnetic layer of the medium is reduced, so that signals of smaller magnetic particles can be picked up, and high recording density can be achieved. In recent years, a function called DFH (Dynamic Flying Height) has been mounted on a magnetic head in order to achieve a lower flying height than before. This is a function of providing a heating unit such as a very small heater in the vicinity of the recording / reproducing element part of the magnetic head and projecting only the periphery of the recording / reproducing element part toward the medium surface. In the future, with this DFH function, it is expected that the gap between the element portion of the magnetic head and the medium surface will be extremely small, less than 2 nm or less than 1 nm. Under such circumstances, when the average roughness of the substrate surface was made extremely small, extremely small foreign matter (for example, a small one having a length in the in-plane direction of the main surface of about 10 to 40 nm) that did not cause a problem in the past. If there is a surface defect that is slightly convex due to adhesion or the like, it becomes a convex defect on the surface of the medium as it is, which increases the risk of collision of the magnetic head.
 ところで、本発明者らの検討によると、上記特許文献に開示された方法をはじめとする従来の様々な精密研磨技術、精密洗浄技術を用いても、あるいはそれらを単純に組み合わせて用いても、洗浄後の低粗さと高清浄度を両立できないことがわかってきた。
 近年のHDDの大容量化の要求に伴う基板表面品質の向上の要求は今まで以上に厳しいものとなってきており、従来の改善手法によって基板表面品質の更なる向上を実現することには限界がある。なおここでアルカリ剤とは、水に溶解したときにアルカリ性を示す物質のことを言う。
By the way, according to the study by the present inventors, even using various conventional precision polishing techniques including the method disclosed in the above patent document, precision cleaning techniques, or simply combining them, It has been found that low roughness after cleaning and high cleanliness cannot be compatible.
The demand for improving the substrate surface quality accompanying the recent demand for higher capacity HDDs has become more severe than ever, and there is a limit to the further improvement of the substrate surface quality by the conventional improvement methods. There is. Here, the alkaline agent refers to a substance that exhibits alkalinity when dissolved in water.
 本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、第1に、精密研磨で得られた平滑な表面粗さをできる限り悪化させずに洗浄処理を行うことが可能で、その結果、低粗さ(高平滑性)を達成できる磁気ディスク用ガラス基板の製造方法を提供することであり、第2に、高清浄な洗浄が実施可能な磁気ディスク用ガラス基板の製造方法を提供することである。 The present invention has been made to solve such a conventional problem. The object of the present invention is to perform a cleaning process without first degrading the smooth surface roughness obtained by precision polishing as much as possible. And, as a result, to provide a method for manufacturing a glass substrate for magnetic disk that can achieve low roughness (high smoothness). Second, glass for magnetic disk capable of performing highly clean cleaning It is to provide a method for manufacturing a substrate.
 基板の清浄度を高めるためには、基板表面に固着した異物を洗浄除去する必要があるが、そのためにはpHの高い(アルカリ性が強い)アルカリ薬液で洗浄することが高清浄度を達成できるので好ましい。なぜなら、アルカリ度の高いアルカリ薬液ではガラスの表面がエッチングされるため、固着した異物であっても根こそぎ除去できるからである。しかしながら、従来のアルカリ洗浄では、アルカリ度が高いほどガラスに対するエッチング効果が大きくなるので、アルカリ洗浄によって基板表面の粗さが上昇してしまい、精密研磨で得られた超平滑な表面粗さを維持することができなくなる。そこで、本発明者らは、アルカリ洗浄による洗浄力を維持したまま、基板の表面粗さの上昇を抑える方法を模索した。その結果、特定のアルカリ剤を使用することにより特異的に粗さ上昇を抑えられることを突き止めた。
 また、洗浄に用いるアルカリ剤のアルカリ度だけでなく、OHイオンの対となっている陽イオンの種類によっても粗さ上昇量に大きな影響があることも見出した。さらに、有機アルカリ剤の種類や製品ロットによっても洗浄後の表面あれの程度が異なるのは、洗浄液中に存在するナトリウムイオンやカリウムイオンの量が異なる影響によるものであることを突き止めた。ここで、テトラメチルアンモニウムヒドロキシド(TMAH)などの有機アルカリは、本来ナトリウムやカリウムのイオンをいずれも含まないものであるが、工業的な製造過程において、ナトリウムやカリウム等が不可避的に混入していると考えられ、これがガラス基板の表面荒れに関与していることを突き止めた。
In order to increase the cleanliness of the substrate, it is necessary to clean and remove the foreign matter adhering to the substrate surface. To that end, cleaning with an alkaline chemical solution having a high pH (strong alkalinity) can achieve high cleanliness. preferable. This is because the surface of the glass is etched with an alkaline chemical solution having a high alkalinity, and even a fixed foreign substance can be removed by uprooting. However, with conventional alkali cleaning, the higher the alkalinity, the greater the etching effect on the glass, so that the alkali cleaning increases the surface roughness of the substrate and maintains the ultra-smooth surface roughness obtained by precision polishing. Can not do. Therefore, the present inventors sought a method for suppressing an increase in the surface roughness of the substrate while maintaining the cleaning power by alkali cleaning. As a result, it was ascertained that by using a specific alkaline agent, the increase in roughness can be specifically suppressed.
It was also found that not only the alkalinity of the alkali agent used for washing but also the kind of cation paired with OH ions greatly affects the amount of increase in roughness. Furthermore, it was found that the degree of surface roughness after cleaning varies depending on the type of organic alkali agent and the product lot, due to the influence of different amounts of sodium ions and potassium ions present in the cleaning liquid. Here, organic alkalis such as tetramethylammonium hydroxide (TMAH) originally contain neither sodium nor potassium ions, but sodium and potassium are inevitably mixed in industrial production processes. It was considered that this was involved in the surface roughness of the glass substrate.
 本発明者らは、得られたこれらの知見に基づき、更に鋭意研究の結果、本発明を完成させた。
 すなわち、本発明は以下の構成を有する。
(構成1)
 ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、前記洗浄処理前に対する前記洗浄処理後のガラス基板主表面の表面粗さ(Ra)の増大量と、前記洗浄処理に用いる洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度との関係を予め求めておき、求めた前記関係に基づき、前記表面粗さ(Ra)の増大量が0.06nm以下となる前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度を決定し、前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度が前記決定した濃度以下となる条件で、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
Based on these findings, the present inventors completed the present invention as a result of intensive studies.
That is, the present invention has the following configuration.
(Configuration 1)
A method of manufacturing a glass substrate for a magnetic disk including a cleaning process of a glass substrate, wherein the cleaning process includes a process of bringing the glass substrate into contact with a cleaning liquid containing at least one of guanidine and imidazole. The relationship between the amount of increase in the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the total concentration of sodium ions and potassium ions in the cleaning solution used for the cleaning treatment was determined in advance, Based on the relationship, the total concentration of sodium ions and potassium ions in the cleaning liquid is determined so that the increase in surface roughness (Ra) is 0.06 nm or less, and the total concentration of sodium ions and potassium ions in the cleaning liquid is determined. Cleaning the glass substrate whose main surface is mirror-polished under the condition that the concentration is equal to or less than the determined concentration. Method of manufacturing a glass substrate for a magnetic disk according to symptoms.
(構成2)
 ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記ガラス基板はガラス成分中にナトリウムとカリウムの少なくとも一方の成分を含有し、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液を用い、前記洗浄液中のナトリウムイオンとカリウムイオンの総量が200ppm以上とならないように前記洗浄液の少なくとも一部を交換しながら、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
(Configuration 2)
A method for producing a glass substrate for a magnetic disk comprising a glass substrate cleaning treatment, wherein the glass substrate contains at least one of sodium and potassium in a glass component, and a cleaning liquid containing at least one of guanidine and imidazole. And performing a cleaning process on the glass substrate having a main surface mirror-polished while exchanging at least a part of the cleaning liquid so that the total amount of sodium ions and potassium ions in the cleaning liquid does not exceed 200 ppm. A method of manufacturing a glass substrate for a magnetic disk.
(構成3)
 ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、前記洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
(Configuration 3)
A method for producing a glass substrate for a magnetic disk including a cleaning process for a glass substrate, wherein the cleaning process includes a process of bringing the glass substrate into contact with a cleaning liquid containing at least one of guanidine and imidazole, and sodium in the cleaning liquid A method for producing a glass substrate for a magnetic disk, wherein the cleaning treatment is performed while suppressing the total amount of ions and potassium ions to less than 200 ppm.
(構成4)
 前記ガラス基板はガラス成分中にナトリウムとカリウムの少なくとも一方の成分を含有することを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)
 前記洗浄液は、さらに界面活性剤、キレート剤、及び分散剤のうち少なくとも1つの物質を含有し、前記洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 4)
4. The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 3, wherein the glass substrate contains at least one of sodium and potassium in a glass component.
(Configuration 5)
The cleaning liquid further contains at least one substance among a surfactant, a chelating agent, and a dispersing agent, and the cleaning process is performed while suppressing the total amount of sodium ions and potassium ions in the cleaning liquid to less than 200 ppm. The manufacturing method of the glass substrate for magnetic discs in any one of the structures 1 thru | or 4.
(構成6)
 前記洗浄処理後のガラス基板主表面の表面粗さ(Ra)と、前記洗浄処理直前のガラス基板主表面の表面粗さ(Ra)との差が、0.06nm以内であることを特徴とする構成2乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成7)
 前記洗浄処理直前のガラス基板主表面の表面粗さ(Ra)が、0.13nm以下であることを特徴とする構成1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(Configuration 6)
The difference between the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment is within 0.06 nm. A method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 2 to 5.
(Configuration 7)
7. The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 6, wherein the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment is 0.13 nm or less.
(構成8)
 前記洗浄液のpHが10以上であることを特徴とする構成1乃至7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成9)
 前記洗浄処理は、研磨砥粒を用いて前記ガラス基板の主表面を研磨する研磨工程のうち最終研磨工程の後に行う洗浄処理であることを特徴とする構成1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成10)
 前記最終研磨に用いられる研磨液はアルカリ性であることを特徴とする請求項9に記載の磁気ディスク用ガラス基板の製造方法。
(構成11)
 構成1乃至10のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
(Configuration 8)
The method for producing a glass substrate for a magnetic disk according to any one of Structures 1 to 7, wherein the pH of the cleaning liquid is 10 or more.
(Configuration 9)
9. The magnetic according to any one of configurations 1 to 8, wherein the cleaning process is a cleaning process performed after a final polishing process in a polishing process in which a main surface of the glass substrate is polished using polishing abrasive grains. A method for producing a glass substrate for a disk.
(Configuration 10)
The method for producing a glass substrate for a magnetic disk according to claim 9, wherein the polishing liquid used for the final polishing is alkaline.
(Configuration 11)
A magnetic disk manufacturing method comprising: forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 10.
 本発明によれば、精密研磨で得られた平滑な表面粗さをできる限り悪化させずに洗浄処理が実施可能となり、その結果、低粗さ(高平滑性)を達成できる磁気ディスク用ガラス基板の製造方法を提供することができる。また、本発明によれば、高清浄な洗浄が実施可能な磁気ディスク用ガラス基板の製造方法を提供することができる。このような本発明によれば、基板主表面の粗さをよりいっそう低減し、なお且つ異物付着等による表面欠陥を従来品より低減することができる高品質の磁気ディスク用ガラス基板を低コストで製造することが可能である。本発明によって得られる磁気ディスク用ガラス基板は、特に基板表面品質への要求が現行よりもさらに厳しいものとなっている次世代用の基板として好適に使用することが可能である。また、本発明によって得られるガラス基板を利用し、DFH機能を搭載した極低浮上量の設計の磁気ヘッドと組み合わせた場合においても長期に安定した動作が可能な信頼性の高い磁気ディスクを得ることができる。 According to the present invention, a glass substrate for a magnetic disk capable of performing a cleaning process without degrading the smooth surface roughness obtained by precision polishing as much as possible and, as a result, achieving a low roughness (high smoothness). The manufacturing method of can be provided. Moreover, according to this invention, the manufacturing method of the glass substrate for magnetic discs which can implement highly clean washing | cleaning can be provided. According to the present invention, a high-quality glass substrate for a magnetic disk that can further reduce the roughness of the main surface of the substrate and reduce surface defects due to adhesion of foreign substances or the like from the conventional product at low cost. It is possible to manufacture. The glass substrate for a magnetic disk obtained by the present invention can be suitably used as a substrate for the next generation in which the demand for the surface quality of the substrate is particularly stricter than the present. Further, by using the glass substrate obtained by the present invention, a highly reliable magnetic disk capable of long-term stable operation even when combined with a magnetic head with an extremely low flying height design equipped with a DFH function is obtained. Can do.
磁気ディスク用ガラス基板の断面図である。It is sectional drawing of the glass substrate for magnetic discs. 磁気ディスク用ガラス基板の全体斜視図である。It is a whole perspective view of the glass substrate for magnetic discs. 両面研磨装置の概略構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows schematic structure of a double-side polish apparatus.
 以下、本発明の実施の形態を詳述する。
 磁気ディスク用ガラス基板は、通常、粗研削工程(粗ラッピング工程)、形状加工工程、精研削工程(精ラッピング工程)、端面研磨工程、主表面研磨工程(第1研磨工程、第2研磨工程)、化学強化工程、等を経て製造される。
 この磁気ディスク用ガラス基板の製造は、まず、溶融ガラスからダイレクトプレスにより円盤状のガラス基板(ガラスディスク)を成型する。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。次に、この成型したガラス基板に寸法精度及び形状精度を向上させるための研削(ラッピング)を行う。この研削工程は、通常両面ラッピング装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。
Hereinafter, embodiments of the present invention will be described in detail.
The glass substrate for a magnetic disk is usually a rough grinding step (rough lapping step), a shape processing step, a fine grinding step (fine lapping step), an end surface polishing step, a main surface polishing step (first polishing step, second polishing step). It is manufactured through a chemical strengthening process.
In manufacturing the magnetic disk glass substrate, first, a disk-shaped glass substrate (glass disk) is molded from molten glass by direct pressing. In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. Next, grinding (lapping) is performed on the molded glass substrate in order to improve dimensional accuracy and shape accuracy. This grinding process usually uses a double-sided lapping machine to grind the main surface of the glass substrate using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
 この研削工程の終了後は、高精度な平面(鏡面)を得るための研磨加工を行う。ガラス基板の研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等の研磨パッドを用いて行うのが好適である。 After finishing this grinding process, polishing is performed to obtain a highly accurate flat surface (mirror surface). As a method for polishing a glass substrate, it is preferable to use a polishing pad such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica.
 本実施の形態における研磨液は、研磨材と溶媒である水の組合せに加えて、さらに研磨液のpHを調整するためのpH調整剤や、その他の添加剤が必要に応じて含有されていてもよい。 The polishing liquid in the present embodiment contains a pH adjusting agent for adjusting the pH of the polishing liquid and other additives as required in addition to the combination of the abrasive and water as a solvent. Also good.
 また、研磨工程(特に仕上げ研磨工程(後述の第2研磨工程))に適用される上記研磨液は、例えば酸性域に調整されたものが用いられることが好適である。例えば、硫酸を研磨液に添加して、pH=2~4の範囲に調整される。酸性域に調整された研磨液を好適に用いる理由は、生産性及び清浄性の観点からである。
 また、コロイダルシリカの研磨砥粒を含有するアルカリ性域に調整された研磨液を用いてガラス基板の主表面を研磨する研磨工程の後に行う洗浄処理に本発明の洗浄処理を適用するとより好適である。ガラス基板に対して酸性で研磨を行う場合、酸によるリーチング作用によってガラス基板表面から一部の元素が抜けるため、その後アルカリ性の洗浄を実施するときにエッチング作用に局所的なムラが発生しやすくなり洗浄後のガラス基板表面の荒れが大きくなってしまう。このような現象はアルカリ性に調整した条件で研磨した場合には比較的発生しにくい。したがって、研磨工程の後に強アルカリ性の洗浄液を用いてガラス基板の洗浄処理を行う場合、アルカリ性条件で研磨するほうが酸性研磨のときよりも表面粗さを相対的に低くすることができるので好ましい。アルカリ性条件で研磨する際の研磨液のpHは、洗浄液のpHとの差を小さくする観点から10以上であることが好ましく、11以上であるとさらに好ましい。また、扱い易さの観点から13以下とすることが好ましい。
Moreover, it is preferable that the said polishing liquid applied to a grinding | polishing process (especially final grinding | polishing process (after-mentioned 2nd grinding | polishing process)) adjusts, for example to the acidic region. For example, sulfuric acid is added to the polishing liquid to adjust the pH to a range of 2 to 4. The reason why the polishing liquid adjusted to the acidic region is preferably used is from the viewpoint of productivity and cleanliness.
Further, it is more preferable to apply the cleaning treatment of the present invention to the cleaning treatment performed after the polishing step of polishing the main surface of the glass substrate using a polishing liquid adjusted to an alkaline region containing colloidal silica abrasive grains. . When polishing on a glass substrate with acidity, some elements escape from the surface of the glass substrate due to the leaching action of the acid, so local unevenness is likely to occur in the etching action when performing alkaline cleaning thereafter. The roughness of the glass substrate surface after cleaning becomes large. Such a phenomenon is relatively difficult to occur when polishing is performed under conditions adjusted to be alkaline. Accordingly, when the glass substrate is cleaned using a strongly alkaline cleaning solution after the polishing step, polishing under alkaline conditions is preferable because the surface roughness can be made relatively lower than that during acidic polishing. From the viewpoint of reducing the difference from the pH of the cleaning liquid, the pH of the polishing liquid when polishing under alkaline conditions is preferably 10 or more, and more preferably 11 or more. Moreover, it is preferable to set it as 13 or less from a viewpoint of ease of handling.
 研磨液に含有されるコロイダルシリカ等の研磨砥粒は、平均粒径が10~100nm程度のものを使用するのが研磨効率の点からは好ましい。特に、仕上げ研磨工程(後述の後段の第2研磨工程)に用いる研磨液に含有される研磨砥粒は、本発明においては、表面粗さのいっそうの低減を図る観点から、平均粒径が10~40nm程度のものを使用するのが好ましく、特に10~20nm程度の微細なものが好ましい。しかし、研磨砥粒が微細になればなるほど、一度ガラス基板に吸着すると除去しにくくなる。本発明の洗浄処理は特に、平均粒径が20nm以下の超微小なコロイダルシリカ研磨砥粒の研磨後に適用すると、極めて低い表面粗さを維持したまま研磨砥粒を洗浄除去してガラス基板表面を清浄にすることができるので有効である。 As the abrasive grains such as colloidal silica contained in the polishing liquid, those having an average particle diameter of about 10 to 100 nm are preferably used from the viewpoint of polishing efficiency. In particular, in the present invention, the abrasive grains contained in the polishing liquid used in the final polishing step (second polishing step, which will be described later) have an average particle size of 10 from the viewpoint of further reducing the surface roughness. It is preferable to use a material having a thickness of about 40 nm, particularly a fine material having a size of about 10-20 nm. However, the finer the abrasive grain, the harder it is to remove once adsorbed to the glass substrate. When the cleaning treatment of the present invention is applied after polishing of ultrafine colloidal silica abrasive grains having an average particle diameter of 20 nm or less, the abrasive grains are cleaned and removed while maintaining a very low surface roughness. It is effective because it can be cleaned.
 なお、本発明において、上記平均粒径とは、光散乱法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(以下、「累積平均粒子径(50%径)」と呼ぶ。)を言う。本発明において、累積平均粒子径(50%径)は、具体的には、粒子径・粒度分布測定装置を用いて測定して得られる値である。 In the present invention, the average particle size is a point where the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the light scattering method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”). In the present invention, the cumulative average particle diameter (50% diameter) is specifically a value obtained by measurement using a particle diameter / particle size distribution measuring apparatus.
 また、本発明に用いるコロイダルシリカ砥粒は、有機ケイ素化合物を加水分解することで生成したコロイダルシリカ砥粒を用いることができる。このような砥粒は、砥粒同士が凝集し難いものの、研磨工程後のガラス基板表面に強固に付着しやすく、本発明による洗浄処理を適用することが有効である。 Moreover, the colloidal silica abrasive grain produced | generated by hydrolyzing an organosilicon compound can be used for the colloidal silica abrasive grain used for this invention. Although such abrasive grains do not easily aggregate with each other, they easily adhere firmly to the glass substrate surface after the polishing step, and it is effective to apply the cleaning treatment according to the present invention.
 本発明では、研磨工程における研磨方法は特に限定されるものではないが、例えば、ガラス基板と研磨パッドとを接触させ、研磨砥粒を含む研磨液を供給しながら、研磨パッドとガラス基板とを相対的に移動させて、ガラス基板の表面を鏡面状に研磨すればよい。
 例えば図3は、ガラス基板の研磨工程に用いることができる遊星歯車方式の両面研磨装置の概略構成を示す縦断面図である。図3に示す両面研磨装置は、太陽歯車2と、その外方に同心円状に配置される内歯歯車3と、太陽歯車2及び内歯歯車3に噛み合い、太陽歯車2や内歯歯車3の回転に応じて公転及び自転するキャリア4と、このキャリア4に保持された被研磨加工物1を挟持可能な研磨パッド7がそれぞれ貼着された上定盤5及び下定盤6と、上定盤5と下定盤6との間に研磨液を供給する研磨液供給部(図示せず)とを備えている。
In the present invention, the polishing method in the polishing step is not particularly limited. For example, the polishing pad and the glass substrate are brought into contact with the glass substrate and the polishing pad while supplying the polishing liquid containing the abrasive grains. The surface of the glass substrate may be polished in a mirror shape by relatively moving.
For example, FIG. 3 is a longitudinal sectional view showing a schematic configuration of a planetary gear type double-side polishing apparatus that can be used in a glass substrate polishing process. The double-side polishing apparatus shown in FIG. 3 meshes with the sun gear 2, the internal gear 3 arranged concentrically on the outer side, the sun gear 2 and the internal gear 3, and the sun gear 2 and the internal gear 3. An upper surface plate 5 and a lower surface plate 6 on which a carrier 4 that revolves and rotates according to rotation, and a polishing pad 7 that can hold the workpiece 1 held by the carrier 4 are attached, and an upper surface plate A polishing liquid supply unit (not shown) for supplying a polishing liquid is provided between 5 and the lower surface plate 6.
 このような両面研磨装置によって、研磨加工時には、キャリア4に保持された被研磨加工物1、即ちガラス基板を上定盤5及び下定盤6とで挟持するとともに、上下定盤5,6の研磨パッド7と被研磨加工物1との間に研磨液を供給しながら、太陽歯車2や内歯歯車3の回転に応じてキャリア4が公転及び自転しながら、被研磨加工物1の上下両面が研磨加工される。 By such a double-side polishing apparatus, during polishing, the workpiece 1 held by the carrier 4, that is, the glass substrate is sandwiched between the upper surface plate 5 and the lower surface plate 6, and the upper and lower surface plates 5, 6 are polished. While supplying the polishing liquid between the pad 7 and the workpiece 1, the carrier 4 revolves and rotates according to the rotation of the sun gear 2 and the internal gear 3, and the upper and lower surfaces of the workpiece 1 are moved. Polished.
 特に仕上げ研磨用の研磨パッドとしては、軟質ポリッシャの研磨パッド(スウェードパッド)であることが好ましい。研磨パッドの硬度はアスカーC硬度で、60以上80以下とすることが好適である。研磨パッドのガラス基板との当接面は、発泡ポアが開口した発泡樹脂、取り分け発泡ポリウレタンとすることが好ましい。このようにして研磨を行うと、ガラス基板の表面を平滑な鏡面状に研磨することができる。 Particularly, the polishing pad for finishing polishing is preferably a polishing pad (suede pad) of a soft polisher. The polishing pad preferably has an Asker C hardness of 60 to 80. The contact surface of the polishing pad with the glass substrate is preferably made of a foamed resin with an open foam pore, particularly foamed polyurethane. When polishing is performed in this manner, the surface of the glass substrate can be polished into a smooth mirror surface.
 本発明の一実施の形態は、たとえば上記ガラス基板主表面の研磨工程の後に行われる、洗浄剤を含む洗浄液によりガラス基板を洗浄する洗浄処理において、該洗浄処理は、ガラス基板に対するエッチング性を有する特定のアルカリ剤、具体的にはグアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液にガラス基板を接触させる処理を含むことを特徴としている。 In one embodiment of the present invention, for example, in a cleaning process for cleaning a glass substrate with a cleaning liquid containing a cleaning agent, which is performed after the polishing process of the main surface of the glass substrate, the cleaning process has an etching property with respect to the glass substrate. It is characterized by including a treatment of bringing a glass substrate into contact with a cleaning liquid containing a specific alkaline agent, specifically, at least one of guanidine and imidazole.
 本発明者らは、アルカリ洗浄による洗浄力を維持したまま、基板の表面粗さの上昇を抑える方法を模索した結果、特定のアルカリ剤、すなわちグアニジンを使用することにより特異的に粗さ上昇を抑えられることを突き止めた。
 上記グアニジンは、アルカリ度が高く(例えばKOHと同等)、ガラスに対するエッチング作用による異物除去効果が大きいにもかかわらず、洗浄後の基板表面の粗さ上昇が少ない。従って、アルカリ洗浄剤としてグアニジンを含む洗浄液によりガラス基板を洗浄することにより、洗浄後のガラス基板における低粗さ(高平滑性)を実現でき、また良好な洗浄性も得られ、高清浄度を達成することができる。
As a result of searching for a method for suppressing an increase in the surface roughness of the substrate while maintaining the detergency due to the alkali cleaning, the present inventors have specifically increased the roughness by using a specific alkaline agent, that is, guanidine. I found out that it could be suppressed.
Although the above guanidine has a high alkalinity (for example, equivalent to KOH) and has a large effect of removing foreign substances due to the etching action on glass, there is little increase in the roughness of the substrate surface after cleaning. Therefore, by cleaning the glass substrate with a cleaning solution containing guanidine as an alkaline cleaner, low roughness (high smoothness) in the glass substrate after cleaning can be realized, and good cleanability can be obtained, and high cleanliness can be obtained. Can be achieved.
 洗浄液中のグアニジンの含有量は特に制約される必要はないが、例えば0.005モル/リットル~1モル/リットルの範囲とすることが好ましい。グアニジンの含有量が0.005モル/リットル未満であると、エッチングレートが低くなるため、ガラスに対するエッチング作用による異物除去効果を得るのに時間がかかり生産性が悪化してしまう恐れがある。一方、グアニジンの含有量が1モル/リットルよりも多いと、十分なアルカリ洗浄作用が得られるものの、アルカリによるエッチングレートが高くなるので、ガラス組成にナトリウムやカリウムを含む場合にそれらの溶出量が多くなり、洗浄液中におけるナトリウムイオン及びカリウムイオンの調整作業を頻繁に行う必要が生じてくる場合がある。また、非常に厳密な管理が求められる基板の内径や外径にバラツキが生じ、所定の範囲から逸脱してしまう場合がある。また、アルカリ性が強くなりすぎるので、取扱いにも注意を要する。
 また、洗浄液を循環使用する場合で、ガラス基板からの溶出によって洗浄液中のNaイオンやKイオンが増加する場合は、アルカリ金属イオンを捕捉するキレート剤等を添加することが有効である。
The content of guanidine in the cleaning liquid is not particularly limited, but is preferably in the range of 0.005 mol / liter to 1 mol / liter, for example. When the content of guanidine is less than 0.005 mol / liter, the etching rate is lowered, so that it takes time to obtain the foreign matter removing effect by the etching action on the glass, and the productivity may be deteriorated. On the other hand, if the content of guanidine is more than 1 mol / liter, sufficient alkali cleaning action can be obtained, but the etching rate by alkali increases, so when the glass composition contains sodium or potassium, the elution amount thereof is In some cases, it becomes necessary to frequently adjust sodium ions and potassium ions in the cleaning liquid. In addition, there may be variations in the inner and outer diameters of the substrate that require very strict management, resulting in deviation from a predetermined range. Moreover, since alkalinity becomes too strong, handling is also required.
In the case where the cleaning liquid is used in a circulating manner and Na ions or K ions in the cleaning liquid increase due to elution from the glass substrate, it is effective to add a chelating agent or the like that captures alkali metal ions.
 また、本発明者らは、アルカリ洗浄による洗浄力を維持したまま、基板の表面粗さの上昇を抑える方法を模索した結果、イミダゾールを使用することにより特異的に粗さ上昇を抑えられることも突き止めた。
 上記イミダゾールについても、アルカリ度が高く(例えばKOHと同等)、ガラスに対するエッチング作用による異物除去効果が大きいにもかかわらず、洗浄後の基板表面の粗さ上昇が少ない。従って、アルカリ洗浄剤としてイミダゾールを含む洗浄液によりガラス基板を洗浄することにより、洗浄後のガラス基板における低粗さ(高平滑性)を実現でき、また良好な洗浄性も得られ、高清浄度を達成することができる。
In addition, as a result of searching for a method for suppressing the increase in the surface roughness of the substrate while maintaining the detergency by alkali cleaning, the present inventors can suppress the increase in roughness specifically by using imidazole. I found it.
The imidazole also has high alkalinity (e.g., equivalent to KOH), and has a small increase in the roughness of the substrate surface after cleaning, despite the large effect of removing foreign matter due to the etching action on glass. Therefore, by washing the glass substrate with a cleaning solution containing imidazole as an alkali cleaning agent, low roughness (high smoothness) in the glass substrate after washing can be realized, and good cleanability can be obtained and high cleanliness can be obtained. Can be achieved.
 洗浄液中のイミダゾールの含有量は特に制約される必要はないが、例えば0.005モル/リットル~1モル/リットルの範囲とすることが好ましい。イミダゾールの含有量が0.005モル/リットル未満であると、エッチングレートが低くなるため、ガラスに対するエッチング作用による異物除去効果を得るのに時間がかかり生産性が悪化してしまう。一方、イミダゾールの含有量が1モル/リットルよりも多いと、十分なアルカリ洗浄作用が得られるものの、ガラスに対するエッチングレートが早くなりすぎて洗浄後の基板表面の粗さ上昇が大きくなるおそれがある。 The content of imidazole in the cleaning liquid is not particularly limited, but is preferably in the range of 0.005 mol / liter to 1 mol / liter, for example. When the content of imidazole is less than 0.005 mol / liter, the etching rate becomes low, so that it takes time to obtain the foreign matter removing effect by the etching action on the glass, and the productivity is deteriorated. On the other hand, if the content of imidazole is more than 1 mol / liter, sufficient alkali cleaning action can be obtained, but the etching rate for glass becomes too fast, and there is a possibility that the increase in the roughness of the substrate surface after cleaning becomes large. .
 上記のグアニジンやイミダゾール等の有機アルカリ剤は、水への溶解性が高く、水に溶解したときに強いアルカリ性を示し、ガラスに対するエッチング作用による異物除去効果が大きいにもかかわらず、エッチングによる表面の荒れを抑制することができる。このメカニズムについては必ずしも明確ではないが以下のように考えられる。
 すなわち、カリウムイオンやナトリウムイオンの場合、ガラス基板表面のOH基(外部シラノール基やシロキサン結合(O-Si-O結合)が加水分解されて生じた内部シラノール基)に結合すると、結合部分のエッチングレートを選択的に高めるために、ガラス基板表面においてエッチングレートのムラが発生し、粗さ上昇に繋がると考えられるが、上記の有機アルカリ剤の場合はガラス表面のOH基と結合してもエッチングレートの上昇が起きないと考えられる。また、上記の有機アルカリ剤が先にOH基と結合していることで、後からNaイオンやKイオンが結合することを抑制する効果もあると考えられる。これにより、洗浄液中に含まれるナトリウムイオン及びカリウムイオンの含有量を抑制しながら洗浄処理を行うことにより、洗浄後の基板表面の粗さ上昇を抑えることが可能である。従って、洗浄後のガラス基板における超低粗さ(高平滑性)を実現でき、また良好な洗浄性も得られ、高清浄度を達成することができる。
The above organic alkali agents such as guanidine and imidazole are highly soluble in water, exhibit strong alkalinity when dissolved in water, and have a large foreign matter removing effect due to the etching action on glass, but the surface of the surface by etching is high. Roughness can be suppressed. Although this mechanism is not necessarily clear, it is considered as follows.
That is, in the case of potassium ions or sodium ions, bonding to OH groups on the glass substrate surface (external silanol groups or internal silanol groups generated by hydrolyzing siloxane bonds (O—Si—O bonds)) causes etching of the bonded portions. In order to selectively increase the rate, it is thought that the etching rate unevenness occurs on the glass substrate surface, leading to an increase in roughness. However, in the case of the above organic alkaline agent, etching is performed even when combined with OH groups on the glass surface. No rate increase is expected. Moreover, it is thought that there exists an effect which suppresses later combining Na ion and K ion because said organic alkaline agent has couple | bonded with OH group previously. Thereby, it is possible to suppress an increase in the roughness of the substrate surface after cleaning by performing the cleaning process while suppressing the contents of sodium ions and potassium ions contained in the cleaning liquid. Therefore, ultra-low roughness (high smoothness) in the glass substrate after cleaning can be realized, good cleaning properties can be obtained, and high cleanliness can be achieved.
 本発明において、上記グアニジンの方が上記イミダゾールよりもより良好な効果が得られる。これは、上記グアニジンの方が塩基性が強いために、上述の作用効果が大きいためであると推察される。
 なお、本発明において、上記グアニジンと上記イミダゾールを併用することは差し支えない。
In the present invention, the above guanidine is more effective than the above imidazole. This is presumed to be because the above-mentioned effects are large because the above-mentioned guanidine is more basic.
In the present invention, the guanidine and the imidazole may be used in combination.
 また、従来、アルカリ洗浄後のガラス基板表面の粗さ上昇は、アルカリ剤のアルカリ度のみに依存し、強アルカリほど粗さ上昇が大きくなるとの認識が一般的であったが、本発明者らは、洗浄に用いるアルカリ剤のアルカリ度だけでなく、OHイオンの対となっている陽イオンの種類によっても粗さ上昇量に大きな影響があることを見出した。 Conventionally, it has been generally recognized that the increase in roughness of the glass substrate surface after alkali cleaning depends only on the alkalinity of the alkali agent, and that the increase in roughness increases with strong alkali. Found that the amount of increase in roughness has a great influence not only by the alkalinity of the alkali agent used for washing, but also by the type of cation paired with OH ions.
 例えば、アルカリ剤としてKOHやNaOHなどの強アルカリを使用した場合、良好なエッチング作用による異物除去効果が得られるものの、洗浄後のガラス基板表面の粗さ上昇が大きい。本発明者らの検討によれば、この場合、これらアルカリ剤のアルカリ度だけでなく、KイオンやNaイオンなどの陽イオンの存在も基板の粗さ上昇に関与していることが判明した。 For example, when a strong alkali such as KOH or NaOH is used as the alkali agent, the effect of removing foreign matter by a good etching action can be obtained, but the roughness of the glass substrate surface after cleaning is greatly increased. According to the study by the present inventors, it has been found that in this case, not only the alkalinity of these alkali agents but also the presence of cations such as K ions and Na ions are involved in increasing the roughness of the substrate.
 そこで、本発明者らは、アルカリ洗浄液中のNaイオンとKイオンの総量を200ppm未満に抑えながら洗浄処理を行うことが好適であることを見出した。これにより、洗浄液に含有されるアルカリ剤のOHイオンによるエッチング作用が得られ、その一方、洗浄液中のNaイオンとKイオンの存在量を抑えることで、アルカリ金属イオンとOHイオンとの相乗作用による基板の粗さ上昇を抑えることができる。特に、アルカリ洗浄液中のNaイオンとKイオンの総量を100ppm以下、より好ましくは10ppm以下、更に好ましくは1ppm以下に抑えながら洗浄処理を行うことが好適である。
 洗浄液中のナトリウムイオンとカリウムイオンの含有量の抑制ないしは制御の方法としては、洗浄開始時や洗浄中の所定のタイミングにおいて洗浄液をサンプリングするなどして、洗浄液中のこれらのイオンの含有量を測定し、所定値を超え得る場合には、上記イオンを捕捉するキレート剤等の添加、水希釈、洗浄液交換等の手段によってこれらのイオンの含有量を低下させることで調整可能である。また、ガラス基板中にNaやKを含む場合、洗浄時間やバッチ数(洗浄処理回数)と洗浄液中のNaイオンとKイオンの濃度との関係を予め把握しておき、把握した関係に基づいてNaイオンとKイオンの含有量を調整する処理を行ってもよい。
Therefore, the present inventors have found that it is preferable to perform the cleaning treatment while suppressing the total amount of Na ions and K ions in the alkaline cleaning liquid to less than 200 ppm. Thereby, the etching action by OH ions of the alkaline agent contained in the cleaning liquid is obtained, and on the other hand, by suppressing the abundance of Na ions and K ions in the cleaning liquid, the synergistic action of the alkali metal ions and OH ions. An increase in the roughness of the substrate can be suppressed. In particular, it is preferable to perform the cleaning treatment while suppressing the total amount of Na ions and K ions in the alkaline cleaning liquid to 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less.
To control or control the content of sodium ions and potassium ions in the cleaning solution, measure the content of these ions in the cleaning solution by sampling the cleaning solution at the start of cleaning or at a predetermined timing during cleaning. However, when it can exceed the predetermined value, it can be adjusted by reducing the content of these ions by means such as addition of a chelating agent or the like for trapping the ions, dilution with water, or replacement of the washing solution. Further, when Na or K is contained in the glass substrate, the relationship between the cleaning time and the number of batches (the number of cleaning processes) and the concentration of Na ions and K ions in the cleaning liquid is previously grasped, and based on the grasped relationship. You may perform the process which adjusts content of Na ion and K ion.
 なお、上記グアニジンやイミダゾールを使用した場合、上述したように、グアニジンやイミダゾールがガラス表面のOH基と結合する作用により、洗浄液中のNaイオンとKイオンの存在による影響が少なくなるため、良好なエッチング作用による異物除去効果が得られ、なお且つ洗浄後の基板表面の粗さ上昇を抑えることができるものと考えられる。 In addition, when the above guanidine or imidazole is used, the effect of the presence of Na ions and K ions in the cleaning liquid is reduced due to the action of guanidine or imidazole binding to the OH group on the glass surface, as described above. It is considered that a foreign matter removing effect by the etching action can be obtained, and an increase in the roughness of the substrate surface after cleaning can be suppressed.
 また、ガラス成分中にナトリウムやカリウムなどのアルカリ金属成分を含有するガラス基板を洗浄する場合、ガラス成分の溶出によるアルカリ洗浄液中のNaイオンとKイオンの総量を200ppm未満に抑えながら洗浄工程を行うことが好適である。
 なお、洗浄液中におけるNaイオンやKイオンの含有量は、洗浄槽からサンプリングした洗浄液を用いて、例えばイオンクロマトグラフィー法やICP法によって調べることができる。
 また、ここでppmとは、質量ppm(質量比を100万分率で表したもの)である。
Further, when a glass substrate containing an alkali metal component such as sodium or potassium in the glass component is cleaned, the cleaning step is performed while suppressing the total amount of Na ions and K ions in the alkali cleaning solution by elution of the glass component to less than 200 ppm. Is preferred.
In addition, the content of Na ions and K ions in the cleaning liquid can be examined by, for example, an ion chromatography method or an ICP method using the cleaning liquid sampled from the cleaning tank.
Moreover, ppm means mass ppm (mass ratio expressed in parts per million).
 また、アルカリ洗浄剤により基板表面から除去された異物が基板表面に再付着するのを防止して、洗浄効果を上げることを目的に、洗浄液中には上記グアニジンあるいは上記イミダゾールに加えて、さらに界面活性剤、キレート剤、分散剤などの洗浄剤を適宜含有させてもよい。
 本発明に好ましく使用できる界面活性剤としては、例えばアルキル硫酸エステルナトリウム、脂肪酸ナトリウム、アルキルアリールスルホン酸塩等のアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン誘導体等のノニオン界面活性剤が挙げられる。また、キレート剤としては、例えばEDTAなどのアミノカルボン酸、クエン酸などの有機酸やそれらの塩などが挙げられる。さらに、分散剤としては、例えばリン酸塩、硫酸塩、高分子分散剤などが挙げられる。
Further, in order to prevent foreign matters removed from the substrate surface by the alkali cleaning agent from re-adhering to the substrate surface and improve the cleaning effect, the cleaning liquid contains an interface in addition to the guanidine or the imidazole. You may make it contain cleaning agents, such as an activator, a chelating agent, and a dispersing agent suitably.
Examples of the surfactant that can be preferably used in the present invention include anionic surfactants such as sodium alkyl sulfate ester, fatty acid sodium, and alkylaryl sulfonate, and nonionic surfactants such as polyoxyethylene alkyl ether and polyoxyethylene derivatives. Can be mentioned. Examples of the chelating agent include aminocarboxylic acids such as EDTA, organic acids such as citric acid, and salts thereof. Furthermore, examples of the dispersant include phosphates, sulfates, and polymer dispersants.
 但し、これら界面活性剤、キレート剤、分散剤などの洗浄剤は、通常アルカリ塩(カリウム塩、ナトリウム塩など)で調合されているため、これら洗浄剤を洗浄液に含有させる場合においても、洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことが好適である。より好ましくは100ppm以下、さらに好ましくは10ppm以下に抑えながら前記洗浄処理を行うことが好適である。なお、このような場合、例えばテトラメチルアンモニウムイオン等の第四級アンモニウムカチオンを用いて、第四級アンモニウム塩とすることが好ましい。第四級アンモニウム塩とすることで、ナトリウムイオンやカリウムイオンの量を増やさずに、添加量を増やすことができる。また、添加剤の合成上、ナトリウムやカリウムが不純物として不可避的に混入する場合、当該イオンの量が少なくなる様にイオン交換樹脂等で精製処理したものを用いることが好ましい。これらは、マグネシウムイオン、カルシウムイオンについても同様である。 However, since these detergents such as surfactants, chelating agents, and dispersants are usually formulated with alkali salts (potassium salts, sodium salts, etc.), even when these detergents are included in the cleaning liquid, It is preferable to perform the washing treatment while keeping the total amount of sodium ions and potassium ions below 200 ppm. More preferably, the washing treatment is performed while the amount is suppressed to 100 ppm or less, and more preferably 10 ppm or less. In such a case, it is preferable to use a quaternary ammonium cation such as tetramethylammonium ion to form a quaternary ammonium salt. By using a quaternary ammonium salt, the amount added can be increased without increasing the amount of sodium ions or potassium ions. In addition, in the synthesis of the additive, when sodium or potassium is inevitably mixed as an impurity, it is preferable to use one that has been purified with an ion exchange resin or the like so that the amount of the ions is reduced. The same applies to magnesium ions and calcium ions.
 上記洗浄処理は、通常、上記グアニジンと上記イミダゾールの少なくとも一方、必要な添加剤を含有する洗浄液を収容した洗浄槽に、例えば研磨工程終了後のガラス基板を接触(例えば浸漬)させることによって行われる。この際、洗浄効果を上げるために、超音波を印加することも好適である。洗浄液の液温、洗浄時間などは、適宜設定することができる。 The cleaning treatment is usually performed by, for example, contacting (for example, dipping) the glass substrate after the polishing step into a cleaning tank containing a cleaning liquid containing at least one of the guanidine and the imidazole and a necessary additive. . At this time, it is also preferable to apply ultrasonic waves in order to increase the cleaning effect. The liquid temperature of the cleaning liquid, the cleaning time, and the like can be set as appropriate.
 本発明においては、洗浄処理後のガラス基板主表面の表面粗さ(Ra)と、洗浄処理直前のガラス基板主表面の表面粗さ(Ra)との差が、0.06nm以内とすることが可能であり、より好ましくは0.05nm以下、さらに0.03nm以下、またさらに好ましくは0.01nm以下とすることも可能である。
 すなわち、本発明によれば、アルカリ洗浄による基板表面の粗さ上昇を抑えることが可能である。
In the present invention, the difference between the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment may be within 0.06 nm. More preferably, it is 0.05 nm or less, more preferably 0.03 nm or less, and still more preferably 0.01 nm or less.
That is, according to the present invention, it is possible to suppress an increase in roughness of the substrate surface due to alkali cleaning.
 また、洗浄処理直前のガラス基板主表面の表面粗さ(Ra)が、0.10nm以下の超平滑な表面であることが好ましい。本発明によれば、アルカリ洗浄による基板表面の粗さ上昇を抑えることができるので、研磨工程によって得られた上記超平滑な基板表面粗さをできる限り悪化させないようにすることが可能である。 Moreover, it is preferable that the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment is an ultra-smooth surface of 0.10 nm or less. According to the present invention, an increase in the surface roughness of the substrate due to alkali cleaning can be suppressed, so that the ultra-smooth substrate surface roughness obtained by the polishing process can be prevented from being deteriorated as much as possible.
 また、本発明において、前記洗浄液のpHが10以上であることが好適である。本発明によれば、洗浄液が高いpH(強アルカリ)であっても、基板表面の粗さ上昇が少ないため、その結果、粗さ上昇を抑えつつ、高清浄な洗浄を実施することが可能である。11以上とするとより好ましい。pHが10未満であると、エッチングレートが低くなるため、ガラスに対するエッチング作用による異物除去効果を得るのに時間がかかり生産性が悪化する場合がある。一方、pHが13よりも大きいと、十分なアルカリ洗浄作用が得られるものの、アルカリによるエッチングレートが高くなるので、ガラス組成にナトリウムやカリウムを含む場合にそれらの溶出量が多くなり、洗浄液中におけるナトリウムイオン及びカリウムイオンの調整作業を頻繁に行う必要が生じてくる場合がある。また、非常に厳密な管理が求められる基板の内径や外径にバラツキが生じ、所定の範囲から逸脱してしまう場合がある。また、アルカリ性が強くなりすぎるので、取扱いにも注意を要する。 In the present invention, it is preferable that the pH of the cleaning liquid is 10 or more. According to the present invention, even if the cleaning liquid has a high pH (strong alkali), since the increase in the roughness of the substrate surface is small, as a result, it is possible to perform highly clean cleaning while suppressing the increase in roughness. is there. More preferably, it is 11 or more. When the pH is less than 10, the etching rate becomes low, and thus it takes time to obtain the effect of removing foreign matter by the etching action on the glass, and the productivity may be deteriorated. On the other hand, if the pH is higher than 13, sufficient alkali cleaning action is obtained, but the etching rate by alkali increases, so when sodium or potassium is contained in the glass composition, the amount of elution increases and the amount in the cleaning liquid is increased. It may be necessary to frequently adjust sodium ions and potassium ions. In addition, there may be variations in the inner and outer diameters of the substrate that require very strict management, resulting in deviation from a predetermined range. Moreover, since alkalinity becomes too strong, handling is also required.
 本発明の好ましい実施の形態としては、ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、前記洗浄処理前に対する前記洗浄処理後のガラス基板主表面の表面粗さ(Ra)の増大量と、前記洗浄処理に用いる洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度との関係を予め求めておき、求めた前記関係に基づき、前記表面粗さ(Ra)の増大量が0.06nm以下となる前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度を決定し、前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度が前記決定した濃度以下となる条件を維持しながら、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法である。
 このような実施の形態によれば、洗浄によるガラス基板表面の粗さ増大量が所定値以下となるように洗浄処理を行うことができる。
A preferred embodiment of the present invention is a method for manufacturing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the cleaning process contacts the glass substrate with a cleaning liquid containing at least one of guanidine and imidazole. The amount of increase in surface roughness (Ra) of the main surface of the glass substrate after the cleaning process before the cleaning process and the total concentration of sodium ions and potassium ions in the cleaning liquid used for the cleaning process A relationship is obtained in advance, and based on the obtained relationship, a total concentration of sodium ions and potassium ions in the cleaning solution at which the increase amount of the surface roughness (Ra) is 0.06 nm or less is determined, and the cleaning solution The main surface is mirrored while maintaining the condition that the total concentration of sodium ions and potassium ions is not more than the determined concentration. A process for producing a glass substrate for a magnetic disk, which comprises carrying out the cleaning process of the polished the glass substrate.
According to such an embodiment, the cleaning process can be performed so that the amount of increase in the roughness of the glass substrate surface due to the cleaning becomes a predetermined value or less.
 また、本発明の好ましい他の実施の形態としては、ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記ガラス基板はガラス成分中にナトリウムとカリウムの少なくとも一方の成分を含有し、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液を用い、前記洗浄液中のナトリウムイオンとカリウムイオンの総量が200ppmを超えたら液交換しながら、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法である。 Another preferred embodiment of the present invention is a method for manufacturing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the glass substrate contains at least one component of sodium and potassium in the glass component. And cleaning the glass substrate whose main surface is mirror-polished while using a cleaning solution containing at least one of guanidine and imidazole and changing the solution when the total amount of sodium ions and potassium ions in the cleaning solution exceeds 200 ppm. Is a method for manufacturing a glass substrate for a magnetic disk.
 このような実施の形態によれば、例えば大量のガラス基板を連続して洗浄し、結果的に長時間同一の洗浄槽で洗浄する場合にも、洗浄液中のナトリウムイオンとカリウムイオンの総量が200ppmを超えたら新しい洗浄液と液交換することにより、洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えることができるので、ガラス基板表面の粗さ上昇を抑えることが可能となる。 According to such an embodiment, even when, for example, a large amount of glass substrate is continuously washed and consequently washed in the same washing tank for a long time, the total amount of sodium ions and potassium ions in the washing solution is 200 ppm. If the amount exceeds the value, the total amount of sodium ions and potassium ions in the cleaning liquid can be suppressed to less than 200 ppm by exchanging the liquid with a new cleaning liquid, so that an increase in the roughness of the glass substrate surface can be suppressed.
 また、本発明の好ましいその他の実施の形態としては、ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、前記洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法である。
 このような実施の形態によれば、洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えることができるので、ガラス基板表面の粗さ上昇を抑えることが可能となる。
Further, as another preferred embodiment of the present invention, there is provided a method for producing a glass substrate for a magnetic disk including a glass substrate cleaning process, wherein the cleaning process is performed on a cleaning liquid containing at least one of guanidine and imidazole. A method for producing a glass substrate for a magnetic disk, comprising the step of bringing a glass substrate into contact, wherein the cleaning treatment is performed while the total amount of sodium ions and potassium ions in the cleaning liquid is suppressed to less than 200 ppm.
According to such an embodiment, since the total amount of sodium ions and potassium ions in the cleaning liquid can be suppressed to less than 200 ppm, an increase in the roughness of the glass substrate surface can be suppressed.
 なお、通常、研磨工程は、前記のようにラッピング工程で残留した傷や歪みを除去するための第1研磨工程と、この第1研磨工程で得られた平坦な表面を維持しつつ、ガラス基板主表面の表面粗さを平滑な鏡面に仕上げる第2研磨工程の2段階を経て行われることが一般的である(但し、3段階以上の多段階研磨を行うこともある)が、この場合、少なくとも後段の第2研磨工程、つまり研磨工程のうちの最終研磨工程の後に行う洗浄工程に本発明の洗浄処理を適用することが好ましい。特に、コロイダルシリカの研磨砥粒を含有するアルカリ性域に調整された研磨液を用いてガラス基板の主表面を研磨する研磨工程の後に行う洗浄処理に本発明の洗浄処理を適用することが好適である。ガラス基板に対して酸性で研磨を行う場合、酸によるリーチング作用によってガラス基板表面から一部の元素が抜けて、その後、アルカリ性で洗浄を実施するときにエッチング作用にムラが発生して洗浄後のガラス基板表面が大きく荒れてしまう。このような現象は、アルカリ性に調整した条件で研磨した場合には見られず、ガラス基板表面粗さを相対的に低くすることができる。 Normally, the polishing process includes a first polishing process for removing scratches and distortions remaining in the lapping process as described above, and a glass substrate while maintaining a flat surface obtained in the first polishing process. Generally, it is performed through two stages of the second polishing step that finishes the surface roughness of the main surface into a smooth mirror surface (however, multistage polishing of three or more stages may be performed). It is preferable to apply the cleaning treatment of the present invention to at least the second polishing step in the subsequent stage, that is, the cleaning step performed after the final polishing step in the polishing step. In particular, it is preferable to apply the cleaning process of the present invention to a cleaning process performed after a polishing process for polishing a main surface of a glass substrate using a polishing liquid adjusted to an alkaline region containing abrasive grains of colloidal silica. is there. When polishing the glass substrate with acid, some elements are removed from the glass substrate surface by the leaching action with the acid, and then the etching action becomes uneven when the washing is performed with the alkali. The glass substrate surface is greatly roughened. Such a phenomenon is not observed when polishing is performed under conditions adjusted to be alkaline, and the glass substrate surface roughness can be relatively lowered.
 本発明においては、ガラス基板を構成するガラス(の硝種)は、アルミノシリケートガラスとすることが好ましい。また、アモルファスのアルミノシリケートガラスとするとさらに好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、SiO2が58重量%以上75重量%以下、Al23が5重量%以上23重量%以下、Li2Oが3重量%以上10重量%以下、Na2Oが4重量%以上13重量%以下を主成分として含有するアルミノシリケートガラス(ただし、リン酸化物を含まないアルミノシリケートガラス)を用いることができる。さらに、例えば、SiO2 を62重量%以上75重量%以下、Al23を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2 Oを4重量%以上12重量%以下、ZrO2を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2 の重量比が0.5以上2.0以下、Al23 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスとすることができる。 In the present invention, the glass (the glass type) constituting the glass substrate is preferably an aluminosilicate glass. Amorphous aluminosilicate glass is more preferable. Such a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good. As such an aluminosilicate glass, SiO 2 is 58 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 23 wt%, Li 2 O is 3 wt% to 10 wt%, Na 2 An aluminosilicate glass containing O as a main component in an amount of 4 wt% or more and 13 wt% or less (however, an aluminosilicate glass containing no phosphorus oxide) can be used. Further, for example, SiO 2 is 62 wt% to 75 wt%, Al 2 O 3 is 5 wt% to 15 wt%, Li 2 O is 4 wt% to 10 wt%, and Na 2 O is 4 wt%. above 12 wt% or less, the ZrO 2 5.5 wt% to 15 wt% or less, while containing as the main component, the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0, Al 2 O 3 An amorphous aluminosilicate glass containing no phosphorus oxide having a weight ratio of / ZrO 2 of 0.4 or more and 2.5 or less can be obtained.
 また、次世代基板の特性として耐熱性を求められる場合もある。この場合の耐熱性ガラスとしては、例えば、モル%表示にて、SiO2を50~75%、Al23を0~6%、BaOを0~2%、Li2Oを0~3%、ZnOを0~5%、Na2OおよびK2Oを合計で3~15%、MgO、CaO、SrOおよびBaOを合計で14~35%、ZrO2、TiO2、La23、Y23、Yb23、Ta25、Nb25およびHfO2を合計で2~9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85~1の範囲であり、且つモル比[Al23/(MgO+CaO)]が0~0.30の範囲であるガラスを好ましく用いることができる。 In addition, heat resistance may be required as a characteristic of next-generation substrates. Examples of the heat-resistant glass in this case are 50 to 75% SiO 2 , 0 to 6% Al 2 O 3 , 0 to 2% BaO, and 0 to 3% Li 2 O in terms of mol%. ZnO 0 to 5%, Na 2 O and K 2 O 3 to 15% in total, MgO, CaO, SrO and BaO 14 to 35% in total, ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 in total 2 to 9%, molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] in the range of 0.85 to 1 Further, a glass having a molar ratio [Al 2 O 3 / (MgO + CaO)] in the range of 0 to 0.30 can be preferably used.
 本発明においては、上記研磨加工後のガラス基板の表面は、算術平均表面粗さRaが0.20nm以下、特に0.15nm以下、更に好ましくは0.10nm以下であることが好ましい。更に、最大粗さRmaxが2.0nm以下、特に1.5nm以下、更に好ましくは1.0nm以下であることが好ましい。なお、本発明においてRa、Rmaxというときは、日本工業規格(JIS)B0601:1982に準拠して算出される粗さのことである。これらの表面は、鏡面であることが好ましい。
 また、本発明において表面粗さ(例えば、最大粗さRmax、算術平均粗さRa)は、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を512×512ピクセルの解像度で測定したときに得られる表面形状の表面粗さとすることが実用上好ましい。
In the present invention, the surface of the glass substrate after the polishing process has an arithmetic average surface roughness Ra of 0.20 nm or less, particularly 0.15 nm or less, more preferably 0.10 nm or less. Further, the maximum roughness Rmax is 2.0 nm or less, particularly 1.5 nm or less, more preferably 1.0 nm or less. In the present invention, Ra and Rmax are roughnesses calculated in accordance with Japanese Industrial Standard (JIS) B0601: 1982. These surfaces are preferably mirror surfaces.
Further, in the present invention, the surface roughness (for example, the maximum roughness Rmax, the arithmetic average roughness Ra) is measured by measuring the range of 1 μm × 1 μm with a resolution of 512 × 512 pixels using an atomic force microscope (AFM). It is practically preferable to obtain the surface roughness of the obtained surface shape.
 本発明においては、研磨加工工程の前または後に、化学強化処理を施すことが好ましい。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域、例えば摂氏300度以上400度以下の温度で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸を好ましく用いることができる。 In the present invention, it is preferable to perform chemical strengthening treatment before or after the polishing process. As a method of chemical strengthening treatment, for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range that does not exceed the temperature of the glass transition point, for example, a temperature of 300 degrees Celsius or more and 400 degrees Celsius or less is preferable. The chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate. This is a treatment in which an alkali metal element is ion-exchanged, an alkali metal element having a large ion radius is permeated into the surface layer of the glass substrate, and compressive stress is generated on the surface of the glass substrate. Since the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example. As the chemical strengthening salt, alkali metal nitric acid such as potassium nitrate or sodium nitrate can be preferably used.
 本発明の磁気ディスク用ガラス基板の製造方法によって、図1および図2に示すように、両主表面11,11と、その間に外周側端面12、内周側端面13を有するディスク状のガラス基板1が得られる。外周側端面12は、側壁面12aと、その両側の主表面との間にある面取面12b、12bによりなる。内周側端面13についても同様の形状である。 As shown in FIGS. 1 and 2, the disk-shaped glass substrate having both main surfaces 11, 11 and an outer peripheral side end surface 12 and an inner peripheral side end surface 13 therebetween as shown in FIG. 1 and FIG. 1 is obtained. The outer peripheral side end surface 12 includes chamfered surfaces 12b and 12b between the side wall surface 12a and the main surfaces on both sides thereof. The inner peripheral side end face 13 has the same shape.
 また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。本発明において磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。またガラス基板と磁性層との間に、下地層を介挿することにより磁性層の磁性グレインの配向方向や磁性グレインの大きさを制御することができる。例えば、RuやTiを含む六方晶系下地層を用いることにより、磁性層の磁化容易方向を磁気ディスク面の法線に沿って配向させることができる。この場合、垂直磁気記録方式の磁気ディスクが製造される。下地層は磁性層同様にスパッタリング法により形成することができる。 The present invention also provides a method for producing a magnetic disk using the above glass substrate for a magnetic disk. In the present invention, the magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention. As a material for the magnetic layer, a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used. As a method of forming the magnetic layer, it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method. Further, by interposing an underlayer between the glass substrate and the magnetic layer, the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled. For example, by using a hexagonal underlayer containing Ru or Ti, the easy magnetization direction of the magnetic layer can be oriented along the normal line of the magnetic disk surface. In this case, a perpendicular magnetic recording type magnetic disk is manufactured. The underlayer can be formed by sputtering as with the magnetic layer.
 また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。取り分け、極性官能基として水酸基を末端に備えるパーフルオロポリエーテル化合物を主成分とすることが好ましい。潤滑層はディップ法により塗布形成することができる。
 本発明によって得られる磁気ディスク用ガラス基板を用いることにより、信頼性の高い磁気ディスクを得ることができる。
In addition, a protective layer and a lubricating layer may be formed in this order on the magnetic layer. As the protective layer, an amorphous hydrogenated carbon-based protective layer is suitable. For example, the protective layer can be formed by a plasma CVD method. Further, as the lubricating layer, a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used. In particular, it is preferable that the main component is a perfluoropolyether compound having a terminal hydroxyl group as a polar functional group. The lubricating layer can be applied and formed by a dip method.
By using the magnetic disk glass substrate obtained by the present invention, a highly reliable magnetic disk can be obtained.
 以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。また、本発明の実施例に対する比較例(参考例)についても併せて説明する。
 以下の(1)粗ラッピング工程(粗研削工程)、(2)形状加工工程、(3)精ラッピング工程(精研削工程)、(4)端面研磨工程、(5)主表面第1研磨工程、(6)化学強化工程、(7)主表面第2研磨工程、(8)洗浄処理、を経て磁気ディスク用ガラス基板を製造した。
Hereinafter, embodiments of the present invention will be specifically described with reference to examples. In addition, this invention is not limited to a following example. Further, a comparative example (reference example) for the embodiment of the present invention will be described together.
The following (1) rough lapping step (rough grinding step), (2) shape processing step, (3) fine lapping step (fine grinding step), (4) end surface polishing step, (5) main surface first polishing step, A glass substrate for magnetic disk was manufactured through (6) chemical strengthening step, (7) main surface second polishing step, and (8) cleaning treatment.
(1)粗ラッピング工程
 まず、溶融ガラスから上型、下型、胴型を用いたダイレクトプレスにより直径66mmφ、厚さ1.0mmの円盤状のアモルファスのアルミノシリゲートガラスからなるガラス基板を得た。なお、このようなダイレクトプレス以外に、ダウンドロー法やフロート法で製造された板ガラスから所定の大きさに切り出してガラス基板を得てもよい。このアルミノシリケートガラスとしては、SiO2:58~75重量%、Al23:5~23重量%、Li2O:3~10重量%、Na2O:4~13重量%を含有するガラスを使用した。
(1) Coarse lapping step First, a glass substrate made of a disc-shaped amorphous aluminosilicate glass having a diameter of 66 mmφ and a thickness of 1.0 mm was obtained from molten glass by direct pressing using an upper die, a lower die, and a barrel die. . In addition to such a direct press, a glass substrate may be obtained by cutting into a predetermined size from a plate glass manufactured by a downdraw method or a float method. As the aluminosilicate glass, glass containing SiO 2 : 58 to 75% by weight, Al 2 O 3 : 5 to 23% by weight, Li 2 O: 3 to 10% by weight, Na 2 O: 4 to 13% by weight It was used.
 次いで、このガラス基板に寸法精度及び形状精度の向上させるためラッピング工程を行った。このラッピング工程は両面ラッピング装置を用いて行った。具体的には、上下定盤の間にキャリアにより保持したガラス基板を密着させて、上記ラッピング装置のサンギアとインターナルギアを回転させることによってキャリアを遊星歯車運動させてラッピングした。 Next, a lapping process was performed on the glass substrate in order to improve dimensional accuracy and shape accuracy. This lapping process was performed using a double-sided lapping apparatus. Specifically, a glass substrate held by a carrier was brought into close contact between the upper and lower surface plates, and the carrier was lapped by rotating the sun gear and the internal gear of the wrapping device to move the planetary gear.
(2)形状加工工程
 次に、円筒状の砥石を用いてガラス基板の中央部分に孔を空けた後、外周端面および内周端面に所定の面取り加工を施した。なお、一般に、2.5インチ型HDD(ハードディスクドライブ)では、外径が65mmの磁気ディスクを用いる。
(2) Shape processing step Next, after making a hole in the central portion of the glass substrate using a cylindrical grindstone, a predetermined chamfering process was performed on the outer peripheral end surface and the inner peripheral end surface. In general, a 2.5-inch HDD (hard disk drive) uses a magnetic disk having an outer diameter of 65 mm.
(3)精ラッピング工程
 この精ラッピング工程は、上記と同様に両面ラッピング装置を用いて行なった。具体的には、ダイヤモンド砥粒を樹脂で固定したペレットが貼り付けられた上下定盤の間に、キャリアにより保持したガラス基板を密着させて行なった。
(3) Fine wrapping step This fine wrapping step was performed using a double-sided wrapping apparatus as described above. Specifically, a glass substrate held by a carrier was brought into close contact between upper and lower surface plates to which pellets in which diamond abrasive grains were fixed with a resin were attached.
(4)端面研磨工程
 次いで、ブラシ研磨により、ガラス基板を回転させながらガラス基板の端面(内周、外周)の表面を研磨した。
(4) End face polishing process Next, the surface of the end face (inner periphery, outer periphery) of the glass substrate was polished by brush polishing while rotating the glass substrate.
(5)主表面第1研磨工程
 次に、第1研磨工程を前述の図3に示す両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッド7が貼り付けられた上下研磨定盤5,6の間にキャリア4により保持したガラス基板を密着させ、このキャリア4を太陽歯車2と内歯歯車3とに噛合させ、上記ガラス基板を上下定盤5,6によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤5,6上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャ(硬質発泡ウレタン)を用い、第1研磨工程を実施した。研磨液としては、酸化セリウム(平均粒径(50%径)1μm)を研磨剤として水に10重量%分散した研磨液を使用した。ガラス基板表面にかかる荷重は100g/cm2、研磨時間は15分とした。
 上記第1研磨工程を終えたガラス基板を、洗浄し、乾燥した。
(5) Main Surface First Polishing Step Next, the first polishing step was performed using the double-side polishing apparatus shown in FIG. In the double-side polishing apparatus, the glass substrate held by the carrier 4 is closely attached between the upper and lower polishing surface plates 5 and 6 to which the polishing pad 7 is attached, and the carrier 4 is engaged with the sun gear 2 and the internal gear 3. The glass substrate is sandwiched between upper and lower surface plates 5 and 6. Thereafter, the polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, so that the glass substrate revolves while rotating on the surface plates 5 and 6, and both surfaces are polished simultaneously. . Specifically, a hard polisher (hard foamed urethane) was used as the polisher, and the first polishing step was performed. As the polishing liquid, a polishing liquid in which 10% by weight of cerium oxide (average particle diameter (50% diameter) 1 μm) was dispersed in water as an abrasive was used. The load applied to the glass substrate surface was 100 g / cm 2 and the polishing time was 15 minutes.
The glass substrate after the first polishing step was washed and dried.
(6)化学強化工程
 次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムの混合した化学強化液を用意し、この化学強化溶液を加熱して溶融し、上記洗浄・乾燥済みのガラス基板を浸漬して化学強化処理を行なった。化学強化を終えたガラス基板を洗浄し、乾燥した。
(6) Chemical strengthening process Next, the glass substrate which finished the said washing | cleaning was chemically strengthened. For chemical strengthening, a chemical strengthening solution in which potassium nitrate and sodium nitrate were mixed was prepared, the chemical strengthening solution was heated and melted, and the cleaned and dried glass substrate was immersed to perform chemical strengthening treatment. The glass substrate after chemical strengthening was washed and dried.
(7)主表面第2研磨工程
 次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(アスカーC硬度で72の発泡ポリウレタン)に替えて第2研磨工程を実施した。この第2研磨工程は、上述した第1研磨工程で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRmaxで2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。研磨液としては、コロイダルシリカ(平均粒径(50%径)15nm)を研磨剤として10重量%分散した水中に、硫酸を添加して酸性(pH=2)に調整されたものを使用した。なお、荷重は100g/cm2、研磨時間は10分とした。
 なおここで、研磨後の表面粗さRaを調べるために、同じロットから1枚の基板を抜き取って水洗浄のみを1200秒間行い、乾燥後、AFMにて上記条件で測定したところ、Raは0.15nmであった。ただし、基板表面にはコロイダルシリカの粒子が大量に付着しており製品としては不合格のレベルであった。
(7) Main surface second polishing step Next, using the same double-side polishing apparatus as used in the first polishing step, the polisher is replaced with a soft polisher (suede) polishing pad (72 foam polyurethane with Asker C hardness). Then, the second polishing step was performed. This second polishing step is, for example, mirror polishing for finishing the surface roughness of the glass substrate main surface to a smooth mirror surface with an Rmax of about 2 nm or less while maintaining the flat surface obtained in the first polishing step. It is processing. The polishing liquid used was adjusted to acidity (pH = 2) by adding sulfuric acid to water in which 10% by weight of colloidal silica (average particle diameter (50% diameter) 15 nm) was dispersed as an abrasive. The load was 100 g / cm 2 and the polishing time was 10 minutes.
Here, in order to investigate the surface roughness Ra after polishing, one substrate was extracted from the same lot, washed with water only for 1200 seconds, dried, and measured under the above conditions by AFM. .15 nm. However, a large amount of colloidal silica particles adhered to the surface of the substrate, which was a rejected product level.
(8)洗浄処理
 次に、上記第2研磨工程を終えたガラス基板の洗浄処理を実施した。具体的には、純水にアルカリ洗浄剤としてグアニジンを0.3モル/リットルの濃度となるように添加した洗浄液(pH12.6))を収容した洗浄槽(液温:常温)中に600秒間浸漬させ、80kHzの超音波をかけつつ洗浄した。なお、洗浄液は循環使用した。
 このとき、グアニジンには、NaイオンとKイオンのいずれも含まない(検出限界以下)ものを用いた。なお、この洗浄液をサンプリングしてイオンクロマトグラフィー法を用いてNaイオンとKイオンの濃度を調べたところ、いずれも検出されなかった。
 その後、ガラス基板を別の洗浄槽(純水、常温)に浸漬させ、80kHz、300秒間の超音波洗浄を行い、乾燥した。
(8) Cleaning process Next, the glass substrate which finished the said 2nd grinding | polishing process was implemented. Specifically, it is immersed for 600 seconds in a cleaning tank (liquid temperature: normal temperature) containing a cleaning liquid (pH 12.6) in which guanidine is added to pure water so as to have a concentration of 0.3 mol / liter as an alkaline cleaning agent. And washing with ultrasonic waves of 80 kHz. The cleaning liquid was used in a circulating manner.
At this time, the guanidine used did not contain Na ions or K ions (below the detection limit). In addition, when this washing | cleaning liquid was sampled and the density | concentration of Na ion and K ion was investigated using the ion chromatography method, neither was detected.
Thereafter, the glass substrate was immersed in another cleaning tank (pure water, room temperature), and ultrasonic cleaning was performed at 80 kHz for 300 seconds, followed by drying.
 上記各工程を経て得られた100枚のガラス基板(サンプル1とする。)について、上記洗浄処理後のガラス基板主表面の表面粗さ(Ra)と、上記洗浄処理直前(つまり第2研磨工程終了後)のガラス基板主表面の表面粗さ(Ra)をそれぞれ原子間力顕微鏡(AFM)にて測定し、その差(ΔRa:洗浄処理後のRaから洗浄処理前のRaを引いた値)を表1に示した。なお、上記表面粗さの値は製造したガラス基板100枚の平均値である。
 また、同じ条件で得られた別の100枚のガラス基板に対して異物欠陥の評価を実施した。得られたガラス基板の主表面をレーザー式の表面検査装置にて観察し、検出された表面欠陥をSEM及び原子間力顕微鏡(AFM)で分析した。そして、異物欠陥(異物付着による凸状欠陥)のカウント数を表2に示した。なお、上記カウント数は製造したガラス基板100枚の平均値である。なお、表面検査装置の測定条件として、波長405nm、パワー80mW、スポット径6μmのレーザ光を主表面に照射することにより、主表面方向の長さが10~40nm程度の極微小な欠陥も観察可能である。
 上記サンプル1では、アルカリ洗浄による基板表面粗さの上昇を0.06nm以下に抑えられた基板表面を有する磁気ディスク用ガラス基板が得られた。
About 100 glass substrates (referred to as sample 1) obtained through each of the above steps, the surface roughness (Ra) of the main surface of the glass substrate after the cleaning process and immediately before the cleaning process (that is, the second polishing process). After completion, the surface roughness (Ra) of the main surface of the glass substrate was measured with an atomic force microscope (AFM), and the difference (ΔRa: value obtained by subtracting Ra before cleaning from Ra after cleaning) Are shown in Table 1. The value of the surface roughness is an average value of 100 manufactured glass substrates.
Moreover, the foreign material defect was evaluated with respect to another 100 glass substrate obtained on the same conditions. The main surface of the obtained glass substrate was observed with a laser type surface inspection apparatus, and the detected surface defects were analyzed with an SEM and an atomic force microscope (AFM). Table 2 shows the number of foreign matter defects (convex defects due to foreign matter adhesion). The count number is an average value of 100 manufactured glass substrates. In addition, as a measurement condition of the surface inspection device, by irradiating the main surface with a laser beam having a wavelength of 405 nm, a power of 80 mW, and a spot diameter of 6 μm, it is possible to observe a very small defect whose length in the main surface direction is about 10 to 40 nm. It is.
In Sample 1, a glass substrate for a magnetic disk having a substrate surface in which the increase in substrate surface roughness due to alkali cleaning was suppressed to 0.06 nm or less was obtained.
 また、洗浄液中のKOHとグアニジンの添加量を種々変更し、表1に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル2~6のガラス基板を作製した。なお、pHが12.6を外れるような場合は、グアニジンの添加量を微調整してpHが12.6となるようにした。
 また、洗浄液にアルカリ剤としてテトラメチルアンモニウムヒドロキシド(以下、「TMAH」と略記する。)を添加し、その添加量を種々変更し、表1に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル7~10のガラス基板を作製した。
 また、洗浄液に従来の無機アルカリ剤であるKOHまたはNAOHを添加した洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル11,12のガラス基板を作製した。
In addition, samples 2 to 6 were prepared in the same manner as sample 1 except that the addition amounts of KOH and guanidine in the cleaning solution were variously changed, and the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 1 was used. A glass substrate was produced. When the pH deviated from 12.6, the amount of guanidine added was finely adjusted so that the pH became 12.6.
Further, tetramethylammonium hydroxide (hereinafter abbreviated as “TMAH”) is added to the cleaning liquid as an alkali agent, and the amount of the addition is changed variously, and the cleaning liquid having the alkali metal ion concentration in the cleaning liquid shown in Table 1 Glass substrates of Samples 7 to 10 were produced in the same manner as Sample 1 except that it was used.
Further, glass substrates of Samples 11 and 12 were produced in the same manner as Sample 1 except that a cleaning liquid obtained by adding KOH or NAOH, which is a conventional inorganic alkaline agent, to the cleaning liquid was used.
 さらに、洗浄液にグアニジンの他に、洗浄剤として前記アニオン界面活性剤(ドデシルベンゼンスルホン酸テトラメチルアンモニウム(第四級アンモニウムカチオン塩)、以下DBSと略す)を添加し、その添加量を種々変更し、表1に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル13~17のガラス基板を作製した。また、洗浄液にグアニジンの他に、洗浄剤としてノニオン界面活性剤としてポリ(オキシエチレン)ノニルフェニルエーテル、分子量660.87(10EO)(10EO は酸化エチレンの付加モル数が 10 であることを示す)を添加し、表1に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル18のガラス基板を作製した。
 なお、上記のサンプル1~18では、洗浄液中のアルカリ金属イオン濃度は、NaイオンまたはKイオンで調整した。所定のアルカリ金属イオン濃度をNaイオンとKイオンの混合で調整した場合においても、以下の表1および表2とほぼ同じ結果が得られたので、NaイオンとKイオンの混合比率には依存しない。
Furthermore, in addition to guanidine, the anionic surfactant (tetramethylammonium dodecylbenzenesulfonate (quaternary ammonium cation salt), hereinafter abbreviated as DBS) is added as a cleaning agent in addition to guanidine, and the addition amount is variously changed. Glass substrates of Samples 13 to 17 were prepared in the same manner as Sample 1 except that the cleaning solution having an alkali metal ion concentration in the cleaning solution shown in Table 1 was used. In addition to guanidine in the cleaning solution, poly (oxyethylene) nonylphenyl ether as a non-ionic surfactant as a cleaning agent, molecular weight 660.87 (10EO) (10EO indicates that the number of added moles of ethylene oxide is 10) Then, a glass substrate of Sample 18 was produced in the same manner as Sample 1 except that the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 1 was used.
In the above samples 1 to 18, the alkali metal ion concentration in the cleaning liquid was adjusted with Na ions or K ions. Even when the predetermined alkali metal ion concentration was adjusted by mixing Na ions and K ions, the results were almost the same as those shown in Tables 1 and 2 below, so it did not depend on the mixing ratio of Na ions and K ions. .
 上記サンプル2~18のガラス基板についても、サンプル1と同様に、主表面の表面粗さの測定と、異物欠陥評価を行い、その結果を纏めて下記表1及び表2に示した。 For the glass substrates of Samples 2 to 18 above, similarly to Sample 1, the surface roughness of the main surface was measured and foreign object defects were evaluated. The results are summarized in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1、表2の結果から以下のことがわかる。
1.本発明のグアニジンを含有する洗浄液を適用する実施例によれば、洗浄処理後の基板表面粗さの上昇を抑制することができる。また、グアニジンの他に上記の界面活性剤を添加しても、洗浄処理後の粗さ上昇量は変らないが、洗浄性は向上する。
2.これに対して、従来のKOHやNaOHを用いて洗浄した場合、良好な洗浄性は得られるものの、洗浄処理後の基板表面粗さの上昇が大きい。また、TMAHを添加すると、グアニジンよりも粗さ上昇量が若干大きくなるだけでなく、異物欠陥カウント数も若干増加する。
 なお、上記サンプル11(KOH)とサンプル12(NaOH)における異物カウント数は、それぞれ775、796であった。この結果はグアニジンと同等ではあるが、上記のとおり洗浄処理後の粗さ上昇が大きいため、洗浄による粗さ上昇と洗浄性を両立することができない。
3.また、アルカリ剤としてTMAHよりもグアニジンを用いた方が表面粗さの増加量を低減できるので好ましい。グアニジンには上述のとおり、ガラス基板表面のシラノール基に吸着してNaイオンやKイオンが当該シラノール基に近づくことを抑制する効果があると考えられるので、TMAHよりも粗さ増加を抑制する効果が高いと考えられる。
 グアニジンが有利な点について、さらに確認した。サンプル1とサンプル7の条件で20バッチ分の連続洗浄試験を行い、20バッチ目のガラス基板についてΔRaを比較したところ、いずれも1バッチ目と比較するとΔRaは増加したが、20バッチ目においてはグアニジンを使用した方がΔRaが小さかった。1バッチ目の結果(表1)においての比較では両者はほぼ同等であったことから、グアニジンの作用により粗さの増加が抑制されたものと考えられる。
 また、主表面第2研磨工程において、研磨液の液性をアルカリ性(pH=12)とした他はサンプル1と同じ条件でガラス基板を作製したところ、ΔRaはサンプル1の場合の70%となり、低減した。このことから、本発明の洗浄処理を行う前の研磨処理に用いる研磨液の液性は、酸性よりもアルカリ性のほうが好ましいことが確認された。
From the results of Tables 1 and 2, the following can be understood.
1. According to the embodiment to which the cleaning liquid containing guanidine of the present invention is applied, an increase in the substrate surface roughness after the cleaning process can be suppressed. Further, addition of the above surfactant in addition to guanidine does not change the amount of increase in roughness after the cleaning treatment, but improves the cleaning properties.
2. On the other hand, when cleaning is performed using conventional KOH or NaOH, the substrate surface roughness after the cleaning process is greatly increased although good cleaning properties can be obtained. Further, when TMAH is added, not only the amount of increase in roughness is slightly larger than that of guanidine but also the number of foreign object defects is slightly increased.
The foreign matter count numbers in Sample 11 (KOH) and Sample 12 (NaOH) were 775 and 796, respectively. Although this result is equivalent to guanidine, since the increase in roughness after the cleaning treatment is large as described above, it is impossible to achieve both an increase in roughness due to cleaning and a cleaning property.
3. Further, it is preferable to use guanidine as the alkali agent rather than TMAH because the amount of increase in surface roughness can be reduced. Since guanidine is considered to have an effect of suppressing Na ions and K ions from approaching the silanol group by adsorbing to the silanol group on the glass substrate surface as described above, the effect of suppressing the increase in roughness than TMAH. Is considered high.
We further confirmed the advantages of guanidine. A continuous cleaning test for 20 batches was performed under the conditions of Sample 1 and Sample 7, and ΔRa was compared for the 20th batch of glass substrates. In both cases, ΔRa increased compared to the 1st batch, but in the 20th batch, ΔRa was smaller when guanidine was used. In the comparison in the results of the first batch (Table 1), both were almost equal, and it is considered that the increase in roughness was suppressed by the action of guanidine.
Further, in the second main surface polishing step, a glass substrate was prepared under the same conditions as Sample 1 except that the polishing liquid was made alkaline (pH = 12). ΔRa was 70% of Sample 1, Reduced. From this, it was confirmed that the liquid property of the polishing liquid used for the polishing treatment before the cleaning treatment of the present invention is preferably alkaline rather than acidic.
 また、洗浄液中のイミダゾールの添加量を種々変更し、表3に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル1と同様にして、サンプル101~106のガラス基板を作製した。
 また、洗浄液にアルカリ剤としてテトラメチルアンモニウムヒドロキシド(以下、「TMAH」と略記する。)を添加し、その添加量を種々変更し、表3に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル101と同様にして、サンプル107~110のガラス基板を作製した。
 また、洗浄液に従来の無機アルカリ剤であるKOHまたはNAOHを添加した洗浄液を用いたこと以外は、上記サンプル101と同様にして、サンプル111,112のガラス基板を作製した。
Further, the glass substrates of Samples 101 to 106 were the same as Sample 1 except that the amount of imidazole added in the cleaning solution was variously changed and the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 3 was used. Was made.
Further, tetramethylammonium hydroxide (hereinafter abbreviated as “TMAH”) was added as an alkaline agent to the cleaning liquid, and the amount of addition was changed variously to obtain an alkali metal ion concentration in the cleaning liquid shown in Table 3. Glass substrates of Samples 107 to 110 were produced in the same manner as Sample 101 except that it was used.
Further, glass substrates of Samples 111 and 112 were produced in the same manner as Sample 101, except that a cleaning liquid obtained by adding KOH or NAOH, which is a conventional inorganic alkaline agent, to the cleaning liquid was used.
 さらに、洗浄液にイミダゾールの他に、洗浄剤として前記DBSを添加し、その添加量を種々変更し、表3に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル101と同様にして、サンプル113~117のガラス基板を作製した。また、洗浄液にグアニジンの他に、洗浄剤として前記ノニオン界面活性剤を添加し、表3に示す洗浄液中のアルカリ金属イオン濃度とした洗浄液を用いたこと以外は、上記サンプル101と同様にして、サンプル118のガラス基板を作製した。 Further, the sample 101 was used except that the DBS was added as a cleaning agent in addition to imidazole to the cleaning solution, and the addition amount was variously changed to use the cleaning solution having the alkali metal ion concentration in the cleaning solution shown in Table 3. In the same manner, glass substrates of Samples 113 to 117 were produced. Further, in addition to guanidine in the cleaning liquid, the nonionic surfactant was added as a cleaning agent, and the cleaning liquid having the alkali metal ion concentration in the cleaning liquid shown in Table 3 was used. A glass substrate of Sample 118 was produced.
 上記サンプル101~118のガラス基板についても、サンプル1と同様に、主表面の表面粗さの測定と、異物欠陥評価を行い、その結果を纏めて下記表3及び表4に示した。 For the glass substrates of the above samples 101 to 118, as in sample 1, the measurement of the surface roughness of the main surface and the evaluation of foreign matter defects were performed. The results are summarized in Tables 3 and 4 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表3、表4の結果から以下のことがわかる。
1.本発明のイミダゾールを含有する洗浄液を適用する実施例によれば、洗浄処理後の基板表面粗さの上昇を抑制することができる。また、イミダゾールの他に上記の界面活性剤を添加しても、洗浄処理後の粗さ上昇量は変らないが、洗浄性は向上する。
2.これに対して、従来のKOHやNaOHを用いて洗浄した場合、良好な洗浄性は得られるものの、洗浄処理後の基板表面粗さの上昇が大きい。また、TMAHを添加すると、グアニジンよりも粗さ上昇量が若干大きくなるだけでなく、異物欠陥カウント数も若干増加する。
The following can be seen from the results of Tables 3 and 4 above.
1. According to the embodiment to which the cleaning liquid containing imidazole of the present invention is applied, an increase in substrate surface roughness after the cleaning process can be suppressed. Further, addition of the above surfactant in addition to imidazole does not change the amount of roughness increase after the washing treatment, but the washing properties are improved.
2. On the other hand, when cleaning is performed using conventional KOH or NaOH, the substrate surface roughness after the cleaning process is greatly increased although good cleaning properties can be obtained. Further, when TMAH is added, not only the amount of increase in roughness is slightly larger than that of guanidine but also the number of foreign object defects is slightly increased.
(磁気ディスクの製造)
 上記サンプル1およびサンプル101で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
 すなわち、上記ガラス基板上に、CrTi系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、NiWからなるシード層、Ru薄膜からなる下地層、CoCrPt系合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
 得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。
(Manufacture of magnetic disk)
The following film formation steps were performed on the magnetic disk glass substrates obtained in Sample 1 and Sample 101 to obtain a magnetic disk for perpendicular magnetic recording.
That is, on the glass substrate, an adhesion layer made of a CrTi alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, a seed layer made of NiW, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, carbon A protective layer and a lubricating layer were sequentially formed. The protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance. The lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
The obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.
1 ガラス基板
2 太陽歯車
3 内歯歯車
4 キャリア
5 上定盤
6 下定盤
7 研磨パッド
11 基板の主表面
12,13 基板の端面
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Sun gear 3 Internal gear 4 Carrier 5 Upper surface plate 6 Lower surface plate 7 Polishing pad 11 Main surface 12, 13 End surface of substrate

Claims (9)

  1.  ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、
     前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、
     前記洗浄処理前に対する前記洗浄処理後のガラス基板主表面の表面粗さ(Ra)の増大量と、前記洗浄処理に用いる洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度との関係を予め求めておき、
     求めた前記関係に基づき、前記表面粗さ(Ra)の増大量が0.06nm以下となる前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度を決定し、
     前記洗浄液中のナトリウムイオンとカリウムイオンの合計の濃度が前記決定した濃度以下となる条件で、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk including a cleaning process for a glass substrate,
    The cleaning treatment includes a treatment of bringing the glass substrate into contact with a cleaning solution containing at least one of guanidine and imidazole,
    Obtaining in advance a relationship between the amount of increase in surface roughness (Ra) of the main surface of the glass substrate after the cleaning process before the cleaning process and the total concentration of sodium ions and potassium ions in the cleaning liquid used for the cleaning process Every
    Based on the obtained relationship, determine the total concentration of sodium ions and potassium ions in the cleaning liquid in which the increase amount of the surface roughness (Ra) is 0.06 nm or less,
    A glass substrate for a magnetic disk, wherein a cleaning process is performed on the glass substrate whose main surface is mirror-polished under a condition that the total concentration of sodium ions and potassium ions in the cleaning solution is equal to or less than the determined concentration. Production method.
  2.  ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、
    前記ガラス基板はガラス成分中にナトリウムとカリウムの少なくとも一方の成分を含有し、
     グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液を用い、
     前記洗浄液中のナトリウムイオンとカリウムイオンの総量が200ppm以上とならないように前記洗浄液の少なくとも一部を交換しながら、主表面が鏡面研磨された前記ガラス基板の洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk including a cleaning process for a glass substrate,
    The glass substrate contains at least one component of sodium and potassium in a glass component,
    Using a cleaning solution containing at least one of guanidine and imidazole,
    The magnetism is characterized in that the glass substrate whose main surface is mirror-polished is cleaned while replacing at least part of the cleaning solution so that the total amount of sodium ions and potassium ions in the cleaning solution does not exceed 200 ppm. A method for producing a glass substrate for a disk.
  3.  ガラス基板の洗浄処理を含む磁気ディスク用ガラス基板の製造方法であって、
     前記洗浄処理は、グアニジンおよびイミダゾールの少なくとも一方を含有する洗浄液に前記ガラス基板を接触させる処理を含み、
     前記洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk including a cleaning process for a glass substrate,
    The cleaning treatment includes a treatment of bringing the glass substrate into contact with a cleaning solution containing at least one of guanidine and imidazole,
    A method for producing a glass substrate for a magnetic disk, wherein the cleaning treatment is performed while the total amount of sodium ions and potassium ions in the cleaning liquid is suppressed to less than 200 ppm.
  4.  前記ガラス基板はガラス成分中にナトリウムとカリウムの少なくとも一方の成分を含有することを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 3, wherein the glass substrate contains at least one of sodium and potassium in a glass component.
  5.  前記洗浄液は、さらに界面活性剤、キレート剤、及び分散剤のうち少なくとも1つの物質を含有し、
     前記洗浄液中のナトリウムイオンとカリウムイオンの総量を200ppm未満に抑えながら前記洗浄処理を行うことを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
    The cleaning liquid further contains at least one substance among a surfactant, a chelating agent, and a dispersing agent,
    5. The method for manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the cleaning treatment is performed while a total amount of sodium ions and potassium ions in the cleaning liquid is suppressed to less than 200 ppm.
  6.  前記洗浄処理後のガラス基板主表面の表面粗さ(Ra)と、前記洗浄処理直前のガラス基板主表面の表面粗さ(Ra)との差が、0.06nm以内であることを特徴とする請求項2乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 The difference between the surface roughness (Ra) of the glass substrate main surface after the cleaning treatment and the surface roughness (Ra) of the glass substrate main surface immediately before the cleaning treatment is within 0.06 nm. A method for producing a glass substrate for a magnetic disk according to claim 2.
  7.  前記洗浄処理は、研磨砥粒を用いて前記ガラス基板の主表面を研磨する研磨工程のうち最終研磨工程の後に行う洗浄処理であることを特徴とする請求項1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。 7. The cleaning process according to claim 1, wherein the cleaning process is a cleaning process performed after a final polishing process in a polishing process in which a main surface of the glass substrate is polished using polishing abrasive grains. Manufacturing method of glass substrate for magnetic disk.
  8.  前記最終研磨に用いられる研磨液はアルカリ性であることを特徴とする請求項7に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to claim 7, wherein the polishing liquid used for the final polishing is alkaline.
  9.  請求項1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。 A method for producing a magnetic disk, comprising forming at least a magnetic recording layer on the glass substrate for a magnetic disk produced by the method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 8.
PCT/JP2014/061342 2013-04-22 2014-04-22 Magnetic disk-use glass substrate fabrication method and magnetic disk fabrication method WO2014175292A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201508659PA SG11201508659PA (en) 2013-04-22 2014-04-22 Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk
CN201480021802.9A CN105122363B (en) 2013-04-22 2014-04-22 The manufacturing method of glass substrate for disc and the manufacturing method of disk
JP2015513777A JP6081580B2 (en) 2013-04-22 2014-04-22 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-089518 2013-04-22
JP2013-089517 2013-04-22
JP2013089517 2013-04-22
JP2013089518 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014175292A1 true WO2014175292A1 (en) 2014-10-30

Family

ID=51791863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061342 WO2014175292A1 (en) 2013-04-22 2014-04-22 Magnetic disk-use glass substrate fabrication method and magnetic disk fabrication method

Country Status (5)

Country Link
JP (1) JP6081580B2 (en)
CN (1) CN105122363B (en)
MY (1) MY179113A (en)
SG (1) SG11201508659PA (en)
WO (1) WO2014175292A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226799A (en) * 1996-12-10 1998-08-25 Nitto Denko Corp Detergent composition for mold for molding semiconductor device and method for cleaning mold therewith
JP2004101849A (en) * 2002-09-09 2004-04-02 Mitsubishi Gas Chem Co Inc Detergent composition
JP2008114418A (en) * 2006-11-01 2008-05-22 Towa Corp Resin sealing mold for electronic component
JP2009280802A (en) * 2008-04-25 2009-12-03 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate
JP2011068882A (en) * 2009-08-27 2011-04-07 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720499B2 (en) * 2010-10-26 2015-05-20 旭硝子株式会社 Substrate glass and glass substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226799A (en) * 1996-12-10 1998-08-25 Nitto Denko Corp Detergent composition for mold for molding semiconductor device and method for cleaning mold therewith
JP2004101849A (en) * 2002-09-09 2004-04-02 Mitsubishi Gas Chem Co Inc Detergent composition
JP2008114418A (en) * 2006-11-01 2008-05-22 Towa Corp Resin sealing mold for electronic component
JP2009280802A (en) * 2008-04-25 2009-12-03 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate
JP2011068882A (en) * 2009-08-27 2011-04-07 Sanyo Chem Ind Ltd Cleaning agent for magnetic disk substrate

Also Published As

Publication number Publication date
SG11201508659PA (en) 2015-11-27
JP6081580B2 (en) 2017-02-15
MY179113A (en) 2020-10-28
CN105122363B (en) 2018-07-06
JPWO2014175292A1 (en) 2017-02-23
CN105122363A (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6126790B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
US9299382B2 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP6078942B2 (en) Glass substrate manufacturing method, magnetic disk manufacturing method, and polishing composition for glass substrate
JP5386036B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6141636B2 (en) Substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method
JP6266504B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP4623211B2 (en) Manufacturing method of glass substrate for information recording medium and magnetic disk using the same
CN102473423A (en) Method for producing glass substrate for magnetic disk
JP6467025B2 (en) Manufacturing method of glass substrate
JP6480611B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6420260B2 (en) Magnetic disk substrate manufacturing method and magnetic disk manufacturing method
JP6298448B2 (en) Method for manufacturing glass substrate for magnetic disk, glass substrate for magnetic disk, and method for manufacturing magnetic disk
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP6041290B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
US8926759B2 (en) Manufacturing method of a glass substrate for a magnetic disk
JP5704755B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2013080530A (en) Manufacturing method of glass substrate for magnetic disc and manufacturing method of magnetic disc
JP2015069667A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021802.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788966

Country of ref document: EP

Kind code of ref document: A1