WO2014175200A1 - Wireless sensor system - Google Patents
Wireless sensor system Download PDFInfo
- Publication number
- WO2014175200A1 WO2014175200A1 PCT/JP2014/061129 JP2014061129W WO2014175200A1 WO 2014175200 A1 WO2014175200 A1 WO 2014175200A1 JP 2014061129 W JP2014061129 W JP 2014061129W WO 2014175200 A1 WO2014175200 A1 WO 2014175200A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rfid
- resonator
- resonance
- control unit
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/32—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using change of resonant frequency of a crystal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q2209/00—Arrangements in telecontrol or telemetry systems
- H04Q2209/40—Arrangements in telecontrol or telemetry systems using a wireless architecture
- H04Q2209/47—Arrangements in telecontrol or telemetry systems using a wireless architecture using RFID associated with sensors
Definitions
- the present invention includes a resonance tag that generates and wirelessly transmits a resonance signal corresponding to a physical quantity of a measured part, and a reader module that receives the resonance signal and measures the physical quantity of the measured part from the frequency of the resonance signal.
- the present invention relates to a wireless sensor system.
- the wireless sensor system described in Patent Document 1 includes an RFID tag and a remote detection device.
- the RFID tag includes a resonator, and a reverberation signal is generated when the resonator is excited by a transmission signal from a remote detection device.
- the frequency of the reverberation signal is a frequency corresponding to the temperature of the measurement target part where the RFID tag is arranged.
- the remote detection device detects the temperature of the part to be measured by receiving the reverberation signal and performing frequency analysis.
- a plurality of RFID tags may be used.
- each RFID tag transmits a reverberation signal.
- the remote detection device cannot identify the reverberation signal transmitted from which RFID tag.
- the frequency of the reverberation signal is different for each RFID tag.
- an object of the present invention is to provide a wireless sensor system that can individually receive a reverberation signal from an RFID tag (resonance tag) without being affected by the number of RFID tags (resonance tags).
- the wireless sensor system of the present invention includes a resonance tag and a reader module.
- the resonance tag includes a resonator whose resonance frequency changes according to a surrounding physical quantity and an RFID.
- the reader module includes a measurement signal receiving unit, a measurement unit, and an RFID communication control unit.
- the measurement signal transmission / reception unit transmits an excitation signal for exciting the resonator and receives a reverberation signal based on the excitation signal.
- the measurement unit measures a physical quantity based on the reverberation signal obtained by the measurement signal transmission / reception unit.
- the RFID communication control unit communicates with the RFID.
- the RFID communication control unit transmits an enabling command for enabling the resonator to the RFID. When the RFID obtains an activation command, the RFID activates resonance by the excitation signal of the resonator.
- the resonators of all the resonance tags can be disabled in a steady state, and the resonators of the resonance tags from which the reverberation signal is acquired can be enabled at the measurement timing. Thereby, only the reverberation signal from the resonator of the resonance tag from which the reverberation signal is to be acquired can be received by the reader module.
- the wireless sensor system of the present invention preferably has the following configuration.
- the RFID communication control unit transmits an invalidation command for invalidating the resonator to the RFID when the resonator is valid.
- the RFID acquires the invalidation command, the RFID invalidates the resonance caused by the excitation signal of the resonator.
- the resonator of the resonance tag that was the measurement target can be invalidated at the specified timing. This prevents the resonator from being enabled unnecessarily long.
- the wireless sensor system of the present invention preferably has the following configuration.
- the RFID includes a switch circuit connected in parallel to the resonator.
- the switch circuit is in an open state when enabled and in a conductive state when disabled.
- the wireless sensor system of the present invention preferably has the following configuration.
- the RFID includes a storage unit that stores an operation program of the reader module.
- the RFID communication control unit acquires an operation program and sets operations of the RFID communication control unit, the measurement signal transmission / reception unit, and the measurement unit.
- the reader module is operated by the operation program stored in the RFID of the resonance tag. Therefore, a general-purpose reader module can be realized for various types of resonance tags.
- the reverberation signal from the resonance tag can be individually received, and the physical quantity such as the temperature of the measured part can be reliably measured.
- 1 is a configuration diagram of a wireless sensor system according to a first embodiment of the present invention. It is a block diagram of the resonance tag which concerns on the 1st Embodiment of this invention. It is a flowchart of the wireless sensor system which concerns on the 1st Embodiment of this invention. It is a figure which shows the case where a human body temperature is measured using the wireless sensor system which concerns on the 1st Embodiment of this invention. It is a block diagram of the wireless sensor system which concerns on the 2nd Embodiment of this invention. It is a flowchart of the wireless sensor system which concerns on the 2nd Embodiment of this invention.
- FIG. 1 is a configuration diagram of a wireless sensor system according to a first embodiment of the present invention.
- FIG. 2 is a configuration diagram of the resonance tag according to the first embodiment of the present invention.
- the wireless sensor system 10 includes a resonance tag 20 and a reader module 30.
- the resonance tag 20 is attached to the part to be measured.
- the reader module 30 has a shape that can be carried by a measurer, for example.
- the resonance tag 20 includes an RFID 21, an RFID communication antenna 22, a resonator 23, and a resonator antenna 24.
- the reader module 30 includes an RFID communication control unit 31, an RFID communication antenna 32, a measurement signal transmission / reception unit 33, a measurement signal antenna 34, a measurement unit 35, and a display unit 36.
- the RFID 21 includes a control unit 211 and a resonance operation control unit 212.
- the control unit 211 controls wireless communication with the outside using the RFID communication antenna 22.
- the control unit 211 communicates with the RFID communication control unit 31 of the reader module 31 via the RFID communication antenna 22 and the RFID communication antenna 32 of the reader module 31.
- the control unit 211 receives the operation control signal Sc from the RFID communication control unit 31.
- the operation control signal is an enabling command Sce or an invalidating command Sci.
- the control unit 211 transmits the RFID identification information Sinf of the RFID 21 to the RFID communication control unit 31.
- the control unit 211 analyzes the operation control signal Sc and controls the operation of the resonance operation control unit 212.
- the resonance operation control unit 212 activates or deactivates the resonator 23 in response to the operation control from the control unit 211.
- the resonance operation control unit 212 is a switch circuit, and is connected in parallel to the resonator 23.
- the resonance operation control unit 212 including such a switch circuit is opened or turned on by operation control.
- the resonator 23 is an element whose resonance frequency changes according to the sensed temperature.
- the resonator 23 is made of a crystal resonator.
- the resonator 23 receives the excitation signal SpL via the resonator antenna 24, the resonator 23 resonates at a resonance frequency corresponding to the sensed temperature and generates a reverberation signal Sfp. Therefore, since the resonance tag 20 is attached to the measurement target, the resonator 23 resonates at a resonance frequency corresponding to the temperature of the measurement target, and generates a reverberation signal Sfp. That is, the frequency of the reverberation signal Sfp depends on the temperature of the part to be measured.
- the resonator 23 may be an element whose resonance frequency changes according to a surrounding physical quantity such as magnetism or strain, not the sensed temperature.
- the resonance tag 20 has the resonator 23 enabled by the operation control signal, and generates the reverberation signal Sfp when it receives the excitation signal SpL and transmits it from the resonator antenna 24 to the outside. To do. On the other hand, if the resonator 23 is disabled, the resonance tag 20 cannot generate the reverberation signal Sfp even if it receives the excitation signal SpL. Therefore, the resonance tag 20 does not transmit any signal from the resonator antenna 24 to the outside.
- the RFID communication control unit 31 communicates with the control unit 211 of the RFID 21 of the resonance tag 20 via the RFID communication antenna 32 and the RFID communication antenna 22 of the resonance tag 20. Specifically, the RFID communication control unit 31 transmits an operation control signal Sc to the control unit 211 of the RFID 21. The RFID communication control unit 31 receives and demodulates the RFID identification information Sinf from the control unit 211 of the RFID 21. By this process, the RFID 21 in communication, that is, the resonance tag 20 is identified.
- the RFID communication control unit 31 outputs the transmission information of the operation control signal Sc to the measurement signal transmission / reception unit 33.
- the RFID communication control unit 31 outputs the acquired RFID identification information Sinf to the measurement signal transmission / reception unit 33.
- the measurement signal transmitter / receiver 33 generates the excitation signal SpL at a preset time interval and transmits it from the measurement antenna 34.
- the measurement signal transmitting / receiving unit 33 may generate the excitation signal SpL after detecting that the operation control signal Sc of the validation command Sce has been received. Thus, if the excitation signal SpL is generated and transmitted after receiving the detection of the validation command Sce, unnecessary transmission of the excitation signal SpL can be suppressed.
- the measurement signal transmitting / receiving unit 33 When receiving the reverberation signal Sfp via the measurement antenna 34, the measurement signal transmitting / receiving unit 33 performs frequency analysis of the reverberation signal Sfp and acquires the frequency fp of the reverberation signal Sfp. The measurement signal transmitting / receiving unit 33 outputs the frequency fp of the reverberation signal Sfp to the measurement unit 35. The measurement signal transmission / reception unit 33 associates the RFID identification information Sinf with the frequency fp and outputs it to the measurement unit 35.
- the measuring unit 35 stores a relationship table between the frequency fp and the temperature T in advance. When obtaining the frequency fp, the measuring unit 35 refers to the relationship table and calculates the temperature T. At this time, the measurement unit 25 can determine a relation table based on the RFID identification information Sinf, and can calculate the temperature T from the determined relation table.
- the display unit 36 acquires and displays the temperature T calculated by the measurement unit 35. At this time, the display unit 36 may display the RFID identification information Sinf together with the temperature T. The display unit 36 can be omitted as necessary. In this case, an output terminal that outputs the temperature T and RFID identification information Sinf to the outside may be provided.
- FIG. 3 is a flowchart of the wireless sensor system according to the first embodiment of the present invention.
- the resonance tag 20 is attached to the measurement target part.
- the switch circuit which is the resonance operation control unit 212 is in a conductive state, and the resonator 23 is in an invalid state (S101).
- the reader module 30 is activated (S201). In a state where the reader module 30 is brought close to the resonance tag 20, a measurement start operation input is performed on the reader module 30. In response to the measurement start operation input, the reader module 30 transmits an validation command Sce (operation control signal Sc) (S202). Communication between the reader module 30 and the resonance tag 20 at this time is performed by, for example, so-called short-range non-contact communication.
- Sce operation control signal Sc
- the resonance tag 20 maintains the invalid state until the activation command Sce is received (S102: NO).
- the resonance tag 20 receives the validation command Sce (S102: YES)
- the resonance tag 20 switches the resonator 23 to the valid state (S103). Specifically, the switch circuit which is the resonance operation control unit 212 is opened.
- the resonance tag 20 transmits the RFID identification information Sinf to the reader module 30.
- the reader module 30 receives and demodulates the RFID identification information Sinf (S203).
- the reader module 30 generates and transmits an excitation signal SpL (S204).
- the resonator 23 of the resonance tag 10 receives the excitation signal SpL, resonates, and generates a reverberation signal Sfp (S103).
- the reader module 30 receives the reverberation signal Sfp (S205).
- the reader module 30 analyzes the frequency fp of the reverberation signal Sfp and measures the temperature T from the frequency fp (S206).
- the reader module 30 transmits an invalidation command Sci (operation control signal Sc) (S207).
- the resonance tag 20 maintains the valid state until the invalidation command Sci is received (S104: NO).
- the resonance tag 20 switches the resonator 23 to an invalid state (S105). Specifically, the switch circuit which is the resonance operation control unit 212 is turned on.
- the reverberation signal Sfp can be generated only by the resonance tag 10 that is the measurement target. For example, even if there are a plurality of resonance tags within a range where the excitation signal SpL of the reader module 30 can reach, only the resonance tag 10 whose resonator is enabled by RFID communication generates the reverberation signal Sfp that responds to the excitation signal SpL. Can be generated. As a result, the reverberation signals Sfp from a plurality of resonance tags can be individually acquired without changing the frequency for each resonance tag. Therefore, it is possible to reliably measure a physical quantity such as a desired temperature of the measured part.
- the activation and invalidation of the resonator can be controlled by opening and conducting the switch circuit.
- the resonance tag which has the above-mentioned operation effect can be realized with a simple configuration.
- FIG. 4 is a diagram showing a case where the body temperature of a person is measured using the wireless sensor system according to the first embodiment of the present invention.
- FIG. 4 shows an example in which only two resonance tags 20 exist for the sake of explanation.
- the RFID communication antenna 22 and the resonance antenna 24 are each realized by forming a coil electrode on a flexible thin flexible substrate (for example, paper and PET). ing.
- a resonator 23 is disposed at the end of the long portion 26 of the flexible substrate.
- the resonator 23 of the resonance tag 20 is attached to the armpit 901 of the person 900 that is the test body, that is, the axilla 901.
- the long portion 26 is wound around the upper arm 900A of the person 900 to fix the resonance tag 20 to the upper arm 900A.
- the wireless sensor system 10 measures the deep body temperature of the person 900.
- the winding direction is adjusted so that the surface on which the coil electrode for realizing the RFID communication antenna 22 and the resonance antenna 24 is formed is outside (outside the upper arm 900A). To do. Thereby, RFID communication and transmission / reception of the excitation signal SpL and the reverberation signal Sfp can be performed between the reader module 30 and the resonance tag 20.
- the reader module 30 activates only the resonator 23 of the resonance tag 20 attached to the person 900 with the enable command Sce, and invalidates the resonator 23 of the resonance tag 20 attached to the person 910. Yes. Therefore, the reader module 30 does not need to change the frequency for each resonance tag 20 even when the two resonance tags 20 exist within the range where the excitation signal SpL can reach, and the reverberation signal is transmitted only from the resonance tag 20 attached to the person 900. Sfp can be acquired.
- FIG. 5 is a configuration diagram of a wireless sensor system according to the second embodiment of the present invention.
- the wireless sensor system 10A includes a resonance tag 20A and a reader module 30A.
- the resonance tag 20A includes an RFID 21A, an RFID communication antenna 22, a resonator 23, and a resonator antenna 24.
- the configuration of the RFID 21A is different from the RFID 21 according to the first embodiment, and the other configuration of the resonance tag 20A is the same as that of the resonance tag 20 according to the first embodiment.
- the reader module 30A includes an RFID communication control unit 31A, an RFID communication antenna 32, a measurement signal transmitting / receiving unit 33, a measurement signal antenna 34, a measurement unit 35A, and a display unit 36.
- the configuration of the RFID communication control unit 31A and the measurement unit 35A is different from the RFID communication control unit 31 and the measurement unit 35 according to the first embodiment, and the other configuration of the reader module 30A is the reader module 30 according to the first embodiment. Is the same. Therefore, only different parts will be described.
- the RFID 21A includes a control unit 211, a resonance operation control unit 212, and a storage unit 213.
- the basic configurations of the control unit 211 and the resonance operation control unit 212 are the same as those of the RFID 21 according to the first embodiment.
- the storage unit 213 stores a reader module operation program.
- the reader module operation program is, for example, a program for performing communication processing unique to the RFID 21A.
- the program also includes a relationship table that represents the resonance frequency of the resonator of the resonance tag 20A and the temperature characteristics of the resonance frequency.
- the RFID 21A When receiving the program read command Scr from the RFID communication control unit 31A of the reader module 30A, the RFID 21A reads the operation program from the storage unit 213 and converts it into a radio signal. The RFID 21A outputs the operation program Spro converted into a radio signal to the RFID communication unit 31A.
- the communication protocol of the read command Scr and the operation program Spro converted into a radio signal is a general-purpose protocol that does not depend on the type of RFID, the communication of the read command Scr and the operation program Spro converted into a radio signal can be reliably performed. Can be executed.
- the RFID communication control unit 31A transmits a read command Scr, receives the operation program Spro converted into a radio signal, and demodulates the operation program.
- the RFID communication control unit 31A sets the operation of the RFID communication control unit 31A itself and the operation of the measurement unit 35A from the demodulated operation program.
- the operation setting of the RFID communication control unit 31A itself is, for example, a communication protocol setting for the RFID 21A thereafter.
- the operation setting of the measurement unit 35A is a setting of a relation table for calculating the temperature T from the frequency fp corresponding to the resonator 23 attached to the resonance tag 20A.
- Measure unit 35A measures temperature T based on the setting by the operation program. Specifically, the measurement unit 35A calculates the temperature T from the relationship table set by the operation program and the frequency fp analyzed by the measurement signal transmission / reception unit 33.
- FIG. 6 is a flowchart of the wireless sensor system according to the second embodiment of the present invention.
- the flow of the wireless sensor system 10A of the present embodiment is the same as the flowchart of the wireless sensor system according to the first embodiment after the process of transmitting the validation command Sce.
- the same step numbers are given to the same processing portions as those in the flowchart of the wireless sensor system according to the first embodiment, and the description of the same processing portions is omitted.
- the reader module 30A is activated (S201). In a state where the reader module 30A is brought close to the resonance tag 20A, a read command Scr is transmitted to the resonance tag 20A (S221).
- the resonance tag 20A When the resonance tag 20A receives the read command Scr (S121), the resonance tag 20A transmits the operation program Spro to the reader module 30A (S122). When receiving the operation program Spro (S222), the reader module 30A demodulates and develops the operation program Spro (S223). In the following, measurement processing is performed as in the first embodiment.
- the reader module can reliably communicate for each resonance tag even if the communication specifications and the like are different for each resonance tag. That is, the reader module can be generalized. In addition, by including the relation table in the operation program Spro, the physical quantity can be accurately measured regardless of which resonance tag is used.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
An objective of the present invention is to reliably identify and receive a reverberation signal from each resonance tag without being affected by the number of resonance tags. A resonance tag (20) comprises an RFID (21), and a resonator (23). A reader module (30) comprises an RFID communication control unit (31), and a measurement signal transceiver unit (33). The resonator (23) is normally neutralized by the RFID (21). The RFID communication control unit (31) transmits an operation control signal (Sc) for an activation command (Sce) to the RFID (21). Upon receiving the activation command (Sce), the RFID (21) activates the resonator (23). The measurement signal transceiver unit (33) transmits an excitation signal (SpL). The resonator (23) receives the excitation signal (SpL) and resonates at a resonance frequency according to a physical quantity in the vicinity thereof and transmits a reverberation signal (Sfp). The measurement signal transceiver unit (33) receives the reverberation signal (Sfp).
Description
本発明は、被計測部の物理量に応じた共振信号を発生し無線送信する共振タグと、該共振信号を受信して該共振信号の周波数から被測定部の物理量を計測するリーダモジュールとを備える無線式センサシステムに関する。
The present invention includes a resonance tag that generates and wirelessly transmits a resonance signal corresponding to a physical quantity of a measured part, and a reader module that receives the resonance signal and measures the physical quantity of the measured part from the frequency of the resonance signal. The present invention relates to a wireless sensor system.
従来、無線を利用して被計測部の物理量を検出する無線式センサシステムが各種考案されている。例えば、特許文献1に記載の無線式センサシステムでは、RFIDタグと遠隔検知装置とを備える。
Conventionally, various wireless sensor systems have been devised that detect the physical quantity of a measurement target part using radio. For example, the wireless sensor system described in Patent Document 1 includes an RFID tag and a remote detection device.
RFIDタグは、共振子を備えており、遠隔検知装置からの送信信号で共振子が励振して残響信号を発生する。残響信号の周波数は、RFIDタグが配置されている被計測部の温度に応じた周波数である。遠隔検知装置は、残響信号を受信して周波数解析することで、被計測部の温度を検知している。
The RFID tag includes a resonator, and a reverberation signal is generated when the resonator is excited by a transmission signal from a remote detection device. The frequency of the reverberation signal is a frequency corresponding to the temperature of the measurement target part where the RFID tag is arranged. The remote detection device detects the temperature of the part to be measured by receiving the reverberation signal and performing frequency analysis.
このような無線式センサシステムでは、RFIDタグを複数用いる場合がある。この場合、複数のRFIDタグへ同時に励振用の送信信号が送信されると、各RFIDタグは、それぞれに残響信号を送信する。各RFIDタグの残響信号が同じ周波数であると、遠隔検知装置は、いずれのRFIDタグから送信された残響信号であるか識別できない。
In such a wireless sensor system, a plurality of RFID tags may be used. In this case, when a transmission signal for excitation is transmitted to a plurality of RFID tags at the same time, each RFID tag transmits a reverberation signal. When the reverberation signal of each RFID tag has the same frequency, the remote detection device cannot identify the reverberation signal transmitted from which RFID tag.
したがって、特許文献1に記載の無線式センサシステムでは、残響信号の周波数を、RFIDタグ毎に異ならせている。
Therefore, in the wireless sensor system described in Patent Document 1, the frequency of the reverberation signal is different for each RFID tag.
しかしながら、特許文献1に記載の無線式センサシステムでは、RFIDタグ毎に周波数を異ならせなければならないため、RFIDタグの個数が多くなるほど、通信する周波数帯域が広くなる。このような周波数帯域に対応するには、広い周波数帯域で利得の高いアンテナや、広い周波数帯域をカバーするための複数のアンテナを用意しなければならない。これにより、遠隔検知装置が大型化したり、高コスト化してしまい、現実的な利用は容易ではない。
However, in the wireless sensor system described in Patent Document 1, since the frequency must be different for each RFID tag, the frequency band for communication becomes wider as the number of RFID tags increases. In order to cope with such a frequency band, an antenna having a high gain in a wide frequency band and a plurality of antennas for covering a wide frequency band must be prepared. As a result, the remote sensing device becomes large or expensive, and practical use is not easy.
したがって、本発明の目的は、RFIDタグ(共振タグ)の個数に影響されず、個別にRFIDタグ(共振タグ)からの残響信号を受信することができる無線式センサシステムを提供することにある。
Therefore, an object of the present invention is to provide a wireless sensor system that can individually receive a reverberation signal from an RFID tag (resonance tag) without being affected by the number of RFID tags (resonance tags).
この発明の無線式センサシステムは、共振タグとリーダモジュールを備える。共振タグは、周囲の物理量に応じて共振周波数が変化する共振子およびRFIDを備える。リーダモジュールは、計測用信号受信部、計測部、およびRFID通信制御部を備える。計測用信号送受信部は、共振子を励振する励振信号を送信し、該励振信号に基づく残響信号を受信する。計測部は、計測用信号送受信部で得た残響信号に基づいて物理量の計測を行う。RFID通信制御部は、RFIDと通信を行う。RFID通信制御部は、共振子を有効にする有効化コマンドを、RFIDに送信する。RFIDは、有効化コマンドを取得すると、共振子の励振信号による共振を有効化する。
The wireless sensor system of the present invention includes a resonance tag and a reader module. The resonance tag includes a resonator whose resonance frequency changes according to a surrounding physical quantity and an RFID. The reader module includes a measurement signal receiving unit, a measurement unit, and an RFID communication control unit. The measurement signal transmission / reception unit transmits an excitation signal for exciting the resonator and receives a reverberation signal based on the excitation signal. The measurement unit measures a physical quantity based on the reverberation signal obtained by the measurement signal transmission / reception unit. The RFID communication control unit communicates with the RFID. The RFID communication control unit transmits an enabling command for enabling the resonator to the RFID. When the RFID obtains an activation command, the RFID activates resonance by the excitation signal of the resonator.
この構成では、定常的には全ての共振タグの共振子を無効化しておき、計測のタイミングで、残響信号の取得対象となる共振タグの共振子を有効化することができる。これにより、残響信号の取得対象となる共振タグの共振子からの残響信号のみを、リーダモジュールで受信することができる。
In this configuration, the resonators of all the resonance tags can be disabled in a steady state, and the resonators of the resonance tags from which the reverberation signal is acquired can be enabled at the measurement timing. Thereby, only the reverberation signal from the resonator of the resonance tag from which the reverberation signal is to be acquired can be received by the reader module.
また、この発明の無線式センサシステムでは、次の構成であることが好ましい。RFID通信制御部は、共振子が有効化されている時に、共振子を無効にする無効化コマンドを、RFIDに送信する。RFIDは、無効化コマンドを取得すると、共振子の励振信号による共振を無効化する。
Also, the wireless sensor system of the present invention preferably has the following configuration. The RFID communication control unit transmits an invalidation command for invalidating the resonator to the RFID when the resonator is valid. When the RFID acquires the invalidation command, the RFID invalidates the resonance caused by the excitation signal of the resonator.
この構成では、計測対象であった共振タグの共振子を指定したタイミングで無効化できる。これにより、不必要に長く共振子が有効化されない。
In this configuration, the resonator of the resonance tag that was the measurement target can be invalidated at the specified timing. This prevents the resonator from being enabled unnecessarily long.
また、この発明の無線式センサシステムでは、次の構成であることが好ましい。RFIDは、共振子に並列接続されたスイッチ回路を備える。スイッチ回路は、有効化されている時に開放状態であり、無効化されている時に導通状態である。
Also, the wireless sensor system of the present invention preferably has the following configuration. The RFID includes a switch circuit connected in parallel to the resonator. The switch circuit is in an open state when enabled and in a conductive state when disabled.
この構成では、共振子の有効化と無効化の切り替えを、簡素な回路構成で実現することができる。
In this configuration, switching between enabling and disabling of the resonator can be realized with a simple circuit configuration.
また、この発明の無線式センサシステムでは、次の構成であることが好ましい。RFIDは、リーダモジュールの動作プログラムを記憶する記憶部を備える。RFID通信制御部は、動作プログラムを取得して、RFID通信制御部、計測用信号送受信部および計測部の動作を設定する。
Also, the wireless sensor system of the present invention preferably has the following configuration. The RFID includes a storage unit that stores an operation program of the reader module. The RFID communication control unit acquires an operation program and sets operations of the RFID communication control unit, the measurement signal transmission / reception unit, and the measurement unit.
この構成では、リーダモジュールは、共振タグのRFIDに記憶された動作プログラムによって、リーダモジュールが動作する。したがって、各種の共振タグに対して汎用なリーダモジュールを実現することができる。
In this configuration, the reader module is operated by the operation program stored in the RFID of the resonance tag. Therefore, a general-purpose reader module can be realized for various types of resonance tags.
この発明によれば、共振タグからの残響信号を個別に受信することができ、被計測部の温度等の物理量を確実に計測することができる。
According to the present invention, the reverberation signal from the resonance tag can be individually received, and the physical quantity such as the temperature of the measured part can be reliably measured.
本発明の第1の実施形態に係る無線式センサシステムについて、図を参照して説明する。図1は本発明の第1の実施形態に係る無線式センサシステムの構成図である。図2は本発明の第1の実施形態に係る共振タグの構成図である。
The wireless sensor system according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a wireless sensor system according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of the resonance tag according to the first embodiment of the present invention.
無線式センサシステム10は、共振タグ20とリーダモジュール30を備える。共振タグ20は、被計測部に装着されている。リーダモジュール30は、例えば、計測者が持ち運び可能な形状からなる。
The wireless sensor system 10 includes a resonance tag 20 and a reader module 30. The resonance tag 20 is attached to the part to be measured. The reader module 30 has a shape that can be carried by a measurer, for example.
共振タグ20は、図1、図2に示すように、RFID21、RFID通信用アンテナ22、共振子23、および、共振子用アンテナ24を備える。リーダモジュール30は、RFID通信制御部31、RFID通信用アンテナ32、計測用信号送受信部33、計測信号用アンテナ34、計測部35、および表示部36を備える。
As shown in FIGS. 1 and 2, the resonance tag 20 includes an RFID 21, an RFID communication antenna 22, a resonator 23, and a resonator antenna 24. The reader module 30 includes an RFID communication control unit 31, an RFID communication antenna 32, a measurement signal transmission / reception unit 33, a measurement signal antenna 34, a measurement unit 35, and a display unit 36.
(共振タグ20の構成)
RFID21は、制御部211、および共振動作制御部212を備える。 (Configuration of resonance tag 20)
TheRFID 21 includes a control unit 211 and a resonance operation control unit 212.
RFID21は、制御部211、および共振動作制御部212を備える。 (Configuration of resonance tag 20)
The
制御部211は、RFID通信用アンテナ22を用いた外部との無線通信を制御する。制御部211は、RFID通信用アンテナ22、リーダモジュール31のRFID通信用アンテナ32を介して、リーダモジュール31のRFID通信制御部31と通信を行う。具体的には、制御部211は、RFID通信制御部31からの動作制御信号Scを受信する。動作制御信号は有効化コマンドSceもしくは無効化コマンドSciである。制御部211は、RFID21のRFID識別情報Sinfを、RFID通信制御部31に送信する。制御部211は、動作制御信号Scを解析して、共振動作制御部212の動作制御を行う。
The control unit 211 controls wireless communication with the outside using the RFID communication antenna 22. The control unit 211 communicates with the RFID communication control unit 31 of the reader module 31 via the RFID communication antenna 22 and the RFID communication antenna 32 of the reader module 31. Specifically, the control unit 211 receives the operation control signal Sc from the RFID communication control unit 31. The operation control signal is an enabling command Sce or an invalidating command Sci. The control unit 211 transmits the RFID identification information Sinf of the RFID 21 to the RFID communication control unit 31. The control unit 211 analyzes the operation control signal Sc and controls the operation of the resonance operation control unit 212.
共振動作制御部212は、制御部211からの動作制御を受けて、共振子23を有効化もしくは無効化させる。共振動作制御部212は、具体的には、図2に示すように、スイッチ回路であり、共振子23に並列接続されている。このようなスイッチ回路からなる共振動作制御部212は、動作制御によって開放または導通する。
The resonance operation control unit 212 activates or deactivates the resonator 23 in response to the operation control from the control unit 211. Specifically, as shown in FIG. 2, the resonance operation control unit 212 is a switch circuit, and is connected in parallel to the resonator 23. The resonance operation control unit 212 including such a switch circuit is opened or turned on by operation control.
共振子23は、感知温度に応じて共振周波数が変化する素子である。例えば、共振子23は水晶振動子からなる。共振子23は、共振子用アンテナ24を介して励振信号SpLを受けると、感知温度に応じた共振周波数で共振し、残響信号Sfpを発生する。したがって、共振タグ20が被計測部に装着されているので、共振子23は、被計測部の温度に応じた共振周波数で共振し、残響信号Sfpを発生する。すなわち、残響信号Sfpの周波数は、被測定部の温度に依存する。なお、共振子23は、感知温度ではなく、磁気や歪み等といった周囲の物理量に応じて共振周波数が変化する素子であってもよい。
The resonator 23 is an element whose resonance frequency changes according to the sensed temperature. For example, the resonator 23 is made of a crystal resonator. When the resonator 23 receives the excitation signal SpL via the resonator antenna 24, the resonator 23 resonates at a resonance frequency corresponding to the sensed temperature and generates a reverberation signal Sfp. Therefore, since the resonance tag 20 is attached to the measurement target, the resonator 23 resonates at a resonance frequency corresponding to the temperature of the measurement target, and generates a reverberation signal Sfp. That is, the frequency of the reverberation signal Sfp depends on the temperature of the part to be measured. Note that the resonator 23 may be an element whose resonance frequency changes according to a surrounding physical quantity such as magnetism or strain, not the sensed temperature.
このような構成により、共振タグ20は、動作制御信号によって共振子23が有効化されており、励振信号SpLを受けた時に、残響信号Sfpを発生して、共振子用アンテナ24から外部へ送信する。一方、共振タグ20は、共振子23が無効化されていると、励振信号SpLを受けても、残響信号Sfpを発生できない。したがって、共振タグ20は、共振子用アンテナ24から外部に、全く信号を送信しない。
With such a configuration, the resonance tag 20 has the resonator 23 enabled by the operation control signal, and generates the reverberation signal Sfp when it receives the excitation signal SpL and transmits it from the resonator antenna 24 to the outside. To do. On the other hand, if the resonator 23 is disabled, the resonance tag 20 cannot generate the reverberation signal Sfp even if it receives the excitation signal SpL. Therefore, the resonance tag 20 does not transmit any signal from the resonator antenna 24 to the outside.
(リーダモジュール30の構成)
RFID通信制御部31は、RFID通信用アンテナ32、共振タグ20のRFID通信用アンテナ22を介して、共振タグ20のRFID21の制御部211と通信を行う。具体的には、RFID通信制御部31は、RFID21の制御部211に動作制御信号Scを送信する。RFID通信制御部31は、RFID21の制御部211からのRFID識別情報Sinfを受信して復調する。この処理により、通信中のRFID21すなわち共振タグ20を識別する。 (Configuration of reader module 30)
The RFIDcommunication control unit 31 communicates with the control unit 211 of the RFID 21 of the resonance tag 20 via the RFID communication antenna 32 and the RFID communication antenna 22 of the resonance tag 20. Specifically, the RFID communication control unit 31 transmits an operation control signal Sc to the control unit 211 of the RFID 21. The RFID communication control unit 31 receives and demodulates the RFID identification information Sinf from the control unit 211 of the RFID 21. By this process, the RFID 21 in communication, that is, the resonance tag 20 is identified.
RFID通信制御部31は、RFID通信用アンテナ32、共振タグ20のRFID通信用アンテナ22を介して、共振タグ20のRFID21の制御部211と通信を行う。具体的には、RFID通信制御部31は、RFID21の制御部211に動作制御信号Scを送信する。RFID通信制御部31は、RFID21の制御部211からのRFID識別情報Sinfを受信して復調する。この処理により、通信中のRFID21すなわち共振タグ20を識別する。 (Configuration of reader module 30)
The RFID
RFID通信制御部31は、動作制御信号Scの送信情報を、計測用信号送受信部33に出力する。RFID通信制御部31は、取得したRFID識別情報Sinfを、計測用信号送受信部33に出力する。
The RFID communication control unit 31 outputs the transmission information of the operation control signal Sc to the measurement signal transmission / reception unit 33. The RFID communication control unit 31 outputs the acquired RFID identification information Sinf to the measurement signal transmission / reception unit 33.
計測用信号送受信部33は、励振信号SpLを、予め設定した時間間隔で生成して、計測用アンテナ34から送信する。なお、計測用信号送受信部33は、有効化コマンドSceの動作制御信号Scを受信したことを検知してから、励振信号SpLを生成してもよい。このように、有効化コマンドSceの検出を受けてから励振信号SpLを生成、送信すれば、励振信号SpLの不要な送信を抑制することができる。
The measurement signal transmitter / receiver 33 generates the excitation signal SpL at a preset time interval and transmits it from the measurement antenna 34. The measurement signal transmitting / receiving unit 33 may generate the excitation signal SpL after detecting that the operation control signal Sc of the validation command Sce has been received. Thus, if the excitation signal SpL is generated and transmitted after receiving the detection of the validation command Sce, unnecessary transmission of the excitation signal SpL can be suppressed.
計測用信号送受信部33は、計測用アンテナ34を介して残響信号Sfpを受信すると、残響信号Sfpの周波数解析を実行し、残響信号Sfpの周波数fpを取得する。計測用信号送受信部33は、残響信号Sfpの周波数fpを計測部35に出力する。計測用信号送受信部33は、RFID識別情報Sinfを周波数fpに関連付けして、計測部35に出力する。
When receiving the reverberation signal Sfp via the measurement antenna 34, the measurement signal transmitting / receiving unit 33 performs frequency analysis of the reverberation signal Sfp and acquires the frequency fp of the reverberation signal Sfp. The measurement signal transmitting / receiving unit 33 outputs the frequency fp of the reverberation signal Sfp to the measurement unit 35. The measurement signal transmission / reception unit 33 associates the RFID identification information Sinf with the frequency fp and outputs it to the measurement unit 35.
計測部35は、周波数fpと温度Tとの関係テーブルを予め記憶している。計測部35は、周波数fpを取得すると、関係テーブルを参照して、温度Tを算出する。この際、計測部25は、RFID識別情報Sinfに基づいて関係テーブルを決定し、当該決定した関係テーブルから、温度Tを算出することもできる。
The measuring unit 35 stores a relationship table between the frequency fp and the temperature T in advance. When obtaining the frequency fp, the measuring unit 35 refers to the relationship table and calculates the temperature T. At this time, the measurement unit 25 can determine a relation table based on the RFID identification information Sinf, and can calculate the temperature T from the determined relation table.
表示部36は、計測部35で算出された温度Tを取得して表示する。この際、表示部36は、RFID識別情報Sinfを温度Tと一緒に表示してもよい。なお、表示部36は、必要に応じて省略することもできる。この場合、温度TやRFID識別情報Sinfを外部出力する出力端子を備えればよい。
The display unit 36 acquires and displays the temperature T calculated by the measurement unit 35. At this time, the display unit 36 may display the RFID identification information Sinf together with the temperature T. The display unit 36 can be omitted as necessary. In this case, an output terminal that outputs the temperature T and RFID identification information Sinf to the outside may be provided.
このような構成からなる無線式センサシステム10は、次に示すフローによって、被計測部の温度Tを計測する。図3は、本発明の第1の実施形態に係る無線式センサシステムのフローチャートである。
The wireless sensor system 10 having such a configuration measures the temperature T of the measurement target part according to the following flow. FIG. 3 is a flowchart of the wireless sensor system according to the first embodiment of the present invention.
共振タグ20を被計測部に装着しておく。この状態では、共振動作制御部212であるスイッチ回路は導通状態であり、共振子23は無効状態である(S101)。
The resonance tag 20 is attached to the measurement target part. In this state, the switch circuit which is the resonance operation control unit 212 is in a conductive state, and the resonator 23 is in an invalid state (S101).
リーダモジュール30を起動する(S201)。リーダモジュール30を共振タグ20に近接させた状態で、リーダモジュール30に対して計測開始操作入力を行う。この計測開始操作入力により、リーダモジュール30は、有効化コマンドSce(動作制御信号Sc)を送信する(S202)。この際のリーダモジュール30と共振タグ20との通信は、例えば、所謂、近距離非接触通信で行われる。
The reader module 30 is activated (S201). In a state where the reader module 30 is brought close to the resonance tag 20, a measurement start operation input is performed on the reader module 30. In response to the measurement start operation input, the reader module 30 transmits an validation command Sce (operation control signal Sc) (S202). Communication between the reader module 30 and the resonance tag 20 at this time is performed by, for example, so-called short-range non-contact communication.
共振タグ20は、有効化コマンドSceを受信するまでは、無効状態を維持する(S102:NO)。共振タグ20は、有効化コマンドSceを受信すると(S102:YES)、共振子23を有効状態に切り替える(S103)。具体的には、共振動作制御部212であるスイッチ回路を開放状態にする。
The resonance tag 20 maintains the invalid state until the activation command Sce is received (S102: NO). When the resonance tag 20 receives the validation command Sce (S102: YES), the resonance tag 20 switches the resonator 23 to the valid state (S103). Specifically, the switch circuit which is the resonance operation control unit 212 is opened.
この際、共振タグ20は、RFID識別情報Sinfをリーダモジュール30に送信する。リーダモジュール30は、RFID識別情報Sinfを受信して復調する(S203)。
At this time, the resonance tag 20 transmits the RFID identification information Sinf to the reader module 30. The reader module 30 receives and demodulates the RFID identification information Sinf (S203).
リーダモジュール30は、励振信号SpLを生成して送信する(S204)。共振タグ10の共振子23は、励振信号SpLを受けて共振し、残響信号Sfpを発生する(S103)。
The reader module 30 generates and transmits an excitation signal SpL (S204). The resonator 23 of the resonance tag 10 receives the excitation signal SpL, resonates, and generates a reverberation signal Sfp (S103).
リーダモジュール30は、残響信号Sfpを受信する(S205)。リーダモジュール30は、残響信号Sfpの周波数fpを解析して、当該周波数fpから温度Tを計測する(S206)。
The reader module 30 receives the reverberation signal Sfp (S205). The reader module 30 analyzes the frequency fp of the reverberation signal Sfp and measures the temperature T from the frequency fp (S206).
リーダモジュール30は、無効化コマンドSci(動作制御信号Sc)を送信する(S207)。
The reader module 30 transmits an invalidation command Sci (operation control signal Sc) (S207).
共振タグ20は、無効化コマンドSciを受信するまでは、有効状態を維持する(S104:NO)。共振タグ20は、無効化コマンドSciを受信すると(S104:YES)、共振子23を無効状態に切り替える(S105)。具体的には、共振動作制御部212であるスイッチ回路を導通状態にする。
The resonance tag 20 maintains the valid state until the invalidation command Sci is received (S104: NO). When the resonance tag 20 receives the invalidation command Sci (S104: YES), the resonance tag 20 switches the resonator 23 to an invalid state (S105). Specifically, the switch circuit which is the resonance operation control unit 212 is turned on.
このような構成および処理を行うことで、計測対象である共振タグ10のみで残響信号Sfpを発生させることができる。例えば、リーダモジュール30の励振信号SpLが届く範囲に複数の共振タグが存在していても、RFID通信により共振子が有効化された共振タグ10のみが、励振信号SpLに応答する残響信号Sfpを発生することができる。これにより、共振タグ毎に周波数を異ならせなくても、複数の共振タグからの残響信号Sfpを個別に取得することができる。したがって、所望とする被計測部の温度等の物理量を確実に計測することができる。
By performing such configuration and processing, the reverberation signal Sfp can be generated only by the resonance tag 10 that is the measurement target. For example, even if there are a plurality of resonance tags within a range where the excitation signal SpL of the reader module 30 can reach, only the resonance tag 10 whose resonator is enabled by RFID communication generates the reverberation signal Sfp that responds to the excitation signal SpL. Can be generated. As a result, the reverberation signals Sfp from a plurality of resonance tags can be individually acquired without changing the frequency for each resonance tag. Therefore, it is possible to reliably measure a physical quantity such as a desired temperature of the measured part.
また、本実施形態の構成および処理を用いれば、共振子の有効化、無効化を、スイッチ回路の開放、導通で制御することができる。これにより、上述の作用効果を奏する共振タグを、簡素な構成によって実現することができる。
Also, if the configuration and processing of this embodiment are used, the activation and invalidation of the resonator can be controlled by opening and conducting the switch circuit. Thereby, the resonance tag which has the above-mentioned operation effect can be realized with a simple configuration.
本実施形態では、共振タグ20を小型化できるため、無線式センサシステム10を以下のように用いることができる。図4は、本発明の第1の実施形態に係る無線式センサシステムを用いて人の体温を測定する場合を示す図である。ただし、図4は、説明のために、共振タグ20が2つのみ存在する例を示している。
In this embodiment, since the resonance tag 20 can be reduced in size, the wireless sensor system 10 can be used as follows. FIG. 4 is a diagram showing a case where the body temperature of a person is measured using the wireless sensor system according to the first embodiment of the present invention. However, FIG. 4 shows an example in which only two resonance tags 20 exist for the sake of explanation.
図4に示すように、RFID通信用アンテナ22、及び共振用アンテナ24は、可撓性を有する薄型のフレキシブル基板(例えば紙及びPET等)上にコイル電極が形成されることにより、それぞれ実現されている。当該フレキシブル基板の長尺部26の端部には共振子23が配置されている。
As shown in FIG. 4, the RFID communication antenna 22 and the resonance antenna 24 are each realized by forming a coil electrode on a flexible thin flexible substrate (for example, paper and PET). ing. A resonator 23 is disposed at the end of the long portion 26 of the flexible substrate.
人の体温を測定するときには、まず、共振タグ20の共振子23を、被検温体である人900の腋の下、すなわち腋窩901に装着する。次に、長尺部26を人900の上腕900Aに巻き付けて共振タグ20を上腕900Aに固定する。これにより、無線式センサシステム10は、人900の深部体温を測定する。
When measuring the body temperature of a person, first, the resonator 23 of the resonance tag 20 is attached to the armpit 901 of the person 900 that is the test body, that is, the axilla 901. Next, the long portion 26 is wound around the upper arm 900A of the person 900 to fix the resonance tag 20 to the upper arm 900A. Thereby, the wireless sensor system 10 measures the deep body temperature of the person 900.
長尺部26を上腕900Aに巻き付ける際、RFID通信用アンテナ22、及び共振用アンテナ24を実現するコイル電極を形成した面が外側(上腕900Aに対しての外側)になるように巻き付け方向を調整する。これにより、リーダモジュール30と共振タグ20との間で、RFID通信、並びに、励振信号SpL及び残響信号Sfpの送受信が可能となる。
When winding the long portion 26 around the upper arm 900A, the winding direction is adjusted so that the surface on which the coil electrode for realizing the RFID communication antenna 22 and the resonance antenna 24 is formed is outside (outside the upper arm 900A). To do. Thereby, RFID communication and transmission / reception of the excitation signal SpL and the reverberation signal Sfp can be performed between the reader module 30 and the resonance tag 20.
図4に示す例では、リーダモジュール30は、人900に装着した共振タグ20の共振子23のみを有効化コマンドSceで有効化し、人910に装着した共振タグ20の共振子23を無効化している。従って、リーダモジュール30は、励振信号SpLが届く範囲に2つの共振タグ20が存在する場合でも、共振タグ20毎に周波数を異ならせる必要がなく、人900に装着した共振タグ20のみから残響信号Sfpを取得することができる。
In the example shown in FIG. 4, the reader module 30 activates only the resonator 23 of the resonance tag 20 attached to the person 900 with the enable command Sce, and invalidates the resonator 23 of the resonance tag 20 attached to the person 910. Yes. Therefore, the reader module 30 does not need to change the frequency for each resonance tag 20 even when the two resonance tags 20 exist within the range where the excitation signal SpL can reach, and the reverberation signal is transmitted only from the resonance tag 20 attached to the person 900. Sfp can be acquired.
次に、本発明の第2の実施形態に係る無線式センサシステムについて、図を参照して説明する。図5は本発明の第2の実施形態に係る無線式センサシステムの構成図である。
Next, a wireless sensor system according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a configuration diagram of a wireless sensor system according to the second embodiment of the present invention.
本実施形態に係る無線式センサシステム10Aは、共振タグ20Aとリーダモジュール30Aを備える。共振タグ20Aは、RFID21A、RFID通信用アンテナ22、共振子23、共振子用アンテナ24を備える。RFID21Aの構成が、第1の実施形態に係るRFID21と異なり、共振タグ20Aの他の構成は第1の実施形態に係る共振タグ20と同じである。リーダモジュール30Aは、RFID通信制御部31A、RFID通信用アンテナ32、計測用信号送受信部33、計測信号用アンテナ34、計測部35A、および表示部36を備える。RFID通信制御部31A、計測部35Aの構成が、第1の実施形態に係るRFID通信制御部31、計測部35と異なり、リーダモジュール30Aの他の構成は第1の実施形態に係るリーダモジュール30と同じである。したがって、異なる箇所のみを説明する。
The wireless sensor system 10A according to the present embodiment includes a resonance tag 20A and a reader module 30A. The resonance tag 20A includes an RFID 21A, an RFID communication antenna 22, a resonator 23, and a resonator antenna 24. The configuration of the RFID 21A is different from the RFID 21 according to the first embodiment, and the other configuration of the resonance tag 20A is the same as that of the resonance tag 20 according to the first embodiment. The reader module 30A includes an RFID communication control unit 31A, an RFID communication antenna 32, a measurement signal transmitting / receiving unit 33, a measurement signal antenna 34, a measurement unit 35A, and a display unit 36. The configuration of the RFID communication control unit 31A and the measurement unit 35A is different from the RFID communication control unit 31 and the measurement unit 35 according to the first embodiment, and the other configuration of the reader module 30A is the reader module 30 according to the first embodiment. Is the same. Therefore, only different parts will be described.
RFID21Aは、制御部211、共振動作制御部212、記憶部213を備える。制御部211と共振動作制御部212の基本構成は、第1の実施形態に係るRFID21と同じである。
The RFID 21A includes a control unit 211, a resonance operation control unit 212, and a storage unit 213. The basic configurations of the control unit 211 and the resonance operation control unit 212 are the same as those of the RFID 21 according to the first embodiment.
記憶部213には、リーダモジュールの動作プログラムが記憶されている。リーダモジュールの動作プログラムとは、例えば、当該RFID21Aに特有の通信処理を行うためのプログラムである。また、当該プログラムには、当該共振タグ20Aの共振子の共振周波数、および、当該共振周波数の温度特性を表す関係テーブルも含まれている。
The storage unit 213 stores a reader module operation program. The reader module operation program is, for example, a program for performing communication processing unique to the RFID 21A. The program also includes a relationship table that represents the resonance frequency of the resonator of the resonance tag 20A and the temperature characteristics of the resonance frequency.
RFID21Aは、リーダモジュール30AのRFID通信制御部31Aから、プログラム読み出しコマンドScrを受信すると、記憶部213から動作プログラムを読み出し、無線信号化する。RFID21Aは、無線信号化された動作プログラムSproを、RFID通信部31Aに出力する。なお、読み出しコマンドScrおよび無線信号化された動作プログラムSproの通信プロトコルは、RFIDの種類に依存しない汎用のプロトコルとしておけば、読み出しコマンドScrおよび無線信号化された動作プログラムSproの通信を、確実に実行することができる。
When receiving the program read command Scr from the RFID communication control unit 31A of the reader module 30A, the RFID 21A reads the operation program from the storage unit 213 and converts it into a radio signal. The RFID 21A outputs the operation program Spro converted into a radio signal to the RFID communication unit 31A. In addition, if the communication protocol of the read command Scr and the operation program Spro converted into a radio signal is a general-purpose protocol that does not depend on the type of RFID, the communication of the read command Scr and the operation program Spro converted into a radio signal can be reliably performed. Can be executed.
RFID通信制御部31Aは、読み出しコマンドScrを送信して、無線信号化された動作プログラムSproを受信し、動作プログラムを復調する。RFID通信制御部31Aは、復調した動作プログラムから、RFID通信制御部31A自身の動作を設定するともに、計測部35Aの動作を設定する。RFID通信制御部31A自身の動作設定とは、例えば、これ以降のRFID21Aに対する通信プロトコルの設定である。計測部35Aの動作設定とは、共振タグ20Aに装着されている共振子23に対応した周波数fpから温度Tを算出する関係テーブルの設定である。
The RFID communication control unit 31A transmits a read command Scr, receives the operation program Spro converted into a radio signal, and demodulates the operation program. The RFID communication control unit 31A sets the operation of the RFID communication control unit 31A itself and the operation of the measurement unit 35A from the demodulated operation program. The operation setting of the RFID communication control unit 31A itself is, for example, a communication protocol setting for the RFID 21A thereafter. The operation setting of the measurement unit 35A is a setting of a relation table for calculating the temperature T from the frequency fp corresponding to the resonator 23 attached to the resonance tag 20A.
計測部35Aは、動作プログラムによる設定に基づいて温度Tを計測する。具体的には、計測部35Aは、動作プログラムで設定された関係テーブルと計測用信号送受信部33で解析した周波数fpから温度Tを算出する。
Measure unit 35A measures temperature T based on the setting by the operation program. Specifically, the measurement unit 35A calculates the temperature T from the relationship table set by the operation program and the frequency fp analyzed by the measurement signal transmission / reception unit 33.
図6は、本発明の第2の実施形態に係る無線式センサシステムのフローチャートである。本実施形態の無線式センサシステム10Aのフローは、有効化コマンドSceの送信処理以降は、第1の実施形態に係る無線式センサシステムのフローチャートと同じである。また、第1の実施形態に係る無線式センサシステムのフローチャートと同じ処理の箇所には、同じステップ番号が記してあり、当該同じ処理の箇所は説明を省略する。
FIG. 6 is a flowchart of the wireless sensor system according to the second embodiment of the present invention. The flow of the wireless sensor system 10A of the present embodiment is the same as the flowchart of the wireless sensor system according to the first embodiment after the process of transmitting the validation command Sce. In addition, the same step numbers are given to the same processing portions as those in the flowchart of the wireless sensor system according to the first embodiment, and the description of the same processing portions is omitted.
リーダモジュール30Aを起動する(S201)。リーダモジュール30Aを共振タグ20Aに近接させた状態で、読み出しコマンドScrを、共振タグ20Aに送信する(S221)。
The reader module 30A is activated (S201). In a state where the reader module 30A is brought close to the resonance tag 20A, a read command Scr is transmitted to the resonance tag 20A (S221).
共振タグ20Aは、読み出しコマンドScrを受信すると(S121)、動作プログラムSproをリーダモジュール30Aに送信する(S122)。リーダモジュール30Aは、動作プログラムSproを受信すると(S222)、動作プログラムSproを復調して展開する(S223)。以下は、第1の実施形態と同様に、計測処理を行う。
When the resonance tag 20A receives the read command Scr (S121), the resonance tag 20A transmits the operation program Spro to the reader module 30A (S122). When receiving the operation program Spro (S222), the reader module 30A demodulates and develops the operation program Spro (S223). In the following, measurement processing is performed as in the first embodiment.
このような構成および処理を用いることで、共振タグ毎に通信仕様等が異なっていても、リーダモジュールは、共振タグ毎に確実に通信を行うことができる。すなわち、リーダモジュールを汎用化することができる。また、動作プログラムSpro内に関係テーブルを含んでおくことで、いずれの共振タグを用いても、物理量を正確に計測することができる。
By using such a configuration and processing, the reader module can reliably communicate for each resonance tag even if the communication specifications and the like are different for each resonance tag. That is, the reader module can be generalized. In addition, by including the relation table in the operation program Spro, the physical quantity can be accurately measured regardless of which resonance tag is used.
10,10A:無線式センサシステム
20,20A:共振タグ
21,21A:RFID
211:制御部
212:共振動作制御部
213:記憶部
22:RFID通信用アンテナ
23:共振子
24:共振子用アンテナ
30,30A:リーダモジュール
31:RFID通信制御部
32:RFID通信用アンテナ
33:計測用信号送受信部
34:計測用アンテナ
35,35A:計測部
36:表示部 10, 10A: Wireless sensor system 20, 20A: Resonance tags 21, 21A: RFID
211: Control unit 212: Resonance operation control unit 213: Storage unit 22: RFID communication antenna 23: Resonator 24: Resonator antenna 30, 30A: Reader module 31: RFID communication control unit 32: RFID communication antenna 33: Measurement signal transmission / reception unit 34: measurement antenna 35, 35A: measurement unit 36: display unit
20,20A:共振タグ
21,21A:RFID
211:制御部
212:共振動作制御部
213:記憶部
22:RFID通信用アンテナ
23:共振子
24:共振子用アンテナ
30,30A:リーダモジュール
31:RFID通信制御部
32:RFID通信用アンテナ
33:計測用信号送受信部
34:計測用アンテナ
35,35A:計測部
36:表示部 10, 10A:
211: Control unit 212: Resonance operation control unit 213: Storage unit 22: RFID communication antenna 23: Resonator 24:
Claims (4)
- 周囲の物理量に応じて共振周波数が変化する共振子およびRFIDを備えた共振タグと、
前記共振子を励振する励振信号を送信し、該励振信号に基づく残響信号を受信する計測用信号送受信部、該計測用信号送受信部で得た前記残響信号に基づいて物理量の計測を行う計測部、および、前記RFIDと通信を行うRFID通信制御部を備えたリーダモジュールと、
を備え、
前記RFID通信制御部は、前記共振子を有効にする有効化コマンドを、前記RFIDに送信し、
前記RFIDは、前記有効化コマンドを取得すると、前記共振子の前記励振信号による共振を有効化する、無線式センサシステム。 A resonance tag including a resonator and an RFID whose resonance frequency changes according to a surrounding physical quantity; and
A measurement signal transmission / reception unit that transmits an excitation signal for exciting the resonator and receives a reverberation signal based on the excitation signal, and a measurement unit that measures a physical quantity based on the reverberation signal obtained by the measurement signal transmission / reception unit A reader module including an RFID communication control unit that communicates with the RFID;
With
The RFID communication control unit transmits an enabling command for enabling the resonator to the RFID,
When the RFID receives the activation command, the RFID activates resonance by the excitation signal of the resonator. - 前記RFID通信制御部は、前記共振子が有効化されている時に、前記共振子を無効にする無効化コマンドを、前記RFIDに送信し、
前記RFIDは、前記無効化コマンドを取得すると、前記共振子の前記励振信号による共振を無効化する、請求項1に記載の無線式センサシステム。 The RFID communication control unit transmits an invalidation command for invalidating the resonator to the RFID when the resonator is activated,
The wireless sensor system according to claim 1, wherein when the RFID receives the invalidation command, the RFID invalidates resonance due to the excitation signal of the resonator. - 前記RFIDは、
前記共振子に並列接続されたスイッチ回路を備え、
前記スイッチ回路は、有効化されている時に開放状態であり、無効化されている時に導通状態である、
請求項1または請求項2に記載の無線式センサシステム。 The RFID is
A switch circuit connected in parallel to the resonator;
The switch circuit is in an open state when enabled, and in a conductive state when disabled.
The wireless sensor system according to claim 1 or 2. - 前記RFIDは、
前記リーダモジュールの動作プログラムを記憶する記憶部を備え、
前記RFID通信制御部は、前記動作プログラムを取得して、当該RFID通信制御部、前記計測用信号送受信部および前記計測部の動作を設定する、
請求項1乃至請求項3のいずれか1項に記載の無線式センサシステム。 The RFID is
A storage unit for storing an operation program of the reader module;
The RFID communication control unit acquires the operation program and sets the operation of the RFID communication control unit, the measurement signal transmission / reception unit, and the measurement unit.
The wireless sensor system according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015513738A JP6004095B2 (en) | 2013-04-22 | 2014-04-21 | Wireless sensor system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-089103 | 2013-04-22 | ||
JP2013089103 | 2013-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175200A1 true WO2014175200A1 (en) | 2014-10-30 |
Family
ID=51791776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061129 WO2014175200A1 (en) | 2013-04-22 | 2014-04-21 | Wireless sensor system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6004095B2 (en) |
WO (1) | WO2014175200A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106932120A (en) * | 2017-04-05 | 2017-07-07 | 合肥酷睿网络科技有限公司 | A kind of bathing pool water temperature detection system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101806743B1 (en) | 2016-10-28 | 2017-12-07 | 영남대학교 산학협력단 | Respiratory muscle strengthening device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003518281A (en) * | 1999-12-20 | 2003-06-03 | トランセンス、テクノロジーズ、パブリック、リミテッド、カンパニー | Tire condition monitoring system |
JP2006270871A (en) * | 2005-03-25 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Equipment controlling system |
JP2007193566A (en) * | 2006-01-19 | 2007-08-02 | Mitsubishi Electric Corp | Rfid system |
JP2007265082A (en) * | 2006-03-29 | 2007-10-11 | Dainippon Printing Co Ltd | Noncontact-type data carrier device equipped with noncontact-type switch, and sensor system using the noncontact-type data carrier device |
JP2011180799A (en) * | 2010-03-01 | 2011-09-15 | Murata Mfg Co Ltd | Device and system for remote sensing |
-
2014
- 2014-04-21 JP JP2015513738A patent/JP6004095B2/en not_active Expired - Fee Related
- 2014-04-21 WO PCT/JP2014/061129 patent/WO2014175200A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003518281A (en) * | 1999-12-20 | 2003-06-03 | トランセンス、テクノロジーズ、パブリック、リミテッド、カンパニー | Tire condition monitoring system |
JP2006270871A (en) * | 2005-03-25 | 2006-10-05 | Matsushita Electric Ind Co Ltd | Equipment controlling system |
JP2007193566A (en) * | 2006-01-19 | 2007-08-02 | Mitsubishi Electric Corp | Rfid system |
JP2007265082A (en) * | 2006-03-29 | 2007-10-11 | Dainippon Printing Co Ltd | Noncontact-type data carrier device equipped with noncontact-type switch, and sensor system using the noncontact-type data carrier device |
JP2011180799A (en) * | 2010-03-01 | 2011-09-15 | Murata Mfg Co Ltd | Device and system for remote sensing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106932120A (en) * | 2017-04-05 | 2017-07-07 | 合肥酷睿网络科技有限公司 | A kind of bathing pool water temperature detection system |
Also Published As
Publication number | Publication date |
---|---|
JP6004095B2 (en) | 2016-10-05 |
JPWO2014175200A1 (en) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6594711B2 (en) | Passive RFID sensor tag | |
EP2765538B1 (en) | Sensing the properties of a material loading a uhf rfid tag by analysis of the complex reflection backscatter at different frequencies and power levels | |
US11034196B2 (en) | Tire sensor location method and apparatus | |
JP6052388B2 (en) | Sensor tag and sensor tag manufacturing method | |
US8384524B2 (en) | Passive surface acoustic wave sensing system | |
US20100225482A1 (en) | Rfid tag, and system and method for detecting change of rfid tag environment | |
KR20170066389A (en) | Passive rfid sensor tag and rfid reader | |
JP2005018175A (en) | Sensor system | |
US20070057773A1 (en) | Apparatus and Methods of Universal Radio Frequency Identification Sensing System | |
JP2015171154A5 (en) | ||
US20120223816A1 (en) | Rfid interrogator with adjustable signal characteristics | |
KR20170066388A (en) | Rfid reading method and rfid reader | |
WO2020035306A1 (en) | Moisture sensors | |
CN104581038A (en) | Camera position recognition system | |
JP6004095B2 (en) | Wireless sensor system | |
JP6165272B2 (en) | Wireless communication device | |
JP2012008748A (en) | Wireless sensor system, passive sensor and physical quantity measurement method by wireless sensor system | |
JP5921728B2 (en) | Trigger event formation by RFID label | |
JP2017203775A5 (en) | ||
JP4673214B2 (en) | RFID tag test method and test system | |
JP6032355B2 (en) | Wireless sensor system and reader module | |
KR102140568B1 (en) | Radio Frequency Identification TAG and Radio Frequency Identification system for using Radio Frequency Identification TAG | |
KR20150114592A (en) | Radio frequency identification tag and radio frequency identification system for using the radio frequency identification tag | |
JP2023070328A (en) | Wireless tag communication apparatus | |
WO2018131361A1 (en) | Measurement device, measurement method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788286 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015513738 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14788286 Country of ref document: EP Kind code of ref document: A1 |