WO2014175023A1 - Functional film manufacturing method - Google Patents

Functional film manufacturing method Download PDF

Info

Publication number
WO2014175023A1
WO2014175023A1 PCT/JP2014/059737 JP2014059737W WO2014175023A1 WO 2014175023 A1 WO2014175023 A1 WO 2014175023A1 JP 2014059737 W JP2014059737 W JP 2014059737W WO 2014175023 A1 WO2014175023 A1 WO 2014175023A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic layer
heat
functional film
layer
resistant substrate
Prior art date
Application number
PCT/JP2014/059737
Other languages
French (fr)
Japanese (ja)
Inventor
健治 属
和喜 田地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014175023A1 publication Critical patent/WO2014175023A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature

Definitions

  • the present invention relates to a method for producing a functional film excellent in production efficiency.
  • a functional film is a film in which a constituent layer (functional layer) that expresses various functions is provided on a flexible plastic film, such as a gas barrier film, an antireflection film, an anti-reflection film, and the like.
  • a dazzling film such as a heat ray blocking film, a transparent conductive film, a moisture proof film, an ultraviolet deterioration preventing film, a diffusion film, a weather resistant film, and an antibacterial film.
  • organic EL organic electroluminescence
  • gas barrier film will be described as a representative example of a functional film.
  • the gas barrier layer constituting the gas barrier film generally, a method of forming a silica vapor deposition film using a vacuum vapor deposition apparatus or the like is known. In this vacuum vapor deposition, a large vacuum apparatus or the like is used. In addition, due to restrictions on the equipment to be used, the suitability for continuous production by the roll-to-roll method was poor, and there was a problem in terms of economy and productivity.
  • JP-A-8-269690 discloses a coating solution containing perhydropolysilazane (hereinafter also referred to as PHPS) or organic polysilazane on a polyester film.
  • PHPS perhydropolysilazane
  • a method is disclosed in which PHPS or organic polysilazane is cured and polymerized by plasma treatment to form an inorganic polymer layer made of silicon oxide or the like.
  • the inorganic polymer layer formed by the method disclosed in Japanese Patent Application Laid-Open No. 8-269690 is a layer disposed between the base material and the metal vapor deposition layer, and the adhesion between the metal vapor deposition layer and the base material. In addition, it is a layer for imparting chemical stability to the base material, and its effect as a gas barrier layer is low.
  • Patent Document 1 Also disclosed is a method for converting a thin film (0.05 to 5 ⁇ m) containing PHPS or organic polysilazane as a main component into a dense glass-like layer having transparency and a high barrier property to gas (for example, see Patent Document 1.)
  • the conversion method described in Patent Document 1 is adapted to the substrate used by irradiation with vacuum ultraviolet light (hereinafter also referred to as VUV) having a wavelength of 230 nm or less and UV light having a wavelength of less than 300 nm.
  • VUV vacuum ultraviolet light
  • the gas barrier property of the obtained gas barrier layer is as follows: It is insufficient.
  • the flexible thin film plastic film applied to various electronic devices does not have sufficient gas barrier properties as described above, and when the gas barrier properties are imparted to the plastic film, the gas barrier properties as described above.
  • the plastic film itself has low heat resistance, the gas barrier layer formation is limited by the maximum temperature of the process, and must be kept low. This is a major obstacle in forming the layer. As a result, an electronic device having high reliability using a plastic film has not been realized.
  • a method in which a solution containing, for example, polysilazane or a siloxane polymer is applied on a heat resistant substrate (for example, a glass substrate), an inorganic layer is formed by baking treatment, and then transferred onto a plastic film.
  • a heat resistant substrate for example, a glass substrate
  • an inorganic layer is formed by baking treatment, and then transferred onto a plastic film.
  • Patent Document 2 the man-hours for peeling off the formed inorganic layer and the man-hours for adhering to the other substrate are many, the process is complicated, and the production suitability, particularly continuous production. This is a very poor method.
  • the conditions in the peeling step and the adhesion step are not strictly controlled, it is difficult to stably form the gas barrier layer.
  • the present invention has been made in view of the above problems, and its solution is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring a large facility, It is an easy method to provide a method for producing a functional film that is excellent in economic efficiency and production stability and can be produced at a high production capacity (production speed).
  • the present inventor applied an inorganic layer forming precursor on a heat-resistant substrate to form an inorganic layer forming precursor layer, and then thermally baked the inorganic layer forming precursor layer
  • the function is achieved by closely contacting and transferring the formed inorganic layer to the plastic film surface under the condition that the temperature of the heat-resistant substrate is equal to or higher than a specific temperature.
  • a functional film which is characterized by producing a film, is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring large equipment, and simple. It has been found that the method can provide a method for producing a functional film that is excellent in economic efficiency and production stability and can be produced at a high production capacity (production speed).
  • the heat-resistant base material is an endless heat-resistant base material that is continuously conveyed, and the coating process, the thermal baking process, the cooling process, the adhesion process, and the transfer process are online processes that are performed by continuously conveying the endless heat-resistant base material.
  • a functional film excellent in functionality for example, gas barrier property
  • transparency is not required for large equipment, and is excellent in economic efficiency and production stability by a simple method, and A method for producing a functional film that can be produced at a high production capacity (production speed) can be provided.
  • the transfer is performed within a specific temperature condition range during the cooling process in the process of transferring onto the plastic film in the cooling process of the inorganic layer.
  • the adhesiveness between the inorganic layer and the plastic film can be increased as compared with the method of transferring the inorganic layer to room temperature and transferring it after cooling or transferring it by reheating after cooling. This is because by transferring at a stage where the temperature is high to a certain degree, the surface activity of the inorganic layer can be in close contact with the plastic film, and softening at the temperature at the close contact with the plastic film. It is estimated that the followability with the heat-resistant base material is improved and the transfer can be stably performed.
  • Process flow figure which shows an example of the manufacturing process by the single wafer system which is an example of the manufacturing method of the functional film of this invention Graph showing an example of temperature history pattern in each manufacturing process
  • the process flow figure which shows an example of the on-line manufacturing process by the roll-to-roll system which is an example of the manufacturing method of the functional film of this invention
  • an inorganic layer forming precursor is applied on a heat resistant substrate to form an inorganic layer forming precursor layer, and then the inorganic layer forming precursor layer is thermally baked to form an inorganic layer.
  • a functional film is produced by closely adhering and transferring the formed inorganic layer to the plastic film surface under the condition that the temperature of the heat-resistant substrate is a specific temperature or higher. It is characterized by. This feature is a technical feature common to the inventions according to claims 1 to 7.
  • the highest attainable temperature in the thermal firing step is within a temperature range of 200 to 600 ° C. Is preferable from the viewpoint that can be stably formed.
  • a release layer forming step of forming a release layer on the heat resistant substrate is performed before the coating step of applying the inorganic layer forming precursor on the heat resistant substrate to form the inorganic layer forming precursor layer. It is preferable from the viewpoint that the inorganic layer can be stably transferred to the plastic film surface side when the formed inorganic layer is transferred in close contact with the plastic film surface.
  • having a film cleaning step for cleaning the surface of the transferred inorganic layer provides a higher quality functional film by removing the release layer remaining on the inorganic layer. From the viewpoint of being able to do so.
  • the heat-resistant substrate is an endless heat-resistant substrate that is continuously conveyed, and the coating process, the heat-firing process, and the cooling
  • the process and the transfer process are online processes in which the endless heat-resistant substrate is continuously conveyed.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • a coating step of coating an inorganic layer forming precursor on a heat resistant substrate to form an inorganic layer forming precursor layer (2) a thermal firing step of thermally firing the formed inorganic layer forming precursor layer to form an inorganic layer; (3) a cooling step for cooling the formed inorganic layer; (4) Adhering step between the surface of the heat-resistant substrate having the inorganic layer and the plastic film surface; (5) a transfer step of transferring the inorganic layer to the plastic film surface;
  • the technical feature is that (3) the temperature at which the inorganic layer and the plastic film surface are adhered and transferred in the (4) adhesion step and (5) transfer step after the cooling step.
  • the heat-resistant substrate is cooled and the temperature is lowered to 40 ° C.
  • an adhesive layer application step of forming an adhesive layer on the plastic film (7) Applying an inorganic layer forming precursor on a heat resistant substrate to form an inorganic layer forming precursor layer (1) Forming a release layer that forms a release layer on the heat resistant substrate before the coating step Process, Can be provided as needed.
  • the above steps (1) to (7) may be carried out by a batch method (also referred to as a single wafer method or an offline method).
  • a batch method also referred to as a single wafer method or an offline method.
  • the above steps (1) to (7) are performed in a roll-to-roll system (also referred to as an online system).
  • the method of performing is preferable from the viewpoint of realizing high productivity.
  • FIG. 1 shows a single-wafer manufacturing process flow as an example of a method for manufacturing a functional film of the present invention.
  • process route 1 which is a process for forming an inorganic layer
  • the surface of the heat-resistant substrate 1 is subjected to plasma cleaning 2 or the like in step A to clean the surface of the heat-resistant substrate 1.
  • the release layer 3 is formed on the heat-resistant substrate 1 washed in the process B while the heat-resistant substrate 1 is conveyed by the conveyance roller DR using the coater C1.
  • the formed release layer 3 in the wet state is dried in step C using the drying device 4 while blowing warm air 6 from the heating means 5.
  • Step D a coating liquid for forming an inorganic layer forming precursor layer is applied on the dried release layer 3 using the coater C2, thereby forming the inorganic layer forming precursor layer 7.
  • the formed heat-resistant substrate 1 inorganic layer forming precursor layer 7 is dried with warm air 6 in the drying step of Step E having the same configuration as Step C.
  • the heat-resistant substrate 1 having the dried inorganic layer forming precursor layer 7 is transferred to the thermal firing step which is Step F, and is heated and heated to a predetermined temperature by the thermal firing member 9 using the thermal firing apparatus 8.
  • the inorganic layer forming precursor layer 7 is subjected to a heat baking treatment to be converted into the inorganic layer 10.
  • the heat-resistant base material 1 converted into the inorganic layer 10 by the heat baking treatment is transferred to the cooling step which is the step G, and the cooling member 12 incorporated in the cooling device 11 is blown with the cold air 13 to start cooling.
  • process route 2 in process H.
  • a plastic film 21 constituting a functional film is prepared, and in Step I, an adhesive layer 22 is applied to the surface of the plastic film 21 with a coater C3, and drying is performed in the same manner as in Step C as necessary.
  • the plastic film 21 with the adhesive layer 22 having the adhesive layer 22 already formed on another line may be used.
  • Step G the temperature (T 2 ) until the heat-resistant substrate 1 having the inorganic layer 10 is cooled from the heat firing temperature and the temperature of the heat-resistant substrate 1 decreases to reach 40 ° C.
  • the inorganic layer 10 and the adhesive layer 22 provided on the plastic film 21 produced in the process route 2 are bonded in the process J.
  • the crimping process of the process K it crimps
  • the functional film unit 15 is separated.
  • the separated functional film unit 15 is subjected to a cleaning process on the film surface in Step N to remove an unnecessary release layer, thereby producing the functional film unit 15.
  • a metal substrate excellent in heat resistance is preferable, and for example, nickel, stainless steel (SUS), carbon steel, titanium alloy and the like can be used.
  • the thickness of the heat-resistant substrate is preferably configured within a range of 0.3 to 2.0 mm.
  • cleaning treatment means 2 for the surface of the heat-resistant substrate known cleaning means such as a plasma cleaning method and a dry ice cleaning method can be applied.
  • atmospheric pressure plasma is suitably used as a cleaning treatment condition by the plasma cleaning apparatus.
  • the cleaning conditions include conditions in which a cleaning surface modification treatment is performed using a nitrogen gas containing 1 to 20% by volume of oxygen, a frequency of 100 kHz to 150 MHz, a voltage of 10 V to 10 kV, and an irradiation distance of 5 to 20 mm.
  • the plasma cleaning apparatus for example, an atmospheric pressure plasma surface treatment apparatus AP Plasma manufactured by E-square Co., Ltd. using a dielectric barrier discharge downstream type plasma head can be mentioned.
  • the material constituting the release layer 3 according to the present invention is not particularly limited as long as it is a material having a release function, but polyvinyl pyrrolidones (including vinyl pyrrolidone polymers) are preferably used.
  • polyvinylpyrrolidones include polyvinylpyrrolidone (Mw about 40,000), polyvinylpyrrolidone (Mw about 9,000), polyvinylpyrrolidone (Mw about 16,000), vinylpyrrolidone-vinyl acetate copolymer (copolymerization mole).
  • polyvinyl pyrrolidone examples include a polyvinyl pyrrolidone single polymer.
  • the polyvinyl pyrrolidone preferably has a viscosity average molecular weight of 5000 to 50000.
  • polyvinyl pyrrolidone a commercial item can also be used and specifically, PSFK15 and PVPK30 by BASF Japan are mentioned.
  • the polyvinyl pyrrolidone is dissolved in an appropriate solvent, for example, an organic solvent such as water or alcohol to prepare a release layer forming coating solution.
  • an appropriate solvent for example, an organic solvent such as water or alcohol to prepare a release layer forming coating solution.
  • the coater C1 used in the step B is not particularly limited as long as it is a wet coater.
  • the coating device include a coater, an extrusion type coater, a slide type coater, and an inkjet head.
  • the temperature at the time of application of the release layer forming coating liquid is not particularly limited, and can be carried out by appropriately selecting an optimum temperature.
  • the layer thickness of the release layer 3 is not particularly limited, but the layer thickness after the process C (drying process-1) shown below is within a range of about 0.2 to 10 ⁇ m. Yes, preferably in the range of 0.5 to 5.0 ⁇ m, more preferably in the range of 1.0 to 3.0 ⁇ m.
  • drying apparatus 4 examples include a heating apparatus such as a warm air heating method or a heater heating method (for example, a panel heater, a halogen heater, or the like).
  • a heating apparatus such as a warm air heating method or a heater heating method (for example, a panel heater, a halogen heater, or the like).
  • the heating means 5 constituting the specific drying apparatus 4 includes a heater heating method (for example, a method in which infrared heaters, halogen heaters, panel heaters and the like are installed above and below the heat-resistant substrate 1 and heated by radiant heat), a heat-resistant group As a transport roller (not shown) for transporting the material 1, a method of heating using a heat roller, a hot air heating method (for example, temperature-controlled hot air is blown from the top and bottom of the heat-resistant substrate 1, and a release layer In the present invention, the hot air heating method is preferable because temperature control can be performed with high accuracy.
  • a heater heating method for example, a method in which infrared heaters, halogen heaters, panel heaters and the like are installed above and below the heat-resistant substrate 1 and heated by radiant heat
  • a heat-resistant group As a transport roller (not shown) for transporting the material 1, a method of heating using a heat roller, a hot air heating method (for example, temperature-controlled hot air is blown
  • Step C of FIG. 1 the heat-resistant substrate 1 on which the wet release layer 3 ⁇ / b> A is formed in Step B is transferred to the drying device 4 by the transport roller DR.
  • the drying device 4 is provided with heating means 5 on the upper part (the release layer 3 surface side) and the lower part (the back surface side of the heat resistant base material 1) of the heat resistant base material 1, respectively. Is sprayed to dry the release layer 3.
  • Step D Coating process of coating solution for forming inorganic layer forming precursor layer
  • a coating liquid for forming the inorganic layer forming precursor layer is applied on the release layer 3.
  • a coating liquid for forming an inorganic layer forming precursor layer using a coater C2 is applied on the release layer 3 of the heat-resistant substrate 1 conveyed by a conveyance roller (not shown) or the like from the process C.
  • a conveyance roller not shown
  • the wet inorganic layer forming precursor layer 7A is formed.
  • the inorganic layer forming precursor contained in the inorganic layer forming precursor layer 7 (7A) is a material that is converted into an inorganic layer by heat treatment in the subsequent heat firing step (step F). Materials can be mentioned.
  • Inorganic layer forming precursor examples include, for example, polysilazane, polysiloxane, polysilane, glass frit, glass paste and the like as the SiO 2 precursor.
  • the “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond in the structure, and has SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and an intermediate between them.
  • a polymer made of ceramic precursor inorganic polymer such as a solid solution SiO x N y as a precursor of silicon oxide nitride, for example, a unit represented by the following general formula described in JP-a-8-112879 (1)
  • a compound having a main skeleton is preferred.
  • R 1 , R 2, and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness as the gas barrier layer to be obtained.
  • organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like has an alkyl group such as a methyl group, thereby improving the adhesiveness with the release layer 3 which is an underlayer.
  • the ceramic film made of hard and brittle polysilazane can be provided with toughness, and even when the film thickness (average film thickness) is made thicker, the occurrence of cracks can be suppressed. Accordingly, perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
  • a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No.
  • glycidol-added polysilazanes obtained by reacting glycidol see, for example, JP-A-6-122852
  • alcohol-added polysilazanes obtained by reacting with alcohol see, for example, JP-A-6-6 240208
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate see, for example, JP-A-6-299118
  • Acetylacetonate complex-added polysilazane (in example, JP-A 6-306329 JP reference.), Fine metal particles of the metal particles added polysilazane obtained by adding (e.g., JP-A-7-196986 JP reference.), And the like.
  • amines or metal catalysts can be added to promote conversion to a silicon oxide compound.
  • Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
  • an organic solvent for preparing a coating liquid containing polysilazane it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbon solvents, aliphatic ethers, fats Ethers such as cyclic ethers
  • hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, dibutyl ether and dioxane
  • ethers such as tetrahydrofuran.
  • organic solvents may be selected according to the solubility of polysilazane, the evaporation rate of the solvent, and the like, and a plurality of organic solvents may be mixed.
  • polysiloxane with terminal Si-H An example of a polysiloxane having a methyl group as an organic group and terminated with Si—H is represented by the following general formula (2).
  • the organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
  • polysiloxane with terminal Si-OH An example of a polysiloxane having a methyl group as an organic group and terminated with Si—OH is represented by the following general formula (3).
  • the organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
  • polysiloxane with Si-H in the side chain An example of a polysiloxane having a methyl group as an organic group and Si—H in the side chain is represented by the following general formula (4).
  • the organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
  • n is in the range of 1 to 100, preferably 30 to 100, and more preferably 50 to 100.
  • glass frit and glass paste examples include powder glass manufactured by AGC Electronics (for example, trade names: ASF series, SK-231-300, KF 9173, LS-5-300M, etc.) and glass paste (AP series, etc.). And the like.
  • organic compounds containing the following metal elements can be exemplified.
  • silicon compound examples include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra t-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diethyl.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium.
  • examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate and butyl titanate dimer.
  • Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate and Zirconium hexafluoropentanedioate and the like can be mentioned.
  • aluminum compounds include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, and triethyldialuminum tri-s-butoxide. Can be mentioned.
  • the same wet coater as described in the step B can be used.
  • the coating thickness can be set appropriately according to the purpose.
  • the coating thickness is about 10 nm to 10 ⁇ m after drying, preferably about 10 nm to 1 ⁇ m.
  • drying apparatus 4 applicable in the process E the same apparatus as the drying apparatus 4 described in the above-mentioned process C can be exemplified.
  • Process F Thermal firing process
  • the inorganic layer forming precursor layer 7 formed in the process E is subjected to a heat baking treatment to be modified into a gas barrier layer composed of the inorganic layer 10, for example, SiO 2 .
  • the thermal baking apparatus 8 is used to apply high-temperature thermal energy to the inorganic layer forming precursor layer 7 formed of, for example, polysilazane or the like, and is composed of SiO 2 or the like.
  • the inorganic layer 10 is formed.
  • a plurality of thermal baking members 9 are provided therein, and the inorganic layer forming precursor layer 7 is heated and converted into the inorganic layer 10 according to a preset temperature history.
  • the plurality of heat-fired members 9 may be disposed on both surfaces of the heat-resistant substrate 1 or may be disposed only on the surface side having the inorganic layer forming precursor layer 7. Also good.
  • the heating temperature by the plurality of heat-fired members 9 can be controlled independently, and each heat-fired member 9 is set to an optimum heating temperature so as to have a heating profile as shown in FIG. .
  • the thermal firing temperature is not particularly limited, but the highest temperature is preferably in the temperature range of 200 to 500 ° C.
  • the thermal baking apparatus is equipped with a thermometer, for example, a non-contact type reflection thermometer, and constantly monitors the temperature of the heat-resistant substrate surface during the thermal baking process. Is a preferred embodiment.
  • the baking apparatus include a roller hearth skin, a discharge plasma baking apparatus, a pulse current baking apparatus, a high-frequency baking apparatus, a near infrared baking apparatus (NIR), and the like.
  • a near-infrared baking apparatus (NIR) is preferable from the viewpoint of processing.
  • an NIR lamp manufactured by Adphos Corporation can be used as the near-infrared baking apparatus.
  • the NIR lamp made by Adphos is a lamp having a wavelength range of 800 to 1500 nm in the near infrared region and a maximum wavelength at 850 nm, and evenly to the inside of the heating object (inorganic layer forming precursor layer 7).
  • the inorganic layer 10 in which the entire film is uniformly converted into the inorganic film can be formed by allowing the heat energy to pass through the inorganic layer forming precursor layer 7 uniformly at high speed.
  • the NIR lamp that is the thermal firing member 9 may be arranged only on one surface side having the inorganic layer forming precursor layer 7.
  • the inorganic layer forming precursor layer 7 before the inorganic layer forming precursor layer 7 is subjected to heat treatment in the thermal baking step, for example, before ultraviolet rays, visible rays, infrared rays, ultrasonic waves, plasma discharges, corona discharges, microwaves, etc. Processing may be performed.
  • the process G is a process of cooling the heat-resistant substrate 1 heated to a high temperature in the process F, which is a previous process.
  • a cooling member 12 is disposed on both sides of the heat-resistant substrate 1, and a cold air 13 or the like is blown to the heat-resistant group having the inorganic layer 10.
  • the material 1 is cooled to a predetermined temperature.
  • bonding is performed at the temperature of 40 degreeC or more of the temperature of a heat-resistant base material. More specifically, the bonding temperature is preferably in the range of 60 to 200 ° C, more preferably in the range of 100 to 150 ° C.
  • the cooling means that can be applied in the cooling step includes a cooling method using a water cooling roller or a chill roller, a cooling method using cold air, and the like, but is not limited thereto.
  • the cooling device is equipped with a thermometer, for example, a non-contact type reflection thermometer, and the temperature of the heat-resistant substrate surface during the cooling process can be constantly monitored.
  • a thermometer for example, a non-contact type reflection thermometer
  • the plastic film 21 on the transfer side is preferably a transparent transparent plastic film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose Acetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetates such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, Syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyester Imide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacryl
  • Step I is a step of applying an adhesive layer 22 on the prepared plastic film 21 by a wet coating method. After applying the adhesive layer 22, a drying step as described in the above-described step C may be provided as necessary.
  • the adhesive layer 22 is preferably formed of a resin component, for example, polyester resin, urethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, vinyl chloride resin, and vinyl chloride.
  • a single resin such as a vinyl acetate copolymer resin or a mixed resin thereof can be used.
  • an adhesive "MAXIVE (registered trademark)" manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • MAXIVE registered trademark
  • a polyepoxy resin as a main agent
  • a polyamine resin as a curing agent
  • the adhesive layer 22 may be composed of only one layer or may be composed of a plurality of layers.
  • the thickness of the adhesive layer 22 is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 3 to 50 ⁇ m.
  • the coater used to form the adhesive layer includes a blade coater, knife coater, impregnation coater, die coater, slot die coater, roller coater, gravure coater, bar coater, comma coater, extrusion coater, slide coater, inkjet head, etc. And a wet coating apparatus.
  • the application temperature of the adhesive layer is not particularly limited, and an optimum temperature condition can be appropriately selected within a temperature range of 20 to 50 ° C.
  • Bonding is performed after arranging the inorganic layer 10 provided on the heat-resistant substrate 1 and the adhesive layer 22 formed on the plastic film 21 to face each other.
  • the temperature at which the two are bonded is performed under a temperature condition in which the temperature of the heat-resistant substrate 1 is 40 ° C. or higher. More specifically, as described above, the bonding temperature is preferably in the range of 60 to 200 ° C., and more preferably in the range of 100 to 150 ° C.
  • the adhesiveness of an inorganic layer and a plastic film can be made high by bonding the heat resistant base material 1 and the plastic film 21 on the temperature conditions whose temperature of the heat resistant base material 1 is 40 degreeC or more. I guess. This is because adhesion and transfer at a certain high temperature level allow the inorganic layer 10 to be in close contact with the plastic film 21 with extremely high surface activity, and the plastic film 21 is softened at the temperature at the time of adhesion. By doing so, the followability with the heat-resistant substrate 1 is improved, it is possible to suppress defects such as wrinkles and unevenness at the time of transfer, and it is assumed that transfer can be performed stably.
  • the same effect as described above can be obtained by the method of reheating after cooling, since the reheating process is provided, the production line from the formation of the inorganic layer to the transfer becomes longer, and there is an opportunity for foreign matters to adhere to the surface of the inorganic layer 10. Increase. If such foreign matter adheres to the surface of the inorganic layer, the inorganic layer 10 is crushed by the attached foreign matter during transfer, resulting in a point failure, which is not a preferable method. The method is extremely excellent in obtaining a high-quality functional film.
  • the unit A produced as described above is pressure-conveyed between the nips using the nip rollers 14 and 14 ′ and is pressure-bonded. At this time, the nip rollers 14 and 14 'can be heated as necessary.
  • nip rollers 14 and 14 ' a rubber roller and a metal roller can be combined, or a rubber roller and a rubber roller can be combined.
  • Process M peeling process
  • the unit A subjected to the pressure-bonding process in the process K is peeled off.
  • a force is applied to the upper and lower sides of the unit A, and from the unit A, from the heat-resistant base material 1, the plastic film 21, the adhesive layer 22, the inorganic layer 10, and the release layer 3 (part). Separated into gas barrier film laminates to be constructed.
  • an atmospheric pressure plasma surface treatment apparatus AP Plasma manufactured by E Square Co., Ltd. using the above-described dielectric barrier discharge downstream type plasma head can be mentioned.
  • the first method is a method called a dry cleaning method (dry cleaning method).
  • dry cleaning method dry cleaning method
  • an ion beam cleaning method, a UV ozone cleaning method, a UV excimer irradiation method, a laser cleaning method, and the like can be given. .
  • the second method is a method called a wet cleaning method (wet cleaning method).
  • a wet cleaning method After immersing a substrate having a gas barrier layer in a liquid, for example, jet cleaning, bubbling cleaning, ultrasonic cleaning, running water cleaning, or the like is used. This is a method of cleaning.
  • this wet cleaning method exhibits a certain level of detergency, it requires a drying step after that, and thus has a problem that the processing time becomes long.
  • the third method is a physical peeling method in which a physical force (for example, impact force of an object) is directly applied to the surface of the gas barrier layer for cleaning.
  • a physical force for example, impact force of an object
  • shower cleaning for example, High pressure spray cleaning, ultrasonic shower cleaning, two-fluid nozzle cleaning
  • ice blast cleaning for example, micro ice jet, dry ice scrub cleaning
  • FIG. 2 shows a typical temperature history pattern in the functional film manufacturing process described above.
  • FIG. 2 mainly shows a temperature history pattern of the heat-resistant substrate 1 from the process B (release layer application process) to the process J (bonding process).
  • step B which is a step of forming the release layer 3A in a wet state
  • the heat-resistant substrate 1 has the same temperature as the release layer forming coating solution.
  • step C drying step 1
  • the heat-resistant substrate 1 is heated to a higher temperature by the heat drying step.
  • Step D the coating liquid for forming the inorganic layer forming precursor layer is applied, but the coating may be performed as it is at the temperature of Step C, which is the previous step, or after cooling once after Step C, the inorganic layer is formed. You may apply
  • a heat baking process is performed as the process F.
  • examples of the temperature rising pattern up to a desired thermal firing temperature include a method of increasing the temperature at a constant temperature increase rate and a method of increasing the temperature stepwise in block units.
  • the maximum temperature T max in the process F is in a temperature range of 200 to 600 ° C.
  • the time T for maintaining the maximum temperature T max can be set as appropriate.
  • step E drying step
  • the thermal baking treatment may be directly performed in the step F. good.
  • a cooling process is performed in the process G.
  • the process is not performed until room temperature (T 1 ) and the heat-resistant substrate 1 is still heated, that is, under the temperature condition of 40 ° C. (T 2 ) or more as the heat-resistant substrate 1. Perform the bonding process.
  • FIG. 1 an example of a method for producing a functional film by a single-wafer method is shown.
  • FIG. 3 An on-line manufacturing method based on a roll-to-roll method is more preferable.
  • FIG. 3 is a process flow diagram showing an example of an on-line manufacturing process using a roll-to-roll method, which is an example of a method for manufacturing a functional film of the present invention.
  • each device shown in FIG. 3 has the same configuration as that of each device described in FIG. 1, and description thereof is omitted here, and only the feature points of the process flow are described.
  • an endless heat-resistant substrate 1 (hereinafter also referred to as an endless belt 1A), for example, a stainless steel casting belt, is held by the support roller SR and supported. While a part of the roller SR functions as a driving roller, it is conveyed endlessly.
  • the release layer coating solution is supplied by the coater C1 to release the wet state.
  • drying is performed by the drying device 4 in Step C to form the release layer 3.
  • Step D the coating liquid for forming the inorganic layer forming precursor layer 7A was supplied onto the release layer 3 from the coater C2, and then dried in Step E to form the inorganic layer forming precursor layer 7. Thereafter, a thermal baking treatment is performed in Step F to modify the inorganic layer forming precursor layer 7 to the inorganic layer 10.
  • step G the endless belt 1 heated at a high temperature is cooled, and the temperature of the endless belt 1 is monitored with a surface thermometer installed at the exit of the step G, but the temperature of the endless belt 1 is 40 ° C. or higher. Then, it is unloaded from the cooling device 11.
  • the plastic film 21 is unloaded from the long laminating roller at the original unwinding part (unwinder part) UW, and the adhesive layer coating solution is applied onto the plastic film 21 from the coater C3 in the process I. , And the adhesive layer 22 is formed, followed by drying with the drying device 4.
  • step J After bonding in step J, niping and pressing with support roller SR and back roller BR in step K, 1 unit of heat-resistant substrate and 21 units of plastic film are separated from each other in step M, whereby a heat-resistant substrate is obtained.
  • the inorganic layer and the release layer formed on 1 are transferred onto the adhesive layer of the plastic film 21.
  • the processes J, K and M are performed almost simultaneously.
  • Step N the release layer residue adhering to the outermost surface of the plastic film 21 is removed by a film surface cleaning process. Furthermore, after application of other functional layers in the process P, for example, formation of a protective layer and the like, and drying in the process Q as necessary, the film is wound by a winding part (winder part) W. In addition, you may perform the process P which forms another functional layer in another line.
  • a winding part winder part
  • Embodiment of the manufacturing method of a functional film can be manufactured by the following embodiment, but the present invention is not limited to the manufacturing method exemplified here.
  • Step A Cleaning the surface of the heat-resistant substrate On the surface of the stainless steel casting belt that is continuously transporting the heat-resistant substrate 1, as a plasma cleaning device 2, an atmospheric pressure plasma surface treatment device AP Plasma manufactured by E-Square Co., Ltd. The surface was cleaned by plasma irradiation.
  • a plasma cleaning device 2 an atmospheric pressure plasma surface treatment device AP Plasma manufactured by E-Square Co., Ltd. The surface was cleaned by plasma irradiation.
  • Step B and Step C Mold Release Layer Formation and Drying Next, using a slot die coater (corresponding to C1) on the stainless steel casting belt continuously conveyed in Step B, polyvinyl pyrrolidone (PVP) as a release agent. ) was applied to a dry film thickness of 1.5 ⁇ m and dried in Step C to form a release layer 3.
  • PVP polyvinyl pyrrolidone
  • Step D and Step E Application and Drying of Inorganic Layer Forming Precursor Layer
  • PHPS perhydropolysilazane
  • the film was applied using a slot die coater (corresponding to C2) under the condition that the film thickness after drying was 50 nm, and then dried in Step E.
  • Step F Thermal Firing Step Next, in Step F, an NIR lamp manufactured by Adphos is used as the thermal firing device 8 and heated at 280 ° C. for 1 minute, and then heated at 500 ° C. for 3 minutes as the maximum temperature (T max ). Then, the inorganic layer forming precursor layer 7 was modified to form the inorganic layer 10.
  • an NIR lamp manufactured by Adphos is used as the thermal firing device 8 and heated at 280 ° C. for 1 minute, and then heated at 500 ° C. for 3 minutes as the maximum temperature (T max ). Then, the inorganic layer forming precursor layer 7 was modified to form the inorganic layer 10.
  • Step G Cooling Step Next, in the cooling step, cold air was blown from both sides of the casting belt to cool the heat-resistant substrate 1 to 120 ° C.
  • Step I Formation of Adhesive Layer Separately, in Process Route 2, a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m as a plastic film 21 and an adhesive for gas barrier dry laminate epoxy resin as an adhesive “MAXIVE (registered trademark)” “Mitsubishi Gas Chemical Co., Ltd.” was applied at a thickness of 10 ⁇ m and dried to form an adhesive layer 22.
  • PET polyethylene terephthalate
  • Steps J, K, M Pasting and Separation Next, the cooling step was passed, and the casting belt having a substrate temperature of 120 ° C. and the PET film were pasted with the inorganic layer and the adhesive layer facing each other. Subsequently, both base materials were separated and the release layer 3 and the inorganic layer 10 on the heat-resistant base material 1 were transferred onto the PET film.
  • Step N Film cleaning step Next, the surface of the transferred PET film is subjected to a plasma cleaning treatment for 1 minute using an atmospheric plasma surface treatment apparatus AP Plasma manufactured by E-Square Co., Ltd., and remains on the surface.
  • the release agent polyvinyl pyrrolidone
  • the release agent was removed, and the gas barrier film unit 15 was produced.
  • Vapor deposition equipment JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd. Constant temperature and humidity oven: Yamato Humidic Chamber IG47M ⁇ raw materials> Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation sample) Using a vacuum deposition apparatus (vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.), metallic calcium was deposited in a size of 12 mm ⁇ 12 mm through the mask on the inorganic layer forming surface of the produced gas barrier film unit. At this time, the deposited film thickness was set to 80 nm.
  • the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet to perform temporary sealing.
  • the vacuum state is released, quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum deposition surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX).
  • a water vapor barrier property evaluation sample was prepared by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
  • the obtained sample was stored under high temperature and high humidity of 60 ° C. and 90% RH, and the state of metallic calcium corroding with respect to the storage time was observed. Observation is performed every hour for up to 6 hours, every 3 hours for up to 24 hours, every 6 hours for up to 48 hours thereafter, and every 12 hours thereafter, a 12 mm x 12 mm metal
  • the area where metallic calcium corroded relative to the calcium deposition area was calculated in%.
  • the time when the area where the metal calcium corrodes becomes 1% is obtained by interpolating from the observation result by a straight line, and the metal calcium vapor deposition area, the amount of water vapor corroding the metal calcium for the area of 1%, and the time required for it. From the relationship, the water vapor transmission rate of each gas barrier film unit was calculated.
  • the water vapor permeability of the produced gas barrier film unit was 2.0 ⁇ 10 ⁇ 4 g / (m 2 ⁇ 24 h).
  • the visible light transmittance was measured using a spectrophotometer V-570 (manufactured by JASCO Corporation). As a result, the transmittance at 590 nm was 92%.
  • the gas barrier film unit produced above was cut into a size of 00 mm ⁇ 100 mm, stored for 24 hours in an environment of 40 ° C. and 90% RH, and then stored for 2 hours in an environment of 40 ° C. and 10% RH. A test was conducted. Next, the gas barrier film unit was moved to an environment of 23 ° C. and 55% RH, placed on a flat quartz plate, and the average value of the height of lifting from the quartz plate surface at the four corners was measured. As a result of evaluating the flatness of the gas barrier film unit, the evaluation rank was “ ⁇ ”.
  • the functional film (gas barrier film unit) produced by the method for producing a functional film of the present invention has gas barrier properties (water vapor barrier properties), transparency and flatness. It was confirmed that it was excellent in performance.
  • the method for producing a functional film of the present invention is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring large equipment, in a simple manner, economically and It has excellent production stability and can be produced at a high production capacity (production speed), and the functional film obtained thereby can be used for packaging products that require the blocking of various gases such as water vapor and oxygen, and for foods. It can be suitably used as a packaging application for preventing alteration of industrial articles and pharmaceuticals, and as an electronic device material such as a liquid crystal display element, a solar cell, and an organic electroluminescence substrate.

Abstract

The present invention addresses the problem of providing a functional film manufacturing method capable of manufacturing a functional film having excellent functionality (for example, a gas barrier property), transparency, and planarity with excellent economic efficiency and production stability and high productivity by a simple method without requiring a large-scale facility. This functional film manufacturing method is a method for manufacturing a functional film through an application step for applying an inorganic layer forming precursor onto a heat-resistant substrate to form an inorganic layer forming precursor layer, a heat burning step for heat-burning the formed inorganic layer forming precursor layer to form an inorganic layer, a cooling step for cooling the formed inorganic layer, a close attachment step for closely attaching a surface having the inorganic layer of the heat-resistance substrate and a plastic film surface to each other, and a transfer step for transferring the inorganic layer to the plastic film surface after the close attachment, the method being characterized in that the transfer step is performed before the temperature of the heat-resistant substrate drops to 40°C after the cooling step.

Description

機能性フィルムの製造方法Method for producing functional film
 本発明は、生産効率に優れた機能性フィルムの製造方法に関する。 The present invention relates to a method for producing a functional film excellent in production efficiency.
 現在、各種機能を備えた機能性フィルムが広く知られている。機能性フィルムとは、主には、可撓性のプラスチックフィルム上に各種の機能を発現する構成層(機能性層)を設けたフィルムであり、例えば、ガスバリアー性フィルム、反射防止フィルム、防眩性フィルム、熱線遮断フィルム、透明導電性フィルム、防湿フィルム、紫外線劣化防止フィルム、拡散フィルム、耐候性フィルム、抗菌フィルム等が挙げられる。 Currently, functional films with various functions are widely known. A functional film is a film in which a constituent layer (functional layer) that expresses various functions is provided on a flexible plastic film, such as a gas barrier film, an antireflection film, an anti-reflection film, and the like. Examples include a dazzling film, a heat ray blocking film, a transparent conductive film, a moisture proof film, an ultraviolet deterioration preventing film, a diffusion film, a weather resistant film, and an antibacterial film.
 機能性フィルムの一例である、プラスチック基板やプラスチックフィルムの表面に酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を形成したガスバリアー性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装用途や、食品、工業用品及び医薬品等の水蒸気や酸素等による変質を防止するための包装用途として、広く用いられている。 An example of a functional film, a gas barrier film with a metal oxide thin film such as aluminum oxide, magnesium oxide, or silicon oxide formed on the surface of a plastic substrate or plastic film, blocks various gases such as water vapor and oxygen. It is widely used as a packaging application for necessary articles and a packaging application for preventing deterioration due to water vapor, oxygen, etc. of foods, industrial products and pharmaceuticals.
 また、上記包装用途以外にも、液晶表示素子、太陽電池、有機エレクトロルミネッセンス(以下、有機ELと略記する。)基板等の電子デバイス材料として使用されている。 In addition to the above packaging applications, it is also used as an electronic device material such as a liquid crystal display element, a solar cell, and an organic electroluminescence (hereinafter abbreviated as organic EL) substrate.
 以下、機能性フィルムの代表例として、ガスバリアー性フィルムについて述べる。 Hereinafter, a gas barrier film will be described as a representative example of a functional film.
 ガスバリアー性フィルムを構成するガスバリアー層としては、一般的には、真空蒸着装置等を用いてシリカ蒸着膜を形成する方法が知られているが、この真空蒸着では、大型の真空装置等を必要とし、更に、使用する設備上の制約により、ロール・ツー・ロール方式による連続生産適性に乏しく、経済性及び生産性の面で問題があった。 As the gas barrier layer constituting the gas barrier film, generally, a method of forming a silica vapor deposition film using a vacuum vapor deposition apparatus or the like is known. In this vacuum vapor deposition, a large vacuum apparatus or the like is used. In addition, due to restrictions on the equipment to be used, the suitability for continuous production by the roll-to-roll method was poor, and there was a problem in terms of economy and productivity.
 上記蒸着法以外でバリアー層を形成する方法としては、例えば、特開平8-269690号公報には、ポリエステルフィルム上に、パーヒドロポリシラザン(以下、PHPSともいう。)または有機ポリシラザンを含有する塗布液を塗布し、プラズマ処理によりPHPSまたは有機ポリシラザンを硬化及び重合させて酸化ケイ素系等から成る無機高分子層を形成する方法が開示されている。しかし、特開平8-269690号公報で開示されている方法で形成される無機高分子層は、基材と金属蒸着層の中間に配置される層で、金属蒸着層と基材との密着性や、基材の化学的安定性に付与させるための層であり、ガスバリアー層として効果は低い。 As a method for forming a barrier layer other than the above vapor deposition method, for example, JP-A-8-269690 discloses a coating solution containing perhydropolysilazane (hereinafter also referred to as PHPS) or organic polysilazane on a polyester film. A method is disclosed in which PHPS or organic polysilazane is cured and polymerized by plasma treatment to form an inorganic polymer layer made of silicon oxide or the like. However, the inorganic polymer layer formed by the method disclosed in Japanese Patent Application Laid-Open No. 8-269690 is a layer disposed between the base material and the metal vapor deposition layer, and the adhesion between the metal vapor deposition layer and the base material. In addition, it is a layer for imparting chemical stability to the base material, and its effect as a gas barrier layer is low.
 また、PHPS又は有機ポリシラザンを主成分として含む薄膜(0.05~5μm)を、透明性及びガスに対する高いバリアー性を備えた緻密なガラス様の層に転化するための方法が開示されている(例えば、特許文献1参照。)。特許文献1に記載されている転化方法は、230nm以下の波長を有する真空紫外光(以下、VUVともいう。)及び300nm未満の波長のUV光の照射によって、使用している基材に適合したできるだけ低い温度範囲で、できるだけ短い処理時間(0.1~10分間)で行なう方法に関しては開示されているが、ここで開示されている方法では、得られるガスバリアー層のガスバリアー性としては、不十分である。 Also disclosed is a method for converting a thin film (0.05 to 5 μm) containing PHPS or organic polysilazane as a main component into a dense glass-like layer having transparency and a high barrier property to gas ( For example, see Patent Document 1.) The conversion method described in Patent Document 1 is adapted to the substrate used by irradiation with vacuum ultraviolet light (hereinafter also referred to as VUV) having a wavelength of 230 nm or less and UV light having a wavelength of less than 300 nm. Although a method for performing a treatment time as short as possible (0.1 to 10 minutes) in a temperature range as low as possible is disclosed, in the method disclosed herein, the gas barrier property of the obtained gas barrier layer is as follows: It is insufficient.
 一方、各種電子デバイスに適用されているフレキシブルで薄膜のプラスチックフィルムは、上述のようにガスバリアー性が十分ではなく、プラスチックフィルムにガスバリアー性を付与させる場合には、上述のようなガスバリアー性層が設けられているが、プラスチックフィルム自身は耐熱性が低いため、ガスバリアー層の成膜においては、プロセスの最高温度に制約を受け、低くせざるを得ず、高密度で精緻なガスバリアー層を形成する際の大きな障害となっている。その結果、プラスチックフィルムを用いた高信頼性を有する電子デバイスは実現されていない。 On the other hand, the flexible thin film plastic film applied to various electronic devices does not have sufficient gas barrier properties as described above, and when the gas barrier properties are imparted to the plastic film, the gas barrier properties as described above. However, because the plastic film itself has low heat resistance, the gas barrier layer formation is limited by the maximum temperature of the process, and must be kept low. This is a major obstacle in forming the layer. As a result, an electronic device having high reliability using a plastic film has not been realized.
 上記問題に対し、耐熱性基板(例えば、ガラス基板)上に、例えば、ポリシラザンやシロキサンポリマーを含む溶液を塗布し、その後焼成処理により無機層を形成した後、プラスチックフィルム上に転写する方法が開示されている(例えば、特許文献2参照。)。しかしながら、特許文献2に記載されている方法では、形成した無機層の剥離するための工数及び他の基板へ密着させるための工数が多く、その工程が煩雑であり、生産適性、特に、連続生産に対する適性が極めて乏しい方法である。加えて、剥離工程及び密着工程における条件が、厳密に制御されていないため、安定してガスバリアー層を形成することが難しかった。 For the above problem, a method is disclosed in which a solution containing, for example, polysilazane or a siloxane polymer is applied on a heat resistant substrate (for example, a glass substrate), an inorganic layer is formed by baking treatment, and then transferred onto a plastic film. (For example, see Patent Document 2). However, in the method described in Patent Document 2, the man-hours for peeling off the formed inorganic layer and the man-hours for adhering to the other substrate are many, the process is complicated, and the production suitability, particularly continuous production. This is a very poor method. In addition, since the conditions in the peeling step and the adhesion step are not strictly controlled, it is difficult to stably form the gas barrier layer.
 従って、ガスバリアー性、透明性及び平面性に優れ、高い生産性と生産能力(生産速度)を備えた機能性フィルムの製造方法の開発が切望されている。 Therefore, development of a method for producing a functional film having excellent gas barrier properties, transparency and flatness, and having high productivity and production capacity (production speed) is eagerly desired.
特表2009-503157号公報Special table 2009-503157 特許第4974452号公報Japanese Patent No. 4974452
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、機能性(例えば、ガスバリアー性)、透明性及び平面性に優れた機能性フィルムを、大型設備を必要とせず、簡易的な方法で、経済性及び生産安定性に優れ、かつ高い生産能力(生産速度)で生産することができる機能性フィルムの製造方法を提供することである。 The present invention has been made in view of the above problems, and its solution is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring a large facility, It is an easy method to provide a method for producing a functional film that is excellent in economic efficiency and production stability and can be produced at a high production capacity (production speed).
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成し、次いで無機層形成前駆体層を熱焼成して無機層を形成した後、無機層を冷却する過程で、耐熱基材の温度が特定の温度以上の条件で、前記形成した無機層を、プラスチックフィルム面に密着及び転写することにより機能性フィルムを製造することを特徴とする機能性フィルムの製造方法により、機能性(例えば、ガスバリアー性)、透明性及び平面性に優れた機能性フィルムを、大型設備を必要とせず、簡易的な方法で、経済性及び生産安定性に優れ、かつ高い生産能力(生産速度)で生産することができる機能性フィルムの製造方法を提供することができることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor applied an inorganic layer forming precursor on a heat-resistant substrate to form an inorganic layer forming precursor layer, and then thermally baked the inorganic layer forming precursor layer In the process of cooling the inorganic layer after forming the inorganic layer, the function is achieved by closely contacting and transferring the formed inorganic layer to the plastic film surface under the condition that the temperature of the heat-resistant substrate is equal to or higher than a specific temperature. A functional film, which is characterized by producing a film, is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring large equipment, and simple. It has been found that the method can provide a method for producing a functional film that is excellent in economic efficiency and production stability and can be produced at a high production capacity (production speed).
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.耐熱基材上に無機層形成前駆体を塗布して無機形成前駆体層を形成する塗布工程、
 形成した前記無機層形成前駆体層を熱焼成して無機層を形成する熱焼成工程、
 形成した前記無機層を冷却する冷却工程、
 耐熱基材の前記無機層を有する面と、プラスチックフィルム面とを密着する密着工程、
 密着した後、前記無機層を前記プラスチックフィルム面に転写する転写工程、
 を経て機能性フィルムを製造する機能性フィルムの製造方法であって、
 前記転写工程が、前記冷却工程を経て、前記耐熱基材の温度が40℃に低下するまでの間で行うことを特徴とする機能性フィルムの製造方法。
1. A coating step of coating the inorganic layer forming precursor on the heat-resistant substrate to form an inorganic forming precursor layer;
A thermal firing step of thermally firing the formed inorganic layer forming precursor layer to form an inorganic layer;
A cooling step for cooling the formed inorganic layer;
An adhesion process for closely adhering the surface of the heat-resistant substrate having the inorganic layer and the plastic film surface;
A transfer step of transferring the inorganic layer to the plastic film surface after being adhered,
A functional film manufacturing method for manufacturing a functional film via
The method for producing a functional film, wherein the transfer step is performed until the temperature of the heat-resistant substrate is lowered to 40 ° C. after the cooling step.
 2.前記熱焼成工程における最高到達温度が、200~600℃の温度範囲内であることを特徴とする第1項に記載の機能性フィルムの製造方法。 2. 2. The method for producing a functional film as set forth in claim 1, wherein a maximum temperature reached in the thermal baking step is in a temperature range of 200 to 600 ° C.
 3.耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成する前記塗布工程の前に、前記耐熱基材上に離型層を形成する離型層形成工程を有することを特徴とする第1項又は第2項に記載の機能性フィルムの製造方法。 3. Having a release layer forming step of forming a release layer on the heat resistant substrate before the coating step of applying the inorganic layer forming precursor on the heat resistant substrate to form the inorganic layer forming precursor layer; A method for producing a functional film according to item 1 or 2, characterized in that:
 4.前記転写工程の後に、転写した無機層表面を洗浄するフィルム洗浄工程を有することを特徴とする第1項から第3項までのいずれか一項に記載の機能性フィルムの製造方法。 4. The method for producing a functional film according to any one of claims 1 to 3, further comprising a film cleaning step of cleaning the transferred inorganic layer surface after the transfer step.
 5.前記耐熱基材が連続搬送する無端耐熱基材であり、前記塗布工程、熱焼成工程、冷却工程、密着工程及び転写工程が、前記無端耐熱基材を連続搬送して行うオンライン工程であることを特徴とする第1項から第4項までのいずれか一項に記載の機能性フィルムの製造方法。 5. The heat-resistant base material is an endless heat-resistant base material that is continuously conveyed, and the coating process, the thermal baking process, the cooling process, the adhesion process, and the transfer process are online processes that are performed by continuously conveying the endless heat-resistant base material. The method for producing a functional film according to any one of Items 1 to 4, wherein the method is characterized.
 6.前記塗布工程の前に、連続搬送する無端耐熱基材の表面を洗浄する洗浄工程を有することを特徴とする第5項に記載の機能性フィルムの製造方法。 6. 6. The method for producing a functional film according to claim 5, further comprising a washing step of washing the surface of the endless heat-resistant substrate that is continuously conveyed before the coating step.
 7.前記機能性フィルムが、ガスバリアー性フィルムであることを特徴とする第1項から第6項までのいずれか一項に記載の機能性フィルムの製造方法。 7. The method for producing a functional film according to any one of claims 1 to 6, wherein the functional film is a gas barrier film.
 本発明の上記手段により、機能性(例えば、ガスバリアー性)及び透明性に優れた機能性フィルムを、大型設備を必要とせず、簡易的な方法で、経済性及び生産安定性に優れ、かつ高い生産能力(生産速度)で生産することができる機能性フィルムの製造方法を提供することができる。 By the above means of the present invention, a functional film excellent in functionality (for example, gas barrier property) and transparency is not required for large equipment, and is excellent in economic efficiency and production stability by a simple method, and A method for producing a functional film that can be produced at a high production capacity (production speed) can be provided.
 本発明で規定する構成により、本発明の目的とする効果が得られる技術的理由に関しては、その機構の詳細の全てについて解明はされていないが、以下のように推測している。 The technical reason why the intended effect of the present invention can be obtained by the configuration defined in the present invention has not been clarified in all the details of the mechanism, but is presumed as follows.
 前記特許文献2に記載されている方法では、形成した無機層の剥離工程及び他の基板への密着工程が多く、また、その無機層の転写工程が煩雑であり、生産適性、特に、連続生産適性が極めて乏しい方法であった。本発明においては、簡易的な工程フローにより無機層をプラスチックフィルム上に転写、形成することができる方法であり、特に、連続搬送する無端耐熱基材を用い、ロール・ツー・ロールで連続的に機能性フィルムを製造する方法として最適であり、簡易的な設備により、極めて高い生産性及び生産効率により、機能性フィルムを製造することができる。 In the method described in Patent Document 2, there are many peeling steps of the formed inorganic layer and adhesion steps to other substrates, and the transfer step of the inorganic layer is complicated, and production suitability, particularly continuous production. The method was extremely poor in suitability. In the present invention, an inorganic layer can be transferred and formed on a plastic film by a simple process flow. In particular, using an endless heat-resistant substrate that is continuously conveyed, it is continuously roll-to-roll. It is optimal as a method for producing a functional film, and the functional film can be produced with extremely high productivity and production efficiency by simple equipment.
 また、熱焼成工程で無機層形成前駆体層を無機層に変化した後、無機層の冷却過程でプラスチックフィルム上に転写する工程において、冷却工程の途中の特定の温度条件範囲内で転写することにより、無機層を室温まで下げた後に転写する方法、あるいは、冷却後再加熱して転写する方法に比較して、無機層とプラスチックフィルムとの密着性を高くすることができたものである。これは、ある程度の温度が高い段階で転写することにより、無機層の表面活性が非常に高い状態で、プラスチックフィルムと密着することができ、かつプラスチックフィルムとの密着時の温度で軟化することにより、耐熱基材との追従性が向上し、安定して転写することができるものと推測している。 Also, after the inorganic layer forming precursor layer is changed to the inorganic layer in the thermal firing process, the transfer is performed within a specific temperature condition range during the cooling process in the process of transferring onto the plastic film in the cooling process of the inorganic layer. As a result, the adhesiveness between the inorganic layer and the plastic film can be increased as compared with the method of transferring the inorganic layer to room temperature and transferring it after cooling or transferring it by reheating after cooling. This is because by transferring at a stage where the temperature is high to a certain degree, the surface activity of the inorganic layer can be in close contact with the plastic film, and softening at the temperature at the close contact with the plastic film. It is estimated that the followability with the heat-resistant base material is improved and the transfer can be stably performed.
本発明の機能性フィルムの製造方法の一例である枚葉方式による製造工程の一例を示す工程フロー図Process flow figure which shows an example of the manufacturing process by the single wafer system which is an example of the manufacturing method of the functional film of this invention 各製造工程における温度履歴パターンの一例を示すグラフGraph showing an example of temperature history pattern in each manufacturing process 本発明の機能性フィルムの製造方法の一例であるロール・ツー・ロール方式によるオンライン製造工程の一例を示す工程フロー図The process flow figure which shows an example of the on-line manufacturing process by the roll-to-roll system which is an example of the manufacturing method of the functional film of this invention
 本発明の機能性フィルムの製造方法は、耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成し、次いで無機層形成前駆体層を熱焼成して無機層を形成した後、無機層を冷却する過程で、耐熱基材の温度が特定の温度以上の条件で、前記形成した無機層を、プラスチックフィルム面に密着及び転写することにより機能性フィルムを製造することを特徴とする。この特徴は、請求項1から請求項7に係る発明に共通する技術的特徴である。 In the method for producing a functional film of the present invention, an inorganic layer forming precursor is applied on a heat resistant substrate to form an inorganic layer forming precursor layer, and then the inorganic layer forming precursor layer is thermally baked to form an inorganic layer. After the formation, in the process of cooling the inorganic layer, a functional film is produced by closely adhering and transferring the formed inorganic layer to the plastic film surface under the condition that the temperature of the heat-resistant substrate is a specific temperature or higher. It is characterized by. This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、前記熱焼成工程における最高到達温度が、200~600℃の温度範囲内であることが、高品位の無機層を安定して形成することができる観点から好ましい。 As an embodiment of the present invention, from the standpoint that the effects of the present invention can be further manifested, the highest attainable temperature in the thermal firing step is within a temperature range of 200 to 600 ° C. Is preferable from the viewpoint that can be stably formed.
 また、耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成する前記塗布工程の前に、前記耐熱基材上に離型層を形成する離型層形成工程を有することが、形成した無機層を、プラスチックフィルム面と密着して転写する際に、安定して無機層をプラスチックフィルム面側に転写することができる観点から好ましい。 In addition, a release layer forming step of forming a release layer on the heat resistant substrate is performed before the coating step of applying the inorganic layer forming precursor on the heat resistant substrate to form the inorganic layer forming precursor layer. It is preferable from the viewpoint that the inorganic layer can be stably transferred to the plastic film surface side when the formed inorganic layer is transferred in close contact with the plastic film surface.
 また、前記転写工程の後に、転写した無機層表面を洗浄するフィルム洗浄工程を有することが、無機層上に残留している離型層を除去することにより、より高品位の機能性フィルムを得ることができる観点から好ましい。 In addition, after the transfer step, having a film cleaning step for cleaning the surface of the transferred inorganic layer provides a higher quality functional film by removing the release layer remaining on the inorganic layer. From the viewpoint of being able to do so.
 また、本発明の目的とする効果である生産性及び生産効率をより発揮することができる観点から、前記耐熱基材が連続搬送する無端耐熱基材であり、前記塗布工程、熱焼成工程、冷却工程及び転写工程が、前記無端耐熱基材を連続搬送して行うオンライン工程であることが、より好ましい実施の態様である。 In addition, from the viewpoint that the productivity and production efficiency, which are the effects of the present invention, can be further exhibited, the heat-resistant substrate is an endless heat-resistant substrate that is continuously conveyed, and the coating process, the heat-firing process, and the cooling In a more preferred embodiment, the process and the transfer process are online processes in which the endless heat-resistant substrate is continuously conveyed.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《機能性フィルムの製造方法》
 本発明において、機能性フィルムの製造工程としては、主には、
 (1)耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成する塗布工程、
 (2)形成した前記無機層形成前駆体層を熱焼成して無機層を形成する熱焼成工程、
 (3)形成した前記無機層を冷却する冷却工程、
 (4)耐熱基材の前記無機層を有する面と、プラスチックフィルム面との密着工程、
 (5)前記無機層をプラスチックフィルム面に転写する転写工程、
 で、構成されており、その技術的特徴は、(3)前記冷却工程を経て、(4)密着工程及び(5)転写工程で、無機層とプラスチックフィルム面とを密着及び転写を行う温度が、冷却工程で耐熱基材が冷却され、その温度が40℃に低下するまでの間に行うことである。
<< Method for producing functional film >>
In the present invention, as the production process of the functional film, mainly,
(1) A coating step of coating an inorganic layer forming precursor on a heat resistant substrate to form an inorganic layer forming precursor layer,
(2) a thermal firing step of thermally firing the formed inorganic layer forming precursor layer to form an inorganic layer;
(3) a cooling step for cooling the formed inorganic layer;
(4) Adhering step between the surface of the heat-resistant substrate having the inorganic layer and the plastic film surface;
(5) a transfer step of transferring the inorganic layer to the plastic film surface;
The technical feature is that (3) the temperature at which the inorganic layer and the plastic film surface are adhered and transferred in the (4) adhesion step and (5) transfer step after the cooling step. In the cooling step, the heat-resistant substrate is cooled and the temperature is lowered to 40 ° C.
 更に、本発明の機能性フィルムの製造方法を構成する製造工程としては、
 (6)前記密着工程の前に、プラスチックフィルム上に接着層を形成する接着層付与工程、
 (7)耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成する(1)塗布工程の前に、耐熱基材上に離型層を形成する離型層形成工程、
 を、必要に応じて設けることができる。
Furthermore, as a manufacturing process constituting the method for manufacturing the functional film of the present invention,
(6) before the adhesion step, an adhesive layer application step of forming an adhesive layer on the plastic film;
(7) Applying an inorganic layer forming precursor on a heat resistant substrate to form an inorganic layer forming precursor layer (1) Forming a release layer that forms a release layer on the heat resistant substrate before the coating step Process,
Can be provided as needed.
 また、別ラインで接着層をあらかじめ形成してあるプラスチックフィルムを用いることもできる。 Also, it is possible to use a plastic film in which an adhesive layer is previously formed in a separate line.
 また、本発明の機能性フィルムの製造方法においては、上記の工程(1)~(7)までを、バッチ方式(枚葉方式、オフライン方式ともいう。)で行っても良いが、耐熱基材として連続搬送する無端耐熱基材、プラスチックフィルムとして長尺の連続搬送するロール状フィルムを用い、上記工程(1)~(7)までを、ロール・ツー・ロール方式(オンライン方式ともいう。)で行う方式が、高い生産性を実現することができる観点から好ましい。 In the method for producing a functional film of the present invention, the above steps (1) to (7) may be carried out by a batch method (also referred to as a single wafer method or an offline method). Using the endless heat-resistant substrate that is continuously transported as a film and the roll film that is long and continuously transported as a plastic film, the above steps (1) to (7) are performed in a roll-to-roll system (also referred to as an online system). The method of performing is preferable from the viewpoint of realizing high productivity.
 《機能性フィルムの製造工程の概要》
 はじめに、図を交えて、枚葉方式による本発明の機能性フィルムの製造方法の全体概要について説明するが、本発明は、これらで例示する製造方法にのみ限定されるものではい。
《Outline of manufacturing process of functional film》
First, the overall outline of the method for producing the functional film of the present invention by the single wafer method will be described with reference to the drawings. However, the present invention is not limited to the production methods exemplified here.
 図1は、本発明の機能性フィルムの製造方法の一例として、枚葉方式の製造工程フローを示してある。 FIG. 1 shows a single-wafer manufacturing process flow as an example of a method for manufacturing a functional film of the present invention.
 無機層を形成する工程である工程ルート1において、工程Aで耐熱基材1の表面にプラズマ洗浄2等を施して、耐熱基材1の表面を洗浄する。次いで、工程Bにて洗浄した耐熱基材1上に、コーターC1を用いて、搬送ローラーDRで耐熱基材1を搬送しながら、離型層3を形成する。次いで、形成した湿潤状態の離型層3を工程Cにて乾燥装置4を用い、加熱手段5より温風6を吹き付けながら乾燥する。次いで、工程Dにて、乾燥した離型層3上に、コーターC2を用いて、無機層形成前駆体層を形成する塗布液を塗布して、無機層形成前駆体層7を形成する。形成した耐熱基材1無機層形成前駆体層7を、工程Cと同様の構成からなる工程Eの乾燥工程において、温風6により乾燥する。次いで、乾燥した無機層形成前駆体層7を有する耐熱基材1を工程Fである熱焼成工程に移し、熱焼成装置8を用いて、熱焼成部材9により所定の温度まで加熱・昇温して、無機層形成前駆体層7に熱焼成処理を施して、無機層10にコンバートする。熱焼成処理により無機層10に変換した耐熱基材1を、工程Gである冷却工程に移送し、冷却装置11に内蔵されている冷却部材12より冷風13を吹き付けて、冷却を開始する。 In process route 1, which is a process for forming an inorganic layer, the surface of the heat-resistant substrate 1 is subjected to plasma cleaning 2 or the like in step A to clean the surface of the heat-resistant substrate 1. Next, the release layer 3 is formed on the heat-resistant substrate 1 washed in the process B while the heat-resistant substrate 1 is conveyed by the conveyance roller DR using the coater C1. Next, the formed release layer 3 in the wet state is dried in step C using the drying device 4 while blowing warm air 6 from the heating means 5. Next, in Step D, a coating liquid for forming an inorganic layer forming precursor layer is applied on the dried release layer 3 using the coater C2, thereby forming the inorganic layer forming precursor layer 7. The formed heat-resistant substrate 1 inorganic layer forming precursor layer 7 is dried with warm air 6 in the drying step of Step E having the same configuration as Step C. Next, the heat-resistant substrate 1 having the dried inorganic layer forming precursor layer 7 is transferred to the thermal firing step which is Step F, and is heated and heated to a predetermined temperature by the thermal firing member 9 using the thermal firing apparatus 8. Then, the inorganic layer forming precursor layer 7 is subjected to a heat baking treatment to be converted into the inorganic layer 10. The heat-resistant base material 1 converted into the inorganic layer 10 by the heat baking treatment is transferred to the cooling step which is the step G, and the cooling member 12 incorporated in the cooling device 11 is blown with the cold air 13 to start cooling.
 一方、工程ルート2において、工程Hで。機能性フィルムを構成するプラスチックフィルム21を準備し、工程Iにて、プラスチックフィルム21表面に接着層22をコーターC3で塗布し、必要に応じて工程Cと同様の方法で乾燥を行う。 On the other hand, in process route 2, in process H. A plastic film 21 constituting a functional film is prepared, and in Step I, an adhesive layer 22 is applied to the surface of the plastic film 21 with a coater C3, and drying is performed in the same manner as in Step C as necessary.
 また、別ラインで、既に接着層22を形成してある接着層22付のプラスチックフィルム21を用いても良い。 Alternatively, the plastic film 21 with the adhesive layer 22 having the adhesive layer 22 already formed on another line may be used.
 次いで、工程Gの冷却工程で、無機層10を有する耐熱基材1を、熱焼成温度から冷却し、耐熱基材1の温度が低下して、40℃に到達するまでの温度(T2)で、無機層10と、工程ルート2で作製したプラスチックフィルム21上に設けた接着層22とを、工程Jで貼合する。次いで、工程Kの圧着工程で、ニップローラー14等を用いて圧着し、工程Mで、耐熱基材1と、プラスチックフィルム21上に接着層22、無機層10及び離型層3が構成されている機能性フィルムユニット15とを分離する。 Next, in the cooling step of Step G, the temperature (T 2 ) until the heat-resistant substrate 1 having the inorganic layer 10 is cooled from the heat firing temperature and the temperature of the heat-resistant substrate 1 decreases to reach 40 ° C. Thus, the inorganic layer 10 and the adhesive layer 22 provided on the plastic film 21 produced in the process route 2 are bonded in the process J. Subsequently, in the crimping process of the process K, it crimps | bonds using the nip roller 14 grade | etc., And the adhesive layer 22, the inorganic layer 10, and the release layer 3 are comprised on the heat-resistant base material 1 and the plastic film 21 by the process M. The functional film unit 15 is separated.
 分離した機能性フィルムユニット15に対し、工程Nでフィルム表面に洗浄処理を施して、不要な離型層を取り除き、機能性フィルムユニット15を作製する。 洗浄 The separated functional film unit 15 is subjected to a cleaning process on the film surface in Step N to remove an unnecessary release layer, thereby producing the functional film unit 15.
 《機能性フィルムの製造工程フロー》
 次いで、図1で示した各工程の詳細について説明する。
《Functional film manufacturing process flow》
Next, details of each step shown in FIG. 1 will be described.
 〔工程ルート1〕
 (工程A:耐熱基材表面の洗浄工程)
 図1に示す工程Aでは、無機層を形成する耐熱基材1の表面に、洗浄処理を施す。
[Process route 1]
(Process A: Heat-resistant substrate surface cleaning process)
In step A shown in FIG. 1, the surface of the heat-resistant substrate 1 on which the inorganic layer is formed is subjected to a cleaning process.
 本発明に適用可能な耐熱基材1としては、耐熱性に優れた金属製基材が好ましく、例えば、ニッケル、ステンレス(SUS)、炭素鋼、チタン合金等を用いることができる。 As the heat resistant substrate 1 applicable to the present invention, a metal substrate excellent in heat resistance is preferable, and for example, nickel, stainless steel (SUS), carbon steel, titanium alloy and the like can be used.
 耐熱基材の厚さとしては、0.3~2.0mmの範囲内で構成することが好ましい。 The thickness of the heat-resistant substrate is preferably configured within a range of 0.3 to 2.0 mm.
 耐熱基材1の表面の洗浄処理手段2としては、プラズマ洗浄法、ドライアイス洗浄法等、公知の洗浄手段を適用することができる。 As the cleaning treatment means 2 for the surface of the heat-resistant substrate 1, known cleaning means such as a plasma cleaning method and a dry ice cleaning method can be applied.
 プラズマ洗浄装置による洗浄処理条件としては、例えば、大気圧プラズマが好適に使用される。洗浄条件としては窒素ガスに酸素を1~20体積%含有ガスを用い、周波数100kHz~150MHz、電圧10V~10kV、照射距離5~20mmで洗浄表面改質処理を行う条件が挙げられる。プラズマ洗浄装置としては、例えば、誘電体バリアー放電ダウンストリーム型プラズマヘッドを用いた株式会社イー・スクエアの常圧プラズマ表面処理装置 AP Plasmaを挙げることができる。 For example, atmospheric pressure plasma is suitably used as a cleaning treatment condition by the plasma cleaning apparatus. Examples of the cleaning conditions include conditions in which a cleaning surface modification treatment is performed using a nitrogen gas containing 1 to 20% by volume of oxygen, a frequency of 100 kHz to 150 MHz, a voltage of 10 V to 10 kV, and an irradiation distance of 5 to 20 mm. As the plasma cleaning apparatus, for example, an atmospheric pressure plasma surface treatment apparatus AP Plasma manufactured by E-square Co., Ltd. using a dielectric barrier discharge downstream type plasma head can be mentioned.
 (工程B:離型層形成用塗布液の塗布工程)
 次いで、上記工程Aで表面を洗浄した耐熱基材1を搬送ローラーDRで搬送しながら、耐熱基材1上に、コーターC1を用いて離型層形成用塗布液を塗布して、湿潤状態の離型層3Aを形成する。
(Process B: Application process of release layer forming coating solution)
Next, while transporting the heat-resistant substrate 1 whose surface has been cleaned in the above step A with the transport roller DR, a release layer forming coating solution is applied onto the heat-resistant substrate 1 using the coater C1, and the wet state A release layer 3A is formed.
 本発明に係る離型層3を構成する材料としては、離型機能を有する材料であれば特に制限はないが、ポリビニルピロリドン類(ビニルピロリドン重合体を含む)を用いることが好ましい。ポリビニルピロリドン類としては、例えば、ポリビニルピロリドン(Mw約40、000)、ポリビニルピロリドン(Mw約9、000)、ポリビニルピロリドン(Mw約16、000)、ビニルピロリドン-酢酸ビニル共重合体(共重合モル比=7:3、Mw約4、000)、ビニルピロリドン-メチルアクリレート共重合体(共重合モル比=7:3、Mw約1、000),ビニルピロリドン-エチルアクリレート共重合体(共重合モル比=7:3、Mw約25、000)、ビニルピロリドン-ブチルアクリレート共重合体(共重合モル比=7:3、Mw約7、000)、ビニルピロリドン-2-エチルヘキシルアクリレート共重合体(共重合モル比=7:3、Mw約18、000)、ビニルピロリドン-スチレン共重合体(共重合モル比=1:3、Mw約20、000)等を挙げることができる。 The material constituting the release layer 3 according to the present invention is not particularly limited as long as it is a material having a release function, but polyvinyl pyrrolidones (including vinyl pyrrolidone polymers) are preferably used. Examples of polyvinylpyrrolidones include polyvinylpyrrolidone (Mw about 40,000), polyvinylpyrrolidone (Mw about 9,000), polyvinylpyrrolidone (Mw about 16,000), vinylpyrrolidone-vinyl acetate copolymer (copolymerization mole). Ratio = 7: 3, Mw about 4,000), vinylpyrrolidone-methyl acrylate copolymer (copolymerization molar ratio = 7: 3, Mw about 1,000), vinylpyrrolidone-ethyl acrylate copolymer (copolymerization mole) Ratio = 7: 3, Mw about 25,000), vinylpyrrolidone-butyl acrylate copolymer (copolymerization molar ratio = 7: 3, Mw about 7,000), vinylpyrrolidone-2-ethylhexyl acrylate copolymer (copolymer) Polymerization molar ratio = 7: 3, Mw about 18,000), vinylpyrrolidone-styrene copolymer (copolymerization molar ratio) 1: can be mentioned 3, Mw about 20,000), and the like.
 ポリビニルピロリドンとしては、例えば、ポリビニルピロリドン単一ポリマーが挙げられる。また、ポリビニルピロリドンとしては、粘度平均分子量が、5000~50000のものが好ましい。また、ポリビニルピロリドンとしては、市販品を用いることもでき、具体的には、BASFジャパン社製のPVPK15、PVPK30が挙げられる。 Examples of polyvinyl pyrrolidone include a polyvinyl pyrrolidone single polymer. The polyvinyl pyrrolidone preferably has a viscosity average molecular weight of 5000 to 50000. Moreover, as polyvinyl pyrrolidone, a commercial item can also be used and specifically, PSFK15 and PVPK30 by BASF Japan are mentioned.
 本発明においては、上記ポリビニルピロリドン類を、適切な溶媒、例えば、水、アルコール類等の有機溶媒に溶解して、離型層形成用塗布液を調製する。 In the present invention, the polyvinyl pyrrolidone is dissolved in an appropriate solvent, for example, an organic solvent such as water or alcohol to prepare a release layer forming coating solution.
 工程Bで用いるコーターC1としては、湿式塗布方式のコーターであれば特に制限はなく、例えば、ブレードコーター、ナイフコーター、含浸コーター、ダイコーター、スロットダイコーター、ローラーコーター、グラビアコーター、バーコーター、コンマコーター、エクストルージョン型コーター、スライド型コーター、インクジェットヘッド等の塗布装置等が挙げられる。 The coater C1 used in the step B is not particularly limited as long as it is a wet coater. For example, a blade coater, knife coater, impregnation coater, die coater, slot die coater, roller coater, gravure coater, bar coater, comma Examples of the coating device include a coater, an extrusion type coater, a slide type coater, and an inkjet head.
 また、離型層形成用塗布液の塗布時の温度としては、特に制限はなく、適宜最適の温度を選択して行うことができる。 Further, the temperature at the time of application of the release layer forming coating liquid is not particularly limited, and can be carried out by appropriately selecting an optimum temperature.
 本発明において、離型層3の層厚としては、特に制限はないが、下記に示す工程C(乾燥工程-1)を経た後の層厚としては、ほぼ0.2~10μmの範囲内であり、好ましくは0.5~5.0μmの範囲内であり、更に好ましくは、1.0~3.0μmの範囲内である。 In the present invention, the layer thickness of the release layer 3 is not particularly limited, but the layer thickness after the process C (drying process-1) shown below is within a range of about 0.2 to 10 μm. Yes, preferably in the range of 0.5 to 5.0 μm, more preferably in the range of 1.0 to 3.0 μm.
 (工程C:乾燥工程-1)
 上記工程Bで耐熱基材1上に形成された湿潤状態の離型層3Aは、乾燥装置4を用いて乾燥され、離型層3を形成する。
(Process C: Drying process-1)
The wet release layer 3 </ b> A formed on the heat-resistant substrate 1 in the step B is dried using the drying device 4 to form the release layer 3.
 工程Cで適用可能な乾燥装置4としては、例えば、温風加熱法、ヒーター加熱法(例えば、パネルヒーター、ハロゲンヒーター等)の加熱装置等が挙げられる。 Examples of the drying apparatus 4 that can be applied in the process C include a heating apparatus such as a warm air heating method or a heater heating method (for example, a panel heater, a halogen heater, or the like).
 具体的な乾燥装置4を構成する加熱手段5としては、ヒーター加熱法(例えば、赤外線ヒーター、ハロゲンヒーター、パネルヒーター等を耐熱基材1の上下に設置し、輻射熱で加熱する方法)、耐熱基材1を搬送する搬送ローラー(不図示)として、ヒートローラーを用いて加熱する方法、温風加熱法(例えば、温度制御された熱風を、耐熱基材1の上下から吹きつけて、離型層を乾燥する方法)が挙げられ、本発明においては、温度制御が精度よく行える点から、温風加熱法が好ましい。 The heating means 5 constituting the specific drying apparatus 4 includes a heater heating method (for example, a method in which infrared heaters, halogen heaters, panel heaters and the like are installed above and below the heat-resistant substrate 1 and heated by radiant heat), a heat-resistant group As a transport roller (not shown) for transporting the material 1, a method of heating using a heat roller, a hot air heating method (for example, temperature-controlled hot air is blown from the top and bottom of the heat-resistant substrate 1, and a release layer In the present invention, the hot air heating method is preferable because temperature control can be performed with high accuracy.
 図1の工程Cには、温風加熱法の一例を示してある。図1の工程Cにおいて、工程Bにて、湿潤状態の離型層3Aを形成した耐熱基材1を、搬送ローラーDRで乾燥装置4に移送する。乾燥装置4は、耐熱基材1の上部(離型層3面側)及び下部(耐熱基材1の裏面側)にそれぞれ加熱手段5を設け、加熱手段5より耐熱基材1に温風6を吹き付けて、離型層3を乾燥する。 1 shows an example of the hot air heating method. In Step C of FIG. 1, the heat-resistant substrate 1 on which the wet release layer 3 </ b> A is formed in Step B is transferred to the drying device 4 by the transport roller DR. The drying device 4 is provided with heating means 5 on the upper part (the release layer 3 surface side) and the lower part (the back surface side of the heat resistant base material 1) of the heat resistant base material 1, respectively. Is sprayed to dry the release layer 3.
 (工程D:無機層形成前駆体層を形成する塗布液の塗布工程)
 次いで、工程Dでは、無機層形成前駆体層を形成する塗布液を、離型層3上に付与する。
(Process D: Coating process of coating solution for forming inorganic layer forming precursor layer)
Next, in Step D, a coating liquid for forming the inorganic layer forming precursor layer is applied on the release layer 3.
 図1においては、工程Cより、搬送ローラー(不図示)等で搬送する耐熱基材1の離型層3上に、コーターC2を用いて無機層形成前駆体層を形成する塗布液を塗設して、湿潤状態の無機層形成前駆体層7Aを形成する。 In FIG. 1, a coating liquid for forming an inorganic layer forming precursor layer using a coater C2 is applied on the release layer 3 of the heat-resistant substrate 1 conveyed by a conveyance roller (not shown) or the like from the process C. Thus, the wet inorganic layer forming precursor layer 7A is formed.
 無機層形成前駆体層7(7A)が含有する無機層形成前駆体とは、次工程である熱焼成工程(工程F)で、加熱処理により無機層に変換する材料であり、例えば、下記の材料を挙げることができる。 The inorganic layer forming precursor contained in the inorganic layer forming precursor layer 7 (7A) is a material that is converted into an inorganic layer by heat treatment in the subsequent heat firing step (step F). Materials can be mentioned.
 〈無機層形成前駆体〉
 本発明に適用可能な無機層形成前駆体の一例としては、例えば、SiO2前駆体として、ポリシラザン、ポリシロキサン、ポリシラン、ガラスフリット、ガラスペースト等を挙げることができる。
<Inorganic layer forming precursor>
Examples of the inorganic layer forming precursor applicable to the present invention include, for example, polysilazane, polysiloxane, polysilane, glass frit, glass paste and the like as the SiO 2 precursor.
 本発明で用いられる「ポリシラザン」とは、構造内にケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等の結合を有するSiO2、Si34及び両方の中間固溶体SiOxy等のセラミック前駆体無機ポリマーで酸化窒化ケイ素の前駆体となるポリマーであり、例えば、特開平8-112879号公報に記載の下記一般式(1)で表される単位からなる主骨格を有する化合物が好ましい。 The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond in the structure, and has SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and an intermediate between them. a polymer made of ceramic precursor inorganic polymer such as a solid solution SiO x N y as a precursor of silicon oxide nitride, for example, a unit represented by the following general formula described in JP-a-8-112879 (1) A compound having a main skeleton is preferred.
 一般式(1)
   -Si(R1)(R2)-N(R3)-
 上記構造式中、R1、R2及びR3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。
General formula (1)
—Si (R 1 ) (R 2 ) —N (R 3 ) —
In the above structural formulas, R 1 , R 2, and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 本発明では、得られるガスバリアー層としての緻密性の観点から、R1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred from the viewpoint of the denseness as the gas barrier layer to be obtained.
 また、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、下地層である離型層3との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚(平均膜厚)を厚くした場合でもクラックの発生が抑えられる利点がある。そこで用途に応じて適宜、パーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 In addition, organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like has an alkyl group such as a methyl group, thereby improving the adhesiveness with the release layer 3 which is an underlayer. In addition, the ceramic film made of hard and brittle polysilazane can be provided with toughness, and even when the film thickness (average film thickness) is made thicker, the occurrence of cracks can be suppressed. Accordingly, perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と、6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照。)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照。)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照。)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照。)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照。)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照。)等が挙げられる。 As another example of polysilazane which becomes ceramic at low temperature, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No. 5-238827), glycidol-added polysilazanes obtained by reacting glycidol (see, for example, JP-A-6-122852), and alcohol-added polysilazanes obtained by reacting with alcohol (see, for example, JP-A-6-6 240208), obtained by reacting a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex containing a metal. Acetylacetonate complex-added polysilazane ( In example, JP-A 6-306329 JP reference.), Fine metal particles of the metal particles added polysilazane obtained by adding (e.g., JP-A-7-196986 JP reference.), And the like.
 ポリシラザン含有の塗布液中には、酸化ケイ素化合物への転化を促進するため、アミン類や金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140及びSP140等が挙げられる。 In the polysilazane-containing coating solution, amines or metal catalysts can be added to promote conversion to a silicon oxide compound. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。 As an organic solvent for preparing a coating liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
 従って、ポリシラザンを含有する塗布液を調製する有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用でき、具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン及びテトラヒドロフラン等のエーテル類等が挙げられる。 Therefore, as an organic solvent for preparing a coating liquid containing polysilazane, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbon solvents, aliphatic ethers, fats Ethers such as cyclic ethers can be used. Specifically, hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, dibutyl ether and dioxane And ethers such as tetrahydrofuran.
 これらの有機溶媒は、ポリシラザンの溶解度や溶媒の蒸発速度等に応じて選択し、複数の有機溶媒を混合してもよい。 These organic solvents may be selected according to the solubility of polysilazane, the evaporation rate of the solvent, and the like, and a plurality of organic solvents may be mixed.
 (末端がSi-Hであるポリシロキサン)
 有機基としてメチル基を有し、末端がSi-Hであるポリシロキサンの一例を、下記の一般式(2)で示す。有機基はメチル基以外、例えば、フェニル基であってもよく、それぞれの有機基が混在するなど異なっていてもよい。
(Polysiloxane with terminal Si-H)
An example of a polysiloxane having a methyl group as an organic group and terminated with Si—H is represented by the following general formula (2). The organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (末端がSi-OHであるポリシロキサン)
 有機基としてメチル基を有し、末端がSi-OHであるポリシロキサンの一例を、下記の一般式(3)で示す。有機基はメチル基以外、例えばフェニル基であってもよく、それぞれの有機基が混在するなど異なっていてもよい。
(Polysiloxane with terminal Si-OH)
An example of a polysiloxane having a methyl group as an organic group and terminated with Si—OH is represented by the following general formula (3). The organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (側鎖にSi-Hを有するポリシロキサン)
 有機基としてメチル基を有し、側鎖にSi-Hを有するポリシロキサンの一例を、下記の一般式(4)で示す。有機基はメチル基以外、例えばフェニル基であってもよく、それぞれの有機基が混在するなど異なっていてもよい。
(Polysiloxane with Si-H in the side chain)
An example of a polysiloxane having a methyl group as an organic group and Si—H in the side chain is represented by the following general formula (4). The organic group may be other than a methyl group, for example, a phenyl group, or may be different such that each organic group is mixed.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(4)において、m+n=100としたとき、nは1~100の範囲であり、30~100であることが好ましく、より好ましくは50~100である。 In the above general formula (4), when m + n = 100, n is in the range of 1 to 100, preferably 30 to 100, and more preferably 50 to 100.
 また、ガラスフリット、ガラスペーストとしては、例えば、AGCエレクトロニクス社製のパウダーガラス(例えば、商品名:ASFシリーズ、SK-231-300、KF9173、LS-5-300M等)及びガラスペースト(APシリーズ等)等を挙げることができる。 Examples of the glass frit and glass paste include powder glass manufactured by AGC Electronics (for example, trade names: ASF series, SK-231-300, KF 9173, LS-5-300M, etc.) and glass paste (AP series, etc.). And the like.
 また、上記のポリマー化合物の他には、下記の各金属元素を含有する有機化合物を挙げることができる。 In addition to the above polymer compounds, organic compounds containing the following metal elements can be exemplified.
 ケイ素化合物としては、例えば、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン及びMシリケート51等が挙げられる。 Examples of the silicon compound include silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra t-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, and diethyl. Dimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) dimethylsilane, Bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimide, die Ruaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane , Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsilane, pro Rugyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethyl Examples thereof include cyclotetrasiloxane, hexamethylcyclotetrasiloxane, and M silicate 51.
 チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート及びブチルチタネートダイマー等が挙げられる。 Examples of titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium. Examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate and butyl titanate dimer.
 ジルコニウム化合物としては、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムトリ-n-ブトキシドアセチルアセトネート、ジルコニウムジ-n-ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート及びジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。 Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate and Zirconium hexafluoropentanedioate and the like can be mentioned.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート及びトリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of aluminum compounds include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, and triethyldialuminum tri-s-butoxide. Can be mentioned.
 ポリシラザン等の無機層形成前駆体を含む塗布液を塗布するコーターC2としては、前記工程Bで記載したのと同様の湿式コーターを用いることができる。 As the coater C2 for applying a coating solution containing an inorganic layer forming precursor such as polysilazane, the same wet coater as described in the step B can be used.
 塗布厚さは、目的に応じて適切に設定することができる。例えば、塗布厚さは、乾燥後の厚さが10nm~10μm程度であり、好ましくは10nm~1μm程度である。 The coating thickness can be set appropriately according to the purpose. For example, the coating thickness is about 10 nm to 10 μm after drying, preferably about 10 nm to 1 μm.
 (工程E:乾燥工程-2)
 上記工程Cで耐熱基材1上に形成された湿潤状態の無機層形成前駆体層7Aは、乾燥装置4を用いて乾燥され、無機層形成前駆体層7を形成する。
(Process E: Drying process-2)
The wet inorganic layer forming precursor layer 7 </ b> A formed on the heat-resistant substrate 1 in the step C is dried using the drying device 4 to form the inorganic layer forming precursor layer 7.
 工程Eで適用可能な乾燥装置4としては、前述の工程Cにて記載した乾燥装置4と同様の装置を挙げることができる。 As the drying apparatus 4 applicable in the process E, the same apparatus as the drying apparatus 4 described in the above-mentioned process C can be exemplified.
 (工程F:熱焼成工程)
 工程Fにおいては、上記工程Eにて形成した無機層形成前駆体層7に、熱焼成処理を施して、無機層10、例えば、SiO2から構成されるガスバリアー層に改質する。
(Process F: Thermal firing process)
In the process F, the inorganic layer forming precursor layer 7 formed in the process E is subjected to a heat baking treatment to be modified into a gas barrier layer composed of the inorganic layer 10, for example, SiO 2 .
 工程Fである熱焼成工程では、熱焼成装置8を用いて、例えば、ポリシラザン等で形成されている無機層形成前駆体層7に、高温の熱エネルギーを付与して、SiO2等から構成される無機層10にする。熱焼成装置8としては、その内部に、複数の熱焼成部材9を備え、予め設定した温度履歴に従って、無機層形成前駆体層7を加熱して、無機層10に変換する。 In the thermal baking process which is the process F, the thermal baking apparatus 8 is used to apply high-temperature thermal energy to the inorganic layer forming precursor layer 7 formed of, for example, polysilazane or the like, and is composed of SiO 2 or the like. The inorganic layer 10 is formed. As the thermal baking apparatus 8, a plurality of thermal baking members 9 are provided therein, and the inorganic layer forming precursor layer 7 is heated and converted into the inorganic layer 10 according to a preset temperature history.
 複数の熱焼成部材9は、図1に示すように、耐熱基材1の両面に配置してもよいし、あるいは、無機層形成前駆体層7を有する面側にのみ配置した構成であっても良い。 As shown in FIG. 1, the plurality of heat-fired members 9 may be disposed on both surfaces of the heat-resistant substrate 1 or may be disposed only on the surface side having the inorganic layer forming precursor layer 7. Also good.
 複数の熱焼成部材9による加熱温度は、それぞれ独立して温度制御が可能であり、後述の図2に示すような加熱プロファイルとなるように、それぞれの熱焼成部材9を最適加熱温度に設定する。 The heating temperature by the plurality of heat-fired members 9 can be controlled independently, and each heat-fired member 9 is set to an optimum heating temperature so as to have a heating profile as shown in FIG. .
 熱焼成温度としては、特に制限はないが、最高到達温度としては、200~500℃の温度範囲内であることが好ましい。 The thermal firing temperature is not particularly limited, but the highest temperature is preferably in the temperature range of 200 to 500 ° C.
 また、図1には記載していないが、熱焼成装置内には、温度計、例えば、非接触式の反射温度計等を装備し、熱焼成過程の耐熱基材表面の温度を常にモニターすることが好ましい態様である。 Although not shown in FIG. 1, the thermal baking apparatus is equipped with a thermometer, for example, a non-contact type reflection thermometer, and constantly monitors the temperature of the heat-resistant substrate surface during the thermal baking process. Is a preferred embodiment.
 また、具体的な焼成装置としては、ローラーハースキン、放電プラズマ焼成装置、パルス通電焼成装置、高周波焼成装置、近赤外焼成装置(NIR)等が挙げられるが、その中でも、効率的に熱焼成処理を行うことができる観点から近赤外焼成装置(NIR)が好ましい。近赤外焼成装置としては、例えば、アドフォス社製のNIRランプを用いることができる。アドフォス社製のNIRランプは、波長帯が800から1500nmの近赤外領域であり、850nmに極大波長を有するランプであり、加熱対象物(無機層形成前駆体層7)の内部まで、均等に熱線が到達するため、熱エネルギーが高速かつ均一に無機層形成前駆体層7を透過することにより、膜全体が均質に無機膜に変換された無機層10を形成することができる。このようなNIRランプを適用する場合には、熱焼成部材9であるNIRランプは、無機層形成前駆体層7を有する一方の面側にのみ配置する構成であっても良い。 Specific examples of the baking apparatus include a roller hearth skin, a discharge plasma baking apparatus, a pulse current baking apparatus, a high-frequency baking apparatus, a near infrared baking apparatus (NIR), and the like. A near-infrared baking apparatus (NIR) is preferable from the viewpoint of processing. As the near-infrared baking apparatus, for example, an NIR lamp manufactured by Adphos Corporation can be used. The NIR lamp made by Adphos is a lamp having a wavelength range of 800 to 1500 nm in the near infrared region and a maximum wavelength at 850 nm, and evenly to the inside of the heating object (inorganic layer forming precursor layer 7). Since the heat rays reach, the inorganic layer 10 in which the entire film is uniformly converted into the inorganic film can be formed by allowing the heat energy to pass through the inorganic layer forming precursor layer 7 uniformly at high speed. When such an NIR lamp is applied, the NIR lamp that is the thermal firing member 9 may be arranged only on one surface side having the inorganic layer forming precursor layer 7.
 また、本発明においては、上記熱焼成工程で、無機層形成前駆体層7に熱処理を施す前に、例えば、紫外線、可視光線、赤外線、超音波、プラズマ放電、コロナ放電、マイクロ波等の前処理を行ってもよい。 In the present invention, before the inorganic layer forming precursor layer 7 is subjected to heat treatment in the thermal baking step, for example, before ultraviolet rays, visible rays, infrared rays, ultrasonic waves, plasma discharges, corona discharges, microwaves, etc. Processing may be performed.
 (工程G:冷却工程)
 工程Gは、前工程である工程Fにて高温に加熱された耐熱基材1を冷却する工程である。
(Process G: Cooling process)
The process G is a process of cooling the heat-resistant substrate 1 heated to a high temperature in the process F, which is a previous process.
 具体的には、図1に示すように、冷却装置11内には、耐熱基材1を挟んで両面側に冷却部材12を配置して、冷風13等を吹き付けて無機層10を有する耐熱基材1を所定の温度まで冷却する。 Specifically, as shown in FIG. 1, in the cooling device 11, a cooling member 12 is disposed on both sides of the heat-resistant substrate 1, and a cold air 13 or the like is blown to the heat-resistant group having the inorganic layer 10. The material 1 is cooled to a predetermined temperature.
 この冷却工程(工程G)では、次工程である貼合工程(工程J)で、後述するプラスチックフィルム21と貼合するときの温度まで冷却する。本発明においては、貼合を、耐熱基材の温度が40℃以上の温度で行うことを特徴とする。より具体的には、貼合温度としては60~200℃の範囲内であることが好ましく、更に好ましくは100~150℃の範囲内である。 In this cooling process (process G), it cools to the temperature at the time of bonding with the plastic film 21 mentioned later at the bonding process (process J) which is a next process. In this invention, bonding is performed at the temperature of 40 degreeC or more of the temperature of a heat-resistant base material. More specifically, the bonding temperature is preferably in the range of 60 to 200 ° C, more preferably in the range of 100 to 150 ° C.
 冷却工程で適用することができる冷却手段としては、水冷ローラーやチルローラーによる冷却方式や、冷風による冷却方式等が挙げられるが、これらに限定されるものではない。 The cooling means that can be applied in the cooling step includes a cooling method using a water cooling roller or a chill roller, a cooling method using cold air, and the like, but is not limited thereto.
 また、図1には記載していないが、冷却装置内には、温度計、例えば、非接触式の反射温度計等を装備し、冷却過程における耐熱基材表面の温度を常にモニターすることが好ましい態様である。 Although not shown in FIG. 1, the cooling device is equipped with a thermometer, for example, a non-contact type reflection thermometer, and the temperature of the heat-resistant substrate surface during the cooling process can be constantly monitored. This is a preferred embodiment.
 〔工程ルート2〕
 (工程H:プラスチックフィルムの準備)
 被転写側のプラスチックフィルム21としては、可撓性を有する透明プラスチックフィルムであることが好ましく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
[Process route 2]
(Process H: Preparation of plastic film)
The plastic film 21 on the transfer side is preferably a transparent transparent plastic film. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose Acetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetates such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, Syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyester Imide, polyethersulfone (PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (manufactured by JSR) or Appel (Mitsui) And cycloolefin-based resins.
 (工程I:接着層付与工程)
 工程Iは、上記準備したプラスチックフィルム21上に、湿式塗布方式により接着層22を付与する工程である。接着剤層22を付与した後、必要に応じて前述の工程Cで説明したような乾燥工程を設けてもよい。
(Process I: Adhesive layer application process)
Step I is a step of applying an adhesive layer 22 on the prepared plastic film 21 by a wet coating method. After applying the adhesive layer 22, a drying step as described in the above-described step C may be provided as necessary.
 接着層22としては、樹脂成分により形成されていることが好ましく、例えば、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂及び塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用できる。 The adhesive layer 22 is preferably formed of a resin component, for example, polyester resin, urethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, vinyl chloride resin, and vinyl chloride. A single resin such as a vinyl acetate copolymer resin or a mixed resin thereof can be used.
 その中でも、主剤となるポリエポキシ樹脂と硬化剤であるポリアミン樹脂を含む、ガスバリアー性ドライラミネート用エポキシ樹脂の接着剤「マクシーブ(登録商標)」(三菱ガス化学株式会社製)を好ましく用いることができる。 Among them, it is preferable to use an adhesive "MAXIVE (registered trademark)" (manufactured by Mitsubishi Gas Chemical Co., Ltd.) for epoxy resin for gas barrier dry laminate, which contains a polyepoxy resin as a main agent and a polyamine resin as a curing agent. it can.
 接着層22は、1層のみからなっていてもよいし、複数層からなっていてもよい。接着層22の厚さは、1~100μmの範囲内であることが好ましく、より好ましくは3~50μmの範囲内である。 The adhesive layer 22 may be composed of only one layer or may be composed of a plurality of layers. The thickness of the adhesive layer 22 is preferably in the range of 1 to 100 μm, more preferably in the range of 3 to 50 μm.
 接着層の形成に用いるコーターとしては、ブレードコーター、ナイフコーター、含浸コーター、ダイコーター、スロットダイコーター、ローラーコーター、グラビアコーター、バーコーター、コンマコーター、エクストルージョン型コーター、スライド型コーター、インクジェットヘッド等の湿式塗布装置が挙げられる。 The coater used to form the adhesive layer includes a blade coater, knife coater, impregnation coater, die coater, slot die coater, roller coater, gravure coater, bar coater, comma coater, extrusion coater, slide coater, inkjet head, etc. And a wet coating apparatus.
 また、接着層の塗布温度としては、特に制限はなく、20~50℃の温度範囲で、適宜最適の温度条件を選択して行うことができる。 In addition, the application temperature of the adhesive layer is not particularly limited, and an optimum temperature condition can be appropriately selected within a temperature range of 20 to 50 ° C.
 〔工程ルート3〕
 (工程J:貼合工程)
 工程Jである貼合工程では、前記工程Gの冷却工程で、熱焼成処理後に冷却された無機層10を有する耐熱基材1と、前記工程Iで接着層22を付与したプラスチックフィルム21とを貼り合せる工程である。
[Process route 3]
(Process J: Pasting process)
In the bonding step, which is the step J, the heat-resistant substrate 1 having the inorganic layer 10 cooled after the thermal baking treatment in the cooling step of the step G, and the plastic film 21 provided with the adhesive layer 22 in the step I. It is a process of bonding.
 貼り合わせは、耐熱基材1上に設けた無機層10と、プラスチックフィルム21上に形成した接着層22とが対向するように配置した後、貼合する。 Bonding is performed after arranging the inorganic layer 10 provided on the heat-resistant substrate 1 and the adhesive layer 22 formed on the plastic film 21 to face each other.
 本発明では、両者を貼合するときの温度が、前述の通り、耐熱基材1の温度が40℃以上の温度条件で行うことを特徴とする。より具体的には、前述の通りで、貼合温度としては60~200℃の範囲内であることが好ましく、更に好ましくは100~150℃の範囲内である。 In the present invention, as described above, the temperature at which the two are bonded is performed under a temperature condition in which the temperature of the heat-resistant substrate 1 is 40 ° C. or higher. More specifically, as described above, the bonding temperature is preferably in the range of 60 to 200 ° C., and more preferably in the range of 100 to 150 ° C.
 本発明において、耐熱基材1の温度が40℃以上の温度条件で、耐熱基材1とプラスチックフィルム21の貼合を行うことにより、無機層とプラスチックフィルムとの密着性を高くすることができると推測している。これは、ある程度の温度が高い段階で密着及び転写することにより、無機層10の表面活性が極めて高い状態で、プラスチックフィルム21と密着することができるとともに、プラスチックフィルム21が密着時の温度で軟化することにより、耐熱基材1との追従性が向上し、シワやムラといった転写の際の不具合を抑制することができ、安定して転写することができるものと推測している。 In this invention, the adhesiveness of an inorganic layer and a plastic film can be made high by bonding the heat resistant base material 1 and the plastic film 21 on the temperature conditions whose temperature of the heat resistant base material 1 is 40 degreeC or more. I guess. This is because adhesion and transfer at a certain high temperature level allow the inorganic layer 10 to be in close contact with the plastic film 21 with extremely high surface activity, and the plastic film 21 is softened at the temperature at the time of adhesion. By doing so, the followability with the heat-resistant substrate 1 is improved, it is possible to suppress defects such as wrinkles and unevenness at the time of transfer, and it is assumed that transfer can be performed stably.
 冷却後に再加熱する方法でも、上記と同じ効果は得られるが、再加熱工程を設けるため、無機層形成から転写までの製造ラインが長くなり、無機層10の表面に異物等が付着する機会が増大する。無機層表面にこのような異物が付着すると、転写の際に、付着した異物により無機層10が押しつぶされて、点状故障となるため、決して好ましい方法とはいえず、本発明で規定する上記方法が、高品質の機能性フィルムを得るうえでは極めて優れている方法である。 Although the same effect as described above can be obtained by the method of reheating after cooling, since the reheating process is provided, the production line from the formation of the inorganic layer to the transfer becomes longer, and there is an opportunity for foreign matters to adhere to the surface of the inorganic layer 10. Increase. If such foreign matter adheres to the surface of the inorganic layer, the inorganic layer 10 is crushed by the attached foreign matter during transfer, resulting in a point failure, which is not a preferable method. The method is extremely excellent in obtaining a high-quality functional film.
 (工程K:圧着工程)
 工程Jで簡易的に貼合した無機層10を有する耐熱基材1と、接着層22を有するプラスチックフィルム21から構成されるユニットAを、完全に接着するため、圧着処理を施す。
(Process K: Crimping process)
In order to completely bond the unit A composed of the heat-resistant substrate 1 having the inorganic layer 10 simply bonded in the process J and the plastic film 21 having the adhesive layer 22, a pressure-bonding process is performed.
 圧着処理を施す方法としては、上記作製したユニットAを、ニップローラー14及び14′を用いて、ニップ間を加圧搬送させて、圧着する。この際、必要に応じてニップローラー14及び14′を加熱することもできる。 As a method of performing the pressure-bonding treatment, the unit A produced as described above is pressure-conveyed between the nips using the nip rollers 14 and 14 ′ and is pressure-bonded. At this time, the nip rollers 14 and 14 'can be heated as necessary.
 ニップローラー14及び14′としては、ゴムローラーと金属ローラーとを組み合わせるか、あるいはゴムローラーとゴムローラーとを組み合わせることができる。 As the nip rollers 14 and 14 ', a rubber roller and a metal roller can be combined, or a rubber roller and a rubber roller can be combined.
 (工程M:剥離工程)
 工程Kで圧着処理を施したユニットAを剥離する。剥離操作としては、特に制限はなく、ユニットAの上下に力を加え、ユニットAより、耐熱基材1と、プラスチックフィルム21/接着層22/無機層10/離型層3(一部)から構成されるガスバリアーフィルム積層体に分離する。
(Process M: peeling process)
The unit A subjected to the pressure-bonding process in the process K is peeled off. There is no restriction | limiting in particular as peeling operation, A force is applied to the upper and lower sides of the unit A, and from the unit A, from the heat-resistant base material 1, the plastic film 21, the adhesive layer 22, the inorganic layer 10, and the release layer 3 (part). Separated into gas barrier film laminates to be constructed.
 (工程N:フィルム表面洗浄工程)
 次いで、剥離したプラスチックフィルム21/接着層22/無機層10/離型層3(一部)から構成されるガスバリアーフィルム積層体に対し、表面に付着している離型層3を除去するための、フィルム表面洗浄処理を行い、機能性フィルムの一例であるガスバリアーフィルムユニット15を作製する。
(Process N: Film surface cleaning process)
Next, in order to remove the release layer 3 adhering to the surface of the gas barrier film laminate composed of the peeled plastic film 21 / adhesive layer 22 / inorganic layer 10 / release layer 3 (part). The film surface cleaning process is performed to produce a gas barrier film unit 15 which is an example of a functional film.
 フィルム表面洗浄処理としては、例えば、前述の誘電体バリアー放電ダウンストリーム型プラズマヘッドを用いた株式会社イー・スクエアの常圧プラズマ表面処理装置 AP Plasmaを挙げることができる。 As the film surface cleaning treatment, for example, an atmospheric pressure plasma surface treatment apparatus AP Plasma manufactured by E Square Co., Ltd. using the above-described dielectric barrier discharge downstream type plasma head can be mentioned.
 また、そのほかの表面洗浄方法としては、以下の方法を挙げることができる。 In addition, as other surface cleaning methods, the following methods can be exemplified.
 第一の方法は、乾式洗浄方法(ドライ洗浄方法)と呼ばれる方法で、上記のプラズマ洗浄法のほかに、イオンビーム洗浄法、UVオゾン洗浄法、UVエキシマ照射法、レーザー洗浄法等が挙げられる。 The first method is a method called a dry cleaning method (dry cleaning method). In addition to the plasma cleaning method described above, an ion beam cleaning method, a UV ozone cleaning method, a UV excimer irradiation method, a laser cleaning method, and the like can be given. .
 第二の方法は、湿式洗浄方法(ウェット洗浄方法)と呼ばれる方法で、ガスバリアー層を有する基材を液体に浸漬した後、例えば、噴流洗浄、バブリング洗浄、超音波洗浄、流水洗浄等を用いて洗浄する方法である。この湿式洗浄法は、ある程度の洗浄力を発現するものの、その後に乾燥工程等を要するため、処理時間が長くなるという問題を抱えている。 The second method is a method called a wet cleaning method (wet cleaning method). After immersing a substrate having a gas barrier layer in a liquid, for example, jet cleaning, bubbling cleaning, ultrasonic cleaning, running water cleaning, or the like is used. This is a method of cleaning. Although this wet cleaning method exhibits a certain level of detergency, it requires a drying step after that, and thus has a problem that the processing time becomes long.
 第三の方法は、物理的剥離方法で、ガスバリアー層表面に物理的な力(例えば、物体の衝撃力)を直接的に付与して洗浄する方法で、例えば、スクラブ洗浄、シャワー洗浄(例えば、高圧スプレー洗浄、超音波シャワー洗浄、二流体ノズル洗浄)、アイスブラスト洗浄(例えば、マイクロアイスジェット、ドライアイススクラブ洗浄)等が挙げられる。これらの物理的剥離方法は、ガスバリアー層表面に付着しているパーティクル等の異物に直接的に作用するため、その洗浄力(異物除去率)が極めて高く、かつ処理時間も短いという特徴を有している。 The third method is a physical peeling method in which a physical force (for example, impact force of an object) is directly applied to the surface of the gas barrier layer for cleaning. For example, scrub cleaning, shower cleaning (for example, , High pressure spray cleaning, ultrasonic shower cleaning, two-fluid nozzle cleaning), ice blast cleaning (for example, micro ice jet, dry ice scrub cleaning) and the like. Since these physical peeling methods directly act on foreign matters such as particles adhering to the surface of the gas barrier layer, they have the feature that their cleaning power (foreign matter removal rate) is extremely high and the processing time is short. is doing.
 《機能性フィルムの製造における工程の温度パターン》
 上記説明した機能性フィルムの製造工程における代表的な温度履歴パターンを図2に示す。
<< Temperature pattern of process in the production of functional film >>
FIG. 2 shows a typical temperature history pattern in the functional film manufacturing process described above.
 図2には、工程B(離型層塗布工程)から工程J(貼合工程)までの、主には耐熱基材1の温度履歴パターンを示してある。 FIG. 2 mainly shows a temperature history pattern of the heat-resistant substrate 1 from the process B (release layer application process) to the process J (bonding process).
 湿潤状態の離型層3Aを形成する工程である工程Bでは、耐熱基材1は、離型層形成用塗布液の液温度と同じになっている。次いで、工程C(乾燥工程1)では、加熱乾燥工程により、耐熱基材1はより高い温度に加熱される。次いで工程Dでは、無機層形成前駆体層を形成する塗布液の塗布を行うが、前工程である工程Cの温度でそのまま塗布を行ってもよく、あるいは工程Cの後に一旦冷却した後、無機層形成前駆体層を形成する塗布液の塗布を行っても良い。次いで、工程Eで再度乾燥処理を行った後、工程Fとして熱焼成処理が施される。工程Fにおいて、所望の熱焼成温度までの昇温パターンとしては、一定の温度上昇率で昇温する方法、ブロック単位で階段状に昇温する方法が挙げられる。この時、工程Fにおける最高到達温度Tmaxは、200~600℃の温度範囲内であることが好ましい。また、最高到達温度Tmaxを維持する時間Tは、適宜設定することができる。 In step B, which is a step of forming the release layer 3A in a wet state, the heat-resistant substrate 1 has the same temperature as the release layer forming coating solution. Next, in step C (drying step 1), the heat-resistant substrate 1 is heated to a higher temperature by the heat drying step. Next, in Step D, the coating liquid for forming the inorganic layer forming precursor layer is applied, but the coating may be performed as it is at the temperature of Step C, which is the previous step, or after cooling once after Step C, the inorganic layer is formed. You may apply | coat the coating liquid which forms a layer formation precursor layer. Next, after performing a drying process again in the process E, a heat baking process is performed as the process F. In step F, examples of the temperature rising pattern up to a desired thermal firing temperature include a method of increasing the temperature at a constant temperature increase rate and a method of increasing the temperature stepwise in block units. At this time, it is preferable that the maximum temperature T max in the process F is in a temperature range of 200 to 600 ° C. The time T for maintaining the maximum temperature T max can be set as appropriate.
 なお、必要に応じて、工程E(乾燥工程)を省略し、工程Dで無機層形成前駆体層を形成する塗布液の塗布を行った後、直接、工程Fで熱焼成処理を行っても良い。 Note that, if necessary, the step E (drying step) may be omitted, and after applying the coating liquid for forming the inorganic layer forming precursor layer in the step D, the thermal baking treatment may be directly performed in the step F. good.
 工程Fにおいて熱焼成処理が終了すると、工程Gにて冷却処理が施される。本発明においては、室温(T1)までは冷却を行わず、まだ耐熱基材1が加温されている状態、即ち耐熱基材1として40℃(T2)以上の温度条件で、工程Jで貼合処理を行う。 When the thermal baking process is completed in the process F, a cooling process is performed in the process G. In the present invention, the process is not performed until room temperature (T 1 ) and the heat-resistant substrate 1 is still heated, that is, under the temperature condition of 40 ° C. (T 2 ) or more as the heat-resistant substrate 1. Perform the bonding process.
 《機能性フィルムのオンライン製造方法》
 図1においては、枚葉方式による機能性フィルムの製造方法の一例を示したが、本発明においては、より高い生産性(生産速度)を実現することができる観点からは、図3に示すようなロール・ツー・ロール方式によるオンライン製造方法がより好ましい。
《Online manufacturing method of functional film》
In FIG. 1, an example of a method for producing a functional film by a single-wafer method is shown. However, in the present invention, from the viewpoint of realizing higher productivity (production speed), as shown in FIG. 3. An on-line manufacturing method based on a roll-to-roll method is more preferable.
 図3は、本発明の機能性フィルムの製造方法の一例であるロール・ツー・ロール方式によるオンライン製造工程の一例を示す工程フロー図である。 FIG. 3 is a process flow diagram showing an example of an on-line manufacturing process using a roll-to-roll method, which is an example of a method for manufacturing a functional film of the present invention.
 なお、図3に記載の個々の装置については、図1で説明した各装置と同様の構成であり、ここでの説明は省略し、工程フローの特徴点についてのみ説明する。 Note that each device shown in FIG. 3 has the same configuration as that of each device described in FIG. 1, and description thereof is omitted here, and only the feature points of the process flow are described.
 耐熱基材1上の無機層10を形成する工程ルート1では、無端の耐熱基材1(以下、無端ベルト1Aともいう)、例えば、ステンレス製のキャスティングベルトが、サポートローラーSRで保持され、サポートローラーSRの一部を駆動ローラーとして機能させながら、エンドレスで搬送されている。工程Aでは、無端ベルト1に洗浄処理を施した後、工程Bで、無端ベルトの背面をサポートローラーSRで支持しなから、コーターC1により、離型層塗布液を供給して湿潤状態の離型層3Aを形成した後、工程Cで乾燥装置4により乾燥を行い、離型層3を形成する。ついで、工程Dで、コーターC2より無機層形成前駆体層7Aの形成用塗布液を、離型層3上に供給した後、工程Eで乾燥を行って無機層形成前駆体層7を形成した後、工程Fで熱焼成処理を施して、無機層形成前駆体層7を、無機層10に改質する。次いで、工程Gで、高温加熱した無端ベルト1を冷却し、工程Gの出口に設置した表面温度計で無端ベルト1の温度をモニターしならが、無端ベルト1の温度が40℃以上の条件で、冷却装置11より搬出する。 In the process route 1 for forming the inorganic layer 10 on the heat-resistant substrate 1, an endless heat-resistant substrate 1 (hereinafter also referred to as an endless belt 1A), for example, a stainless steel casting belt, is held by the support roller SR and supported. While a part of the roller SR functions as a driving roller, it is conveyed endlessly. In step A, after the endless belt 1 is cleaned, the back surface of the endless belt is not supported by the support roller SR in step B. Therefore, the release layer coating solution is supplied by the coater C1 to release the wet state. After forming the mold layer 3 </ b> A, drying is performed by the drying device 4 in Step C to form the release layer 3. Next, in Step D, the coating liquid for forming the inorganic layer forming precursor layer 7A was supplied onto the release layer 3 from the coater C2, and then dried in Step E to form the inorganic layer forming precursor layer 7. Thereafter, a thermal baking treatment is performed in Step F to modify the inorganic layer forming precursor layer 7 to the inorganic layer 10. Next, in step G, the endless belt 1 heated at a high temperature is cooled, and the temperature of the endless belt 1 is monitored with a surface thermometer installed at the exit of the step G, but the temperature of the endless belt 1 is 40 ° C. or higher. Then, it is unloaded from the cooling device 11.
 一方、工程ルート2では、元巻繰り出し部(アンワインダー部)UWで、長尺の積層ローラーより、プラスチックフィルム21を搬出し、工程Iで、プラスチックフィルム21上に、コーターC3より接着層塗布液を供給して、接着層22を形成した後、乾燥装置4で乾燥する。 On the other hand, in the process route 2, the plastic film 21 is unloaded from the long laminating roller at the original unwinding part (unwinder part) UW, and the adhesive layer coating solution is applied onto the plastic film 21 from the coater C3 in the process I. , And the adhesive layer 22 is formed, followed by drying with the drying device 4.
 次いで、工程ルート1の工程Gで作製し、40℃以上の温度に制御した耐熱基材1上の無機層面と、工程ルート2で作製したプラスチックフィルム21上の接着層面とを、工程ルート3の工程Jで貼合し、工程KでサポートローラーSRと、バックローラーBRでニップして圧着した後、工程Mでそれぞれ耐熱基材1ユニットと、プラスチックフィルム21ユニットを離間させることにより、耐熱基材1上に形成した無機層及び離型層を、プラスチックフィルム21の接着層上に転写する。なお、上記工程においては、工程J、K及びMはほぼ同時に行う。 Next, the inorganic layer surface on the heat-resistant substrate 1 produced in the process G of the process route 1 and controlled to a temperature of 40 ° C. or higher, and the adhesive layer surface on the plastic film 21 produced in the process route 2 are combined in the process route 3. After bonding in step J, niping and pressing with support roller SR and back roller BR in step K, 1 unit of heat-resistant substrate and 21 units of plastic film are separated from each other in step M, whereby a heat-resistant substrate is obtained. The inorganic layer and the release layer formed on 1 are transferred onto the adhesive layer of the plastic film 21. In the above process, the processes J, K and M are performed almost simultaneously.
 次いで、工程Nで、プラスチックフィルム21の最表面に付着している離型層の残渣を、フィルム表面洗浄処理により除去する。更に、必要に応じて、工程Pでその他の機能層の塗布、例えば、保護層等の形成と、工程Qで乾燥を行った後、巻取部(ワインダーブ部)Wで巻き取る。なお、その他の機能層を形成する工程Pは、別ラインで行ってもよい。 Next, in Step N, the release layer residue adhering to the outermost surface of the plastic film 21 is removed by a film surface cleaning process. Furthermore, after application of other functional layers in the process P, for example, formation of a protective layer and the like, and drying in the process Q as necessary, the film is wound by a winding part (winder part) W. In addition, you may perform the process P which forms another functional layer in another line.
 《機能性フィルムの製造方法の実施の形態》
 本発明の機能性フィルムは、以下に示すような実施の形態により製造することができるが、本発明では、ここで例示する製造方法に限定されるものではない。
<< Embodiment of the manufacturing method of a functional film >>
The functional film of the present invention can be manufactured by the following embodiment, but the present invention is not limited to the manufacturing method exemplified here.
 図3に示したロール・ツー・ロール方式によるオンライン製造方法を一例として、その具体的な方法を説明する。 The specific method will be described by taking the roll-to-roll method on-line manufacturing method shown in FIG. 3 as an example.
 工程A:耐熱基材表面の洗浄
 耐熱基材1である連続搬送しているステンレス製のキャスティングベルト表面に、プラズマ洗浄装置2として、株式会社イー・スクエア製の常圧プラズマ表面処理装置 AP Plasmaを用いて、プラズマ照射を行って、その表面を洗浄した。
Step A: Cleaning the surface of the heat-resistant substrate On the surface of the stainless steel casting belt that is continuously transporting the heat-resistant substrate 1, as a plasma cleaning device 2, an atmospheric pressure plasma surface treatment device AP Plasma manufactured by E-Square Co., Ltd. The surface was cleaned by plasma irradiation.
 工程B及び工程C:離型層形成及び乾燥
 次いで、工程Bで連続搬送しているステンレス製のキャスティングベルト上に、スロットダイコーター(C1に相当)を用いて、離型剤としてポリビニルピロリドン(PVP)を、1.5μmの乾燥膜厚となるように塗布し、工程Cで乾燥して、離型層3を形成した。
Step B and Step C: Mold Release Layer Formation and Drying Next, using a slot die coater (corresponding to C1) on the stainless steel casting belt continuously conveyed in Step B, polyvinyl pyrrolidone (PVP) as a release agent. ) Was applied to a dry film thickness of 1.5 μm and dried in Step C to form a release layer 3.
 工程D及び工程E:無機層形成前駆体層の塗布及び乾燥
 工程Dで、離型層3上に、無機層形成前駆体層7を形成する塗布液としてポリシラザンとしてパーヒドロポリシラザン(PHPS)を用い、乾燥後の膜厚が50nmとなる条件でスロットダイコーター(C2に相当)を用いて塗布し、次いで工程Eで乾燥した。
Step D and Step E: Application and Drying of Inorganic Layer Forming Precursor Layer In Step D, perhydropolysilazane (PHPS) is used as polysilazane as a coating liquid for forming the inorganic layer forming precursor layer 7 on the release layer 3. The film was applied using a slot die coater (corresponding to C2) under the condition that the film thickness after drying was 50 nm, and then dried in Step E.
 工程F:熱焼成工程
 次いで、工程Fで、熱焼成装置8として、アドフォス社製のNIRランプを用い、280℃で1分間加熱した後、最高到達温度(Tmax)として500℃で3分間加熱して、無機層形成前駆体層7を改質して、無機層10を形成した。
Step F: Thermal Firing Step Next, in Step F, an NIR lamp manufactured by Adphos is used as the thermal firing device 8 and heated at 280 ° C. for 1 minute, and then heated at 500 ° C. for 3 minutes as the maximum temperature (T max ). Then, the inorganic layer forming precursor layer 7 was modified to form the inorganic layer 10.
 工程G:冷却工程
 次いで、冷却工程で、キャスティングベルトの両面より冷風を吹き付けて空冷し、耐熱基材1を120℃まで冷却した。
Step G: Cooling Step Next, in the cooling step, cold air was blown from both sides of the casting belt to cool the heat-resistant substrate 1 to 120 ° C.
 工程I:接着層の形成
 別途、工程ルート2で、プラスチックフィルム21として厚さ100μmのポリエチレンテレフタレート(PET)フィルムに、接着剤としてガスバリアー性ドライラミネート用エポキシ樹脂の接着剤「マクシーブ(登録商標)」(三菱ガス化学株式会社製)を厚さ10μmで、塗布、乾燥して、接着層22を形成した。
Step I: Formation of Adhesive Layer Separately, in Process Route 2, a polyethylene terephthalate (PET) film having a thickness of 100 μm as a plastic film 21 and an adhesive for gas barrier dry laminate epoxy resin as an adhesive “MAXIVE (registered trademark)” “Mitsubishi Gas Chemical Co., Ltd.” was applied at a thickness of 10 μm and dried to form an adhesive layer 22.
 工程J、K、M:貼合及び離間
 次いで、冷却工程を通過し、基材温度が120℃のキャスティングベルトと、PETフィルムとを、それぞれ無機層と接着層を対向させて貼合した。次いで、両基材を離間させ、耐熱基材1上の離型層3及び無機層10をPETフィルム上に転写した。
Steps J, K, M: Pasting and Separation Next, the cooling step was passed, and the casting belt having a substrate temperature of 120 ° C. and the PET film were pasted with the inorganic layer and the adhesive layer facing each other. Subsequently, both base materials were separated and the release layer 3 and the inorganic layer 10 on the heat-resistant base material 1 were transferred onto the PET film.
 工程N:フィルム洗浄工程
 次いで、転写済みのPETフィルムの表面を、株式会社イー・スクエア製の常圧プラズマ表面処理装置 AP Plasmaを用いて、1分間のプラズマ洗浄処理を行って、表面に残留している離型剤(ポリビニルピロリドン)を除去して、ガスバリアーフィルムユニット15を作製した。
Step N: Film cleaning step Next, the surface of the transferred PET film is subjected to a plasma cleaning treatment for 1 minute using an atmospheric plasma surface treatment apparatus AP Plasma manufactured by E-Square Co., Ltd., and remains on the surface. The release agent (polyvinyl pyrrolidone) was removed, and the gas barrier film unit 15 was produced.
 《ガスバリアーフィルムユニットの特性評価》
 上記作製したガスバリアーフィルムユニットについて、下記の方法に従って、ガスバリアー性、透明性及び平面性の評価を行い、得られた結果を示す。
<Characteristic evaluation of gas barrier film unit>
About the produced gas barrier film unit, according to the following method, gas barrier property, transparency, and planarity are evaluated, and the obtained result is shown.
 〔ガスバリアー性の評価(水蒸気バリアー性の評価)〕
 上記作製したガスバリアーフィルムユニットについて、下記の方法に従って、水蒸気バリアー性の評価を行った。
[Evaluation of gas barrier properties (evaluation of water vapor barrier properties)]
About the produced gas barrier film unit, the water vapor | steam barrier property was evaluated in accordance with the following method.
 (水蒸気バリアー性評価試料の作製装置)
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 〈原材料〉
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリアー性評価試料の作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、上記作製したガスバリアーフィルムユニットの無機層形成面に、マスクを通して12mm×12mmのサイズで金属カルシウムを蒸着させた。この際、蒸着膜厚は80nmとなるようにした。
(Water vapor barrier property evaluation sample preparation device)
Vapor deposition equipment: JEE-400 vacuum vapor deposition equipment manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
<raw materials>
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation sample)
Using a vacuum deposition apparatus (vacuum deposition apparatus JEE-400 manufactured by JEOL Ltd.), metallic calcium was deposited in a size of 12 mm × 12 mm through the mask on the inorganic layer forming surface of the produced gas barrier film unit. At this time, the deposited film thickness was set to 80 nm.
 次いで、真空状態のままでマスクを取り去り、シート片側全面にアルミニウムを蒸着させて仮封止をした。次いで、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下に移して、アルミニウム蒸着面に封止用紫外線硬化樹脂(ナガセケムテックス社製)を介して厚さ0.2mmの石英ガラスを張り合わせ、紫外線を照射して樹脂を硬化接着させて本封止することで、水蒸気バリアー性評価試料を作製した。 Next, the mask was removed in a vacuum state, and aluminum was vapor-deposited on the entire surface of one side of the sheet to perform temporary sealing. Next, the vacuum state is released, quickly transferred to a dry nitrogen gas atmosphere, and a quartz glass with a thickness of 0.2 mm is bonded to the aluminum deposition surface via an ultraviolet curing resin for sealing (manufactured by Nagase ChemteX). A water vapor barrier property evaluation sample was prepared by irradiating ultraviolet rays to cure and adhere the resin to perform main sealing.
 得られた試料を60℃、90%RHの高温高湿下で保存し、保存時間に対して金属カルシウムが腐食して行く様子を観察した。観察は、保存時間6時間までは1時間ごとに、それ以降24時間までは3時間ごとに、それ以降48時間までは6時間ごとに、それ以降は12時間ごとに行い、12mm×12mmの金属カルシウム蒸着面積に対する金属カルシウムが腐食した面積を%表示で算出した。金属カルシウムが腐食した面積が1%となった時間を観察結果から直線で内挿して求め、金属カルシウム蒸着面積と、面積1%分の金属カルシウムを腐食させる水蒸気量と、それに要した時間との関係からそれぞれのガスバリアーフィルムユニットの水蒸気透過率を算出した。 The obtained sample was stored under high temperature and high humidity of 60 ° C. and 90% RH, and the state of metallic calcium corroding with respect to the storage time was observed. Observation is performed every hour for up to 6 hours, every 3 hours for up to 24 hours, every 6 hours for up to 48 hours thereafter, and every 12 hours thereafter, a 12 mm x 12 mm metal The area where metallic calcium corroded relative to the calcium deposition area was calculated in%. The time when the area where the metal calcium corrodes becomes 1% is obtained by interpolating from the observation result by a straight line, and the metal calcium vapor deposition area, the amount of water vapor corroding the metal calcium for the area of 1%, and the time required for it. From the relationship, the water vapor transmission rate of each gas barrier film unit was calculated.
 上記により測定した結果、上記作製したガスバリアーフィルムユニットの水蒸気透過率は、2.0×10-4g/(m2・24h)であった。 As a result of the above measurement, the water vapor permeability of the produced gas barrier film unit was 2.0 × 10 −4 g / (m 2 · 24 h).
 (透明性の評価)
 上記作製したガスバリアーフィルムユニットについて、可視光透過率を分光光度計V-570(日本分光社製)を用いて測定した結果、590nmにける透過率が92%であった。
(Evaluation of transparency)
With respect to the produced gas barrier film unit, the visible light transmittance was measured using a spectrophotometer V-570 (manufactured by JASCO Corporation). As a result, the transmittance at 590 nm was 92%.
 (平面性の評価)
 上記作製したガスバリアーフィルムユニットを00mm×100mmの大きさに断裁した後、40℃、90%RHの環境下で24時間保存した後、40℃、10%RHの環境下で2時間保存する耐久試験を行った。次いで、ガスバリアーフィルムユニットを23℃、55%RHの環境に移動し、平面石英板上に置き、4隅の石英板表面からの浮き上がり高さの平均値を測定して、下記の基準に従って、ガスバリアーフィルムユニットの平面性を評価した結果、評価ランクは「○」であった。
(Evaluation of flatness)
The gas barrier film unit produced above was cut into a size of 00 mm × 100 mm, stored for 24 hours in an environment of 40 ° C. and 90% RH, and then stored for 2 hours in an environment of 40 ° C. and 10% RH. A test was conducted. Next, the gas barrier film unit was moved to an environment of 23 ° C. and 55% RH, placed on a flat quartz plate, and the average value of the height of lifting from the quartz plate surface at the four corners was measured. As a result of evaluating the flatness of the gas barrier film unit, the evaluation rank was “◯”.
 ◎:4隅の平均浮き上がり高さの平均値が、1.0mm未満である
 ○:4隅の平均浮き上がり高さの平均値が、1.0mm以上、2.0mm未満である
 △:4隅の平均浮き上がり高さの平均値が、2.0mm以上、5.0mm未満であるが、実用上許容される品質である
 ×:4隅の平均浮き上がり高さの平均値が、5.0mm以上であり、実用上問題となる品質である
 以上のように、本発明の機能性フィルムの製造方法で作製した機能性フィルム(ガスバリアーフィルムユニット)は、ガスバリアー性(水蒸気バリアー性)、透明性及び平面性に優れていることを確認することができた。
A: The average value of the average lift height at the four corners is less than 1.0 mm. O: The average value of the average lift height at the four corners is 1.0 mm or more and less than 2.0 mm. The average value of the average lift height is 2.0 mm or more and less than 5.0 mm, but it is a quality that is practically acceptable. X: The average value of the average lift height of the four corners is 5.0 mm or more As described above, the functional film (gas barrier film unit) produced by the method for producing a functional film of the present invention has gas barrier properties (water vapor barrier properties), transparency and flatness. It was confirmed that it was excellent in performance.
 本発明の機能性フィルムの製造方法は、機能性(例えば、ガスバリアー性)、透明性及び平面性に優れた機能性フィルムを、大型設備を必要とせず、簡易的な方法で、経済性及び生産安定性に優れ、かつ高い生産能力(生産速度)で生産することができ、それにより得られる機能性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装用途や、食品、工業用品及び医薬品等の変質を防止するための包装用途や、液晶表示素子、太陽電池、有機エレクトロルミネッセンス基板等の電子デバイス材料として好適に利用できる。 The method for producing a functional film of the present invention is a functional film excellent in functionality (for example, gas barrier properties), transparency and flatness, without requiring large equipment, in a simple manner, economically and It has excellent production stability and can be produced at a high production capacity (production speed), and the functional film obtained thereby can be used for packaging products that require the blocking of various gases such as water vapor and oxygen, and for foods. It can be suitably used as a packaging application for preventing alteration of industrial articles and pharmaceuticals, and as an electronic device material such as a liquid crystal display element, a solar cell, and an organic electroluminescence substrate.
 1 耐熱基材
 1A 無端ベルト
 2 プラズマ洗浄
 3A 湿潤状態の離型層
 3 離型層
 4 乾燥装置
 5 加熱手段
 6 温風
 7A 湿潤状態の無機層形成前駆体層
 7 無機層形成前駆体層
 8 熱焼成装置
 9 熱焼成部材
 10 無機層
 11 冷却装置
 12 冷却部材
 13 冷風
 14、14′ ニップローラー
 15 ガスバリアーフィルムユニット
 21 プラスチックフィルム
 22 接着層
 C1、C2、C3、C4 コーター
 BR バックローラー
 DRU ダンサーローラーユニット
 SR サポートローラー
 UW アンワインダー
 W ワインダー
DESCRIPTION OF SYMBOLS 1 Heat-resistant base material 1A Endless belt 2 Plasma cleaning 3A Wet release layer 3 Release layer 4 Drying device 5 Heating means 6 Hot air 7A Wet inorganic layer formation precursor layer 7 Inorganic layer formation precursor layer 8 Thermal firing Device 9 Heat-fired member 10 Inorganic layer 11 Cooling device 12 Cooling member 13 Cold air 14, 14 'Nip roller 15 Gas barrier film unit 21 Plastic film 22 Adhesive layer C1, C2, C3, C4 Coater BR Back roller DRU Dancer roller unit SR Support Roller UW Unwinder W Winder

Claims (7)

  1.  耐熱基材上に、無機層形成前駆体を塗布して無機層形成前駆体層を形成する塗布工程、
     形成した前記無機層形成前駆体層を熱焼成して無機層を形成する熱焼成工程、
     形成した前記無機層を冷却する冷却工程、
     耐熱基材の前記無機層を有する面と、プラスチックフィルム面とを密着する密着工程、
     密着した後、前記無機層を前記プラスチックフィルム面に転写する転写工程、
     を経て機能性フィルムを製造する機能性フィルムの製造方法であって、
     前記転写工程が、前記冷却工程を経て、前記耐熱基材の温度が40℃に低下するまでの間で行うことを特徴とする機能性フィルムの製造方法。
    On the heat-resistant substrate, an application step of applying an inorganic layer forming precursor to form an inorganic layer forming precursor layer,
    A thermal firing step of thermally firing the formed inorganic layer forming precursor layer to form an inorganic layer;
    A cooling step for cooling the formed inorganic layer;
    An adhesion process for closely adhering the surface of the heat-resistant substrate having the inorganic layer and the plastic film surface;
    A transfer step of transferring the inorganic layer to the plastic film surface after being adhered,
    A functional film manufacturing method for manufacturing a functional film via
    The method for producing a functional film, wherein the transfer step is performed until the temperature of the heat-resistant substrate is lowered to 40 ° C. after the cooling step.
  2.  前記熱焼成工程における前記無機層形成前駆体層を有する耐熱基材の最高到達温度が、200~600℃の温度範囲内であることを特徴とする請求項1に記載の機能性フィルムの製造方法。 2. The method for producing a functional film according to claim 1, wherein the highest ultimate temperature of the heat resistant substrate having the inorganic layer forming precursor layer in the thermal baking step is within a temperature range of 200 to 600 ° C. .
  3.  耐熱基材上に無機層形成前駆体を塗布して無機層形成前駆体層を形成する前記塗布工程の前に、前記耐熱基材上に離型層を形成する離型層形成工程を有することを特徴とする請求項1又は請求項2に記載の機能性フィルムの製造方法。 Having a release layer forming step of forming a release layer on the heat resistant substrate before the coating step of applying the inorganic layer forming precursor on the heat resistant substrate to form the inorganic layer forming precursor layer; The method for producing a functional film according to claim 1 or 2, wherein:
  4.  前記転写工程の後に、転写した無機層表面を洗浄するフィルム洗浄工程を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の機能性フィルムの製造方法。 The method for producing a functional film according to any one of claims 1 to 3, further comprising a film cleaning step of cleaning the transferred inorganic layer surface after the transfer step.
  5.  前記耐熱基材が連続搬送する無端耐熱基材であり、前記塗布工程、熱焼成工程、冷却工程、密着工程及び転写工程が、前記無端耐熱基材を連続搬送して行うオンライン工程であることを特徴とする請求項1から請求項4までのいずれか一項に記載の機能性フィルムの製造方法。 The heat-resistant base material is an endless heat-resistant base material that is continuously conveyed, and the coating process, the thermal baking process, the cooling process, the adhesion process, and the transfer process are online processes that are performed by continuously conveying the endless heat-resistant base material. The manufacturing method of the functional film as described in any one of Claim 1 to 4 characterized by the above-mentioned.
  6.  前記塗布工程の前に、連続搬送する無端耐熱基材の表面を洗浄する洗浄工程を有することを特徴とする請求項5に記載の機能性フィルムの製造方法。 6. The method for producing a functional film according to claim 5, further comprising a washing step of washing the surface of the endless heat-resistant substrate that is continuously conveyed before the coating step.
  7.  前記機能性フィルムが、ガスバリアー性フィルムであることを特徴とする請求項1から請求項6までのいずれか一項に記載の機能性フィルムの製造方法。 The method for producing a functional film according to any one of claims 1 to 6, wherein the functional film is a gas barrier film.
PCT/JP2014/059737 2013-04-23 2014-04-02 Functional film manufacturing method WO2014175023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-089922 2013-04-23
JP2013089922A JP2016128211A (en) 2013-04-23 2013-04-23 Method for producing functional film

Publications (1)

Publication Number Publication Date
WO2014175023A1 true WO2014175023A1 (en) 2014-10-30

Family

ID=51791604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059737 WO2014175023A1 (en) 2013-04-23 2014-04-02 Functional film manufacturing method

Country Status (2)

Country Link
JP (1) JP2016128211A (en)
WO (1) WO2014175023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180963A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas barrier laminate, sealing body, conductive laminate, and production method for conductive laminate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432514B1 (en) 2017-06-26 2022-08-12 다이니폰 인사츠 가부시키가이샤 thermal transfer sheet
KR102034000B1 (en) * 2018-03-19 2019-10-18 건국대학교 산학협력단 Etching apparatus using roll-to-roll gravure printing method, and Etching method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124081A (en) * 1997-06-27 1999-01-29 Minnesota Mining & Mfg Co <3M> Optical element and laminated transfer sheet
JP2006160893A (en) * 2004-12-08 2006-06-22 Nitto Denko Corp Inorganic powder-containing resin composition, film-forming material layer, transfer sheet, method for manufacturing dielectric layer-forming substrate and the dielectric layer forming substrate
JP2007022075A (en) * 2005-06-14 2007-02-01 Asahi Kasei Corp Layer structure and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124081A (en) * 1997-06-27 1999-01-29 Minnesota Mining & Mfg Co <3M> Optical element and laminated transfer sheet
JP2006160893A (en) * 2004-12-08 2006-06-22 Nitto Denko Corp Inorganic powder-containing resin composition, film-forming material layer, transfer sheet, method for manufacturing dielectric layer-forming substrate and the dielectric layer forming substrate
JP2007022075A (en) * 2005-06-14 2007-02-01 Asahi Kasei Corp Layer structure and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180963A1 (en) * 2017-03-30 2018-10-04 リンテック株式会社 Gas barrier laminate, sealing body, conductive laminate, and production method for conductive laminate
JPWO2018180963A1 (en) * 2017-03-30 2020-02-06 リンテック株式会社 Gas barrier laminate, sealed body, conductive laminate, and method for producing conductive laminate
JP7082972B2 (en) 2017-03-30 2022-06-09 リンテック株式会社 A method for manufacturing a gas barrier laminated body, a sealed body, a conductive laminated body, and a conductive laminated body.

Also Published As

Publication number Publication date
JP2016128211A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
KR101526083B1 (en) Gas-barrier film, method for producing gas-barrier film, and electronic device
KR101530792B1 (en) Gas barrier film, method of producing a gas barrier film, and electronic device
KR101461346B1 (en) Gas barrier film, process for production of gas barrier film, and electronic device
JP6638182B2 (en) Laminated films and flexible electronic devices
KR101430892B1 (en) Gas-barrier film and electronic device
JP5716752B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
EP2851192A1 (en) Gas barrier film, manufacturing method for gas barrier film, and electronic device
KR20140019869A (en) Gas barrier film and method for producing same
JP5861644B2 (en) Method for producing gas barrier film and gas barrier film
WO2014175023A1 (en) Functional film manufacturing method
KR20210000275A (en) Method for manufacturing electronic device
WO2015105188A1 (en) Gas barrier film and electronic device comprising same
JP2015128829A (en) Transfer body and manufacturing method of functional film using transfer body
WO2015108086A1 (en) Gas barrier film and electronic device comprising same
US20150344651A1 (en) Process for manufacturing gas barrier film
JP2016168803A (en) Gas barrier film, method for producing the same and electronic device
JP2014213221A (en) Method of manufacturing functional film
JP2015168238A (en) Method of producing composite laminated film
JP5811959B2 (en) Gas barrier film manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP