WO2014174857A1 - Fluoroscopic apparatus - Google Patents

Fluoroscopic apparatus Download PDF

Info

Publication number
WO2014174857A1
WO2014174857A1 PCT/JP2014/050975 JP2014050975W WO2014174857A1 WO 2014174857 A1 WO2014174857 A1 WO 2014174857A1 JP 2014050975 W JP2014050975 W JP 2014050975W WO 2014174857 A1 WO2014174857 A1 WO 2014174857A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoroscopic
ray
image
detector
fluoroscopic image
Prior art date
Application number
PCT/JP2014/050975
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 理香
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Publication of WO2014174857A1 publication Critical patent/WO2014174857A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis

Definitions

  • the present invention relates to X-ray fluoroscopy technology, and more particularly to tomographic image (tomosynthesis image) generation technology.
  • an X-ray fluoroscopy device in which an X-ray source and a two-dimensional X-ray detector are arranged facing each other and moved relatively to perform X-ray imaging.
  • a tomosynthesis imaging technique for obtaining a tomogram (tomosynthesis image) by performing addition processing or reconstruction processing on a series of imaging data acquired at different view angles with respect to a subject.
  • a technique for obtaining a tomographic image using low-dose fluoroscopic data acquired by continuously irradiating X-rays see, for example, Patent Document 1).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for obtaining a high-quality tomosynthesis image in real time using low-dose fluoroscopic data in an X-ray fluoroscopic apparatus.
  • a detector detects X-rays irradiated from an X-ray source and obtains a fluoroscopic image.
  • the X-ray source and the detector are moved relative to each other, and a pre-processing for removing noise is performed and held on the fluoroscopic image acquired during that time.
  • arithmetic processing is performed on the stored fluoroscopic images to obtain a tomographic image.
  • the obtained tomographic image may be displayed together with the fluoroscopic image.
  • an X-ray source that irradiates the subject with X-rays
  • a detector that detects X-rays
  • an operation control unit that relatively moves the X-ray source and the detector, and the detected X-rays
  • a fluoroscopic image acquisition unit that obtains a fluoroscopic image from a line
  • a preprocessing unit that performs preprocessing for reducing noise on the fluoroscopic image
  • a holding unit that holds the fluoroscopic image
  • an operation on the fluoroscopic image after the preprocessing
  • An X-ray fluoroscopic apparatus characterized by comprising a calculation unit that performs processing and obtains a tomographic image.
  • a high-quality tomosynthesis image can be obtained in real time using low-dose fluoroscopic data in an X-ray fluoroscopic apparatus.
  • (A)-(c) is a schematic block diagram of the X-ray fluoroscopic apparatus of embodiment of this invention. It is a functional block diagram of a control device of an embodiment of the present invention. It is explanatory drawing for demonstrating an example of the input device of embodiment of this invention. It is explanatory drawing for demonstrating the structure specific process of embodiment of this invention. (A) is explanatory drawing for demonstrating the addition method of embodiment of this invention, (b) is explanatory drawing for demonstrating the shift addition method of embodiment of this invention. (A) And (b) is explanatory drawing for demonstrating the display apparatus of embodiment of this invention. It is explanatory drawing for demonstrating the flow of the measurement process of embodiment of this invention. It is a flowchart of the measurement process of embodiment of this invention. It is a flowchart of the modification of the measurement process of embodiment of this invention. It is a flowchart of the modification of the measurement process of embodiment of this invention. It is a flowchart of the modification of the measurement process of embodiment of this invention.
  • the X-ray fluoroscopic apparatuses 110, 120, and 130 of this embodiment include an X-ray tube 100 including an X-ray source 101 that irradiates a subject with X-rays, a detector 102 that detects X-rays, a control device 103, and an arm. 108 and a moving device 109.
  • reference numeral 105 denotes a bed on which the subject 104 is mounted.
  • the X-ray source 101 in the X-ray tube 100 and the detector 102 are connected to the moving device 109 by an arm 108.
  • the arm 108 has a C-shape, and the X-ray source 101 and the detector 102 have a rotation axis on the paper surface. Rotate and move on a circular orbit around 106.
  • the shape of an arm is not restricted to C shape. It may be U-shaped or U-shaped.
  • the X-ray source 101 and the detector 102 are installed on separate arms 108, respectively.
  • the X-ray source 101 and the detector 102 perform translation, rotation, rotation, and translation.
  • the X-ray source 101 and the detector 102 move in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface. Alternatively, it moves on a circular orbit around the rotation axis 106 on the paper surface.
  • the X-ray source 101 moves in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface, and the detector 102 moves on a circular orbit around the rotation axis 106 on the paper surface.
  • the X-ray source 101 moves on a circular orbit around the rotation axis 106 on the paper surface, and the detector 102 moves in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface.
  • the subject 104 is arranged so that the body axis thereof is orthogonal to the rotation axis 106. For this reason, the rotatable angle range becomes narrower than 180 degrees.
  • the subject 104 has its body axis arranged parallel to the rotation axis 106. Therefore, the rotatable angle range is widened, and the image quality of the cross-sectional image is improved.
  • the X-ray source 101 and the detector 102 can rotate on the side surface of the subject 104 and a perspective image seen from the side surface of the subject 104 can be obtained, a good cross-sectional image seen from the side surface direction can be obtained. it can.
  • the distance between the bed 105 and the X-ray source 101 and the detector 102 may be closer than the distances shown in FIGS.
  • the X-ray source 101 and the detector 102 may be configured to move on different circular orbits.
  • the external shape of the X-ray fluoroscopic apparatus is not limited to that shown in FIGS.
  • the X-ray source 101 and the detector 102 are not limited to rotation and translation, and may move on any orbit.
  • each X-ray fluoroscopic apparatus 110, 120, 130 X-ray generation in the X-ray source 101, X-ray detection in the detector 102, and movement control of the X-ray source 101 and the detector 102 are performed in the control apparatus 103. Is called.
  • the control device 103 causes the X-ray source 101 to emit pulsed X-rays.
  • the detector 102 is controlled to detect X-rays in synchronization with pulse X-rays. Then, the X-ray detected by the detector 102 is converted into an electrical signal corresponding to the intensity to obtain a measurement elephant, and a fluoroscopic image is obtained.
  • the intensity of the pulse X-ray is set to a low dose that does not cause harm even if the subject 104 is continuously irradiated.
  • the control device 103 according to the present embodiment further performs various processes (image processing) on the fluoroscopic image.
  • a display device Although not shown in FIGS. 1A to 1C, a display device, a storage device, and an input device are connected to the control device 103.
  • the detector 102 is a two-dimensional detector.
  • one-dimensional detectors arranged in multiple rows are also included in the two-dimensional detector.
  • the two-dimensional detector include a planar X-ray detector, a combination of an X-ray image intensifier and a CCD camera, an imaging plate, a CCD detector, and a solid state detector.
  • a flat type X-ray detector there is a combination of an amorphous silicon photodiode and a TFT, which are arranged on a square matrix and directly combined with a fluorescent plate.
  • a film may be used as a detector, and this may be read out with a film digitizer to obtain a measurement image.
  • the X-ray source 101 and the detector 102 are not limited to the above-described trajectory, and may move on any trajectory.
  • the control device 103 performs processing for correcting the trajectory of the X-ray source 101 and the detector 102 into a trajectory at the time of translation or a concentric circle, and a tomographic image such as addition processing or reconstruction processing described later is obtained. Arithmetic processing for obtaining is performed. This makes it possible to acquire a tomosynthesis image using images taken in various trajectories.
  • a fluoroscopic image and a tomosynthesis image are obtained with a low dose.
  • pre-processing is performed on a fluoroscopic image acquired at a low dose to reduce noise.
  • a tomogram tomosynthesis image
  • a tomogram is generated using a perspective image with reduced noise. This realizes a tomosynthesis image with good image quality even at a low dose.
  • FIG. 2 is a functional block diagram of the control device 103 of the present embodiment.
  • an input device 310, a storage device 320, and a display device 330 are connected to the control device 103.
  • the display device 330 displays various images and data generated by the control device 103.
  • the storage device 320 stores various images and data generated by the control device 103.
  • the input device 310 receives an instruction from the user to the control device 103. Note that the input device 310 may be shared by the display device 330.
  • the control apparatus 103 includes a measurement control unit 301 that irradiates pulse X-rays from the X-ray source 101 and detects X-rays in synchronization with the pulse X-rays by the detector 102, and the X-ray source 101 and detector.
  • An operation control unit 302 that relatively moves the image 102, a fluoroscopic image acquisition unit 303 that obtains a fluoroscopic image from the X-rays detected by the detector 102, and a preprocessing unit that performs preprocessing for reducing noise on the fluoroscopic image 304, a holding unit 305 that holds the fluoroscopic image in the fluoroscopic image holding unit 321, a calculation unit 306 that performs arithmetic processing on the pre-processed fluoroscopic image to obtain a tomographic image, and the fluoroscopic image and the tomographic image in the display device 330
  • a display control unit 307 for displaying for displaying.
  • Each part of the control device 103 is realized by a CPU provided in the control device 103 loading a program stored in the storage device 320 in advance into the memory and executing the program.
  • the perspective image holding unit 321 is constructed in the storage device 320.
  • the measurement control unit 301 When the measurement control unit 301 receives an instruction to start measurement from the user via the input device 310, the measurement control unit 301 irradiates the X-ray source 101 with pulse X-rays until an end instruction is received. At the same time, the detector 102 detects X-rays in synchronization with the pulse X-rays.
  • the fluoroscopic image acquisition unit 303 converts the X-rays detected by the detector 102 into an electrical signal corresponding to the intensity every predetermined period, obtains a measurement image, performs sensitivity correction, and obtains a fluoroscopic image.
  • the timing at which the fluoroscopic image acquisition unit 303 acquires a fluoroscopic image is predetermined as a frame rate f. That is, a fluoroscopic image is acquired every 1 / f seconds.
  • the frame rate f may be configured to be settable by the user via the input device 310.
  • the operation control unit 302 When the operation control unit 302 receives a tomogram (tomosynthesis image) acquisition instruction from the user via the input device 310, the operation control unit 302 moves the measurement system including the X-ray source 101 and the detector 102 until an end instruction is received. Let Specifically, an instruction is given to the moving device 109 to move the X-ray source 101 and the detector 102 relatively.
  • the moving range (moving angle) and moving speed between the X-ray source 101 and the detector 102 are determined in advance. Alternatively, the moving range and the moving speed may be configured to be set by the user via the input device 310.
  • imaging for acquiring a tomographic image is referred to as tomosynthesis imaging.
  • imaging for obtaining a fluoroscopic image is referred to as fluoroscopic imaging.
  • the control device 103 performs fluoroscopic imaging after receiving a measurement start instruction from the user until receiving a measurement end instruction, and during that time, after receiving a tomographic image acquisition instruction from the user, Until accepting, both fluoroscopic imaging and tomosynthesis imaging are performed in parallel.
  • FIG. 3 is an explanatory diagram for explaining an example of the input device 310 of the present embodiment.
  • the input device 310 includes an imaging button 311 that receives a measurement start (perspective imaging start) and end instruction from a user, and a changeover switch 312 that receives a tomosynthesis imaging start and end instruction.
  • the changeover switch 312 is a button, lever, foot button, or the like.
  • the imaging button 311 and the changeover switch 312 may be icons on the touch panel when the display device 330 includes a touch panel.
  • the pre-processing unit 304 performs noise reduction processing for reducing noise as pre-processing on the fluoroscopic image acquired by the fluoroscopic image acquiring unit 303.
  • preprocessing is performed on the fluoroscopic image acquired while the operation control unit 302 moves the measurement system.
  • noise reduction processing performed as preprocessing for example, smoothing processing is performed.
  • the imaging target is an area inside the subject 104
  • the obtained fluoroscopic image includes a structural part such as a blood vessel and a flat part such as an organ.
  • the structure area in the fluoroscopic image and other areas are discriminated, and smoothing processing is performed only on the other area (flat area in the fluoroscopic image) to remove random noise. To do.
  • ⁇ Edge extraction processing is used for structure extraction.
  • a differential filter is applied to the fluoroscopic image to extract the structure.
  • smoothing processing is performed on the area other than the structure.
  • an averaging process using an averaging filter, an addition averaging process using a weighted averaging filter, or the like is performed.
  • FIG. 4 is a diagram for explaining processing in the case where a difference is taken in the time direction to specify a structure area and other areas.
  • the preprocessing unit 304 obtains a differential image 411 by performing difference processing between the fluoroscopic image 410 acquired at time t0 and held in the fluoroscopic image holding unit 321. .
  • the fluoroscopic image 410 held at the fluoroscopic image holding unit 321 and acquired at time t0 is a fluoroscopic image after preprocessing.
  • a pixel area whose difference value is equal to or smaller than a predetermined threshold that is, an area where the change is small in the difference image and the movement is small is set as the other area 421, and the area where the difference value is larger than the predetermined threshold has a characteristic structure. Therefore, the structure area 422 is identified. Then, smoothing processing is performed for other regions. Specifically, for each pixel value in the other region 421, an average is calculated for each pixel value between the immediately preceding or immediately following fluoroscopic images. It should be noted that each pixel in the structure area 422 has a value as it is.
  • the fluoroscopic image 410 acquired immediately before the one held in the fluoroscopic image holding unit 321 is used.
  • it is temporarily held in the fluoroscopic image holding unit 321, and processing is performed when the next fluoroscopic image 410 is held in the fluoroscopic image holding unit 321. .
  • the holding unit 305 holds a fluoroscopic image while the operation control unit moves the X-ray source 101 and the detector 102. That is, the holding unit 305 stores the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321 of the storage device 320 every time the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image during tomosynthesis imaging. At this time, the movement range and movement speed of the measurement system and the position information of the X-ray source 101 are stored in association with each other. A measurement angle is used for the position information of the X-ray source 101.
  • the measurement angle is, for example, that of the X-ray source 101 when the X-ray source 101 and the detector 102 exist on a line orthogonal to the bed 105 with the origin at the intersection of a straight line group connecting the X-ray source 101 and the detector 102.
  • the coordinate system is defined with a position of 0 degree.
  • the calculation unit 306 calculates a tomosynthesis image (tomographic image) using the pre-processed fluoroscopic image held in the holding unit 305 at the time of tomosynthesis imaging.
  • arithmetic processing such as an addition method, a shift addition method, a filter-corrected back projection method or the like is used.
  • FIG. 5 (a) and FIG. 5 (b) the principle of the addition method at the time of tomosynthesis imaging will be described using FIG. 5 (a) and FIG. 5 (b).
  • the X-ray fluoroscopy apparatus 120 shown in FIG. 1B generally, during tomosynthesis imaging, the X-ray source 101 and the detector 102 are moved synchronously in opposite directions in parallel to the bed 105. Let Then, the fluoroscopic images detected at the positions of the detectors 102 are added to obtain a tomographic image. This method is called an addition method.
  • the position of the focused surface 910 can be changed by changing the moving speed of the X-ray source 101 and the detector 102. Further, when a flat panel detector is used as the detector 102, the position of the focusing surface 910 can be arbitrarily changed by shifting the element position of the detector 102 when adding, instead of the moving speed. .
  • a flat panel detector having three detection elements in the moving direction is assumed.
  • the X-ray beam to the center detection element is indicated by a solid line
  • the X-ray beam to the leftmost detection element is indicated by a dotted line.
  • Each X-ray beam is focused on a plane 910 indicated by a solid line.
  • a shift addition method for shifting the element position at the time of addition.
  • the value of the leftmost element is detected in the fluoroscopic image obtained with the detector 102 positioned on the left side
  • the value of the central element is detected in the fluoroscopic image obtained with the detector 102 positioned in the center.
  • the value of the rightmost element is added.
  • the X-ray beam to each element to be added is focused on a surface 920 indicated by a solid line.
  • the measurement system (the X-ray source 101 and the detector 102 need to move in parallel trajectories.
  • X-ray fluoroscopy shown in FIG. In the case of an apparatus in which the measurement system moves in parallel, such as the apparatus 120, the obtained fluoroscopic image is used as it is, whereas the X-ray fluoroscopic apparatuses 110 and 130 shown in FIGS.
  • the obtained fluoroscopic image In the case of an apparatus in which the measurement system rotates, the obtained fluoroscopic image is converted into a fluoroscopic image detected at the detection position in the parallel orbit by a geometric conversion process.
  • Tomographic images can be acquired at high speed by using the addition method and shift addition method for the arithmetic processing.
  • the measurement system rotates on a concentric orbit. That is, the measurement system is rotated to obtain a perspective image at each predetermined measurement angle, and a reconstruction process is performed on the perspective image obtained at each measurement angle to obtain a tomographic image as a reconstruction image.
  • an addition process is performed after applying a reconstruction filter to the fluoroscopic image obtained at each measurement angle.
  • adding the values of the elements on which an X-ray beam passing through an arbitrary pixel on the reconstructed image is added, the structure reflected in the fluoroscopic image at all angles is emphasized because it is in focus. A structure that appears only in a perspective image at a certain angle is blurred and cannot be seen because it is out of focus. Thereby, a tomographic image of a desired cross section can be obtained.
  • the filter-corrected backprojection method can be applied to a fluoroscopic image obtained by an X-ray fluoroscopic apparatus in which a measurement system moves on a rotating trajectory.
  • a fluoroscopic image obtained by an X-ray fluoroscopic apparatus in which a measurement system moves in a parallel trajectory is converted into a fluoroscopic image detected at a detection position on a rotational trajectory by a geometric conversion process.
  • the calculation unit 306 performs calculation processing each time a predetermined number of fluoroscopic images are held in the holding unit while the operation control unit 302 moves the X-ray source 101 and the detector 102. In the present embodiment, the calculation unit 306 performs calculation processing after confirming that a predetermined number of fluoroscopic images acquired at different measurement angles are held in the fluoroscopic image holding unit 321. As described above, the fluoroscopic image holding unit 321 holds a fluoroscopic image in association with the measurement angle. Therefore, for example, when a fluoroscopic image of all measurement angles within a preset movement range of the measurement system is held, the calculation unit 306 starts calculation processing.
  • the display control unit 307 displays at least one of the obtained fluoroscopic image and tomographic image on the display device 330.
  • the acquired fluoroscopic image is displayed on the display device 330 in real time.
  • a fluoroscopic image and a tomographic image are displayed in parallel.
  • only a tomographic image is displayed or a fluoroscopic image and a tomographic image are displayed in accordance with an instruction from the user.
  • the display device 330 includes an image display area 200.
  • the image display area 200 includes a first display area 210 and a second display area 220.
  • a fluoroscopic image is displayed only in one of the first display area 210 and the second display area 220 during fluoroscopic imaging.
  • a fluoroscopic image is displayed on one of the first display area 210 and the second display area 220, and a tomographic image is displayed on the other.
  • the tomographic image displayed in the other region may be a tomographic image having a cross section in a different direction from the tomographic image superimposed on the fluoroscopic image.
  • the display device 330 may further include a display change instruction button 230.
  • the display control unit 307 receives a change in the display layout of the image display area 200 using the display change instruction button 230.
  • the layout can be changed between a layout in which two display areas 210 and 220 are displayed in parallel as shown in FIG. 6A and a layout of only one display area 210 as shown in FIG. 6B. .
  • a fluoroscopic image is displayed in the layout of one display area 210 as shown in FIG. 6B, and at the time of tomosynthesis imaging, two display areas 210 and 220 are shown as shown in FIG. 6A.
  • a fluoroscopic image and a tomographic image may be displayed in parallel in a layout including Further, even during tomosynthesis imaging, only a tomographic image may be displayed using a layout of only one display area 210 as necessary.
  • the measurement control unit 301 starts X-ray irradiation and detection, and starts fluoroscopic imaging.
  • the fluoroscopic image acquisition unit 303 acquires a fluoroscopic image at a timing determined by the frame rate f, and the display control unit 307 displays it on the display device 330. This is executed until an instruction to end measurement is received.
  • the timing at which a fluoroscopic image is acquired and displayed (updated) is indicated by a black circle.
  • the operation control unit 302 moves the measurement system.
  • the pre-processing unit 304 performs pre-processing on the acquired fluoroscopic image every time the fluoroscopic image acquiring unit 303 acquires the fluoroscopic image.
  • the holding unit 305 holds the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321.
  • the arithmetic unit 306 performs arithmetic processing when a predetermined number of fluoroscopic images are held, and generates a tomographic image.
  • the display control unit 307 updates the fluoroscopic image displayed in the first display area 210 every time a new fluoroscopic image is acquired, and displays it in the second display area 220 every time a new tomographic image is acquired. Update the tomographic image.
  • FIG. 7 the timing at which the tomographic image is calculated and displayed (updated) is indicated by a black triangle.
  • a case where a tomographic image is calculated from four perspective images is illustrated.
  • the measurement control unit 301 and the fluoroscopic image acquisition unit 303 continue the above processing.
  • tomosynthesis imaging can be performed any number of times during fluoroscopic imaging.
  • FIG. 8 is a processing flow of the imaging process of the present embodiment. This process starts when a measurement start instruction is received from the user. As described above, in this embodiment, when an instruction for tomosynthesis imaging is received from the user, tomosynthesis imaging is also executed in a state where fluoroscopic imaging is executed.
  • the measurement control unit 301 activates the measurement system and starts measurement (step S1001). Here, irradiation of pulse X-rays from the X-ray source 101 is started, and X-rays are detected by the detector 102 in synchronization with the pulse X-rays. Next, the operation control unit 302 determines whether an instruction to start tomosynthesis imaging (TOMO start) has been received (step S1002).
  • TOMO start instruction to start tomosynthesis imaging
  • step S1002 if not received, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1003). Then, the display control unit 307 displays the fluoroscopic image in the image display area 200 of the display device 330 (step S1004). If the perspective image is displayed first, the display is updated to a new perspective image. Thereafter, the measurement control unit 301 determines whether or not an instruction to end measurement has been received (step S1005). If it has been received, the X-ray irradiation and detection are ended, and the measurement is ended. On the other hand, if not received, the process returns to step S1002.
  • step S1002 when receiving an instruction to start tomosynthesis imaging, the operation control unit 302 causes the measurement system to start a moving operation (step S1006). Then, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1007). The display control unit 307 displays the fluoroscopic image in the first display area 210 of the display device 330 (step S1008). If the fluoroscopic image is displayed first, the display is updated to the new fluoroscopic image acquired here.
  • the preprocessing unit 304 performs preprocessing on the acquired fluoroscopic image (step S1009).
  • smoothing processing may be performed in the time direction between the fluoroscopic image held in the holding unit 305 immediately before.
  • the structure area is specified by the difference, and the smoothing process is performed on the other areas.
  • a structure may be extracted by means such as a differential filter in one perspective image, and spatial smoothing may be performed.
  • the holding unit 305 holds the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321 (step S1009). At this time, the fluoroscopic image is stored in association with the position information of the X-ray source 101 at the time when the fluoroscopic image is acquired.
  • the calculating unit 306 determines whether or not a predetermined number of fluoroscopic images are held in the holding unit 305 (step S1011). The determination may be performed based on the number of sheets, or may be performed based on whether or not the X-ray source 101 has moved the entire predetermined movement range. If not, the process returns to step S1007 to repeat the process.
  • the calculation unit 306 performs a calculation process on the fluoroscopic image held in the holding unit 305 to calculate a tomogram (tomosynthesis image) (step S1012).
  • the arithmetic process may be any process that obtains a tomosynthesis image, such as an addition process, a shift addition process, or a reconstruction process.
  • the display control unit 307 displays the obtained tomographic image on the second display area 220 of the display device 330 (step S1013). If the tomographic image is displayed first, the display is updated to the new tomographic image acquired here. At this time, the first fluoroscopic image obtained at that time is displayed in the first display area 210. However, when an instruction to display only a tomographic image is received from the user, the instruction is displayed on the display device 330 according to the instruction from the user.
  • the operation control unit 302 determines whether an instruction to end tomosynthesis imaging (TOMO end) has been received from the user (step S1014). If it has been received, the moving operation is terminated, and the process proceeds to step S1005. On the other hand, if not received, the process proceeds to step S1007 and the process is continued.
  • TOMO end instruction to end tomosynthesis imaging
  • the X-ray fluoroscopic apparatus of this embodiment includes the X-ray source 101 that irradiates the subject 104 with X-rays, the detector 102 that detects X-rays, the X-ray source 101, and the detector 102.
  • An operation control unit 302 that relatively moves the fluoroscopic image acquisition unit 303 that obtains a fluoroscopic image from the detected X-ray, a preprocessing unit 304 that performs preprocessing for reducing noise on the fluoroscopic image, A holding unit 305 that holds a fluoroscopic image, and a calculation unit 306 that performs arithmetic processing on the fluoroscopic image after the preprocessing and obtains a tomographic image.
  • the X-ray fluoroscopic apparatus of the present embodiment holds fluoroscopic data (fluoroscopic image) obtained at a low dose, and before removing noise from the held fluoroscopic image. Apply processing. Then, a tomographic image is generated using the perspective image after removing the noise. By performing preprocessing, a high-quality tomographic image with less noise can be obtained from a perspective image with relatively large noise acquired at a low dose. That is, according to the present embodiment, it is possible to obtain a high-quality tomosynthesis image in real time using low-dose fluoroscopic data.
  • the X-ray fluoroscopic apparatus of the present embodiment further includes a display device 330 that displays the fluoroscopic image and the tomographic image.
  • the display device 330 displays the fluoroscopic image and one or more tomographic images side by side.
  • the depth position of the catheter tip can be quickly confirmed and reflected in the surgery. Since the depth position of the subject of interest can be confirmed without stopping the operation, the operation time can be shortened and the exposure of the patient and the operator can be reduced.
  • the fluoroscopic image and the tomosynthesis image can be displayed in real time and can be used as an intraoperative navigation map.
  • the pre-processing is performed on the fluoroscopic image only when an instruction for tomosynthesis imaging is received, but the present invention is not limited to this. You may comprise so that it may pre-process with respect to the said fluoroscopic image whenever it acquires a fluoroscopic image. That is, preprocessing is always performed on the acquired fluoroscopic image before display.
  • the flow of the imaging process in this case is shown in FIG.
  • the measurement control unit 301 When the measurement control unit 301 receives an instruction to start measurement from the user, the measurement control unit 301 activates the measurement system and starts measurement (step S1101). Here, irradiation of pulse X-rays from the X-ray source 101 is started, and X-rays are detected by the detector 102 in synchronization with the pulse X-rays. Next, the operation control unit 302 determines whether or not an instruction to start tomosynthesis imaging (TOMO start) has been received (step S1102).
  • TOMO start instruction to start tomosynthesis imaging
  • step S1102 if not received, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1103). Then, the preprocessing unit 304 performs preprocessing on the fluoroscopic image (step S1104).
  • the display control unit 307 displays the fluoroscopic image after the preprocessing in step S1104 in the image display area 200 of the display device 330 (step S1106). If the perspective image is displayed first, the display is updated to a new perspective image. Thereafter, the measurement control unit 301 determines whether or not an instruction to end the measurement has been received (step S1107). If the instruction has been received, the X-ray irradiation and detection are ended, and the measurement is ended. On the other hand, if not received, the process returns to step S1102.
  • step S1102 when an instruction to start tomosynthesis imaging is received, the operation control unit 302 moves the measurement system (step S1108). Then, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1109). The preprocessing unit 304 performs preprocessing on the acquired fluoroscopic image (step S1110). Then, the holding unit 305 holds the fluoroscopic image after the preprocessing in the fluoroscopic image holding unit 321 (step S1111). At this time, the fluoroscopic image is stored in association with the position information of the X-ray source 101 at the time when the fluoroscopic image is acquired.
  • the display control unit 307 displays the fluoroscopic image after the preprocessing in Step S1110 in the first display area 210 of the display device 330 (Step S1112). If the fluoroscopic image is displayed first, the display is updated to the new fluoroscopic image acquired here.
  • the operation control unit 302 determines whether or not a predetermined number of fluoroscopic images are held in the holding unit 305 (step S1113). The determination may be performed based on the number of sheets, or may be performed based on whether or not the X-ray source 101 has moved the entire predetermined movement range. If not, the process returns to step S1109 to repeat the process.
  • the calculation unit 306 performs a calculation process on the fluoroscopic image held in the holding unit 305 to calculate a tomogram (tomosynthesis image) (step S1114).
  • the display control unit 307 displays the obtained tomographic image together with the fluoroscopic image obtained at that time on the second display area 220 of the display device 330 (step S1115). If the tomographic image is displayed first, the display is updated to the new tomographic image acquired here. In the first display area 210, the latest perspective image is displayed at that time. However, when an instruction to display only a tomographic image is received from the user, the instruction is displayed on the display device 330 according to the instruction from the user.
  • the operation control unit 302 determines whether an instruction to end tomosynthesis imaging (TOMO end) has been received from the user (step S1116). If it has been received, the moving operation is terminated, and the process proceeds to step S1107. On the other hand, if not received, the process proceeds to step S1109 and the process is continued.
  • TOMO end instruction to end tomosynthesis imaging
  • the moving speed and moving range (angle) may be configured to be changeable by the user during tomosynthesis imaging.
  • the X-ray fluoroscopic apparatus of the present embodiment may be configured to accept from the user via the input device 310 settings of at least one of the range in which the X-ray source 101 and the detector 102 are moved and the moving speed.
  • the input device 310 includes a measurement system operation control instruction unit.
  • the operation control unit 302 receives a predetermined operation by the user and changes the moving range and moving speed of the measurement system.
  • the changeover switch 312 may also serve as the operation control instruction unit. For example, when accepting that the user has pressed the changeover switch 312 more strongly than usual, the operation control unit 302 expands the movement range. In addition, when accepting that the user has moved the changeover switch 312 earlier than usual, the operation control unit 302 increases the moving speed.
  • the fluoroscopic image acquisition unit 303 changes the time interval for acquiring the fluoroscopic image specified by the frame rate f according to the setting when receiving an instruction to change the moving speed and / or moving range from the user. You may comprise. For example, upon receiving an instruction to increase the moving speed of the measurement system, the fluoroscopic image acquisition unit 303 increases the frame rate f for capturing the fluoroscopic image. Artifacts occur when the pitch at which images are acquired becomes coarse, but the occurrence of these artifacts is prevented by changing the frame rate in this way. On the other hand, when an instruction to reduce the moving speed of the measurement system is received, the frame rate is reduced. If the moving speed of the measurement system is slow, the pitch becomes finer than necessary, and the amount of exposure of the subject 104 increases. At this time, by increasing the frame rate, an increase in the amount of exposure of the subject 104 can be suppressed.
  • the maximum measurement angle of the measurement system is ⁇ (A / 2) degree
  • the rotation speed of the measurement system is s (degree / sec). While the measurement system is rotated by the rotation angle A, f ⁇ A / s fluoroscopic images are acquired. As the rotation speed s increases, the number of fluoroscopic images acquired while the measurement system rotates by the rotation angle A decreases. Therefore, if the frame rate is increased accordingly, the number of fluoroscopic images acquired while the measurement system is rotated by the rotation angle A can be maintained. It is possible to prevent the image acquisition pitch from becoming coarse.
  • the holding unit 305 is configured to hold the fluoroscopic image in the fluoroscopic image holding unit 321 until receiving an instruction to end tomosynthesis imaging only when receiving an instruction for tomosynthesis imaging from the user. Not limited to this.
  • X-rays may be emitted from the X-ray source 101 and a fluoroscopic image may be constantly held while X-rays are detected by the detector 102.
  • the position information of the X-ray source 101 is held in correspondence with the embodiment. In this case, only a predetermined number of fluoroscopic images may be retained and overwritten for a predetermined period.
  • the operation control unit 302 moves the measurement system only when receiving an instruction to end tomosynthesis imaging only when receiving an instruction for tomosynthesis imaging from the user, but is not limited thereto.
  • the measurement system may be configured to move in response to an instruction to start measurement.
  • the operation control unit 302 moves the X-ray source 101 and the detector 102 when X-ray irradiation is started.
  • step S1101 the operation control unit 302 starts moving the measurement system.
  • step S 1107 the measurement end instruction is received, and the measurement type moving operation is ended. Further, even when the instruction for tomosynthesis imaging is not received, after the preprocessing (step S1104), the holding unit 305 holds the fluoroscopic image in the fluoroscopic image holding unit 321 (step S1105).
  • the tomosynthesis imaging instruction is given when the fluoroscopic image necessary for tomographic image calculation is already held in the holding unit 305. Can be generated immediately.
  • the fluoroscopic image held in the holding unit 305 at that time may be displayed on the image display area 200 of the display device 330 and the selection of the fluoroscopic image used for tomographic image generation may be received from the user.
  • the X-ray fluoroscopic apparatuses 110, 120, and 130 may have a function capable of adjusting the X-ray dose irradiated from the X-ray source 101.
  • it may be configured so that irradiation with a high dose is possible and normal tomosynthesis imaging is possible.
  • the storage device 320 When provided with a function capable of adjusting the X-ray dose, the storage device 320 holds an image acquired at a low dose and an image acquired at a high dose in a mixed manner. In such a case, when tomosynthesis imaging is instructed, a function for determining whether or not preprocessing is necessary for an image held in the storage device 320 may be provided.
  • the necessity determination is performed, for example, by a method of calculating a standard deviation of pixel values of a region other than the structure of the image to be held and performing no preprocessing when it is smaller than a predetermined threshold. As a result, the number of times of preprocessing is reduced, and the processing time can be shortened.
  • the X-ray fluoroscopic apparatus of the present embodiment may include a collimator that limits an X-ray irradiation region.
  • the calculation process is performed by the calculation unit 306.
  • the addition process is performed when the holding unit 305 holds the perspective image in the storage device 320. May be. With this configuration, a tomographic image can be obtained at a higher speed. In this case, the calculation unit 306 may not be provided.
  • the present embodiment is not limited to tomosynthesis imaging.
  • the present invention can also be applied to imaging for obtaining other types of tomographic images such as CT imaging and cone beam CT imaging.
  • this embodiment is not limited to the measurement by X-rays. Even measurement of light, X-rays, radiation, etc. is applicable.
  • X-ray tube 101: X-ray source, 102: detector, 103: control device, 104: subject, 105: bed, 106: rotating shaft, 108: arm, 109: moving device, 110: X-ray fluoroscopy device 120: X-ray fluoroscopic apparatus, 130: X-ray fluoroscopic apparatus, 210: First display area, 220: Second display area, 230: Display change instruction button, 301: Measurement control section, 302: Operation control section, 303: perspective image acquisition unit, 304: preprocessing unit, 305: holding unit, 306: calculation unit, 307: display control unit, 310: input device, 311: imaging button, 312: changeover switch, 320: storage device, 321 : Perspective image holding unit, 330: display device, 410: perspective image, 411: difference image, 421: non-structure region, 422: structure region, 910: cross section, 920: cross section

Abstract

The present invention obtains high quality tomosynthesis images in real time in a fluoroscopic apparatus using low dose fluoroscopic data. In the present invention, a detector detects X-rays irradiated from an X-ray source and the data obtained is obtained as fluoroscopic images. When an instruction is received from the user during this time, the X-ray source and the detector are moved relative to each other, pre-processing is performed on the fluoroscopic images acquired during this time, and the images are stored. Then, when a specified number has been stored, arithmetic processing is performed on the stored fluoroscopic images to obtain a tomographic image. The tomographic images obtained can be displayed along with the fluoroscopic images.

Description

X線透視装置X-ray fluoroscope
 本発明は、X線透視技術に関し、特に、断層像(トモシンセシス像)生成技術に関する。 The present invention relates to X-ray fluoroscopy technology, and more particularly to tomographic image (tomosynthesis image) generation technology.
 X線源と2次元X線検出器とを対向して配置し、相対的に移動させてX線撮像を行うX線透視装置がある。このようなX線透視装置において、被検体に対する異なるビュー角度で取得した一連の撮像データに対し加算処理あるいは再構成処理を行うことにより、断層像(トモシンセシス像)を得るトモシンセシス撮像技術がある。その中に、継続的にX線を照射することにより取得される、低線量の透視データを用いて断層像を得る技術がある(例えば、特許文献1参照)。 There is an X-ray fluoroscopy device in which an X-ray source and a two-dimensional X-ray detector are arranged facing each other and moved relatively to perform X-ray imaging. In such an X-ray fluoroscopic apparatus, there is a tomosynthesis imaging technique for obtaining a tomogram (tomosynthesis image) by performing addition processing or reconstruction processing on a series of imaging data acquired at different view angles with respect to a subject. Among them, there is a technique for obtaining a tomographic image using low-dose fluoroscopic data acquired by continuously irradiating X-rays (see, for example, Patent Document 1).
特開2005-199062号公報Japanese Patent Laid-Open No. 2005-199062
 トモシンセシス撮像では、上記のように複数の撮像データに対し、加算処理または再構成処理を行うため、ノイズの少ない撮像データが望ましい。従って、低線量の透視データをそのまま用いると、SN比の悪い低画質の画像となる。また、撮像データのSN比を向上させようとする場合、高線量で撮像データを取得したり、検出器での読出し速度を遅くしたりする必要がある。 In tomosynthesis imaging, since addition processing or reconstruction processing is performed on a plurality of imaging data as described above, imaging data with less noise is desirable. Therefore, if the low-dose fluoroscopic data is used as it is, a low-quality image with a poor SN ratio is obtained. In order to improve the S / N ratio of the imaging data, it is necessary to acquire the imaging data with a high dose or to slow down the reading speed with the detector.
 高線量の撮像データを取得するためには、透視データ取得時とは別の、高線量でデータを取得するモードを用意し、トモシンセシス撮像時はそのモードに切り替える必要がある。従って、リアルタイムで断層像を取得することができない。また、読出し速度を遅くすると、撮像時間が長引く。一方、撮像時間を臨床に適する程度に短縮すると撮像ピッチが荒くなり、その結果、断層像にリップルアーチファクトが出現し、画質が低下する。 In order to acquire high-dose imaging data, it is necessary to prepare a mode for acquiring data at a high dose separately from the acquisition of fluoroscopic data, and to switch to that mode during tomosynthesis imaging. Therefore, a tomographic image cannot be acquired in real time. Further, if the reading speed is slowed down, the imaging time is prolonged. On the other hand, if the imaging time is shortened to a level suitable for clinical use, the imaging pitch becomes rough, and as a result, ripple artifacts appear in the tomographic image, and the image quality deteriorates.
 本発明は、上記事情に鑑みてなされたもので、X線透視装置において、低線量の透視データを用い、リアルタイムで高画質のトモシンセシス像を得る技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for obtaining a high-quality tomosynthesis image in real time using low-dose fluoroscopic data in an X-ray fluoroscopic apparatus.
 本発明は、X線源から照射されたX線を検出器が検出して透視像を得る。その間、ユーザから指示を受け付けると、X線源および検出器を相対移動させ、その間に取得した透視像に対しノイズを除去する前処理を施し、保持する。そして、断層像を算出可能な所定数保持されたタイミングで、保持された透視像に対し演算処理を施し、断層像を得る。得られた断層像は、透視像とともに表示してもよい。 In the present invention, a detector detects X-rays irradiated from an X-ray source and obtains a fluoroscopic image. In the meantime, when an instruction is received from the user, the X-ray source and the detector are moved relative to each other, and a pre-processing for removing noise is performed and held on the fluoroscopic image acquired during that time. Then, at a timing at which a predetermined number of tomographic images can be calculated, arithmetic processing is performed on the stored fluoroscopic images to obtain a tomographic image. The obtained tomographic image may be displayed together with the fluoroscopic image.
 具体的には、被写体にX線を照射するX線源と、X線を検出する検出器と、前記X線源と前記検出器とを相対的に移動させる動作制御部と、前記検出したX線から透視像を得る透視像取得部と、前記透視像に対しノイズを低減する前処理を行う前処理部と、前記透視像を保持する保持部と、前記前処理後の前記透視像に演算処理を行い、断層像を得る演算部と、を備えることを特徴とするX線透視装置を提供する。 Specifically, an X-ray source that irradiates the subject with X-rays, a detector that detects X-rays, an operation control unit that relatively moves the X-ray source and the detector, and the detected X-rays A fluoroscopic image acquisition unit that obtains a fluoroscopic image from a line, a preprocessing unit that performs preprocessing for reducing noise on the fluoroscopic image, a holding unit that holds the fluoroscopic image, and an operation on the fluoroscopic image after the preprocessing An X-ray fluoroscopic apparatus characterized by comprising a calculation unit that performs processing and obtains a tomographic image.
 本発明によれば、X線透視装置において、低線量の透視データを用い、リアルタイムで高画質のトモシンセシス像を得ることができる。 According to the present invention, a high-quality tomosynthesis image can be obtained in real time using low-dose fluoroscopic data in an X-ray fluoroscopic apparatus.
(a)~(c)は、本発明の実施形態のX線透視装置の概略構成図である。(A)-(c) is a schematic block diagram of the X-ray fluoroscopic apparatus of embodiment of this invention. 本発明の実施形態の制御装置の機能ブロック図である。It is a functional block diagram of a control device of an embodiment of the present invention. 本発明の実施形態の入力装置の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the input device of embodiment of this invention. 本発明の実施形態の構造特定処理を説明するための説明図である。It is explanatory drawing for demonstrating the structure specific process of embodiment of this invention. (a)は、本発明の実施形態の加算法を説明するための説明図であり、(b)は、本発明の実施形態のシフト加算法を説明するための説明図である。(A) is explanatory drawing for demonstrating the addition method of embodiment of this invention, (b) is explanatory drawing for demonstrating the shift addition method of embodiment of this invention. (a)および(b)は、本発明の実施形態の表示装置を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the display apparatus of embodiment of this invention. 本発明の実施形態の計測処理の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the measurement process of embodiment of this invention. 本発明の実施形態の計測処理のフローチャートである。It is a flowchart of the measurement process of embodiment of this invention. 本発明の実施形態の計測処理の変形例のフローチャートである。It is a flowchart of the modification of the measurement process of embodiment of this invention. 本発明の実施形態の計測処理の変形例のフローチャートである。It is a flowchart of the modification of the measurement process of embodiment of this invention.
 以下、本発明を適用する実施形態について説明する。以下、本発明の実施形態を説明するための全図において、特に断らない限り、基本的に同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments to which the present invention is applied will be described. Hereinafter, in all the drawings for explaining the embodiments of the present invention, those having basically the same function are denoted by the same reference numerals unless otherwise specified, and repeated explanation thereof is omitted.
 本実施形態では、低線量の照射で、透視像とトモシンセシス像(断層像)とを得る。これを実現するX線透視装置の概略構成図を図1(a)~(c)に例示する。本実施形態のX線透視装置110、120、130は、被写体にX線を照射するX線源101を備えるX線管100と、X線を検出する検出器102と、制御装置103と、アーム108と、移動装置109と、を備える。図中105は、被写体104を搭載する寝台である。X線管100内のX線源101と、検出器102とは、アーム108によって移動装置109に接続される。 In this embodiment, a fluoroscopic image and a tomosynthesis image (tomographic image) are obtained by low-dose irradiation. A schematic configuration diagram of an X-ray fluoroscopic apparatus for realizing this is illustrated in FIGS. The X-ray fluoroscopic apparatuses 110, 120, and 130 of this embodiment include an X-ray tube 100 including an X-ray source 101 that irradiates a subject with X-rays, a detector 102 that detects X-rays, a control device 103, and an arm. 108 and a moving device 109. In the figure, reference numeral 105 denotes a bed on which the subject 104 is mounted. The X-ray source 101 in the X-ray tube 100 and the detector 102 are connected to the moving device 109 by an arm 108.
 図1(a)および図1(c)に示すX線透視装置110、130では、アーム108はC字型の形状をしており、X線源101と検出器102とは紙面上の回転軸106を中心として円軌道上を回転移動する。なお、図1(a)および(c)のX線透視装置110および130において、アームの形状は、C字型に限られない。U字型、コ字型であってもよい。 In the X-ray fluoroscopic apparatuses 110 and 130 shown in FIGS. 1A and 1C, the arm 108 has a C-shape, and the X-ray source 101 and the detector 102 have a rotation axis on the paper surface. Rotate and move on a circular orbit around 106. In addition, in the X-ray fluoroscopic apparatuses 110 and 130 of FIG. 1 (a) and (c), the shape of an arm is not restricted to C shape. It may be U-shaped or U-shaped.
 図1(b)に示すX線透視装置120では、X線源101と検出器102とは各々、別のアーム108に設置される。X線透視装置120では、X線源101と検出器102とは、平行移動、回転移動、回転及び平行移動を行う。例えば、X線源101と検出器102とは寝台105あるいは床面に平行に、紙面に垂直な方向に移動する。あるいは、紙面上の回転軸106を中心として円軌道上を移動する。あるいは、X線源101は寝台105あるいは床面に平行に紙面に垂直な方向に移動し、検出器102は紙面上の回転軸106を中心として円軌道上を移動する。あるいは、X線源101は紙面上の回転軸106を中心として円軌道上を移動し、検出器102は寝台105あるいは床面に平行に紙面に垂直な方向に移動する。 In the X-ray fluoroscopic apparatus 120 shown in FIG. 1B, the X-ray source 101 and the detector 102 are installed on separate arms 108, respectively. In the X-ray fluoroscopic apparatus 120, the X-ray source 101 and the detector 102 perform translation, rotation, rotation, and translation. For example, the X-ray source 101 and the detector 102 move in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface. Alternatively, it moves on a circular orbit around the rotation axis 106 on the paper surface. Alternatively, the X-ray source 101 moves in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface, and the detector 102 moves on a circular orbit around the rotation axis 106 on the paper surface. Alternatively, the X-ray source 101 moves on a circular orbit around the rotation axis 106 on the paper surface, and the detector 102 moves in a direction perpendicular to the paper surface parallel to the bed 105 or the floor surface.
 図1(a)、(b)に示すX線透視装置110および120では、被写体104は、その体軸が回転軸106に直交するよう配置される。このため、回転可能な角度範囲は180度より狭くなる。一方、図1(c)に示すX線透視装置130では、被写体104は、その体軸が回転軸106に平行に配置される。従って、回転可能な角度範囲が広がり、断面像の画質が向上する。また、被写体104の側面をX線源101および検出器102が回転することが可能となり、被写体104の側面から見た透視像が得られるため、側面方向から見た良好な断面像を得ることができる。 In the X-ray fluoroscopic apparatuses 110 and 120 shown in FIGS. 1A and 1B, the subject 104 is arranged so that the body axis thereof is orthogonal to the rotation axis 106. For this reason, the rotatable angle range becomes narrower than 180 degrees. On the other hand, in the X-ray fluoroscopic apparatus 130 shown in FIG. 1C, the subject 104 has its body axis arranged parallel to the rotation axis 106. Therefore, the rotatable angle range is widened, and the image quality of the cross-sectional image is improved. In addition, since the X-ray source 101 and the detector 102 can rotate on the side surface of the subject 104 and a perspective image seen from the side surface of the subject 104 can be obtained, a good cross-sectional image seen from the side surface direction can be obtained. it can.
 なお、被写体104の体軸と回転軸106との位置関係は様々に考えられる。また、寝台105とX線源101および検出器102との距離も、図1(a)~(c)に示す距離より近接させてもよい。また、X線源101と検出器102とは異なる円軌道を移動するよう構成してもよい。さらに、X線透視装置の外形は、図1(a)~(c)に示すものに限られない。また、X線源101と検出器102とは、回転、平行移動に限らず、どのような軌道上を移動してもよい。 Note that there are various possible positional relationships between the body axis of the subject 104 and the rotation axis 106. Further, the distance between the bed 105 and the X-ray source 101 and the detector 102 may be closer than the distances shown in FIGS. Further, the X-ray source 101 and the detector 102 may be configured to move on different circular orbits. Further, the external shape of the X-ray fluoroscopic apparatus is not limited to that shown in FIGS. Further, the X-ray source 101 and the detector 102 are not limited to rotation and translation, and may move on any orbit.
 各X線透視装置110、120、130において、X線源101におけるX線発生や、検出器102におけるX線の検出、X線源101および検出器102の移動の制御は、制御装置103において行われる。例えば、制御装置103は、計測開始の指示を受け付けると、X線源101からパルスX線を照射させる。同時に、検出器102を制御し、パルスX線に同期してX線を検出させる。そして、検出器102により検出されたX線を、強度に応じた電気信号に変換して計測象を得、透視像を得る。このとき、パルスX線の強度は、継続的に被写体104に照射しても害のない程度の低線量とする。本実施形態の制御装置103は、さらに、透視像に対する各種の処理(画像処理)を行う。 In each X-ray fluoroscopic apparatus 110, 120, 130, X-ray generation in the X-ray source 101, X-ray detection in the detector 102, and movement control of the X-ray source 101 and the detector 102 are performed in the control apparatus 103. Is called. For example, when receiving an instruction to start measurement, the control device 103 causes the X-ray source 101 to emit pulsed X-rays. At the same time, the detector 102 is controlled to detect X-rays in synchronization with pulse X-rays. Then, the X-ray detected by the detector 102 is converted into an electrical signal corresponding to the intensity to obtain a measurement elephant, and a fluoroscopic image is obtained. At this time, the intensity of the pulse X-ray is set to a low dose that does not cause harm even if the subject 104 is continuously irradiated. The control device 103 according to the present embodiment further performs various processes (image processing) on the fluoroscopic image.
 なお、図1(a)~(c)には示していないが、制御装置103には、表示装置、記憶装置、入力装置が接続される。 Although not shown in FIGS. 1A to 1C, a display device, a storage device, and an input device are connected to the control device 103.
 検出器102には2次元検出器を用いる。本実施形態では、1次元検出器を並べて多列化したものも2次元検出器に含める。2次元検出器としては、平面型X線検出器、X線イメージインテンシファイアとCCDカメラの組み合わせ、イメージングプレート、CCD検出器、固体検出器等がある。平面型X線検出器としては、アモルファスシリコンフォトダイオードとTFTを一対としてこれを正方マトリックス上に配置し、これと蛍光板を直接組み合わせたもの等がある。検出器にフィルムを用い、これをフィルムデジタイザーで読み出して計測像を得てもよい。 The detector 102 is a two-dimensional detector. In this embodiment, one-dimensional detectors arranged in multiple rows are also included in the two-dimensional detector. Examples of the two-dimensional detector include a planar X-ray detector, a combination of an X-ray image intensifier and a CCD camera, an imaging plate, a CCD detector, and a solid state detector. As a flat type X-ray detector, there is a combination of an amorphous silicon photodiode and a TFT, which are arranged on a square matrix and directly combined with a fluorescent plate. A film may be used as a detector, and this may be read out with a film digitizer to obtain a measurement image.
 なお、上述のように、X線源101と検出器102とは、上記の軌道に限らず、どのような軌道上を移動してもよい。その場合、制御装置103において、X線源101と検出器102の軌道を、平行移動時の軌道、あるいは、同心円の軌道に補正する処理を行い、後述の加算処理あるいは再構成処理といった断層像を得るための演算処理を行う。これにより、様々な軌道で撮像された画像を用いて、トモシンセシス像の取得が可能となる。 As described above, the X-ray source 101 and the detector 102 are not limited to the above-described trajectory, and may move on any trajectory. In that case, the control device 103 performs processing for correcting the trajectory of the X-ray source 101 and the detector 102 into a trajectory at the time of translation or a concentric circle, and a tomographic image such as addition processing or reconstruction processing described later is obtained. Arithmetic processing for obtaining is performed. This makes it possible to acquire a tomosynthesis image using images taken in various trajectories.
 本実施形態では、上述のように、低線量で、透視像とトモシンセシス像とを得る。このため、本実施形態では、低線量で取得した透視像に対し、前処理を施し、ノイズを低減する。ノイズが低減された透視像を用い、断層像(トモシンセシス像)を生成する。これにより、低線量であっても、画質のよいトモシンセシス像を実現する。 In this embodiment, as described above, a fluoroscopic image and a tomosynthesis image are obtained with a low dose. For this reason, in this embodiment, pre-processing is performed on a fluoroscopic image acquired at a low dose to reduce noise. A tomogram (tomosynthesis image) is generated using a perspective image with reduced noise. This realizes a tomosynthesis image with good image quality even at a low dose.
 これを実現する本実施形態の制御装置103の機能を説明する。図2は、本実施形態の制御装置103の機能ブロック図である。なお、制御装置103には、入力装置310、記憶装置320、表示装置330が接続される。表示装置330は、制御装置103が生成した各種の画像、データを表示する。記憶装置320は、制御装置103が生成した各種の画像、データを格納する。また、入力装置310は、制御装置103に対するユーザからの指示を受け付ける。なお、入力装置310は、表示装置330が兼用してもよい。 The function of the control device 103 of this embodiment that realizes this will be described. FIG. 2 is a functional block diagram of the control device 103 of the present embodiment. Note that an input device 310, a storage device 320, and a display device 330 are connected to the control device 103. The display device 330 displays various images and data generated by the control device 103. The storage device 320 stores various images and data generated by the control device 103. In addition, the input device 310 receives an instruction from the user to the control device 103. Note that the input device 310 may be shared by the display device 330.
 本実施形態の制御装置103は、X線源101からパルスX線を照射させ、検出器102でパルスX線に同期してX線を検出させる計測制御部301と、X線源101と検出器102とを相対的に移動させる動作制御部302と、検出器102で検出したX線から透視像を得る透視像取得部303と、透視像に対し、ノイズを低減する前処理を施す前処理部304と、透視像を透視像保持部321に保持する保持部305と、前処理後の透視像に演算処理を行い、断層像を得る演算部306と、透視像および断層像を表示装置330に表示する表示制御部307と、を備える。 The control apparatus 103 according to the present embodiment includes a measurement control unit 301 that irradiates pulse X-rays from the X-ray source 101 and detects X-rays in synchronization with the pulse X-rays by the detector 102, and the X-ray source 101 and detector. An operation control unit 302 that relatively moves the image 102, a fluoroscopic image acquisition unit 303 that obtains a fluoroscopic image from the X-rays detected by the detector 102, and a preprocessing unit that performs preprocessing for reducing noise on the fluoroscopic image 304, a holding unit 305 that holds the fluoroscopic image in the fluoroscopic image holding unit 321, a calculation unit 306 that performs arithmetic processing on the pre-processed fluoroscopic image to obtain a tomographic image, and the fluoroscopic image and the tomographic image in the display device 330 A display control unit 307 for displaying.
 制御装置103の各部は、制御装置103が備えるCPUが、記憶装置320に予め保持するプログラムを、メモリにロードし、実行することにより実現される。また、透視像保持部321は、記憶装置320に構築される。 Each part of the control device 103 is realized by a CPU provided in the control device 103 loading a program stored in the storage device 320 in advance into the memory and executing the program. The perspective image holding unit 321 is constructed in the storage device 320.
 計測制御部301は、入力装置310を介して、ユーザから計測開始の指示を受け付けると、終了の指示を受け付けるまで、X線源101にパルスX線を照射させる。同時に、パルスX線に同期して検出器102にX線を検出させる。 When the measurement control unit 301 receives an instruction to start measurement from the user via the input device 310, the measurement control unit 301 irradiates the X-ray source 101 with pulse X-rays until an end instruction is received. At the same time, the detector 102 detects X-rays in synchronization with the pulse X-rays.
 透視像取得部303は、検出器102が検出したX線を、所定期間毎に強度に応じた電気信号に変換し、計測像を得、感度補正等を施し、透視像を得る。透視像取得部303が透視像を取得するタイミングは、フレームレートfとして、予め定められる。すなわち、1/f秒毎に、透視像を取得する。フレームレートfは、ユーザが入力装置310を介して設定可能なように構成してもよい。 The fluoroscopic image acquisition unit 303 converts the X-rays detected by the detector 102 into an electrical signal corresponding to the intensity every predetermined period, obtains a measurement image, performs sensitivity correction, and obtains a fluoroscopic image. The timing at which the fluoroscopic image acquisition unit 303 acquires a fluoroscopic image is predetermined as a frame rate f. That is, a fluoroscopic image is acquired every 1 / f seconds. The frame rate f may be configured to be settable by the user via the input device 310.
 動作制御部302は、入力装置310を介して、ユーザから断層像(トモシンセシス像)取得指示を受け付けると、終了の指示を受け付けるまで、X線源101と検出器102とからなる計測系を移動動作させる。具体的には、移動装置109に指示を与え、X線源101と検出器102とを相対的に移動させる。X線源101と検出器102との移動範囲(移動角度)および移動速度は、予め定められる。または、移動範囲および移動速度は、ユーザから入力装置310を介して設定されるよう構成してもよい。 When the operation control unit 302 receives a tomogram (tomosynthesis image) acquisition instruction from the user via the input device 310, the operation control unit 302 moves the measurement system including the X-ray source 101 and the detector 102 until an end instruction is received. Let Specifically, an instruction is given to the moving device 109 to move the X-ray source 101 and the detector 102 relatively. The moving range (moving angle) and moving speed between the X-ray source 101 and the detector 102 are determined in advance. Alternatively, the moving range and the moving speed may be configured to be set by the user via the input device 310.
 本実施形態では、断層像を取得する撮像をトモシンセシス撮像と呼ぶ。また、透視像を取得する撮像を、透視撮像と呼ぶ。制御装置103は、ユーザから計測開始の指示を受けてから、計測終了の指示を受けるまでの間は、透視撮像を実施し、その間、ユーザから断層像取得指示を受け付けてから、同終了の指示を受け付けるまでの間は、透視撮像とトモシンセシス撮像との両方を並行して実施する。 In this embodiment, imaging for acquiring a tomographic image is referred to as tomosynthesis imaging. In addition, imaging for obtaining a fluoroscopic image is referred to as fluoroscopic imaging. The control device 103 performs fluoroscopic imaging after receiving a measurement start instruction from the user until receiving a measurement end instruction, and during that time, after receiving a tomographic image acquisition instruction from the user, Until accepting, both fluoroscopic imaging and tomosynthesis imaging are performed in parallel.
 ここで、ユーザが指示を行う入力装置310の概要を説明する。一般にX線透視装置では制御卓と呼ばれる。図3は、本実施形態の入力装置310の一例を説明するための説明図である。入力装置310は、ユーザから計測開始(透視撮像開始)および終了の指示を受け付ける撮像ボタン311と、トモシンセシス撮像開始および終了の指示を受け付ける切替スイッチ312と、を備える。切替スイッチ312は、ボタン、レバー、フットボタンなどとする。また、撮像ボタン311および切替スイッチ312は、表示装置330がタッチパネルを備え、タッチパネル上のアイコンであってもよい。 Here, an outline of the input device 310 that is instructed by the user will be described. In general, the fluoroscopic apparatus is called a control console. FIG. 3 is an explanatory diagram for explaining an example of the input device 310 of the present embodiment. The input device 310 includes an imaging button 311 that receives a measurement start (perspective imaging start) and end instruction from a user, and a changeover switch 312 that receives a tomosynthesis imaging start and end instruction. The changeover switch 312 is a button, lever, foot button, or the like. In addition, the imaging button 311 and the changeover switch 312 may be icons on the touch panel when the display device 330 includes a touch panel.
 前処理部304は、透視像取得部303が取得した透視像に対し、ノイズを低減するノイズ低減処理を前処理として施す。本実施形態では、動作制御部302が計測系を移動させている間に取得した透視像に対し、前処理を行う。前処理として行うノイズ低減処理としては、例えば、平滑化処理を行う。平滑化処理は、各種の公知の平滑化処理を用いることができる。本実施形態では、撮像対象が被写体104内部の領域であり、得られる透視像には血管などの構造部分と、臓器といった平坦な部分とが含まれる。本実施形態の前処理では、透視像内の構造領域とその他の領域とを判別し、その他の領域(透視像の中の平坦な領域)に対してのみ平滑化処理を行い、ランダムノイズを除去する。 The pre-processing unit 304 performs noise reduction processing for reducing noise as pre-processing on the fluoroscopic image acquired by the fluoroscopic image acquiring unit 303. In the present embodiment, preprocessing is performed on the fluoroscopic image acquired while the operation control unit 302 moves the measurement system. As noise reduction processing performed as preprocessing, for example, smoothing processing is performed. Various known smoothing processes can be used for the smoothing process. In this embodiment, the imaging target is an area inside the subject 104, and the obtained fluoroscopic image includes a structural part such as a blood vessel and a flat part such as an organ. In the pre-processing of this embodiment, the structure area in the fluoroscopic image and other areas are discriminated, and smoothing processing is performed only on the other area (flat area in the fluoroscopic image) to remove random noise. To do.
 構造の抽出には、エッジ抽出処理を用いる。例えば、透視像に微分フィルタを適用し、構造を抽出する。そして、構造以外の領域に対し、平滑化処理を行う。平滑化処理として、例えば、平均化フィルタを用いた平均処理、重み付けをした加算平均フィルタを用いた加算平均処理などを行う。 ∙ Edge extraction processing is used for structure extraction. For example, a differential filter is applied to the fluoroscopic image to extract the structure. Then, smoothing processing is performed on the area other than the structure. As the smoothing process, for example, an averaging process using an averaging filter, an addition averaging process using a weighted averaging filter, or the like is performed.
 平滑化処理は、空間方向でなく時間方向に行ってもよい。両方向に行ってもよい。時間方向に行う場合は、直前または直後に取得された透視像との間で差分を取ることにより、構造領域およびその他の領域を特定する。図4は、時間方向に差分を取り、構造領域およびその他の領域を特定する場合の処理を説明するための図である。 Smoothing processing may be performed in the time direction instead of the spatial direction. You may go in both directions. When performing in the time direction, the structural region and other regions are specified by taking a difference from the fluoroscopic images acquired immediately before or immediately after. FIG. 4 is a diagram for explaining processing in the case where a difference is taken in the time direction to specify a structure area and other areas.
 時刻t0で透視像410を取得し、その後Δt毎に透視像410が取得されるものとする。時刻t0+Δtに透視像410を取得すると、前処理部304は、時刻t0で取得され、透視像保持部321に保持された透視像410との間で差分処理を行い、差分像411を得る。なお、透視像保持部321に保持される、時刻t0に取得された透視像410は、前処理後の透視像である。そして、差分値が所定の閾値以下の画素領域、すなわち、差分像で変化が小さく、動きの少ない領域をその他の領域421とし、差分値が所定の閾値より大きい領域は、特徴的な構造があると考え、構造領域422と判別する。そして、その他の領域について、平滑化処理を行う。具体的には、その他の領域421内の各画素値について、直前または直後の透視像との間で画素値毎に加算平均を算出する。なお、構造領域422内の各画素については、そのままの値とする。 It is assumed that the fluoroscopic image 410 is acquired at time t0, and thereafter the fluoroscopic image 410 is acquired every Δt. When the fluoroscopic image 410 is acquired at time t0 + Δt, the preprocessing unit 304 obtains a differential image 411 by performing difference processing between the fluoroscopic image 410 acquired at time t0 and held in the fluoroscopic image holding unit 321. . Note that the fluoroscopic image 410 held at the fluoroscopic image holding unit 321 and acquired at time t0 is a fluoroscopic image after preprocessing. Then, a pixel area whose difference value is equal to or smaller than a predetermined threshold, that is, an area where the change is small in the difference image and the movement is small is set as the other area 421, and the area where the difference value is larger than the predetermined threshold has a characteristic structure. Therefore, the structure area 422 is identified. Then, smoothing processing is performed for other regions. Specifically, for each pixel value in the other region 421, an average is calculated for each pixel value between the immediately preceding or immediately following fluoroscopic images. It should be noted that each pixel in the structure area 422 has a value as it is.
 直前に取得された透視像410は、透視像保持部321に保持されているものを用いる。また、直後に取得された透視像410との間で差分を取る場合、一旦透視像保持部321に保持し、次の透視像410が透視像保持部321に保持された時点で、処理を行う。 As the fluoroscopic image 410 acquired immediately before, the one held in the fluoroscopic image holding unit 321 is used. In addition, when taking a difference from the fluoroscopic image 410 acquired immediately after, it is temporarily held in the fluoroscopic image holding unit 321, and processing is performed when the next fluoroscopic image 410 is held in the fluoroscopic image holding unit 321. .
 保持部305は、動作制御部がX線源101と検出器102とを移動させている間、透視像を保持する。すなわち、保持部305は、トモシンセシス撮像中、透視像取得部303が透視像を得る毎に、前処理後の透視像を記憶装置320の透視像保持部321に記憶する。このとき、計測系の移動範囲および移動速度と、X線源101の位置情報と、に対応づけて記憶する。X線源101の位置情報には、計測角度を用いる。計測角度は、例えば、X線源101と検出器102とを結ぶ直線群の交点を原点とし、寝台105に直交する線上にX線源101および検出器102が存在する際のX線源101の位置を0度とする座標系で定義する。 The holding unit 305 holds a fluoroscopic image while the operation control unit moves the X-ray source 101 and the detector 102. That is, the holding unit 305 stores the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321 of the storage device 320 every time the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image during tomosynthesis imaging. At this time, the movement range and movement speed of the measurement system and the position information of the X-ray source 101 are stored in association with each other. A measurement angle is used for the position information of the X-ray source 101. The measurement angle is, for example, that of the X-ray source 101 when the X-ray source 101 and the detector 102 exist on a line orthogonal to the bed 105 with the origin at the intersection of a straight line group connecting the X-ray source 101 and the detector 102. The coordinate system is defined with a position of 0 degree.
 演算部306は、トモシンセシス撮像時に保持部305に保持された、前処理後の透視像を用い、トモシンセシス像(断層像)を算出する。断層像の算出には、加算法、シフト加算法、フィルタ補正逆投影法などの演算処理を用いる。 The calculation unit 306 calculates a tomosynthesis image (tomographic image) using the pre-processed fluoroscopic image held in the holding unit 305 at the time of tomosynthesis imaging. For the calculation of the tomographic image, arithmetic processing such as an addition method, a shift addition method, a filter-corrected back projection method or the like is used.
 ここで、図5(a)および図5(b)を用い、トモシンセシス撮像時の、加算法の原理を説明する。例えば、図1(b)に示すX線透視装置120を用いる場合、一般に、トモシンセシス撮像時は、X線源101と検出器102とを、寝台105に平行に、互いに反対方向に同期的に移動させる。そして、各検出器102の位置で検出した透視像を加算し、断層像を得る。この手法を加算法と呼ぶ。 Here, the principle of the addition method at the time of tomosynthesis imaging will be described using FIG. 5 (a) and FIG. 5 (b). For example, when the X-ray fluoroscopy apparatus 120 shown in FIG. 1B is used, generally, during tomosynthesis imaging, the X-ray source 101 and the detector 102 are moved synchronously in opposite directions in parallel to the bed 105. Let Then, the fluoroscopic images detected at the positions of the detectors 102 are added to obtain a tomographic image. This method is called an addition method.
 図5(a)に示すように、X線源101と検出器102とを反対方向に移動させると、移動方向に平行な一面910においてのみ焦点が合い、他の面では焦点が合わない。得られた透視像を加算すると、焦点の合わない面の構造はぼけて見えなくなり、焦点の合う面にある構造だけが強調される。これにより、焦点の合う位置(断面910)の断面像(断層像)が得られる。 As shown in FIG. 5 (a), when the X-ray source 101 and the detector 102 are moved in opposite directions, the focal point is focused only on one surface 910 parallel to the moving direction, and the focal point is not focused on the other surface. When the obtained fluoroscopic images are added, the structure of the out-of-focus surface is blurred and invisible, and only the structure on the in-focus surface is emphasized. As a result, a cross-sectional image (tomographic image) of the focused position (cross-section 910) is obtained.
 なお、トモシンセシス撮像では、X線源101と検出器102の移動速度を変えることにより、焦点の合う面910の位置を変えることができる。また、検出器102にフラットパネル検出器を用いると、移動速度の代わりに、加算する際に検出器102の素子位置をシフトすることによって、焦点に合う面910の位置を任意に変えることができる。 In tomosynthesis imaging, the position of the focused surface 910 can be changed by changing the moving speed of the X-ray source 101 and the detector 102. Further, when a flat panel detector is used as the detector 102, the position of the focusing surface 910 can be arbitrarily changed by shifting the element position of the detector 102 when adding, instead of the moving speed. .
 例えば、図5(a)に示すように、移動方向に3つの検出素子を持つフラットパネル検出器を想定する。中央の検出素子へのX線ビームを実線で、左端の検出素子へのX線ビームを点線で示す。各X線ビームは実線で示した面910上で焦点を結ぶ。得られた透視像を加算すると、面910の断面像が得られる。 For example, as shown in FIG. 5A, a flat panel detector having three detection elements in the moving direction is assumed. The X-ray beam to the center detection element is indicated by a solid line, and the X-ray beam to the leftmost detection element is indicated by a dotted line. Each X-ray beam is focused on a plane 910 indicated by a solid line. When the obtained perspective images are added, a cross-sectional image of the surface 910 is obtained.
 なお、図5(b)に示すように、加算時の素子位置をシフトさせるシフト加算法と呼ばれる手法もある。シフト加算法では、検出器102が左側に位置する状態で得た透視像では左端の素子の値を、検出器102が中央に位置する状態で得た透視像では中央の素子の値を、検出器102が右側に位置する状態で得た透視像では右端の素子の値を加算する。加算する各素子へのX線ビームは、実線で示した面920上で焦点を結ぶ。このように、加算時の素子位置をシフトさせることにより、図5(a)に示す加算法で焦点を結ぶ面910とは異なる位置の断面像(断層像)を得ることができる。 Note that, as shown in FIG. 5B, there is a method called a shift addition method for shifting the element position at the time of addition. In the shift addition method, the value of the leftmost element is detected in the fluoroscopic image obtained with the detector 102 positioned on the left side, and the value of the central element is detected in the fluoroscopic image obtained with the detector 102 positioned in the center. In the perspective image obtained with the device 102 positioned on the right side, the value of the rightmost element is added. The X-ray beam to each element to be added is focused on a surface 920 indicated by a solid line. Thus, by shifting the element position at the time of addition, it is possible to obtain a cross-sectional image (tomographic image) at a position different from the focal plane 910 by the addition method shown in FIG.
 なお、断層像を得る演算に、加算法およびシフト加算法を用いる場合、計測系(X線源101および検出器102は平行軌道を移動する必要がある。図1(b)に示すX線透視装置120のように、計測系が平行移動する装置の場合、得られた透視像をそのまま用いる。一方、図1(a)および図1(c)に示すX線透視装置110および130のように、計測系が回転移動する装置の場合、得られた透視像を、幾何学的変換処理により、平行軌道時の検出位置で検出された透視像に変換する。 In addition, when the addition method and the shift addition method are used for the calculation for obtaining a tomographic image, the measurement system (the X-ray source 101 and the detector 102 need to move in parallel trajectories. X-ray fluoroscopy shown in FIG. In the case of an apparatus in which the measurement system moves in parallel, such as the apparatus 120, the obtained fluoroscopic image is used as it is, whereas the X-ray fluoroscopic apparatuses 110 and 130 shown in FIGS. In the case of an apparatus in which the measurement system rotates, the obtained fluoroscopic image is converted into a fluoroscopic image detected at the detection position in the parallel orbit by a geometric conversion process.
 演算処理に加算法およびシフト加算法を用いることにより、高速に断層像を取得できる。 Tomographic images can be acquired at high speed by using the addition method and shift addition method for the arithmetic processing.
 次に、フィルタ補正逆投影法の原理を説明する。フィルタ補正逆投影法では、計測系は、同心円軌道を回転するものとする。すなわち、計測系を回転させ、所定の計測角度毎に透視像を得、各計測角度で得た透視像に対し、再構成処理を行い、再構成像として断層像を得る。再構成処理は、各計測角度で得た透視像に再構成フィルタをかけた上で、加算処理を行うものである。フィルタ補正逆投影法によれば、再構成像上の任意の画素を通るX線ビームが入射する素子の値を加算すると、全ての角度の透視像に映っている構造は焦点が合うため強調され、一部の角度の透視像にのみ映っている構造は焦点が合わないためぼけて見えなくなる。これにより、所望の断面の断層像を得ることができる。 Next, the principle of the filtered back projection method will be described. In the filtered back projection method, the measurement system rotates on a concentric orbit. That is, the measurement system is rotated to obtain a perspective image at each predetermined measurement angle, and a reconstruction process is performed on the perspective image obtained at each measurement angle to obtain a tomographic image as a reconstruction image. In the reconstruction process, an addition process is performed after applying a reconstruction filter to the fluoroscopic image obtained at each measurement angle. According to the filtered back projection method, adding the values of the elements on which an X-ray beam passing through an arbitrary pixel on the reconstructed image is added, the structure reflected in the fluoroscopic image at all angles is emphasized because it is in focus. A structure that appears only in a perspective image at a certain angle is blurred and cannot be seen because it is out of focus. Thereby, a tomographic image of a desired cross section can be obtained.
 なお、演算処理にフィルタ補正逆投影法を用いることにより、ボケが少なく、コントラストの高い断層像を取得できる。ただし、フィルタ補正逆投影法は、計測系が回転軌道を移動するX線透視装置により得られた透視像に対して適用可能である。計測系が平行軌道を移動するX線透視装置で得た透視像に対しては、幾何学的変換処理により、回転軌道上の検出位置で検出された透視像に変換する。 It should be noted that a tomographic image with little blur and high contrast can be acquired by using the filter-corrected back projection method for the arithmetic processing. However, the filter-corrected backprojection method can be applied to a fluoroscopic image obtained by an X-ray fluoroscopic apparatus in which a measurement system moves on a rotating trajectory. A fluoroscopic image obtained by an X-ray fluoroscopic apparatus in which a measurement system moves in a parallel trajectory is converted into a fluoroscopic image detected at a detection position on a rotational trajectory by a geometric conversion process.
 なお、加算法、シフト加算法、フィルタ補正逆投影法、いずれの手法で断層像を作成する場合であっても、異なる計測角度で取得した所定数の透視像が必要である。演算部306は、動作制御部302がX線源101と検出器102とを移動させている間、予め定めた数の透視像が前記保持部に保持される毎に、演算処理を行う。本実施形態では、演算部306は、異なる計測角度で取得した所定数の透視像が透視像保持部321に保持されたことを確認後、演算処理を行う。上述のように透視像保持部321には、計測角度に対応づけて透視像が保持される。従って、例えば、予め設定された計測系の移動範囲の全計測角度の透視像が保持された場合、演算部306は、演算処理を開始する。 It should be noted that a predetermined number of fluoroscopic images acquired at different measurement angles are required even when a tomographic image is created by any of the addition method, shift addition method, and filter-corrected back projection method. The calculation unit 306 performs calculation processing each time a predetermined number of fluoroscopic images are held in the holding unit while the operation control unit 302 moves the X-ray source 101 and the detector 102. In the present embodiment, the calculation unit 306 performs calculation processing after confirming that a predetermined number of fluoroscopic images acquired at different measurement angles are held in the fluoroscopic image holding unit 321. As described above, the fluoroscopic image holding unit 321 holds a fluoroscopic image in association with the measurement angle. Therefore, for example, when a fluoroscopic image of all measurement angles within a preset movement range of the measurement system is held, the calculation unit 306 starts calculation processing.
 表示制御部307は、得られた透視像および断層像の少なくとも一方を表示装置330に表示する。本実施形態では、透視撮像時は、取得した透視像を、リアルタイムで表示装置330に表示する。一方、トモシンセシス撮像時は、透視像と断層像とを並列表示する。または、ユーザからの指示に従って、断層像のみ表示したり、透視像と断層像とを重複表示したりする。 The display control unit 307 displays at least one of the obtained fluoroscopic image and tomographic image on the display device 330. In the present embodiment, at the time of fluoroscopic imaging, the acquired fluoroscopic image is displayed on the display device 330 in real time. On the other hand, during tomosynthesis imaging, a fluoroscopic image and a tomographic image are displayed in parallel. Alternatively, only a tomographic image is displayed or a fluoroscopic image and a tomographic image are displayed in accordance with an instruction from the user.
 本実施形態の表示制御部307による、表示例を図6(a)および図6(b)に示す。表示装置330は、画像表示領域200を備える。図6(a)に示すように、画像表示領域200は、第一の表示領域210および第二の表示領域220を備える。例えば、透視撮像時に、第一の表示領域210および第二の表示領域220のいずれか一方にのみ透視像を表示する。一方、トモシンセシス撮像時は、第一の表示領域210および第二の表示領域220のいずれ一方に透視像を表示し、他方に断層像を表示する。 6A and 6B show display examples by the display control unit 307 of the present embodiment. The display device 330 includes an image display area 200. As shown in FIG. 6A, the image display area 200 includes a first display area 210 and a second display area 220. For example, a fluoroscopic image is displayed only in one of the first display area 210 and the second display area 220 during fluoroscopic imaging. On the other hand, during tomosynthesis imaging, a fluoroscopic image is displayed on one of the first display area 210 and the second display area 220, and a tomographic image is displayed on the other.
 また、複数断面の断層像を取得し、いずれか一方の領域に透視像および1つの断層像を重畳した画像を表示し、他方の領域に、他断面の断層像を表示するよう構成してもよい。このとき、他方の領域に表示する断層像を、透視像と重畳表示する断層像とは異なる方向の断面の断層像としてもよい。 Further, it may be configured to acquire tomographic images of a plurality of cross sections, display an image obtained by superimposing a fluoroscopic image and one tomographic image in one of the regions, and display a tomographic image of the other cross section in the other region. Good. At this time, the tomographic image displayed in the other region may be a tomographic image having a cross section in a different direction from the tomographic image superimposed on the fluoroscopic image.
 また、表示装置330は、表示変更指示ボタン230をさらに備えてもよい。表示制御部307は、表示変更指示ボタン230により画像表示領域200の表示レイアウトの変更を受け付ける。例えば、図6(a)のように、2つの表示領域210、220を並列表示するレイアウトと、図6(b)のように、1つの表示領域210のみのレイアウトとの間で変更可能とする。 The display device 330 may further include a display change instruction button 230. The display control unit 307 receives a change in the display layout of the image display area 200 using the display change instruction button 230. For example, the layout can be changed between a layout in which two display areas 210 and 220 are displayed in parallel as shown in FIG. 6A and a layout of only one display area 210 as shown in FIG. 6B. .
 例えば、透視撮像時は、図6(b)のような1つの表示領域210のレイアウトで透視像を表示し、トモシンセシス撮像時は、図6(a)のように、2つの表示領域210、220を備えるレイアウトで透視像と断層像とを並列表示等してもよい。また、トモシンセシス撮像時であっても、必要に応じて、1つの表示領域210のみのレイアウトを用い、断層像のみ表示してもよい。 For example, at the time of fluoroscopic imaging, a fluoroscopic image is displayed in the layout of one display area 210 as shown in FIG. 6B, and at the time of tomosynthesis imaging, two display areas 210 and 220 are shown as shown in FIG. 6A. A fluoroscopic image and a tomographic image may be displayed in parallel in a layout including Further, even during tomosynthesis imaging, only a tomographic image may be displayed using a layout of only one display area 210 as necessary.
 次に、本実施形態の計測処理の流れを説明する。まず、図7を用いて概略を説明する。計測開始の指示を受け付けると、計測制御部301がX線の照射および検出を開始し、透視撮像を開始する。透視撮像では、透視像取得部303がフレームレートfで定められたタイミングで透視像を取得し、表示制御部307が表示装置330に表示する。これを、計測終了の指示を受け付けるまで実行する。図7では、透視像を取得し、表示(更新)するタイミングを黒丸で示す。 Next, the flow of measurement processing of this embodiment will be described. First, an outline will be described with reference to FIG. When an instruction to start measurement is received, the measurement control unit 301 starts X-ray irradiation and detection, and starts fluoroscopic imaging. In the fluoroscopic imaging, the fluoroscopic image acquisition unit 303 acquires a fluoroscopic image at a timing determined by the frame rate f, and the display control unit 307 displays it on the display device 330. This is executed until an instruction to end measurement is received. In FIG. 7, the timing at which a fluoroscopic image is acquired and displayed (updated) is indicated by a black circle.
 この間、トモシンセシス撮像開始の指示を受け付けると、動作制御部302は、計測系を移動動作させる。また、前処理部304は、透視像取得部303が透視像を取得する毎に、取得した透視像に前処理を施す。そして、保持部305が前処理後の透視像を透視像保持部321に保持する。演算部306は、所定数の透視像が保持されると、演算処理を行い、断層像を生成する。表示制御部307は、新たに透視像が取得される毎に第一の表示領域210に表示する透視像を更新し、新たに断層像が取得される毎に第二の表示領域220に表示する断層像を更新する。図7では、断層像が算出され、表示(更新)されるタイミングを黒三角で示す。ここでは、4枚の透視像から断層像を算出する場合を例示する。なお、この間も、計測制御部301および透視像取得部303は、上記処理を継続する。 During this time, upon receiving an instruction to start tomosynthesis imaging, the operation control unit 302 moves the measurement system. The pre-processing unit 304 performs pre-processing on the acquired fluoroscopic image every time the fluoroscopic image acquiring unit 303 acquires the fluoroscopic image. Then, the holding unit 305 holds the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321. The arithmetic unit 306 performs arithmetic processing when a predetermined number of fluoroscopic images are held, and generates a tomographic image. The display control unit 307 updates the fluoroscopic image displayed in the first display area 210 every time a new fluoroscopic image is acquired, and displays it in the second display area 220 every time a new tomographic image is acquired. Update the tomographic image. In FIG. 7, the timing at which the tomographic image is calculated and displayed (updated) is indicated by a black triangle. Here, a case where a tomographic image is calculated from four perspective images is illustrated. During this time, the measurement control unit 301 and the fluoroscopic image acquisition unit 303 continue the above processing.
 なお、トモシンセシス撮像は、透視撮像中、何度でも実行できる。 Note that tomosynthesis imaging can be performed any number of times during fluoroscopic imaging.
 図8は、本実施形態の撮像処理の処置フローである。本処理は、ユーザから計測開始の指示を受け付けることにより、開始する。上述のように、本実施形態では、ユーザからトモシンセシス撮像の指示を受け付けると、透視撮像を実行した状態で、トモシンセシス撮像も実行する。 FIG. 8 is a processing flow of the imaging process of the present embodiment. This process starts when a measurement start instruction is received from the user. As described above, in this embodiment, when an instruction for tomosynthesis imaging is received from the user, tomosynthesis imaging is also executed in a state where fluoroscopic imaging is executed.
 計測制御部301は、計測系を作動させ、計測を開始する(ステップS1001)。ここでは、X線源101からパルスX線の照射を開始させ、検出器102でパルスX線に同期してX線を検出させる。次に、動作制御部302は、トモシンセシス撮像開始の指示(TOMO開始)を受け付けたか否かを判別する(ステップS1002)。 The measurement control unit 301 activates the measurement system and starts measurement (step S1001). Here, irradiation of pulse X-rays from the X-ray source 101 is started, and X-rays are detected by the detector 102 in synchronization with the pulse X-rays. Next, the operation control unit 302 determines whether an instruction to start tomosynthesis imaging (TOMO start) has been received (step S1002).
 ステップS1002において、受け付けていない場合は、透視像取得部303は、検出器102が検出したX線から透視像を得る(ステップS1003)。そして、表示制御部307は、透視像を表示装置330の画像表示領域200に表示する(ステップS1004)。なお、先に透視像が表示されている場合は、新たな透視像に表示を更新する。その後、計測制御部301は、計測終了の指示を受け付けたか否かを判別し(ステップS1005)、受け付けている場合は、X線の照射および検出を終了し、計測を終了する。一方、受け付けていない場合は、ステップS1002に戻る。 In step S1002, if not received, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1003). Then, the display control unit 307 displays the fluoroscopic image in the image display area 200 of the display device 330 (step S1004). If the perspective image is displayed first, the display is updated to a new perspective image. Thereafter, the measurement control unit 301 determines whether or not an instruction to end measurement has been received (step S1005). If it has been received, the X-ray irradiation and detection are ended, and the measurement is ended. On the other hand, if not received, the process returns to step S1002.
 ステップS1002において、トモシンセシス撮像開始の指示を受け付けた場合、動作制御部302は、計測系に移動動作を開始させる(ステップS1006)。そして、透視像取得部303は、検出器102が検出したX線から透視像を得る(ステップS1007)。表示制御部307は、透視像を表示装置330の第一の表示領域210に表示する(ステップS1008)。先に透視像が表示されている場合は、ここで取得した新たな透視像に表示を更新する。 In step S1002, when receiving an instruction to start tomosynthesis imaging, the operation control unit 302 causes the measurement system to start a moving operation (step S1006). Then, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1007). The display control unit 307 displays the fluoroscopic image in the first display area 210 of the display device 330 (step S1008). If the fluoroscopic image is displayed first, the display is updated to the new fluoroscopic image acquired here.
 前処理部304は、取得した透視像に対し、前処理を行う(ステップS1009)。ここでは、直前に保持部305に保持された透視像との間で、時間方向に平滑化処理を行っても良い。この場合、差分により構造領域を特定し、その他の領域に対し、平滑化処理を行う。なお、1枚の透視像内で、微分フィルタなどの手段により構造を抽出し、空間的に平滑化処理を行ってもよい。 The preprocessing unit 304 performs preprocessing on the acquired fluoroscopic image (step S1009). Here, smoothing processing may be performed in the time direction between the fluoroscopic image held in the holding unit 305 immediately before. In this case, the structure area is specified by the difference, and the smoothing process is performed on the other areas. In addition, a structure may be extracted by means such as a differential filter in one perspective image, and spatial smoothing may be performed.
 保持部305は、前処理後の透視像を透視像保持部321に保持する(ステップS1009)。このとき、透視像を取得した時点のX線源101の位置情報に対応づけて保持する。 The holding unit 305 holds the pre-processed fluoroscopic image in the fluoroscopic image holding unit 321 (step S1009). At this time, the fluoroscopic image is stored in association with the position information of the X-ray source 101 at the time when the fluoroscopic image is acquired.
 演算部306は、所定数の透視像が保持部305に保持されたか否かを判別する(ステップS1011)。判別は枚数で行ってもよいし、X線源101が予め定めた移動範囲全体を移動したか否かにより行ってもよい。保持されていない場合は、ステップS1007へもどり、処理を繰り返す。 The calculating unit 306 determines whether or not a predetermined number of fluoroscopic images are held in the holding unit 305 (step S1011). The determination may be performed based on the number of sheets, or may be performed based on whether or not the X-ray source 101 has moved the entire predetermined movement range. If not, the process returns to step S1007 to repeat the process.
 一方、保持されている場合は、演算部306が、保持部305に保持された透視像に対し、演算処理を行い、断層像(トモシンセシス像)を算出する(ステップS1012)。演算処理は、加算処理、シフト加算処理、再構成処理など、トモシンセシス像を得る処理であれば、いずれでもよい。そして、表示制御部307は、得られた断層像を表示装置330の第二の表示領域220に表示する(ステップS1013)。先に断層像が表示されている場合は、ここで取得した新たな断層像に表示を更新する。なお、このとき、第一の表示領域210には、その時点で得られた最新の透視像が表示される。ただし、ユーザから断層像のみ表示する等の指示を受けている場合は、ユーザからの指示にしたがって表示装置330に表示する。 On the other hand, if it is held, the calculation unit 306 performs a calculation process on the fluoroscopic image held in the holding unit 305 to calculate a tomogram (tomosynthesis image) (step S1012). The arithmetic process may be any process that obtains a tomosynthesis image, such as an addition process, a shift addition process, or a reconstruction process. Then, the display control unit 307 displays the obtained tomographic image on the second display area 220 of the display device 330 (step S1013). If the tomographic image is displayed first, the display is updated to the new tomographic image acquired here. At this time, the first fluoroscopic image obtained at that time is displayed in the first display area 210. However, when an instruction to display only a tomographic image is received from the user, the instruction is displayed on the display device 330 according to the instruction from the user.
 次に、動作制御部302は、ユーザからトモシンセシス撮像終了の指示(TOMO終了)を受け付けたか否かを判別する(ステップS1014)。受け付けている場合、移動動作を終了し、ステップS1005へ移行する。一方、受け付けていない場合は、ステップS1007へ移行し、処理を継続する。 Next, the operation control unit 302 determines whether an instruction to end tomosynthesis imaging (TOMO end) has been received from the user (step S1014). If it has been received, the moving operation is terminated, and the process proceeds to step S1005. On the other hand, if not received, the process proceeds to step S1007 and the process is continued.
 以上説明したように、本実施形態のX線透視装置は、被写体104にX線を照射するX線源101と、X線を検出する検出器102と、前記X線源101と前記検出器102とを相対的に移動させる動作制御部302と、前記検出したX線から透視像を得る透視像取得部303と、前記透視像に対しノイズを低減する前処理を行う前処理部304と、前記透視像を保持する保持部305と、前記前処理後の前記透視像に演算処理を行い、断層像を得る演算部306と、を備える。 As described above, the X-ray fluoroscopic apparatus of this embodiment includes the X-ray source 101 that irradiates the subject 104 with X-rays, the detector 102 that detects X-rays, the X-ray source 101, and the detector 102. An operation control unit 302 that relatively moves the fluoroscopic image acquisition unit 303 that obtains a fluoroscopic image from the detected X-ray, a preprocessing unit 304 that performs preprocessing for reducing noise on the fluoroscopic image, A holding unit 305 that holds a fluoroscopic image, and a calculation unit 306 that performs arithmetic processing on the fluoroscopic image after the preprocessing and obtains a tomographic image.
 このように、本実施形態のX線透視装置は、トモシンセシス撮像の指示を受け付けた場合、低線量で得た透視データ(透視像)を保持し、保持した透視像に対し、ノイズを除去する前処理を施す。そして、ノイズを除去後の透視像を用い、断層像を生成する。前処理を行うことにより、低線量で取得したノイズの比較的大きな透視像から、ノイズの少ない高画質の断層像を得ることができる。すなわち、本実施形態によれば、低線量の透視データを用い、リアルタイムで高画質のトモシンセシス像を得ることができる。 As described above, when receiving an instruction for tomosynthesis imaging, the X-ray fluoroscopic apparatus of the present embodiment holds fluoroscopic data (fluoroscopic image) obtained at a low dose, and before removing noise from the held fluoroscopic image. Apply processing. Then, a tomographic image is generated using the perspective image after removing the noise. By performing preprocessing, a high-quality tomographic image with less noise can be obtained from a perspective image with relatively large noise acquired at a low dose. That is, according to the present embodiment, it is possible to obtain a high-quality tomosynthesis image in real time using low-dose fluoroscopic data.
 また、上述のように、本実施形態によれば、透視撮像を行いながら、トモシンセシス撮像により断層像も得る。従って、本実施形態によれば、透視像と断層像とを並行して得ることができる。このとき、本実施形態のX線透視装置は、前記透視像および前記断層像を表示する表示装置330をさらに備える。そして、前記表示装置330は、前記透視像および1以上の前記断層像を並べて表示する。 As described above, according to the present embodiment, a tomographic image is also obtained by tomosynthesis imaging while performing fluoroscopic imaging. Therefore, according to the present embodiment, a fluoroscopic image and a tomographic image can be obtained in parallel. At this time, the X-ray fluoroscopic apparatus of the present embodiment further includes a display device 330 that displays the fluoroscopic image and the tomographic image. The display device 330 displays the fluoroscopic image and one or more tomographic images side by side.
 これにより、例えば、カテーテル術において迅速にカテーテル先端の奥行き位置を確認して術に反映できる。術を停止せずに着目対象の奥行き位置を確認できることから、術の時間が短縮でき、患者および術者の被曝を低減できる。また、透視像とトモシンセシス像とをリアルタイムで重複表示することが可能になり、術中のナビゲーションマップとして使用できる。 Thus, for example, in catheterization, the depth position of the catheter tip can be quickly confirmed and reflected in the surgery. Since the depth position of the subject of interest can be confirmed without stopping the operation, the operation time can be shortened and the exposure of the patient and the operator can be reduced. In addition, the fluoroscopic image and the tomosynthesis image can be displayed in real time and can be used as an intraoperative navigation map.
 なお、上記実施例では、トモシンセシス撮像の指示を受け付けた場合のみ、透視像に前処理を行っているが、これに限られない。透視像を取得する毎に、当該透視像に対し、前処理を行うよう構成してもよい。すなわち、取得した透視像に対し、常に表示前に前処理を行う。この場合の、撮像処理の流れを図9に示す。 In the above embodiment, the pre-processing is performed on the fluoroscopic image only when an instruction for tomosynthesis imaging is received, but the present invention is not limited to this. You may comprise so that it may pre-process with respect to the said fluoroscopic image whenever it acquires a fluoroscopic image. That is, preprocessing is always performed on the acquired fluoroscopic image before display. The flow of the imaging process in this case is shown in FIG.
 計測制御部301は、ユーザから計測開始の指示を受け付けると、計測系を作動させ、計測を開始する(ステップS1101)。ここでは、X線源101からパルスX線の照射を開始させ、検出器102でパルスX線に同期してX線を検出させる。次に、動作制御部302は、トモシンセシス撮像開始の指示(TOMO開始)を受け付けたか否かを判別する(ステップS1102)。 When the measurement control unit 301 receives an instruction to start measurement from the user, the measurement control unit 301 activates the measurement system and starts measurement (step S1101). Here, irradiation of pulse X-rays from the X-ray source 101 is started, and X-rays are detected by the detector 102 in synchronization with the pulse X-rays. Next, the operation control unit 302 determines whether or not an instruction to start tomosynthesis imaging (TOMO start) has been received (step S1102).
 ステップS1102において、受け付けていない場合は、透視像取得部303は、検出器102が検出したX線から透視像を得る(ステップS1103)。そして、前処理部304は、透視像に前処理を施す(ステップS1104)。表示制御部307は、ステップS1104で前処理後の透視像を表示装置330の画像表示領域200に表示する(ステップS1106)。なお、先に透視像が表示されている場合は、新たな透視像に表示を更新する。その後、計測制御部301は、計測終了の指示を受け付けたか否かを判別し(ステップS1107)、受け付けている場合は、X線の照射および検出を終了し、計測を終了する。一方、受け付けていない場合は、ステップS1102に戻る。 In step S1102, if not received, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1103). Then, the preprocessing unit 304 performs preprocessing on the fluoroscopic image (step S1104). The display control unit 307 displays the fluoroscopic image after the preprocessing in step S1104 in the image display area 200 of the display device 330 (step S1106). If the perspective image is displayed first, the display is updated to a new perspective image. Thereafter, the measurement control unit 301 determines whether or not an instruction to end the measurement has been received (step S1107). If the instruction has been received, the X-ray irradiation and detection are ended, and the measurement is ended. On the other hand, if not received, the process returns to step S1102.
 ステップS1102において、トモシンセシス撮像開始の指示を受け付けた場合、動作制御部302は、計測系を移動動作させる(ステップS1108)。そして、透視像取得部303は、検出器102が検出したX線から透視像を得る(ステップS1109)。前処理部304は、取得した透視像に対し前処理を施す(ステップS1110)。そして、保持部305は、前処理後の透視像を透視像保持部321に保持する(ステップS1111)。このとき、透視像を取得した時点のX線源101の位置情報に対応づけて保持する。一方、表示制御部307は、ステップS1110で前処理後の透視像を表示装置330の第一の表示領域210に表示する(ステップS1112)。先に透視像が表示されている場合は、ここで取得した新たな透視像に表示を更新する。 In step S1102, when an instruction to start tomosynthesis imaging is received, the operation control unit 302 moves the measurement system (step S1108). Then, the fluoroscopic image acquisition unit 303 obtains a fluoroscopic image from the X-rays detected by the detector 102 (step S1109). The preprocessing unit 304 performs preprocessing on the acquired fluoroscopic image (step S1110). Then, the holding unit 305 holds the fluoroscopic image after the preprocessing in the fluoroscopic image holding unit 321 (step S1111). At this time, the fluoroscopic image is stored in association with the position information of the X-ray source 101 at the time when the fluoroscopic image is acquired. On the other hand, the display control unit 307 displays the fluoroscopic image after the preprocessing in Step S1110 in the first display area 210 of the display device 330 (Step S1112). If the fluoroscopic image is displayed first, the display is updated to the new fluoroscopic image acquired here.
 動作制御部302は、所定数の透視像が保持部305に保持されたか否かを判別する(ステップS1113)。判別は枚数で行ってもよいし、X線源101が予め定めた移動範囲全体を移動したか否かにより行ってもよい。保持されていない場合は、ステップS1109へもどり、処理を繰り返す。 The operation control unit 302 determines whether or not a predetermined number of fluoroscopic images are held in the holding unit 305 (step S1113). The determination may be performed based on the number of sheets, or may be performed based on whether or not the X-ray source 101 has moved the entire predetermined movement range. If not, the process returns to step S1109 to repeat the process.
 一方、保持されている場合は、演算部306が、保持部305に保持された透視像に対し、演算処理を行い、断層像(トモシンセシス像)を算出する(ステップS1114)。そして、表示制御部307は、その時点で得られている透視像とともに、得られた断層像を表示装置330の第二の表示領域220に表示する(ステップS1115)。先に断層像が表示されている場合は、ここで取得した新たな断層像に表示を更新する。なお、第一の表示領域210には、その時点で最新の透視像が表示される。ただし、ユーザから断層像のみ表示する等の指示を受けている場合は、ユーザからの指示にしたがって表示装置330に表示する。 On the other hand, if it is held, the calculation unit 306 performs a calculation process on the fluoroscopic image held in the holding unit 305 to calculate a tomogram (tomosynthesis image) (step S1114). Then, the display control unit 307 displays the obtained tomographic image together with the fluoroscopic image obtained at that time on the second display area 220 of the display device 330 (step S1115). If the tomographic image is displayed first, the display is updated to the new tomographic image acquired here. In the first display area 210, the latest perspective image is displayed at that time. However, when an instruction to display only a tomographic image is received from the user, the instruction is displayed on the display device 330 according to the instruction from the user.
 次に、動作制御部302は、ユーザからトモシンセシス撮像終了の指示(TOMO終了)を受け付けたか否かを判別する(ステップS1116)。受け付けている場合、移動動作を終了し、ステップS1107へ移行する。一方、受け付けていない場合は、ステップS1109へ移行し、処理を継続する。 Next, the operation control unit 302 determines whether an instruction to end tomosynthesis imaging (TOMO end) has been received from the user (step S1116). If it has been received, the moving operation is terminated, and the process proceeds to step S1107. On the other hand, if not received, the process proceeds to step S1109 and the process is continued.
 このように、透視像を取得する毎に前処理を施すことにより、通常の透視撮像においても、高画質の画像を得、表示することができる。また、断層像取得時の処理時間を短縮することができる。 Thus, by performing preprocessing every time a fluoroscopic image is acquired, high-quality images can be obtained and displayed even in normal fluoroscopic imaging. In addition, the processing time when acquiring a tomographic image can be shortened.
 なお、トモシンセシス撮像時に、その移動速度、移動範囲(角度)を、ユーザが変更可能なように構成してもよい。すなわち、本実施形態のX線透視装置は、X線源101と検出器102とを移動させる範囲および移動速度の少なくとも一方の設定を、入力装置310を介してユーザから受け付けるよう構成してもよい。入力を受け付けるため、例えば、入力装置310に、計測系の動作制御指示部を備える。動作制御部302は、ユーザによる所定の操作を受け、計測系の移動範囲や移動速度を変更する。 It should be noted that the moving speed and moving range (angle) may be configured to be changeable by the user during tomosynthesis imaging. In other words, the X-ray fluoroscopic apparatus of the present embodiment may be configured to accept from the user via the input device 310 settings of at least one of the range in which the X-ray source 101 and the detector 102 are moved and the moving speed. . In order to receive an input, for example, the input device 310 includes a measurement system operation control instruction unit. The operation control unit 302 receives a predetermined operation by the user and changes the moving range and moving speed of the measurement system.
 動作制御指示部は、切替スイッチ312が兼ねてもよい。例えば、ユーザが切替スイッチ312を通常より強く押したことを受け付けると、動作制御部302は、移動範囲を拡大する。また、ユーザが切替スイッチ312を通常より早く動かしたことを受け付けると、動作制御部302は、移動速度を速める。 The changeover switch 312 may also serve as the operation control instruction unit. For example, when accepting that the user has pressed the changeover switch 312 more strongly than usual, the operation control unit 302 expands the movement range. In addition, when accepting that the user has moved the changeover switch 312 earlier than usual, the operation control unit 302 increases the moving speed.
 なお、本実施形態の透視像取得部303は、移動速度および/または移動範囲の変更の指示をユーザから受け付けると、フレームレートfで特定される透視像を取得する時間間隔を設定に応じて変更するよう構成してもよい。例えば、計測系の移動速度を速める指示を受け付けると、透視像取得部303は、透視像を取り込むフレームレートfを大きくする。画像を取得するピッチが粗くなりるとアーチファクトが発生するが、このようにフレームレートを変更することにより、このアーチファクトの発生を防ぐ。一方、計測系の移動速度を遅くする指示を受け付けると、フレームレートを小さくする。計測系の移動速度が遅いとピッチが必要以上に細かくなり、被写体104の被爆量が増加する。このとき、フレームレートを小さくすることにより、被写体104の被爆量の増加を抑えることができる。 Note that the fluoroscopic image acquisition unit 303 according to the present embodiment changes the time interval for acquiring the fluoroscopic image specified by the frame rate f according to the setting when receiving an instruction to change the moving speed and / or moving range from the user. You may comprise. For example, upon receiving an instruction to increase the moving speed of the measurement system, the fluoroscopic image acquisition unit 303 increases the frame rate f for capturing the fluoroscopic image. Artifacts occur when the pitch at which images are acquired becomes coarse, but the occurrence of these artifacts is prevented by changing the frame rate in this way. On the other hand, when an instruction to reduce the moving speed of the measurement system is received, the frame rate is reduced. If the moving speed of the measurement system is slow, the pitch becomes finer than necessary, and the amount of exposure of the subject 104 increases. At this time, by increasing the frame rate, an increase in the amount of exposure of the subject 104 can be suppressed.
 具体的には、例えば、フレームレートがf(枚数/秒)に設定され、計測系の最大の計測角度を±(A/2)degree、計測系の回転速度をs(degree/sec)とすると、計測系が回転角Aだけ回転している間に、f×A/s枚の透視像が取得される。回転速度sが大きくなると、計測系が回転角Aだけ回転している間に取得される透視像の枚数が減る。従って、その分、フレームレートを大きくすると、計測系が回転角Aだけ回転している間に取得される透視像の数を維持できる。画像の取得ピッチが粗くなるのを防ぐことができる。逆に、回転速度sが遅く(小さく)なると、計測系が回転角Aだけ回転している間に取得される透視像の枚数は増える。従って、フレームレートを小さくすることにより、取得枚数を維持でき、照射量の増大を抑えることができる。 Specifically, for example, when the frame rate is set to f (number of sheets / second), the maximum measurement angle of the measurement system is ± (A / 2) degree, and the rotation speed of the measurement system is s (degree / sec). While the measurement system is rotated by the rotation angle A, f × A / s fluoroscopic images are acquired. As the rotation speed s increases, the number of fluoroscopic images acquired while the measurement system rotates by the rotation angle A decreases. Therefore, if the frame rate is increased accordingly, the number of fluoroscopic images acquired while the measurement system is rotated by the rotation angle A can be maintained. It is possible to prevent the image acquisition pitch from becoming coarse. Conversely, when the rotational speed s is slow (small), the number of fluoroscopic images acquired while the measurement system is rotated by the rotational angle A increases. Therefore, by reducing the frame rate, the number of acquired images can be maintained, and an increase in irradiation amount can be suppressed.
 また、上記実施形態では、保持部305は、ユーザからトモシンセシス撮像の指示を受けた際のみ、トモシンセス撮像終了の指示を受け付けるまで、透視像保持部321に透視像を保持するよう構成しているが、これに限られない。計測開始の指示を受け、X線源101からX線が照射され、検出器102においてX線が検出されている間、常に透視像を保持するよう構成してもよい。この場合も、上記実施形態同様、X線源101の位置情報に対応づけて保持する。この場合、所定期間、所定枚数の透視像のみ保持し、上書きしていくよう構成してもよい。 In the above-described embodiment, the holding unit 305 is configured to hold the fluoroscopic image in the fluoroscopic image holding unit 321 until receiving an instruction to end tomosynthesis imaging only when receiving an instruction for tomosynthesis imaging from the user. Not limited to this. In response to an instruction to start measurement, X-rays may be emitted from the X-ray source 101 and a fluoroscopic image may be constantly held while X-rays are detected by the detector 102. In this case as well, the position information of the X-ray source 101 is held in correspondence with the embodiment. In this case, only a predetermined number of fluoroscopic images may be retained and overwritten for a predetermined period.
 また、上記実施形態では、動作制御部302は、ユーザからトモシンセシス撮像の指示を受けた際のみ、トモシンセス撮像終了の指示を受け付けるまで、計測系を移動動作させているが、これに限られない。計測開始の指示を受け、計測系を移動動作させるよう構成してもよい。この場合、動作制御部302は、X線の照射が開始されると、X線源101と検出器102とを移動動作させる。 In the above embodiment, the operation control unit 302 moves the measurement system only when receiving an instruction to end tomosynthesis imaging only when receiving an instruction for tomosynthesis imaging from the user, but is not limited thereto. The measurement system may be configured to move in response to an instruction to start measurement. In this case, the operation control unit 302 moves the X-ray source 101 and the detector 102 when X-ray irradiation is started.
 計測時に計測系を常に移動動作させ、かつ、透視撮像の間も保持部305に透視像を保持するよう構成してもよい。この場合も、上記実施形態同様、X線源101の位置情報に対応づけて保持する。この場合の計測処理の流れを図10に示す。この場合の計測処理の流れは、基本的に図9に示す例と同じである。しかし、ステップS1101において、動作制御部302が、計測系の移動を開始する。また、ステップS1107において、計測終了の指示を受け、計測形の移動動作を終了する。さらに、トモシンセシス撮像の指示を受けていない場合であっても、前処理(ステップS1104)後、保持部305は、透視像を透視像保持部321に保持する(ステップS1105)。 It may be configured to always move the measurement system during measurement and hold the fluoroscopic image in the holding unit 305 during fluoroscopic imaging. In this case as well, the position information of the X-ray source 101 is held in correspondence with the embodiment. The flow of the measurement process in this case is shown in FIG. The flow of the measurement process in this case is basically the same as the example shown in FIG. However, in step S1101, the operation control unit 302 starts moving the measurement system. In step S 1107, the measurement end instruction is received, and the measurement type moving operation is ended. Further, even when the instruction for tomosynthesis imaging is not received, after the preprocessing (step S1104), the holding unit 305 holds the fluoroscopic image in the fluoroscopic image holding unit 321 (step S1105).
 計測系を常に移動動作させ、さらに、透視撮像の間も保持部305に透視像を保持する場合、既に断層像算出に必要な透視像が保持部305に保持されている場合、トモシンセシス撮像の指示を受け付けると、即座に断層像の生成を行うことができる。 When the measurement system is always moved and the fluoroscopic image is held in the holding unit 305 during fluoroscopic imaging, the tomosynthesis imaging instruction is given when the fluoroscopic image necessary for tomographic image calculation is already held in the holding unit 305. Can be generated immediately.
 なお、この場合、トモシンセシス撮像の指示を受け付けても、必要な透視像が保持部305に蓄積されていない場合、その旨、ユーザに警告するよう構成してもよい。また、その時点で保持部305に保持されている透視像を表示装置330の画像表示領域200に表示し、断層像生成に用いる透視像の選択を、ユーザから受け付けるよう構成してもよい。 In this case, even if an instruction for tomosynthesis imaging is accepted, if a necessary fluoroscopic image is not accumulated in the holding unit 305, a warning may be given to that effect. In addition, the fluoroscopic image held in the holding unit 305 at that time may be displayed on the image display area 200 of the display device 330 and the selection of the fluoroscopic image used for tomographic image generation may be received from the user.
 さらに、X線透視装置110、120、130は、X線源101から照射するX線量を調整可能な機能を備えていてもよい。例えば、高線量の照射も可能とし、通常のトモシンセシス撮像もできるような構成であってもよい。 Furthermore, the X-ray fluoroscopic apparatuses 110, 120, and 130 may have a function capable of adjusting the X-ray dose irradiated from the X-ray source 101. For example, it may be configured so that irradiation with a high dose is possible and normal tomosynthesis imaging is possible.
 X線量を調整可能な機能を備える場合、記憶装置320には、低線量で取得した画像と高線量で取得した画像とが混在して保持される。このような場合、トモシンセシス撮像が指示された際、記憶装置320に保持された画像に対し、前処理の要否を判定する機能を備えていてもよい。要否の判定は、例えば、保持される画像の、構造以外の領域の画素値の標準偏差を算出し、予め定めた閾値より小さい場合、前処理を行わない等の手法により行う。これにより、前処理を行う回数が減り、処理時間を短縮できる。 When provided with a function capable of adjusting the X-ray dose, the storage device 320 holds an image acquired at a low dose and an image acquired at a high dose in a mixed manner. In such a case, when tomosynthesis imaging is instructed, a function for determining whether or not preprocessing is necessary for an image held in the storage device 320 may be provided. The necessity determination is performed, for example, by a method of calculating a standard deviation of pixel values of a region other than the structure of the image to be held and performing no preprocessing when it is smaller than a predetermined threshold. As a result, the number of times of preprocessing is reduced, and the processing time can be shortened.
 なお、本実施形態のX線透視装置は、X線の照射領域を限定するコリメータを備えていてもよい。 Note that the X-ray fluoroscopic apparatus of the present embodiment may include a collimator that limits an X-ray irradiation region.
 また、上記実施形態では、演算処理を演算部306により行っているが、演算処理に加算法を用いる場合、保持部305が記憶装置320に透視像を保持する際、加算処理を行うよう構成してもよい。このように構成することにより、より高速に断層像を得ることができる。この場合、演算部306は備えなくてもよい。 In the above embodiment, the calculation process is performed by the calculation unit 306. However, when the addition method is used for the calculation process, the addition process is performed when the holding unit 305 holds the perspective image in the storage device 320. May be. With this configuration, a tomographic image can be obtained at a higher speed. In this case, the calculation unit 306 may not be provided.
 また、本実施形態は、トモシンセシス撮像に限定されない。CT撮像、コーンビームCT撮像等の、他の種類の断層像を得る撮像にも適用可能である。さらに、本実施形態は、X線による計測にも限定されない。光、X線、放射線、等の計測であっても適用可能である。 Further, the present embodiment is not limited to tomosynthesis imaging. The present invention can also be applied to imaging for obtaining other types of tomographic images such as CT imaging and cone beam CT imaging. Furthermore, this embodiment is not limited to the measurement by X-rays. Even measurement of light, X-rays, radiation, etc. is applicable.
 100:X線管、101:X線源、102:検出器、103:制御装置、104:被写体、105:寝台、106:回転軸、108:アーム、109:移動装置、110:X線透視装置、120:X線透視装置、130:X線透視装置、210:第一の表示領域、220:第二の表示領域、230:表示変更指示ボタン、301:計測制御部、302:動作制御部、303:透視像取得部、304:前処理部、305:保持部、306:演算部、307:表示制御部、310:入力装置、311:撮像ボタン、312:切替スイッチ、320:記憶装置、321:透視像保持部、330:表示装置、410:透視像、411:差分像、421:非構造領域、422:構造領域、910:断面、920:断面 100: X-ray tube, 101: X-ray source, 102: detector, 103: control device, 104: subject, 105: bed, 106: rotating shaft, 108: arm, 109: moving device, 110: X-ray fluoroscopy device 120: X-ray fluoroscopic apparatus, 130: X-ray fluoroscopic apparatus, 210: First display area, 220: Second display area, 230: Display change instruction button, 301: Measurement control section, 302: Operation control section, 303: perspective image acquisition unit, 304: preprocessing unit, 305: holding unit, 306: calculation unit, 307: display control unit, 310: input device, 311: imaging button, 312: changeover switch, 320: storage device, 321 : Perspective image holding unit, 330: display device, 410: perspective image, 411: difference image, 421: non-structure region, 422: structure region, 910: cross section, 920: cross section

Claims (15)

  1.  被写体にX線を照射するX線源と、
     X線を検出する検出器と、
     前記X線源と前記検出器とを相対的に移動させる動作制御部と、
     検出した前記X線から透視像を得る透視像取得部と、
     前記透視像に対しノイズを低減する前処理を行う前処理部と、
     前処理後の前記透視像を保持する保持部と、
     前記保持部に保持された前記透視像に演算処理を行い、断層像を得る演算部と、を備えること
     を特徴とするX線透視装置。
    An X-ray source that irradiates the subject with X-rays;
    A detector for detecting X-rays;
    An operation controller that relatively moves the X-ray source and the detector;
    A fluoroscopic image obtaining unit for obtaining a fluoroscopic image from the detected X-ray;
    A preprocessing unit that performs preprocessing for reducing noise with respect to the fluoroscopic image;
    A holding unit for holding the fluoroscopic image after pre-processing;
    An X-ray fluoroscopic apparatus comprising: an arithmetic unit that performs arithmetic processing on the fluoroscopic image held in the holding unit to obtain a tomographic image.
  2.  請求項1記載のX線透視装置であって、
     前記透視像および前記断層像を表示する表示装置をさらに備えること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    An X-ray fluoroscopic apparatus, further comprising: a display device that displays the fluoroscopic image and the tomographic image.
  3.  請求項1記載のX線透視装置であって、
     前記保持部は、前記動作制御部が前記X線源と前記検出器とを移動させている間に得た前記透視像を保持すること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic apparatus, wherein the holding unit holds the fluoroscopic image obtained while the operation control unit moves the X-ray source and the detector.
  4.  請求項1記載のX線透視装置であって、
     前記演算部は、前記動作制御部が前記X線源と前記検出器とを移動させている間、予め定めた数の透視像が前記保持部に保持される毎に、前記演算処理を行うこと
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The calculation unit performs the calculation process each time a predetermined number of fluoroscopic images are held in the holding unit while the operation control unit moves the X-ray source and the detector. X-ray fluoroscopic apparatus characterized by the above.
  5.  請求項1記載のX線透視装置であって、
     前記動作制御部は、ユーザからの指示に従って、前記X線源と前記検出器とを移動させること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The operation control unit moves the X-ray source and the detector according to an instruction from a user.
  6.  請求項1記載のX線透視装置であって、
     前記動作制御部は、X線の照射が開始されると、前記X線源と前記検出器とを移動させること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The operation control unit moves the X-ray source and the detector when X-ray irradiation is started.
  7.  請求項1記載のX線透視装置であって、
     前記前処理部は、前記動作制御部が前記X線源と前記検出器とを移動させている間に取得された前記透視像に対し、前記前処理を行うこと
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic apparatus, wherein the preprocessing unit performs the preprocessing on the fluoroscopic image acquired while the operation control unit moves the X-ray source and the detector. .
  8.  請求項1記載のX線透視装置であって、
     前記前処理部は、前記透視像を取得する毎に、当該透視像に対し、前記前処理を行うこと
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic apparatus, wherein the preprocessing unit performs the preprocessing on the fluoroscopic image every time the fluoroscopic image is acquired.
  9.  請求項1記載のX線透視装置であって、
     前記前処理は、平滑化処理であること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic apparatus, wherein the preprocessing is a smoothing process.
  10.  請求項9記載のX線透視装置であって、
     前記前処理部は、前記透視像内の構造領域とその他の領域とを判別し、前記その他の領域に対してのみ前記平滑化処理を行うこと
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 9,
    The X-ray fluoroscopic apparatus, wherein the preprocessing unit discriminates a structure area and other areas in the fluoroscopic image and performs the smoothing process only on the other areas.
  11.  請求項1記載のX線透視装置であって、
     前記演算処理は、加算処理、シフト加算処理およびフィルタ補正逆投影処理のいずれかであること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The X-ray fluoroscopic apparatus, wherein the calculation process is any one of an addition process, a shift addition process, and a filter-corrected backprojection process.
  12.  請求項1記載のX線透視装置であって、
     前記X線源と前記検出器とを移動させる範囲および移動速度の少なくとも一方の設定をユーザから受け付ける入力装置をさらに備えること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    An X-ray fluoroscopic apparatus, further comprising: an input device that accepts a setting of at least one of a range and a moving speed for moving the X-ray source and the detector.
  13.  請求項12記載のX線透視装置であって、
     前記透視像取得部は、前記設定をユーザから受け付けると、前記透視像を取得する時間間隔を当該設定に応じて変更すること
     を特徴とするX線透視装置。
    The X-ray fluoroscope according to claim 12,
    The fluoroscopic image acquisition unit, when receiving the setting from a user, changes a time interval for acquiring the fluoroscopic image according to the setting.
  14.  請求項1記載のX線透視装置であって、
     前記動作制御部は、前記X線源と前記検出器とを、平行移動または回転移動させること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 1,
    The operation control unit translates or rotates the X-ray source and the detector.
  15.  請求項2記載のX線透視装置であって、
     前記表示装置は、前記透視像および1以上の前記断層像を並べて表示すること
     を特徴とするX線透視装置。
    The X-ray fluoroscopic apparatus according to claim 2,
    The X-ray fluoroscopic device, wherein the display device displays the fluoroscopic image and the one or more tomographic images side by side.
PCT/JP2014/050975 2013-04-23 2014-01-20 Fluoroscopic apparatus WO2014174857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013090428A JP2016127870A (en) 2013-04-23 2013-04-23 Fluoroscope
JP2013-090428 2013-04-23

Publications (1)

Publication Number Publication Date
WO2014174857A1 true WO2014174857A1 (en) 2014-10-30

Family

ID=51791445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050975 WO2014174857A1 (en) 2013-04-23 2014-01-20 Fluoroscopic apparatus

Country Status (2)

Country Link
JP (1) JP2016127870A (en)
WO (1) WO2014174857A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205503A (en) * 2016-05-16 2017-11-24 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus, X-ray diagnostic apparatus control method, X-ray diagnostic apparatus control program, and X-ray diagnostic system
CN110678124A (en) * 2017-06-30 2020-01-10 株式会社岛津制作所 Tomographic image generation method and radiographic apparatus
CN110859639A (en) * 2018-08-28 2020-03-06 西门子医疗有限公司 X-ray device, method for operating an X-ray device, computer program and data carrier
US10973479B2 (en) 2016-05-16 2021-04-13 Canon Medical Systems Corporation X-ray diagnosis apparatus, X-ray diagnosis apparatus controlling method, and X-ray diagnosis system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317511B1 (en) * 2017-06-30 2018-04-25 株式会社日立製作所 X-ray tomosynthesis system
JP6750742B2 (en) 2017-09-26 2020-09-02 株式会社島津製作所 Medical X-ray image processing apparatus and X-ray imaging apparatus
WO2020117734A1 (en) 2018-12-03 2020-06-11 The University Of North Carolina At Chapel Hill Compact x-ray devices, systems, and methods for tomosynthesis, fluoroscopy, and stereotactic imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325337A (en) * 1999-05-20 2000-11-28 Shimadzu Corp X rays computed tomography apparatus
JP2005103088A (en) * 2003-09-30 2005-04-21 Toshiba Corp X-ray ct apparatus and method of obtaining fluoroscopic image
JP2005160107A (en) * 2003-11-26 2005-06-16 Ge Medical Systems Global Technology Co Llc Resolution adaptive image filtering system and method
JP2005199062A (en) * 2003-12-22 2005-07-28 General Electric Co <Ge> Fluoroscopic tomosynthesis system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325337A (en) * 1999-05-20 2000-11-28 Shimadzu Corp X rays computed tomography apparatus
JP2005103088A (en) * 2003-09-30 2005-04-21 Toshiba Corp X-ray ct apparatus and method of obtaining fluoroscopic image
JP2005160107A (en) * 2003-11-26 2005-06-16 Ge Medical Systems Global Technology Co Llc Resolution adaptive image filtering system and method
JP2005199062A (en) * 2003-12-22 2005-07-28 General Electric Co <Ge> Fluoroscopic tomosynthesis system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205503A (en) * 2016-05-16 2017-11-24 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus, X-ray diagnostic apparatus control method, X-ray diagnostic apparatus control program, and X-ray diagnostic system
US10973479B2 (en) 2016-05-16 2021-04-13 Canon Medical Systems Corporation X-ray diagnosis apparatus, X-ray diagnosis apparatus controlling method, and X-ray diagnosis system
JP7066332B2 (en) 2016-05-16 2022-05-13 キヤノンメディカルシステムズ株式会社 X-ray diagnostic device and X-ray diagnostic device control method
CN110678124A (en) * 2017-06-30 2020-01-10 株式会社岛津制作所 Tomographic image generation method and radiographic apparatus
CN110678124B (en) * 2017-06-30 2022-10-28 株式会社岛津制作所 Tomographic image generation method and radiographic apparatus
CN110859639A (en) * 2018-08-28 2020-03-06 西门子医疗有限公司 X-ray device, method for operating an X-ray device, computer program and data carrier
CN110859639B (en) * 2018-08-28 2023-11-24 西门子医疗有限公司 X-ray device, method for operating an X-ray device, computer program and data carrier

Also Published As

Publication number Publication date
JP2016127870A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
WO2014174857A1 (en) Fluoroscopic apparatus
JP6688557B2 (en) X-ray CT system
JP5677738B2 (en) X-ray computed tomography system
JP5439054B2 (en) X-ray diagnostic equipment
JP4537129B2 (en) System for scanning objects in tomosynthesis applications
US20130148779A1 (en) Radiation tomography apparatus
JP5407774B2 (en) Radiography equipment
JP2007021006A (en) X-ray ct apparatus
JP2016538932A (en) X-ray imaging device
JP2009136518A (en) X-ray radiographing apparatus and x-ray radiographing method
JP5442363B2 (en) X-ray CT system
JP2020156620A (en) X-ray imaging apparatus
US10111628B2 (en) X-ray imaging apparatus and method for marking a location of a surgical tool on a displayed image
KR100280198B1 (en) X-ray imaging apparatus and method capable of CT imaging
US9066687B2 (en) Panoramic dental x-ray unit
JP2023139295A (en) X-ray imaging apparatus and x-ray imaging method
JP2011183021A (en) Radiographic image capturing system and method of displaying radiographic image
JP2006296926A (en) X-ray imaging apparatus, image processing method, computer readable storage medium and program
JP6373558B2 (en) X-ray CT system
JP2017131496A (en) X-ray ct apparatus, photographing condition setup method, and photographing condition setup program
JP4758747B2 (en) X-ray measuring apparatus, X-ray measuring method and X-ray measuring program
JP6415871B2 (en) X-ray diagnostic equipment
JP2014068985A (en) Radiographic apparatus
JP2003260050A (en) Radiation computed tomographic imaging instrument
JP2006043144A (en) Digital x-ray tomography system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP