WO2014174612A1 - Gas-insulated switching device - Google Patents

Gas-insulated switching device Download PDF

Info

Publication number
WO2014174612A1
WO2014174612A1 PCT/JP2013/062080 JP2013062080W WO2014174612A1 WO 2014174612 A1 WO2014174612 A1 WO 2014174612A1 JP 2013062080 W JP2013062080 W JP 2013062080W WO 2014174612 A1 WO2014174612 A1 WO 2014174612A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
container
circuit breaker
bus
disconnector
Prior art date
Application number
PCT/JP2013/062080
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 車
森 剛
真人 川東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/062080 priority Critical patent/WO2014174612A1/en
Priority to JP2013541130A priority patent/JP5452780B1/en
Publication of WO2014174612A1 publication Critical patent/WO2014174612A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/0354Gas-insulated switchgear comprising a vacuum switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Definitions

  • the present invention relates to a gas insulated switchgear.
  • a gas insulated switchgear is configured by housing a device such as a circuit breaker in a container filled with an insulating gas.
  • a device such as a circuit breaker
  • an insulating gas Conventionally, SF 6 gas, which is excellent in insulation performance and arc extinguishing performance, is often used as the insulation gas.
  • SF 6 gas which is excellent in insulation performance and arc extinguishing performance, is often used as the insulation gas.
  • SF 6 gas which is excellent in insulation performance and arc extinguishing performance
  • SF 6 gas which is excellent in insulation performance and arc extinguishing performance
  • the same insulating performance as when SF 6 gas is used can be ensured by increasing the size of the container housing the equipment.
  • the size of the equipment increases, leading to an increase in the size of the gas insulated switchgear.
  • Patent Document 1 includes a vacuum circuit breaker, a bus disconnector, a line disconnector, and containers for storing these devices, and nitrogen gas and a gas having a global warming potential of 1 or less are contained in each container.
  • a gas insulated switchgear in which a mixed gas containing is sealed is described.
  • the gas pressure in the container in which the vacuum circuit breaker is stored is set lower than the gas pressure in the container in which the bus disconnector and the line disconnector are respectively stored.
  • Patent Document 2 includes a vacuum circuit breaker and an electric device, and containers for storing these devices, respectively.
  • the vacuum circuit breaker In each gas insulated switchgear in which an insulating gas is sealed in each container, the vacuum circuit breaker is stored.
  • the gas pressure of the container being set is set lower than the gas pressure of the container in which the electrical equipment is stored. With this configuration, the insulation distance of the container in which the electrical equipment is stored is shortened, and the gas insulated switchgear is miniaturized.
  • the gas pressure of the container in which the vacuum circuit breaker is accommodated is set lower than the gas pressure of the container in which other equipment is accommodated.
  • the present invention was made in view of the above, while keeping the distance between the same units in the case of SF 6 gas is used, environmentally friendly by not using SF 6 gas, as well as small equipment
  • Another object of the present invention is to provide a gas insulated switchgear that can be reduced in weight.
  • a gas-insulated switchgear includes a vacuum circuit breaker, a circuit breaker container in which the vacuum circuit breaker is housed and sealed with an insulating gas, A bus disconnector connected to a vacuum circuit breaker, a gas compartment from the circuit breaker container, a bus disconnector container containing the bus disconnector and sealed with the insulating gas, and connected to the vacuum circuit breaker A plurality of units each comprising: a line disconnector; and a line disconnector container that is gas-divided from the circuit breaker container and the busbar disconnector container, the line disconnector is housed, and the insulating gas is sealed Is a gas insulated switchgear in which the bus disconnectors of each unit are connected to each other via the bus, the bus being accommodated in a bus container sealed with the insulating gas.
  • the insulating gas is a mixed gas of nitrogen gas and a gas having a global warming potential of 1 or less as a main component and having an atmospheric pressure or higher, and the gas pressure in the circuit breaker vessel is set in the line disconnector vessel.
  • the gas pressure in the busbar container is equal to the gas pressure in the busbar disconnector container, and the gas pressure in the busbar disconnector container and the gas pressure in the busbar container are in the circuit breaker container.
  • the gas pressure is higher than the gas pressure in the line disconnector container.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to Embodiment 1.
  • FIG. 2 is a side view showing the configuration of the gas-insulated switchgear according to the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing the configuration of the gas insulated switchgear according to the second embodiment.
  • FIG. 4 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to a comparative example.
  • FIG. 1 is a longitudinal sectional view showing the configuration of the gas insulated switchgear according to the present embodiment.
  • FIG. 2 is a side view showing the configuration of the gas insulated switchgear according to the present embodiment.
  • the gas insulated switchgear 1 is configured by connecting a plurality of units 5 to each other by buses 17 and 18.
  • the gas-insulated switchgear 1 is, for example, a three-phase collective type, but may be configured similarly in a phase-separated type. First, the configuration of the unit 5 will be described.
  • the unit 5 includes a vacuum circuit breaker 10 and a circuit breaker container 10a in which the vacuum circuit breaker 10 is accommodated.
  • the circuit breaker container 10a is a cylindrical (for example, cylindrical) metal container.
  • the circuit breaker container 10 a is long in the axial direction, and is arranged so that the axial direction is perpendicular to the installation surface 90.
  • the installation surface 90 is an installation surface of the gas insulated switchgear 1.
  • the circuit breaker container 10a includes, for example, three outlets.
  • An insulating gas is sealed in the circuit breaker container 10a.
  • the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the vacuum circuit breaker 10 is, for example, long in the axial direction of the circuit breaker container 10a.
  • the vacuum circuit breaker 10 includes a movable contact (not shown) and a fixed contact (not shown) in the vacuum vessel 10b.
  • the vacuum container 10b is comprised with the metal container so that the inside may be kept vacuum.
  • the current interruption by the vacuum circuit breaker 10 is performed by separating the movable contact from the fixed contact in the vacuum vessel 10b.
  • the breaking direction is the longitudinal direction of the vacuum circuit breaker 10.
  • the circuit breaker container 10 a is placed on the gantry 50, and a circuit breaker operating device 11 for operating the vacuum circuit breaker 10 is disposed beside the gantry 50.
  • the unit 5 further includes a bus disconnector 15, a bus disconnector container 15 a in which the bus disconnector 15 is accommodated, a bus disconnector 16, and a bus disconnector container 16 a in which the bus disconnector 16 is accommodated. Yes.
  • the bus disconnector 15 is disposed above the bus disconnector 16.
  • the bus disconnector 15 is connected to the bus 17.
  • the bus disconnector 16 is connected to the bus 18.
  • Busbars 17 and 18 constitute a double busbar for ensuring redundancy.
  • the present embodiment can also be applied to a multiple bus system other than the single bus system or the double bus system.
  • the bus disconnector 15 is connected to the vacuum circuit breaker 10 through the conductor 20.
  • the bus disconnector 15 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector body or the grounding switch by rotating a blade-shaped movable contact.
  • a bus disconnect switch operating device 15 c for operating the bus disconnect switch 15 is disposed, for example, below the bus disconnect switch 15.
  • the bus disconnector container 15a is connected to one of the outlets of the circuit breaker container 10a. In the bus disconnector container 15a, the same kind of insulating gas as that in the circuit breaker container 10a is sealed.
  • the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the gas section 15b in the bus disconnector container 15a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
  • the bus disconnector 16 is connected to the vacuum circuit breaker 10 through the conductor 20.
  • the bus disconnector 16 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector body or the grounding switch by rotating a blade-shaped movable contact.
  • a bus disconnect switch operating device 16 c for operating the bus disconnect switch 16 is disposed, for example, at a lower portion of the bus disconnect switch 16.
  • the bus disconnector container 16a is connected to one of the branch outlets of the circuit breaker container 10a. In the bus disconnector container 16a, the same type of insulating gas as that in the circuit breaker container 10a is sealed.
  • the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the gas section 16b in the bus disconnector container 16a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
  • the unit 5 further includes a line disconnector 25, a line disconnector container 25a in which the line disconnector 25 is accommodated, a lightning arrester 27 connected to the line disconnector 25, and an instrument transformer connected to the line disconnector 25. And a cable head 29 connected to the line disconnector 25.
  • the unit 5 also includes an instrument current transformer container 22a for connecting the circuit breaker container 10a and the line disconnector container 25a, and an instrument current transformer 22 disposed in the instrument current transformer container 22a. ing.
  • the vacuum circuit breaker 10 is connected to the line disconnector 25 through a conductor 21 disposed in the circuit breaker container 10a and a conductor 23 connected to the conductor 21 and disposed in the current transformer container 22a.
  • the instrument current transformer 22 measures the current flowing through the conductor 23.
  • the instrument current transformer 22 includes an annular coil that circulates around the conductor 23.
  • the instrument current transformer container 22a is sealed with the same type of insulating gas as that in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the instrument current transformer container 22a is connected to one of the outlets of the circuit breaker container 10a.
  • the gas section 22b in the instrument current transformer container 22a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
  • the line disconnector 25 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector main body or the grounding switch 26 by rotating a blade-shaped movable contact.
  • the track disconnector 25 is placed on the gantry 51 and is operated by a track disconnector operating device (not shown).
  • a lightning arrester 27, an instrument transformer 28, and a cable head 29 are accommodated in the line disconnector container 25a.
  • a cable 30 is drawn from the cable head 29.
  • the lightning arrester 27, the instrument transformer 28, and the cable head 29 constitute a line device.
  • the same kind of insulating gas as that in the circuit breaker container 10a is sealed. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the gas section 25b in the line disconnector container 25a is partitioned from the gas section 22b in the instrument current transformer container 22a, and is therefore partitioned from the gas section 10c in the circuit breaker container 10a.
  • a plurality of units 5 are arranged in the unit arrangement direction. In FIG. 2, for example, two units 5 are shown.
  • the bus bars 17 and 18 extend in the unit arrangement direction.
  • the bus 17 connects the bus disconnectors 15 of adjacent units 5.
  • a bus 18 connects the bus disconnectors 16 of adjacent units 5.
  • the bus bar 17 is configured by accommodating a conductor (not shown) in the bus bar container 17a.
  • the bus bar container 17a is sealed with the same type of insulating gas as in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the bus container 17a between the bus disconnectors 15 adjacent in the unit arrangement direction may be gas-divided from one or both gas sections 15b of the adjacent bus disconnector 15, or the same gas as one or both You may comprise the division.
  • the bus bar 18 is configured by housing a conductor (not shown) in the bus bar container 18a.
  • the bus container 18a is sealed with the same type of insulating gas as that in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less.
  • the gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure.
  • This mixed gas is, for example, dry air.
  • the bus container 18a between the adjacent bus disconnectors 16 is gas-divided from the gas compartment 16b of these bus disconnectors 16, for example.
  • the gas pressure in the circuit breaker container 10a, the gas pressure in the instrument current transformer container 22a, and the gas pressure in the line disconnector container 25a are equal to each other. Further, the gas pressure in the bus disconnector container 15a, the gas pressure in the busbar container 17a, the gas pressure in the bus disconnector container 16a, and the gas pressure in the busbar container 18a are equal to each other. Further, the gas pressure in the bus disconnector containers 15a, 16a and the gas pressure in the busbar containers 17a, 18a are the gas pressure in the circuit breaker container 10a, the gas pressure in the current transformer container 22a, and the line disconnector. It is higher than the gas pressure in the container 25a.
  • the gas pressure in the line-side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) is equal to the gas pressure in the circuit breaker vessel 10a and the bus-side pressure is
  • the gas pressure in the containers (bus disconnector containers 15a and 16a, busbar containers 17a and 18a) is set higher than the gas pressure in the circuit breaker container 10a.
  • the gas pressure in the bus disconnector containers 15a and 16a is, for example, 0.4 MPa ⁇ abs
  • the gas pressure in the circuit breaker container 10a is, for example, 0.15 MPa ⁇ abs.
  • the reason for setting the pressure is as follows. Under the equipment configuration shown in FIGS. 1 and 2, the insulating gas is changed from the conventional SF 6 gas to the mixed gas of the present embodiment (a gas mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less).
  • the bus-side device is required to have higher dielectric strength than the track-side device. For this reason, it is necessary to ensure insulation performance by increasing the gas pressure or increasing the size of the pressure vessel for the bus side device, but for both the gas pressure and the pressure vessel size for the line side device. It is possible to ensure insulation performance without change.
  • the gas pressure in the bus-side pressure vessel (bus disconnector vessel 15a, 16a, bus vessel vessel 17a, 18a) is set higher than the gas pressure in the circuit breaker vessel 10a, and By making the gas pressure in the line side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) equal to the gas pressure in the circuit breaker vessel 10a, the distance between the units is made the same as before. Can do.
  • the gas pressure in the line-side pressure container (instrument current transformer container 22a, line disconnector container 25a) does not increase, so the line side pressure container (instrument current transformer container 22a, line disconnector container) It is not necessary to increase the plate thickness of 25a), and an increase in the weight of the equipment on the line side can be suppressed. Thereby, the increase in cost can also be suppressed. Further, since the distance between the units is the same as the conventional one, the installation area of the gas insulated switchgear 1 does not increase.
  • the gas pressure in the container in which the equipment other than the vacuum circuit breaker is stored is uniformly in the container in which the vacuum circuit breaker is stored. It is set higher than the gas pressure. That is, not only the gas pressure in the pressure vessel on the busbar side but also the gas pressure in the pressure vessel on the line side is set higher than the gas pressure in the vessel in which the vacuum circuit breaker is housed. Therefore, it is necessary to increase the thickness of both the bus-side pressure vessel and the track-side pressure vessel, which increases the gravity of the equipment and increases the cost.
  • the vacuum circuit breaker 10 is a so-called vertical type and is arranged so that the axial direction of the circuit breaker container 10a is perpendicular to the installation surface 90.
  • the vacuum circuit breaker 10 is a so-called horizontal type and is arranged so that the axial direction of the circuit breaker container 10a is parallel to the installation surface 90.
  • FIG. FIG. 3 is a longitudinal sectional view showing a configuration of the gas insulated switchgear according to the present embodiment.
  • the gas insulated switchgear 2 is configured by connecting a plurality of units 6 to each other through buses 17 and 18.
  • the configuration of the unit 6 is the same as the configuration shown in FIG. 1 except for the configuration in the circuit breaker container 10a.
  • the connection mode between the units 6 is also the same as that in FIG. Therefore, hereinafter, differences from FIG. 1 will be mainly described.
  • FIG. 3 the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the unit 6 includes a circuit breaker container 10a, a vacuum circuit breaker 10 housed in the circuit breaker container 10a, and an instrument current transformer 19 on the busbar side housed in the circuit breaker container 10a. And.
  • the circuit breaker container 10a is a cylindrical (for example, cylindrical) metal container.
  • the circuit breaker container 10 a is long in the axial direction, and is arranged so that the axial direction is perpendicular to the installation surface 90.
  • a mixed gas having a pressure equal to or higher than the atmospheric pressure mainly containing nitrogen gas and a gas having a global warming potential of 1 or less is sealed.
  • the gas pressure in the line-side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) is equal to the gas pressure in the circuit breaker vessel 10a, and the bus-side pressure vessel (bus disconnector vessel).
  • the gas pressure in 15a, 16a and busbar containers 17a, 18a) is the same as that of the first embodiment in that the gas pressure in the circuit breaker container 10a is set higher.
  • the vacuum circuit breaker 10 is disposed below the current transformer 19 in the circuit breaker container 10a.
  • the measuring instrument current transformer 19 is arrange
  • the vacuum circuit breaker 10 is arranged so that the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a.
  • the vacuum circuit breaker 10 is configured such that the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a so that the upper end of the vacuum circuit breaker 10 faces the line disconnector 25 side.
  • the longitudinal direction of the vacuum circuit breaker 10 is the breaking direction.
  • a conductor 40 that connects the bus disconnectors 15 and 16 and the vacuum circuit breaker 10 is routed.
  • the instrument current transformer 19 includes an annular coil that circulates around the conductor 40, and measures the current flowing through the conductor 40.
  • the conductor 40 includes an axis parallel part 40 a connected to the bus disconnectors 15 and 16 and an axis parallel part 40 b connected to the vacuum circuit breaker 10.
  • the axis parallel parts 40a and 40b are parts parallel to the axial direction of the circuit breaker container 10a, and a certain distance is secured between them.
  • the conductor 40 is routed upward along the axis parallel portion 40a from the bus disconnectors 15 and 16, bent at the upper end portion of the circuit breaker container 10a, and further routed downward along the axis parallel portion 40b. .
  • the axis parallel part 40 b is connected to the upper end part of the vacuum circuit breaker 10. At this time, since the upper end portion of the vacuum circuit breaker 10 is inclined toward the line disconnector 25, the end portion of the axis parallel portion 40b can be easily connected to the side surface of the upper end portion of the vacuum circuit breaker 10. .
  • the conductor 41 connected to the lower end of the vacuum circuit breaker 10 is routed around the circuit breaker container 10a and connected to the conductor 23 in the instrument current transformer container 22a.
  • the bus-side instrument current transformer 19 is disposed in the circuit breaker container 10a.
  • the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a.
  • FIG. 4 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to a comparative example.
  • the gas insulated switchgear 3 is configured by connecting a plurality of units 7 to each other through buses 17 and 18.
  • the structure of the unit 7 is the same as the structure shown in FIG. 3 except for the structure in the circuit breaker container 10a.
  • the connection mode between the units 7 is also the same as that in FIG. Therefore, hereinafter, differences from FIG. 3 will be mainly described.
  • FIG. 4 the same components as those in FIG. 3 are denoted by the same reference numerals.
  • the unit 7 includes a circuit breaker container 10a, a vacuum circuit breaker 10 housed in the circuit breaker container 10a, and an instrument current transformer 19 on the busbar side housed in the circuit breaker container 10a. And.
  • the vacuum circuit breaker 10 is disposed below the instrument current transformer 19 in the circuit breaker container 10a.
  • the vacuum circuit breaker 10 is connected to the bus disconnectors 15 and 16 by a conductor 42, and is connected to the conductor 23 in the instrument current transformer container 22a by a conductor 43.
  • the longitudinal direction of the vacuum circuit breaker 10 is parallel to the axial direction of the circuit breaker container 10a. Therefore, the routing route of the conductor 42 that connects the bus disconnectors 15, 16 and the vacuum circuit breaker 10 is different from that in FIG. 3.
  • the conductor 42 includes an axis parallel portion 42 a connected to the bus disconnectors 15, 16 and an axis parallel portion 42 b connected to the vacuum circuit breaker 10. Is not inclined with respect to the axial direction of the circuit breaker container 10a. Therefore, when the diameter of the circuit breaker container 10a is the same as that in FIG. 3, the axis parallel portions 42a and 42b are close to each other, and an insulation distance is secured. Difficult to do. In order to ensure a constant insulation distance between the axis parallel parts 42a and 42b, it is necessary to increase the diameter of the circuit breaker container 10a, leading to an increase in the size of the device.
  • the longitudinal direction of the vacuum circuit breaker 10 is set to the axial direction of the circuit breaker container 10a.
  • the instrument current transformer 19 on the bus side is disposed in the circuit breaker container 10a.
  • the unit length (the length of the unit 7 in the left-right direction in FIG. 3) can be suppressed as compared with the configuration in which the instrument current transformer 19 is provided outside the circuit breaker container 10a. Further, compared to the case of FIG. 4, the routing of the conductor 42 is simplified, and the instrument current transformer 19 can be disposed in the circuit breaker container 10 a without enlarging the diameter of the circuit breaker container 10 a. Equipment can be downsized.
  • the vacuum circuit breaker 10 is arranged at the lower end in the circuit breaker container 10a, and the current transformer 19 is arranged at the upper end in the circuit breaker container 10a. It is also possible to interchange the arrangement of the current transformer 10 and the instrument current transformer 19 with each other.
  • the vacuum circuit breaker 10 may be arranged so that the lower end portion of the vacuum circuit breaker 10 faces the line disconnector 25 and the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a.
  • the circuit breaker operating device 11 is arranged on the installation surface 90, the arrangement configuration of the present embodiment is more preferable.
  • the present invention is useful as a gas insulated switchgear.

Abstract

A gas-insulated switching device (1) uses, as an insulating gas, a mixed gas with a pressure higher than atmospheric pressure including as principal components a nitride gas and a gas with a global warming potential of no more than one. In the gas-insulated switching device (1), the gas pressure in a breaker container (10a) containing a vacuum breaker (10) equals the gas pressure in a line disconnector container (25a), the gas pressure in bus containers (17a, 18a) equals the gas pressure in bus disconnector containers (15a, 16a), and the gas pressure in the bus disconnector containers (15a, 16a) and the gas pressure in the bus containers (17a, 18a) are higher than the gas pressure in the breaker container (10a) and the gas pressure in the line disconnector container (25a).

Description

ガス絶縁開閉装置Gas insulated switchgear
 本発明は、ガス絶縁開閉装置に関する。 The present invention relates to a gas insulated switchgear.
 ガス絶縁開閉装置は、絶縁ガスが封入された容器内に遮断器等の機器を収納して構成される。絶縁ガスとしては、従来、絶縁性能および消弧性能に優れたSFガスがよく使用されている。一方、SFガスは、大気中に放出された場合には、環境への影響が懸念される。そのため、SFガスを使用しないガス絶縁開閉装置の実用化もなされている。 A gas insulated switchgear is configured by housing a device such as a circuit breaker in a container filled with an insulating gas. Conventionally, SF 6 gas, which is excellent in insulation performance and arc extinguishing performance, is often used as the insulation gas. On the other hand, when SF 6 gas is released into the atmosphere, there is a concern about the influence on the environment. Therefore, a gas insulated switchgear that does not use SF 6 gas has been put into practical use.
 SFガスよりも絶縁性能の劣る絶縁ガスを使用する場合は、機器を収納する容器のサイズを大きくすることにより、SFガスを使用する場合と同じ絶縁性能を確保することができる。しかし、こうした場合は、機器のサイズが大きくなり、ガス絶縁開閉装置の大型化につながる。 When using an insulating gas having a lower insulating performance than SF 6 gas, the same insulating performance as when SF 6 gas is used can be ensured by increasing the size of the container housing the equipment. However, in such a case, the size of the equipment increases, leading to an increase in the size of the gas insulated switchgear.
 特許文献1には、真空遮断器、母線断路器、および線路断路器と、これらの機器をそれぞれ収納する容器とを備え、各容器内には窒素ガスおよび地球温暖化係数が1以下のガスを含む混合ガスが密封されたガス絶縁開閉装置が記載されている。このガス絶縁開閉装置では、真空遮断器が収納されている容器のガス圧が、母線断路器および線路断路器がそれぞれ収納されている容器のガス圧よりも低く設定されている。この構成により、SFガス等の地球温暖化ガスを使用しないことによる環境調和、ならびに、ガス絶縁開閉装置の小型化および軽量化を図っている。 Patent Document 1 includes a vacuum circuit breaker, a bus disconnector, a line disconnector, and containers for storing these devices, and nitrogen gas and a gas having a global warming potential of 1 or less are contained in each container. A gas insulated switchgear in which a mixed gas containing is sealed is described. In this gas insulated switchgear, the gas pressure in the container in which the vacuum circuit breaker is stored is set lower than the gas pressure in the container in which the bus disconnector and the line disconnector are respectively stored. With this configuration, environmental harmony by not using a global warming gas such as SF 6 gas, and miniaturization and weight reduction of the gas insulated switchgear are achieved.
 また、特許文献2には、真空遮断器および電気機器と、これらの機器をそれぞれ収納する容器とを備え、各容器内には絶縁ガスが密封されたガス絶縁開閉装置において、真空遮断器が収納されている容器のガス圧が、電気機器が収納されている容器のガス圧よりも低く設定されている。この構成により、電気機器が収納された容器の絶縁距離の短縮を図り、ガス絶縁開閉装置の小型化を図っている。 Further, Patent Document 2 includes a vacuum circuit breaker and an electric device, and containers for storing these devices, respectively. In each gas insulated switchgear in which an insulating gas is sealed in each container, the vacuum circuit breaker is stored. The gas pressure of the container being set is set lower than the gas pressure of the container in which the electrical equipment is stored. With this configuration, the insulation distance of the container in which the electrical equipment is stored is shortened, and the gas insulated switchgear is miniaturized.
特許第4237591号公報Japanese Patent No. 4,237,591 特開2005-304224号公報JP-A-2005-304224
 ところで、ガス絶縁開閉装置では、遮断器等の機器を含むユニットが母線方向に複数配列される構成が一般的である。一般に、ユニット間の距離は、設置スペースの制約から決められるので、ユニット間の距離を増大させる変更は受け入れ難いことが多い。 By the way, in a gas insulated switchgear, a configuration in which a plurality of units including devices such as a circuit breaker are arranged in the direction of the bus is common. In general, since the distance between units is determined by the limitation of installation space, changes that increase the distance between units are often unacceptable.
 したがって、SFガスが使用される機器からSFガス以外の絶縁ガスが使用される機器に変更する場合に、容器のサイズを拡大することで絶縁性能の維持を図るときは、ユニット間の距離が従来よりも増大することとなり、ユニット間の距離を従来と同一にするという要求を満たすことが困難となる。 Therefore, when changing to a device SF 6 gas insulating gas other than SF 6 gas from equipment used is used, when the attempt to maintain the insulation performance by increasing the size of the container, the distance between units However, it becomes difficult to satisfy the requirement that the distance between the units be the same as the conventional distance.
 一方、特許文献1または2では、真空遮断器が収納されている容器のガス圧が、他の機器が収納されている容器のガス圧よりも低く設定されている。このようにすることで、他の機器の容器のサイズを据え置くことが可能となるが、容器がガス圧の増大に耐え得るためには、容器の板厚をより厚くする必要があり、容器の重量はSFガスを使用していた場合よりも増大することとなる。 On the other hand, in patent document 1 or 2, the gas pressure of the container in which the vacuum circuit breaker is accommodated is set lower than the gas pressure of the container in which other equipment is accommodated. By doing so, it becomes possible to defer the size of the container of other equipment, but in order for the container to withstand the increase in gas pressure, it is necessary to increase the plate thickness of the container. The weight will be greater than if SF 6 gas was used.
 本発明は、上記に鑑みてなされたものであって、SFガスが使用される場合と同一のユニット間の距離を保ちつつ、SFガスを使用しないことによる環境調和、ならびに、機器の小型および軽量化を実現可能なガス絶縁開閉装置を提供することを目的とする。 The present invention was made in view of the above, while keeping the distance between the same units in the case of SF 6 gas is used, environmentally friendly by not using SF 6 gas, as well as small equipment Another object of the present invention is to provide a gas insulated switchgear that can be reduced in weight.
 上述した課題を解決し、目的を達成するために、本発明に係るガス絶縁開閉装置は、真空遮断器と、この真空遮断器が収納されると共に絶縁ガスが密封された遮断器容器と、前記真空遮断器に接続された母線断路器と、前記遮断器容器からガス区画され、前記母線断路器が収納されると共に前記絶縁ガスが密封された母線断路器容器と、前記真空遮断器に接続された線路断路器と、前記遮断器容器および前記母線断路器容器からガス区画され、前記線路断路器が収納されると共に前記絶縁ガスが密封された線路断路器容器と、をそれぞれ備えた複数のユニットが母線の延伸方向に配列され、前記各ユニットの母線断路器が前記母線で互いに接続されて成るガス絶縁開閉装置であって、前記母線は、前記絶縁ガスが密封された母線容器内に収納されており、前記絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスであり、前記遮断器容器内のガス圧は前記線路断路器容器内のガス圧に等しく、前記母線容器内のガス圧は前記母線断路器容器内のガス圧に等しく、前記母線断路器容器内のガス圧および前記母線容器内のガス圧は、前記遮断器容器内のガス圧および前記線路断路器容器内のガス圧よりも高いことを特徴とする。 In order to solve the above-described problems and achieve the object, a gas-insulated switchgear according to the present invention includes a vacuum circuit breaker, a circuit breaker container in which the vacuum circuit breaker is housed and sealed with an insulating gas, A bus disconnector connected to a vacuum circuit breaker, a gas compartment from the circuit breaker container, a bus disconnector container containing the bus disconnector and sealed with the insulating gas, and connected to the vacuum circuit breaker A plurality of units each comprising: a line disconnector; and a line disconnector container that is gas-divided from the circuit breaker container and the busbar disconnector container, the line disconnector is housed, and the insulating gas is sealed Is a gas insulated switchgear in which the bus disconnectors of each unit are connected to each other via the bus, the bus being accommodated in a bus container sealed with the insulating gas. The insulating gas is a mixed gas of nitrogen gas and a gas having a global warming potential of 1 or less as a main component and having an atmospheric pressure or higher, and the gas pressure in the circuit breaker vessel is set in the line disconnector vessel. The gas pressure in the busbar container is equal to the gas pressure in the busbar disconnector container, and the gas pressure in the busbar disconnector container and the gas pressure in the busbar container are in the circuit breaker container. The gas pressure is higher than the gas pressure in the line disconnector container.
 本発明によれば、SFガスが使用される場合と同一のユニット間の距離を保ちつつ、SFガスを使用しないことによる環境調和、ならびに、機器の小型および軽量化を実現することができる、という効果を奏する。 According to the present invention, while maintaining the distance between the same units in the case of SF 6 gas is used, environmentally friendly by not using SF 6 gas, as well, it is possible to reduce the size and weight of equipment , Has the effect.
図1は、実施の形態1に係るガス絶縁開閉装置の構成を示す縦断面図である。1 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to Embodiment 1. FIG. 図2は、実施の形態1に係るガス絶縁開閉装置の構成を示す側面図である。FIG. 2 is a side view showing the configuration of the gas-insulated switchgear according to the first embodiment. 図3は、実施の形態2に係るガス絶縁開閉装置の構成を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing the configuration of the gas insulated switchgear according to the second embodiment. 図4は、比較例に係るガス絶縁開閉装置の構成を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to a comparative example.
 以下に、本発明の実施の形態に係るガス絶縁開閉装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a gas insulated switchgear according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本実施の形態に係るガス絶縁開閉装置の構成を示す縦断面図である。図2は、本実施の形態に係るガス絶縁開閉装置の構成を示す側面図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing the configuration of the gas insulated switchgear according to the present embodiment. FIG. 2 is a side view showing the configuration of the gas insulated switchgear according to the present embodiment.
 図1および図2に示すように、ガス絶縁開閉装置1は、複数のユニット5を母線17,18で互いに接続して構成されている。なお、ガス絶縁開閉装置1は例えば三相一括型とするが、相分離型でも同様に構成することができる。まず、ユニット5の構成について説明する。 As shown in FIGS. 1 and 2, the gas insulated switchgear 1 is configured by connecting a plurality of units 5 to each other by buses 17 and 18. The gas-insulated switchgear 1 is, for example, a three-phase collective type, but may be configured similarly in a phase-separated type. First, the configuration of the unit 5 will be described.
 ユニット5は、真空遮断器10と、真空遮断器10が収納される遮断器容器10aとを備えている。遮断器容器10aは、筒状(例えば円筒状)の金属容器である。遮断器容器10aは、軸方向に長尺であり、軸方向が設置面90に対して垂直になるように配置されている。ここで、設置面90は、ガス絶縁開閉装置1の設置面である。遮断器容器10aは、例えば三つの引出口を備えている。遮断器容器10a内には、絶縁ガスが密封されている。絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。 The unit 5 includes a vacuum circuit breaker 10 and a circuit breaker container 10a in which the vacuum circuit breaker 10 is accommodated. The circuit breaker container 10a is a cylindrical (for example, cylindrical) metal container. The circuit breaker container 10 a is long in the axial direction, and is arranged so that the axial direction is perpendicular to the installation surface 90. Here, the installation surface 90 is an installation surface of the gas insulated switchgear 1. The circuit breaker container 10a includes, for example, three outlets. An insulating gas is sealed in the circuit breaker container 10a. The insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air.
 真空遮断器10は、例えば、遮断器容器10aの軸方向に長尺である。真空遮断器10は、真空容器10b内に可動接触子(図示せず)および固定接触子(図示せず)を備えている。真空容器10bは、内部を真空に保つように金属容器で構成されている。真空遮断器10による電流遮断は、この真空容器10b内で可動接触子が固定接触子から切り離されることでなされる。遮断方向は、真空遮断器10の長手方向である。遮断器容器10aは架台50上に載置され、架台50の横には真空遮断器10を操作するための遮断器操作装置11が配置されている。 The vacuum circuit breaker 10 is, for example, long in the axial direction of the circuit breaker container 10a. The vacuum circuit breaker 10 includes a movable contact (not shown) and a fixed contact (not shown) in the vacuum vessel 10b. The vacuum container 10b is comprised with the metal container so that the inside may be kept vacuum. The current interruption by the vacuum circuit breaker 10 is performed by separating the movable contact from the fixed contact in the vacuum vessel 10b. The breaking direction is the longitudinal direction of the vacuum circuit breaker 10. The circuit breaker container 10 a is placed on the gantry 50, and a circuit breaker operating device 11 for operating the vacuum circuit breaker 10 is disposed beside the gantry 50.
 ユニット5は、さらに、母線断路器15と、母線断路器15が収納される母線断路器容器15aと、母線断路器16と、母線断路器16が収納される母線断路器容器16aとを備えている。母線断路器15は、母線断路器16よりも上方に配置される。母線断路器15は、母線17に接続されている。母線断路器16は、母線18に接続されている。母線17,18は、冗長性を確保するための二重母線を構成している。なお、本実施の形態は、単母線方式または二重母線方式以外の複母線方式にも適用することができる。 The unit 5 further includes a bus disconnector 15, a bus disconnector container 15 a in which the bus disconnector 15 is accommodated, a bus disconnector 16, and a bus disconnector container 16 a in which the bus disconnector 16 is accommodated. Yes. The bus disconnector 15 is disposed above the bus disconnector 16. The bus disconnector 15 is connected to the bus 17. The bus disconnector 16 is connected to the bus 18. Busbars 17 and 18 constitute a double busbar for ensuring redundancy. The present embodiment can also be applied to a multiple bus system other than the single bus system or the double bus system.
 母線断路器15は、導体20を介して、真空遮断器10と接続されている。母線断路器15は、例えば接地開閉器付の断路器であり、ブレード形の可動接触子を回動させることで断路器本体または接地開閉器の入切をする。母線断路器15を操作するための母線断路器操作装置15cは例えば母線断路器15の下部に配置されている。母線断路器容器15aは、遮断器容器10aの引出口の一つと接続されている。母線断路器容器15a内には、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。母線断路器容器15a内のガス区画15bは、遮断器容器10a内のガス区画10cから区画されており、両区画間でのガスの移動は遮断されている。 The bus disconnector 15 is connected to the vacuum circuit breaker 10 through the conductor 20. The bus disconnector 15 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector body or the grounding switch by rotating a blade-shaped movable contact. A bus disconnect switch operating device 15 c for operating the bus disconnect switch 15 is disposed, for example, below the bus disconnect switch 15. The bus disconnector container 15a is connected to one of the outlets of the circuit breaker container 10a. In the bus disconnector container 15a, the same kind of insulating gas as that in the circuit breaker container 10a is sealed. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. The gas section 15b in the bus disconnector container 15a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
 母線断路器16は、導体20を介して、真空遮断器10と接続されている。母線断路器16は、例えば接地開閉器付の断路器であり、ブレード形の可動接触子を回動させることで断路器本体または接地開閉器の入切をする。母線断路器16を操作するための母線断路器操作装置16cは例えば母線断路器16の下部に配置されている。母線断路器容器16aは、遮断器容器10aの分岐引出口の一つと接続されている。母線断路器容器16a内には、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。母線断路器容器16a内のガス区画16bは、遮断器容器10a内のガス区画10cから区画されており、両区画間でのガスの移動は遮断されている。 The bus disconnector 16 is connected to the vacuum circuit breaker 10 through the conductor 20. The bus disconnector 16 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector body or the grounding switch by rotating a blade-shaped movable contact. A bus disconnect switch operating device 16 c for operating the bus disconnect switch 16 is disposed, for example, at a lower portion of the bus disconnect switch 16. The bus disconnector container 16a is connected to one of the branch outlets of the circuit breaker container 10a. In the bus disconnector container 16a, the same type of insulating gas as that in the circuit breaker container 10a is sealed. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. The gas section 16b in the bus disconnector container 16a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
 ユニット5は、さらに、線路断路器25と、線路断路器25が収納される線路断路器容器25aと、線路断路器25に接続された避雷器27と、線路断路器25に接続された計器用変圧器28と、線路断路器25に接続されたケーブルヘッド29とを備えている。また、ユニット5は、遮断器容器10aと線路断路器容器25aとを接続する計器用変流器容器22aと、計器用変流器容器22a内に配置される計器用変流器22とを備えている。 The unit 5 further includes a line disconnector 25, a line disconnector container 25a in which the line disconnector 25 is accommodated, a lightning arrester 27 connected to the line disconnector 25, and an instrument transformer connected to the line disconnector 25. And a cable head 29 connected to the line disconnector 25. The unit 5 also includes an instrument current transformer container 22a for connecting the circuit breaker container 10a and the line disconnector container 25a, and an instrument current transformer 22 disposed in the instrument current transformer container 22a. ing.
 真空遮断器10は、遮断器容器10a内に配置される導体21と、この導体21に接続され計器用変流器容器22a内に配置される導体23とを介して線路断路器25に接続される。計器用変流器22は、導体23に流れる電流を計測する。計器用変流器22は、導体23を周回する環状のコイルを備えている。計器用変流器容器22a内には、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。計器用変流器容器22aは、遮断器容器10aの引出口の一つと接続されている。計器用変流器容器22a内のガス区画22bは、遮断器容器10a内のガス区画10cから区画されており、両区画間でのガスの移動は遮断されている。 The vacuum circuit breaker 10 is connected to the line disconnector 25 through a conductor 21 disposed in the circuit breaker container 10a and a conductor 23 connected to the conductor 21 and disposed in the current transformer container 22a. The The instrument current transformer 22 measures the current flowing through the conductor 23. The instrument current transformer 22 includes an annular coil that circulates around the conductor 23. The instrument current transformer container 22a is sealed with the same type of insulating gas as that in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. The instrument current transformer container 22a is connected to one of the outlets of the circuit breaker container 10a. The gas section 22b in the instrument current transformer container 22a is partitioned from the gas section 10c in the circuit breaker container 10a, and gas movement between the two sections is blocked.
 線路断路器25は、例えば接地開閉器付の断路器であり、ブレード形の可動接触子を回動させることで断路器本体または接地開閉器26の入切をする。線路断路器25は、架台51上に載置され、図示しない線路断路器操作装置で操作される。線路断路器容器25a内には、避雷器27、計器用変圧器28、およびケーブルヘッド29が収納されている。ケーブルヘッド29からはケーブル30が引き出されている。避雷器27、計器用変圧器28、およびケーブルヘッド29は、線路機器を構成する。 The line disconnector 25 is, for example, a disconnector with a grounding switch, and turns on or off the disconnector main body or the grounding switch 26 by rotating a blade-shaped movable contact. The track disconnector 25 is placed on the gantry 51 and is operated by a track disconnector operating device (not shown). A lightning arrester 27, an instrument transformer 28, and a cable head 29 are accommodated in the line disconnector container 25a. A cable 30 is drawn from the cable head 29. The lightning arrester 27, the instrument transformer 28, and the cable head 29 constitute a line device.
 線路断路器容器25a内には、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。線路断路器容器25a内のガス区画25bは、計器用変流器容器22a内のガス区画22bから区画されており、したがって、遮断器容器10a内のガス区画10cから区画されている。 In the line disconnector container 25a, the same kind of insulating gas as that in the circuit breaker container 10a is sealed. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. The gas section 25b in the line disconnector container 25a is partitioned from the gas section 22b in the instrument current transformer container 22a, and is therefore partitioned from the gas section 10c in the circuit breaker container 10a.
 次に、ユニット5間の接続態様について説明する。ユニット5は、ユニット配列方向に複数個配列されている。図2では、例えば2個のユニット5を示している。また、母線17,18は、ユニット配列方向に延伸している。母線17は、隣接するユニット5の母線断路器15同士を接続する。母線18は、隣接するユニット5の母線断路器16同士を接続する。 Next, the connection mode between the units 5 will be described. A plurality of units 5 are arranged in the unit arrangement direction. In FIG. 2, for example, two units 5 are shown. The bus bars 17 and 18 extend in the unit arrangement direction. The bus 17 connects the bus disconnectors 15 of adjacent units 5. A bus 18 connects the bus disconnectors 16 of adjacent units 5.
 母線17は、母線容器17a内に導体(図示せず)を収納して構成される。母線容器17aには、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。なお、ユニット配列方向に隣接する母線断路器15間の母線容器17aは、隣接する母線断路器15の一方または双方のガス区画15bからガス区画されていてもよいし、一方または双方と同一のガス区画を構成していてもよい。 The bus bar 17 is configured by accommodating a conductor (not shown) in the bus bar container 17a. The bus bar container 17a is sealed with the same type of insulating gas as in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. Note that the bus container 17a between the bus disconnectors 15 adjacent in the unit arrangement direction may be gas-divided from one or both gas sections 15b of the adjacent bus disconnector 15, or the same gas as one or both You may comprise the division.
 母線18は、母線容器18a内に導体(図示せず)を収納して構成される。母線容器18aには、遮断器容器10a内と同種の絶縁ガスが密封されている。すなわち、絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスである。ガス圧は、定格ガス圧または最低保障ガス圧を満たすように設定される。この混合ガスは、例えば乾燥空気である。隣接する母線断路器16間の母線容器18aは、例えば、これらの母線断路器16のガス区画16bからガス区画されている。 The bus bar 18 is configured by housing a conductor (not shown) in the bus bar container 18a. The bus container 18a is sealed with the same type of insulating gas as that in the circuit breaker container 10a. That is, the insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less. The gas pressure is set so as to satisfy the rated gas pressure or the minimum guaranteed gas pressure. This mixed gas is, for example, dry air. The bus container 18a between the adjacent bus disconnectors 16 is gas-divided from the gas compartment 16b of these bus disconnectors 16, for example.
 次に、本実施の形態におけるガス圧の設定方法について説明する。まず、遮断器容器10a内のガス圧と、計器用変流器容器22a内のガス圧と、線路断路器容器25a内のガス圧は互いに等しい。また、母線断路器容器15a内のガス圧と、母線容器17a内のガス圧と、母線断路器容器16a内のガス圧と、母線容器18a内のガス圧は互いに等しい。さらに、母線断路器容器15a,16a内のガス圧および母線容器17a,18a内のガス圧は、遮断器容器10a内のガス圧、計器用変流器容器22a内のガス圧、および線路断路器容器25a内のガス圧よりも高い。 Next, a gas pressure setting method in the present embodiment will be described. First, the gas pressure in the circuit breaker container 10a, the gas pressure in the instrument current transformer container 22a, and the gas pressure in the line disconnector container 25a are equal to each other. Further, the gas pressure in the bus disconnector container 15a, the gas pressure in the busbar container 17a, the gas pressure in the bus disconnector container 16a, and the gas pressure in the busbar container 18a are equal to each other. Further, the gas pressure in the bus disconnector containers 15a, 16a and the gas pressure in the busbar containers 17a, 18a are the gas pressure in the circuit breaker container 10a, the gas pressure in the current transformer container 22a, and the line disconnector. It is higher than the gas pressure in the container 25a.
 すなわち、本実施の形態では、線路側の圧力容器(計器用変流器容器22a、線路断路器容器25a)内のガス圧は遮断器容器10a内のガス圧に等しく、かつ、母線側の圧力容器(母線断路器容器15a,16a、母線容器17a,18a)内のガス圧は遮断器容器10a内のガス圧よりも高く設定される。母線断路器容器15a,16a内のガス圧は例えば0.4MPa・absであり、遮断器容器10a内のガス圧は例えば0.15MPa・absである。 That is, in this embodiment, the gas pressure in the line-side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) is equal to the gas pressure in the circuit breaker vessel 10a and the bus-side pressure is The gas pressure in the containers ( bus disconnector containers 15a and 16a, busbar containers 17a and 18a) is set higher than the gas pressure in the circuit breaker container 10a. The gas pressure in the bus disconnector containers 15a and 16a is, for example, 0.4 MPa · abs, and the gas pressure in the circuit breaker container 10a is, for example, 0.15 MPa · abs.
 上記のように、圧力設定をする理由は次の通りである。図1および図2に示す機器構成のもとで、絶縁ガスを従来のSFガスから本実施の形態の混合ガス(窒素ガスおよび地球温暖化係数が1以下のガスを主成分とするガス)に変更する場合を考える。電流仕様から母線側の機器は線路側の機器よりもより高い絶縁耐力が要求される。そのため、母線側の機器についてはガス圧を増大させるかあるいは圧力容器のサイズを大きくすることにより絶縁性能を確保する必要があるが、線路側の機器についてはガス圧および圧力容器のサイズのいずれも変更することなく絶縁性能を確保することが可能である。そこで、本実施の形態では、母線側の圧力容器(母線断路器容器15a,16a、母線容器17a,18a)内のガス圧のみを遮断器容器10a内のガス圧よりも高く設定し、かつ、線路側の圧力容器(計器用変流器容器22a、線路断路器容器25a)内のガス圧は遮断器容器10a内のガス圧と等しくすることにより、ユニット間の距離を従来と同一にすることができる。 As described above, the reason for setting the pressure is as follows. Under the equipment configuration shown in FIGS. 1 and 2, the insulating gas is changed from the conventional SF 6 gas to the mixed gas of the present embodiment (a gas mainly composed of nitrogen gas and a gas having a global warming potential of 1 or less). Consider the case of changing to From the current specification, the bus-side device is required to have higher dielectric strength than the track-side device. For this reason, it is necessary to ensure insulation performance by increasing the gas pressure or increasing the size of the pressure vessel for the bus side device, but for both the gas pressure and the pressure vessel size for the line side device. It is possible to ensure insulation performance without change. Therefore, in the present embodiment, only the gas pressure in the bus-side pressure vessel ( bus disconnector vessel 15a, 16a, bus vessel vessel 17a, 18a) is set higher than the gas pressure in the circuit breaker vessel 10a, and By making the gas pressure in the line side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) equal to the gas pressure in the circuit breaker vessel 10a, the distance between the units is made the same as before. Can do.
 この際、線路側の圧力容器(計器用変流器容器22a、線路断路器容器25a)内のガス圧は増大しないので、線路側の圧力容器(計器用変流器容器22a、線路断路器容器25a)の板厚を厚くする必要がなく、線路側の機器の重量の増大を抑制することができる。これにより、コストの増大も抑制できる。また、ユニット間の距離は従来と同じなので、ガス絶縁開閉装置1の設置面積が増大することもない。 At this time, the gas pressure in the line-side pressure container (instrument current transformer container 22a, line disconnector container 25a) does not increase, so the line side pressure container (instrument current transformer container 22a, line disconnector container) It is not necessary to increase the plate thickness of 25a), and an increase in the weight of the equipment on the line side can be suppressed. Thereby, the increase in cost can also be suppressed. Further, since the distance between the units is the same as the conventional one, the installation area of the gas insulated switchgear 1 does not increase.
 これに対し、特許文献1または2に記載のガス圧の設定方法によれば、真空遮断器以外の機器が収納される容器内のガス圧が、一律に真空遮断器が収納される容器内のガス圧よりも高く設定されている。すなわち、母線側の圧力容器内のガス圧のみならず、線路側の圧力容器内のガス圧も、真空遮断器が収納される容器内のガス圧よりも高く設定されている。そのため、母線側の圧力容器および線路側の圧力容器のいずれも板厚を厚くする必要があり、機器の重力が増大し、コストも増大することとなる。 On the other hand, according to the gas pressure setting method described in Patent Document 1 or 2, the gas pressure in the container in which the equipment other than the vacuum circuit breaker is stored is uniformly in the container in which the vacuum circuit breaker is stored. It is set higher than the gas pressure. That is, not only the gas pressure in the pressure vessel on the busbar side but also the gas pressure in the pressure vessel on the line side is set higher than the gas pressure in the vessel in which the vacuum circuit breaker is housed. Therefore, it is necessary to increase the thickness of both the bus-side pressure vessel and the track-side pressure vessel, which increases the gravity of the equipment and increases the cost.
 以上説明したように、本実施の形態によれば、SFガスが使用された場合と同一のユニット間の距離を保ちつつ、SFガスを使用しないことによる環境調和、ならびに、機器の小型および軽量化を実現することができる。 As described above, according to this embodiment, while maintaining the distance between the same units in the case of SF 6 gas is used, environmentally friendly by not using SF 6 gas, as well as small equipment and Weight reduction can be realized.
 なお、本実施の形態では、真空遮断器10はいわゆる縦型であり、遮断器容器10aの軸方向が設置面90に対して垂直となるように配置されているが、本実施の形態は、真空遮断器10がいわゆる横型であり、遮断器容器10aの軸方向が設置面90に対して平行となるように配置されている場合にも同様に適用することができる。 In the present embodiment, the vacuum circuit breaker 10 is a so-called vertical type and is arranged so that the axial direction of the circuit breaker container 10a is perpendicular to the installation surface 90. However, in the present embodiment, The same can be applied to the case where the vacuum circuit breaker 10 is a so-called horizontal type and is arranged so that the axial direction of the circuit breaker container 10a is parallel to the installation surface 90.
実施の形態2.
 図3は、本実施の形態に係るガス絶縁開閉装置の構成を示す縦断面図である。ガス絶縁開閉装置2は、複数のユニット6を母線17,18で互いに接続して構成されている。
Embodiment 2. FIG.
FIG. 3 is a longitudinal sectional view showing a configuration of the gas insulated switchgear according to the present embodiment. The gas insulated switchgear 2 is configured by connecting a plurality of units 6 to each other through buses 17 and 18.
 ユニット6の構成は、遮断器容器10a内の構成を除き、図1に示す構成と同じである。また、ユニット6間の接続態様も、図2と同じである。そのため、以下では、主に図1との差異について説明する。また、図3では図1と同一の構成要素には同一の符号を付している。 The configuration of the unit 6 is the same as the configuration shown in FIG. 1 except for the configuration in the circuit breaker container 10a. The connection mode between the units 6 is also the same as that in FIG. Therefore, hereinafter, differences from FIG. 1 will be mainly described. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals.
 図3に示すように、ユニット6は、遮断器容器10aと、遮断器容器10a内に収納される真空遮断器10と、遮断器容器10a内に収納される母線側の計器用変流器19とを備えている。 As shown in FIG. 3, the unit 6 includes a circuit breaker container 10a, a vacuum circuit breaker 10 housed in the circuit breaker container 10a, and an instrument current transformer 19 on the busbar side housed in the circuit breaker container 10a. And.
 遮断器容器10aは、筒状(例えば円筒状)の金属容器である。遮断器容器10aは、軸方向に長尺であり、軸方向が設置面90に対して垂直になるように配置されている。遮断器容器10a内には、絶縁ガスとして、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスが密封されている。なお、線路側の圧力容器(計器用変流器容器22a、線路断路器容器25a)内のガス圧は遮断器容器10a内のガス圧に等しく、かつ、母線側の圧力容器(母線断路器容器15a,16a、母線容器17a,18a)内のガス圧は遮断器容器10a内のガス圧よりも高く設定される点は、実施の形態1と同じである。 The circuit breaker container 10a is a cylindrical (for example, cylindrical) metal container. The circuit breaker container 10 a is long in the axial direction, and is arranged so that the axial direction is perpendicular to the installation surface 90. In the circuit breaker container 10a, as an insulating gas, a mixed gas having a pressure equal to or higher than the atmospheric pressure mainly containing nitrogen gas and a gas having a global warming potential of 1 or less is sealed. The gas pressure in the line-side pressure vessel (instrument current transformer vessel 22a, line disconnector vessel 25a) is equal to the gas pressure in the circuit breaker vessel 10a, and the bus-side pressure vessel (bus disconnector vessel). The gas pressure in 15a, 16a and busbar containers 17a, 18a) is the same as that of the first embodiment in that the gas pressure in the circuit breaker container 10a is set higher.
 真空遮断器10は、遮断器容器10a内で、計器用変流器19よりも下方に配置されている。計器用変流器19は、遮断器容器10aの上端部に配置されている。 The vacuum circuit breaker 10 is disposed below the current transformer 19 in the circuit breaker container 10a. The measuring instrument current transformer 19 is arrange | positioned at the upper end part of the circuit breaker container 10a.
 真空遮断器10は、真空遮断器10の長手方向が遮断器容器10aの軸方向に対して傾斜するように配置されている。詳細には、真空遮断器10は、真空遮断器10の上端部が線路断路器25の側に向うように真空遮断器10の長手方向が遮断器容器10aの軸方向に対して傾斜するようにして配置されている。真空遮断器10の長手方向は遮断方向である。 The vacuum circuit breaker 10 is arranged so that the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a. Specifically, the vacuum circuit breaker 10 is configured such that the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a so that the upper end of the vacuum circuit breaker 10 faces the line disconnector 25 side. Are arranged. The longitudinal direction of the vacuum circuit breaker 10 is the breaking direction.
 遮断器容器10a内では、母線断路器15,16と真空遮断器10とを接続する導体40が引き回されている。計器用変流器19は、導体40を周回する環状のコイルを備えており、導体40を流れる電流を計測する。導体40は、母線断路器15,16に接続される軸平行部40aと、真空遮断器10に接続される軸平行部40bとを備えている。ここで、軸平行部40a,40bは遮断器容器10aの軸方向に平行な部分であり、これらの間には一定の距離が確保されている。導体40は、母線断路器15,16から軸平行部40aに沿って上方へ引き回され、遮断器容器10aの上端部で折り曲げられ、さらに、軸平行部40bに沿って下方へ引き回される。そして、軸平行部40bは、真空遮断器10の上端部に接続される。この際、真空遮断器10の上端部は、線路断路器25の側に傾斜しているので、軸平行部40bの端部を容易に真空遮断器10の上端部の側面に接続することができる。また、真空遮断器10の下端部に接続された導体41が、遮断器容器10a内を引き回されて、計器用変流器容器22a内の導体23に接続される。 In the circuit breaker container 10a, a conductor 40 that connects the bus disconnectors 15 and 16 and the vacuum circuit breaker 10 is routed. The instrument current transformer 19 includes an annular coil that circulates around the conductor 40, and measures the current flowing through the conductor 40. The conductor 40 includes an axis parallel part 40 a connected to the bus disconnectors 15 and 16 and an axis parallel part 40 b connected to the vacuum circuit breaker 10. Here, the axis parallel parts 40a and 40b are parts parallel to the axial direction of the circuit breaker container 10a, and a certain distance is secured between them. The conductor 40 is routed upward along the axis parallel portion 40a from the bus disconnectors 15 and 16, bent at the upper end portion of the circuit breaker container 10a, and further routed downward along the axis parallel portion 40b. . The axis parallel part 40 b is connected to the upper end part of the vacuum circuit breaker 10. At this time, since the upper end portion of the vacuum circuit breaker 10 is inclined toward the line disconnector 25, the end portion of the axis parallel portion 40b can be easily connected to the side surface of the upper end portion of the vacuum circuit breaker 10. . The conductor 41 connected to the lower end of the vacuum circuit breaker 10 is routed around the circuit breaker container 10a and connected to the conductor 23 in the instrument current transformer container 22a.
 このように、本実施の形態では、真空遮断器10の両側に計器用変流器19,23を備えた構成において、母線側の計器用変流器19を遮断器容器10a内に配置している。さらに、遮断器容器10a内では、真空遮断器10の長手方向を遮断器容器10aの軸線方向に対して傾斜させている。こうすることで、遮断器容器10a内で引き回された導体40の軸平行部40a,40b間に絶縁性能上必要な間隔を確保することができる。 As described above, in the present embodiment, in the configuration in which the instrument current transformers 19 and 23 are provided on both sides of the vacuum circuit breaker 10, the bus-side instrument current transformer 19 is disposed in the circuit breaker container 10a. Yes. Furthermore, in the circuit breaker container 10a, the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a. By doing so, it is possible to secure a necessary interval in terms of insulation performance between the axis parallel portions 40a and 40b of the conductor 40 routed in the circuit breaker container 10a.
 次に、比較例について説明する。図4は、比較例に係るガス絶縁開閉装置の構成を示す縦断面図である。ガス絶縁開閉装置3は、複数のユニット7を母線17,18で互いに接続して構成されている。ユニット7の構成は、遮断器容器10a内の構成を除き、図3に示す構成と同じである。また、ユニット7間の接続態様も、図2と同じである。そのため、以下では、主に図3との差異について説明する。また、図4では図3と同一の構成要素には同一の符号を付している。 Next, a comparative example will be described. FIG. 4 is a longitudinal sectional view showing a configuration of a gas insulated switchgear according to a comparative example. The gas insulated switchgear 3 is configured by connecting a plurality of units 7 to each other through buses 17 and 18. The structure of the unit 7 is the same as the structure shown in FIG. 3 except for the structure in the circuit breaker container 10a. The connection mode between the units 7 is also the same as that in FIG. Therefore, hereinafter, differences from FIG. 3 will be mainly described. In FIG. 4, the same components as those in FIG. 3 are denoted by the same reference numerals.
 図4に示すように、ユニット7は、遮断器容器10aと、遮断器容器10a内に収納される真空遮断器10と、遮断器容器10a内に収納される母線側の計器用変流器19とを備えている。真空遮断器10は、遮断器容器10a内で、計器用変流器19よりも下方に配置されている。真空遮断器10は、導体42により母線断路器15,16に接続され、導体43により計器用変流器容器22a内の導体23に接続されている。 As shown in FIG. 4, the unit 7 includes a circuit breaker container 10a, a vacuum circuit breaker 10 housed in the circuit breaker container 10a, and an instrument current transformer 19 on the busbar side housed in the circuit breaker container 10a. And. The vacuum circuit breaker 10 is disposed below the instrument current transformer 19 in the circuit breaker container 10a. The vacuum circuit breaker 10 is connected to the bus disconnectors 15 and 16 by a conductor 42, and is connected to the conductor 23 in the instrument current transformer container 22a by a conductor 43.
 ただし、本比較例では、真空遮断器10の長手方向は遮断器容器10aの軸線方向と平行である。そのため、母線断路器15,16と真空遮断器10とを接続する導体42の引き回し経路が図3とは異なる。詳細には、導体42は、母線断路器15,16に接続される軸平行部42aと、真空遮断器10に接続される軸平行部42bとを備えているが、真空遮断器10の長手方向が遮断器容器10aの軸線方向に対して傾斜していないので、遮断器容器10aの径が図3と同一の場合には、軸平行部42a,42bが互いに近接していまい、絶縁距離を確保することが困難となる。軸平行部42a,42b間で一定の絶縁距離を確保するためには、遮断器容器10aの径をより大きくする必要があり、機器の大型化につながる。 However, in this comparative example, the longitudinal direction of the vacuum circuit breaker 10 is parallel to the axial direction of the circuit breaker container 10a. Therefore, the routing route of the conductor 42 that connects the bus disconnectors 15, 16 and the vacuum circuit breaker 10 is different from that in FIG. 3. Specifically, the conductor 42 includes an axis parallel portion 42 a connected to the bus disconnectors 15, 16 and an axis parallel portion 42 b connected to the vacuum circuit breaker 10. Is not inclined with respect to the axial direction of the circuit breaker container 10a. Therefore, when the diameter of the circuit breaker container 10a is the same as that in FIG. 3, the axis parallel portions 42a and 42b are close to each other, and an insulation distance is secured. Difficult to do. In order to ensure a constant insulation distance between the axis parallel parts 42a and 42b, it is necessary to increase the diameter of the circuit breaker container 10a, leading to an increase in the size of the device.
 また、図4では、軸平行部42bの端部を真空遮断器10の上端部に接続する際に、軸平行部42bの端部を径方向に折り曲げて真空遮断器10の上端部の側面に接続する必要がある。したがって、導体42の引き回しが複雑になる。これに対し、図3では、軸平行部40bの端部を折り曲げることなく真空遮断器10の上端部の側面に接続することができるので、導体40の引き回しが簡素化される。 Further, in FIG. 4, when connecting the end portion of the shaft parallel portion 42 b to the upper end portion of the vacuum circuit breaker 10, the end portion of the shaft parallel portion 42 b is bent in the radial direction to the side surface of the upper end portion of the vacuum circuit breaker 10. Need to connect. Therefore, the routing of the conductor 42 is complicated. On the other hand, in FIG. 3, since it can connect to the side surface of the upper end part of the vacuum circuit breaker 10 without bending the edge part of the axial parallel part 40b, the routing of the conductor 40 is simplified.
 以上説明したように、本実施の形態では、真空遮断器10の両側に計器用変流器19,23を設置する構成において、真空遮断器10の長手方向を遮断器容器10aの軸方向に対して傾斜させ、母線側の計器用変流器19を遮断器容器10a内に配置するようにしている。 As described above, in the present embodiment, in the configuration in which the current transformers 19 and 23 are installed on both sides of the vacuum circuit breaker 10, the longitudinal direction of the vacuum circuit breaker 10 is set to the axial direction of the circuit breaker container 10a. The instrument current transformer 19 on the bus side is disposed in the circuit breaker container 10a.
 そのため、計器用変流器19を遮断器容器10a外に設ける構成に比べて、ユニット長(図3における左右方向のユニット7の長さ)を抑制することができる。また、図4の場合に比べて、導体42の引き回しが簡素化され、遮断器容器10aの径を拡大することなく、計器用変流器19を遮断器容器10a内に配置することができ、機器の小型化が可能となる。 Therefore, the unit length (the length of the unit 7 in the left-right direction in FIG. 3) can be suppressed as compared with the configuration in which the instrument current transformer 19 is provided outside the circuit breaker container 10a. Further, compared to the case of FIG. 4, the routing of the conductor 42 is simplified, and the instrument current transformer 19 can be disposed in the circuit breaker container 10 a without enlarging the diameter of the circuit breaker container 10 a. Equipment can be downsized.
 なお、本実施の形態では、真空遮断器10を遮断器容器10a内の下端部に配置し、計器用変流器19を遮断器容器10a内の上端部に配置しているが、真空遮断器10と計器用変流器19の配置を相互に入れ替えることも可能である。この場合、真空遮断器10の下端部が線路断路器25の側に向うように真空遮断器10の長手方向が遮断器容器10aの軸方向に対して傾斜するようにして配置すればよい。ただし、遮断器操作装置11は、設置面90上に配置されているので、本実施の形態の配置構成がより好ましい。 In the present embodiment, the vacuum circuit breaker 10 is arranged at the lower end in the circuit breaker container 10a, and the current transformer 19 is arranged at the upper end in the circuit breaker container 10a. It is also possible to interchange the arrangement of the current transformer 10 and the instrument current transformer 19 with each other. In this case, the vacuum circuit breaker 10 may be arranged so that the lower end portion of the vacuum circuit breaker 10 faces the line disconnector 25 and the longitudinal direction of the vacuum circuit breaker 10 is inclined with respect to the axial direction of the circuit breaker container 10a. However, since the circuit breaker operating device 11 is arranged on the installation surface 90, the arrangement configuration of the present embodiment is more preferable.
 本実施の形態のその他の構成、作用効果は実施の形態1と同様である。 Other configurations and operational effects of the present embodiment are the same as those of the first embodiment.
 以上のように、本発明は、ガス絶縁開閉装置として有用である。 As described above, the present invention is useful as a gas insulated switchgear.
 1,2,3 ガス絶縁開閉装置、5,6,7 ユニット、10 真空遮断器、10a 遮断器容器、10b 真空容器、10c,15b,16b,22b,25b ガス区画、11 遮断器操作装置、15,16 母線断路器、15a,16a 母線断路器容器、15c,16c 母線断路器操作装置、17,18 母線、17a,18a 母線容器、19,22 計器用変流器、20,21,23,40,41,42,43 導体、22a 計器用変流器容器、25 線路断路器、25a 線路断路器容器、26 接地開閉器、27 避雷器、28 計器用変圧器、29 ケーブルヘッド、30 ケーブル、40a,40b,42a,42b 軸平行部、50,51 架台、90 設置面。 1, 2, 3 gas insulated switchgear, 5, 6, 7 units, 10 vacuum circuit breaker, 10a circuit breaker container, 10b vacuum container, 10c, 15b, 16b, 22b, 25b gas compartment, 11 circuit breaker operating device, 15 , 16 Bus disconnector, 15a, 16a Bus disconnector container, 15c, 16c Bus disconnector operating device, 17, 18 busbar, 17a, 18a busbar container, 19, 22 Instrument current transformer, 20, 21, 23, 40 , 41, 42, 43 conductor, 22a current transformer container, 25 line disconnector, 25a line disconnector container, 26 ground switch, 27 lightning arrester, 28 instrument transformer, 29 cable head, 30 cable, 40a, 40b, 42a, 42b Axis parallel part, 50, 51 frame, 90 installation surface.

Claims (3)

  1.  真空遮断器と、この真空遮断器が収納されると共に絶縁ガスが密封された遮断器容器と、前記真空遮断器に接続された母線断路器と、前記遮断器容器からガス区画され、前記母線断路器が収納されると共に前記絶縁ガスが密封された母線断路器容器と、前記真空遮断器に接続された線路断路器と、前記遮断器容器および前記母線断路器容器からガス区画され、前記線路断路器が収納されると共に前記絶縁ガスが密封された線路断路器容器と、をそれぞれ備えた複数のユニットが母線の延伸方向に配列され、前記各ユニットの母線断路器が前記母線で互いに接続されて成るガス絶縁開閉装置であって、
     前記母線は、前記絶縁ガスが密封された母線容器内に収納されており、
     前記絶縁ガスは、窒素ガスおよび地球温暖化係数が1以下のガスを主成分とする大気圧以上の混合ガスであり、
     前記遮断器容器内のガス圧は前記線路断路器容器内のガス圧に等しく、
     前記母線容器内のガス圧は前記母線断路器容器内のガス圧に等しく、
     前記母線断路器容器内のガス圧および前記母線容器内のガス圧は、前記遮断器容器内のガス圧および前記線路断路器容器内のガス圧よりも高いこと
     を特徴とするガス絶縁開閉装置。
    A vacuum circuit breaker, a circuit breaker container in which the vacuum circuit breaker is housed and sealed with an insulating gas, a bus disconnector connected to the vacuum circuit breaker, and a gas compartment from the circuit breaker container, the bus disconnection A bus disconnector container in which the insulation gas is sealed, a line disconnector connected to the vacuum circuit breaker, a gas compartment from the circuit breaker container and the bus disconnector container, and the line disconnector A plurality of units each including a line disconnector container in which the insulating gas is sealed and in which the insulating gas is sealed are arranged in the extending direction of the bus, and the bus disconnectors of each unit are connected to each other by the bus A gas insulated switchgear comprising:
    The bus is housed in a bus container in which the insulating gas is sealed,
    The insulating gas is a mixed gas having a pressure equal to or higher than atmospheric pressure, the main component of which is nitrogen gas and a gas having a global warming potential of 1 or less,
    The gas pressure in the circuit breaker vessel is equal to the gas pressure in the line disconnector vessel,
    The gas pressure in the busbar container is equal to the gas pressure in the busbar disconnector container,
    The gas insulated switchgear characterized in that the gas pressure in the bus disconnector container and the gas pressure in the bus container are higher than the gas pressure in the circuit breaker container and the gas pressure in the line disconnector container.
  2.  前記遮断器容器は、当該遮断器容器の軸方向に長尺の筒状であると共に、前記軸方向が当該遮断器容器の設置面に対して垂直になるように配置されており、
     前記遮断器容器内の上端部には、前記母線断路器と前記真空遮断器との間を接続する導体に流れる電流を計測する母線側の計器用変流器が配置されており、
     前記真空遮断器は、前記母線側の計器用変流器よりも下方に配置されるとともに、当該真空遮断器の上端部が前記線路断路器の側に向うように当該真空遮断器の長手方向が前記軸方向に対して傾斜するようにして配置されていることを特徴とする請求項1に記載のガス絶縁開閉装置。
    The circuit breaker container has a cylindrical shape elongated in the axial direction of the circuit breaker container, and is arranged so that the axial direction is perpendicular to the installation surface of the circuit breaker container,
    On the upper end of the circuit breaker vessel, a measuring instrument current transformer on the bus side for measuring the current flowing in the conductor connecting the bus disconnecting switch and the vacuum circuit breaker is arranged,
    The vacuum circuit breaker is disposed below the instrument current transformer on the bus side, and the longitudinal direction of the vacuum circuit breaker is such that the upper end of the vacuum circuit breaker faces the line disconnector side. The gas insulated switchgear according to claim 1, wherein the gas insulated switchgear is disposed so as to be inclined with respect to the axial direction.
  3.  前記真空遮断器と前記線路断路器との間には、前記真空遮断器と前記線路断路器との間を接続する導体に流れる電流を計測する線路側の計器用変流器が配置されており、
     前記線路側の計器用変流器は、前記遮断器容器と前記線路断路器容器とを接続する計器用変流器容器内に収納されており、
     前記計器用変流器容器内には前記絶縁ガスが密封されており、
     前記計器用変流器容器内のガス圧は前記線路断路器容器内のガス圧に等しいことを特徴とする請求項2に記載のガス絶縁開閉装置。
    Between the vacuum circuit breaker and the line disconnector, a line-side instrument current transformer for measuring a current flowing in a conductor connecting the vacuum circuit breaker and the line disconnector is disposed. ,
    The line-side instrument current transformer is housed in an instrument current transformer container that connects the circuit breaker container and the line disconnector container,
    The insulating gas is sealed in the current transformer container for the instrument,
    The gas insulated switchgear according to claim 2, wherein the gas pressure in the instrument current transformer container is equal to the gas pressure in the line disconnector container.
PCT/JP2013/062080 2013-04-24 2013-04-24 Gas-insulated switching device WO2014174612A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/062080 WO2014174612A1 (en) 2013-04-24 2013-04-24 Gas-insulated switching device
JP2013541130A JP5452780B1 (en) 2013-04-24 2013-04-24 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/062080 WO2014174612A1 (en) 2013-04-24 2013-04-24 Gas-insulated switching device

Publications (1)

Publication Number Publication Date
WO2014174612A1 true WO2014174612A1 (en) 2014-10-30

Family

ID=50614546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062080 WO2014174612A1 (en) 2013-04-24 2013-04-24 Gas-insulated switching device

Country Status (2)

Country Link
JP (1) JP5452780B1 (en)
WO (1) WO2014174612A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112608B1 (en) * 2021-04-30 2022-08-03 株式会社東光高岳 voltage transformer
WO2022230245A1 (en) * 2021-04-30 2022-11-03 株式会社東光高岳 Measurement instrument transformer
JP7298803B1 (en) 2022-09-20 2023-06-27 株式会社明電舎 gas insulated switchgear
WO2024062660A1 (en) * 2022-09-20 2024-03-28 株式会社明電舎 Gas insulated switchgear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141911A (en) * 1985-12-13 1987-06-25 日新電機株式会社 Gas insulated switchgear
JPH1118223A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Gas insulation switch gear
JP2005094903A (en) * 2003-09-17 2005-04-07 Hitachi Ltd Gas insulated switchgear
JP2005304224A (en) * 2004-04-14 2005-10-27 Nissin Electric Co Ltd Gas-insulated switchgear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141911A (en) * 1985-12-13 1987-06-25 日新電機株式会社 Gas insulated switchgear
JPH1118223A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Gas insulation switch gear
JP2005094903A (en) * 2003-09-17 2005-04-07 Hitachi Ltd Gas insulated switchgear
JP2005304224A (en) * 2004-04-14 2005-10-27 Nissin Electric Co Ltd Gas-insulated switchgear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7112608B1 (en) * 2021-04-30 2022-08-03 株式会社東光高岳 voltage transformer
WO2022230245A1 (en) * 2021-04-30 2022-11-03 株式会社東光高岳 Measurement instrument transformer
JP7298803B1 (en) 2022-09-20 2023-06-27 株式会社明電舎 gas insulated switchgear
WO2024062660A1 (en) * 2022-09-20 2024-03-28 株式会社明電舎 Gas insulated switchgear

Also Published As

Publication number Publication date
JP5452780B1 (en) 2014-03-26
JPWO2014174612A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4512648B2 (en) Switchgear
EP2947733B1 (en) Gas-insulated switch gear
JP2009505627A (en) Insulator for medium voltage switchgear
JP5452780B1 (en) Gas insulated switchgear
JPWO2008075436A1 (en) Gas insulated switchgear
JPH0770276B2 (en) Gas circuit breaker
JP4490486B2 (en) High voltage switchgear assembly
JP2007028776A (en) Gas insulated switchgear
JP2003199220A (en) Bus container and gas-insulated switchgear utilizing it
JP2005261004A (en) Gas insulated switchgear
JP2018201291A (en) Three-phase package type gas circuit breaker
KR20030076180A (en) Gas insulation switch
JP6623622B2 (en) Gas insulated switchgear
JP3203676U (en) Gas insulated switchgear
JP6190442B2 (en) Gas insulated switchgear
JP5269273B1 (en) Gas insulated switchgear
JP5546425B2 (en) Gas insulated switchgear
CN111886763B (en) Compact circuit breaker for gas-insulated switchgear
JP4397671B2 (en) Gas insulated switchgear
JP2011234463A (en) Gas-insulated switchgear
JP5025536B2 (en) Gas insulated switchgear
JPH11146519A (en) Gas-insulated switchgear
JP2012231576A (en) Gas insulated switchgear
JP2000253519A (en) Gas-insulated switch device
JPH10257624A (en) Gas-insulated switchgear

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013541130

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883161

Country of ref document: EP

Kind code of ref document: A1