WO2014174574A1 - Material testing device, and test piece holder and inspection method used in same - Google Patents

Material testing device, and test piece holder and inspection method used in same Download PDF

Info

Publication number
WO2014174574A1
WO2014174574A1 PCT/JP2013/061789 JP2013061789W WO2014174574A1 WO 2014174574 A1 WO2014174574 A1 WO 2014174574A1 JP 2013061789 W JP2013061789 W JP 2013061789W WO 2014174574 A1 WO2014174574 A1 WO 2014174574A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
light
light source
target range
observation target
Prior art date
Application number
PCT/JP2013/061789
Other languages
French (fr)
Japanese (ja)
Inventor
泰範 川口
田窪 健二
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2013/061789 priority Critical patent/WO2014174574A1/en
Publication of WO2014174574A1 publication Critical patent/WO2014174574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Definitions

  • the present invention relates to a material test apparatus for observing the strength of a test piece formed of a light-transmitting material such as glass or resin (plastic), and a test piece holder and an inspection method used therefor.
  • FIG. 3A is a diagram for explaining a three-point bending strength test
  • FIG. 3B is a diagram for explaining a four-point bending strength test.
  • a plate-shaped test is performed with the tip of the pressure body (anvil) 101 as a load point and the tips of the two supports (anvils) 103 as fulcrums. The maximum bending stress when the piece 102 is bent by applying a load W is measured.
  • FIG. 3A in the three-point bending strength test, a plate-shaped test is performed with the tip of the pressure body (anvil) 101 as a load point and the tips of the two supports (anvils) 103 as fulcrums. The maximum bending stress when the piece 102 is bent by applying a load W is measured.
  • the tips of the two pressure bodies (anvils) 101 are used as the load points, and the tips of the two support bodies (anvils) 103 are used as the fulcrums.
  • the maximum bending stress when the plate-shaped test piece 102 is bent by applying a load W is measured.
  • FIG. 4 is a schematic configuration diagram showing a conventional material testing apparatus for performing a four-point bending strength test.
  • One direction horizontal to the ground is defined as an X direction
  • a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction
  • a direction perpendicular to the X direction and the Y direction is defined as a Z direction.
  • the material test apparatus 101 includes a machine base 7, a casing 14 that rotatably supports two screw shafts 5 and 13 whose vertical direction (Z direction) is a rotation axis, and a central portion on the upper surface of the machine base 7.
  • a motor 4 controlled by a control signal from the arithmetic control unit 3, a belt 61 that transmits the rotational force from the motor 4 to the screw shafts 5 and 13, and an interlocking pulley 62 are connected.
  • a gear mechanism 6 is arranged. Thereby, when the motor 4 rotates, the two screw shafts 5 and 13 rotate, and the crosshead 8 is moved in the vertical direction with respect to the machine base 7.
  • Two plate-like supports (anvils) 111 that are parallel to each other are formed on the upper surface of the support 112 so as to be aligned in the X direction.
  • X-direction distance between the two support 111 has a R 1 (e.g., 10 cm).
  • two plate-like pressurizing bodies (anvils) 110 are formed on the lower surface of the load cell 109 so as to be aligned in the X direction.
  • X-direction distance between the two pressing body 110, 110 has a short R 2 (e.g. 5 cm) than R 1 described above.
  • the plate-shaped test piece 2 is placed with the upper ends of the two supports 111 as a fulcrum and the lower ends of the two pressurizers 110 are supported by the support 111 and the pressurizer 110. As a load point, a load W is applied to a predetermined part of the test piece 2.
  • the material test apparatus 101 is used to detect the moment when the test piece 2 is cracked and broken, and the detection method includes acoustic emission (acoustic sound) generated at the moment of breakage. Output) via a microphone (for example, see Patent Document 1) and a method for detecting a sudden change in the load W (test force) applied to the test piece 2 (for example, see Patent Document 2). Is used. In addition to observing not only the moment of destruction but also the state of occurrence and progress of the destruction by continuing to shoot with a high-speed video camera (imaging device) while irradiating light on the observation area of the specimen 2. Has also been done.
  • the only time at which the fracture of the test piece 2 is photographed (recording is completed) is to detect the fracture of the test piece 2.
  • paper is arranged on the back side of the test piece 2, light is irradiated from the front side of the test piece 2 to the observation target range of the test piece 2, and the light transmitted through the test piece 2 is irregularly reflected by the paper.
  • side-illumination epi-illumination
  • the light detected by the high-speed video camera is too diffuse due to reflection by paper. The yield of light is low, and the amount of light necessary for photographing may not be secured.
  • the actual irradiation is about 1 million lux.
  • the time per frame is The amount of light is insufficient because it is as short as 100 nanoseconds.
  • a pulsed light source such as strobe lighting that can obtain a sufficient amount of light can irradiate more than 10 million lux in about 1 to 10 milliseconds. It is necessary to match (timing signal for causing the strobe to emit light), and in such an intensity test, it is impossible to predict the time when the test piece 2 is broken (breaking detection timing).
  • the irradiation time of the light source cannot be matched, it cannot be said that it is an effective means. Furthermore, light is irradiated from the back side of the test piece 2 to the observation target range (the region between the two supports 111 and 111) of the test piece 2 shown in FIG. In the case of transmitted illumination in which the detected light is detected from the front surface side of the test piece 2, it is necessary to arrange an illumination optical system on the back surface side of the test piece 2, but the light from the light source is blocked by the support 111. As a result, the entire observation target range of the test piece 2 may not be irradiated. That is, the conventional material testing apparatus 101 cannot secure a sufficient space for disposing the illumination optical system on the back side of the test piece 2.
  • the present inventors have found that the back side of the test piece is recursive. Light is transmitted through the test piece again by placing a reflective material, irradiating the observation target area of the test piece with light from the surface side of the test piece, retroreflecting the light transmitted through the test piece with the retroreflective material It has been found that it is effective to perform coaxial epi-illumination that detects from the surface side of the test piece.
  • the material testing apparatus includes a support that supports a test piece, a pressurizing body that applies a load to the test piece, and a region to be observed on the test piece that is irradiated with light from the surface side of the test piece.
  • a material testing apparatus comprising: a light source unit configured to detect light from an observation target range of the test piece from a surface side of the test piece; and is disposed between the light source unit and the image sensor.
  • a half mirror that guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the imaging device, and is disposed on the back side of the test piece, and emits light in the same direction as the incident direction.
  • a retroreflective member for retroreflecting the light, and the light from the light source unit is irradiated to the observation target range of the test piece via the half mirror, and the light transmitted through the observation target range of the test piece is recursively After being retroreflected by a reflective member Again transmitted through the object of observation range of the test piece, via the half mirror so that detected on the imaging device.
  • the “predetermined direction” is an arbitrary direction predetermined by a designer or the like, for example, a horizontal direction.
  • the half mirror according to the present invention reflects light from the light source unit in a predetermined direction, transmits light from a direction opposite to the predetermined direction and guides it to the imaging device, or transmits light from the light source unit to the predetermined direction. In addition to being transmitted in the direction, it is possible to reflect light from the direction opposite to the predetermined direction and guide it to the image pickup device, so-called coaxial epi-illumination.
  • the “observation target range” is an arbitrary region determined in advance by a designer or the like, for example, a region surrounded by a support where a crack (crack) progresses due to a strong stress load, or pressurization It becomes an area surrounded by the body.
  • the “surface side of the test piece” may be the upper surface of the test piece or the lower surface of the test piece. Therefore, when the “surface side of the test piece” is the upper surface of the test piece, the “back surface side of the test piece” is the lower surface of the test piece, while the “surface side of the test piece” is the lower surface of the test piece. The “back side of the test piece” is the upper surface of the test piece.
  • the “support” may be any material that can support the test piece, and examples thereof include two plate-like bodies and a cylindrical body.
  • the “pressurizing body” may be anything that can apply a load to the test piece. For example, one or two plate-shaped bodies, a cylindrical body, a rod-shaped piston (columnar shape) Body) and the like.
  • the retroreflective member is arranged on the back side of the test piece instead of the irregular reflection by paper, the light can reach the image pickup device with high yield by utilizing the retroreflectivity of the reflection. As a result, even if a high-speed video camera is used as the image sensor, the amount of light is not insufficient, and the visibility of the image can be improved.
  • the retroreflective member is a flexible plate-like body having a plurality of microprisms formed on the surface, or a flexible plate-like body having a plurality of glass beads arranged on the surface. It may be arranged between the test piece and the support or between the test piece and the pressurizing body. According to the material testing apparatus of the present invention, since the retroreflective member is thin and flexible, it can be sandwiched between the test piece and the support body without being affected by the deformation of the test piece. Furthermore, the configuration of the apparatus can be realized at a low cost.
  • the pressure body is two plate-shaped pressure bodies parallel to each other, and the light from the half mirror is transmitted between the two plate-shaped pressure bodies. You may make it provide the specular reflector which irradiates the observation object range of a test piece, and guides the light from the observation object range of the test piece to the half mirror.
  • the support is two plate-like supports parallel to each other, and the distance between the two plate-like supports is the two plate-like pressures. You may make it shorter than the distance between bodies.
  • the light source unit may be a continuous light source
  • the imaging device may be a high-speed video camera.
  • the “high-speed video camera” is, for example, a camera capable of high-speed shooting with an exposure time of the order of 100 nanoseconds.
  • the test piece holder of the present invention includes a light source unit that irradiates light from the surface side of the test piece to the observation target range of the test piece, and light from the observation target range of the test piece.
  • An image sensor that detects from the light source, and a half that is disposed between the light source unit and the image sensor and guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the image sensor.
  • the inspection method of this invention irradiates light from the surface side of the said test piece to the support body which supports a test piece, the pressurization body which loads a load to the said test piece, and the observation object range of the said test piece
  • a light source unit, an image sensor that detects light from the observation target range of the test piece from the surface side of the test piece, and the light source unit and the image sensor are arranged, and the light from the light source unit is predetermined.
  • the reflected light is the retroreflective part
  • is transmitted through the observation target range of the test piece again via the half mirror is to include a detection step is detected on the imaging device.
  • the schematic block diagram which shows the material testing apparatus which concerns on embodiment of this invention. Sectional drawing of the principal part of the material testing apparatus seen from the direction different from FIG. The figure for demonstrating a bending strength test.
  • the schematic block diagram which shows the conventional material test apparatus.
  • FIG. 1 is a schematic configuration diagram showing a material testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the main part of the material testing apparatus viewed from a direction different from FIG.
  • the test piece 2 used in this embodiment is a glass substrate, and a case where a four-point bending strength test is performed on the glass substrate to observe the breakage of the glass substrate in a bright field will be described.
  • symbol is attached
  • the material testing apparatus 1 is attached to a machine base 7, a casing 14 that rotatably supports two screw shafts 5, 13 whose vertical direction (Z direction) is a rotation axis, and a central portion on the upper surface of the machine base 7.
  • Removable support base 12 (part of the test piece holder) and screw shafts 5 and 13 can be screwed to move up and down with respect to the machine base 7 as the screw shafts 5 and 13 rotate.
  • a load cell 9 (part of the test piece holder) that can be attached to and detached from the center of the lower surface of the cross head 8, a coaxial epi-illumination unit 20 for photographing the test piece 2, and a specular reflector 30 And an arithmetic control unit 3 that performs control and arithmetic processing, and a retroreflecting material 40 (a part of the test piece holder) disposed on the back side of the test piece 2.
  • Two plate-like supports (anvils) 11 that are parallel to each other are formed on the upper surface of the support base 12 so as to be aligned in the X direction.
  • X-direction distance between the two support 11, 11 has R 2 (for example, 5 cm).
  • two plate-like pressure bodies (anvils) 10 that are parallel to each other are formed on the lower surface of the load cell 9 so as to be aligned in the X direction, and the X direction between the two pressure bodies 10 and 10 is formed.
  • the distance is R 1 (for example, 10 cm) longer than R 2 described above.
  • the plate-shaped test piece 2 is placed with the upper end portions of the two support bodies 11 as fulcrums and the lower end portions of the two pressurization bodies 10 by the support body 11 and the pressure body 10.
  • a load W is applied to a predetermined part of the test piece 2 as a load point.
  • the coaxial epi-illumination unit 20 includes a light source unit 21, an image sensor 22, and a flat half mirror 23.
  • the light source unit 21 may be a light source that can obtain a necessary amount of light, and is a continuous light source such as metahalide illumination, for example.
  • a halogen lamp, a xenon lamp, a laser, an LED, a fluorescent lamp, a light bulb, or the like may be used.
  • the wavelength of the emitted light is not specified, and may be white light or light having a specific wavelength. Furthermore, it is not limited to visible light, but may be infrared rays or ultraviolet rays.
  • the image sensor 22 is, for example, a high-speed video CCD camera capable of high-speed shooting with an exposure time on the order of 100 nanoseconds.
  • a solid-state imaging device such as a MOS or CMOS, a photodiode array, or the like may be used.
  • a half mirror is provided in front of the image sensor 22 (Y direction) and below the light source unit 21 ( ⁇ Z direction). 23 is arranged. As a result, 50% of the light beam traveling in the ⁇ Z direction is changed to the Y direction by the half mirror 23, and 50% of the light beam traveling in the ⁇ Y direction is transmitted through the half mirror 23 and guided to the image sensor 22. It has come to be.
  • the specular reflector 30 has a flat plate shape (for example, 5 cm ⁇ 7.1 cm ⁇ 7.1 cm), and is disposed between the two pressure bodies 10 and 10.
  • the light beam traveling in the Y direction is arranged to change the traveling direction to the -Z direction by the specular reflector 30, and the light beam traveling in the Z direction is arranged to change the traveling direction to the -Y direction by the specular reflector 30.
  • Yes. Therefore, the light beam from the half mirror 23 is irradiated to the observation target range (the region between the pressurizing bodies 10 and 10) of the test piece 2, and the light beam from the observation target range of the test piece 2 is guided to the half mirror 23. ing.
  • the retroreflective member 40 includes a flexible plate-like body having a plurality of microprisms formed on the surface, a flexible plate-like body having a plurality of glass beads arranged on the surface, and the like.
  • glass beads / fabric manufactured by Sumitomo 3M Co., Ltd., trade name “8910”
  • prism / film manufactured by Sumitomo 3M Co., Ltd., trade name “PV9110N”
  • micro prism / film manufactured by Sumitomo 3M Co., Ltd.
  • Trade name “6260” Trade name “6260”
  • the traveling direction of the incident light beam is different from the traveling direction of the reflected light beam by 180 °.
  • the retroreflecting material 40 is disposed on the supports 11 and 11 on the back side of the test piece 2.
  • the distance between the back surface of the test piece 2 and the retroreflecting material 40 increases, the image becomes a double image when the focal points of the light source unit 21 and the lens of the image sensor 22 do not match. There is a possibility that "double reflection" will occur. Therefore, the distance between the back surface of the test piece 2 and the retroreflecting material 40 should be small, and the test piece 2 is preferably placed on the retroreflecting material 40.
  • the measurer places the retroreflecting material 40 on the upper ends of the two supports 11 and 11 and then places the test piece 2 on the retroreflecting material 40 (placement step).
  • the measurer turns on the power of the light source unit 21 and the image sensor 22. Thereby, the light beam emitted in the ⁇ Z direction from the light source unit 21 changes the traveling direction to the Y direction by the half mirror 23.
  • the light beam traveling in the Y direction is irradiated to the observation target range of the test piece 2 in the ⁇ Z direction by changing the traveling direction to the ⁇ Z direction by the specular reflector 30. Thereafter, the light beam transmitted through the observation target range of the test piece 2 in the ⁇ Z direction is changed in the traveling direction to the reverse direction (Z direction) by the retroreflecting material 40, and this time the observation target range of the test piece 2 is changed to the Z direction. Irradiated. The light beam transmitted through the observation target range of the test piece 2 in the Z direction is changed in the traveling direction to the ⁇ Y direction by the specular reflector 30. Then, the light beam traveling in the ⁇ Y direction passes through the half mirror 23 and is guided to the image sensor 22 (detection step).
  • the measurer inputs a measurement start signal to the arithmetic control unit 3 to start measurement.
  • a measurement start signal is input, the motor 4 rotates at a constant speed and the crosshead 8 descends at a predetermined speed by the control signal from the arithmetic control unit 3, and the support body 11 and the pressure body 10 move up and down.
  • the interval approaches at a constant speed, and as a result, a bending test force is applied to the test piece 2 to push and bend the central portion (predetermined part) of the test piece 2 downward ( ⁇ Z direction).
  • the test force detection signal is taken into the calculation control unit 3 at regular intervals, and a predetermined calculation process is performed to calculate the test force against displacement.
  • the test piece 2 When the test force exceeds the bending strength of the test piece 2, the test piece 2 is cracked and broken, but the image sensor 22 continues to be irradiated with a light beam from the observation target range of the test piece 2. Therefore, the video from the occurrence of the crack to the destruction is taken at high speed.
  • the retroreflective member 40 is thin and flexible, it is not affected by the deformation of the test piece 2, and between the test piece 2 and the support 11. Can be pinched. Thereby, since the retroreflective member 40 is arranged on the back side of the test piece 2 instead of irregular reflection by paper, the light can reach the image pickup device 23 with high yield due to the recursiveness of reflection, and as a result. Even if a high-speed video CCD camera having an exposure time on the order of 100 nanoseconds is used as the image pickup device 23, the light quantity is not insufficient and the visibility of the image can be improved.
  • two plate-like supports (anvils) 11 are formed on the upper surface of the support 12, and two plate-like pressure bodies are formed on the lower surface of the load cell 9.
  • 10 shows a configuration for performing a four-point bending strength test.
  • a cylindrical support body is formed on the upper surface of the support base, and a cylindrical pressure body is formed on the lower surface of the load cell.
  • the configuration may be such that the “ON RING” test is performed.
  • two plate-like supports 11 are formed on the upper surface of the support base 12, and two plate-like pressure bodies 10 are formed on the lower surface of the load cell 9. The four-point bending strength test is shown.
  • a cylindrical support is formed on the upper surface of the support base, and a rod-shaped piston (columnar pressure body) with a pointed tip is formed on the lower surface of the load cell.
  • the punching test may be performed.
  • the test piece and the retroreflective material are fixed by being sandwiched from above and below by a test piece holder having two circular holes. Become. Then, the optical axis of the coaxial epi-illumination is changed from the X direction to the Z direction with a reflecting mirror from below, and the test piece is photographed from below.
  • the present invention can be used for a material testing apparatus for observing the strength of a test piece formed of a light-transmitting material such as glass or resin (plastic).

Abstract

A material testing device capable of accurately capturing the moment at which a test piece breaks is provided. A material testing device (1) provided with a support (11) for supporting a test piece (2), a presser (10) for applying a load to the test piece (2), a light source (21) for irradiating light from the front-surface side of the test piece (2) onto the range to be observed on the test piece (2), and an imaging element (22) for detecting, from the front-surface side of the test piece (2), light from the range to be observed on the test piece (2), wherein a half mirror (23) and a retroreflector (40) that is disposed behind the test piece (2) and retroreflects light in the same direction as the incident direction are provided and the material testing device (1) is configured such that light from the light source (21) is irradiated onto the range to be observed on the test piece (2) via the half mirror (23) and after the light that has passed through the range to be observed on the test piece (2) is retroreflected by the retroreflector (40), the light passes through the range to be observed on the test piece (2) again and is detected by the imaging element (22) after passing through the half mirror (23).

Description

材料試験装置、並びに、それに用いられる試験片保持具及び検査方法Material testing apparatus, and test piece holder and inspection method used therefor
 本発明は、ガラスや樹脂(プラスチック)等の光の透過性を有する材料で形成された試験片の強度を観察する材料試験装置、並びに、それに用いられる試験片保持具及び検査方法に関する。 The present invention relates to a material test apparatus for observing the strength of a test piece formed of a light-transmitting material such as glass or resin (plastic), and a test piece holder and an inspection method used therefor.
 従来、材料の強度試験としては、日本工業規格JIS R 1601に規定されているような3点又は4点曲げ強度試験が一般に用いられている。図3(a)は、3点曲げ強度試験を説明するための図であり、図3(b)は、4点曲げ強度試験を説明するための図である。図3(a)に示すように、3点曲げ強度試験では、加圧体(アンビル)101の先端を荷重点とし、2本の支持体(アンビル)103の先端を支点として、板形状の試験片102に荷重Wを加えて折れたときの最大曲げ応力を測定している。一方、図3(b)に示すように、4点曲げ強度試験では、2本の加圧体(アンビル)101の先端を荷重点とし、2本の支持体(アンビル)103の先端を支点として、板形状の試験片102に荷重Wを加えて折れたときの最大曲げ応力を測定している。 Conventionally, as a material strength test, a three-point or four-point bending strength test as defined in Japanese Industrial Standard JIS R 1601 is generally used. FIG. 3A is a diagram for explaining a three-point bending strength test, and FIG. 3B is a diagram for explaining a four-point bending strength test. As shown in FIG. 3A, in the three-point bending strength test, a plate-shaped test is performed with the tip of the pressure body (anvil) 101 as a load point and the tips of the two supports (anvils) 103 as fulcrums. The maximum bending stress when the piece 102 is bent by applying a load W is measured. On the other hand, as shown in FIG. 3B, in the four-point bending strength test, the tips of the two pressure bodies (anvils) 101 are used as the load points, and the tips of the two support bodies (anvils) 103 are used as the fulcrums. The maximum bending stress when the plate-shaped test piece 102 is bent by applying a load W is measured.
 ここで、図4は、4点曲げ強度試験を行うための従来の材料試験装置を示す概略構成図である。なお、地面に水平な一方向をX方向とし、地面に水平でX方向と垂直な方向をY方向とし、X方向とY方向とに垂直な方向をZ方向とする。材料試験装置101は、機台7と、上下方向(Z方向)が回転軸となる2本のネジ軸5、13を回転可能に支持する筐体14と、機台7上面の中央部に固設された支持台112と、ネジ軸5、13に螺合してネジ軸5、13の回転に伴い機台7に対して上下方向に移動することが可能なクロスヘッド8と、クロスヘッド8下面の中央部に固設されたロードセル109と、制御や演算処理を行う演算制御部3とを備える。 Here, FIG. 4 is a schematic configuration diagram showing a conventional material testing apparatus for performing a four-point bending strength test. One direction horizontal to the ground is defined as an X direction, a direction horizontal to the ground and perpendicular to the X direction is defined as a Y direction, and a direction perpendicular to the X direction and the Y direction is defined as a Z direction. The material test apparatus 101 includes a machine base 7, a casing 14 that rotatably supports two screw shafts 5 and 13 whose vertical direction (Z direction) is a rotation axis, and a central portion on the upper surface of the machine base 7. A support base 112 provided; a crosshead 8 that can be screwed into the screw shafts 5 and 13 and moved vertically with respect to the machine base 7 as the screw shafts 5 and 13 rotate; A load cell 109 fixed at the center of the lower surface and an arithmetic control unit 3 that performs control and arithmetic processing are provided.
 機台7の内部には、演算制御部3からの制御信号により制御されるモータ4と、モータ4からの回転力をネジ軸5、13に伝達するベルト61と、連動用プーリ62を連結したギヤー機構6とが配置されている。これにより、モータ4が回転することで、2本のネジ軸5、13が回転して、クロスヘッド8を機台7に対して上下方向に移動させるようになっている。 Inside the machine base 7, a motor 4 controlled by a control signal from the arithmetic control unit 3, a belt 61 that transmits the rotational force from the motor 4 to the screw shafts 5 and 13, and an interlocking pulley 62 are connected. A gear mechanism 6 is arranged. Thereby, when the motor 4 rotates, the two screw shafts 5 and 13 rotate, and the crosshead 8 is moved in the vertical direction with respect to the machine base 7.
 支持台112上面には、X方向に並ぶように互いに平行な2個の板状体の支持体(アンビル)111が形成されている。なお、2個の支持体111、111間のX方向の距離はR(例えば10cm)となっている。一方、ロードセル109下面には、X方向に並ぶように互いに平行な2個の板状体の加圧体(アンビル)110が形成されている。なお、2個の加圧体110、110間のX方向の距離は、前述したRよりも短いR(例えば5cm)となっている。このような支持体111と加圧体110とによって、板形状の試験片2は2個の支持体111の上端部を支点として載置されるとともに、2個の加圧体110の下端部を荷重点として、荷重Wが試験片2の所定部位に負荷されるようになっている。 Two plate-like supports (anvils) 111 that are parallel to each other are formed on the upper surface of the support 112 so as to be aligned in the X direction. Incidentally, X-direction distance between the two support 111 has a R 1 (e.g., 10 cm). On the other hand, two plate-like pressurizing bodies (anvils) 110 are formed on the lower surface of the load cell 109 so as to be aligned in the X direction. Incidentally, X-direction distance between the two pressing body 110, 110 has a short R 2 (e.g. 5 cm) than R 1 described above. The plate-shaped test piece 2 is placed with the upper ends of the two supports 111 as a fulcrum and the lower ends of the two pressurizers 110 are supported by the support 111 and the pressurizer 110. As a load point, a load W is applied to a predetermined part of the test piece 2.
 このような材料試験装置101を用いて、試験片2にクラック(亀裂)が発生して破壊する瞬間を検出することになるが、その検出方法には、破壊する瞬間に発生するアコースティックエミッション(音響出力)を、マイクロフォンを介して検出する方法(例えば、特許文献1参照)や、試験片2に加わっている荷重W(試験力)の急激な変化を検出する方法(例えば、特許文献2参照)が用いられている。
 また、試験片2の観察対象範囲に光を照射しながら、高速度ビデオカメラ(撮像素子)で撮影しつづけることで、破壊する瞬間だけでなく、その破壊の発生・進展の状況を観察することも行われている。
The material test apparatus 101 is used to detect the moment when the test piece 2 is cracked and broken, and the detection method includes acoustic emission (acoustic sound) generated at the moment of breakage. Output) via a microphone (for example, see Patent Document 1) and a method for detecting a sudden change in the load W (test force) applied to the test piece 2 (for example, see Patent Document 2). Is used.
In addition to observing not only the moment of destruction but also the state of occurrence and progress of the destruction by continuing to shoot with a high-speed video camera (imaging device) while irradiating light on the observation area of the specimen 2. Has also been done.
特開2001-194346号公報JP 2001-194346 A 特開2012-251901号公報JP 2012-251901 A
 しかしながら、静的試験では試験片2の破断を撮影する(記録を終了する)タイミングは試験片2の破断を検出するしかない。
 また、試験片2の裏面側に紙を配置して、試験片2の観察対象範囲に試験片2の表面側から光を照射して、試験片2を透過した光を紙で乱反射させて、再び試験片2を透過した光を試験片2の表面側から検出する側射照明(落射照明)の場合には、紙による反射の拡散性が大きすぎて、高速度ビデオカメラで検出される光の収率が低く、撮影に必要な光量を確保できないことがある。具体的には、メタハライド照明等の明るい連続光源を使用しても、現実には100万ルクス程度の照射となり、例えば1000万コマ/秒のような高速度撮影においては、1コマあたりの時間は100ナノ秒と短いため光量不足となる。
 一方、充分な光量を得ることができるストロボ照明等のパルス光源であれば、約1ミリ秒~10ミリ秒間に1000万ルクス以上の照射が可能であるが、観測する現象とパルス光源の照射時間(ストロボを発光させるタイミング信号)とを一致させる必要があり、このような強度試験では、試験片2が破壊される時間(破断の検出タイミング)を予測することはできないため、観測する現象とパルス光源の照射時間とを一致させることができず、有効な手段とは言えない。
 さらに、図4に示した試験片2の観察対象範囲(2個の支持体111、111間の領域)に試験片2の裏面側から光を照射して、試験片2の観察対象範囲を透過した光を試験片2の表面側から検出する透過照明の場合には、照明光学系を試験片2の裏面側に配置する必要があるが、光源からの光は支持体111が邪魔で遮られてしまい、試験片2の観察対象範囲全体に光を照射できないことがある。つまり、従来の材料試験装置101では試験片2の裏面側に照明光学系を配置するための充分な空間を確保することができない。
However, in the static test, the only time at which the fracture of the test piece 2 is photographed (recording is completed) is to detect the fracture of the test piece 2.
In addition, paper is arranged on the back side of the test piece 2, light is irradiated from the front side of the test piece 2 to the observation target range of the test piece 2, and the light transmitted through the test piece 2 is irregularly reflected by the paper, In the case of side-illumination (epi-illumination) in which light transmitted through the test piece 2 is detected again from the surface side of the test piece 2, the light detected by the high-speed video camera is too diffuse due to reflection by paper. The yield of light is low, and the amount of light necessary for photographing may not be secured. Specifically, even if a bright continuous light source such as metahalide illumination is used, the actual irradiation is about 1 million lux. For example, in high-speed shooting such as 10 million frames / second, the time per frame is The amount of light is insufficient because it is as short as 100 nanoseconds.
On the other hand, a pulsed light source such as strobe lighting that can obtain a sufficient amount of light can irradiate more than 10 million lux in about 1 to 10 milliseconds. It is necessary to match (timing signal for causing the strobe to emit light), and in such an intensity test, it is impossible to predict the time when the test piece 2 is broken (breaking detection timing). Since the irradiation time of the light source cannot be matched, it cannot be said that it is an effective means.
Furthermore, light is irradiated from the back side of the test piece 2 to the observation target range (the region between the two supports 111 and 111) of the test piece 2 shown in FIG. In the case of transmitted illumination in which the detected light is detected from the front surface side of the test piece 2, it is necessary to arrange an illumination optical system on the back surface side of the test piece 2, but the light from the light source is blocked by the support 111. As a result, the entire observation target range of the test piece 2 may not be irradiated. That is, the conventional material testing apparatus 101 cannot secure a sufficient space for disposing the illumination optical system on the back side of the test piece 2.
 以上の状況を鑑みて、本発明者らは、高速度ビデオカメラで検出される光の収率を向上することができる連続光源での照明方法について検討した結果、試験片の裏面側に再帰性反射材を配置して、試験片の観察対象範囲に試験片の表面側から光を照射して、試験片を透過した光を再帰性反射材で再帰反射させて、再び試験片を透過した光を試験片の表面側から検出する同軸落射照明を行うことが有効であることを見出した。 In view of the above situation, as a result of studying an illumination method with a continuous light source that can improve the yield of light detected by a high-speed video camera, the present inventors have found that the back side of the test piece is recursive. Light is transmitted through the test piece again by placing a reflective material, irradiating the observation target area of the test piece with light from the surface side of the test piece, retroreflecting the light transmitted through the test piece with the retroreflective material It has been found that it is effective to perform coaxial epi-illumination that detects from the surface side of the test piece.
 すなわち、本発明の材料試験装置は、試験片を支持する支持体と、前記試験片に荷重を負荷する加圧体と、前記試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子とを備える材料試験装置であって、前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーと、前記試験片の裏面側に配置され、入射方向と同じ方向に光を再帰反射させる再帰反射部材とを備え、前記光源部からの光が前記ハーフミラーを経由して前記試験片の観察対象範囲に照射され、前記試験片の観察対象範囲を透過した光が前記再帰反射部材で再帰反射された後、前記試験片の観察対象範囲を再び透過して、前記ハーフミラーを経由して前記撮像素子に検出されるようにしている。 That is, the material testing apparatus according to the present invention includes a support that supports a test piece, a pressurizing body that applies a load to the test piece, and a region to be observed on the test piece that is irradiated with light from the surface side of the test piece. A material testing apparatus comprising: a light source unit configured to detect light from an observation target range of the test piece from a surface side of the test piece; and is disposed between the light source unit and the image sensor. A half mirror that guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the imaging device, and is disposed on the back side of the test piece, and emits light in the same direction as the incident direction. A retroreflective member for retroreflecting the light, and the light from the light source unit is irradiated to the observation target range of the test piece via the half mirror, and the light transmitted through the observation target range of the test piece is recursively After being retroreflected by a reflective member Again transmitted through the object of observation range of the test piece, via the half mirror so that detected on the imaging device.
 ここで、「所定方向」とは、設計者等によって予め決められた任意の一方向であり、例えば、水平方向等となる。なお、本発明に係るハーフミラーは、光源部からの光を所定方向に反射するとともに、所定方向と逆方向からの光を透過して撮像素子に導くか、或いは、光源部からの光を所定方向に透過するとともに、所定方向と逆方向からの光を反射して撮像素子に導くことが可能となっており、所謂同軸落射照明となる。
 また、「観察対象範囲」とは、設計者等によって予め決められた任意の領域であり、例えば、強い応力の負荷によりクラック(亀裂)の進展が起こる支持体で囲まれた領域や、加圧体で囲まれた領域等となる。
 また、「試験片の表面側」とは、試験片の上面であってもよく、試験片の下面であってもよい。よって、「試験片の表面側」が試験片の上面である場合には「試験片の裏面側」が試験片の下面となる一方、「試験片の表面側」が試験片の下面である場合には「試験片の裏面側」が試験片の上面となる。
 また、「支持体」とは、試験片を支持することができるものであればよく、例えば、2個の板状体や、円筒形状体等が挙げられる。そして、「加圧体」とは、試験片に荷重を負荷することができるものであればよく、例えば、1個や2個の板状体や、円筒形状体や、棒状のピストン(円柱形状体)等が挙げられる。
Here, the “predetermined direction” is an arbitrary direction predetermined by a designer or the like, for example, a horizontal direction. The half mirror according to the present invention reflects light from the light source unit in a predetermined direction, transmits light from a direction opposite to the predetermined direction and guides it to the imaging device, or transmits light from the light source unit to the predetermined direction. In addition to being transmitted in the direction, it is possible to reflect light from the direction opposite to the predetermined direction and guide it to the image pickup device, so-called coaxial epi-illumination.
In addition, the “observation target range” is an arbitrary region determined in advance by a designer or the like, for example, a region surrounded by a support where a crack (crack) progresses due to a strong stress load, or pressurization It becomes an area surrounded by the body.
The “surface side of the test piece” may be the upper surface of the test piece or the lower surface of the test piece. Therefore, when the “surface side of the test piece” is the upper surface of the test piece, the “back surface side of the test piece” is the lower surface of the test piece, while the “surface side of the test piece” is the lower surface of the test piece. The “back side of the test piece” is the upper surface of the test piece.
In addition, the “support” may be any material that can support the test piece, and examples thereof include two plate-like bodies and a cylindrical body. The “pressurizing body” may be anything that can apply a load to the test piece. For example, one or two plate-shaped bodies, a cylindrical body, a rod-shaped piston (columnar shape) Body) and the like.
 本発明の材料試験装置によれば、紙による乱反射に換えて再帰反射部材を試験片の裏面側に配置するので、反射の再帰性を利用して高い収率で光を撮像素子に到達させることができ、その結果、撮像素子として高速度ビデオカメラを用いても光量不足とならず、画像の視認性を向上させることができる。 According to the material testing apparatus of the present invention, since the retroreflective member is arranged on the back side of the test piece instead of the irregular reflection by paper, the light can reach the image pickup device with high yield by utilizing the retroreflectivity of the reflection. As a result, even if a high-speed video camera is used as the image sensor, the amount of light is not insufficient, and the visibility of the image can be improved.
(他の課題を解決するための手段および効果)
 また、上記の発明において、前記再帰反射部材は、複数のマイクロプリズムが表面に形成された柔軟性を有する板状体、又は、複数のガラスビーズが表面に配置された柔軟性を有する板状体であり、前記試験片と前記支持体との間又は前記試験片と前記加圧体との間に配置されるようにしてもよい。
 本発明の材料試験装置によれば、再帰反射部材は薄くてフレキシブルであるため、試験片の変形の影響を受けず、試験片と支持体との間に挟むことができる。さらに、装置の構成を安価に実現することができる。
(Means and effects for solving other problems)
In the above invention, the retroreflective member is a flexible plate-like body having a plurality of microprisms formed on the surface, or a flexible plate-like body having a plurality of glass beads arranged on the surface. It may be arranged between the test piece and the support or between the test piece and the pressurizing body.
According to the material testing apparatus of the present invention, since the retroreflective member is thin and flexible, it can be sandwiched between the test piece and the support body without being affected by the deformation of the test piece. Furthermore, the configuration of the apparatus can be realized at a low cost.
 また、上記の発明において、前記加圧体は、互いに平行な2個の板状の加圧体であり、前記2個の板状の加圧体の間に、前記ハーフミラーからの光を前記試験片の観察対象範囲に照射し、かつ、前記試験片の観察対象範囲からの光を前記ハーフミラーに導く鏡面反射材を備えるようにしてもよい。
 また、上記の発明において、前記支持体は、互いに平行な2個の板状の支持体であり、前記2個の板状の支持体の間の距離は、前記2個の板状の加圧体の間の距離より短くなっているようにしてもよい。
In the invention described above, the pressure body is two plate-shaped pressure bodies parallel to each other, and the light from the half mirror is transmitted between the two plate-shaped pressure bodies. You may make it provide the specular reflector which irradiates the observation object range of a test piece, and guides the light from the observation object range of the test piece to the half mirror.
In the above invention, the support is two plate-like supports parallel to each other, and the distance between the two plate-like supports is the two plate-like pressures. You may make it shorter than the distance between bodies.
 また、上記の発明において、前記光源部は、連続光源であり、前記撮像素子は、高速度ビデオカメラであるようにしてもよい。
 ここで、「高速度ビデオカメラ」とは、例えば、露光時間が100ナノ秒オーダーの高速度撮影が可能なカメラ等となる。
In the above invention, the light source unit may be a continuous light source, and the imaging device may be a high-speed video camera.
Here, the “high-speed video camera” is, for example, a camera capable of high-speed shooting with an exposure time of the order of 100 nanoseconds.
 さらに、本発明の試験片保持具は、試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子と、前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーとを備える材料試験装置に用いられる試験片保持具であって、前記試験片を支持する支持体と、前記試験片に荷重を負荷する加圧体と、前記試験片の裏面側に配置され、入射方向と同じ方向に光を再帰反射させる再帰反射部材とを備えるようにしている。
 そして、本発明の検査方法は、試験片を支持する支持体と、前記試験片に荷重を負荷する加圧体と、前記試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子と、前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーとを備える材料試験装置に用いられる検査方法であって、入射方向と同じ方向に光を再帰反射させる再帰反射部材を、前記試験片の裏面側に配置する配置ステップと、前記光源部からの光が前記ハーフミラーを経由して前記試験片の観察対象範囲に照射され、前記試験片の観察対象範囲を透過した光が前記再帰反射部材で再帰反射された後、前記試験片の観察対象範囲を再び透過して、前記ハーフミラーを経由して前記撮像素子に検出される検出ステップとを含むようにしている。
Furthermore, the test piece holder of the present invention includes a light source unit that irradiates light from the surface side of the test piece to the observation target range of the test piece, and light from the observation target range of the test piece. An image sensor that detects from the light source, and a half that is disposed between the light source unit and the image sensor and guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the image sensor. A test piece holder used in a material testing apparatus including a mirror, and is disposed on a back side of the test piece, a support body that supports the test piece, a pressurizing body that applies a load to the test piece, and And a retroreflective member that retroreflects light in the same direction as the incident direction.
And the inspection method of this invention irradiates light from the surface side of the said test piece to the support body which supports a test piece, the pressurization body which loads a load to the said test piece, and the observation object range of the said test piece A light source unit, an image sensor that detects light from the observation target range of the test piece from the surface side of the test piece, and the light source unit and the image sensor are arranged, and the light from the light source unit is predetermined. A retroreflective method for retroreflecting light in the same direction as the incident direction, the inspection method being used in a material testing apparatus that includes a half mirror that guides light in a direction opposite to the predetermined direction to the imaging element. An arrangement step of disposing a member on the back side of the test piece, and light from the light source unit is irradiated to the observation target range of the test piece via the half mirror, and passes through the observation target range of the test piece. The reflected light is the retroreflective part In after being retroreflective, is transmitted through the observation target range of the test piece again via the half mirror is to include a detection step is detected on the imaging device.
本発明の実施形態に係る材料試験装置を示す概略構成図。The schematic block diagram which shows the material testing apparatus which concerns on embodiment of this invention. 図1と異なる方向から視た材料試験装置の要部の断面図。Sectional drawing of the principal part of the material testing apparatus seen from the direction different from FIG. 曲げ強度試験を説明するための図。The figure for demonstrating a bending strength test. 従来の材料試験装置を示す概略構成図。The schematic block diagram which shows the conventional material test apparatus.
 以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることは言うまでもない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it is needless to say that various aspects are included without departing from the gist of the present invention.
 図1は、本発明の実施形態に係る材料試験装置を示す概略構成図である。また、図2は、図1と異なる方向から視た材料試験装置の要部の断面図である。この実施形態において用いる試験片2はガラス基板であり、このガラス基板について4点曲げ強度試験を行い、ガラス基板の破断を明視野観察する場合を説明する。なお、上述した従来の材料試験装置101と同様のものについては、同じ符号を付している。 FIG. 1 is a schematic configuration diagram showing a material testing apparatus according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the main part of the material testing apparatus viewed from a direction different from FIG. The test piece 2 used in this embodiment is a glass substrate, and a case where a four-point bending strength test is performed on the glass substrate to observe the breakage of the glass substrate in a bright field will be described. In addition, the same code | symbol is attached | subjected about the thing similar to the conventional material test apparatus 101 mentioned above.
 材料試験装置1は、機台7と、上下方向(Z方向)が回転軸となる2本のネジ軸5、13を回転可能に支持する筐体14と、機台7上面の中央部に取付け取外し可能な支持台12(試験片保持具の一部)と、ネジ軸5、13に螺合してネジ軸5、13の回転に伴い機台7に対して上下方向に移動することが可能なクロスヘッド8と、クロスヘッド8下面の中央部に取付け取外し可能なロードセル9(試験片保持具の一部)と、試験片2を撮影するための同軸落射照明部20と、鏡面反射材30と、制御や演算処理を行う演算制御部3と、試験片2の裏面側に配置される再帰性反射材40(試験片保持具の一部)とを備える。 The material testing apparatus 1 is attached to a machine base 7, a casing 14 that rotatably supports two screw shafts 5, 13 whose vertical direction (Z direction) is a rotation axis, and a central portion on the upper surface of the machine base 7. Removable support base 12 (part of the test piece holder) and screw shafts 5 and 13 can be screwed to move up and down with respect to the machine base 7 as the screw shafts 5 and 13 rotate. , A load cell 9 (part of the test piece holder) that can be attached to and detached from the center of the lower surface of the cross head 8, a coaxial epi-illumination unit 20 for photographing the test piece 2, and a specular reflector 30 And an arithmetic control unit 3 that performs control and arithmetic processing, and a retroreflecting material 40 (a part of the test piece holder) disposed on the back side of the test piece 2.
 支持台12上面には、X方向に並ぶように互いに平行な2個の板状体の支持体(アンビル)11が形成されている。なお、2個の支持体11、11間のX方向の距離は、R(例えば5cm)となっている。一方、ロードセル9下面には、X方向に並ぶように互いに平行な2個の板状体の加圧体(アンビル)10が形成されており、2個の加圧体10、10間のX方向の距離は、前述したRよりも長いR(例えば10cm)となっている。このような支持体11と加圧体10とによって、板形状の試験片2は2個の支持体11の上端部を支点として載置されると共に、2個の加圧体10の下端部を荷重点として試験片2の所定部位に荷重Wが負荷されるようになっている。 Two plate-like supports (anvils) 11 that are parallel to each other are formed on the upper surface of the support base 12 so as to be aligned in the X direction. Incidentally, X-direction distance between the two support 11, 11 has R 2 (for example, 5 cm). On the other hand, two plate-like pressure bodies (anvils) 10 that are parallel to each other are formed on the lower surface of the load cell 9 so as to be aligned in the X direction, and the X direction between the two pressure bodies 10 and 10 is formed. The distance is R 1 (for example, 10 cm) longer than R 2 described above. The plate-shaped test piece 2 is placed with the upper end portions of the two support bodies 11 as fulcrums and the lower end portions of the two pressurization bodies 10 by the support body 11 and the pressure body 10. A load W is applied to a predetermined part of the test piece 2 as a load point.
 同軸落射照明部20は、光源部21と、撮像素子22と、平板形状のハーフミラー23とを備える。光源部21は、必要な光量が得られる光源であればよく、例えば、メタハライド照明等の連続光源である。これ以外にも、ハロゲンランプ、キセノンランプ、レーザ、LED、蛍光灯、電球等であってもよい。また、出射する光の波長は特定されるものではなく、白色光でも特定の波長の光であってもよい。さらに、可視光に限られるものでなく、赤外線や紫外線等であってもよい。 The coaxial epi-illumination unit 20 includes a light source unit 21, an image sensor 22, and a flat half mirror 23. The light source unit 21 may be a light source that can obtain a necessary amount of light, and is a continuous light source such as metahalide illumination, for example. In addition, a halogen lamp, a xenon lamp, a laser, an LED, a fluorescent lamp, a light bulb, or the like may be used. Further, the wavelength of the emitted light is not specified, and may be white light or light having a specific wavelength. Furthermore, it is not limited to visible light, but may be infrared rays or ultraviolet rays.
 撮像素子22は、例えば、露光時間が100ナノ秒オーダーの高速度撮影が可能な高速度ビデオCCDカメラである。これ以外にも、MOSやCMOSの個体撮像素子、フォトダイオードアレイ等であってもよい。
 そして、光源部21から出射された光束と同じ光軸で撮像素子22に光束を検出させるために、撮像素子22の前方(Y方向)かつ光源部21の下方(-Z方向)にはハーフミラー23が配置されている。これにより、-Z方向に進行する光束の50%がハーフミラー23によって進行方向をY方向に変えるとともに、-Y方向に進行する光束の50%がハーフミラー23を透過し、撮像素子22に導かれるようになっている。
The image sensor 22 is, for example, a high-speed video CCD camera capable of high-speed shooting with an exposure time on the order of 100 nanoseconds. In addition to this, a solid-state imaging device such as a MOS or CMOS, a photodiode array, or the like may be used.
In order to cause the image sensor 22 to detect the light beam with the same optical axis as the light beam emitted from the light source unit 21, a half mirror is provided in front of the image sensor 22 (Y direction) and below the light source unit 21 (−Z direction). 23 is arranged. As a result, 50% of the light beam traveling in the −Z direction is changed to the Y direction by the half mirror 23, and 50% of the light beam traveling in the −Y direction is transmitted through the half mirror 23 and guided to the image sensor 22. It has come to be.
 鏡面反射材30は、平板形状(例えば5cm×7.1cm×7.1cm)であり、2個の加圧体10、10の間に配置されている。そして、Y方向に進行する光束が鏡面反射材30によって進行方向を-Z方向に変え、また、Z方向に進行する光束が鏡面反射材30によって進行方向を-Y方向に変えるように配置されている。よって、ハーフミラー23からの光束を試験片2の観察対象範囲(加圧体10、10間の領域)に照射し、試験片2の観察対象範囲からの光束をハーフミラー23へ導くようになっている。 The specular reflector 30 has a flat plate shape (for example, 5 cm × 7.1 cm × 7.1 cm), and is disposed between the two pressure bodies 10 and 10. The light beam traveling in the Y direction is arranged to change the traveling direction to the -Z direction by the specular reflector 30, and the light beam traveling in the Z direction is arranged to change the traveling direction to the -Y direction by the specular reflector 30. Yes. Therefore, the light beam from the half mirror 23 is irradiated to the observation target range (the region between the pressurizing bodies 10 and 10) of the test piece 2, and the light beam from the observation target range of the test piece 2 is guided to the half mirror 23. ing.
 再帰性反射材40は、複数のマイクロプリズムが表面に形成された柔軟性(フレキシブル)を有する板状体や、複数のガラスビーズが表面に配置された柔軟性(フレキシブル)を有する板状体等であり、例えば、ガラスビーズ/布(住友スリーエム株式会社製、商品名「8910」)、プリズム/フィルム(住友スリーエム株式会社製、商品名「PV9110N」)、マイクロプリズム/フィルム(住友スリーエム株式会社製、商品名「6260」)等が挙げられる。このような再帰性反射材40に入射した光は再帰反射され、入射方向とは逆方向に反射する。したがって、入射光束の進行方向と反射光束の進行方向とは180°異なった方向となる。
 そして、再帰性反射材40は、試験片2の裏面側で支持体11、11上に配置されることになる。このとき、試験片2の裏面と再帰性反射材40との間の距離が大きくなると、光源部21と撮像素子22のレンズの焦点とが一致していない場合、映像が二重像になる「二重写り」が発生する可能性がある。よって、試験片2の裏面と再帰性反射材40との間の距離は小さい方がよく、再帰性反射材40上に試験片2が載置されることが好ましい。
The retroreflective member 40 includes a flexible plate-like body having a plurality of microprisms formed on the surface, a flexible plate-like body having a plurality of glass beads arranged on the surface, and the like. For example, glass beads / fabric (manufactured by Sumitomo 3M Co., Ltd., trade name “8910”), prism / film (manufactured by Sumitomo 3M Co., Ltd., trade name “PV9110N”), micro prism / film (manufactured by Sumitomo 3M Co., Ltd.) , Trade name “6260”) and the like. The light incident on the retroreflecting material 40 is retroreflected and reflected in the direction opposite to the incident direction. Therefore, the traveling direction of the incident light beam is different from the traveling direction of the reflected light beam by 180 °.
Then, the retroreflecting material 40 is disposed on the supports 11 and 11 on the back side of the test piece 2. At this time, if the distance between the back surface of the test piece 2 and the retroreflecting material 40 increases, the image becomes a double image when the focal points of the light source unit 21 and the lens of the image sensor 22 do not match. There is a possibility that "double reflection" will occur. Therefore, the distance between the back surface of the test piece 2 and the retroreflecting material 40 should be small, and the test piece 2 is preferably placed on the retroreflecting material 40.
 次に、本発明の実施形態に係る材料試験装置1を用いて試験片2の4点曲げ強度試験を行う検査方法について説明する。まず、測定者は、2個の支持体11、11の上端部に再帰性反射材40を載置した後、この再帰性反射材40上に試験片2を載置する(配置ステップ)。次に、測定者は、光源部21と撮像素子22との電源を入れる。これにより、光源部21から-Z方向に出射された光束が、ハーフミラー23によって進行方向をY方向に変える。そして、Y方向に進行する光束が、鏡面反射材30によって進行方向を-Z方向に変え、試験片2の観察対象範囲に-Z方向で照射される。その後、試験片2の観察対象範囲を-Z方向に透過した光束は、再帰性反射材40によって進行方向を逆方向(Z方向)に変え、今度は試験片2の観察対象範囲にZ方向で照射される。試験片2の観察対象範囲をZ方向に透過した光束は、鏡面反射材30によって進行方向を-Y方向に変える。そして、-Y方向に進行する光束が、ハーフミラー23を透過して、撮像素子22に導かれる(検出ステップ)。 Next, an inspection method for performing a four-point bending strength test on the test piece 2 using the material test apparatus 1 according to the embodiment of the present invention will be described. First, the measurer places the retroreflecting material 40 on the upper ends of the two supports 11 and 11 and then places the test piece 2 on the retroreflecting material 40 (placement step). Next, the measurer turns on the power of the light source unit 21 and the image sensor 22. Thereby, the light beam emitted in the −Z direction from the light source unit 21 changes the traveling direction to the Y direction by the half mirror 23. Then, the light beam traveling in the Y direction is irradiated to the observation target range of the test piece 2 in the −Z direction by changing the traveling direction to the −Z direction by the specular reflector 30. Thereafter, the light beam transmitted through the observation target range of the test piece 2 in the −Z direction is changed in the traveling direction to the reverse direction (Z direction) by the retroreflecting material 40, and this time the observation target range of the test piece 2 is changed to the Z direction. Irradiated. The light beam transmitted through the observation target range of the test piece 2 in the Z direction is changed in the traveling direction to the −Y direction by the specular reflector 30. Then, the light beam traveling in the −Y direction passes through the half mirror 23 and is guided to the image sensor 22 (detection step).
 このような状態で測定者は、演算制御部3に測定開始信号を入力して測定を開始させる。測定開始信号が入力されると、演算制御部3からの制御信号により、モータ4は一定速度で回転し、クロスヘッド8は所定の速度で下降し、支持体11と加圧体10との上下間隔が一定速度で接近し、その結果、試験片2に曲げ試験力が加えられて試験片2の中央部(所定部位)を下方(-Z方向)に押し曲げていく。このとき、試験力検出信号が一定周期毎に演算制御部3に採り込まれ、所定の演算処理が行われて変位に対する試験力が算出される。
 そして、試験力が試験片2の曲げ耐力を超えると、試験片2にクラックが生じて破壊されることになるが、撮像素子22には試験片2の観察対象範囲からの光束の照射が継続されているため、クラックの発生から破壊されるまでの映像が高速度撮影されることになっている。
In such a state, the measurer inputs a measurement start signal to the arithmetic control unit 3 to start measurement. When a measurement start signal is input, the motor 4 rotates at a constant speed and the crosshead 8 descends at a predetermined speed by the control signal from the arithmetic control unit 3, and the support body 11 and the pressure body 10 move up and down. The interval approaches at a constant speed, and as a result, a bending test force is applied to the test piece 2 to push and bend the central portion (predetermined part) of the test piece 2 downward (−Z direction). At this time, the test force detection signal is taken into the calculation control unit 3 at regular intervals, and a predetermined calculation process is performed to calculate the test force against displacement.
When the test force exceeds the bending strength of the test piece 2, the test piece 2 is cracked and broken, but the image sensor 22 continues to be irradiated with a light beam from the observation target range of the test piece 2. Therefore, the video from the occurrence of the crack to the destruction is taken at high speed.
 以上のように、本発明の材料試験装置1によれば、再帰反射部材40は、薄くてフレキシブルなため、試験片2の変形の影響を受けず、試験片2と支持体11との間に挟むことができる。これにより、紙による乱反射ではなく、再帰反射部材40を試験片2の裏面側に配置するので、反射の再帰性のために高い収率で光を撮像素子23に到達させることができ、その結果、撮像素子23として露光時間が100ナノ秒オーダーの高速度ビデオCCDカメラを用いても光量不足とならず画像の視認性を向上させることができる。 As described above, according to the material testing apparatus 1 of the present invention, since the retroreflective member 40 is thin and flexible, it is not affected by the deformation of the test piece 2, and between the test piece 2 and the support 11. Can be pinched. Thereby, since the retroreflective member 40 is arranged on the back side of the test piece 2 instead of irregular reflection by paper, the light can reach the image pickup device 23 with high yield due to the recursiveness of reflection, and as a result. Even if a high-speed video CCD camera having an exposure time on the order of 100 nanoseconds is used as the image pickup device 23, the light quantity is not insufficient and the visibility of the image can be improved.
<他の実施形態>
(1)上述した材料試験装置1では、ロードセル9下面には、2個の板状体の加圧体10が形成されている4点曲げ強度試験を行う構成を示したが、ロードセル下面に1個の板状体の加圧体が形成されている3点曲げ強度試験を行うような構成としてもよい。このような構成では、再帰性反射材を試験片の上におくことになる。そして、下から反射鏡で同軸落射照明の光軸をX方向からZ方向に変え、試験片を下から撮影することになる。
<Other embodiments>
(1) In the material testing apparatus 1 described above, a configuration in which a four-point bending strength test is performed in which two plate-like pressure bodies 10 are formed on the lower surface of the load cell 9 is shown. It is good also as a structure which performs the 3 point | piece bending strength test in which the pressurization body of the plate-shaped object is formed. In such a configuration, the retroreflective material is placed on the test piece. Then, the optical axis of the coaxial epi-illumination is changed from the X direction to the Z direction with a reflecting mirror from below, and the test piece is photographed from below.
(2)上述した材料試験装置1では、支持台12上面には、2個の板状体の支持体(アンビル)11が形成され、ロードセル9下面には2個の板状体の加圧体10が形成されている4点曲げ強度試験を行う構成を示したが、支持台上面には円筒形状の支持体が形成され、ロードセル下面には円筒形状の加圧体が形成されている「RING ON RING」の試験を行うような構成としてもよい。
(3)上述した材料試験装置1では、支持台12上面には2個の板状体の支持体11が形成され、ロードセル9下面には2個の板状体の加圧体10が形成されている4点曲げ強度試験を行う構成を示したが、支持台上面に円筒形状の支持体が形成され、ロードセル下面に先端のとがった棒状のピストン(円柱形状の加圧体)が形成されている打ち抜き試験を行うような構成としてもよい。このような構成では、再帰性反射材を試験片の上においた状態で、試験片と再帰性反射材とを2つの円形の穴の開いた試験片保持具により上下から挟んで固定することになる。そして、下から反射鏡で同軸落射照明の光軸をX方向からZ方向に変え、試験片を下から撮影することになる。
(2) In the material testing apparatus 1 described above, two plate-like supports (anvils) 11 are formed on the upper surface of the support 12, and two plate-like pressure bodies are formed on the lower surface of the load cell 9. 10 shows a configuration for performing a four-point bending strength test. A cylindrical support body is formed on the upper surface of the support base, and a cylindrical pressure body is formed on the lower surface of the load cell. The configuration may be such that the “ON RING” test is performed.
(3) In the material testing apparatus 1 described above, two plate-like supports 11 are formed on the upper surface of the support base 12, and two plate-like pressure bodies 10 are formed on the lower surface of the load cell 9. The four-point bending strength test is shown. A cylindrical support is formed on the upper surface of the support base, and a rod-shaped piston (columnar pressure body) with a pointed tip is formed on the lower surface of the load cell. The punching test may be performed. In such a configuration, with the retroreflective material placed on the test piece, the test piece and the retroreflective material are fixed by being sandwiched from above and below by a test piece holder having two circular holes. Become. Then, the optical axis of the coaxial epi-illumination is changed from the X direction to the Z direction with a reflecting mirror from below, and the test piece is photographed from below.
 本発明は、ガラスや樹脂(プラスチック)等の光透過性を有する材料で形成された試験片の強度を観察する材料試験装置等に利用することができる。 The present invention can be used for a material testing apparatus for observing the strength of a test piece formed of a light-transmitting material such as glass or resin (plastic).
 1 材料試験装置
 2 試験片
10 加圧体
11 支持体
21 光源部
22 撮像素子
23 ハーフミラー
40 再帰反射部材
DESCRIPTION OF SYMBOLS 1 Material test apparatus 2 Test piece 10 Pressurization body 11 Support body 21 Light source part 22 Image pick-up element 23 Half mirror 40 Retroreflective member

Claims (7)

  1.  試験片を支持する支持体と、
     前記試験片に荷重を負荷する加圧体と、
     前記試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、
     前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子とを備える材料試験装置であって、
     前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーと、
     前記試験片の裏面側に配置され、入射方向と同じ方向に光を再帰反射させる再帰反射部材とを備え、
     前記光源部からの光が前記ハーフミラーを経由して前記試験片の観察対象範囲に照射され、前記試験片の観察対象範囲を透過した光が前記再帰反射部材で再帰反射された後、前記試験片の観察対象範囲を再び透過して、前記ハーフミラーを経由して前記撮像素子に検出されるようになっていることを特徴とする材料試験装置。
    A support for supporting the test piece;
    A pressurizing body for applying a load to the test piece;
    A light source unit that emits light from the surface side of the test piece to the observation target range of the test piece;
    A material testing apparatus comprising: an imaging device that detects light from the observation target range of the test piece from the surface side of the test piece;
    A half mirror that is disposed between the light source unit and the image sensor, guides light from the light source unit in a predetermined direction, and guides light from a direction opposite to the predetermined direction to the image sensor;
    A retroreflective member disposed on the back side of the test piece and retroreflecting light in the same direction as the incident direction;
    The light from the light source unit is irradiated on the observation target range of the test piece via the half mirror, and the light transmitted through the observation target range of the test piece is retroreflected by the retroreflective member, and then the test is performed. The material testing apparatus, wherein the observation target range of the piece is transmitted again, and is detected by the imaging device via the half mirror.
  2.  前記再帰反射部材は、複数のマイクロプリズムが表面に形成された柔軟性を有する板状体、又は、複数のガラスビーズが表面に配置された柔軟性を有する板状体であり、
     前記試験片と前記支持体との間又は前記試験片と前記加圧体との間に配置されることを特徴とする請求項1に記載の材料試験装置。
    The retroreflective member is a flexible plate having a plurality of microprisms formed on the surface, or a flexible plate having a plurality of glass beads arranged on the surface,
    The material testing apparatus according to claim 1, wherein the material testing apparatus is disposed between the test piece and the support or between the test piece and the pressure body.
  3.  前記加圧体は、互いに平行な2個の板状の加圧体であり、
     前記2個の板状の加圧体の間に、前記ハーフミラーからの光を前記試験片の観察対象範囲に照射し、かつ、前記試験片の観察対象範囲からの光を前記ハーフミラーに導く鏡面反射材を備えることを特徴とする請求項1又は請求項2に記載の材料試験装置。
    The pressure body is two plate-shaped pressure bodies parallel to each other,
    Between the two plate-like pressure bodies, the light from the half mirror is irradiated to the observation target range of the test piece, and the light from the observation target range of the test piece is guided to the half mirror. The material testing apparatus according to claim 1, further comprising a specular reflection material.
  4.  前記支持体は、互いに平行な2個の板状の支持体であり、
     前記2個の板状の支持体の間の距離は、前記2個の板状の加圧体の間の距離より短くなっていることを特徴とする請求項3に記載の材料試験装置。
    The support is two plate-like supports parallel to each other,
    The material test apparatus according to claim 3, wherein a distance between the two plate-like supports is shorter than a distance between the two plate-like pressure bodies.
  5.  前記光源部は、連続光源であり、
     前記撮像素子は、高速度ビデオカメラであることを特徴とする請求項1~請求項4のいずれか1項に記載の材料試験装置。
    The light source unit is a continuous light source,
    The material testing apparatus according to any one of claims 1 to 4, wherein the image sensor is a high-speed video camera.
  6.  試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、
     前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子と、
     前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーとを備える材料試験装置に用いられる試験片保持具であって、
     前記試験片を支持する支持体と、
     前記試験片に荷重を負荷する加圧体と、
     前記試験片の裏面側に配置され、入射方向と同じ方向に光を再帰反射させる再帰反射部材とを備えることを特徴とする試験片保持具。
    A light source unit that emits light from the surface side of the test piece to the observation target range of the test piece;
    An image sensor for detecting light from the observation target range of the test piece from the surface side of the test piece;
    A material testing apparatus that is disposed between the light source unit and the imaging device and includes a half mirror that guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the imaging device. A test piece holder used for
    A support for supporting the test piece;
    A pressurizing body for applying a load to the test piece;
    A test strip holder comprising a retroreflective member disposed on the back side of the test strip and retroreflecting light in the same direction as the incident direction.
  7.  試験片を支持する支持体と、
     前記試験片に荷重を負荷する加圧体と、
     前記試験片の観察対象範囲に前記試験片の表面側から光を照射する光源部と、
     前記試験片の観察対象範囲からの光を前記試験片の表面側から検出する撮像素子と、
     前記光源部と前記撮像素子との間に配置され、前記光源部からの光を所定方向に導くとともに、当該所定方向と逆方向からの光を前記撮像素子に導くハーフミラーとを備える材料試験装置に用いられる検査方法であって、
     入射方向と同じ方向に光を再帰反射させる再帰反射部材を、前記試験片の裏面側に配置する配置ステップと、
     前記光源部からの光が前記ハーフミラーを経由して前記試験片の観察対象範囲に照射され、前記試験片の観察対象範囲を透過した光が前記再帰反射部材で再帰反射された後、前記試験片の観察対象範囲を再び透過して、前記ハーフミラーを経由して前記撮像素子に検出される検出ステップとを含むことを特徴とする検査方法。
    A support for supporting the test piece;
    A pressurizing body for applying a load to the test piece;
    A light source unit that emits light from the surface side of the test piece to the observation target range of the test piece;
    An image sensor for detecting light from the observation target range of the test piece from the surface side of the test piece;
    A material testing apparatus that is disposed between the light source unit and the imaging device and includes a half mirror that guides light from the light source unit in a predetermined direction and guides light from a direction opposite to the predetermined direction to the imaging device. An inspection method used for
    An arrangement step of arranging a retroreflective member that retroreflects light in the same direction as the incident direction on the back side of the test piece;
    The light from the light source unit is irradiated on the observation target range of the test piece via the half mirror, and the light transmitted through the observation target range of the test piece is retroreflected by the retroreflective member, and then the test is performed. And a detection step of detecting again by the imaging element through the half mirror through the observation target range of the piece.
PCT/JP2013/061789 2013-04-22 2013-04-22 Material testing device, and test piece holder and inspection method used in same WO2014174574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061789 WO2014174574A1 (en) 2013-04-22 2013-04-22 Material testing device, and test piece holder and inspection method used in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061789 WO2014174574A1 (en) 2013-04-22 2013-04-22 Material testing device, and test piece holder and inspection method used in same

Publications (1)

Publication Number Publication Date
WO2014174574A1 true WO2014174574A1 (en) 2014-10-30

Family

ID=51791185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061789 WO2014174574A1 (en) 2013-04-22 2013-04-22 Material testing device, and test piece holder and inspection method used in same

Country Status (1)

Country Link
WO (1) WO2014174574A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032325A (en) * 2015-07-30 2017-02-09 株式会社島津製作所 Bending tester for X-ray observation
CN111487122A (en) * 2020-05-27 2020-08-04 广东科艺新泰建筑科技开发有限公司 Tensile detection device for outdoor article bearing structure
JP2020159826A (en) * 2019-03-26 2020-10-01 株式会社島津製作所 Material testing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346053A (en) * 1991-05-24 1992-12-01 Nkk Corp Method and device for measuring constriction of tensile-testing piece
JP2004101194A (en) * 2002-09-04 2004-04-02 Lasertec Corp Optical device, and image measuring device and inspection device using the same
JP2007225519A (en) * 2006-02-24 2007-09-06 Shimadzu Corp Material testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346053A (en) * 1991-05-24 1992-12-01 Nkk Corp Method and device for measuring constriction of tensile-testing piece
JP2004101194A (en) * 2002-09-04 2004-04-02 Lasertec Corp Optical device, and image measuring device and inspection device using the same
JP2007225519A (en) * 2006-02-24 2007-09-06 Shimadzu Corp Material testing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032325A (en) * 2015-07-30 2017-02-09 株式会社島津製作所 Bending tester for X-ray observation
JP2020159826A (en) * 2019-03-26 2020-10-01 株式会社島津製作所 Material testing machine
JP7167803B2 (en) 2019-03-26 2022-11-09 株式会社島津製作所 material testing machine
CN111487122A (en) * 2020-05-27 2020-08-04 广东科艺新泰建筑科技开发有限公司 Tensile detection device for outdoor article bearing structure

Similar Documents

Publication Publication Date Title
JP6912824B2 (en) Optical inspection equipment
KR100768038B1 (en) Apparatus and method for measuring bio chips with uniform illumination of total internal reflection
JP2012519265A (en) System and method for detecting defects in a substrate
JP2008513742A5 (en)
JP2015510121A (en) Optical fiber visual inspection method
TWI756306B (en) Optical characteristic measuring apparatus and optical characteristic measuring method
WO2014174574A1 (en) Material testing device, and test piece holder and inspection method used in same
JP2015055561A (en) Defect inspection method and defect inspection device of microlens array
JP2010519516A (en) Method and apparatus for illuminating a film for automatic inspection
RU2009116936A (en) METHODS AND SYSTEMS OF DETECTION AT FRONT IRRADIATION
JP2019508746A (en) Imaging system and method with scattering to reduce source autofluorescence and improve uniformity
JP4696959B2 (en) Optical detector
JP2012242266A (en) Lens foreign matter detection device and lens foreign matter detection method
KR20120114876A (en) Portable fluorescence detection system
JP7086813B2 (en) Lighting equipment
CN113811741A (en) Dimension measuring jig and dimension measuring apparatus including the same
JP2010156557A (en) Incident optical system and raman scattering measurement apparatus
JP2008026049A (en) Flange focal distance measuring instrument
JP6671938B2 (en) Surface shape measuring device, defect determination device, and surface shape measuring method
KR101761980B1 (en) Optical inspection device
KR102070295B1 (en) A portable detecting apparatus and a module for detecting component in agricultural products and livestock prodects
JP2010091428A (en) Scanning optical system
KR100608497B1 (en) An optical apparatus and an observation apparatus having the same for observing micro particles
JP2005331302A (en) Outside surface inspection method and outside surface inspection device
KR101185076B1 (en) Reflective type optical sensor for reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP