WO2014173954A2 - Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents - Google Patents

Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents Download PDF

Info

Publication number
WO2014173954A2
WO2014173954A2 PCT/EP2014/058244 EP2014058244W WO2014173954A2 WO 2014173954 A2 WO2014173954 A2 WO 2014173954A2 EP 2014058244 W EP2014058244 W EP 2014058244W WO 2014173954 A2 WO2014173954 A2 WO 2014173954A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
current
voltage
information representative
synchronous generator
Prior art date
Application number
PCT/EP2014/058244
Other languages
English (en)
Other versions
WO2014173954A3 (fr
Inventor
Guillermo Garcia Soto
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to EP14720557.9A priority Critical patent/EP2989718A2/fr
Publication of WO2014173954A2 publication Critical patent/WO2014173954A2/fr
Publication of WO2014173954A3 publication Critical patent/WO2014173954A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of the generation of electrical energy from synchronous generators with permanent magnets known by the acronym PMG.
  • PMG permanent magnets
  • the excitation field is provided by a permanent magnet instead of a coil.
  • the generator can be connected to a DC network and the AC-DC converter provides rectification and regulation on the DC side.
  • Documents [1] and [4] recommend using as a reciprocating-DC converter a simple passive rectifier bridge with diodes connected to the output of the permanent magnet synchronous generator as shown in Figure 1A.
  • the synchronous generator with permanent magnets 1 delivers output in a diode rectifier bridge 11 having a plurality of switching cells 1.1 connected in parallel.
  • Two switching cells 1.1 are provided if the synchronous generator 1 is single-phase and as many switching cells 1.1 as phases if it is multiphase.
  • the synchronous generator with permanent magnets 1 is three-phase and there are three switching cells 1.1.
  • Each switching cell 1.1 comprises two arms, each comprising a diode D1, D2, the two diodes D1, D2 of a cell being connected in series and in opposition.
  • Each switching cell 1.1 has two end terminals B, C on either side of the diodes D1, D2. Terminal B has positive polarity and terminal C has negative polarity.
  • Each switching cell 1.1 has a common terminal A between its two diodes D1, D2 connected in series, called the middle terminal.
  • Each of the switching cells 1.1 is connected to the stator of the synchronous generator 1, this connection is made to the middle terminal A.
  • An energy storage device C1 is mounted on the DC side of the rectifier bridge between the extreme terminals B and C.
  • phase current of the synchronous generator is tainted with harmonic components of low rank, 3, 5, 7, 11 for example, causing harmonics of torque and stress to the mechanical part of the synchronous generator.
  • Documents [2] and [4] recommend the use at the output of the permanent magnet synchronous generator 1 of an AC-DC converter formed of a diode rectifier bridge 11, of a mounted energy storage device Cl. at the terminals of the diode rectifier bridge 11 as illustrated in FIG. 1A, and in addition, a booster stage 12 of the boost type which is connected to the terminals of the energy storage device C1.
  • the booster stage 12 of the boost type comprises, at the terminals of the energy storage device C1, a series association of an inductor L and a switch K controlled by a signal S.
  • a diode D3 In parallel with the switch K, there is connected a diode D3 whose anode is connected to a midpoint E between the inductance L and the switch K and whose cathode is connected to a first terminal of a second energy storage device C2.
  • the second terminal of the second energy storage device C2 is connected to the switch K opposite the midpoint E.
  • the DC voltage delivered by the AC-DC converter is taken at the terminals of the second C2 energy storage device.
  • the switch K is controlled by the signal S in opening and closing.
  • the AC-DC converter of FIG. 1B makes it possible to carry out a synchronous control of the synchronous generator with permanent magnets 1, so that the DC output voltage taken at the terminals of the second energy storage device C2 is substantially constant, but the harmonic problem mentioned above still exists.
  • the power losses are important, particularly related to the boost stage 12 of the boost type.
  • the output of the whole is not so famous.
  • the document [3] recommends the use at the output of the permanent magnet synchronous generator 1 of an AC-DC converter formed by an active rectifier bridge 13 having a plurality of switching cells 13.1 connected in parallel.
  • Each switching cell 13.1 comprises two arms each comprising a controlled semiconductor switch II, 12, such as an IGBT transistor or an IGCT thyristor for example, each of the semiconductor switches II, 12 being mounted with a freewheeling diode D1 ', D2 'antiparallel.
  • the semiconductor switch assemblies, diodes of a switching cell are connected in series.
  • Each switching cell 13.1 has a common terminal A between its two diodes D1 ', D2' connected in series, called the middle terminal.
  • Each of the switching cells 13.1 is connected to the synchronous generator 1, this connection is made to the middle terminal A between the two arms.
  • the semiconductor switches of the cells are controlled by vector control with a two - level pulse width modulation since the two switches of the same cell are always controlled in opposition.
  • Document [5] describes an AC-DC converter intended to be connected, on the AC side, to a three-phase AC voltage source. It reduces harmonics. It comprises a rectifier bridge formed of a plurality of switching cells mounted in parallel, each having two diodes connected in series in opposition. High value inductances are connected between the AC voltage source and the rectifier bridge. They generate significant losses and degrade the efficiency of the converter. Voltage sensors collect the voltage upstream of the inductors, this information is used, via a transformer, to control switches each mounted between a midpoint between two diodes of the same switching cell of the rectifier bridge and a midpoint between a pair of serially connected energy storage device devices, this pair of energy storage device devices being connected in parallel with the switching cells.
  • This AC / DC converter is not suitable for use with a permanent magnet synchronous generator capable of variable speed operation as in wind turbine or hydrogenerator applications.
  • the object of the present invention is to propose an AC / DC converter for a permanent-magnet synchronous generator capable of rotating at variable speed, making it possible to obtain improved energy efficiency and not having the drawbacks listed above.
  • An object of the invention is therefore to provide an AC-DC converter for providing a substantially constant voltage regardless of the rotational speed of the rotor of the permanent magnet synchronous generator output in the AC-DC converter.
  • Another object of the invention is therefore to provide an AC / DC converter for a permanent magnet synchronous generator whose switching losses are reduced by comparison with those obtained with an active rectifier bridge as shown in FIG. 1C.
  • Yet another object of the invention is to provide an AC / DC converter for permanent magnet synchronous generator which makes it possible to compensate for the reactance of the generator and to obtain a better power factor.
  • Yet another object of the invention is to propose an AC / DC converter for permanent magnet synchronous generator which makes it possible to obtain a reduction by two of the voltage variation rate at the output of the synchronous generator compared to that obtained with the converters. described in FIGS. 1B, 1C.
  • the present invention proposes to use an active vector-controlled DC-AC converter based on the permanent magnet synchronous generator. This makes it possible to impose, when the vector control means activate the bidirectional switch device of the AC-DC converter, that the current injected into the converter and the voltage applied on the AC side to the converter are in phase.
  • the voltage of the permanent magnet synchronous generator is collinear with the electromotive force and the efficiency of the permanent magnet synchronous generator is improved regardless of the speed of its rotor.
  • the present invention relates to an AC-DC converter intended to be connected, on the AC side, to a synchronous generator with permanent magnets and to supply a DC voltage to the other side. It comprises : a rectifier bridge provided with a plurality of two-armed switching cells having two end terminals and a middle terminal between the two arms for connection to the synchronous generator,
  • bidirectional switches as cells, each mounted between a cell and the common node
  • vector control means of bidirectional switch devices intended to receive information representative of the speed of rotation of the rotor of the synchronous generator, information representative of the current to be injected into the converter by the generator and information representative of the DC voltage and intended to activating each bidirectional switch device to alternately turn it on and off so that the current injected into the converter and the voltage applied on the alternating side to the converter are in phase or substantially in phase so that the generator generates a current torque and no or almost no flow current.
  • the vector control means activate each bidirectional switch device to make it alternately turn on and off as long as the current injected into the converter is less than substantially 90% of the nominal current of the converter and maintains blocked each bidirectional switch device as soon as the current injected into the converter has reached substantially 90% of the nominal current of the converter.
  • the bidirectional switch device is connected to the middle terminal of a cell.
  • Each bidirectional switch device can then comprise two one-way switches adapted to be controlled on ignition and blocking, in series head to tail and two diodes in series head to tail, each diode being mounted in antiparallel with one of the switches.
  • each arm of the rectifier bridge has a mid-point and each bidirectional switch device has two bidirectional switches in series having a common point, one being mounted between the midpoint of an arm of one cell and the common point and the other between midpoint of the other arm of the same cell of the other arm and the common point, this common point being connected to the common node of the energy storage devices.
  • Each bidirectional switch comprises two single-directional switches able to be controlled on ignition and blocking, in series in the same direction and two diodes in series head to tail, one of the diodes being mounted in antiparallel with one of the switches and the other in parallel with the other switch.
  • the one-way switches may be IGBT transistors, MOSFET transistors, IGCT thyristors.
  • the energy storage device can be a capacitor, a battery, or a DC voltage source.
  • Each arm advantageously comprises one or more diodes connected in series.
  • the vector control means may include a vector control unit including a three-level pulse width modulation unit outputting control signals from the bidirectional switch devices and an inhibiting unit that cooperates with the vector control unit.
  • the vector control unit may comprise:
  • a first comparator for comparing information representative of the DC voltage with information representative of a reference DC voltage and outputting a result of a first comparison
  • a Park transformation block intended to receive information representative of the position of the rotor of the generator and the information representative of the current injected into the converter and of transforming this information representative of the injected current into information representative of a torque current and information representative of a flow current of the generator;
  • a voltage corrector for receiving the result of the first comparison and outputting a signal representative of a reference torque current
  • a second comparator for comparing the signal representative of the reference torque current with information representative of the torque current and outputting a result of a second comparison
  • a first current corrector for receiving the result of the second comparison and outputting a signal representative of a target torque voltage
  • a third comparator for comparing information representative of the flow current with a signal representative of the reference flow current and outputting a result of a third comparison
  • a second current corrector for receiving the result of the third comparison and outputting a signal representative of a set flow voltage
  • an inverse Park transformation block intended to receive the information representative of the rotor position of the synchronous generator, the signal representative of the setpoint voltage and the signal representative of the target torque voltage and to transform these signals into information representative of a set voltage to be applied to the AC side converter, the unit of pulse width modulation receiving this information as input.
  • the signal representative of the reference flow current is forced to zero to further reduce losses.
  • the converter preferably further comprises an inhibiting unit for receiving as input the information representative of the rotor position of the synchronous generator and the information representative of the torque current and for producing an inhibition signal for the pulse width modulation unit only when the current injected into the converter has reached substantially 90% of the nominal current of the converter.
  • the present invention also relates to an energy conversion chain comprising a permanent magnet synchronous generator coupled to an alternating-DC converter thus characterized, the synchronous generator being intended to output in the AC-DC converter.
  • This chain may be of the aerogenerator or hydrogenerator type.
  • FIGS. 1A, 1B, 1C already described show patterns of AC / DC converters for controlling synchronous generators with permanent magnets of the prior art
  • FIGS. 2A1, 2A2 illustrate an exemplary energy conversion chain that is the subject of the invention, in particular of the three-phase and single-phase wind turbine or hydrogenator type respectively, with alternating-DC converter according to the invention in a low voltage version;
  • FIG. 2B illustrates an example of a bidirectional switch device of the converter of FIGS. 2A1, 2A2;
  • FIG. 3A illustrates, in an energy conversion chain, in particular of the aerogenerator or hydrogenerator type of the invention, another example of an AC / DC converter scheme according to the invention in the medium voltage version and
  • FIG. 3B illustrates an example. bidirectional switch device
  • FIG. 4A shows an example of the vector control means of bidirectional switch devices in three-phase version and FIG. 4B an example of the vector control means of FIGS. bidirectional switch devices in single-phase version;
  • FIG. 5A shows a timing diagram representing the current injected into the AC-DC converter as a function of time and PWM pulse width modulation control of the bidirectional switch devices in the case where the injected current is greater than about 90% of the current. nominal of the AC-DC converter;
  • FIG. 5B shows a timing chart showing the current injected into the AC-DC converter as a function of time and PWM pulse width modulation control of the bidirectional switch devices in the case where the phase current is less than about 90% of the nominal current of the AC-DC converter;
  • FIGS. 5C and 5D respectively show the shape of the voltage variation applied to the common terminal A and that of the current flowing in the bidirectional switch device of FIG. 2B when controlling the bidirectional switch device.
  • FIGS. 2A1, 2A2 will show two examples of electrical schematics of the AC-DC converter 20 object of FIG. the invention.
  • the AC-DC converter 20 is multiphase (here three-phase) in Figure 2A1 and single-phase in Figure 2A2.
  • a synchronous generator with permanent magnets 1 is intended to be connected to an alternating side of the AC-DC converter. It is intended to be connected on the DC side to a DC bus 21. This DC bus 21 can feed a user device (not shown).
  • the AC-DC converter 20 is formed of a rectifier bridge 22 having a plurality of switching cells 22.1 connected in parallel. As explained above, two switching cells 22.1 are provided if the AC / DC converter 20 is single-phase and as many switching cells 22.1 as there are phases if it is multiphase.
  • Each switching cell 22.1 comprises, in this example suitable for low voltages two switches K1, K2 connected in series and in opposition.
  • Each switching cell 22.1 has two end terminals B, C on either side of the switches K1, K2. Terminal B has positive polarity and terminal C has negative polarity.
  • Each switching cell 22.1 has a common terminal A between its two switches K1, K2 connected in series, called the middle terminal.
  • the switches K1, K2 are naturally-switched switches such as diodes.
  • Each of the switching cells 22.1 is connected to the stator of the synchronous generator with permanent magnets 1, this connection is preferably directly to the middle terminal A. There is no inductance as illustrated in document [5].
  • the reciprocating-continuous conversion device 20 which is the subject of the invention further comprises, on the continuous side, a pair 23 of energy storage devices C, C 'arranged in series.
  • the pair 23 of energy storage devices C, C ' is connected in parallel with the switching cells 22.1, between the end terminals B and C.
  • the DC bus 21 is connected to the terminals of the pair 23 of switching devices.
  • energy storage C, C ' The two energy storage devices C, C 'comprise a common node NI.
  • Each energy storage device C, C ' may be a capacitor, a battery or a DC voltage source.
  • the AC-DC converter furthermore preferably comprises a filter RC 28 (known under the name filter dV / dt) associated with each of the switching cells of the rectifier bridge, connected at one end to the middle terminal A and whose another end is taken to a floating potential. It provides protection for the permanent magnet synchronous generator 1, by imposing less dielectric stress on it. The stiffness of the voltage edges applied on the AC side to the AC-DC converter is reduced.
  • filter RC 28 known under the name filter dV / dt
  • This RC 28 filter has been illustrated in Figure 2B and not in Figures 2A1, 2A2 to not overload them unnecessarily.
  • the reciprocating-continuous conversion device object of the invention, further comprises a bidirectional switch device 4 associated with each switching cell 22.1. It is mounted between the associated 22.1 switch cell and the NI node common to the two energy storage devices C, C 'of the pair 12. More particularly in this example of Figure 2A, the bidirectional switch device 4 is connected between the common terminal A and the common node NI.
  • These bidirectional switch devices 4 comprise have two states, they are either in an on state or in a blocked state.
  • Each bidirectional switch device 4 comprises, as illustrated in FIG. 2B, at least two switches that are associated with control means 5 that go into operation, activate them, that is to say make them pass from the passing state to the blocked state alternately, either keep them locked.
  • the bidirectional switch devices will be described in greater detail in FIGS. 2B and 3B.
  • control means 5 are vector control means.
  • the vector control of bidirectional switch devices will be done by PWM pulse width modulation at three levels. We will see further in detail the structure of the vector control means 5.
  • the vector control means 5 receive information representative of the position ⁇ of the rotor of the permanent magnet synchronous generator 1.
  • a position sensor referenced 24 can deliver this information, it can capture the position of the shaft connecting the rotor from the synchronous generator with permanent magnets 1 to the hub which connects the blades 25 of the wind turbine or turbine to the rotor of the Permanent Magnet Synchronous Generator 1. These blades are referenced in FIG. 2A.
  • the vector control means 5 also receive information representative of the output current of the permanent magnet synchronous generator 1 and injected into the AC-DC converter 20.
  • the current injected into the the AC-DC converter corresponds to the three phase currents conventionally called ia, ib, ic.
  • the current sensors are referenced 26.
  • the vector control means 5 also receive information representative of the DC voltage V present, in operation, on the DC side of the AC-DC converter 20.
  • a referenced voltage sensor 27 connected to the terminals of FIG. the pair 23 of energy storage devices C, C ".
  • the measured current is the stator current i delivered by the generator.
  • FIG. 2B represents only one bidirectional switch device 4 of the variants illustrated in FIGS. 2A1, 2A2 associated with a switching cell 22.1 of the bridge rectifier.
  • the bidirectional switch device 4 comprises two bidirectional switches SI, S2 connected in series.
  • Each bidirectional switch SI or S2 comprises a transistor IG1, IG2 and the two transistors are head-to-tail. These transistors are represented as IGBT transistors. In this example, they have a common transmitter node N2, also called common node N2 of the bidirectional switch device 4.
  • the common node NI of the pair of energy storage devices 23 is connected to the collector of one of the IG2 transistors and the middle terminal A is connected to the collector of the other transistor IG1.
  • Each bidirectional switch SI, S2 also includes a freewheel diode DG1, DG2, the two diodes DG1, DG2 are connected in series also head to tail.
  • Each diode DG1, DG2 is associated with a transistor IG1, IG2. This series of series upside-down is such that their anodes are connected to each other and to the common node N2 of the bidirectional switch device 4.
  • the emitter of each of the transistors IG1, IG2 is connected to its respective collector by a respective freewheeling diode DG1, DG2.
  • Each freewheeling diode DG1, DG2 is thus mounted in antiparallel between the emitter and the collector of its associated transistor.
  • the transistor IG1 and the diode DG1 are antiparallel and the transistor IG2 and the diode DG2 are antiparallel while the transistor IG1 and the diode DG2 are opposite and the transistor IG2 and the diode DG1 are opposite.
  • the vector control means 5 of the bidirectional switch device 4 are connected to the gate of each of the transistors IG1, IG2 and to the common node N2 of the device, the bidirectional switch 4.
  • the vector control is preferably PWM pulse width modulation control. When he is not passing, he is stuck.
  • the bi-directional switch device 4 is on, only the transistor IG1 of the bidirectional switch S1 is on and the diode DG2 opposite to it.
  • the bidirectional switch SI is moving from the current delivered by the permanent magnet synchronous generator 1 flows into the pair 23 of energy storage devices C ', C' '.
  • the bidirectional switches S1 and S2 are not operated strictly complementary.
  • the bi-directional switch device 4 When the bi-directional switch device 4 is activated only one of the transistors IG1 and IG2 is alternately turned on and off, and the other is blocked or they are both locked at the end of the activation cycle of one and before a cycle. activation of the other.
  • FIG. 3A shows a variant of the AC-DC converter 20 which is suitable for medium DC voltages while the converters of FIGS. 2A1, 2A2 were adapted for lower continuous voltages.
  • medium voltage means voltages greater than about 1000 VDC, while the low voltages are less than about 1000 VDC.
  • the AC-DC converter 20 comprises a rectifier bridge 32 with a plurality of switching cells 32.1 connected in parallel.
  • Each switching cell has two arms E1, E2 connected by the middle terminal A.
  • Each arm is a series of two or an even number of single-direction switches K11, K12, K21, K22, the switches of one arm are in opposition to those of the other arm.
  • Each arm E1, E2 has a midpoint A1, A2.
  • the end terminals B, C and the middle terminal A are again indicated.
  • the switches K11, K12, K21, K22 are naturally-switched switches such as diodes.
  • Each of the switching cells 32.1 is connected to the stator of the synchronous generator with permanent magnets 1, this connection is made to the middle terminal A.
  • the AC-DC converter 20 object of the invention further comprises, on the DC side, the pair 23 of energy storage devices C, C 'arranged in series.
  • Each bidirectional switch device 4 comprises two bidirectional switches SI, S2 connected in series in the same direction.
  • One of the two-way switches called SI is disposed between the node N1 common to the two energy storage devices C, C 'of the pair 12 of energy storage devices and the midpoint Al of an arm El of one of the switching cells 32.1 of the bridge rectifier.
  • the other bidirectional switch S2 is disposed between the common node N1 and the midpoint A2 of the other arm E2 of the same switching cell 32.1.
  • Each bidirectional switch S1, S2 is of course associated with the vector control means 5 which when they activate it, put it in its state from its blocked state and vice versa.
  • the control of the bidirectional switches will be done by PWM pulse width modulation at three levels. We will see further in detail the structure of the vector control means 5.
  • FIG. 3A shows the bidirectional switch device 6 with its two bidirectional switches S1, S2.
  • Each bidirectional switch SI, S2 comprises a transistor IG1, IG2, for example of the IGBT type, and a freewheel diode DG1, DG2 antiparallel mounted between the emitter and the collector of its associated IGBT transistor.
  • the two transistors IG1, IG2 are connected in series in the same direction, they have a common node which is the common node NI of the pair of energy storage devices.
  • One of the transistors, in this case IG2 has its collector connected to the midpoint A2 of the arm E2 and the other transistor IG1 has its emitter connected to the midpoint Al of the El arm.
  • the DG1 and DG2 diodes are in series head to tail and their anodes are connected to each other and to the common node NI. Their cathodes are connected for one in this case DG2 at the midpoint A2 and for the other DG1 at the midpoint Al.
  • the transistor IG1 and the diode DG1 are antiparallel and the transistor IG2 and the diode DG2 are opposite.
  • the vector control means 5 of the bidirectional switch device are connected to the gate of each of the transistors IG1, IG2.
  • the bidirectional switch device When the bidirectional switch device is activated only one of the transistors IG1 and IG2 is alternately turned on and off, and the other is blocked or they are both locked at the end of the activation cycle of one and before a cycle. activation of the other.
  • MOSFET transistors or IGCT thyristors Integrated Gate Commutated Thyristor
  • vector control means 5 of the bidirectional switch devices 4, 6 will now be described. These vector control means 5, when they are active and not inhibited, will make it possible to activate each bidirectional switch device so that the voltage applied to the AC-DC converter and the current injected by the permanent magnet synchronous generator into the AC-DC converter is in phase or substantially in phase so that the generator generates a torque current and no or almost no flow current.
  • FIG. 4A shows an example of vector control means 5, again in the nonlimiting example of a three-phase permanent magnet synchronous generator.
  • FIG. 4B shows an example of vector control means 5, still in the nonlimiting example of a synchronous generator with permanent single-phase magnets.
  • These vector control means 5 comprise at least one vector control unit 50.
  • the vector control unit 50 comprises a first comparator 52 intended to receive on an input a piece of information representative of the DC voltage V at the output of the AC-DC converter measured by the voltage sensor 27 and on another input a representative piece of information. a reference voltage Vref. It has an output on which is present the result of a first comparison. This output is connected to the input of a voltage corrector 53.
  • the voltage corrector 53 may be of integral proportional type PI.
  • FIG. 4A shows phase currents ia, ib, ic measured by the current sensors 26.
  • this is the stator current i.
  • a current which is in quadrature with respect to the stator current i is also injected into the Park 54 transformation block.
  • a phase shift block 61 of n / 2 is provided for this purpose.
  • This Park 54 transformation block is also intended to receive as input the information representative of the position ⁇ of the rotor of the synchronous generator 1 delivered by the position sensor 24.
  • This transformation block of Park 54 is intended to transform the information representative of the current injected into the AC-DC converter into information representative of a flow current id and information representative of a torque current iq.
  • Currents ia, ib, ic are linked to the stator frame of the permanent magnet synchronous generator 1. They are sinusoidal. It is the same for the stator current i.
  • the currents id and iq are constant currents along a direct axis and a transverse axis respectively.
  • the voltage corrector 53 delivers a signal representative of a reference torque current iqref.
  • the voltage corrector 53 has an output connected to an input of a second comparator 55 intended to receive on another input the information representative of the torque current iq delivered by the transformation block of Park 54.
  • the second comparator 55 therefore compares the signal representative of the reference torque current iqref with the information representative of the torque current iq delivered by the processing block of Park 54. It has an output on which is present the result of a second comparison.
  • This output is connected to the input of a first current corrector 56.
  • the first current corrector 56 is intended to receive the result of a second comparison and to deliver a signal representative of a desired torque torque uq.
  • the vector control unit 50 furthermore comprises a third comparator 57 intended to receive on an input the information representative of the flow current id delivered by the Park transformation block 54, on another input a signal representative of a reference flow current idref.
  • This idref reference flow current is forced to zero to minimize Joule currents and losses.
  • This output is connected to the input of a second current corrector 58.
  • the second current corrector 58 is intended to receive the result of the third comparison.
  • the second current corrector 58 is intended to deliver a signal representative of a ud flow voltage setpoint.
  • the first and the second current corrector 56, 58 may be integral proportional type PI.
  • the first and the second current corrector 56, 58 are connected to the input of a Park 59 inverse transform block.
  • This Park 59 inverse transform block is intended to receive the signal representative of the flux voltage. setpoint ud and setpoint torque uq.
  • This inverse transforming block of Park 59 also receives the information representative of the position ⁇ of the rotor of the synchronous generator delivered by the position sensor 24.
  • This inverse transformation block of Park 59 makes it possible to return to an information representative of a setpoint voltage to be applied, to the continuous AC converter by the synchronous generator, which corresponds in the case of a three-phase generator to voltages between setpoint ua, ub, uc, which corresponds to the three-phase components of the stator voltage. They correspond to the voltage applied on the AC side of the AC / DC converter, which will make it possible to extract the maximum power from the synchronous generator with permanent magnets.
  • the Park 59 inverse transformation block delivers two voltages which are two-phase components ua, u of the stator voltage.
  • pulse generator 60 which outputs control pulse signals to be applied to the switches S1, S2 of the bidirectional switch devices 4, 6. To this end, six control signals at the output of the modulation unit in width are schematized. pulse 60 and therefore the vector control unit 50.
  • the setpoint voltage ua is injected into the pulse width modulation unit 60.
  • the other setpoint voltage u is forced to zero and this zero value is injected into the unit of pulse width modulation 60.
  • the vector control means 5 further comprise an inhibition unit 51 which cooperates with the vector control unit 50.
  • this pulse width modulation unit 60 is driven by the inhibition unit 61.
  • the inhibition unit 61 is intended to receive as input the information representative of the torque current iq delivered by the transformation block. of Park 54 and information representative of the position ⁇ of the synchronous generator rotor delivered by the position sensor 22.
  • the output of the inhibition unit 61 is connected to the pulse width modulation unit 60. It produces an inhibition signal for the pulse width modulation unit 60.
  • this inhibition signal is produced only when the current injected into the AC-DC converter reaches about 90% of the nominal current of the AC-DC converter and blocks the pulse width modulation unit 60.
  • the nominal current of the AC-DC converter is the maximum current that can support the AC / DC converter in steady state.
  • the losses are not negligible when the current injected into the AC-DC converter is high, the losses being proportional to the current. The losses associated with the switching of the bidirectional switches are then eliminated.
  • the DC output of the AC-DC converter has a low ripple, it is substantially constant.
  • FIGS. 5A and 5B show the processing by the switches of the AC-DC converter of the current delivered by the synchronous generator with permanent magnets. This current corresponds to a phase current in the case of a synchronous generator with multiphase permanent magnets.
  • the pulses delivered by the pulse width modulation unit 60 are illustrated by the sticks.
  • the maximum amplitude of the current injected into the AC-DC converter exceeds about 90% of the nominal current of the AC-DC converter.
  • the pulse width modulation is inhibited.
  • the switches are thus kept locked in a substantially central time range of alternating current injected into the AC-DC converter. On either side of this central range, the switches are therefore permanently activated and thus alternately switched on and off at the rhythm of the pulse width modulation.
  • the maximum amplitude of the current injected into the AC-DC converter does not reach about 90% of the nominal current of the AC-DC converter. There is no inhibition of pulse width modulation.
  • the switches are therefore permanently activated and thus alternately switched on and off at the rhythm of the pulse width modulation.
  • FIGS. 5C and 5D illustrate, by way of example, in the case where the current injected into the AC-DC converter is less than 90% of the nominal current, the shape of the voltage applied to the common terminal A AC-DC converter and the pace of the current flowing in the switch device 4 such as that of Figure 2B.
  • the monodirectional switch IG1 which is activated by the PWM pulse width modulating unit 1 to switch it alternately from a blocked state to a switched state.
  • the monodirectional switch IG2 is blocked.
  • a second cycle corresponding to a negative alternation of the current, it is the monodirectional switch IG2 which is activated by the PWM pulse width modulation unit to switch it from a blocked state to a state alternately. passing.
  • the semiconductor switch IG1 is blocked.
  • the two monodirectional switches IG1 and IG2 are blocked, the current is substantially zero.
  • the current from the synchronous generator passes through the switching cell 22.1. The succession of these two cycles continues as long as the current remains less than 90% of the nominal current of the AC / DC converter.

Abstract

Convertisseur alternatif-continu destiné à être relié, côté alternatif, à un générateur synchrone à aimants permanents (1) et, à délivrer une tension continue(V), comportant: un pont redresseur (22, 32) avec plusieurs cellules (22.1, 32.1) à deux bras (E1, E2) ayant deux bornes extrêmes (B, C) et une borne milieu (A) à connecter au générateur; une paire (23) de dispositifs de stockage d'énergie (C', C'') en série, montés aux bornes extrêmes (B, C), côté continu,possédant un nœud commun (N1); autant de dispositifs interrupteurs bidirectionnels (4) que de cellules(22.1, 32.1), chacun monté entre une cellule (22.1, 32.1) et le nœud commun(N1); des moyens de commande vectorielle (5) des dispositifs interrupteurs,devant recevoir la vitesse (q) du rotor, le courant (ia, ib, ic) à injecter dans le convertisseur et la tension continue (V), destinés à activer chaque dispositif interrupteur (4),de manière à ce que le courant (ia, ib, ic) et la tension appliquée(ua, ub, uc) au convertisseur soient en phase.

Description

CONVERTISSEUR ALTERNATIF-CONTINU DE PILOTAGE D'UN GÉNÉRATEUR SYNCHRONE À AIMANTS PERMANENTS
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne le domaine de la génération d'énergie électrique à partir de générateurs synchrones à aimants permanents connus par le sigle PMG. Dans ces générateurs, le champ d'excitation est fourni par un aimant permanent au lieu d'une bobine.
Elle s'applique dans le domaine l'énergie, aussi bien aux aérogénérateurs, qu'aux hydrogénérateurs, au domaine de l'aéronautique pour transformer de l'énergie cinétique en énergie électrique. D'autres domaines sont bien sûr envisageables comme les turbines à vapeur ou à gaz.
Le générateur peut être relié à un réseau à courant continu et le convertisseur alternatif-continu assure un redressement et une régulation côté continu.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
On connaît plusieurs articles qui traitent d' aérogénérateurs à générateurs synchrones à aimants permanents. Parmi ceux-ci les documents numérotés [1], [2], [3], [4], sont référencés de manière complète en dernière page de la description.
Les documents [1] et [4] préconisent de d'utiliser, en tant que convertisseur alternatif- continu, un simple pont redresseur passif à diodes branché en sortie du générateur synchrone à aimants permanents comme illustré sur la figure 1A.
Le générateur synchrone à aimants permanents 1 débite en sortie dans un pont redresseur à diodes 11 comportant plusieurs cellules de commutation 1.1 montées en parallèle. On prévoit deux cellules de commutation 1.1 si le générateur synchrone 1 est monophasé et autant de cellules de commutation 1.1 que de phases s'il est multiphasé. Dans l'exemple représenté non limitatif, le générateur synchrone à aimants permanents 1 est triphasé et il y a trois cellules de commutation 1.1. Chaque cellule de commutation 1.1 comporte deux bras, chacun comprenant une diode Dl, D2, les deux diodes Dl, D2 d'une cellule étant montées en série et en opposition. Chaque cellule de commutation 1.1 comporte deux bornes extrêmes B, C de part et d'autre des diodes Dl, D2. La borne B est de polarité positive et la borne C de polarité négative. Chaque cellule de commutation 1.1 comporte une borne commune A entre ses deux diodes Dl, D2 montées en série, appelée borne milieu. Chacune des cellules de commutation 1.1 est reliée au stator du générateur synchrone 1, cette liaison se fait à la borne milieu A.
Un dispositif de stockage d'énergie Cl est monté, côté continu du pont redresseur entre les bornes extrêmes B et C.
Les inconvénients de ce montage sont les suivants. Il ne permet pas de compenser la réactance du générateur synchrone 1, ce qui fait que la puissance fournie par le générateur synchrone 1 n'est pas optimale. De plus, puisque la tension fournie par le générateur synchrone 1 dépend de sa vitesse de rotation, la tension aux bornes du dispositif de stockage d'énergie Cl n'est pas constante.
Encore un autre inconvénient est que le courant de phase du générateur synchrone est entaché de composantes harmoniques de bas rang, 3, 5, 7, 11 par exemple, provoquant des harmoniques de couple et du stress à la partie mécanique du générateur synchrone.
Les documents [2] et [4] préconisent l'utilisation en sortie du générateur synchrone à aimants permanents 1 d'un convertisseur alternatif- continu formé d'un pont redresseur à diodes 11, d'un dispositif de stockage d'énergie Cl monté aux bornes du pont redresseur à diodes 11 comme illustrés sur la figure 1A, et de plus, d'un étage élévateur 12 de type boost qui est branché aux bornes du dispositif de stockage d'énergie Cl.
On peut se référer à la figure 1B. L'étage élévateur 12 de type boost comporte aux bornes du dispositif de stockage d'énergie Cl une association série d'une inductance L et d'un interrupteur K commandé par un signal S. En parallèle avec l'interrupteur K, est branchée une diode D3 dont l'anode est connectée à un point milieu E entre l'inductance L et l'interrupteur K et dont la cathode est connectée à une première borne d'un second dispositif de stockage d'énergie C2. La seconde borne du second dispositif de stockage d'énergie C2 est connectée à l'interrupteur K à l'opposé du point milieu E . La tension continue délivrée par le convertisseur alternatif-continu est prise aux bornes du second dispositif de stockage d'énergie C2. L'interrupteur K est commandé par le signal S en ouverture et en fermeture .
Le convertisseur alternatif-continu de la figure 1B permet d'effectuer un pilotage synchrone du générateur synchrone à aimants permanents 1, ce qui fait que la tension de sortie continue prélevée aux bornes du second dispositif de stockage d'énergie C2 est sensiblement constante, mais le problème lié aux harmoniques évoqué plus haut subsiste.
Les pertes en puissance sont importantes liées notamment à l'étage élévateur 12 de type boost. Le rendement de l'ensemble n'est donc pas fameux.
Le document [3] préconise l'utilisation en sortie du générateur synchrone à aimants permanents 1 d'un convertisseur alternatif-continu formé d'un pont redresseur actif 13 ayant plusieurs cellules de commutation 13.1 montées en parallèle.
Chaque cellule de commutation 13.1 comporte deux bras comportant chacun un interrupteur à semiconducteur commandé II, 12, tel un transistor IGBT ou un thyristor IGCT par exemple, chacun des interrupteurs à semi-conducteur II, 12 étant monté avec une diode roue libre Dl', D2' en antiparallèle. Les ensembles interrupteurs à semi-conducteur, diodes d'une cellule de commutation sont montés en série.
Chaque cellule de commutation 13.1 comporte une borne commune A entre ses deux diodes Dl', D2 ' montées en série, appelée borne milieu. Chacune des cellules de commutation 13.1 est reliée au générateur synchrone 1, cette liaison se fait à la borne milieu A entre les deux bras. Le pilotage des interrupteurs à semi-conducteur des cellules se fait par commande vectorielle avec une modulation en largeur d' impulsion à deux niveaux puisque les deux interrupteurs d'une même cellule sont toujours commandés en opposition.
Cette configuration apporte beaucoup de pertes dues à la commutation des six interrupteurs à semi-conducteur. Les pertes sont proportionnelles à la tension présente côté continu. De plus, le taux de variation de tension en sortie du générateur synchrone est proportionnel à tension présente côté continu, ce qui engendre beaucoup de stress diélectrique dans le générateur. Elle n'est pas satisfaisante.
Le document [5] décrit un convertisseur alternatif-continu destiné à être relié, côté alternatif, à une source de tension alternative triphasée. Il permet de réduire les harmoniques. Il comporte un pont redresseur formé de plusieurs cellules de commutation montées en parallèle, chacune ayant deux diodes montées en série en opposition. Des inductances de valeurs élevées sont montées entre la source de tension alternative et le pont redresseur. Elles génèrent des pertes importantes et dégradent le rendement du convertisseur. Des capteurs de tension prélèvent la tension en amont des inductances, cette information est utilisée, via un transformateur, pour commander des interrupteurs montés chacun entre un point milieu entre deux diodes d'une même cellule de commutation du pont redresseur et un point milieu entre une paire de dispositifs de dispositif de stockage d'énergie connectés en série, cette paire de dispositifs de dispositif de stockage d'énergie étant montée en parallèle avec les cellules de commutation. Ce convertisseur alternatif-continu ne convient pas pour être utilisé avec un générateur synchrone à aimants permanents susceptible de fonctionner à vitesse variable comme dans les applications d' aérogénérateurs ou d' hydrogénérateurs .
Il ne pourrait pas fournir une tension continue constante quelle que soit la vitesse de rotation du rotor du générateur synchrone à aimants permanents .
EXPOSÉ DE L' INVENTION
La présente invention a pour but de proposer un convertisseur alternatif-continu pour générateur synchrone à aimants permanents susceptible de tourner à vitesse variable, permettant d'obtenir un rendement énergétique amélioré et ne présentant pas les inconvénients listés ci-dessus.
Un but de l'invention est donc de fournir un convertisseur alternatif-continu destiné fournir une tension sensiblement constante quelle que soit la vitesse de rotation du rotor du générateur synchrone à aimants permanents débitant dans le convertisseur alternatif-continu.
Un autre but de l'invention est donc de proposer un convertisseur alternatif-continu pour générateur synchrone à aimants permanents dont les pertes par commutation sont réduites par à rapport à celles obtenues avec un pont redresseur actif comme illustré sur la figure 1C. Encore un autre but de l'invention est de proposer un convertisseur alternatif-continu pour générateur synchrone à aimants permanents qui permet de compenser la réactance du générateur et d' obtenir un meilleur facteur de puissance.
Encore un autre but de l'invention est de proposer un convertisseur alternatif-continu pour générateur synchrone à aimants permanents qui permet d' obtenir une réduction par deux du taux de variation de tension en sortie du générateur synchrone par rapport à celui obtenu avec les convertisseurs décrits aux figures 1B, 1C.
Pour y parvenir la présente invention propose d'utiliser un convertisseur alternatif-continu actif piloté par commande vectorielle basée sur le générateur synchrone à aimants permanents. Cela permet d' imposer, lorsque les moyens de commande vectorielle activent le dispositif interrupteur bidirectionnel du convertisseur alternatif-continu, que le courant injecté dans le convertisseur et la tension appliquée, côté alternatif, au convertisseur soient en phase. Ainsi la tension du générateur synchrone à aimants permanents est colinéaire à la force électromotrice et l'efficacité du générateur synchrone à aimants permanents est améliorée quelle que soit la vitesse de son rotor.
Plus particulièrement, la présente invention concerne un convertisseur alternatif-continu destiné à être relié, côté alternatif, à un générateur synchrone à aimants permanents et, à délivrer de l'autre côté une tension continue. Il comporte : un pont redresseur pourvu de plusieurs cellules de commutation à deux bras ayant deux bornes extrêmes et une borne milieu entre les deux bras destinée à être connectée au générateur synchrone,
deux dispositifs de stockage d'énergie en série, montés aux bornes extrêmes du pont redresseur, côté continu, ces deux dispositifs de stockage d'énergie possédant un nœud commun,
autant de dispositifs interrupteurs bidirectionnels que de cellules, chacun monté entre une cellule et le nœud commun,
des moyens de commande vectorielle des dispositifs interrupteurs bidirectionnels destinés à recevoir une information représentative de la vitesse de rotation du rotor du générateur synchrone, une information représentative du courant devant être injecté dans le convertisseur par le générateur et une information représentative de la tension continue et destinés à activer chaque dispositif interrupteur bidirectionnel pour le rendre alternativement passant et bloqué de manière à ce que le courant injecté dans le convertisseur et la tension appliquée, côté alternatif, au convertisseur soient en phase ou pratiquement en phase de telle sorte que le générateur génère un courant de couple et pas ou quasiment pas de courant de flux.
Il est préférable pour limiter les pertes que les moyens de commande vectorielle activent chaque dispositif interrupteur bidirectionnel pour le rendre alternativement passant et bloqué tant que le courant injecté dans le convertisseur est inférieur à sensiblement 90% du courant nominal du convertisseur et maintienne bloqué chaque dispositif interrupteur bidirectionnel dès que le courant injecté dans le convertisseur a atteint sensiblement 90% du courant nominal du convertisseur.
Dans une configuration adaptée aux basses tensions continues, le dispositif interrupteur bidirectionnel est relié à la borne milieu d'une cellule .
Chaque dispositif interrupteur bidirectionnel peut alors comporter deux interrupteurs monodirectionnels aptes à être commandés à l'allumage et au blocage, en série tête-bêche et deux diodes en série tête-bêche, chaque diode étant montée en antiparallèle avec un des interrupteurs.
Dans une configuration adaptée pour les moyennes tensions continues, chaque bras du pont redresseur possède un point milieu et chaque dispositif interrupteur bidirectionnel possède deux interrupteurs bidirectionnels en série ayant un point commun, l'un étant monté entre le point milieu d'un bras d'une cellule et le point commun et l'autre entre point milieu de l'autre bras de la même cellule de l'autre bras et le point commun, ce point commun étant relié au nœud commun des dispositifs de stockage d'énergie.
Chaque interrupteur bidirectionnel comporte deux interrupteurs monodirectionnels aptes à être commandés à l'allumage et au blocage, en série dans le même sens et deux diodes en série tête-bêche, l'une des diodes étant montée en antiparallèle avec un des interrupteurs et l'autre en parallèle avec l'autre interrupteur .
Les interrupteurs monodirectionnels peuvent être des transistors IGBT, des transistors MOSFET, des thyristors IGCT.
Le dispositif de stockage d'énergie peut être un condensateur, une batterie ou une source de tension continue.
Chaque bras comporte avantageusement une ou plusieurs diodes montées en série.
Les moyens de commande vectorielle peuvent comprendre une unité de commande vectorielle incluant une unité de modulation en largeur d' impulsion à trois niveaux délivrant des signaux de commande des dispositifs interrupteurs bidirectionnels et une unité d'inhibition qui coopère avec l'unité de commande vectorielle .
L'unité de commande vectorielle peut comporter :
un premier comparateur destiné à comparer l'information représentative de la tension continue à une information représentative d'une tension continue de référence et à délivrer un résultat d'une première comparaison ;
un bloc de transformation de Park destiné à recevoir l'information représentative de la position du rotor du générateur et l'information représentative du courant injecté dans le convertisseur et à transformer cette information représentative du courant injecté en une information représentative d'un courant de couple et une information représentative d'un courant de flux du générateur ;
un correcteur de tension destiné à recevoir le résultat de la première comparaison et à délivrer un signal représentatif d'un courant de couple de référence ;
un second comparateur destiné à comparer le signal représentatif du courant de couple de référence avec l'information représentative du courant de couple et à délivrer un résultat d'une seconde comparaison ;
un premier correcteur de courant destiné à recevoir le résultat de la seconde comparaison et à délivrer un signal représentatif d'une tension de couple de consigne ;
un troisième comparateur destiné à comparer l'information représentative du courant de flux avec un signal représentatif du courant de flux de référence et à délivrer un résultat d'une troisième comparaison ;
un second correcteur de courant destiné à recevoir le résultat de la troisième comparaison et à délivrer un signal représentatif d'une tension de flux de consigne ;
un bloc de transformation inverse de Park destiné à recevoir l'information représentative de la position du rotor du générateur synchrone, le signal représentatif de la tension de flux de consigne et le signal représentatif de la tension de couple de consigne et à transformer ces signaux en une information représentative d'une tension de consigne à appliquer au convertisseur côté alternatif, l'unité de modulation en largeur d' impulsion recevant en entrée cette information.
Le signal représentatif du courant de flux de référence est forcé à zéro pour réduire encore les pertes.
Le convertisseur comporte, de préférence, de plus, une unité d'inhibition destinée à recevoir en entrée l'information représentative de la position du rotor du générateur synchrone et l'information représentative du courant de couple et à produire un signal d'inhibition pour l'unité de modulation en largeur d' impulsion uniquement lorsque le courant injecté dans le convertisseur a atteint sensiblement 90% du courant nominal du convertisseur.
On peut prévoir en outre un filtre RC par cellule ayant une extrémité reliée à la borne milieu et l'autre extrémité destinée à être portée à un potentiel flottant, destiné rendre moins raides les fronts de tension appliquée au convertisseur côté alternatif. On réduit ainsi le risque d'endommager les parties isolantes du générateur.
La présente invention concerne également une chaîne de conversion d'énergie comportant un générateur synchrone à aimant permanents couplé à un convertisseur alternatif-continu ainsi caractérisé, le générateur synchrone étant destiné à débiter dans le convertisseur alternatif-continu.
Cette chaîne peut être de type aérogénérateur ou hydrogénérateur. BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
Les figures 1A, 1B, 1C déjà décrites montrent des schémas de convertisseurs alternatif- continu de pilotage de générateurs synchrones à aimants permanents de l'art antérieur ;
Les figures 2A1, 2A2 illustrent un exemple de chaîne de conversion d'énergie objet de l'invention, notamment de type aérogénérateur ou hydrogénérateur respectivement triphasé et monophasé, avec convertisseur alternatif-continu selon l'invention en version basse tension ;
La figure 2B illustre un exemple de dispositif interrupteur bidirectionnel du convertisseur des figures 2A1, 2A2 ;
La figure 3A illustre, dans une chaîne de conversion d'énergie notamment de type aérogénérateur ou hydrogénérateur objet de l'invention, un autre exemple de schéma de convertisseur alternatif-continu selon l'invention en version moyenne tension et la figure 3B illustre un exemple de dispositif interrupteur bidirectionnel;
La figure 4A montre un exemple des moyens de commande vectorielle des dispositifs interrupteurs bidirectionnels en version triphasée et la figure 4B un exemple des moyens de commande vectorielle des dispositifs interrupteurs bidirectionnels en version monophasée ;
La figure 5A montre un chronogramme représentant le courant injecté dans le convertisseur alternatif-continu en fonction du temps et la commande par modulation de largeur d' impulsion MLI des dispositifs interrupteurs bidirectionnels dans le cas où le courant injecté est supérieur à environ 90% du courant nominal du convertisseur alternatif-continu ;
la figure 5B montre un chronogramme représentant le courant injecté dans le convertisseur alternatif-continu en fonction du temps et la commande par modulation de largeur d' impulsion MLI des dispositifs interrupteurs bidirectionnels dans le cas où le courant de phase est inférieur à environ 90% du courant nominal du convertisseur alternatif-continu ;
les figures 5C et 5D montrent respectivement l'allure de la variation de tension appliquée à la borne commune A et celle du courant circulant dans le dispositif interrupteur bidirectionnel de la figure 2B lors de la commande du dispositif interrupteur bidirectionnel.
Des parties identiques, similaires ou équivalentes des différentes figures portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On va s'intéresser aux figures 2A1, 2A2 qui montrent deux exemples de schéma électrique du convertisseur alternatif-continu 20 objet de l'invention. Le convertisseur alternatif-continu 20 est multiphasé (ici triphasé) sur la figure 2A1 et monophasé sur la figure 2A2. Un générateur synchrone à aimants permanents 1 est destiné à être branché d'un côté alternatif du convertisseur alternatif-continu . Il est destiné à être relié côté continu à un bus à courant continu 21. Ce bus à courant continu 21 peut alimenter un dispositif utilisateur (non représenté) .
Le convertisseur alternatif-continu 20 est formé d'un pont redresseur 22 comportant plusieurs cellules de commutation 22.1 montées en parallèle. Comme explicité plus haut, on prévoit deux cellules de commutation 22.1 si le convertisseur alternatif-continu 20 est monophasé et autant de cellules de commutation 22.1 que de phases s'il est multiphasé. Chaque cellule de commutation 22.1 comporte, dans cet exemple approprié pour des tensions basses deux interrupteurs Kl, K2 montés en série et en opposition. Chaque cellule de commutation 22.1 comporte deux bornes extrêmes B, C de part et d'autre des interrupteurs Kl, K2. La borne B est de polarité positive et la borne C de polarité négative. Chaque cellule de commutation 22.1 comporte une borne commune A entre ses deux interrupteurs Kl, K2 montés en série, appelée borne milieu. Les interrupteurs Kl, K2 sont des interrupteurs à commutation naturelle comme des diodes.
Chacune des cellules de commutation 22.1 est reliée au stator du générateur synchrone à aimants permanents 1, cette liaison se fait de préférence directement à la borne milieu A. Il n'y a pas d'inductance comme illustré dans le document [5] . Le dispositif de conversion alternatif- continu 20 objet de l'invention comporte de plus, côté continu, une paire 23 de dispositifs de stockage d'énergie C , C ' agencés en série. La paire 23 de dispositifs de stockage d'énergie C , C ' est montée en parallèle avec les cellules de commutation 22.1, entre les bornes extrêmes B et C. Le bus à courant continu 21 est branché aux bornes de la paire 23 de dispositifs de stockage d'énergie C , C ' . Les deux dispositifs de stockage d'énergie C , C ' comportent un nœud commun NI. Chaque dispositif de stockage d'énergie C , C ' peut être un condensateur, une batterie ou une source de tension continue. Le convertisseur alternatif- continu comporte, en outre, de préférence un filtre RC 28 (connu sous la dénomination filtre dV/dt) associé à chacune des cellules de commutation du pont redresseur, branché par une extrémité à la borne milieu A et dont l'autre extrémité est portée à un potentiel flottant. Il assure une protection du générateur synchrone à aimants permanent 1, en lui imposant moins de stress diélectrique. La raideur des fronts de tension appliquée côté alternatif au convertisseur alternatif- continu est réduite.
Ce filtre RC 28 n'a été illustré que sur la figure 2B et pas sur les figures 2A1, 2A2 pour ne pas les surcharger inutilement.
Le dispositif de conversion alternatif- continu, objet de l'invention, comporte en outre un dispositif interrupteur bidirectionnel 4 associé à chaque cellule de commutation 22.1. Il est monté entre la cellule de commutation 22.1 associée et le nœud NI commun aux deux dispositifs de stockage d'énergie C , C ' de la paire 12. Plus particulièrement dans cet exemple de la figure 2A, le dispositif interrupteur bidirectionnel 4 est monté entre la borne commune A et le nœud commun NI .
Ces dispositifs interrupteurs bidirectionnels 4 comportent possèdent deux états, ils sont soit dans un état passant, soit dans un état bloqué .
Chaque dispositif interrupteur bidirectionnel 4 comporte, comme illustré sur la figure 2B, au moins deux interrupteurs qui sont associés à des moyens de commande 5 qui vont en fonctionnement, les activer c'est-à-dire les faire passer de l'état passant à l'état bloqué alternativement, soit les maintenir bloqués. On décrira plus en détails sur les figures 2B et 3B les dispositifs interrupteurs bidirectionnels.
Ces moyens de commande 5 sont des moyens de commande vectorielle. La commande vectorielle des dispositifs interrupteurs bidirectionnels va se faire par modulation de largeur d' impulsion MLI à trois niveaux. On verra plus loin en détails la structure des moyens de commande vectorielle 5.
On prévoit que les moyens de commande vectorielle 5 reçoivent une information représentative de la position Θ du rotor du générateur synchrone à aimants permanents 1. Un capteur de position référencé 24 peut délivrer cette information, il peut capter la position de l'arbre reliant le rotor du générateur synchrone à aimants permanents 1 au moyeu qui relie les pales 25 de l'éolienne ou de 1 ' hydrolienne au rotor du générateur synchrone à aimants permanents 1. Ces pales sont référencées 25 sur la figure 2A.
Les moyens de commande vectorielle 5 reçoivent également une information représentative du courant en sortie du générateur synchrone à aimants permanents 1 et injecté dans le convertisseur alternatif-continu 20. Dans le cas d'un générateur synchrone à aimants permanents 1 triphasé, le courant injecté dans le convertisseur alternatif-continu correspond aux trois courants de phase appelés conventionnellement ia, ib, ic. On prévoit un capteur de courant mesurant chacun, un des courants de phase ia, ib, ic. Les capteurs de courant sont référencés 26. Les moyens de commande vectorielle 5 reçoivent également une information représentative de la tension continue V présente, en fonctionnement, côté continu du convertisseur alternatif-continu 20. On prévoit un capteur de tension référencé 27 branché aux bornes de la paire 23 de dispositifs de stockage d'énergie C , C" .
Il est possible de mesurer les tensions ua, ub, uc qui sont les tensions entre phase dans le but d'améliorer l'estimation de la position du rotor si on utilise un algorithme à la place d'un capteur de position.
Dans le cas d'un générateur monophasé, le courant mesuré est le courant statorique i délivré par le générateur.
La figure 2B ne représente qu'un seul dispositif interrupteur bidirectionnel 4 des variantes illustrées sur les figures 2A1, 2A2 associé à une cellule de commutation 22.1 du pont redresseur. Le dispositif interrupteur bidirectionnel 4 comporte deux interrupteurs bidirectionnels SI, S2 montés en série. Chaque interrupteur bidirectionnel SI ou S2 comporte un transistor IG1, IG2 et les deux transistors sont tête- bêche. Ces transistors sont représentés comme des transistors IGBT. Dans cet exemple, ils ont un nœud commun N2 d'émetteur, appelé aussi nœud commun N2 du dispositif interrupteur bidirectionnel 4. Le nœud commun NI de la paire de dispositifs de stockage d'énergie 23 est connecté au collecteur d'un des transistors IG2 et la borne milieu A est connectée au collecteur de l'autre transistor IG1. Chaque interrupteur bidirectionnel SI, S2 comporte également une diode de roue libre DG1, DG2, les deux diodes DG1, DG2 sont montées en série également tête-bêche. Chaque diode DG1, DG2 est associée à un transistor IG1, IG2. Ce montage en série tête-bêche est tel que leurs anodes soient reliées entre elles et au nœud commun N2 du dispositif interrupteur bidirectionnel 4. L'émetteur de chacun des transistors IG1, IG2 est connecté à son collecteur respectif par une diode de roue libre respective DG1, DG2. Chaque diode de roue libre DG1, DG2 est ainsi montée en antiparallèle entre l'émetteur et le collecteur de son transistor associé.
Le transistor IG1 et la diode DG1 sont en antiparallèle et le transistor IG2 et la diode DG2 sont en antiparallèle alors que le transistor IG1 et la diode DG2 sont opposés et le transistor IG2 et la diode DG1 sont opposés. Les moyens de commande vectorielle 5 du dispositif interrupteur bidirectionnel 4 sont connectés à la grille de chacun des transistors IG1, IG2 ainsi qu'au nœud commun N2 du dispositif l'interrupteur bidirectionnel 4.
Lorsque le dispositif interrupteur bidirectionnel 4 est activé par les moyens de commande vectorielle 5 qui lui sont associés, il est rendu alternativement passant et bloqué. La commande vectorielle est de préférence une commande par modulation de largeur d'impulsion MLI . Quand il n'est pas passant, il est bloqué. Lorsque le dispositif interrupteur bidirectionnel 4 est passant, seul le transistor IG1 de l'interrupteur bidirectionnel SI est passant ainsi que la diode DG2 qui lui est opposée. Lorsque l'interrupteur bidirectionnel SI est passant du courant délivré par le générateur synchrone à aimants permanents 1 se déverse dans la paire 23 de dispositifs de stockage d'énergie C' , C' ' . Les interrupteurs bidirectionnels SI et S2 ne sont pas actionnés de manière complémentaire strictement. Lorsque le dispositif interrupteur bidirectionnel 4 est activé seul un des transistors IG1 et IG2 est rendu alternativement passant et bloqué, et l'autre est bloqué ou ils sont tous les deux bloqués en fin de cycle d' activation de l'un et avant un cycle d' activation de l'autre.
Sur la figure 3A, on a représenté une variante du convertisseur alternatif-continu 20 qui est adapté pour des moyennes tensions continues alors que les convertisseurs des figures 2A1, 2A2 étaient adaptés pour des plus basses tensions continues. Dans ce contexte, par moyenne tension on entend des tensions supérieures à environ 1000 VDC, alors que les basses tensions sont inférieures à environ 1000 VDC.
Le convertisseur alternatif-continu 20 comporte un pont redresseur 32 avec plusieurs cellules de commutation 32.1 montées en parallèle. Chaque cellule de commutation comporte deux bras El, E2 reliés par la borne milieu A. Chaque bras est un ensemble série de deux ou d'un nombre pair d'interrupteurs Kll, K12, K21, K22 monodirectionnels, les interrupteurs d'un bras sont en opposition avec ceux de l'autre bras. Chaque bras El, E2 possède un point milieu Al, A2.
On a de nouveau indiqué les bornes extrêmes B, C et la borne milieu A. Les interrupteurs Kll, K12, K21, K22 sont des interrupteurs à commutation naturelle comme des diodes.
Chacune des cellules de commutation 32.1 est reliée au stator du générateur synchrone à aimants permanents 1, cette liaison se fait à la borne milieu A.
Le convertisseur alternatif-continu 20 objet de l'invention comporte de plus, côté continu, la paire 23 de dispositifs de stockage d'énergie C , C ' agencés en série.
On prévoit également un dispositif interrupteur bidirectionnel 6 associé à chaque cellule de commutation 32.1. Chaque dispositif interrupteur bidirectionnel 4 comporte deux interrupteurs bidirectionnels SI, S2 montés en série dans le même sens. L'un des interrupteurs bidirectionnels appelé SI est disposé entre le nœud NI commun aux deux dispositifs de stockage d'énergie C , C ' de la paire 12 de dispositifs de stockage d'énergie et le point milieu Al d'un bras El de l'une des cellules de commutation 32.1 du pont redresseur. L'autre interrupteur bidirectionnel S2 est disposé entre le nœud NI commun et le point milieu A2 de l'autre bras E2 de la même cellule de commutation 32.1.
Chaque interrupteur bidirectionnel SI, S2 est associé bien entendu aux moyens de commande vectorielle 5 qui lorsqu'ils l'activeront, le mettront dans son état passant à partir de son état bloqué et vice versa. La commande des interrupteurs bidirectionnels va se faire par modulation de largeur d'impulsion MLI à trois niveaux. On verra plus loin en détails la structure des moyens de commande vectorielle 5.
Sur la figure 3A, on a représenté le dispositif d' interrupteur bidirectionnel 6 avec ses deux interrupteurs bidirectionnels SI, S2. Chaque interrupteur bidirectionnel SI, S2 comporte un transistor IG1, IG2, par exemple de type IGBT, et une diode de roue libre DG1, DG2 montée en antiparallèle entre l'émetteur et le collecteur de son transistor IGBT associé.
Les deux transistors IG1, IG2 sont montés en série dans le même sens, ils ont un nœud commun qui est le nœud commun NI de la paire de dispositifs de stockage d'énergie. L'un des transistors, en l'occurrence IG2, a son collecteur relié au point milieu A2 du bras E2 et l'autre transistor IG1 a son émetteur relié au point milieu Al du bras El. Les diodes DG1 et DG2 sont en série tête-bêche et leurs anodes sont reliées entre elles et au nœud commun NI . Leurs cathodes sont reliées pour l'une en l'occurrence DG2 au point milieu A2 et pour l'autre DG1 au point milieu Al. Le transistor IG1 et la diode DG1 sont en antiparallèle et le transistor IG2 et la diode DG2 sont opposés .
Les moyens de commande vectorielle 5 du dispositif interrupteur bidirectionnel sont connectés à la grille de chacun des transistors IG1, IG2. Lorsque le dispositif interrupteur bidirectionnel est activé seul un des transistors IG1 et IG2 est rendu alternativement passant et bloqué, et l'autre est bloqué ou ils sont tous les deux bloqués en fin de cycle d' activation de l'un et avant un cycle d' activation de l'autre.
Au lieu d'utiliser des transistors IGBT dans les interrupteurs bidirectionnels, on aurait pu utiliser des transistors MOSFET ou des thyristors IGCT (Integrated Gâte Commutated Thyristor) . Plus généralement, on utilisera des interrupteurs monodirectionnels commandables à l'allumage et au blocage .
On va maintenant décrire un exemple des moyens de commande vectorielle 5 des dispositifs interrupteurs bidirectionnels 4, 6. Ces moyens de commande vectorielle 5, lorsqu'ils sont actifs et non inhibés, vont permettre d'activer chaque dispositif interrupteur bidirectionnel de manière à ce que la tension appliquée au convertisseur alternatif-continu et le courant injecté par le générateur synchrone à aimants permanents dans le convertisseur alternatif- continu soient en phase ou pratiquement en phase de telle sorte que le générateur génère un courant de couple et pas ou quasiment pas de courant de flux.
Cela permet de compenser la réactance du générateur synchrone à aimants permanents.
Sur la figure 4A on a représenté un exemple de moyens de commande vectorielle 5, toujours dans l'exemple non limitatif d'un générateur synchrone à aimants permanents triphasé. Sur la figure 4B on a représenté un exemple de moyens de commande vectorielle 5, toujours dans l'exemple non limitatif d'un générateur synchrone à aimants permanents monophasé.
Ces moyens de commande vectorielle 5 comportent au moins une unité de commande vectorielle 50.
L'unité de commande vectorielle 50 comporte un premier comparateur 52 destiné à recevoir sur une entrée une information représentative de la tension continue V en sortie du convertisseur alternatif- continu mesurée par le capteur de tension 27 et sur une autre entrée une information représentative d'une tension de référence Vref. Il possède une sortie sur laquelle est présent le résultat d'une première comparaison. Cette sortie est reliée en entrée d'un correcteur de tension 53. Le correcteur de tension 53 peut être de type proportionnel intégral PI .
On prévoit dans l'unité de commande vectorielle 50, un bloc de transformation de Park 54 destiné à recevoir en entrée l'information représentative du courant injecté dans le convertisseur alternatif-continu . Il s'agit sur la figure 4A des courants de phase ia, ib, ic mesurés par les capteurs de courant 26.
Sur la figure 4B, il s'agit du courant statorique i. On injecte également dans le bloc de transformation de Park 54, un courant qui est en quadrature par rapport au courant statorique i. Un bloc de déphasage 61 de n/2 est prévu à cet effet. Ce bloc de transformation de Park 54 est destiné à recevoir également en entrée l'information représentative de la position Θ du rotor du générateur synchrone 1 délivrée par le capteur de position 24. Ce bloc de transformation de Park 54 est destiné à transformer l'information représentative du courant injecté dans le convertisseur alternatif-continu en une information représentative d'un courant de flux id et une information représentative d'un courant de couple iq. Les courants ia, ib, ic sont liés au référentiel du stator du générateur synchrone à aimants permanents 1. Ils sont sinusoïdaux. Il en est de même pour le courant statorique i. Les courants id et iq sont des courants constants selon un axe direct et un axe transverse respectivement .
Le correcteur de tension 53 délivre un signal représentatif d'un courant de couple de référence iqref. Le correcteur de tension 53 a une sortie reliée à une entrée d'un second comparateur 55 destinée à recevoir sur une autre entrée l'information représentative du courant de couple iq délivrée par le bloc de transformation de Park 54. Le second comparateur 55 compare donc le signal représentatif du courant de couple de référence iqref avec l'information représentative du courant de couple iq délivrée par le bloc de transformation de Park 54. Il possède une sortie sur laquelle est présent le résultat d'une seconde comparaison. Cette sortie est reliée en entrée d'un premier correcteur de courant 56. Le premier correcteur de courant 56 est destiné à recevoir le résultat d'une seconde comparaison et à délivrer un signal représentatif d'une tension de couple uq de consigne .
L'unité de commande vectorielle 50 comporte, en outre, un troisième comparateur 57 destiné à recevoir sur une entrée l'information représentative du courant de flux id délivrée par le bloc de transformation de Park 54, sur une autre entrée un signal représentatif d'un courant de flux de référence idref. Ce courant de flux de référence idref est forcé à zéro pour minimiser les courants et les pertes Joule. Le second comparateur 57 compare donc le signal représentatif du courant de flux de référence idref = 0 avec l'information représentative du courant de flux id délivrée par le bloc de transformation de Park 54. Il possède une sortie sur laquelle est présent le résultat d'une troisième comparaison.
Cette sortie est reliée en entrée d'un second correcteur de courant 58. Le second correcteur de courant 58 est destiné à recevoir le résultat de la troisième comparaison.
Le second correcteur de courant 58 est destiné à délivrer un signal représentatif d'une tension de flux ud de consigne. Le premier et le second correcteur de courant 56, 58 peuvent être de type proportionnel intégral PI .
Le premier et le second correcteur de courant 56, 58 sont reliés en sortie à l'entrée d'un bloc de transformation inverse de Park 59. Ce bloc de transformation inverse de Park 59 est destiné à recevoir le signal représentatif de la tension de flux de consigne ud et de la tension de couple de consigne uq. Ce bloc de transformation inverse de Park 59 reçoit également l'information représentative de la position Θ du rotor du générateur synchrone délivrée par le capteur de position 24.
Ce bloc de transformation inverse de Park 59 permet de revenir à une information représentative d'une tension de consigne à appliquer, au convertisseur alternatif continu par le générateur synchrone, ce qui correspond dans le cas d'un générateur triphasé à des tensions entre phase de consigne ua, ub, uc, ce qui correspond aux composantes triphasées de la tension statorique. Elles correspondent à la tension appliquée côté alternatif du convertisseur alternatif-continu qui permettra d'extraire le maximum de puissance du générateur synchrone à aimants permanents. Dans le cas d'un générateur synchrone monophasé, le bloc de transformation inverse de Park 59 délivre deux tensions qui sont des composantes biphasées ua, u de la tension statorique .
L' information représentative de la tensions de consigne à appliquer au convertisseur synchrone est injectée dans une unité de modulation en largeur d' impulsion 60 qui délivre des signaux en impulsion de commande à appliquer aux interrupteurs SI, S2 des dispositifs interrupteurs bidirectionnels 4, 6. On a schématisé à cet effet, six signaux de commande en sortie de l'unité de modulation en largeur d'impulsion 60 et donc de l'unité de commande vectorielle 50.
Dans le cas du générateur synchrone triphasé, il s'agit des tensions de consigne ua, ub, uc .
Dans le cas du générateur synchrone monophasé, la tension de consigne ua est injectée dans l'unité de modulation en largeur d'impulsion 60. L'autre tension de consigne u est forcée à zéro et cette valeur nulle est injectée dans l'unité de modulation en largeur d'impulsion 60.
Les moyens de commande vectorielle 5 comportent en outre une unité d'inhibition 51 qui coopère avec l'unité de commande vectorielle 50.
Mais cette unité de modulation en largeur d'impulsion 60 est pilotée par l'unité d'inhibition 61. L'unité d'inhibition 61 est destinée à recevoir en entrée l'information représentative du courant de couple iq délivré par le bloc de transformation de Park 54 et l'information représentative de la position Θ du rotor du générateur synchrone délivrée par le capteur de position 22. La sortie de l'unité d'inhibition 61 est reliée à l'unité de modulation en largeur d'impulsion 60. Elle produit un signal d'inhibition pour l'unité de modulation en largeur d'impulsion 60.
En effet, pour limiter drastiquement les pertes, ce signal d'inhibition n'est produit que lorsque le courant injecté dans le convertisseur alternatif-continu atteint environ 90% du courant nominal du convertisseur alternatif-continu et il bloque l'unité de modulation en largeur d'impulsion 60. Le courant nominal du convertisseur alternatif-continu est le courant maximum que peut supporter le convertisseur alternatif-continu en régime permanent. Lorsque l'unité d'inhibition 51 bloque l'unité de modulation en largeur d' impulsion 60 chaque dispositif interrupteur bidirectionnel 4 est maintenu bloqué.
Les pertes ne sont pas négligeables lorsque le courant injecté dans le convertisseur alternatif- continu est élevé, les pertes étant proportionnelles au courant. Les pertes liées à la commutation des interrupteurs bidirectionnels sont alors éliminées. Le courant continu en sortie du convertisseur alternatif- continu présente une faible ondulation, il est sensiblement constant.
Lorsque le courant injecté dans le convertisseur alternatif-continu est faible, les pertes sont négligeables et le courant continu en sortie du convertisseur alternatif-continu présente aussi une faible ondulation.
On a représenté sur les figures 5A et 5B, le traitement par les interrupteurs du convertisseur alternatif-continu du courant délivré par le générateur synchrone à aimants permanents. Ce courant correspond à un courant de phase dans le cas d'un générateur synchrone à aimants permanents multiphasé. Les impulsions délivrées par l'unité de modulation en largeur d'impulsion 60 sont illustrées par les bâtons. Sur la figure 5A l'amplitude maximum du courant injecté dans le convertisseur alternatif- continu dépasse environ 90% du courant nominal du convertisseur alternatif-continu.
Dès que ce courant dépasse environ 90% du courant nominal du convertisseur alternatif-continu, la modulation en largeur d'impulsion est inhibée. Les interrupteurs sont donc maintenus bloqués sur une plage temporelle sensiblement centrale d'une alternance du courant injecté dans le convertisseur alternatif- continu. De part et d'autre de cette plage centrale, les interrupteurs sont donc activés en permanence et donc rendus alternativement passants et bloqués au rythme de la modulation en largeur d'impulsion.
Sur la figure 5B, l'amplitude maximum du courant injecté dans le convertisseur alternatif- continu n'atteint pas environ 90% du courant nominal du convertisseur alternatif-continu . Il n'y a pas d'inhibition de la modulation en largeur d'impulsion. Les interrupteurs sont donc activés en permanence et donc rendus alternativement passants et bloqués au rythme de la modulation en largeur d'impulsion.
Sur les figures 5C et 5D, on a illustré à titre d'exemple, dans le cas où le courant injecté dans le convertisseur alternatif-continu est inférieur à 90% du courant nominal, l'allure de la tension appliquée à la borne commune A convertisseur alternatif-continu et l'allure du courant circulant dans le dispositif interrupteur 4 tel que celui de la figure 2B. Dans un premier cycle correspondant à une alternance positive du courant, c'est l'interrupteur monodirectionnel IG1 qui est activé par l'unité de modulation en largeur d' impulsion MLI le pour le faire passer alternativement d'un état bloqué à un état passant. L'interrupteur à monodirectionnel IG2 est bloqué. Dans un second cycle, correspondant à une alternance négative du courant, c'est l'interrupteur monodirectionnel IG2 qui est activé par l'unité de modulation en largeur d'impulsion MLI le pour le faire passer alternativement d'un état bloqué à un état passant. L'interrupteur à semiconducteur IG1 est bloqué. Entre les deux cycles, les deux interrupteurs monodirectionnels IG1 et IG2 sont bloqués, le courant est sensiblement nul. Le courant issu du générateur synchrone passe à travers la cellule de commutation 22.1. La succession de ces deux cycles se poursuit tant que le courant reste inférieur à 90% du courant nominal du convertisseur alternatif-continu .
DOCUMENTS CITÉS
[1] Anders Grauers « Synchronous generator and frequency converter in wind turbine applications : System design and efficiency » Technical report No 175L, May 1994, Department of electrical machines and power electronics Chalmers university of technology, Gôteborg, Sweden.
[2] Belloni F. et al. « Permanent magnet wind generators : control stratégies to manage voltage unbalances ». International Conférence of renewable energy and power quality. Santiago de Compostela, 28th to 30th March 2012.
[3] 0. B.k Hasnaoui et al.« direct drive permanent magnet synchronous generator wind turbine investigation ». Journal of Electrical Systems, vol. 4, Issue 3, September 2008.
[4] C.N. Bhende et al. "Permanent magnet synchronous generator-based standalone wind energy supply System » IEEE Transaction on sustainable energy", vol 2, N°4, October 2011.
[5] F. Daniel et al. « Three-phase diode rectifier with low harmonie distorsion to feed capacitive loads », IEEE 1996.

Claims

REVENDICATIONS
1. Convertisseur alternatif-continu destiné à être relié, côté alternatif, à un générateur synchrone à aimants permanents (1) et, à délivrer de l'autre côté une tension continue (V), comportant :
un pont redresseur (22, 32) pourvu de plusieurs cellules de commutation (22.1, 32.1) à deux bras (El, E2) ayant deux bornes extrêmes (B, C) et une borne milieu (A) entre les deux bras destinée à être connectée au générateur synchrone,
une paire (23) de dispositifs de stockage d'énergie (C , C ' ) en série, montés aux bornes extrêmes (B, C) du pont redresseur, côté continu, ces deux dispositifs de stockage d'énergie possédant un nœud commun (NI),
autant de dispositifs interrupteurs bidirectionnels (4) que de cellules (22.1, 32.1), chacun monté entre une cellule (22.1, 32.1) et le nœud commun (NI ) ,
des moyens de commande vectorielle (5) des dispositifs interrupteurs bidirectionnels, destinés à recevoir une information représentative de la vitesse de rotation (Θ) du rotor du générateur, une information représentative du courant (ia, ib, ic, i) devant être injecté dans le convertisseur par le générateur et une information représentative de la tension continue (V) et destinés à activer chaque dispositif interrupteur bidirectionnel (4) pour le rendre alternativement passant et bloqué tant que le courant injecté (ia, ib, ic) dans le convertisseur est inférieur à sensiblement 90% du courant nominal du convertisseur et à le maintenir bloqué chaque dispositif interrupteur bidirectionnel (4) dès que le courant injecté (ia, ib, ic) dans le convertisseur a atteint sensiblement 90% du courant nominal du convertisseur, de manière à ce que le courant injecté (ia, ib, ic, i) dans le convertisseur et la tension appliquée (ua, ub, uc) , côté alternatif, au convertisseur soient en phase ou pratiquement en phase de telle sorte que le générateur génère un courant de couple et pas ou quasiment pas de courant de flux.
2. Convertisseur alternatif-continu selon la revendication 1, dans lequel chaque dispositif interrupteur bidirectionnel (4) est relié à la borne milieu (A) d'une cellule (22.1, 32.1) .
3. Convertisseur alternatif-continu selon la revendication 2, dans lequel chaque dispositif interrupteur bidirectionnel (4) comporte deux interrupteurs monodirectionnels (IG1, IG2) aptes à être commandés à l'allumage et au blocage en série tête- bêche et deux diodes en série (DG1, DG2) tête-bêche, chaque diode étant montée en antiparallèle avec un des interrupteurs .
4. Convertisseur alternatif-continu selon la revendication 1, dans lequel chaque bras (El, E2) du pont redresseur (22, 32) possède un point milieu (Al, A2) et chaque dispositif interrupteur bidirectionnel (4) possède deux interrupteurs bidirectionnels (SI, S2) en série ayant un point commun, l'un étant monté entre le point milieu (Al) d'un bras (El) d'une cellule (32.1) et le point commun et l'autre étant monté entre point milieu (A2) de l'autre bras (E2) de la même cellule (32.1) et le point commun, ce point commun étant relié au nœud commun (NI) des dispositifs de stockage d'énergie (C , C ' ) .
5. Convertisseur alternatif-continu selon la revendication 4, dans lequel chaque interrupteur bidirectionnel (SI, S2) comporte deux interrupteurs monodirectionnels (IG1, IG2) aptes à être commandés à l'allumage et au blocage en série dans le même sens et deux diodes (DG1, DG2 ) en série tête-bêche, l'une des diodes (DG1) étant montée en antiparallèle avec un des interrupteurs (IG1) et l'autre (DG2) en parallèle avec l'autre interrupteur (IG2) .
6. Convertisseur alternatif-continu selon l'une des revendications 3 ou 5, dans lequel les interrupteurs monodirectionnels sont des transistors IGBT, des transistors MOSFET, des thyristors IGCT.
7. Convertisseur alternatif-continu selon l'une des revendications 1 à 6, dans lequel le dispositif de stockage d'énergie (C , C ' ) est un condensateur, une batterie ou une source de tension continue .
8. Convertisseur alternatif-continu selon l'une des revendications 1 à 7, dans lequel chaque bras (El, E2) comporte une ou plusieurs diodes (Kl, K2, Kll, K12, K21, K22) montées en série.
9. Convertisseur alternatif-continu selon l'une des revendications 1 à 8, dans lequel les moyens de commande vectorielle (5) comportent une unité de commande vectorielle (50) incluant une unité de modulation en largeur d'impulsion (60) à trois niveaux délivrant des signaux de commande des dispositifs interrupteurs bidirectionnels (4, 6) et une unité d'inhibition (51) qui coopère avec l'unité de commande vectorielle (50).
10. Convertisseur alternatif-continu selon la revendication 9, dans lequel l'unité de commande vectorielle (50) comporte :
un premier comparateur (52) destiné à comparer l'information représentative de la tension continue (V) à une information représentative d'une tension continue de référence (Vref) et à délivrer un résultat d'une première comparaison ;
un bloc de transformation de Park (54) destiné à recevoir l'information représentative de la position du rotor (Θ) du générateur et l'information représentative du courant injecté (ia, ib, ic) dans le convertisseur et à transformer cette information représentative du courant injecté (ia, ib, ic) en une information représentative d'un courant de flux (id) et une information représentative d'un courant de couple (iq) ; un correcteur de tension (53) destiné à recevoir le résultat de la première comparaison et à délivrer un signal représentatif d'un courant de couple de référence (iqref) ;
un second comparateur (55) destiné à comparer le signal représentatif du courant de couple de référence (iqref) avec l'information représentative du courant de couple (iq) et à délivrer un résultat d'une seconde comparaison ;
un premier correcteur de courant (56) destiné à recevoir le résultat de la seconde comparaison et à délivrer un signal représentatif d'une tension de couple de consigne (uq) ;
un troisième comparateur (57) destiné à comparer l'information représentative du courant de flux (id) avec un signal représentatif d'un courant de flux de référence (idref) et à délivrer un résultat d'une troisième comparaison ;
un second correcteur de courant (58) destiné à recevoir le résultat de la troisième comparaison et à délivrer un signal représentatif d'une tension de flux de consigne (ud) ;
un bloc de transformation inverse de Park (59) destiné à recevoir l'information représentative de la position du rotor (Θ) du générateur synchrone, le signal représentatif de la tension de flux de consigne (ud) et le signal représentatif de la tension de couple de consigne (uq) et à transformer ces signaux en une information représentative d'une tension de consigne (ua, ub, uc, u ) à appliquer au convertisseur (20) côté alternatif, l'unité de modulation en largeur d'impulsion (60) recevant en entrée cette information.
11. Convertisseur alternatif-continu selon l'une des revendications 1 à 10, dans lequel lorsqu'il est multiphasé, le courant injecté dans le convertisseur correspond aux courants de phase (ia, ib, ic) et la tension appliquée au convertisseur correspond aux tensions entre phases (ua, ub, uc) .
12. Convertisseur alternatif-continu selon l'une des revendications 9 à 11, dans lequel le signal représentatif du courant de flux de référence (idref) est forcé à zéro.
13. Convertisseur alternatif-continu selon l'une des revendications 9 à 12, dans lequel l'unité d'inhibition (51) est destinée à recevoir en entrée l'information représentative de la position du rotor (Θ) du générateur synchrone et l'information représentative du courant de couple (iq) et à produire un signal d'inhibition pour l'unité de modulation en largeur d'impulsion (60) uniquement lorsque le courant injecté dans le convertisseur (ia, ib, ic) a atteint sensiblement 90% du courant nominal du convertisseur.
14. Convertisseur alternatif-continu selon l'une des revendications 1 à 13, comportant en outre un filtre RC (28) par cellule (22.1, 32.1) ayant une extrémité reliée à la borne milieu (A) et l'autre extrémité destinée à être portée à un potentiel flottant .
15. Chaîne de conversion d'énergie comportant un générateur synchrone à aimant permanents
(1) couplé à un convertisseur alternatif-continu (20) selon l'une des revendications 1 à 14, le générateur synchrone étant destiné à débiter dans le convertisseur alternatif-continu.
16. Chaîne de conversion d'énergie selon la revendication 15, caractérisée en ce qu'elle est de type aérogénérateur ou hydrogénérateur.
PCT/EP2014/058244 2013-04-26 2014-04-23 Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents WO2014173954A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14720557.9A EP2989718A2 (fr) 2013-04-26 2014-04-23 Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353839 2013-04-26
FR1353839A FR3005221B1 (fr) 2013-04-26 2013-04-26 Convertisseur alternatif-continu de pilotage d'un generateur synchrone a aimants permanents

Publications (2)

Publication Number Publication Date
WO2014173954A2 true WO2014173954A2 (fr) 2014-10-30
WO2014173954A3 WO2014173954A3 (fr) 2014-12-24

Family

ID=48782442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/058244 WO2014173954A2 (fr) 2013-04-26 2014-04-23 Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents

Country Status (3)

Country Link
EP (1) EP2989718A2 (fr)
FR (1) FR3005221B1 (fr)
WO (1) WO2014173954A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021198594A2 (fr) 2020-04-03 2021-10-07 Safran Procédé de commande d'un redresseur connecté à une génératrice électrique synchrone à aimants permanents pour fournir une tension continue, programme d'ordinateur et dispositif correspondant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9907351A (pt) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
DK2405134T3 (da) * 2010-07-06 2013-05-27 Ge Energy Power Conversion Technology Ltd Drejningsmomentstyringsfremgangsmåde for generator

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDERS GRAUERS: "Synchronous generator and frequency converter in wind turbine applications :system design and efficiency", TECHNICAL REPORT NO 175L, May 1994 (1994-05-01)
BELLONI F ET AL.: "Permanent magnet wind generators : control strategies to manage voltage unbalances", INTERNATIONAL CONFERENCE OF RENEWABLE ENERGY AND POWER QUALITY. SANTIAGO DE COMPOSTELA, 28 March 2012 (2012-03-28)
C.N. BHENDE ET AL.: "Permanent magnet synchronous generator-based standalone wind energy supply system", IEEE TRANSACTION ON SUSTAINABLE ENERGY, vol. 2, no. 4, October 2011 (2011-10-01), XP011383279, DOI: doi:10.1109/TSTE.2011.2159253
F. DANIEL ET AL.: "Three-phase diode rectifier with low harmonie distorsion to feed capacitive loads", IEEE, 1996
O. B.K HASNAOUI ET AL.: "direct drive permanent magnet synchronous generator wind turbine investigation", JOURNAL OF ELECTRICAL SYSTEMS, vol. 4, no. 3, September 2008 (2008-09-01)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021198594A2 (fr) 2020-04-03 2021-10-07 Safran Procédé de commande d'un redresseur connecté à une génératrice électrique synchrone à aimants permanents pour fournir une tension continue, programme d'ordinateur et dispositif correspondant
FR3109039A1 (fr) * 2020-04-03 2021-10-08 Safran Procédé de commande d’un redresseur connecté à une génératrice électrique synchrone à aimants permanents pour fournir une tension continue, programme d’ordinateur et dispositif correspondant
WO2021198594A3 (fr) * 2020-04-03 2021-11-25 Safran Procédé de commande d'un redresseur connecté à une génératrice électrique synchrone à aimants permanents pour fournir une tension continue, programme d'ordinateur et dispositif correspondant

Also Published As

Publication number Publication date
FR3005221B1 (fr) 2016-10-21
EP2989718A2 (fr) 2016-03-02
WO2014173954A3 (fr) 2014-12-24
FR3005221A1 (fr) 2014-10-31

Similar Documents

Publication Publication Date Title
EP3295550B1 (fr) Dispositif de conversion de puissance moyenne tension multiniveaux a sortie alternative
EP3266101A1 (fr) Ensemble electromecanique comportant un alternateur
WO2013189952A2 (fr) Circuit convertisseur matriciel reversible
FR3031423A1 (fr) Procede et dispositif de conversion de courant et vehicule comportant un tel dispositif
Mishra et al. An efficient and credible grid-interfaced solar PV water pumping system with energy storage
Murshid et al. An improved SMO for position sensorless operation of PMSM driven solar water pumping system
FR3038796A1 (fr) Systeme de generation d'energie a traitement ameliore des impacts a charge, des delestages et des harmoniques
WO2014173954A2 (fr) Convertisseur alternatif-continu de pilotage d'un générateur synchrone à aimants permanents
WO2018087446A1 (fr) Procédé de commande d'un redresseur triphasé pour un dispositif de charge embarqué sur un véhicule électrique ou hybride
Bunjongjit et al. An implementation of three-level BTB NPC voltage source converter based-PMSG wind energy conversion system
Ziane et al. Fixed-switching-frequency DTC control for PM synchronous machine with minimum torque ripples
Chokkalingam et al. Torque-ripple mitigation for BLDC using integrated converter connected three-level T type NPC-MLI
EP2638620A2 (fr) Machine electrique a bobinage dentaire a phases regroupees
FR2987946A1 (fr) Procede de decharge d'au moins un condensateur d'un circuit electrique
Pal et al. Reduced switch MLI based single phase induction motor for standalone water pump application
Modi et al. Improved Multi-Layer GI-QSG Control for Grid-Interactive SPVA-BES-SyRG Wind Based Microgrid
Varshney et al. An intelligent grid integrated solar pv array fed rsm drive based water pumping system
Reusser et al. Back-to-back wind energy conversion system configuration based on 9-switch dual converter and open-end-winding PMSG
Murshid et al. A novel vector control scheme for PMSM driven encoder-less solar water pumping system
Rajan et al. Battery Supported Solar PV-based PMSM Driven Water Pumping System
Chen et al. Performances analysis of a doubly salient permanent magnet generator for marine tidal current applications
Parveen et al. PV fed Synchronous Reluctance Motor Driven Water Pumping System with Grid Integration and Seamless Operability
Pal et al. Seven Level Packed-U Cell based Standalone PV System for Water Pump Application
Rajan et al. Solar PV Technology based PMSM driven Water Pumping System with Switched-LC Converter
George et al. Maximum power tracking and power factor correction in PMSG driven wind energy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14720557

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2014720557

Country of ref document: EP