WO2014173303A1 - 多个接入点之间偏差校准信息的测量方法和装置 - Google Patents

多个接入点之间偏差校准信息的测量方法和装置 Download PDF

Info

Publication number
WO2014173303A1
WO2014173303A1 PCT/CN2014/076065 CN2014076065W WO2014173303A1 WO 2014173303 A1 WO2014173303 A1 WO 2014173303A1 CN 2014076065 W CN2014076065 W CN 2014076065W WO 2014173303 A1 WO2014173303 A1 WO 2014173303A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
calibration information
base station
station side
access points
Prior art date
Application number
PCT/CN2014/076065
Other languages
English (en)
French (fr)
Inventor
莫林梅
赵亚军
黄琛
徐汉青
孙宝玉
李玉洁
李书鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014173303A1 publication Critical patent/WO2014173303A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a device for measuring offset calibration information between multiple Access Points (APs).
  • APs Access Points
  • BACKGROUND In an advanced long-term evolution (LTE-Advanced) system, in order to further improve system performance and spectral efficiency of edge users, a coordinated multi-point transmission/reception (CoMP) technology is proposed.
  • the basic idea of the CoMP technology is that the user equipment (UE, User Equipment) can use the antennas of multiple access points (APs) to jointly transmit and receive information, so as to effectively solve the co-channel interference existing at the edge of the cell, thereby improving the wireless chain. Channel capacity and reliability of the road.
  • the APs that perform CoMP cooperation are distributed in different geographical locations, when multiple APs send downlink data to one UE at the same time, the time that the data sent by different APs arrives at the UE is different, causing the signal arriving at the UE to have a certain channel. Propagation delay difference, which causes the signal arriving at the UE to have a phase rotation deviation in the frequency domain.
  • different AP points also have a certain timing synchronization deviation from each other, so that there is a corresponding out-of-synchronization time when these AP points send data to the same UE.
  • the present invention provides a method and apparatus for measuring offset calibration information between multiple access points, calibrating deviations existing at different AP points, and improving system performance.
  • a method for measuring offset calibration information between a plurality of access points comprising the steps of: determining, by a base station side, a deviation calibration strategy; and biasing the user end according to the deviation calibration strategy Calibration information measurement parameter configuration;
  • the base station side performs offset calibration between the plurality of access points according to the measurement result of the offset calibration information returned by the user terminal.
  • the signaling sent by the UE to measure the offset calibration information between the multiple access points triggers the UE to measure the offset calibration information.
  • the first offset calibration preset condition includes: the base station side performs multipoint transmission and reception with the UE by using multiple access points, and each access point is independently precoded; or, the base station side passes multiple connections.
  • the inbound point and the user end perform multipoint transmission and reception, and when the sent downlink data parameter satisfies the second deviation calibration preset condition, where the offset calibration preset condition includes: the error block rate of the downlink data is greater than the first preset value The throughput of the downlink data is less than the second preset value.
  • the step "the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: the base station side sends a signal returning the offset calibration information measurement result to the user end The triggering user end reports the deviation calibration information measurement result.
  • the signaling is sent through a radio resource control or a physical layer downlink control channel.
  • the offset calibration information comprises phase calibration information and/or a delay difference, the delay difference comprising a channel delay difference and/or a timing synchronization offset between the plurality of access points.
  • the deviation calibration strategy is: a first policy, the user end measures the phase calibration information, the channel delay difference, and the timing synchronization deviation; or a second strategy, the user end measures the phase calibration information, The base station side measures the channel delay difference and the timing synchronization deviation; or the third policy, the UE measures the channel delay difference and the timing synchronization deviation, and the base station side measures the phase calibration information; or a fourth strategy, the UE measures the channel delay difference, the base station side measures the timing synchronization deviation and the phase calibration information; or the fifth policy, the UE measures the timing synchronization deviation, and the base station side measures the channel The delay and the phase calibration information.
  • the deviation calibration strategy is the second policy
  • the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing, by the base station side The channel delay difference and the timing synchronization deviation are measured; the base station side performs the offset calibration according to the deviation calibration information measurement result returned by the user terminal and the channel delay difference and the timing synchronization deviation measurement result.
  • the deviation calibration strategy is the third policy
  • the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing, by the base station side The measurement of the phase calibration information; the base station side performs the offset calibration according to the deviation calibration information measurement result returned by the user terminal and the measurement result of the phase calibration information.
  • the deviation calibration strategy is the fourth policy
  • the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing on the base station side The phase calibration information and the measurement of the timing synchronization deviation are performed; the base station side performs the offset calibration according to the deviation calibration information measurement result returned by the user terminal, the phase calibration information, and the measurement result of the timing synchronization deviation.
  • the offset calibration strategy is the fifth policy
  • the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing, by the base station side The phase calibration information and the channel delay difference are measured; the base station side performs the offset calibration according to the deviation calibration information measurement result returned by the user terminal, the phase calibration information, and the channel delay difference measurement result.
  • the deviation calibration information measurement parameter includes a measurement bandwidth, a measurement amount of the user end, a measurement mode, a measurement result reporting manner, and/or a measurement period, and a feedback period.
  • the measuring manner includes: when the base station side satisfies the first deviation calibration preset condition, triggering the user terminal to perform one-time deviation calibration information by sending signaling to the user end to measure the deviation calibration information of the multiple access points.
  • the UE periodically performs the measurement of the deviation calibration information; or, when the base station side satisfies the first deviation calibration preset condition, sends a signaling trigger to measure the deviation calibration information of the multiple access points to the UE.
  • the client begins to perform periodic deviation calibration information measurements.
  • the method for reporting the measurement result comprises: sending, by the base station side, signaling to return to the measurement result of the offset calibration information to the user end, triggering the user terminal to report the measurement result of the deviation calibration information in one time; or periodically deviating from the user end The calibration information is reported; or the base station side sends a signaling to return to the measurement result of the deviation calibration information to the UE, and triggers the user to start periodically reporting the measurement result of the deviation calibration information.
  • a measuring apparatus for deviation calibration information between a plurality of access points
  • the measuring apparatus comprising: a deviation calibration strategy determining module, configured to determine a deviation calibration strategy by a base station side; and a parameter configuration module And setting the deviation calibration information measurement parameter configuration to the user end according to the deviation calibration strategy; the deviation calibration module is configured to perform the deviation between the multiple access points according to the measurement result of the deviation calibration information returned by the user end calibration.
  • the foregoing measuring apparatus further includes: a signaling sending module, configured to: when the base station side meets the first deviation calibration preset condition, send a signaling triggering client that measures the offset calibration information between the multiple access points to the UE Measurement deviation calibration information.
  • the signaling sending module is further configured to send, by the base station side, the signaling that returns the measurement result of the deviation calibration information to the user end, and trigger the user end to report the measurement result of the deviation calibration information.
  • the signaling is sent through a radio resource control or a physical layer downlink control channel.
  • the first offset calibration preset condition includes: the base station side performs multipoint transmission and reception with the UE by using multiple access points, and each access point is independently precoded; or, the base station side passes multiple connections.
  • the inbound point and the user end perform multipoint transmission and reception, and when the sent downlink data parameter satisfies the second deviation calibration preset condition, where the offset calibration preset condition includes: the error block rate of the downlink data is greater than the first preset value The throughput of the downlink data is less than the second preset value.
  • the deviation calibration strategy is: a first policy, the user end measures the phase calibration information, the channel delay difference, and the timing synchronization deviation; or a second strategy, the user end measures the phase calibration information, The base station side measures the channel delay difference and the timing synchronization deviation; or a third policy, the UE measures the channel delay difference and the timing synchronization deviation, and the base station side measures the phase calibration information; or the fourth strategy The UE measures the channel delay difference, the base station side measures the timing synchronization deviation and the phase calibration information; or the fifth policy, the UE measures the timing synchronization deviation, and the base station side measures the channel delay difference and The phase calibration information.
  • the deviation calibration strategy is the second policy
  • the deviation calibration module further includes: a first measurement unit, configured to perform, by the base station side, the measurement of the channel delay difference and the timing synchronization deviation.
  • the deviation calibration strategy is the third strategy
  • the deviation calibration module further comprises: a second measurement unit, configured to perform measurement of the phase calibration information on a base station side.
  • the deviation calibration strategy is the fourth strategy
  • the deviation calibration module further includes: a third measurement unit configured to perform measurement of the phase calibration information and the timing synchronization deviation on the base station side.
  • the deviation calibration strategy is the fifth strategy
  • the deviation calibration module further includes: a fourth measurement unit configured to perform measurement of the phase calibration information and the channel delay difference on the base station side.
  • FIG. 1 is a flow chart showing a method for measuring deviation calibration information between a plurality of access points according to an embodiment of the present invention
  • FIG. 2 is a diagram showing measurement of deviation calibration information between a plurality of access points according to an embodiment of the present invention. Block diagram of the device structure.
  • the embodiment provides a method for measuring offset calibration information between multiple access points, including the following steps: Step S102: The base station side determines a deviation calibration strategy; Step S104, according to the offset calibration strategy The deviation calibration information measurement parameter configuration is performed on the user end; in step S106, the base station side performs deviation calibration between the plurality of access points according to the measurement result of the deviation calibration information returned by the user end.
  • the CoMP technology improves the signal reception quality of the user equipment by using multiple access points of multiple cells or multiple access points of one cell to jointly transmit user data, thereby reducing inter-cell interference, thereby effectively improving system capacity and spectral efficiency of edge users. .
  • Deviations between multiple access points result in reduced system performance. Therefore, it is necessary to calibrate the above-mentioned deviations existing at different AP points, and the AP point timing synchronization of the transmitted data is close to no deviation, the channel delay difference is close to zero, and the phase deviation is close to zero, and the performance of the system is increased.
  • the measurement method of the offset calibration information between the plurality of access points provided by this embodiment solves the above technical problem.
  • the deviation calibration information measurement parameter configuration includes the manner in which the user side measurement deviation calibration is performed, and the deviation measurement of the plurality of access points by the user terminal may be performed after the base station side command is not triggered, and may be performed after the base station side triggers.
  • the step "the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal" includes: When the base station side satisfies the first deviation calibration preset condition, the signaling to the user end to measure the deviation calibration information between the multiple access points triggers the user terminal measurement deviation calibration information. The user only performs measurement when the base station side needs to perform offset calibration, which appropriately reduces the burden on the user terminal.
  • the first deviation calibration preset condition includes: the base station side performs multipoint transmission and reception with the UE by using multiple access points, and each access point is independently precoded; or, the base station side passes multiple access points and The user terminal performs multi-point transmission and reception, and when the sent downlink data parameter satisfies the second deviation calibration preset condition, where the deviation calibration preset condition includes: the block error rate of the downlink data is greater than the first preset value and the downlink data. The throughput is less than the second preset value.
  • the base station side may first determine whether the offset calibration between the multiple access points is required, and the first offset calibration preset condition that needs to perform the offset calibration specifically includes: the base station side may be scheduled to be CoMP joint transmission, and each adopts When the AP points are independently precoded, it is determined that the offset calibration between the access points is to be performed. Alternatively, after observing the actual effect of CoMP transmission for a period of time, such as the block error rate and throughput of the system, it is determined whether to perform offset calibration between access points. For example, in a fixed modulation coding scheme, the system block error rate is higher than a certain threshold, such as 10%; or the fixed block rate is at a certain value, such as 10%, in the vicinity, the system throughput is below a certain threshold.
  • a certain threshold such as 10%
  • the fixed block rate is at a certain value, such as 10%, in the vicinity, the system throughput is below a certain threshold.
  • the reporting manner of the measurement result of the deviation calibration information by the user terminal is determined by the configuration of the measurement parameter of the deviation calibration information, and may be a periodic automatic reporting, or may be reported after receiving the instruction of the base station side.
  • the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: the base station side sends the return offset calibration information measurement result to the user end. The signaling triggers the user to report the measurement result of the deviation calibration information.
  • the user only reports the deviation calibration information measurement result when the base station side needs to perform the offset calibration, that is, the first deviation calibration preset condition is met, so that the base station side performs the offset calibration to improve the system performance, and the user terminal does not have to periodically Reporting, reducing the burden.
  • the signaling is sent through a radio resource control or a physical layer downlink control channel.
  • the offset calibration information includes phase calibration information and/or a delay difference including a channel delay difference and/or a timing synchronization offset between the plurality of access points.
  • the deviation calibration strategy is: a first strategy, the user terminal S measures the phase calibration information, the channel delay difference and the timing synchronization deviation; or a second strategy, the user end measures the phase calibration information, the base station Measuring, by the side, the channel delay difference and the timing synchronization deviation; or a third strategy, the UE measures the channel delay difference and the timing synchronization deviation, and the base station side measures the phase calibration information; or the fourth strategy, The UE measures the channel delay difference, the base station side measures the timing synchronization offset and the phase calibration information; or the fifth policy, the UE measures the timing synchronization deviation, and the base station side measures the channel delay difference and the location Phase calibration information.
  • the deviation calibration strategy is the second policy, and the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing, by the base station side, the channel The delay difference and the measurement of the timing synchronization deviation are performed; the base station side performs the offset calibration according to the deviation calibration information measurement result returned by the user terminal and the measurement result of the channel delay difference and the timing synchronization deviation.
  • the deviation calibration strategy is the third policy, and the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing the phase on the base station side Measurement of calibration information; The base station side performs deviation calibration according to the deviation calibration information measurement result returned by the user terminal and the measurement result of the phase calibration information.
  • the deviation calibration strategy is the fourth policy, and the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing the phase on the base station side Calibration information, measurement of timing synchronization deviation; The base station side performs offset calibration according to the deviation calibration information measurement result returned by the user terminal, the phase calibration information, and the measurement result of the timing synchronization deviation.
  • the deviation calibration strategy is the fifth policy, and the step “the base station side performs the offset calibration between the multiple access points according to the measurement result of the offset calibration information returned by the user terminal” includes: performing the phase on the base station side Calibration information, measurement of channel delay difference; The base station side performs offset calibration based on the deviation calibration information measurement result returned by the user terminal and the phase calibration information and the channel delay difference measurement result.
  • the setting of the deviation calibration strategy is determined according to the function of the user side and the actual burden.
  • the deviation calibration information measurement parameters include a measurement bandwidth, a measurement amount at the user end, a measurement method, a measurement result reporting manner, and/or a measurement period, and a feedback period.
  • the configuration of the deviation calibration information measurement parameter includes one or both of the deviation calibration strategies.
  • the base station can perform measurement parameter configuration by the following RRC (Radio Resource Control) signaling: RRC Connection Establishment Radio Resource Control Connection Reconfiguration Message (RRC Connection Reconfiguration) Radio Resource Control Connection Reestablishment Message (RRC) Connection Re-establishment)
  • RRC Radio Resource Control
  • the measurement parameters can be placed in the cell-specific parameter RadioResourceConfigCommonSIB IE, that is, multiple UEs in the cell are involved in the measurement. It can also be placed in the UE-specific parameter RadioResourceConfigDedicated IE, that is, the specified one or more UEs participate in the measurement. In the above two cases, when multiple UEs participate in the measurement, it is necessary to perform statistical average, take the median, or take the maximum value and the minimum value on the base station side.
  • the measurement bandwidth includes a subband, a wideband, and preferably, may be represented by 1 bit, for example, 0 represents a subband, 1 represents a wideband; or 0 represents a wideband, and 1 represents a subband.
  • the measurement quantity to be measured by the terminal includes: delay difference and phase calibration information; Phase calibration information; delay difference, including channel propagation delay difference and timing synchronization deviation of access point; channel propagation delay difference; timing synchronization deviation; preferably, can be represented by 3-bit bitmap, for example, 000 means no measurement; Indicates case a); 001 indicates case b); 110 indicates case c); 100 indicates case d 001 indicates case e;).
  • the measurement manner includes: one measurement triggered by the event: when the base station side satisfies the first deviation calibration preset condition, triggering the user terminal to perform one-time signaling by sending signaling to the user end to measure the deviation calibration information of the multiple access points Deviation calibration information measurement; or, periodic measurement: the user periodically performs the measurement of the deviation calibration information; or, the event-triggered periodic measurement: when the base station side satisfies the first deviation calibration preset condition, by sending to the user end
  • the signaling that measures the deviation calibration information of multiple access points triggers the user to start periodic deviation calibration information measurement, which may end after a certain period, or may continue to perform periodic measurement.
  • the method for reporting the measurement result includes: an event-triggered one-time reporting: the base station side sends a signaling that returns the deviation calibration information measurement result to the user end, and triggers the user end to report the deviation calibration information measurement result in one time; or periodically reports: The user periodically reports the deviation calibration information; or the event triggers the periodic report: The base station side sends the signaling of the return deviation calibration information measurement result to the user end, triggering the user end to start the periodic calibration information measurement result periodically.
  • Measurement period In the case where the measurement trigger mode is periodic measurement or event trigger period measurement, a reasonable measurement period needs to be set. The determination of the period should take into account the measurement requirements and the measurement load of the UE. Preferably, 1 second, 1 minute, 5 minutes, 10 minutes, etc. may be employed.
  • Step 1 The UE measures the deviation between the multiple access points according to the RRC signaling indication, which specifically includes:
  • the UE receives the measurement parameter configuration indicated by the RRC signaling, and starts to perform the offset calibration information measurement after receiving the event trigger (the RRC signaling of the measurement deviation calibration information); or, the UE configured to periodically measure,
  • the deviation calibration information measurement is started on a periodic basis; or, the UE configured as the event-triggered periodic measurement starts to perform the deviation calibration information measurement by cycle after receiving the event trigger.
  • the above event is triggered, which may be triggered by RRC signaling or PDCCH triggering.
  • Step 2 The UE side sorts the measurement results.
  • the UE After the UE completes the measurement, it can be configured according to the measurement trigger mode and the measurement cycle. In the event of a one-time measurement triggered by an event, the UE directly uses the single measurement result as the final measurement result. In the case of a periodic measurement, or an event-triggered periodic measurement, the UE may take the measurement result of the latest measurement period as the final measurement result; or the measurement results of the previous several measurement periods may be statistically processed, for example: averaging, taking The maximum value, the minimum value, the median value, etc., and the processing result is taken as the final measurement result, and the UE can continue such statistical processing by means of window sliding.
  • the UE may take the measurement result of the latest measurement period as the final measurement result; the UE may perform statistical processing on all the measured values obtained between the two reporting periods, for example: Average, take the maximum value, the minimum value, the median value, etc., and use the processing result as the final measurement result.
  • the UE can continue the statistical processing by window sliding.
  • Step 3 The RRC layer entity of the UE side feeds back the measurement result to the RRC layer entity on the base station side through RRC signaling.
  • Step 4 The base station performs offset calibration between multiple access points according to the measurement result obtained by the RRC layer entity. If the UE simultaneously measures the delay difference and the phase calibration information between the access points, the base station directly uses the measurement result reported by the UE to perform the offset correction. If the UE only measures the phase calibration information, the base station side needs to perform the delay difference measurement and then perform the offset correction. If the UE only measures the delay difference, including the channel propagation delay difference and the timing synchronization deviation of the access point, the base station needs to measure.
  • Phase calibration information, and then offset correction If the UE only measures the channel propagation delay difference, the base station needs to measure the timing synchronization offset and phase calibration information, and then perform offset correction. If the UE only measures the timing synchronization offset, the base station needs to measure the channel propagation delay difference and phase calibration information, and then perform offset correction. As shown in FIG.
  • an embodiment of the present invention further provides a measurement device for offset calibration information between multiple access points
  • the measurement device includes: a deviation calibration policy determination module 10, configured to determine a deviation calibration strategy for the base station side;
  • the parameter configuration module 20 is configured to perform a deviation calibration information measurement parameter configuration on the user end according to the deviation calibration strategy;
  • the deviation calibration module 30 is configured to perform a deviation calibration between the plurality of access points according to the measurement result of the offset calibration information returned by the user end.
  • the foregoing measuring apparatus further includes: a signaling sending module, configured to: when the base station side meets the first deviation calibration preset condition, send a signaling triggering client that measures the offset calibration information between the multiple access points to the UE Measurement deviation calibration information.
  • the signaling sending module is further configured to send, by the base station side, the signaling that returns the measurement result of the deviation calibration information to the user end, and trigger the user end to report the measurement result of the deviation calibration information.
  • the signaling is sent by using a radio resource control or a physical layer downlink control channel.
  • the first offset calibration preset condition includes: the base station side performs multipoint transmission and reception with the UE by using multiple access points, and each access point is independently precoded; or, the base station side passes multiple interfaces.
  • the inbound point and the user end perform multipoint transmission and reception, and when the sent downlink data parameter satisfies the second deviation calibration preset condition, where the offset calibration preset condition includes: the error block rate of the downlink data is greater than the first preset value The throughput of the downlink data is less than the second preset value.
  • the deviation calibration strategy includes: a first policy, the user end measures the phase calibration information, the channel delay difference, and the timing synchronization deviation; a second strategy, the user end measures the phase calibration information, the base station Measuring, by the side, the channel delay difference and the timing synchronization deviation; the third strategy, the UE measures the channel delay difference and the timing synchronization deviation, and the base station side measures the phase calibration information; the fourth policy, the UE Measure the channel delay difference, the base station side measures the timing synchronization deviation and the phase calibration information; the fifth strategy, the UE measures the timing synchronization deviation, and the base station side measures the channel delay difference and the phase calibration information.
  • the deviation calibration strategy is the second policy
  • the deviation calibration module 30 further includes: a first measurement unit, configured to perform, by the base station side, the measurement of the channel delay difference and the timing synchronization deviation.
  • the deviation calibration strategy is the third policy
  • the deviation calibration module 30 further includes: a second measurement unit, configured to perform measurement of the phase calibration information by the base station side.
  • the deviation calibration strategy is the fourth policy
  • the deviation calibration module 30 further includes: a third measurement unit configured to perform measurement of the phase calibration information and the timing synchronization deviation on the base station side.
  • the deviation calibration strategy is the fifth strategy
  • the deviation calibration module 30 further includes: a fourth measurement unit, configured to perform measurement of the phase calibration information and the channel delay difference on the base station side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种多个接入点之间的偏差校准信息的测量方法和装置,其中,多个接入点之间的偏差校准信息的测量方法包括:基站侧确定偏差校准策略;根据所述偏差校准策略对用户端进行偏差校准信息测量参数配置;基站侧根据用户端返回的偏差校准信息的测量结果,进行多个接入点之间的偏差校准。本发明的有益效果是:解决不同接入点同时向UE发送数据时,相互之间存在偏差的问题,提升时延差校准的准确性,从而提高系统性能和频谱效率。

Description

多个接入点之间偏差校准信息的测量方法和装置 技术领域 本发明涉及通信技术领域, 尤其涉及一种多个接入点 (Access Point, 简称 AP) 之间偏差校准信息的测量方法和装置。 背景技术 在先进的长期演进 (LTE-Advanced) 系统中, 为了进一步提高系统性能和边缘用 户的频谱效率, 提出了协作多点传输和接收 (CoMP, Coordinated multi-point transmission/reception)技术。 CoMP技术的基本思想是用户终端(UE, User Equipment) 可以利用多个接入点 (AP, Access Point) 的天线协作传输和接收信息, 以有效解决小 区边缘存在的同频干扰, 从而提高无线链路的信道容量和可靠性。 由于进行 CoMP协作的 AP点分布在不同的地理位置, 多个 AP点同时为一个 UE 发送下行数据时, 不同 AP发送的数据到达该 UE所用的时间不同, 造成了到达 UE的 信号具有一定的信道传播时延差, 该时延差会导致信息到达 UE 的信号在频域上存在 相位旋转偏差。 同时, 不同的 AP点彼此间也会有一定的定时同步偏差, 使得这些 AP 点对同一个 UE发送数据的时间会存在相应的不同步。 上述 AP点之间信道传播时延差和 /或定时同步偏差的累积效果, 使得不同 AP点 向同一 UE发送的数据之间彼此存在一定的信道时延差, 导致系统性能降低。 发明内容 为了解决上述技术问题, 本发明提供了一种多个接入点之间偏差校准信息的测量 方法和装置, 对不同 AP点存在的偏差进行校准, 提高系统的性能。 根据本发明的一个方面,提供了一种多个接入点之间的偏差校准信息的测量方法, 该方法包括以下步骤: 基站侧确定偏差校准策略; 根据所述偏差校准策略对用户端进行偏差校准信息测量参数配置; 基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点之间的偏差 校准。 优选地, 所述步骤 "基站侧根据用户端返回的偏差校准信息的测量结果, 进行多 个接入点之间的偏差校准"之前还包括: 基站侧满足第一偏差校准预设条件时, 向用户端发送测量多个接入点之间的偏差 校准信息的信令触发用户端测量偏差校准信息。 优选地, 所述第一偏差校准预设条件包括: 基站侧通过多个接入点与用户端进行 多点传输和接收, 且每个接入点独立预编码; 或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的下行数 据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。 优选地, 所述步骤 "基站侧根据用户端返回的偏差校准信息的测量结果, 进行多 个接入点之间的偏差校准"之前包括: 基站侧向用户端发送返回偏差校准信息测量结果的信令, 触发用户端将偏差校准 信息测量结果进行上报。 优选地, 所述信令通过无线电资源控制或物理层下行控制信道发送。 优选地, 所述偏差校准信息包括相位校准信息和 /或时延差, 所述时延差包括信道 时延差和 /或多个个接入点之间的定时同步偏差。 优选地, 所述偏差校准策略为: 第一策略,用户端测量所述相位校准信息、所述信道时延差和所述定时同步偏差; 或者 第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和所述定 时同步偏差; 或者 第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量所述相 位校准信息; 或者 第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和所述相 位校准信息; 或者 第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和所述相 位校准信息。 优选地, 所述偏差校准策略为所述第二策略, 所述步骤 "基站侧根据用户端返回 的偏差校准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述信道时延差和所述定时同步偏差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述信道时延差和所述定时同 步偏差的测量结果, 进行偏差校准。 优选地, 所述偏差校准策略为所述第三策略, 所述步骤 "基站侧根据用户端返回 的偏差校准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息的测量结 果, 进行偏差校准。 优选地, 所述偏差校准策略为所述第四策略, 所述步骤 "基站侧根据用户端返回 的偏差校准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息、 定时同步偏差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 定时同步 偏差的测量结果, 进行偏差校准。 优选地, 所述偏差校准策略为所述第五策略, 所述步骤 "基站侧根据用户端返回 的偏差校准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息、 信道时延差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 信道时延 差的测量结果, 进行偏差校准。 优选地, 所述偏差校准信息测量参数包括测量带宽、用户端的测量量、测量方式、 测量结果上报方式、 和 /或测量周期、 反馈周期。 优选地, 所述测量方式包括: 当基站侧满足第一偏差校准预设条件时, 通过向用户端发送测量多个接入点的偏 差校准信息的信令触发用户端进行一次性的偏差校准信息测量; 或者, 用户端周期性的进行偏差校准信息的测量; 或者, 当基站侧满足第一偏差校准预设条件时, 通过向用户端发送测量多个接入点的偏 差校准信息的信令触发用户端开始进行周期性的偏差校准信息测量。 优选地, 所述测量结果上报方式包括: 基站侧通过向用户端发送返回偏差校准信息测量结果的信令, 触发用户端将偏差 校准信息测量结果进行一次性上报; 或者 用户端周期性的将偏差校准信息进行上报; 或者 基站侧通过向用户端发送返回偏差校准信息测量结果的信令, 触发用户端开始将 偏差校准信息测量结果进行周期性上报。 根据本发明的另一方面,还提供一种多个接入点之间的偏差校准信息的测量装置, 该测量装置包括: 偏差校准策略确定模块, 设置为基站侧确定偏差校准策略; 参数配置模块, 设置为根据所述偏差校准策略对用户端进行偏差校准信息测量参 数配置; 偏差校准模块, 设置为基站侧根据用户端返回的偏差校准信息的测量结果, 进行 多个接入点之间的偏差校准。 优选地, 上述测量装置还包括: 信令发送模块, 设置为基站侧满足第一偏差校准预设条件时, 向用户端发送测量 多个接入点之间的偏差校准信息的信令触发用户端测量偏差校准信息。 优选地, 所述信令发送模块还设置为基站侧向用户端发送返回偏差校准信息测量 结果的信令, 触发用户端将偏差校准信息测量结果进行上报。 优选地, 所述信令通过无线电资源控制或物理层下行控制信道发送。 优选地, 所述第一偏差校准预设条件包括: 基站侧通过多个接入点与用户端进行 多点传输和接收, 且每个接入点独立预编码; 或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的下行数 据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。 优选地, 所述偏差校准策略为: 第一策略,用户端测量所述相位校准信息、所述信道时延差和所述定时同步偏差; 或者 第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和所述定 时同步偏差; 或者 第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量所述相 位校准信息; 或者 第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和所述相 位校准信息; 或者 第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和所述相 位校准信息。 优选地, 所述偏差校准策略为所述第二策略, 所述偏差校准模块还包括: 第一测量单元, 设置为基站侧进行所述信道时延差和所述定时同步偏差的测量。 优选地, 所述偏差校准策略为所述第三策略, 所述偏差校准模块还包括: 第二测量单元, 设置为基站侧进行所述相位校准信息的测量。 优选地, 所述偏差校准策略为所述第四策略, 所述偏差校准模块还包括: 第三测量单元, 设置为基站侧进行所述相位校准信息、 定时同步偏差的测量。 优选地, 所述偏差校准策略为所述第五策略, 所述偏差校准模块还包括: 第四测量单元, 设置为基站侧进行所述相位校准信息、 信道时延差的测量。 本发明上述实施例的有益效果是: 解决不同接入点同时向 UE发送数据时, 相互 之间存在偏差的问题, 提升时延差校准的准确性, 从而提高系统性能和频谱效率。 附图说明 图 1表示本发明实施例的多个接入点之间的偏差校准信息的测量方法流程图; 以 及 图 2表示本发明实施例的多个接入点之间的偏差校准信息的测量装置结构框图。 具体实施方式 以下结合说明书附图对本发明结构和原理进行详细说明, 所举实施例仅用于解释 本发明, 并非以此限定本发明的保护范围。 如图 1所示, 本实施例提供一种多个接入点之间的偏差校准信息的测量方法, 包 括以下步骤: 步骤 S102, 基站侧确定偏差校准策略; 步骤 S104, 根据所述偏差校准策略对用户端进行偏差校准信息测量参数配置; 步骤 S106, 基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点 之间的偏差校准。
CoMP技术通过多个小区的多个接入点或者一个小区的多个接入点协作传输用户 数据的方式提高用户设备的信号接收质量, 降低小区间干扰, 从而有效提高系统容量 和边缘用户频谱效率。 而多个接入点之间的偏差导致系统性能降低。 因此需要对不同 AP点存在的上述偏差进行校准, 得到发送数据的 AP点定时同步接近无偏差、信道时 延差接近为零以及相位偏差接近为零, 系统的性能会升高。 本实施例提供的多个接入 点之间的偏差校准信息的测量方法恰好解决了上述技术问题。 偏差校准信息测量参数配置中包括用户端测量偏差校准的方式, 用户端对多个接 入点的偏差测量可以是不需要基站侧下达指令触发后进行, 可以是在基站侧触发后才 进行的测量。 本实施例中, 所述步骤 "基站侧根据用户端返回的偏差校准信息的测量结果, 进 行多个接入点之间的偏差校准"之前还包括: 基站侧满足第一偏差校准预设条件时, 向用户端发送测量多个接入点之间的偏差 校准信息的信令触发用户端测量偏差校准信息。 用户端只有在基站侧需要进行偏差校准时, 进行测量, 适当的减轻了用户端的负 担。 所述第一偏差校准预设条件包括: 基站侧通过多个接入点与用户端进行多点传输 和接收, 且每个接入点独立预编码; 或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的下行数 据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。 基站侧可以先确定是否需要进行多个接入点之间的偏差校准, 而确定需要进行偏 差校准的第一偏差校准预设条件具体包括: 基站侧可在被调度为 CoMP联合发送, 且采用各 AP点独立预编码之时, 确定要 进行各接入点之间的偏差校准。 也可以, 在观察一段时间 CoMP发送的实际效果, 例如系统的误块率、 吞吐量等 参数后再确定是否进行个接入点之间的偏差校准。 例如在固定调制编码方案时, 系统 的误块率高于某门限, 如 10%; 或固定误块率在某个值, 如 10%, 附近的情况下, 系 统吞吐量低于某个门限值时。 确定需要进行接入点之间的偏差校正。 用户端对偏差校准信息的测量结果的上报方式由偏差校准信息测量参数的配置决 定, 可以是周期性的自动上报, 也可以是在收到基站侧的指令后再上报。 本实施例中, 所述步骤 "基站侧根据用户端返回的偏差校准信息的测量结果, 进 行多个接入点之间的偏差校准"之前包括: 基站侧向用户端发送返回偏差校准信息测量结果的信令, 触发用户端将偏差校准 信息测量结果进行上报。 用户端只有在基站侧需要进行偏差校准时, 即满足第一偏差校准预设条件时, 才 会将偏差校准信息测量结果上报, 以便基站侧进行偏差校准, 提高系统性能, 同时用 户端可以不必定期上报, 减轻了负担。 本实施例中, 所述信令通过无线电资源控制或物理层下行控制信道发送。 所述偏差校准信息包括相位校准信息和 /或时延差,所述时延差包括信道时延差和 /或多个个接入点之间的定时同步偏差。 所述偏差校准策略为: 第一策略,用户端 S则量所述相位校准信息、所述信道时延差和所述定时同步偏差; 或者 第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和所述定 时同步偏差; 或者 第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量所述相 位校准信息; 或者 第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和所述相 位校准信息; 或者 第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和所述相 位校准信息。 所述偏差校准策略为所述第二策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述信道时延差和所述定时同步偏差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述信道时延差和所述定时同 步偏差的测量结果, 进行偏差校准。 所述偏差校准策略为所述第三策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息的测量结 果, 进行偏差校准。 所述偏差校准策略为所述第四策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息、 定时同步偏差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 定时同步 偏差的测量结果, 进行偏差校准。 所述偏差校准策略为所述第五策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括: 基站侧进行所述相位校准信息、 信道时延差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 信道时延 差的测量结果, 进行偏差校准。 实际使用中,偏差校准策略的设定根据用户端的功能、 以及实际负担情况来决定。 所述偏差校准信息测量参数包括测量带宽、 用户端的测量量、 测量方式、 测量结 果上报方式、 和 /或测量周期、 反馈周期。 所述偏差校准信息测量参数的配置根据偏差 校准策略包括其中的一种或两种。 基站可通过以下 RRC (无线电资源控制) 信令来进行测量参数配置: 无线资源控制连接建立消息 (RRC Connection Establishment) 无线资源控制连接重配置消息 (RRC Connection Reconfiguration) 无线资源控制连接重建立消息 (RRC Connection Re-establishment) 测量参数可放在小区特定参数 RadioResourceConfigCommonSIB IE中, 即让小区 中的多个 UE都参与测量。 也可放在 UE特定参数 RadioResourceConfigDedicated IE中, 即让指定的一个或 多个 UE参与测量。 上述两种情形中, 有多个 UE参与测量的情况下, 需要在基站侧进行统计平均、 取中值、 或取最大值、 最小值等操作。 其中, 测量带宽包括子带、 宽带, 优选地, 可用 1比特表示, 例如 0表示子带, 1 表示宽带; 或者 0表示宽带, 1表示子带。 待终端测量的测量量包括: 时延差和相位校准信息 ; 相位校准信息; 时延差, 包括信道传播时延差和接入点的定时同步偏差; 信道传播时延差; 定时同步偏差; 优选地, 可用 3比特位图表示, 例如 000表示不测量; 111表示情况 a); 001表 示情况 b); 110表示情况 c); 100表示情况 d 001表示情况 e;)。 所述测量方式包括: 事件触发的一次测量: 当基站侧满足第一偏差校准预设条件时, 通过向用户端发 送测量多个接入点的偏差校准信息的信令触发用户端进行一次性的偏差校准信息测 量; 或者, 周期性测量: 用户端周期性的进行偏差校准信息的测量; 或者, 事件触发的周期性测量: 当基站侧满足第一偏差校准预设条件时, 通过向用户端 发送测量多个接入点的偏差校准信息的信令触发用户端开始进行周期性的偏差校准信 息测量, 可能在一定周期后结束, 也可能持续进行周期性测量。 优选地, 可用 2比特表示, 例如 00表示事件触发的一次测量, 事件触发的一次测 量; 01表示周期性测量, 周期性测量; 10表示情况事件触发的周期性测量, 时间触发 的周期性测量。 所述测量结果上报方式包括: 事件触发的一次上报: 基站侧通过向用户端发送返回偏差校准信息测量结果的信 令, 触发用户端将偏差校准信息测量结果进行一次性上报; 或者 周期性上报: 用户端周期性的将偏差校准信息进行上报; 或者 事件触发的周期上报: 基站侧通过向用户端发送返回偏差校准信息测量结果的信 令, 触发用户端开始将偏差校准信息测量结果进行周期性上报, 可能在一定周期后结 束, 也可能持续进行周期性测量。 优选地, 可用 2比特表示, 例如 00表示情况事件触发的一次上报, 事件触发的一 次测量; 01表示情况周期性上报, 周期性测量; 10表示情况事件触发的周期上报, 时 间触发的周期性测量。 测量周期: 在测量触发方式为周期性测量或事件触发周期测量两种情况下, 需要 设置合理的测量周期, 该周期的确定应综合考虑测量需求和 UE的测量负担。优选的, 可采用 1秒, 1分钟, 5分钟, 10分钟等。 反馈周期: 在测量结果上报方式为周期性上报或事件触发周期上报两种情况下, 需要设置合理的上报周期, 该周期的确定应综合考虑基站侧的校正需求和 UE的上报 开销。 优选的, 可采用 1秒, 1分钟, 5分钟, 10分钟等。 优选地, 测量触发方式和测量结果上报方式可以尽量匹配。 例如: 事件触发的一 次测量, 采用事件触发的一次上报方式进行上报; 周期性测量采用周期性上报方式进 行上报; 事件触发的周期性测量采用事件触发的周期上报方式进行上报。 测量周期和 上报周期也可以保持相同, 这样, 测量和上报可以较为有序地依次进行。 若测量周期和上报周期不一致, 可参照下面步骤 2给出的办法进行一定处理。 步骤 1 : UE根据 RRC信令指示测量多个接入点之间的偏差, 具体包括:
UE在接收到 RRC信令指示的测量参数配置, 并在收到事件触发 (测量偏差校准 信息的 RRC信令) 后, 开始进行一次偏差校准信息测量; 或者, 被配置为周期性测量的 UE, 开始按周期进行偏差校准信息测量; 或者, 被配置为事件触发的周期性测量的 UE, 在接收到事件触发后, 开始按周期 进行偏差校准信息测量。 上述事件触发, 可能是 RRC信令触发, 也可以是 PDCCH触发。 步骤 2: UE侧整理测量结果
UE完成测量后,可根据测量触发方式和测量周期配置,对测量结果进行一定整理。 在事件触发的一次性测量情况下, UE直接将单次测量结果作为最终测量结果即 可。 在周期性测量,或事件触发的周期性测量情况下, UE可取最近一个测量周期的测 量结果为最终测量结果; 也可以将之前几个测量周期的测量结果进行统计处理,例如: 取平均、 取最大值、 最小值、 中值等, 将处理结果作为最终测量结果, UE可采用窗口 滑动的方式, 持续进行这样的统计处理。 在周期性上报,或事件触发的周期性上报情况下, UE可取最近一个测量周期的测 量结果为最终测量结果; UE可以将两个上报周期之间得到的所有测量值进行统计处 理, 例如: 取平均、 取最大值、 最小值、 中值等, 将处理结果作为最终测量结果, UE 可采用窗口滑动的方式, 持续进行这样的统计处理。 步骤 3 : UE侧 RRC层实体, 通过 RRC信令, 向基站侧的 RRC层实体反馈测量 结果
UE测量得到偏差校准信息后,应根据上报方式和上报周期配置,进行测量结果的 填写, 并包含在测量报告消息中发送给网络。 步骤 4:基站根据 RRC层实体获得的测量结果,进行多个接入点之间的偏差校准。 若 UE同时测量接入点之间的时延差和相位校准信息, 则基站直接使用 UE上报 的测量结果进行偏差校正即可。 若 UE仅测量相位校准信息, 则基站侧需进行时延差测量, 再进行偏差校正; 若 UE仅测量时延差, 包括信道传播时延差和接入点的定时同步偏差, 则基站需 测量相位校准信息, 再进行偏差校正; 若 UE仅测量信道传播时延差, 则基站需要测量定时同步偏差和相位校准信息, 再进行偏差校正。 若 UE仅测量定时同步偏差, 则基站需要测量信道传播时延差和相位校准信息, 再进行偏差校正。 如图 2所示, 本发明实施例还提供一种多个接入点之间的偏差校准信息的测量装 置, 该测量装置包括: 偏差校准策略确定模块 10, 设置为基站侧确定偏差校准策略; 参数配置模块 20, 设置为根据所述偏差校准策略对用户端进行偏差校准信息测量 参数配置; 偏差校准模块 30, 设置为基站侧根据用户端返回的偏差校准信息的测量结果, 进 行多个接入点之间的偏差校准。 进一步的, 上述测量装置还包括: 信令发送模块, 设置为基站侧满足第一偏差校准预设条件时, 向用户端发送测量 多个接入点之间的偏差校准信息的信令触发用户端测量偏差校准信息。 进一步的, 所述信令发送模块还设置为基站侧向用户端发送返回偏差校准信息测 量结果的信令, 触发用户端将偏差校准信息测量结果进行上报。 进一步的, 所述信令通过无线电资源控制或物理层下行控制信道发送。 进一步的, 所述第一偏差校准预设条件包括: 基站侧通过多个接入点与用户端进 行多点传输和接收, 且每个接入点独立预编码; 或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的下行数 据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。 进一步的, 所述偏差校准策略包括: 第一策略,用户端测量所述相位校准信息、所述信道时延差和所述定时同步偏差; 第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和所述定 时同步偏差; 第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量所述相 位校准信息; 第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和所述相 位校准信息; 第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和所述相 位校准信息。 进一步的, 所述偏差校准策略为所述第二策略, 所述偏差校准模块 30还包括: 第一测量单元, 设置为基站侧进行所述信道时延差和所述定时同步偏差的测量。 进一步的, 所述偏差校准策略为所述第三策略, 所述偏差校准模块 30还包括: 第二测量单元, 设置为基站侧进行所述相位校准信息的测量。 进一步的, 所述偏差校准策略为所述第四策略, 所述偏差校准模块 30还包括: 第三测量单元, 设置为基站侧进行所述相位校准信息、 定时同步偏差的测量。 进一步的, 所述偏差校准策略为所述第五策略, 所述偏差校准模块 30还包括: 第四测量单元, 设置为基站侧进行所述相位校准信息、 信道时延差的测量。 以上所述为本发明较佳实施例, 应当指出, 对于本领域普通技术人员来说, 在不 脱离本发明所述原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视 为本发明保护范围。

Claims

权 利 要 求 书
1. 一种多个接入点之间的偏差校准信息的测量方法, 包括:
基站侧确定偏差校准策略;
根据所述偏差校准策略对用户端进行偏差校准信息测量参数配置; 基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点之间 的偏差校准。
2. 根据权利要求 1所述的多个接入点之间的偏差校准信息的测量方法, 其中, 在 所述步骤基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点 之间的偏差校准之前, 还包括:
基站侧满足第一偏差校准预设条件时, 向用户端发送测量多个接入点之间 的偏差校准信息的信令触发用户端测量偏差校准信息, 所述第一偏差校准预设 条件包括: 基站侧通过多个接入点与用户端进行多点传输和接收, 且每个接入 点独立预编码;
或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的 下行数据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。
3. 根据权利要求 1所述的多个接入点之间的偏差校准信息的测量方法, 其中, 在 所述步骤基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点 之间的偏差校准之前, 包括:
基站侧向用户端发送返回偏差校准信息测量结果的信令, 触发用户端将偏 差校准信息测量结果进行上报。
4. 根据权利要求 2或 3所述的触发多个接入点之间的偏差校准信息的测量方法, 其中, 所述信令通过无线电资源控制或物理层下行控制信道发送。
5. 根据权利要求 1-3任一项所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所述偏差校准信息包括相位校准信息和 /或时延差, 所述时延差包括信道 时延差和 /或多个个接入点之间的定时同步偏差。
6. 根据权利要求 5所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所 述偏差校准策略为:
第一策略, 用户端测量所述相位校准信息、 所述信道时延差和所述定时同 步偏差; 或者
第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和 所述定时同步偏差; 或者
第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量 所述相位校准信息; 或者
第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和 所述相位校准信息; 或者
第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和 所述相位校准信息。
7. 根据权利要求 6所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所述偏差校准策略为所述第二策略, 所述步骤 "基站侧根据用户端返回的 偏差校准信息的测量结果, 进行多个接入点之间的偏差校准"包括:
基站侧进行所述信道时延差和所述定时同步偏差的测量;
基站侧根据用户端返回的偏差校准信息测量结果和所述信道时延差和所述 定时同步偏差的测量结果, 进行偏差校准。
8. 根据权利要求 6所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所 述偏差校准策略为所述第三策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括:
基站侧进行所述相位校准信息的测量;
基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息的测 量结果, 进行偏差校准。
9. 根据权利要求 6所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所 述偏差校准策略为所述第四策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括:
基站侧进行所述相位校准信息、 定时同步偏差的测量; 基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 定 时同步偏差的测量结果, 进行偏差校准。
10. 根据权利要求 6所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所 述偏差校准策略为所述第五策略, 所述步骤 "基站侧根据用户端返回的偏差校 准信息的测量结果, 进行多个接入点之间的偏差校准"包括:
基站侧进行所述相位校准信息、 信道时延差的测量;
基站侧根据用户端返回的偏差校准信息测量结果和所述相位校准信息、 信 道时延差的测量结果, 进行偏差校准。
11. 根据权利要求 1所述的多个接入点之间的偏差校准信息的测量方法, 其中, 所 述偏差校准信息测量参数包括测量带宽、 用户端的测量量、 测量方式、 测量结 果上报方式、 和 /或测量周期、 反馈周期。
12. 根据权利要求 11所述的多个接入点之间的偏差校准信息的测量方法,其中,所 述测量方式包括:
当基站侧满足第一偏差校准预设条件时, 通过向用户端发送测量多个接入 点的偏差校准信息的信令触发用户端进行一次性的偏差校准信息测量; 或者, 用户端周期性的进行偏差校准信息的测量; 或者,
当基站侧满足第一偏差校准预设条件时, 通过向用户端发送测量多个接入 点的偏差校准信息的信令触发用户端开始进行周期性的偏差校准信息测量。
13. 根据权利要求 11所述的多个接入点之间的偏差校准信息的测量方法,其中,所 述测量结果上报方式包括:
基站侧通过向用户端发送返回偏差校准信息测量结果的信令, 触发用户端 将偏差校准信息测量结果进行一次性上报; 或者
用户端周期性的将偏差校准信息进行上报; 或者
基站侧通过向用户端发送返回偏差校准信息测量结果的信令, 触发用户端 开始将偏差校准信息测量结果进行周期性上报。
14. 一种多个接入点之间的偏差校准信息的测量装置,, 包括:
偏差校准策略确定模块, 设置为基站侧确定偏差校准策略; 参数配置模块, 设置为根据所述偏差校准策略对用户端进行偏差校准信息 测量参数配置;
偏差校准模块,设置为基站侧根据用户端返回的偏差校准信息的测量结果, 进行多个接入点之间的偏差校准。
15. 根据权利要求 14所述的多个接入点之间的偏差校准信息的测量装置,其中,所 述测量装置还包括:
信令发送模块, 设置为基站侧满足第一偏差校准预设条件时, 向用户端发 送测量多个接入点之间的偏差校准信息的信令触发用户端测量偏差校准信息, 所述第一偏差校准预设条件包括: 基站侧通过多个接入点与用户端进行多 点传输和接收, 且每个接入点独立预编码;
或者, 基站侧通过多个接入点与用户端进行多点传输和接收, 且当发送的 下行数据参数满足第二偏差校准预设条件, 其中所述偏差校准预设条件包括: 下行数据的误块率大于第一预设值、 下行数据的吞吐量小于第二预设值。
16. 根据权利要求 15所述的多个接入点之间的偏差校准信息的测量装置,其中,所 述信令发送模块还设置为基站侧向用户端发送返回偏差校准信息测量结果的信 令, 触发用户端将偏差校准信息测量结果进行上报。
17. 根据权利要求 14或 15所述的多个接入点之间的偏差校准信息的测量装置, 其 中, 所述信令通过无线电资源控制或物理层下行控制信道发送。
18. 根据权利要求 14所述的多个接入点之间的偏差校准信息的测量装置,其中,所 述偏差校准策略为:
第一策略, 用户端测量所述相位校准信息、 所述信道时延差和所述定时同 步偏差; 或者
第二策略, 用户端测量所述相位校准信息, 基站侧测量所述信道时延差和 所述定时同步偏差; 或者
第三策略, 用户端测量所述信道时延差和所述定时同步偏差, 基站侧测量 所述相位校准信息; 或者
第四策略, 用户端测量所述信道时延差, 基站侧测量所述定时同步偏差和 所述相位校准信息; 或者 第五策略, 用户端测量所述定时同步偏差, 基站侧测量所述信道时延差和 所述相位校准信息。
19. 根据权利要求 18所述的多个接入点之间的偏差校准信息的测量装置,其中,在 所述偏差校准策略为所述第二策略的情况下, 所述偏差校准模块还包括:
第一测量单元, 设置为基站侧进行所述信道时延差和所述定时同步偏差的
20. 根据权利要求 18所述的多个接入点之间的偏差校准信息的测量装置,其中,在 所述偏差校准策略为所述第三策略的情况下, 所述偏差校准模块还包括:
第二测量单元, 设置为基站侧进行所述相位校准信息的测量。
21. 根据权利要求 18所述的多个接入点之间的偏差校准信息的测量装置,其中,在 所述偏差校准策略为所述第四策略的情况下, 所述偏差校准模块还包括:
第三测量单元, 设置为基站侧进行所述相位校准信息、 定时同步偏差的测
22. 根据权利要求 18所述的多个接入点之间的偏差校准信息的测量装置,其中,在 所述偏差校准策略为所述第五策略的情况下, 所述偏差校准模块还包括:
第四测量单元,设置为基站侧进行所述相位校准信息、信道时延差的测量。
PCT/CN2014/076065 2013-04-25 2014-04-23 多个接入点之间偏差校准信息的测量方法和装置 WO2014173303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310148365.4A CN104125589A (zh) 2013-04-25 2013-04-25 多个接入点之间偏差校准信息的测量方法和装置
CN201310148365.4 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014173303A1 true WO2014173303A1 (zh) 2014-10-30

Family

ID=51770821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076065 WO2014173303A1 (zh) 2013-04-25 2014-04-23 多个接入点之间偏差校准信息的测量方法和装置

Country Status (2)

Country Link
CN (1) CN104125589A (zh)
WO (1) WO2014173303A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106797247B (zh) * 2014-09-25 2019-05-31 瑞典爱立信有限公司 用于促进网络中的定时同步的方法和网络节点
CN115119246A (zh) * 2021-03-19 2022-09-27 中国移动通信有限公司研究院 测量配置信息的确定方法、配置方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置
CN102958084A (zh) * 2011-08-23 2013-03-06 中兴通讯股份有限公司 一种时延差的纠正方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111352B (zh) * 2009-12-23 2015-05-20 中兴通讯股份有限公司 多点协作联合发送网络中的信息反馈方法、装置和系统
US8792372B2 (en) * 2011-06-20 2014-07-29 Xiao-an Wang Carrier-phase difference detection with mismatched transmitter and receiver delays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958084A (zh) * 2011-08-23 2013-03-06 中兴通讯股份有限公司 一种时延差的纠正方法和系统
CN102685874A (zh) * 2012-04-12 2012-09-19 中兴通讯股份有限公司 一种多个接入点间偏差校准方法、系统和装置

Also Published As

Publication number Publication date
CN104125589A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
US10448274B2 (en) Method for dynamic CSI feedback
US20200187231A1 (en) Classification and silencing for uplink multi-user transmissions in wlans
KR102353656B1 (ko) Mdt 및 qoe 메트릭들의 상관 및 결합
US20160105817A1 (en) Method for csi feedback
US9451489B2 (en) Method and apparatus for LTE uplink throughput estimation
US20160149679A1 (en) Method for dynamic csi feedback
JP6505952B2 (ja) 測定制限の設定のための方法および装置
WO2011160581A1 (zh) 信道状态信息的处理方法及用户设备
WO2014201638A1 (zh) 一种通信质量测量的方法和装置
CN112567639A (zh) 用于波束报告的测量周期
CN108886700B (zh) 用于基于rssi的测量的质量感知报告以避免rssi窗口分割的方法
EP2995117A1 (en) Offloading communication from a cellular network to a wireless local area network
US20190052450A1 (en) Duplex Communication
US20190149252A1 (en) Controlling the channel occupancy measurement quality
WO2014110974A1 (zh) Csi测量方法和装置
WO2014183509A1 (zh) 一种通信终端管理方法及通信系统
US8818326B2 (en) Base station apparatus, mobile communication system and communication control method
US20220322127A1 (en) Quality-of-service and quality-of-experience monitoring
TW201607338A (zh) 超可靠鏈路設計(二)
WO2014173303A1 (zh) 多个接入点之间偏差校准信息的测量方法和装置
WO2014180203A1 (zh) 一种通信终端管理方法及通信系统
WO2016070386A1 (zh) 参考信号测量方法,干扰测量方法、功率控制方法及装置
WO2014173304A1 (zh) 上下行信道互异性的校准、校准处理方法及装置
WO2011124037A1 (zh) 一种信道质量指示信息的反馈方法及装置
WO2017024450A1 (zh) 数据包的发送方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788271

Country of ref document: EP

Kind code of ref document: A1