WO2014173276A1 - 通过hra判定dcs人机界面的可靠性的方法、系统 - Google Patents

通过hra判定dcs人机界面的可靠性的方法、系统 Download PDF

Info

Publication number
WO2014173276A1
WO2014173276A1 PCT/CN2014/075843 CN2014075843W WO2014173276A1 WO 2014173276 A1 WO2014173276 A1 WO 2014173276A1 CN 2014075843 W CN2014075843 W CN 2014075843W WO 2014173276 A1 WO2014173276 A1 WO 2014173276A1
Authority
WO
WIPO (PCT)
Prior art keywords
human
failure
node
machine interface
monitoring
Prior art date
Application number
PCT/CN2014/075843
Other languages
English (en)
French (fr)
Inventor
张力
戴立操
李鹏程
胡鸿
蒋建军
黄卫刚
戴忠华
黄俊歆
邹衍华
陈青青
卢长申
王春辉
苏德颂
李晓蔚
Original Assignee
湖南工学院
南华大学
中广核核电运营有限公司
大亚湾核电运营管理有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南工学院, 南华大学, 中广核核电运营有限公司, 大亚湾核电运营管理有限责任公司 filed Critical 湖南工学院
Publication of WO2014173276A1 publication Critical patent/WO2014173276A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to the field of digital control of power plants, and more particularly to the field of digital control of nuclear power plants, and in particular to an HRA (human factor reliability analysis; A method and system for determining the reliability of a human-machine interface of a DCS (digital control system; BACKGROUND OF THE INVENTION
  • HRA human factor reliability analysis
  • a method and system for determining the reliability of a human-machine interface of a DCS digital control system; BACKGROUND OF THE INVENTION
  • the main personnel behavior of the operational safety of complex industrial systems is concentrated in the mam control room (MCR).
  • MCR mam control room
  • the control room operator has the decision-making power to deal with plant accidents.
  • the quality of the human-machine interface in the control room has a great influence on the behavior of personnel in the control room.
  • the research methods for this kind of influence mainly include three categories.
  • the first type is to decompose the personnel behavior in the human-machine interface after the nuclear power plant accident.
  • the main task of the decomposition is the representative method.
  • the representative method is Swam in 1983.
  • the method of Technique for Human Error Rate Prediction (THERP) is proposed.
  • the THERP is the main method of HRA adopted by most nuclear power plants.
  • the second category considers the human behavior in the human-machine interface of the nuclear power plant as a whole, analyzes the results of the human intervention behavior through experiments, and obtains the data of human failure probability.
  • the main method is that Hannaman proposed human cognitive reliability in 1984. (HCR: human cognitive reliability) method.
  • the third category is based on the scenario of nuclear power plants, that is, the scenes affecting the behavior of nuclear power plant personnel. The impact of the scenes on the behavior of personnel after accidents in nuclear power plants is studied.
  • the main method is that the US Nuclear Regulatory Commission proposed a standard power plant in 2002.
  • SPAR-H standardized plant analysis risk human reliability analysis method. Most of the human reliability methods in the human-machine interface evaluation were established in the early 1980s.
  • the initial research only decomposed the tasks after the power plant accident, such as the draft THERP.
  • Subsequent research considers the cognitive behavioral characteristics of the personnel, and the operator's diagnosis of power plant accidents, such as HCR.
  • SPAR-H divides human behavior into diagnosis and manipulation, and further reflects the main characteristics of personnel handling of power plant accidents after an accident.
  • the research of these methods is based on traditional control buttons and disk manipulation in large-scale complex industrial systems.
  • the empirical data and experimental data are also based on traditional MCR.
  • the probability of post-accident diagnosis and control error is in the traditional one. Based on the second generation control room.
  • DCS digital control systems
  • the human-machine interface After the digitalization of complex industrial systems, the human-machine interface has undergone major changes, and information has been displayed from the light plate. , alarms, etc. are converted into a large screen display (PDS: plant display system) and a computer terminal display (VDU: video display unit), and the operator controls and manipulates the control from the conventional control panel to convert to a mouse using the computer terminal.
  • PDS plant display system
  • VDU computer terminal display unit
  • the invention provides a method and a system for determining the reliability of a DCS human-machine interface by HRA, which can significantly save a large amount of industrial safety costs, so as to solve the problem that the human reliability analysis technology in the existing human-machine interface cannot respond to digital control.
  • an embodiment of the present invention provides a method for determining the reliability of a DCS human-machine interface by using an HRA, including the following steps: Step S1: processing a plurality of human-machine interfaces in a digital control room associated with an accident As a plurality of nodes, and connecting the plurality of nodes in order according to an order in which the operator team monitors or operates the plurality of human-machine interfaces to establish a team response tree; Step S2: placing the operator team
  • the human factor failure type generated by the monitoring or operation of the node in the response tree is used as a top node to form a human factor failure mode of the human failure type as a middle node, and the action failure source of the personnel monitoring or operation is taken as
  • the underlying node connects the bottom node and the middle node to the top node according to the logical relationship between the bottom node, the middle node, and the top node, and establishes a fault
  • the monitoring or operating the plurality of human-machine interfaces includes: monitoring a human-machine interface prompting the occurrence of the accident and performing an initial diagnosis according to the prompt, diagnosing and processing the human-machine interface that needs to be operated by the accident, and periodically monitoring the person who prompts the accident after the operation is completed.
  • Machine interface if the system status is normal and the system is in a stable state, the accident is successfully processed; if the system is found during periodic monitoring Often, the initial diagnosis needs to be performed according to the prompt, and the human-machine interface to be operated by the accident is diagnosed and another operation or diagnosis is performed to operate another human-machine interface that needs to be operated, until the processing is performed. The accident was successful.
  • the calculation is performed by using a Bayesian network.
  • the types of human failures include: monitoring failure, status evaluation failure, response plan failure, and response execution failure.
  • the various failure modes of the monitoring failure include information monitoring failure, screen configuration failure, information exchange failure, screen information reading failure, and reading data errors.
  • the factors include: job design, system status, available time, personnel training, staffing, work environment, human machine interface design, and technical system design.
  • the present invention also provides a human reliability analysis system for a digital control room human-machine interface, comprising: a team response module, wherein a plurality of nodes of the team response module are associated with an accident.
  • a connection order of the plurality of nodes is an order in which an operator team monitors or operates the plurality of human-machine interfaces; and a fault module, a top node of the faulty module is The human factor failure type generated by the operator team monitoring or operating any of the nodes in the team response module, the middle node is a human factor failure mode forming the human failure type, and the bottom node is personnel monitoring or The action failure source of the operation; the connection relationship of the three is the logical relationship between the bottom node, the middle node and the top node; the probability calculation module is configured to influence the factors of the underlying node and the influence of each of the factors Probability, calculating a failure probability of any of the failure types; a reliability determination module, configured to The probability of failure determines the reliability of the human-machine interface.
  • the calculation method of the Bayesian network is adopted in the probability calculation module.
  • the types of human failures include: Monitoring failures, status assessment failures, response plan failures, and response execution failures.
  • the factors include: job design, system status, available time, personnel training, staffing, work environment, human machine interface design, and technical system design.
  • the invention has the following beneficial effects:
  • the method for determining the reliability of the human-machine interface of the DCS by the HRA can systematically describe the relationship between the human-machine interface and the human-induced failure accident, and can estimate the failure probability, thereby identifying the influence on human factors.
  • a large human-machine interface provides a data foundation for improving the host human-machine interface.
  • FIG. 1 is a flow chart showing a method for determining the reliability of a DCS human-machine interface by HRA according to a preferred embodiment of the present invention
  • FIG. 2 is a diagram for determining the reliability of a DCS human-machine interface by HRA according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a fault module of a system for determining reliability of a DCS human-machine interface by HRA according to a preferred embodiment of the present invention
  • FIG. 4 is a diagram of determining a DCS human-machine interface by HRA according to a preferred embodiment of the present invention
  • Schematic diagram of the exploded structure of the failure mode of the simulated response plan in the fault module of the reliability FIG.
  • FIG. 5 is a schematic exploded view of the team response module of the system for determining the reliability of the DCS human-machine interface by HRA according to the preferred embodiment 1 of the present invention
  • 6 is a schematic diagram showing the structure of a faulty module of the monitoring failure of the node 2 in the team response module of the system for determining the reliability of the DCS human-machine interface by the HRA according to the preferred embodiment 1 of the present invention
  • FIG. 7 is a step S3 of a preferred embodiment of the present invention. Schematic diagram of the influence of the Bayesian in the probability calculation module. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are described in detail below with reference to the accompanying drawings.
  • the operator's monitoring of the human-machine interface refers to observing or discovering the information provided by the human-machine interface (generally including readings, alarm indications, etc.). In industrial applications, determining whether the monitoring behavior is successful is determined according to whether the operator has made the correct operation behavior of the next step according to the data or information provided by the human-machine interface, if the operation behavior of the next step is correct.
  • the present invention is mainly directed to the analysis of human reliability (HRA) due to the setting or layout of the human-machine interface.
  • the human factor reliability referred to in the present invention studies the interaction between the human behavior (human factors) and the human-machine interface, and is aimed at a fictitious group of people (excluding the unconventional intellectual activities and subjective factors of the individual).
  • the impact of this type of person is a general technical person who has received the corresponding knowledge or training and can make logical monitoring behaviors and operational actions based on the interactive information of the human-machine interface.
  • Step S1 An accident will be handled (the system state deviates from any state during normal operation, for example, water loss in a nuclear power plant)
  • Step S1 An accident will be handled (the system state deviates from any state during normal operation, for example, water loss in a nuclear power plant)
  • multiple human-machine interfaces in the associated digital control room serve as multiple nodes, and multiple nodes are connected in order according to the order in which the operator team monitors or operates multiple human-machine interfaces to establish a team interface response tree. (Crew response tree, CRT).
  • Step S001 Defining the human cause failure event as the accident in step S1.
  • Step S002 Accident decomposition, detailed decomposition and analysis of the human accident defined in step S001 (analysis of the human-machine interface involved and monitoring and operation behavior). The level of detail should be such as to describe the specific operational steps that the operator uses, such as "open *** page” or "R01 configuration 4th screen information", or "R01 open ** control”. Task decomposition is done in the form of a table. Task decomposition is based on the corresponding procedures and tests on the operator. The decomposition result of step S002 is then characterized.
  • the mode of the team response tree is used, that is, a plurality of human-machine interfaces in the digital control room associated with an accident are processed as a plurality of nodes, and the order of the operator team to monitor or operate the plurality of human-machine interfaces is performed. Connect multiple nodes in order. The purpose is to clearly understand the behavioral process of the operator who intervened in the power plant after the accident.
  • Step S2 The human factor failure type generated by the operator team monitoring or operating the node in the team response tree is used as the top node to form the human factor failure mode of the human factor failure mode as the middle node, and the personnel monitoring or operation action
  • the failure source connects the underlying node and the middle node to the top node according to the logical relationship between the bottom node, the middle node and the top node, and establishes a fault tree of the node's human factor failure.
  • the top node in the fault tree is the type of human failure in the digital control room, including monitoring failure, status evaluation failure, response plan failure, and response execution failure. The occurrence of a node.
  • monitoring refers to the operator's decision-making and observation of external information.
  • state evaluation means that the operator's cognition mainly uses the knowledge and experience gained during the process of obtaining information and training during the monitoring process.
  • the actual state of the plant is evaluated; the response plan is that after evaluating a particular state of the plant, the operator needs to consider taking appropriate action; responding to the execution.
  • the operator performs the maneuvering action according to the response plan.
  • the above four people can also extend the extended branch downwards due to the type of failure, and divide it into several middle nodes. These extended extensions can be determined according to industry specifications or application requirements.
  • multiple failure modes for monitoring failures as mid-level nodes include information monitoring failures, screen configuration failures, information exchange failures, screen information read failures, and read data errors.
  • a failure mode in response to a planned failure can be decomposed using the middle node of the fault tree as shown in FIG.
  • the bottom node of the fault tree is the PSF (behavior formation factor) under the PSA (Probabilistic Security Assessment) scenario (ie, the action failure source of personnel monitoring or operation).
  • Step S4 Calculating the failure probability value according to step S3, and determining the reliability of the human-machine interface.
  • the failure probability value of the human factor on the plurality of nodes ie, the human-machine interface
  • various international and domestic standards can be found according to the calculated failure probability value (according to the application and the people involved) Machine interface
  • the type and importance are different, the criteria for judgment are different, the criteria for judgment are determined according to the actual application conditions, or the reliability of the human-machine interface is known according to the preset threshold (whether the human-machine interface is reliable according to the items listed in the standard) And its judgment criteria).
  • the human-machine interface with a large probability of failure of personnel can be found, which can provide a data foundation for improving the main control human-machine interface.
  • steps S 1 to S4 the relationship between the human-machine interface and the human cause failure accident can be systematically described, and the probability of human failure can be estimated, and the failure probability value of the human factor can be identified according to the human factor failure probability value on the human-machine interface.
  • a large human-machine interface provides a data foundation for improving the host human-machine interface.
  • a system for determining the reliability of a DCS human-machine interface by HRA includes the following three-layer structure and a reliability determination module: a first layer, a team response module, and a plurality of nodes of a team response module.
  • the order of connection of the plurality of nodes is an order in which the operator team monitors or operates the plurality of human-machine interfaces.
  • the second layer, the fault module, the top node of the fault module is the human factor failure type generated by the operator team monitoring or operating the node in the team response module, and the middle node is the human factor failure mode forming the human factor failure type, the bottom node
  • the source of action failure for personnel monitoring or operation; the connection relationship of the three is the logical relationship between the underlying node, the middle node, and the top node.
  • the third layer, the probability calculation module is used to calculate the failure probability of any failure type according to the factors affecting the underlying node and the influence probability of each factor. (In Fig. 2, PSF1, PSF2, ...
  • the reliability decision module is used to The probability of failure determines the reliability of the human-machine interface.
  • the failure probability value of the human factor on the plurality of nodes ie, the human-machine interface
  • it is also possible to find various international and domestic standards based on the calculated failure probability values ((Depending on the application and the type and importance of the human-machine interface involved, the criteria for judgment are also different, and the criteria for judgment are based on actual application.
  • the reliability of the human-machine interface can be known (the human-machine interface is reliable according to the items listed in the standard and its judgment criteria).
  • the probability of failure of human factors on different nodes ie human-machine interface
  • HRA the reliability judgment method of the human-machine interface of the digital control room of the present invention
  • the team response module on the first floor of the system describes the interaction relationship between the operator's action process (after the accident) and the human-machine interface, and can accurately understand and assess the human error process after the accident (or during the operation of an accident).
  • the failure module of the first layer decomposes the type of human failure caused by the change of each human-machine interface, and decomposes the failure mode into the failure mode, and determines the probability of the failure mode to obtain the safety of the human-machine interface.
  • the degree of influence that is, the reliability of human behavior on the human-machine interface (called human reliability).
  • Embodiment 1 This embodiment adopts a steam heat exchanger tube rupture (SGTR) accident in a DCS of a nuclear power plant as an example, and specifically describes a method and system for determining reliability of a human-machine interface of a DCS by HRA according to the present invention. .
  • the method comprises the steps of: Step S001: Defining a human cause accident.
  • SGTR is a human accident with a high frequency of accidents.
  • Step S002 Accident decomposition. Detailed analysis and analysis of the human-machine interface and monitoring and operational behavior involved in the SGTR accident.
  • Step S1 Establish a team response tree.
  • the purple alarm in the DCS in this embodiment, the purple alarm refers to the alarm with the highest priority
  • the operator enters DOS for processing. Based on the order in which the operator team monitors or operates multiple human-machine interfaces, a team response tree as shown in FIG. 5 is established. (After the DOS (accident) alarm occurs, the operator makes an initial diagnosis of the accident, then enters the corresponding ECP procedure or stabilizes the unit directly in DOS, and then periodically monitors.
  • Step S2 Analyze the failure modes of each node in FIG. 5 (monitoring failure, state evaluation failure, response plan failure, response execution failure), and establishing a fault tree of the node.
  • node 2 DOS initial judgment, according to analysis, Mainly for the monitoring of information, that is, monitoring failure (the resulting fault module of node 2 is shown in Figure 6).
  • Step S3 Determine the factors affecting the underlying nodes and the influence probability of each factor, and use the Bayesian network to calculate the failure probability of any failure mode.
  • V is a discrete random variable and V , , ..., ⁇ ⁇ ⁇ , the corresponding nodes) d, , ..., ⁇ ⁇ represent variables (factors) with finite states, and these nodes (factors) can be any abstract problem.
  • the factor preferably includes eight: work design, system state, available time, personnel training, staff configuration, working environment, human-machine interface design And technical system design.
  • is a directed edge, indicating the probability causal relationship between nodes.
  • the starting node of the directed edge ⁇ ' is the parent node of the ending node, called the child node, and the node with no parent node and only the child node is called the root node.
  • the DAG implies a conditional independence hypothesis: Given its set of parent nodes, each variable is independent of its non-children. P is the quantitative part and is the probability distribution on V. For discrete cases, it can be represented by a conditional probability table, which is used to quantify the influence of the parent node on the child nodes.
  • the probability distribution function of the root node is the edge probability distribution function. Since the probability of the node is not conditional on other nodes, the probability is the prior probability, and the other nodes are the conditional probability distribution functions.
  • Step S3 uses a Bayesian network to calculate the impact of the parent node (PSF) on the underlying fault of the fault tree.
  • Step S4 Calculating the failure probability value according to step S3, and determining the human factor reliability of the human-machine interface.
  • the operation of the operator in the human-machine interface is very important for the safety of the power plant (the establishment of the heat sink) and the probability of failure is determined to be greater than 1 X 10 - 3 (THERP standard), and the human-machine interface needs to be re-examined.
  • a three-layer structure and a reliability determination module are also established to determine the reliability of the DCS human-machine interface through HRA.
  • the three-layer structure is the first layer for the team response module; the second layer is the fault module; the third layer is the probability calculation module.
  • the present invention can be a system Describe the influence of the main control human-machine interface factors on the human behavior, thereby identifying the human-machine interface factors that have a great influence on the personnel behavior, and thus improving the main control human-machine interface, thereby significantly improving the recognition of the bad human-machine interface.
  • Personnel behavior mainly affects the process of the master accident sequence.
  • This method can be used to calculate the probability of success of personnel behavior for accident mitigation, so that the main accident sequence can be trained in a targeted and efficient manner. This method can significantly save the training cost of personnel in complex industrial systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明公开了一种通过HRA判定DCS人机界面的可靠性的方法,其将处理一个事故时关联的数字化控制室中的多个人机界面作为多个节点,根据对多个人机界面进行监视或操作的次序将多个节点按次序连接,建立班组响应树;将对节点进行监视或操作产生的人因失效类型作为顶节点,以人因失效模式作为中层节点,以人员监视或操作的动作失效源作为底层节点,建立节点的人因失效的故障树;确定影响底层节点的因素以及每个因素的影响概率,计算人因失效的概率;根据步骤S3计算得到失效概率值,判断人机界面的可靠性。本发明系统描述人机界面与人因失效的关系,可识别出人因失效概率较大的人机界面,为改善复杂工业系统中的数字化主控室人机界面提供基础。

Description

通过 HRA判定 DCS人机界面的可靠性的方法、 系统 技术领域 本发明涉及电厂的数字化控制领域, 尤其涉及核电厂的数字化控制领域,特别地, 涉及一种通过 HRA (人因可靠性分析;)判定 DCS(digital control system,数字化控制系统;) 人机界面的可靠性的方法、 系统。 背景技术 近年来, 大规模复杂工业系统的安全评价越来越多地考虑人员在系统中的行为和 活动。 人与系统的交互作用被认为复杂工业系统安全运行的重要贡献因素。 而由于复 杂工业系统中人员行为与人机界面众多, 如何考量和计算复杂工业系统中的人机界面 对系统安全的影响是一个难点。 复杂工业系统运行安全性的主要人员行为集中在主控室 (mam control room: MCR)。 在事故情景下, 控制室操纵员拥有对电厂事故处理的决策权。 控制室中人机 界面的好坏对控制室中的人员行为影响较大。对此种影响的研究方法主要包括三大类, 第一类是把核电厂事故后人机界面中的人员行为进行任务分解, 以分解的任务为主要 研究对象, 代表的方法有 Swam 于 1983 年提出了人因失误率预测技术 (THERP: Technique for Human Error Rate Prediction)方法, THERP是大多数核电厂采用的 HRA 主要方法。 第二类把核电厂人机界面中的人员行为进行整体考虑, 通过实验对人员干 预行为的结果进行分析, 获得人因失效概率数据, 主要方法有 Hannaman于 1984年提 出了人的认知可靠性 (HCR: human cognitive reliability) 方法。 第三类是以核电厂情 景, 亦即影响核电厂人员行为的场景为主要研究对象, 研究核电厂事故后场景对于人 员行为的影响,主要方法有美国核管会于 2002年提出了标准的电厂分析风险人因可靠 性分析方法 ( SPAR-H: standardized plant analysis risk human reliability analysis ) 方法。 这些的人机界面评价中的人因可靠性方法大多是在 20世纪 80年代初建立的, 最初的 研究只是把电厂事故后的任务进行分解, 比如草稿本 THERP。 随后的研究考虑人员的 认知行为特征, 操纵员对于电厂事故的诊断失效, 比如 HCR。 SPAR-H把人员行为分 成诊断和操纵, 进一步反应事故后人员对电厂事故处理的主要特征。 这些方法的研究 的对象都是大规模复杂工业系统中的传统的控制按钮和盘台操纵, 经验数据和实验数 据也是基于传统 MCR的, 其事故后诊断和控制失误概率都是以传统的一、 二代控制 室为基础。 随着 I&C安全技术的发展和进步, 大规模复杂工业系统更多地采用数字化控制系 统 (DCS , digital control system 复杂工业系统控制数字化以后, 人机界面发生了较 大变化, 信息显示从光字牌、报警器等转变成大屏幕显示(PDS: plant display system ) 和计算机终端显示(VDU: video display unit ) , 操纵员控制和操纵从传统的控制盘台的 控制键操纵转换成使用计算机终端的鼠标操纵。 现有的人机界面评价技术已经不能反 映现代控制室人机界面的变化对人员行为的影响。 因此需对数字化控制室人机界面的 可靠性重新进行计算和考量。 发明内容 本发明目的在于提供一种可显著地节约大量的工业安全成本的通过 HRA 判定 DCS人机界面的可靠性的方法及系统, 以解决现有的人机界面中的人因可靠性分析技 术已经不能反应数字化控制室人机界面的变化对人员行为的影响的技术问题。 为实现上述目的, 本发明实施例提供了一种通过 HRA判定 DCS人机界面的可靠 性的方法, 包括以下步骤: 步骤 S 1 : 将处理一个事故时关联的数字化控制室中的多个人机界面作为多个节 点, 并根据操作人员班组对所述多个人机界面进行监视或操作的次序将所述多个节点 按次序连接, 以建立班组响应树; 步骤 S2 : 将所述操作人员班组对所述班组响应树中的所述节点进行监视或操作产 生的人因失效类型作为顶节点, 以形成所述人因失效类型的人因失效模式作为中层节 点, 以人员监视或操作的动作失效源作为底层节点, 根据所述底层节点、 中层节点和 所述顶节点的逻辑关系将所述底层节点、 中层节点与所述顶节点连接, 建立所述节点 的人因失效的故障树; 步骤 S3 : 确定影响所述底层节点的因素以及每个所述因素的影响概率, 计算所述 人因失效的概率; 步骤 S4 : 根据步骤 S3计算得到失效概率值, 判断所述人机界面的可靠性。 作为本发明的方法进一步改进: 所述步骤 S 1中,所述对所述多个人机界面进行监视或操作的次序包括:监视提示 所述事故发生的人机界面并根据所述提示进行初始诊断, 诊断处理所述事故需操作的 人机界面并进行操作, 操作完成后定期监视提示所述事故发生的人机界面, 如果系统 状态正常且系统处于稳定状态, 则处理所述事故成功; 如定期监视过程中发现系统异 常, 需重新根据所述提示进行初始诊断, 并诊断处理所述事故需操作的人机界面并进 行另一操作或者诊断处理所述事故需操作的另一人机界面并进行操作, 直到处理所述 事故成功。 所述步骤 S3中, 所述计算是采用贝叶斯网络进行的。 所述人因失效类型包括: 监视失效、 状态评估失效、 响应计划失效和响应执行失效。 所述监视失效的多种失效模式包括信息监视失效、屏幕配置失效、信息交流失效、 屏幕信息读取失效以及读取数据错误。 所述因素包括: 工作设计、 系统状态、 可用时间、 人员培训、 人员配置、 工作环境、 人机界面设 计以及技术系统设计。 作为一个总的技术构思, 本发明还提供了一种数字化控制室人机界面的人因可靠 性分析系统, 包括: 班组响应模块, 所述班组响应模块的多个节点为处理一个事故时关联的所述数字 化控制室中的多个人机界面, 所述多个节点的连接次序为操作人员班组对所述多个人 机界面进行监视或操作的次序; 故障模块, 所述故障模块的顶节点为所述操作人员班组对所述班组响应模块中的 任一所述节点进行监视或操作产生的人因失效类型, 中层节点为形成所述人因失效类 型的人因失效模式, 底层节点为人员监视或操作的动作失效源; 三者的连接关系为所 述底层节点、 中层节点和所述顶节点的逻辑关系; 概率计算模块, 用于根据影响所述底层节点的因素以及每个所述因素的影响概 率,, 计算任一所述失效类型的失效概率; 可靠性判定模块, 用于根据所述失效概率, 判断所述人机界面的可靠性。 作为本发明的系统的进一步改进: 所述概率计算模块中采用的是贝叶斯网络的计算方式。 所述人因失效类型包括: 监视失效、 状态评估失效、 响应计划失效和响应执行失效。 所述因素包括: 工作设计、 系统状态、 可用时间、 人员培训、 人员配置、 工作环境、 人机界面设 计以及技术系统设计。 本发明具有以下有益效果: 本发明的通过 HRA判定 DCS人机界面的可靠性的方法, 可以系统描述人机界面与 人因失效事故的关系, 并能推算失效概率, 从而识别出对于人因影响较大的人机界面, 为改善主控人机界面提供数据基础。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是本发明优选实施例的通过 HRA判定 DCS人机界面的可靠性的方法的流程 示意图; 图 2是本发明优选实施例的通过 HRA判定 DCS人机界面的可靠性的系统的结构 示意图; 图 3是本发明优选实施例的通过 HRA判定 DCS人机界面的可靠性的系统的故障 模块的结构示意图; 图 4是本发明优选实施例的通过 HRA判定 DCS人机界面的可靠性的系统的故障 模块中的模拟响应计划的失效模式的分解结构示意图; 图 5是本发明优选实施例 1的通过 HRA判定 DCS人机界面的可靠性的系统的班 组响应模块的分解结构示意图; 图 6是本发明优选实施例 1的通过 HRA判定 DCS人机界面的可靠性的系统的班 组响应模块中节点 2的监视失效的故障模块结构示意图; 图 7是本发明优选实施例的步骤 S3中的概率计算模块中的贝页斯影响示意图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 操作人员对人机界面进行监视的行为是指观察或发现人机界面提供的信息 (一般 包括读数、 发现报警指示等) 。 工业应用中, 判定监视行为是否成功则是根据操作人 员是否根据该人机界面提供的数据或信息做出了下一步骤的正确的操作行为来判定 的, 若下一步骤的操作行为是正确的, 则判定该操作步骤之前的监视步骤是成功的; 若下一步骤的操作行为不正确, 则可能是由于操作人员读数错误 (读错或者未发现读 数, 该部分原因与人机界面的设置或布局有关) 或者操作人员本身不能根据该读数作 出下一步骤的正确判定(与操作人员的能力有关), 则可能造成人因事故。本发明主要 针对由于人机界面的设置或布局而导致的人因可靠性的分析 (HRA)。 并且, 本发明所 指的人因可靠性, 研究的是人员行为 (人因) 与人机界面的交互活动, 其针对的是虚 构的一类人(排除个人的非常规的智力活动以及主观因素的影响), 该类人是指接受了 相应的知识或者培训, 能根据人机界面的交互信息作出符合逻辑的监视行为和操作动 作的普通技术人员。 参见图 1, 本发明的通过 HRA判定 DCS人机界面的可靠性的方法, 包括以下步 骤: 步骤 S1 : 将处理一个事故(系统状态偏离正常运行时的任何状态, 比如, 核电厂 中的失水事故) 时关联的数字化控制室中的多个人机界面作为多个节点, 并根据操作 人员班组对多个人机界面进行监视或操作的次序将多个节点按次序连接, 以建立班组 口向应树 (Crew response tree , CRT)。 实际应用中, 在构建班组响应树之前, 优选先进行以下步骤: 步骤 S001 : 定义人因失效事故, 作为步骤 S 1 中的事故。 这些人因失效事故 (事 故题头) 是根据维修、 试验、 检查、 核对等与人的活动有关的规程和报告资料等确定 的, 定义的目标是概率安全评价 (PSA: probabi l i stic safety assessment ) 中所有 关键的人机界面中的人因失效事故都被分析到 (本实施例中, 主要对事故树和故障树 中涉及人机界面与人有相互作用联系的人因事故题头与硬件设备失效)。定义必须充分 考虑完整性, 即所有重要的人员行为和人员操纵都需要包括在分析报告中。 定义是一 个反复的过程。 步骤 S002 : 事故分解, 对步骤 S001定义的人因事故进行详细分解和分析 (分析 涉及的人机界面以及监视和操作行为)。其详细程度应当达到描述操作人员采用什么样 的具体的操作步骤, 例如"打开 ***页面"或者是 "R01配置第 4屏信息", 或者 " R01打 开 **控件"等。 任务分解采用表格的形式进行。 任务分解基于相对应的规程和对操纵 员的测试得到。 然后对步骤 S002的分解结果进行表征。 本实施例中, 是采用班组响应树的方式, 即将处理一个事故时关联的数字化控制室中的多个人机界面作为多个节点, 并将操作 人员班组对多个人机界面进行监视或操作的次序将多个节点按序连接。 其目的是可以 清楚地了解操纵员在事故后对于电厂干预的这个人员行为过程。 步骤 S2 : 将操作人员班组对班组响应树中的节点进行监视或操作产生的人因失效 类型作为顶节点, 以形成人因失效类型的人因失效模式作为中层节点, 以人员监视或 操作的动作失效源作为底层节点, 根据底层节点、 中层节点和顶节点的逻辑关系将底 层节点、 中层节点与顶节点连接, 建立节点的人因失效的故障树。 如图 3所示, 故障 树中的顶节点是数字化控制室中的人因失效类型, 包括监视失效、 状态评估失效、 响 应计划失效和响应执行失效, 四项中的任一项失效都会导致顶节点的发生。 其中, 监 视是指操纵员决策和观察外部的信息, 下一步信息加工是基于这个阶段的; 状态评估 是指操纵员的认知主要是利用在监视过程中获得信息与培训过程中获得知识及经验对 电厂的实际状态进行评估; 响应计划是指在对电厂某一特定的状态进行评估之后, 操 纵员需要考虑采取适当的行动; 响应执行。 操纵员根据响应计划执行操纵动作。 根据实际应用的情况, 以上四项人因失效类型还可向下扩展延伸分支, 划分为若 干个中层节点, 这些扩展延伸可根据行业规范或者应用的需要来确定。 一般来说, 作 为中层节点的监视失效的多种失效模式包括信息监视失效、 屏幕配置失效、 信息交流 失效、 屏幕信息读取失效以及读取数据错误。 例如, 响应计划失效的失效模式 (操作 员响应计划失效) 可以使用如图 4所示的故障树的中层节点进行分解。 其中, 故障树 的底层节点为 PSA (概率安全评价) 情景下的 PSF (行为形成因子) (即人员监视或操 作的动作失效源作) 。 这些划分是参考美国核管会所制定的行业规范而进行的。 步骤 S3 : 确定影响底层节点的因素以及每个因素的影响概率, 计算人因失效的概 率。 其中, 底层节点是指根据失效模式分解得到的不可再下分的组成节点。 步骤 S4 : 根据步骤 S3计算得到失效概率值, 判断人机界面的可靠性。 通过上述 步骤 S3, 可计算得到多个节点 (即人机界面) 上的人因的失效概率值, 可以根据计算 得到的失效概率值, 查找各种国际国内的标准 (根据应用场合以及涉及的人机界面的 类型和重要度的不同, 判断的标准也不同, 判断的标准根据实际应用情况确定) 或者 根据预设的阈值, 即可获知人机界面的可靠性 (人机界面是否可靠根据标准所列的项 目及其判断标准而定)。对不同的节点(即人机界面)上的人因的失效概率值进行比较, 即可找出人员失效概率较大的人机界面, 可为改善主控人机界面提供数据基础。 通过上述步骤 S 1至 S4, 可以系统描述人机界面与人因失效事故的关系, 并能推 算出人因失效的概率, 根据人机界面上的人因的失效概率值识别出人员失效概率值较 大的人机界面, 为改善主控人机界面提供数据基础。 本方法能显著地提高对电厂数字 化控制室的不良人机界面的辨识度, 进而便于有针对性地对复杂工业系统进行改造, 从而显著地节约大量的工业安全成本。 参见图 2, 本发明的一种通过 HRA判定 DCS人机界面的可靠性的系统, 包括以下 的三层结构和一个可靠性判定模块: 第一层, 班组响应模块, 班组响应模块的多个节点为处理一个事故时关联的数字 化控制室中的多个人机界面, 多个节点的连接次序为操作人员班组对多个人机界面进 行监视或操作的次序。 第二层, 故障模块, 故障模块的顶节点为操作人员班组对班组响应模块中的节点 进行监视或操作产生的人因失效类型,中层节点为形成人因失效类型的人因失效模式, 底层节点为人员监视或操作的动作失效源; 三者的连接关系为底层节点、 中层节点和 顶节点的逻辑关系。 第三层,概率计算模块,用于根据影响底层节点的因素以及每个因素的影响概率, 并根据因素计算任一失效类型的失效概率。 (图 2 中, PSF1、 PSF2…… PSFn分别指第 一个行为形成因子、 第二个行为形成因子、 第三个行为形成因子……第 n行为形成因 子。) 可靠性判定模块, 用于根据失效概率,判断人机界面的可靠性。通过上述步骤 S3, 可计算得到多个节点 (即人机界面) 上的人因的失效概率值。 另外, 还可以根据计算 得到的失效概率值,查找各种国际国内的标准((根据应用场合以及涉及的人机界面的 类型和重要度的不同, 判断的标准也不同, 判断的标准根据实际应用情况确定), 即可 获知人机界面的可靠性 (人机界面是否可靠根据标准所列的项目及其判断标准而定)。 对不同的节点 (即人机界面) 上的人因的失效概率值进行比较, 即可找出人员失效概 率较大的人机界面, 可为改善主控人机界面提供数据基础。 采用上述的结构的通过 HRA判定 DCS人机界面的可靠性的系统, 可以实现本发明 的数字化控制室人机界面的可靠性判断方法。 系统第一层的班组响应模块描述操纵员 的动作过程 (事故后) 与人机界面的交互影响关系, 能精确了解和评定事故后 (或者 完成某事故的操作过程中) 人因失误发生过程。 第一层的故障模块分解各个人机界面 的改变可能产生的人因失效类型, 并将该人因失效类型分解为的失效模式, 确定失效 模式的概率便可获得该人机界面对于系统安全的影响程度, 即人机界面上的人员行为 的可靠性(称为人因可靠性)。通过本发明的系统能显著地提高对电厂数字化控制室的 不良人机界面的辨识度, 进而便于有针对性地对复杂工业系统进行改造, 从而节约工 业安全成本。 实施例 1 : 本实施例采用某核电厂 DCS 中蒸汽传热管破裂 (SGTR, steam generator tube rupture )事故为例,具体地说明本发明的通过 HRA判定 DCS人机界面的可靠性的方法 及系统。 该方法包括步骤: 步骤 S001 : 定义人因事故。 SGTR是始发事故频率较高的人因事故。 SGTR事故发 生后, 能够很迅速地引起二回路放射性 (N16 ) 高报以及其他的报警信号, 包括破损 SG液位的异常以及稳压器的低压力报警。 DCS中, SGTR出现大约 3分钟后, 报警信号 出现, 这些报警包括: 稳压器低压力和低液位, 破损 SG液位上升, 完好 SG和破损 SG 给水的不一致, 二回路放射性报警等。 SGTR初始发生时, 核电厂不会出现自动停堆, 但随着事故的发生, 系统会因为稳压器压力和液位低而自动停堆。 步骤 S002 : 事故分解。 对 SGTR事故涉及的人机界面以及监视和操作行为进行详 细分解和分析。 步骤 S 1 : 建立班组响应树。 始发事故发生后, DCS中紫色报警 (本实施例中, 紫 色报警是指优先级别最高的报警) 被触发。 操纵员进入 DOS进行处理。 根据操作人员 班组对多个人机界面进行监视或操作的次序, 建立如图 5 所示的班组响应树。 (出现 DOS (事故)报警之后, 操纵员对事故进行初始诊断, 然后进入相对应的 ECP规程或直 接在 DOS中对机组稳定, 随后进行定期监视,如果系统状态正常且系统处于稳定状态, 则事故成功; 如定期监视过程中出现系统异常, 需重新定向 (重新根据提示进行初始 诊断, 并诊断处理事故需操作的人机界面并进行另一操作或者诊断处理事故需操作的 另一人机界面并进行操作), 直到事故成功)。 步骤 S2 : 分析图 5中各节点的失效模式 (监视失效、 状态评估失效、 响应计划失 效、 响应执行失效), 建立节点的故障树。 如, 节点 2 : DOS的初始判断, 根据分析, 主要是对信息的监视, 也就是监视失效(得到的节点 2的故障模块见图 6 )。 节点 3主 要人因是"规程转移", 那么其主要失效模式是信息收集失效和决策失效(对应监视失 效和响应计划失效), 动作执行失效模式不再考虑。 步骤 S3: 确定影响影响底层节点的因素以及每个因素的影响概率, 并采用贝叶斯 网络计算任一失效模式的失效概率。 贝叶斯网络(BN)是由节点和边组成的有向无环图(Directed Acycl ic Graph, DAG), 可以用 N=〈〈V, E〉, ?〉来描述。 其中, V为离散随机变量且 V , , …, Χπ}, 对应 的节点 )d, , …, Χπ表示具有有限状态的变量 (因素), 这些节点 (因素) 可以是任 何抽象的问题, 如设备部件状态、 测试值、 组织因素、 人的诊断结果等, 本实施例中, 因素优选包括 8个: 工作设计、 系统状态、 可用时间、 人员培训、 人员配置、 工作环 境、 人机界面设计以及技术系统设计。 Ε 为有向边, 表示节点间的概率因果关系, 有 向边的起始节点^'是终节点 '的父节点, 称为子节点, 没有父节点只有子节点的节点 称为根节点。 DAG 蕴涵了一个条件独立假设: 给定其父节点集, 每一个变量独立于它 的非子孙节点。 P为定量部分, 是 V上的概率分布。 对于离散情况, 可用条件概率表 来表示, 用于定量说明父节点对子节点的影响。 根节点的概率分布函数为边缘概率分 布函数, 由于该类节点的概率不以其它节点为条件, 故其概率为先验概率, 其它节点 为条件概率分布函数。 步骤 S3采用贝叶斯网络计算父节点 (PSF) 对于故障树底层事 故的影响。 步骤 S4: 根据步骤 S3计算得到失效概率值, 判断人机界面的人因可靠性。 比如 本例中操作员在本人机界面中的操作对于电厂安全 (热阱的建立) 非常重要且其失效 概率确定大于 1 X 10—3 (THERP标准)则需要对该人机界面进行重新审查。 完成以上步骤, 即相应地, 也建立了三层结构和一个可靠性判定模块的通过 HRA 判定 DCS人机界面的可靠性的系统。 其中, 三层结构为第一层为班组响应模块; 第二 层为故障模块; 第三层为概率计算模块。 综上可知,
1. 本方法可以系统描述人机系统场景以及其如何对于人员行为产生影响。如果人 机系统的人员行为集合 A= {y y2—y丄受到主控人机界面因素(Xij )的影响如图 7所示, 其中!^第一个人员行为收到第一个人机界面的影响 ^21第二个人员行为受到第一个人 机界面的影响 M ^第 n个人机界面受到第一个人机界面的影响。可见本发明能可以系统 描述主控人机界面因素对于人员行为的影响, 从而识别出对于人员行为影响较大的人 机界面因素, 进而改善主控人机界面, 进而显著地提高对不良人机界面的辨识度。
2. 人员行为主要影响主控事故序列进程。 采用本方法可以计算出人员行为对于 事故缓解的成功概率, 从而可以有针对性地高效率地对主控事故序列进行培训, 本方 法可以显著地节约复杂工业系统中人员的培训成本。
3. 对于人员行为成功概率较低的事故序列所属之人机界面, 可以有针对性地对 于复杂工业系统进行改造, 本方法可以显著地节约大量的工业安全成本。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种通过 HRA判定 DCS人机界面的可靠性的方法, 包括以下步骤:
步骤 S1 :将处理一个事故时关联的数字化控制室中的多个人机界面作为多 个节点, 并根据操作人员班组对所述多个人机界面进行监视或操作的次序将所 述多个节点按次序连接, 以建立班组响应树;
步骤 S2:将所述操作人员班组对所述班组响应树中的所述节点进行监视或 操作产生的人因失效类型作为顶节点, 以形成所述人因失效类型的人因失效模 式作为中层节点, 以人员监视或操作的动作失效源作为底层节点, 根据所述底 层节点、 中层节点和所述顶节点的逻辑关系将所述底层节点、 中层节点与所述 顶节点连接, 建立所述节点的人因失效的故障树;
步骤 S3 : 确定影响所述底层节点的因素以及每个所述因素的影响概率, 计 算所述人因失效的概率;
步骤 S4: 根据步骤 S3计算得到失效概率值, 判断所述人机界面的可靠性。
2. 根据权利要求 1所述的方法, 其中,
所述步骤 S1 中, 所述对所述多个人机界面进行监视或操作的次序包括: 监视提示所述事故发生的人机界面并根据所述提示进行初始诊断, 诊断处理所 述事故需操作的人机界面并进行操作, 操作完成后定期监视提示所述事故发生 的人机界面, 如果系统状态正常且系统处于稳定状态, 则处理所述事故成功; 如定期监视过程中发现系统异常, 需重新根据所述提示进行初始诊断, 并诊断 处理所述事故需操作的人机界面并进行另一操作或者诊断处理所述事故需操作 的另一人机界面并进行操作, 直到处理所述事故成功。
3. 根据权利要求 2所述的方法, 其中,
所述步骤 S3中, 所述计算是采用贝叶斯网络进行的。
4. 根据权利要求 3所述的方法, 其中, 所述人因失效类型包括:
监视失效、 状态评估失效、 响应计划失效和响应执行失效。 根据权利要求 4所述的方法, 其中, 所述监视失效的多种失效模式包括信息监视失效、 屏幕配置失效、 信息交 流失效、 屏幕信息读取失效以及读取数据错误。 根据权利要求 1至 5中任一项所述的方法, 其中, 所述因素包括: 工作设计、 系统状态、 可用时间、 人员培训、 人员配置、 工作环境、 人机 界面设计以及技术系统设计。 一种通过 HRA判定 DCS人机界面的可靠性的系统, 包括:
班组响应模块, 所述班组响应模块的多个节点为处理一个事故时关联的数 字化控制室中的多个人机界面, 所述多个节点的连接次序为操作人员班组对所 述多个人机界面进行监视或操作的次序;
故障模块, 所述故障模块的顶节点为所述操作人员班组对所述班组响应模 块中的任一所述节点进行监视或操作产生的人因失效类型, 中层节点为形成所 述人因失效类型的人因失效模式, 底层节点为人员监视或操作的动作失效源; 三者的连接关系为所述底层节点、 中层节点和所述顶节点的逻辑关系;
概率计算模块, 用于根据影响所述底层节点的因素以及每个所述因素的影 响概率, 计算任一所述失效类型的失效概率;
可靠性判定模块, 用于根据所述失效概率, 判断所述人机界面的可靠性。 根据权利要求 7所述的系统, 其中, 所述概率计算模块中采用的是贝叶斯网络的计算方式。 根据权利要求 8所述的系统, 其中, 所述人因失效类型包括: 监视失效、 状态评估失效、 响应计划失效和响应执行失效。 根据权利要求 7至 9中任一项所述的系统, 其中, 所述因素包括: 工作设计、 系统状态、 可用时间、 人员培训、 人员配置、 工作环境、 人机 界面设计以及技术系统设计。
PCT/CN2014/075843 2013-04-23 2014-04-21 通过hra判定dcs人机界面的可靠性的方法、系统 WO2014173276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310142547.0 2013-04-23
CN201310142547.0A CN103198231B (zh) 2013-04-23 2013-04-23 通过人因可靠性判定数字化控制系统人机界面的可靠性的方法和系统

Publications (1)

Publication Number Publication Date
WO2014173276A1 true WO2014173276A1 (zh) 2014-10-30

Family

ID=48720785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075843 WO2014173276A1 (zh) 2013-04-23 2014-04-21 通过hra判定dcs人机界面的可靠性的方法、系统

Country Status (2)

Country Link
CN (1) CN103198231B (zh)
WO (1) WO2014173276A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198231B (zh) * 2013-04-23 2016-01-06 湖南工学院 通过人因可靠性判定数字化控制系统人机界面的可靠性的方法和系统
US20170177424A1 (en) * 2014-03-31 2017-06-22 Bombardier Inc. Specific risk toolkit
CN104036361A (zh) * 2014-06-23 2014-09-10 南京工业大学 一种承压设备制造过程中的人因可靠性分析方法
CN106531268B (zh) * 2016-10-19 2021-09-24 中国核电工程有限公司 一种用于核电厂数字化事故程序的链接布置方法
CN109450000B (zh) * 2017-11-09 2021-07-30 广东电网有限责任公司电力调度控制中心 一种基于负荷率调整方向的发电计划偏差电量分配方法
CN109471803B (zh) * 2018-11-05 2021-10-01 湖南工学院 基于人因可靠性的复杂工业系统数字化人机界面画面配置方法
CN109711627A (zh) * 2018-12-28 2019-05-03 大庆市嘉华科技有限公司 一种数据处理方法及装置
CN110110999A (zh) * 2019-05-06 2019-08-09 南华大学 核电厂主控室内系统事件hra评价方法、装置、设备及介质
CN111817903B (zh) * 2020-09-02 2020-12-01 湖南双菱电子科技有限公司 一种数字信号传输处理设备链路故障分析与报警方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840694A (zh) * 2009-09-15 2010-09-22 中广核工程有限公司 核电厂数字化规程人机界面的显示装置及其显示控制方法
CN103198231A (zh) * 2013-04-23 2013-07-10 湖南工学院 通过hra判定dcs人机界面的可靠性的方法、系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156449B (zh) * 2010-12-10 2013-01-16 中国广东核电集团有限公司 核电机组总体程序的数字化方法、系统及dcs控制系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840694A (zh) * 2009-09-15 2010-09-22 中广核工程有限公司 核电厂数字化规程人机界面的显示装置及其显示控制方法
CN103198231A (zh) * 2013-04-23 2013-07-10 湖南工学院 通过hra判定dcs人机界面的可靠性的方法、系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAI, LICAO;: "Human Reliability Analysis of Heavy Water Reactor Nuclear Power Plant", DOCTORAL DISSERTATIONS, 15 January 2013 (2013-01-15), pages 29 - 39 AND PAGES 47-62 *
LI, PENGCHENG ET AL.: "Research Review and Development Trends of Human Reliability Analysis Techniques", ATOMIC ENERGY SCIENCE AND TECHNOLOGY, vol. 45, no. 3., 31 March 2011 (2011-03-31) *

Also Published As

Publication number Publication date
CN103198231B (zh) 2016-01-06
CN103198231A (zh) 2013-07-10

Similar Documents

Publication Publication Date Title
WO2014173276A1 (zh) 通过hra判定dcs人机界面的可靠性的方法、系统
WO2022252860A1 (zh) 一种事件处理方法、装置、计算机设备及存储介质
Kang et al. Concept of an intelligent operator support system for initial emergency responses in nuclear power plants
WO2014173258A1 (zh) 响应计划的可靠性分析方法及装置
Lee et al. Design of an integrated operator support system for advanced NPP MCRs: issues and perspectives
Jang et al. Human error and the associated recovery probabilities for soft control being used in the advanced MCRs of NPPs
Kim et al. SACADA and HuREX part 2: The use of SACADA and HuREX data to estimate human error probabilities
Sethu et al. Application of artificial intelligence in detection and mitigation of human factor errors in nuclear power plants: a review
CN115496319A (zh) 核电厂数字化主控室的人员行为可靠性评估方法及装置
Li et al. Study on operator's SA reliability in digital NPPs. Part 2: Data-driven causality model of SA
Park et al. Application of a process mining technique to identifying information navigation characteristics of human operators working in a digital main control room–feasibility study
Zhang et al. The simulator experimental study on the operator reliability of Qinshan nuclear power plant
Xu et al. Reliability analysis of a collective decision-making scheme by Co-operation of NPP operators and automatic diagnosis system
WO2023088355A1 (zh) 一种传感器智能数据重构方法及系统
Kim et al. Design and implementation of HuREX analysis supporting interface for HRA data extraction
Choi et al. A study for Unsafe Act classification under crew interaction during procedure-driven operation
Park et al. A novel speech-act coding scheme to visualize the intention of crew communications to cope with simulated off-normal conditions of nuclear power plants
Lee et al. Experimental investigation into the effects of decision support systems on operator performance
Park et al. An empirical study on the use of the rancor microworld simulator to support full-scope data collection
Barati et al. On the operator action analysis to reduce operational risk in research reactors
Kelly Incorporating process mining into human reliability analysis
Groth et al. A model-based approach to HRA: example application and quantitative analysis
Boring et al. Human reliability analysis for small modular reactors
Bozzano et al. A formal framework for the specification, verification and synthesis of diagnosers
Hajek et al. A generic task approach to a real time nuclear power plant fault diagnosis and advisory system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14787437

Country of ref document: EP

Kind code of ref document: A1