WO2014172764A1 - Método de detecção da atividade metabólica de protozoários - Google Patents

Método de detecção da atividade metabólica de protozoários Download PDF

Info

Publication number
WO2014172764A1
WO2014172764A1 PCT/BR2014/000120 BR2014000120W WO2014172764A1 WO 2014172764 A1 WO2014172764 A1 WO 2014172764A1 BR 2014000120 W BR2014000120 W BR 2014000120W WO 2014172764 A1 WO2014172764 A1 WO 2014172764A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
photon
counting
metabolic activity
positive control
Prior art date
Application number
PCT/BR2014/000120
Other languages
English (en)
French (fr)
Inventor
José EUCLIDES STIPP PATERNIANI
Samuel RICARDO DOS SANTOS
Cristiano DE MELLO GALLEP
Jéssica BEZERRA DA SILVA
Regina MAURA BUENO FRANCO
Nilson BRANCO
Original Assignee
Universidade Estadual De Campinas - Unicamp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas - Unicamp filed Critical Universidade Estadual De Campinas - Unicamp
Publication of WO2014172764A1 publication Critical patent/WO2014172764A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/44Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from protozoa

Definitions

  • the present patent application relates to a method of detecting the activity ⁇ metabólica_de_protozoários
  • the method allows the detection of metabolic activity, with potential estimation of infectivity, eliminating the use of incubation in animal models, thus reducing the costs involved and laboratory infrastructure. It can be applied in the field of environmental monitoring through portable devices, presenting a short analysis time after isolation of the protozoans of interest.
  • the infectivity assays performed in animal model use the inoculation of the studied parasite, which after completing its life cycle are eliminated in the host feces to be later confirmed by detection techniques.
  • the document (“A device for Autosynchronous Luminescence Detection", Connally, Russell, Analytical Chemistry, Vol. 83, No. 12, (2011), p.4782-4787) discloses a method applied to epifluorescence microscopy.
  • the use of devices built by the author allows the reduction of what he calls delayed luminescence from possible interferences in the sample that may present autofluorescence.
  • the method is then used to reduce the background noise of the samples.
  • the procedure improves sensitivity in the microscope procedure and increases the image capture capacity with the use of CCD camera.
  • the author also argues that procedures using markers based on europium and terbium benefit from the technique.
  • the author used Giardia cysts to demonstrate the technique's use in organism detection.
  • the method demonstrates the applicability of delayed luminescence as an innovative technology in distinguishing between healthy and tumor cells, with future applicability in oncology and not applicable in protozoa, as such organisms differ from those tumor cells.
  • the method proposed here uses the use of chemical reagents measuring metabolic activity combined with the phenomenon of delayed luminescence allowing to differentiate metabolically active protozoa from those without metabolic activity.
  • the present patent application relates to a method of detecting protozoal metabolic activity via delayed luminescence using fluorescent markers.
  • the method proposed in this patent application uses a light source employing cellular markers as indicators of the presence of metabolic activity.
  • the estimation of the parasite's metabolic activity is solved by analyzing the ultra-weak light emission.
  • Figure 1 presents the steps for the development of the assay using delayed luminescence. In it the steps consist of sample collection, isolation, elution, purification, incubation, photon counting, data analysis and confirmation of protozoans of interest.
  • Annex 1 presents the results of epifluorescence microscopy with tests involving Giardia lamblia living organisms stressed with terop_e / .atuca _ (- oiganismo-s_mo.rtQs_a__1_0.0- .C-) I in addition to UV-254 nm stressed cysts for a period of 1 hour.
  • Annex 2 shows the graphs of the behavior of the groups tested based on luminescent decay kinetics and statistical counting parameters. Data are analyzed based on the statistical and kinetic parameters of luminescent decay, distinguishing metabolically active protozoa from those without metabolic activity.
  • This patent application relates to a method of detecting metabolic activity in protozoa using delayed luminescence and fluorescent markers.
  • the method is based on the principle of ultra-weak light emission by all living beings and mainly correlated with the metabolic activity of cells. Once alive, cells interact with substrates and emit ultra-weak photons that can be detected with photonic devices with sensitive photomultiplier valves in various regions of the electromagnetic spectrum.
  • Ultra-weak light emission or biophotons (10 1 to 10 3 photons-cm “2 -s " 1 ) is found in organic compounds in conjunction with the activity of biological systems. It also relates to delayed luminescence, which reflects the behavior of the biological system in terms of ultra-weak light re-emission following light source excitation. This spontaneous emission of photons is influenced by temperature and biological functions such as selective cell membrane permeability and biochemical reactions, directly reflecting the biophotonic behavior.
  • the method proposed in this patent application comprises the following steps ( Figure 1): (a) prepare the sample;
  • step (a) the sample should be prepared employing any process known from the prior art. More specifically isolation and purification may be carried out according to methodology described by the Environmental Protection Agency, Method 1623.1: Cryptosporidium and Giardia in Water by Filtration / IMS / FA. Office of Water, Washington DC, 2012. It is recommended that the sample be vigorously homogenized so that the organisms of interest are suspended in the aqueous medium.
  • reagents that may be used are Resazurin-C12,6-Carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and SYTOX (SYTO-9).
  • CFDA-SE Resazurin-C12,6-Carboxyfluorescein diacetate succinimidyl ester
  • SYTOX SYTO-9
  • concentration range of the marker reagent to be used is 0.5 ⁇ . ⁇ _ "1 to 5.0 ⁇ . ⁇ 1.
  • concentration of the marker cell reagent may also vary depending on the type of marker as well as the interest. It is recommended that the fluorescence of the marker used be previously verified, checking the best concentration to be used.
  • the optimal concentration is that which presents satisfactory fluorescence observed in living organisms.
  • the incubation of the sample in step (d) should be done in a dark room of bacteriological incubation or in photon counting devices with temperature control.
  • the temperature of the chamber shall be within the range of 33 ° C to 38 ° C and 5% of CO 2 atmosphere.
  • Incubation time may vary depending on the organism of interest. Intervals of 15 - 45 minutes allow complete biochemical reaction for cell labeling and fluorescence. The analyst may determine the best incubation time depending on the choice of the best reagent concentration.
  • the illumination device in the photon counting chamber in step (e) shall be operated for a time in the range of 1 to 30 seconds for excitation of the sample.
  • step (h) The photon-count data analysis in step (h) is performed based on the nonlinear Fitting from the Boltzman Fitting Decay mathematical model as in equation (1):
  • ai refers to the initial value, 2 to the final value, t time (s) and dt is the decay time constant.
  • Ak a t - a 2 .
  • n the final moment of the decay curve
  • Cyst metabolic activity was evaluated using Carboxifluorceine succinimidyl diacetate ester reagent (CFDA-SE), which allows the analysis of viable cell metabolic activity. Estimation of the amount of organisms was performed based on the immunofluorescence reaction using monoclonal antibodies and marker dye available in a commercial kit. The kit used had detection reagent containing Fluorcein Isothiocyanate (FITC) combined with anti-Cryptosporidium and anti-Giardia antibodies, allowing the identification and counting of cysts under fluorescence microscopy.
  • FITC Fluorcein Isothiocyanate
  • CFDA-SE scanning assays were performed to evaluate the best concentration of the fluorescent marker.
  • the solutions were prepared by transferring 90 ⁇ DMSO to 547 pg CFDA-SE and then adding 910 pL phosphate buffered saline (PBS) totaling 1 mL volume of a 1 mM stock solution. Dilutions from the stock solution were made at concentrations of: 0.5, 1.0, 5.0, 25.0, 50.0 and 100 ⁇ .
  • PBS phosphate buffered saline
  • Giardia lamblia cysts were incubated in CFDA-SE at concentrations of: 0.5, 1.0, 5.0, 25.0, 50.0 and 100 ⁇ .
  • aliquots containing approximately: 2.5x 0 2 , 2.5x 0 3 , 5x10 3 , 2x10 4 and 2.5x10 4 cysts were transferred to microtubes and vortexed for 2 minutes.
  • CFDA-SE was added to each aliquot of organisms. The suspension was homogenized again and the total volume was transferred to microscopic slides. The slides were then led to the incubation chamber for 30 minutes at 37 ° C and 5% CO 2 .
  • the photon counting was performed and started immediately after the transfer of the slide containing the cysts to the chamber, activating the counting plate at an acquisition interval of 1 s for a period of 30 minutes.
  • the delayed luminescence was measured by exciting the organisms in a darkroom with a photomultiplier valve.
  • the organisms were excited with halogen lamp and bandpass filters (50 nm wide) with the following wavelengths and their mean intensity in lux: 375 nm (2.3 lux), 460 nm (120 lux), 582 nm (3070 lux) and white light (without filter 5120 lux).
  • excitation was performed from LEDs (-20 nm band) with wavelengths of 680 nm and 700 nm, in addition to white light.
  • the excitation of the organisms was performed for the 30 s interval and then the photon-counting was read at the 100 ps acquisition interval and 10 s counting time.
  • the photon-count data were analyzed in their temporal parameter expressed in photon counts per 100 ps (cp100ps). Statistical analyzes were performed on their parameter of counting frequency, mean, minimum, maximum and standard deviation of the samples. Fourier transforms were performed to evaluate the delayed luminescence decay signal, and this parameter was evaluated based on frequency and amplitude.
  • Annex 1 describes the fluorescence behavior of Giardia lamblia cysts incubated in CFDA-SE. At concentrations of 0.5 ⁇ (Tables (1 1) (12) and (13)), only living cysts show fluorescence. Increasing reagent concentration promotes increased fluorescence intensity. Cysts stressed with UV-254nm showed fluorescence at CFDA-SE concentrations above 2.5 ⁇ . However such fluorescence has lower intensity than that presented by living cysts. This fact can be observed in tables (13), (16) and (19) in annex 1.
  • Dead cysts do not fluoresce when analyzed under microscopy, demonstrating noise behavior.
  • Living cysts have delayed luminescence decay with photon-counting rates higher than cysts without metabolic activity.
  • Statistical analyzes show that living and stress-free groups have higher counting frequencies when compared to stressed and dead groups.
  • Annex 2 describes the behavior of Giardia lamblia cysts killed at 100 ° C, stressed under UV-254nm light, and compared to live and stress-free cysts.
  • the curves from (20) to (23) demonstrate the luminescent decay of cysts incubated in CFDA-SE 5.0 ⁇ , analyzed based on the averages of 100 local points.
  • the curves from (24) to (27) refer to the exponential fit in the photon count data.
  • the curves from (28) to (31) refer to the statistical analyzes based on the average of the minimum and maximum counting frequencies.
  • the luminescent decay starts from a few dozen photons measured at 100 s intervals. Subsequently, the decay reaches the dark noise on the order of 1.0 cplOO s. This decay differs between the groups analyzed according to the metabolic state of the organism.
  • the tests can be conducted with a few hours of analysis.

Abstract

O presente pedido de patente de invenção refere-se a um método de detecção da atividade metabólica de protozoários. O método permite a detecção da atividade metabólica, com potencial estimativa de infectividade, dispensando o uso de incubação em modelos animais, reduzindo assim os custos envolvidos e a infraestrutura laboratorial. Ele pode ser aplicado no campo de monitoramento ambiental através de dispositivos portáteis, apresentando um reduzido tempo de análise após o isolamento dos organismos de interesse.

Description

MÉTODO DE DETECÇÃO DA ATIVIDADE METABÓLICA DE PROTOZOÁRIOS
Campo da invenção
O presente pedido de patente de invenção refere-se a um método de detecção da atividade metabólica_de_protozoários^
O método permite a detecção da atividade metabólica, com potencial estimativa da infectividade, dispensando o uso de incubação em modelos animais, reduzindo assim os custos envolvidos e a infraestrutura laboratorial. Ele pode ser aplicado no campo de monitoramento ambiental através de dispositivos portáteis, apresentando um reduzido tempo de análise após o isolamento dos protozoários de interesse.
Fundamentos da invenção
Problemas de qualidade da água configuram-se como um grande desafio que a humanidade enfrenta no século XXI. Doenças de veiculação hídrica, a urgente necessidade de saneamento básico e a falta de água potável afetam atualmente mais de um terço da população mundial.
O uso da água para diversas finalidades requer o atendimento de parâmetros microbiológicos visando à segurança dos seres vivos, que podem ser infectados por organismos patogênicos presentes nela. Dentre os diferentes géneros de organismos patogênicos que podem ser encontrados na água, Cryptosporidium e Giardia têm ganhado atenção especial de pesquisadores e autoridades, por serem capazes de propagarem enfermidades podendo em alguns casos, levarem os indivíduos a óbito.
Sendo assim, esses organismos permanecem como uma constante preocupação para os sistemas produtores de água e métodos de monitoramento rápidos e efetivos são ainda necessários para determinar a ocorrência e infectividade tanto na água bruta captada para consumo humano como para água tratada.
Quanto aos testes de infectividade, estes permitem avaliar a capacidade de infecção, e são de grande utilidade principalmente na análise da eficiência dos tratamentos para inativação/desinfecção nas mais diversas metodologias. Porém, o tempo para obtenção de resultados, a dificuldade laboratorial e os custos envolvidos dificultam o emprego desses métodos no cotidiano de uma estação de tratamento de água.
Embora haja vários métodos aplicados à detecção de protozoários, eles não são capazes de informarem a atividade metabólica do.s. organismos isolados. Éxiste a dificuldade de se obter informações precisas indicando se tais organismos após serem detectados estão mortos.
Os ensaios de infectividade efetuados em modelo animal utilizam a inoculação do parasito em estudo, que após completar o seu ciclo de vida são eliminados nas fezes do hospedeiro para posteriormente serem confirmados através das técnicas de detecção.
O documento (Craik, Stephen A. et al., "Inactivation of Cryptosporidium parvum oocysts using médium and low pressure ultraviolet radiation", Water Research, v. 35, n. 6, p.1387-1398, 2001 ) relata testes de infectividade em camundongos para avaliar a eficiência de inativação do Cryptosporidium com o uso de luz UV. Os ensaios foram efetuados com camundongos neonatais (5 dias de idade), sendo os organismos inoculados intragastricamente. Após 7 dias as fezes foram analisadas e a infectividade do Cryptosporidium confirmada.
Com o objetivo de demonstrar a infectividade de Cryptosporidium em águas de reuso, o documento (Gennaccaro, Angela L. et al. "Infectious Cryptosporidium parvum Oocysts in Final Reclaimed Effluent. Applied And Environmental Microbiology", v. 69, n. 8, p.4983-4984, 2003) utiliza meio celular HCT-8 para incubação do Cryptosporidium isolado e purificado em amostras de efluente bruto, efluente de tratamento secundário, pós-filtração e pós- desinfecção. Os testes foram conduzidos com média de 48 horas de duração e a confirmação da infectividade efetuada com o uso de microscopia de fluorescência.
Analisando os métodos que avaliam infectividade, tais como a infecção in vitro em modelo celular ou teste de infectividade em modelo animal, podemos dizer que eles são caros, demorados e requerem infraestrutura sofisticada. Esses testes são sujeitos à variabilidade já que pressupõem uma resposta diferenciada do animal ou da célula escolhida como modelo para o teste de infectividade in vitro.
O documento ("A device for Gated Autosynchronous Luminescence Detection", Connally, Russell, Analytical chemistry, Vol. 83, N°. 12, (201 1 ), p.4782-4787) apresenta um método aplicado à microscopia de epifluorescência. A utilização de dispositivos construídos pelo autor permite a redução daquilo que ele chama de luminescência retardada proveniente de possíveis interferentes na amostra que podem apresentar autofluorescência. O método é então utilizado para reduzir o ruído de fundo das amostras. De acordo com o autor, o procedimento melhora a sensitividade no procedimento microscópio e aumenta a capacidade captura da imagem com o uso de câmera CCD. O autor argumenta também que procedimentos que utilizam marcadores a base de europium e terbium são beneficiados pela técnica. O autor utilizou cistos de Giardia para demonstrar o emprego da técnica na detecção do organismo. Nada é comentado acerca da medida da atividade metabólica envolvendo Giardia. O método proposto neste pedido de patente refere-se à detecção da emissão ultra-fraca de luz envolvendo cistos de Giardia spp. previamente purificados e incubados em marcadores fluorescentes capazes de detectar a presença de atividade metabólica de células. Comparando-se ambos os métodos, não é possível vislumbrar semelhanças no que diz respeito a detecção de atividade metabólica, como proposto neste pedido de patente.
' O documento ("Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: temperature dependence", Musumeci F, Applegate LA, Privitera G, Scordino A, Tudisco S, Niggli HJ., J Photochem Photobio B.; 79(2):93-9. 2005 Jan 22) descreve a aplicação da luminescência retardada na diferenciação entre células tumorais e sadias. A luminescência retardada é induzida através de um laser e sua medida é efetuada através de válvulas fotomultiplicadoras. Os resultados são analisados com base na cinética de decaimento da luminescência retardada, tendo sido empregado modelos matemáticos do tipo probabilístico. O método demonstra a aplicabilidade da luminescência retardada como tecnologia inovadora na distinção entre células tumorais e sadias, com futuras aplicabilidades em oncologia e não se aplica em protozoários, dado que tais organismos diferem daquelas células tumorais. Já o método aqui proposto vale-se do uso de reagentes químicos medidores de atividade_-metabólica- combinado com o fenómeno de luminescência retardada permitindo diferenciar protozoários metabolicamente ativos daqueles sem atividade metabólica.
O documento ("Influence of presence of antrazine in water on the in-vivo delayed luminescence of Acetubelaria acetabulum", A. Scordino, A. Triglia, F. Musumeci, F. Grasso, Z. Rajfur, Journal of Photochemistry and Photobiology Volume 32, Issues 1 -2, January 1996, Pages 1 1-17) apresenta a aplicação da luminescência retardada na detecção de alterações metabólicas, proveniente de estresse químico, nas células da alga Acetubelaria acetabulum. Demonstra-se que quando induzidas via excitação com luz verde, células sadias apresentam decaimento luminescente diferente daquelas estressadas com antrazina. Novamente aqui o método proposto se difere deste na aplicabilidade. Aspectos ecotoxicologicos são analisados pela técnica proposta por Scordino et. al., ao passo que propomos diferenciação entre organismos metabolicamente ativos daqueles não ativos. Tal método não pode ser utilizado para análise metabólica de protozoários dado que vale-se da excitação em 565 nm durante 2s e diferencia células sadias daquelas com toxicidade aguda na presença de agrotóxicos.
Na literatura, encontram-se métodos que utilizam citometria de fluxo e valem-se de equipamentos dotados de válvulas fotomultiplicadoras onde a excitação é feita por fonte luminosa de alta intensidade. O sinal é analisado e é captado por espalhamento onde é feita a contagem e a diferenciação de células e protozoários. Embora tais equipamentos utilizem válvulas fotomultiplicadoras os sinais analisados após a excitação com laser são da ordem de 103 a 106 fótons, estando, portanto associados a fenómenos meramente físicos, e aptos apenas a contar o número de indivíduos. O método aqui proposto detecta a interação entre os protozoários e os marcadores de atividades enzimáticas com válvulas fotomultiplicadoras sensíveis no visível e capazes de realizarem contagens da ordem de dezenas de fótons (luminescência ultra-fraca), ainda assim capaz de diferenciar amostras vivas daquelas mortas. Esse por sua vez difere dos métodos baseados em citometria que não avaliam o comportamento do organismo do ponto de vista de luminescência retardada.
Diante do exposto seria útil que o estado da técnica dispusesse de um método de detecção da atividade metabólica em protozoários, que seja de baixo custo e que apresente resposta rápida.
Breve descrição da invenção
O presente pedido de patente de invenção refere-se a um método de detecção da atividade metabólica de protozoários via luminescência retardada com uso de marcadores fluorescentes.
O método proposto neste pedido de patente utiliza uma fonte luminosa com emprego de marcadores celulares como indicadores de presença de atividade metabólica. Além disso, soluciona-se a estimativa da atividade metabólica do parasito através da análise da emissão ultra-fraca de luz.
Atualmente os métodos aceitos para inferir a infectividade de parasitos necessitam de incubação em modelos animais e requerem dias para obtenção de resultado. O método proposto apresenta solução alternativa para a estimativa da atividade metabólica sem a necessidade de incubação do parasito em modelo animal.
O método aqui proposto aplica-se a protozoários e permite distinguir a atividade metabólica dos mesmos com a vantagem de uma análise rápida, possuindo ampla aplicação no campo do monitoramento ambiental. Breve descrição das figuras e anexos
O invento passará a ser descrito a seguir com referência aos desenhos apensos, nos quais:
A Figura 1 apresenta as etapas para o desenvolvimento do ensaio com o uso da luminescência retardada. Nela as etapas consistem na coleta da amostra, isolamento, eluição, purificação, incubação, fóton-contagem, análise de dados e confirmação dos protozoários de interesse.
O anexo 1 apresenta os resultados da microscopia de epifluorescência com testes envolvendo organismos vivos de Giardia lamblia e estressados com terop_e/.atuca_(-oiganismo-s_mo.rtQs_a__1_0.0- .C-)I além de cistos estressados com lâmpada UV-254 nm pelo período de 1 hora.
O anexo 2 mostra os gráficos do comportamento dos grupos testados com base na cinética de decaimento luminescente e parâmetros estatísticos de contagem. Os dados são analisados com base nos parâmetros estatísticos e cinética do decaimento luminescente, distinguindo protozoários metabolicamente ativos daquele sem atividade metabólica.
Descrição detalhada da invenção
Refere-se o presente pedido de patente de invenção a um método de detecção da atividade metabólica em protozoários com o uso luminescência retardada e marcadores fluorescentes.
O método é baseado no princípio da emissão ultra-fraca de luz por todos os seres vivos e, principalmente correlacionado com a atividade metabólica das células. Uma vez vivas, células interagem com substratos e emitem fótons de natureza ultra-fraca que podem ser detectados com dispositivos fotônicos dotados de válvulas fotomultiplicadoras sensíveis em diversas regiões do espectro eletromagnético.
A emissão ultra-fraca de luz ou biofótons (101 a 103 fótons- cm"2 -s" 1) é encontrada em compostos orgânicos em conjunto com a atividade dos sistemas biológicos. Ela se relaciona também com a luminescência retardada, que reflete o comportamento do sistema biológico em termos da re-emissão de luz ultra-fraca após a excitação por fonte luminosa. Esta emissão espontânea de fótons é influenciada pela temperatura e pelas funções biológicas como a permeabilidade seletiva da membrana celular e as reações bioquímicas, refletindo diretamente no comportamento biofotônico.
O método proposto neste pedido de patente compreende as seguintes etapas (Figura 1 ): a) Preparar a amostra,
b) Adicionar à amostra o reagente marcador,
c) Homogeneizar a amostra,
d) Incubar a amostra,
e-)-Conduzir--a_-amostra para a câmara de fóton-contagem_e- acionar o dispositivo de iluminação,
f) Realizar uma fóton-contagem da amostra,
g) Comparar os dados provenientes da fóton-contagem com as curvas de luminescência retardada provenientes do controle positivo (microrganismos vivos),
h) Realizar um ajuste de Bolztman e curva integral dos gráficos da amostra e do controle positivo e obter os coeficientes, i) Comparar os coeficientes Ak obtidos pelo gráfico da amostra e do controle positivo, caso o coeficiente da amostra seja maior, a mesma contém protozoários vivos.
Na etapa (a) a amostra deve ser preparada empregando qualquer processo conhecido do estado^ãTécnica. Mais especificamente o isolamento e purificação podem ser efetuados de acordo com metodologia descrita pela Environmental Protection Agency, Method 1623.1 : Cryptosporidium and Giardia in Water by Filtration/IMS/FA. Office of Water, Washington DC, 2012. É recomendado que a amostra seja homogeneizada vigorosamente para que os organismos de interesse fiquem suspensos no meio aquoso.
Na etapa (b) alguns exemplos de reagentes que podem ser utilizados são Resazurin-C12, 6-Carboxyfluorescein diacetato succinimidil éster (CFDA-SE) e SYTOX (SYTO-9). Tais reagentes podem ser comercialmente adquiridos em empresas especializadas. A concentração ótima para a total marcação do organismo dependerá do tipo de organismo em estudo. No geral, recomenda-se análise de varredura em concentrações variando em escala de até 10 vezes. Uma faixa de concentração do reagente marcador a ser utilizada é de 0,5 μΜοΙ.Ι_"1 a 5,0 μΜοΙ.ί 1. A concentração do reagente marcador celular pode variar também em função do tipo de marcador bem como o organismo de interesse. Recomenda-se que seja feita a prévia verificação da fluorescência do marcador utilizado verificando-se a melhor concentração a ser utilizada. A concentração ótima é aquela que apresente fluorescência satisfatória observada em organismo vivos.
A incubação da amostra na etapa (d) deve ser feita em uma câmara escura de incubação bacteriológica ou em dispositivos de fóton- contagem dotados de controle de temperatura. A temperatura da câmara deve estar compreendida na faixa de 33°C a 38°C e 5% de atmosfera de C02. O tempo de incubação pode variar em função do organismo de interesse. Intervalos de 15 - 45 minutos permite a completa reação bioquímica para a marcação celular e fluorescência. O analista poderá aferir o melhor tempo de incubação em função da escolha da melhor concentração do reagente.
O dispositivo de iluminação na câmara de fóton-contagem na etapa (e) deve ser acionado por um tempo compreendido na faixa de 1 a 30 segundos para a excitação da amostra.
A análise dos dados de fóton-contagem na etapa (h) é realizada com base no Fitting não-linear proveniente do modelo matemáticos Boltzman Fitting Decay como na equação (1 ):
y = *2 + ¾¾ d)
onde ai refere-se ao valor inicial, a2 ao valor final, t o tempo (s) e dt é a constante temporal de decaimento. O coeficiente a ser analisado é Ak = at - a2.
A diferenciação pode ser efetuada com base na integral da curva de decaimento da luminescência retardada conforme equação (2):
∑?=0 DL (2)
onde i = 0 é o instante inicial do decaimento luminescente, n é o instante final da curva de decaimento e DL é a fóton-contagem da luminescência retardada no intervalo i = 0 até n.
Exemplo de concretização
A avaliação da atividade metabólica dos cistos foi efetuada com o uso do reagente Carboxifluorceina succinimidil diacetato éster (CFDA-SE) que permite analisar a presença de atividade metabólica de células viáveis. A estimativa da quantidade de organismos foi efetuada com base na reação de imunofluorescência utilizando anticorpos monoclonais e corante marcador disponíveis em kit comercial. O kit utilizado possuía reagente de detecção contendo Isotiocianato de Fluorceína (FITC) combinados com anticorpos anti-Cryptosporidium e anti-Giardia, permitindo a identificação e a contagem dos cistos em microscopia de fluorescência.
Ensaios de varredura com CFDA-SE foram efetuados com o intuito de avaliar a melhor concentração do marcador fluorescente.
As soluções foram preparadas transferindo 90 μΙ_ de DMSO à 547 pg de CFDA-SE e posterior adição de 910 pL de tampão fosfato salino (PBS), totalizando volume de 1 mL de uma solução estoque de 1 mM. Diluições a partir da solução estoque foram efetuadas nas concentrações de: 0.5, 1.0, 5.0, 25.0, 50.0 e 100 μΜ.
Cistos de Giardia lamblia foram incubados em CFDA-SE nas concentrações de: 0.5, 1.0, 5.0, 25.0, 50.0 e 100 μΜ. Primeiramente, alíquotas contendo aproximadamente: 2.5x 02, 2.5x 03, 5x103 , 2x104 e 2.5x104 cistos foram transferidas para microtubos e homogeneizadas por 2 minutos em vortex. Posteriormente, CFDA-SE foi adicionado a cada alíquota de organismos. A suspensão foi novamente homogeneizada e o volume total foi transferido para lâminas microscópicas. Em seguida, as lâminas foram conduzidas para câmara de incubação pelo período de 30 minutos a 37°C e 5% de C02.
Ao longo da incubação, efetuou-se a medida de fóton-contagem, tendo sido iniciada imediatamente após a transferência da lâmina contendo os cistos para a câmara, acionando a placa de contagem num intervalo de aquisição de 1 s pelo período de 30 minutos.
Após a incubação, efetuou-se a medida da luminescência retardada excitando os organismos em câmara escura dotada de válvula fotomultiplicadora. No dispositivo de fóton-contagem os organismos foram excitados com lâmpada halogênica e filtros passa-banda (50 nm de largura) com os seguintes comprimentos de onda e respectiva intensidade média em lux: 375 nm (2,3 lux), 460 nm (120 lux), 582 nm (3070 lux) e luz branca (sem filtro 5120 lux). Em outro dispositivo de fóton-contagem efetuou-se excitação a partir de LEDs (-20 nm de banda) com comprimentos de onda de 680 nm e 700 nm, além de luz branca.
A excitação dos organismos foi efetuada pelo intervalo de 30 s e em seguida efetuou-se a leitura da fóton-contagem no intervalo de aquisição de 100 ps e tempo de contagem de 10 s.
Os dados de fóton-contagem foram analisados em seu parâmetro temporal expressos em photon-counts per 100 ps (cp100ps). As análises estatísticas foram efetuadas em seu parâmetro de frequência de contagem, média, mínimos, máximos e desvio padrão das amostragens. Transformadas de Fourier foram efetuadas para avaliar o sinal de decaimento da luminescência retardada, sendo esse parâmetro avaliado com base na frequência e amplitude.
Leitura da fluorescência
Após os ensaios de incubação, as lâminas foram analisadas em microscópio de fluorescência com excitação em 490 nm e verificação da fluorescência decorrente da atividade metabólica dos cistos em microscópio de epifluorescência com filtros FITC.
Para a confirmação da presença de cistos bem como a estimativa da quantidade quando do preparo das alíquotas, efetuou-se a leitura da fluorescência com o uso de kit comercial. Ao passo que os ensaios efetuados com CFDA-SE acompanhados por fóton-contagem foram analisados sob as mesmas condições.
Análise Microscópica e captura de imagens
Após a análise do comportamento da fluorescência, os organismos foram analisados e imagens foram coletadas com uso de microscópio de epi-fluorescência com filtro FITC, DIC e objetivas de 40, 100 e 400x, lâmpada halogênica e software de captura comercial. As imagens foram coletadas nos campos FITC e DIC e posteriormente justapostas para análise dos padrões de fluorescência proveniente do reagente CFDA-SE. Resultados
Testes efetuados com cepa sem estresse demonstram que o CFDA-SE nas concentrações acima de 0,5 μΜ apresentam fluorescência satisfatória e facilmente detectável com uso de microscopia de epi- fluorescência. No anexo 1 está descrito, o comportamento da fluorescência de cistos de Giardia lamblia incubados em CFDA-SE. Observa-se que para concentrações de 0,5 μΜ (quadros (1 1 ) (12) e (13)), apenas cistos vivos apresentam fluorescência. O aumento da concentração do reagente promove o aumento da intensidade da fluorescência. Cistos estressados com UV-254nm apresentaram fluorescência para concentrações de CFDA-SE acima de 2,5 μΜ. Contudo tal fluorescência possui intensidade menor que aquela apresentada por cistos vivos. Esse fato pode ser observado nos quadros (13), (16) e (19) na anexo 1 .
Cistos mortos não apresentam fluorescência quando analisados em microscopia, demonstrando comportamento de ruído.
A análise dos padrões de fóton-contagem provenientes da luminescência retardada, demonstram que grupos estressados com luz UV-254 nm, grupos contendo cistos mortos à 100°C e cistos vivos sem estresse, apresentam comportamentos biofotônicos diferentes entre si.
Cistos vivos possuem decaimento da luminescência retardada com taxas de fóton-contagem superiores aos cistos sem atividade metabólica. As análises estatísticas demonstram que grupos vivos e sem estresse possuem frequências de contagem superiores quando comparados com grupos mortos e estressados.
No anexo 2 encontra-se a descrição dos comportamentos de cistos de Giardia lamblia mortos a 100°C, estressados com luz UV-254nm, comparando-os com cistos vivos e sem estresse. As curvas de (20) a (23) demonstram o decaimento luminescente de cistos incubados em CFDA-SE 5,0μΜ, analisados com base nas médias dos 100 pontos locais. As curvas de (24) a (27) referem-se ao ajuste exponencial nos dados de fóton-contagem. Já as curvas de (28) a (31 ) referem-se às análises estatísticas com base na média das frequência de contagem, mínimos e máximos.
Com base no anexo 2, demonstra-se que o método aplica-se na distinção entre organismos vivos e sem estresse e aqueles mortos ou estressados com luz UV.
O decaimento luminescente parte de poucas dezenas de fótons medidos em intervalos de 100 s. Posteriormente, o decaimento atinge o ruído de escuro a ordem de 1 ,0 cplOO s. Esse decaimento difere entre os grupos analisados em função do estado metabólico do organismo.
Os ensaios podem ser conduzidos com poucas horas de análise
(1h no exemplo citado) com uso de reagentes e vidrarias facilmente obtidos no mercado.

Claims

REIVINDICAÇÕES
1. Método de detecção da atividade metabólica de protozoários caracterizado por compreender as seguintes etapas:
a) Preparar a amostra,
b) Adicionar à amostra o reagente marcador,
c) Homogeneizar a amostra,
d) Incubar a amostra,
e) Conduzir a amostra para a câmara de fóton-contagem e acionar o dispositivo de iluminação,
f) Realizar uma fóton-contagem da amostra,
g) Comparar os dados provenientes da fóton-contagem com as curvas de luminescência retardada provenientes do controle positivo (microrganismos vivos),
h) Realizar um ajuste de Bolztman e curva integral dos gráficos da amostra e do controle positivo e obter os coeficientes, i) Comparar os coeficientes Δ/C obtidos pelo gráfico da amostra e do controle positivo, caso o coeficiente da amostra seja maior, a mesma contém protozoários vivos.
2. Método, de acordo com a reivindicação 1 , caracterizado pela etapa (a) constituir-se de isolar, purificar e centrifugar a amostra.
3. Método, de acordo com a reivindicação 1 , caracterizado pela concentração do reagente marcador estar compreendida na faixa de 0,5 μΜοΙ a 5,0 μΜοΙ.
4. Método, de acordo com a reivindicação 1 , caracterizado pela concentração do reagente marcador ser preferencialmente de 5,0 μΜ.
5. Método, de acordo com a reivindicação 1 , caracterizado pela etapa (d) ser realizada em câmara escura de incubação à uma temperatura compreendida na faixa de 33°C a 38°C e 5% de C02 por um período na faixa de 15 a 45 minutos.
6. Método, de acordo com a reivindicação 1 , caracterizado por o período de incubação na etapa (d) ser preferencialmente 30 minutos.
7. Método, de acordo com a reivindicação 1 , caracterizado pelo tempo de acionamento do dispositivo de iluminação estar compreendido na faixa de 1 a 30 segundos.
8. Método de detecção da atividade metabólica de protozoários caracterizado por compreender as seguintes etapas:
a) Isolar, purificar e centrifugar a amostra,
b) Adicionar à amostra a solução contendo o reagente marcador a uma concentração de 0,5 μΜοΙ a 5,0 μΜοΙ e homogeneizar a mistura,
c) Encaminhar a solução para a câmara escura de incubação à uma temperatura compreendida na faixa de 33°C a 38°C e 5% de CO2 por um período na faixa de 15 a 45 minutos,
d) Conduzir a amostra para a câmara de fóton-contagem e acionar o dispositivo de iluminação por um tempo compreendido na faixa de 1 a 30 segundos para a excitação da amostra,
e) Realizar uma fóton-contagem da amostra,
f) Comparar os dados provenientes da fóton-contagem com as curvas de luminescência retardada provenientes do controle positivo (microorganismos vivos),
g) Realizar um ajuste de Bolztman e curva integral dos gráficos da amostra e do controle positivo e obter os coeficientes,
h) Comparar os coeficientes Δ/ obtidos pelo gráfico da amostra e do controle positivo.
9. Método, de acordo com a reivindicação 8, caracterizado pela concentração do reagente marcador na etapa (b) ser preferencialmente de 5,0 μΜ.
10. Método, de acordo com a reivindicação 8, caracterizado por o período de incubação na etapa (c) ser preferencialmente 30 minutos.
PCT/BR2014/000120 2013-04-22 2014-04-08 Método de detecção da atividade metabólica de protozoários WO2014172764A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020130097683 2013-04-22
BR102013009768-3A BR102013009768B1 (pt) 2013-04-22 2013-04-22 Metodo de detecqao da atividade metabolica de protozoarios

Publications (1)

Publication Number Publication Date
WO2014172764A1 true WO2014172764A1 (pt) 2014-10-30

Family

ID=51790925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2014/000120 WO2014172764A1 (pt) 2013-04-22 2014-04-08 Método de detecção da atividade metabólica de protozoários

Country Status (2)

Country Link
BR (1) BR102013009768B1 (pt)
WO (1) WO2014172764A1 (pt)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344340B1 (en) * 1999-03-01 2002-02-05 Novus International, Inc. Viability assay for sporocyst-forming protozoa
US6950184B2 (en) * 2002-01-10 2005-09-27 Chemimage Corporation Water quality monitoring by Raman spectral analysis
US20130016341A1 (en) * 2011-07-15 2013-01-17 Nanyang Technological University Immersion refractometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344340B1 (en) * 1999-03-01 2002-02-05 Novus International, Inc. Viability assay for sporocyst-forming protozoa
US6950184B2 (en) * 2002-01-10 2005-09-27 Chemimage Corporation Water quality monitoring by Raman spectral analysis
US20130016341A1 (en) * 2011-07-15 2013-01-17 Nanyang Technological University Immersion refractometer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BOXELL, A. ET AL.: "Comparison of various staining methods for the detection of Cryptosporidium in cell -free culture'.", EXPERIMENTAL PARASITOLOGY, vol. 120, 2008, pages 67 - 72 *
FULLER, M. E. ET AL.: "Development of a Vital Fluorescent Staining Method for Monitoring Bacterial Transport in Subsurface Environments", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 66, no. 10, 2000, pages 4486 - 4496 *
METHOD 1623.1: CRYPTOSPORIDIUM AND GIARDIA IN WATER BY FILTRATION/IMS/FA, 2012, WASHINGTON DC, Retrieved from the Internet <URL:http://water.epa.gov/scitech/drinkingwater/labcert/upload/epa816r12001.pdf> *

Also Published As

Publication number Publication date
BR102013009768B1 (pt) 2020-11-24
BR102013009768A2 (pt) 2015-01-06

Similar Documents

Publication Publication Date Title
Schmälzlin et al. An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentrations in plants
ES2601201T3 (es) Cubeta desechable para recogida de sangre con composición de sonda para recuento y análisis de células
US7575890B2 (en) Method for rapid detection and evaluation of cultured cell growth
CA2459320A1 (en) Rapid detection of replicating cells
RU2517618C2 (ru) Способ и система для определения количества культивируемых клеток
Katsumata et al. Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata
CN104569330A (zh) 一种基于秀丽隐杆线虫的微量水样毒理学检测方法
Nguyen-Ngoc et al. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides
US20180237822A1 (en) Method for assaying for loss of an organism in an aqueous solution
JPH04504663A (ja) 蛍光水性バイオアッセイ及び方法
Qazi et al. Real-time detection and identification of nematode eggs genus and species through optical imaging
Simões et al. An ultrasensitive fluorimetric sensor for pre-screening of water microbial contamination risk
ES2552356T3 (es) Procedimiento para la caracterización de la actividad biológica de huevos de Trichuris
Berden-Zrimec et al. Delayed fluorescence in algal growth inhibition tests
Zeng et al. A high-sensitivity optical device for the early monitoring of plant pathogen attack via the in vivo detection of ROS bursts
US20170253902A1 (en) Method for Assaying for Loss of an Organism in an Aqueous Liquid
WO2014172764A1 (pt) Método de detecção da atividade metabólica de protozoários
Darken Natural and induced fluorescence in microscopic organisms
Nguyen et al. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser
McLamore et al. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities
Owusu-Ansah et al. Laser-induced autofluorescence technique for plasmodium falciparum parasite density estimation
ES2534955B1 (es) Bioensayo de toxicidad ambiental basado en ficobiontes aislados de líquenes
RU2619640C1 (ru) Способ идентификации микроводорослей
ES2411954T3 (es) Detección de microorganismos con un dispositivo basado en fluorescencia
Simães et al. Drinking water quality monitoring: an alternative approach to microbial contamination events

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788862

Country of ref document: EP

Kind code of ref document: A1