WO2014171782A1 - Cell culture substrate - Google Patents

Cell culture substrate Download PDF

Info

Publication number
WO2014171782A1
WO2014171782A1 PCT/KR2014/003401 KR2014003401W WO2014171782A1 WO 2014171782 A1 WO2014171782 A1 WO 2014171782A1 KR 2014003401 W KR2014003401 W KR 2014003401W WO 2014171782 A1 WO2014171782 A1 WO 2014171782A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cell culture
culture substrate
particles
particle
Prior art date
Application number
PCT/KR2014/003401
Other languages
French (fr)
Korean (ko)
Inventor
김재호
김효섭
이광
심우영
Original Assignee
아주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교 산학협력단 filed Critical 아주대학교 산학협력단
Publication of WO2014171782A1 publication Critical patent/WO2014171782A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/16Apparatus for enzymology or microbiology containing, or adapted to contain, solid media
    • C12M1/18Multiple fields or compartments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a cell culture substrate having a microstructure excellent in cell culture properties.
  • a spherical particle of several tens to hundreds of nm is coated on a substrate to prepare a substrate having an irregular structure by particles. It is possible to manufacture large substrates with a diameter of 15 cm through spin coating, etc., and the most commercial applications are possible due to the low manufacturing cost. However, having an irregular structure, there is a problem inferior to the uniformity and reproducibility of the substrate.
  • the surface of the metal is flowed on the electrolyte solution to form regular pores on the oxidized metal surface.
  • the pore of various sizes can be manufactured by adjusting the voltage or the composition of the electrolyte, but as the diameter of the pore increases, the area where the cells can be adsorbed is rapidly reduced, making it difficult to use as a support. It is impossible to form the structure into a desired shape other than diameter control, and manufacturing cost is low.
  • the conventional cell culture substrate of a monolayer culture environment has a limitation in that it is difficult to differentiate the stem cells into a desired form and dedifferentiation phenomenon in which cells rapidly lose their intrinsic properties during cell culture. This is considered to be a problem due to culturing cells in a culture environment different from the in vivo environment. Due to the smooth surface of the cell attachment surface, unlike in vivo cells with complex structure and three-dimensional environment of several tens of nm, the skeletal structure of the cells is developed on the smooth flat substrate, which reduces cell fluidity and mobility. This results in a decrease in intercellular interactions.
  • the present invention provides a microstructured cell that enhances intercellular interactions in a monolayer culture environment, which can improve the above problems, and has characteristics that maintain cell intrinsic properties in cell culture or promote differentiation of cells in a desired direction. It is an object to provide a culture substrate.
  • the cell In the growth and differentiation of cells, the cell recognizes its environment through its protein and cell membrane structure of several tens of nm or less and determines its state accordingly. In order to inhibit dedifferentiation and promote redifferentiation in cell culture, it is important to provide a three-dimensional environment in which cells can contact each other.
  • micron in this specification means within the nano to micro size range.
  • the cell membranes can be attached between the structures due to the repetitive height step formation and smooth curved and sloped structures in all directions as the structures having the height step are arranged in the hexagonal honeycomb structure shown in FIGS. 1 and 2.
  • the patterned etching method using the conventional photo lithography method and the method using the frame produced by the electrooxidation method are difficult to attach cells between the structures due to the production of the slope and the boundary surface having a large inclination, and only the upper part of the structure as shown in the upper figure of FIG. Adhesion is concentrated to form a linear skeletal structure.
  • the structures manufactured by using spherical particles have a continuous curved or sloped structure having a low inclination angle, while having a small area at the upper end, but having a larger area compared to the unit area as shown in the lower part of FIG. (stress fiber) will not develop. Inhibition of this linear skeletal structure results in the adherence of attached cells with the surrounding cells as they move on the substrate. Individual cells make this movement across the entire substrate, creating numerous small area microcellular pellets. These microcellular pellets have a very special feature that enhances the interaction between neighboring cells, while proliferating through the cells located outside the pellets.
  • the interaction of the cells is enhanced similar to the in vivo environment, which could not be obtained from the conventional flat structure substrate or the microstructured substrate having a structure different from that proposed in the present invention.
  • the differentiation of chondrocytes and the differentiation of stem cells into chondrocytes were obtained.
  • the three-dimensional micro-pellet means a form in which cells are three-dimensionally aggregated and cultured in a size of several tens of micrometers to several mm. As these three-dimensional micro pellets grow, they come into contact with adjacent micro pellets and undergo agglomeration together, thereby culturing the cells.
  • the three-dimensional micro pellets may initially exhibit a flower-like shape.
  • the flower-like shape refers to a shape in which surrounding cells surround the core area where cells are aggregated in the center.
  • the reason for this appearance is that the microstructure of the present invention suppresses the development of the internal skeletal structure, and increases the fluidity of the cells, resulting in the aggregation of the cells.
  • the cell culture rate is lower than that of the flat substrate. It is expected that the chondrocytes do not form a stable internal skeletal structure and proliferate after the intercellular aggregates are formed.
  • the dedifferentiated chondrocytes are re-differentiated into chondrocytes, thereby allowing more passages of passage. With this feature, more effective cell numbers can be finally obtained by increasing the incubation time or the number of passages.
  • collagen type 2 mRNA expression value (which is a chondrocyte marker) can be confirmed to be superior to that of TCPS substrate.
  • TCPS substrate a cell having excellent differentiation characteristics in cell culture of three-dimensional structure. Examples include mesenchymal stem cells (MSCs), muscle stem cells, and the like.
  • the mRNA expression value of collagen type 2 in the chondrocyte culture test may provide more than 30% of the initial passage cell (passage 0 to 30. Collagen type depending on the particle size of the microparticles). 2 mRNA expression value of 70% or more than the initial culture, in many cases can be provided more than 100%.
  • various preparation examples and examples the control of various differentiation characteristics such as chondrocytes and stem cells was effectively observed on the large-area substrate, and the result obtained showed superior results compared to the conventional methods.
  • all results were made in a general cell culture environment (medium, temperature, pH, etc.), and is a technique applicable to a monolayer culture environment using a general Petri dish, which does not require drugs and special equipment.
  • the microstructured substrate may be made of polystyrene, including a silica component, which is a glass material, and may be made of various materials capable of different cell cultures. It may have a large area of 50 to 10,000 cm 2.
  • the cell culture substrate having a microstructure formed as necessary may be separately surface treated with organic molecules, biologically derived materials, or polymers. In this case, three-dimensional culture may be performed in which aggregation of cells is induced. Specifically, surface treatment is possible with an amine compound, hydroxy compound, carboxyl compound, thiol compound, collagen, fibronectin, peptide, or Poly-L-Lysine.
  • oxidation treatment through UV / Ozone and plasma is possible to increase surface hydrophilicity when culturing cells on a fine thin film.
  • various surface treatments using biopolymers and charge polymers are also possible.
  • Various surface treatments can affect the interaction of the substrate surface with the cells to control the direction of growth and differentiation of the various cells. For example, it is expected that by coating a material that induces strong bonding with the substrate or by coating a specific differentiation inducing material, it is possible to induce cell growth and differentiation in a direction that cannot be found in a general flat substrate.
  • a cell culture substrate is a cell culture substrate having a surface structure in which at least 80% of the relief structures are regularly arranged and present, wherein the height of the relief structure is b, and the bottom surface of the structure When the length is 2a (However, when the embossed structure is away from the bottom surface when the area of the cross section is increased in shape, the bottom surface means the position where the area of the cross section is the maximum, the height is the cross section) Means a cell culture substrate satisfying 0.25a ⁇ b ⁇ 1.5a. The more regular the relief, the better the uniformity, reproducibility, etc. of cell culture, and the more preferable. Substantially the entire relief structure is preferably arranged regularly, preferably at least 80% of the entire relief structure is preferably arranged regularly.
  • the value of b is less than the above range, it may be difficult to obtain the effect of the micro-nanostructure, and when the value of b exceeds the above range, the inclination of the relief structure is large, making it difficult to attach cells between the structures, It can be concentrated to form a linear framework. More preferably, 0.5a ⁇ b ⁇ 1.3a, in particular 0.8a ⁇ b ⁇ 1.2a, is satisfied.
  • the embossed structure may be manufactured in various shapes, and the shape of the side cross section may be any one of a spherical shape, a hemispherical shape, an oval shape, a semi-elliptic shape, a trapezoid shape, a step shape, and a triangle.
  • the regular relief structure may consist of aligned spherical particles.
  • the regular relief structure may be manufactured in a mold integrally with the substrate of the cell culture substrate.
  • the area occupied by the relief structure on the surface of the cell culture substrate is preferably at least 40%, particularly at least 49% of the total area. If it is less than that, the planar area can be increased to develop the cytoskeleton. More preferably, the area occupied by the relief structure on the surface of the cell culture substrate is preferably 70% or more, particularly 80% or more of the total area.
  • the surface structure of the cell culture substrate it is good that the formation of a linear cytoskeletal structure due to the repetitive height step of 170 nm ⁇ 1 um at intervals within 200 nm ⁇ 2 um.
  • the unit area constituting the flat surface is less than 10%, more preferably less than 5%, more preferably, based on the number of unit areas. It doesn't exist. From this, formation of the cytoskeletal structure can be suppressed, and cell culture characteristics such as dedifferentiation effect can be excellent.
  • the unit area constituting the flat surface is less than 20%, preferably less than 10%, more preferably less than 5%, based on the number of unit areas, More preferably, it doesn't exist. From this, formation of the cytoskeletal structure can be suppressed, and cell culture characteristics such as dedifferentiation effect can be excellent.
  • the cell culture substrate surface characteristics obtained due to the presence of the relief structure is preferably a cell culture substrate that satisfies the following.
  • Rq is Surface Roughness and b represents height.
  • the height b of the relief structure may range from 50 nm to 10, in particular the height b of the relief structure ranges from 150 nm to 3 ⁇ m. Can be.
  • Surface roughness is not limited but may be 25 nm to 1000 nm. Formation of the cytoskeletal structure can be suppressed within the above range, and cell culture characteristics such as dedifferentiation effect can be excellent.
  • the relief structures may be present in less than 2% of the relief structures do not overlap each other up or down.
  • the cell culture substrate according to the embodiment of the present invention may have the following differences. That is, a plurality of three-dimensional micro pellets (pellets) are formed can have the characteristics that the cells are cultured.
  • the three-dimensional micro pellets initially have a flower-like shape, the initial cell proliferation rate is slow, has a microstructure of the characteristics of high re-differentiation or high differentiation rate, and the microstructure of the characteristic to suppress dedifferentiation or to differentiate into specific cells
  • the mRNA expression value of collagen type 2 has a microstructure of the characteristic that shows the initial culture (30% or more, especially 70% or more, compared to the passage 0 ⁇ pass), and the formation of the cytoskeletal structure is suppressed.
  • it may have a microstructure in which the expression of collagen type 2 is increased during the differentiation process in the culture of stem cells, and also has a microstructure in which the differentiation characteristics of stem cells are improved or controlled. In addition, it may have a microstructure of a characteristic of improving the differentiation capacity of the cells of the differentiation process.
  • the correlation between the particle diameter of the microparticles applied to the substrate surface and the surface roughness is important.
  • the surface roughness to the particle size of the fine particles exceeds a certain range, it is difficult to provide an even surface environment to the cells due to the irregular arrangement of the microparticles, which makes it difficult to obtain excellent reproducibility.
  • the surface roughness of the microparticles was lower than a specific value, cell culture characteristics such as reproducibility were excellent.
  • the cell culture substrate having the thin film formed by arranging the fine particles on the substrate is a cell culture substrate satisfying the following surface characteristics obtained by the spherical fine particle array.
  • Rq Surface Roughness
  • D the average particle diameter of the fine particles. If it is out of the above range, the irregular arrangement increases and the exposure environment between cells is changed during the culturing process, which makes it difficult to derive reproducible results. If there is a problem in the reproducibility is an important factor because it can be a big obstacle to commercialization.
  • the average particle diameter of the fine particles is preferably in the range of 250 nm to 10 ⁇ m, more preferably in the range of 300 nm to 3 ⁇ m. Below the range, as shown in FIG. 15, the effect of inhibiting the development of skeletal structure of the cell is reduced, thereby reducing the effect of redifferentiation into chondrocytes. If the above range is exceeded, observation of a phase contrast microscope due to scattering becomes difficult, and real-time observation of the cell state during culture cannot be performed. In addition, structure diameters similar to the diameter of the cells (5 to 30 ⁇ m) increase the likelihood that cells will be trapped between structures, rather than the cells growing on the structures.
  • the surface roughness is preferably in the range of 25 nm to 1000 nm, and more preferably in the range of 30 nm to 300 nm. Below the range, as described above, the effect of inhibiting the development of the skeletal structure of the cell is reduced and the effect of re-differentiation into chondrocytes is reduced. If the range is exceeded, it is difficult to observe the cell state in culture in real time. You are more likely to get stuck in.
  • the surface level is preferably 170 nm to 10 ⁇ m, particularly in the range of 200 nm to 1.5 ⁇ m. Below the above range, the effect of inhibiting the development of the skeletal structure of the cell is reduced, and the effect of re-differentiation into chondrocytes is reduced. If the above range is exceeded, it is difficult to observe the cell state in culture in real time, and the cell is not in the form of the cell growing on the structure. Is more likely to be trapped between structures.
  • the material of the fine particles is not limited. It may be inorganic, organic, or metal or a complex thereof. Preferably, silica particles are preferable. Silica particles include those that have been surface coated or surface treated and modified.
  • the arrangement of a single microparticle in a shape surrounded by six microparticles, in particular, a hexagonal form may reduce the development of the cytoskeletal structure.
  • the hexagonal morphology has been confirmed to be a good structure for cell culture since no effective area straight structure is developed to promote the formation of the cytoskeletal structure.
  • a structure in which mainly 5 to 6 holes exist around the microparticles may be good. Podia of cells can be anchored into the holes to improve the initial adsorption characteristics of the cells.
  • the surface structure is more three-dimensional, it is possible to suppress the formation of the cytoskeletal structure and to promote three-dimensional micropellet formation.
  • the microparticle thin film is substantially monolayer.
  • at least 50%, in particular at least 80%, of the theoretical maximum number of attachments that the microparticles are regularly arranged to contact the substrate may be in contact with the substrate.
  • the theoretical maximum number of attachments can come from the arrangement of honeycomb structures. The closer to the theoretical maximum number of attachments, the less can be created the voids lacking microparticles.
  • the three-dimensional micro-pellets generally refers to a form in which cells are three-dimensionally aggregated and cultured in the size of several hundred ⁇ m to several mm. As these three-dimensional micro pellets grow, they come into contact with adjacent micro pellets and aggregate together to allow the cells to be cultured.
  • the three-dimensional micro pellets may initially exhibit a flower-like shape.
  • the flower-like shape refers to a shape in which surrounding cells surround the core area where cells are aggregated in the center.
  • the reason for this appearance is that the microstructure of the present invention suppresses the development of the internal skeletal structure, and increases the fluidity of the cells, resulting in the aggregation of the cells.
  • the cell culture rate is lower than that of the flat substrate. This is expected because the cells do not form a stable internal skeletal structure, so that proliferation begins after intercellular aggregates are formed.
  • the dedifferentiated cells are re-differentiated into chondrocytes, thereby allowing more passages of passage. With this feature, more effective cell numbers can be finally obtained by increasing the incubation time or the number of passages.
  • collagen type 2 mRNA expression value (which is a chondrocyte marker) can be confirmed to be superior to that of TCPS substrate.
  • TCPS substrate a cell having excellent differentiation characteristics in cell culture of three-dimensional structure. Examples include mesenchymal stem cells and muscle-derived stem cells.
  • the microstructure of the cell culture substrate of the present invention may provide more than 30% of the mRNA expression value of collagen type 2 during the chondrocyte culture test.
  • the collagen type 2 mRNA expression value can be provided more than 70%, more preferably 100% or more than the initial culture.
  • the production method is not limited, but is preferably prepared by Langmuir-Bljet technique.
  • Conventional spin coater methods are difficult to provide the microstructure.
  • the Langmuir-Blodgett (LB) technique can easily and conveniently provide a large-area culture substrate with an area ranging from 50 to 200 cm 2. Larger areas are expected to be possible.
  • the present invention provides a method for producing a silica particle Langmuir-Blujet thin film on a substrate by surface modification of spherical silica particles.
  • Silica particles are synthesized into spherical particles having a diameter of at least 10 nm and up to 3 ⁇ m based on the Stober method, and can produce a large amount of uniform particles having various diameters depending on the production conditions.
  • the prepared silica particles can control surface polarity and introduce functional groups through chemical surface treatment, and can restore surface characteristics several times through heat treatment, ultraviolet (UV) irradiation, and strong oxidation conditions.
  • UV ultraviolet
  • the thermal stability is high, it is possible to increase the physical stability of the substrate produced by the heat treatment below 1500 °C, it is easy to manufacture a metal mold due to the high chemical resistance and mechanical strength.
  • LB films of silica particles can be coated on substrates of any material and type (not soluble) that can be immersed in aqueous solutions, and multiple layers can be coated. It is also possible to form a pattern that can be later removed on the substrate prior to the silica LB coating or to remove silica particles by region through a patterned polydimethylsiloxane (PDMS) mold.
  • PDMS polydimethylsiloxane
  • the cell culture substrate in which the microparticles are arranged to form a microstructure may be surface treated with organic molecules, biologically derived materials, or polymers.
  • three-dimensional culture can be achieved.
  • it may be surface treated with an amine compound, a hydroxy compound, a carboxyl compound, a thiol compound, collagen, fibronectin, a peptide, or a Poly-L-Lysine.
  • it is also possible to oxidize through UV / ozone treatment, and additionally silane-based surface treatment.
  • Various surface treatments can affect the interaction of the substrate surface with the cells, controlling the direction of growth and differentiation of the various cells. For example, it is expected that by coating a material that induces strong bonding with the substrate or by coating a specific differentiation inducing material, it is possible to induce cell growth and differentiation in a direction that cannot be found in a general flat substrate.
  • a cell culture substrate using a coating method using particle alignment will be described in detail.
  • the coating method using the particle alignment described below and its substrate can be usefully used as a cell culture substrate.
  • 52 to 54 are cross-sectional views illustrating a coating method using particle alignment according to an embodiment of the present invention.
  • the adhesive polymer substrate 10 having the smooth surface 10a is prepared. That is, the surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curvature is not formed, and movement of particles (reference numeral 20 in FIG. 53) forming a coating film (reference numeral 22 in FIG. 54) thereon. It can have a level of surface roughness and structure that does not limit.
  • the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion exists.
  • Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesion of less than about 0.6 kg / inch of the adhesive of the Scotch® Magic TM Tape (ASTM D 3330 evaluation).
  • the adhesive polymer may maintain the shape of a solid state (substrate or film) at room temperature without a separate support.
  • the adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), a polymer material for wrap, adhesion or sealing, including polyethylene (PE), polyvinyl chloride (PVC), etc.
  • the polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
  • the term "adhesive polymer material” generally refers to an organic polymer material including silicon in a solid state or endowed with adhesive properties through plasticizer addition or surface treatment.
  • the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure.
  • the excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension, etc., which are easy to deform the surface in the fine region.
  • the low surface tension of the adhesive polymer material is such that it has a property of broadly adhering to the particles 20 to be attached (similar to the solution wetting phenomenon), and the flexible surface is in seamless contact with the particles 20 to be attached. To lose.
  • the surface tension of silicon-based polymer materials such as PDMS, a representative adhesive polymer material, is about 20-23 dynes / cm, close to Teflon (18 dynes / cm), the lowest known surface tension material.
  • the surface tension of silicon-based polymers such as PDMS is mostly organic polymer (35-50 dynes / cm), natural material (73 dynes / cm), and metal (eg silver (Ag) is 890 dynes / cm).
  • Aluminum (Al) is lower than 500 dynes / cm), inorganic oxide (for example, 1000 dynes / cm for glass, 1357 dynes / cm for iron oxide).
  • inorganic oxide for example, 1000 dynes / cm for glass, 1357 dynes / cm for iron oxide.
  • plasticizer is added to improve adhesion, and thus has a low surface tension.
  • the plurality of particles 20 are aligned to form a coating film 22 on the adhesive polymer substrate 10. This is explained in more detail.
  • the several particle 20 dried on the adhesive polymer substrate 10 is mounted.
  • the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
  • the plurality of particles 20 may include various materials for forming a coating film (reference numeral 22 of FIG. 54, hereinafter the same). That is, the plurality of particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like.
  • the coating film may be formed by mixing particles having different properties. The aforementioned fine particles can be used.
  • polystyrene PS
  • polymethyl methacrylate PMMA
  • polyacrylate polyvinyl chloride (PVC)
  • polyalphastyrene polybenzyl methacrylate
  • polyphenyl methacrylate polyphenyl methacrylate
  • Polydiphenyl methacrylate polycyclohexyl methacrylate
  • styrene-acrylonitrile copolymer styrene-methyl methacrylate copolymer and the like
  • silicon oxide for example, SiO 2
  • silver phosphate for example, Ag 3 PO 4
  • titanium oxide for example, TiO 2
  • iron oxide for example, Fe 2 O 3
  • Zinc oxide cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like
  • metal for example, gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or an alloy thereof may be used.
  • silicon, germanium, or a compound semiconductor for example, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.
  • a compound semiconductor for example, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.
  • Biomaterials include, for example, particles coated on, or particles of, proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells, and complex materials thereof. Included particles and the like can be used. For example, a polymer particle coated with an antibody binding protein called protein A may be used.
  • Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape.
  • the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like.
  • the particles 20 preferably have a spherical or elliptical shape.
  • These particles 20 may have an average particle diameter of 10 nm to 50 ⁇ m. If the average particle diameter is less than 10 nm it may be a form that is entirely wrapped by the adhesive polymer substrate 10 may be difficult to coat the particle 20 to a single layer level. In addition, when it is less than 10nm it may be difficult for the particles to move individually by the force that the particles aggregate and rub together even in a dry state. If the average particle diameter exceeds 50 mu m, the adhesion of particles may appear weak. In this case, the average particle diameter may be more preferably 50 nm to 10 ⁇ m. However, the present invention is not limited thereto, and the average particle diameter may vary depending on the material of the particles or the material of the adhesive polymer substrate 10.
  • the diameter of the particle 20 can be used as the particle diameter.
  • various measuring methods may be used. For example, average values of the long axis and the short axis may be used as the particle diameter.
  • a pressure is applied on the plurality of particles 20 to form a coating film 22.
  • a method of applying pressure a method of rubbing using latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used.
  • the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
  • the particles 20 when the particles 20 are raised on the plane 10a of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressurized portion are in close contact with each other by deformation of the adhesive polymer substrate 10. .
  • recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned with the adhesive polymer substrate 10 while the recesses 12 surround the particles 20.
  • the recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved.
  • the recess 12 may disappear due to the elastic restoring force of the substrate, or the position of the recess 12 may also be changed according to the movement of the particles. Due to this reversible action, the particles can be evenly aligned ("reversible” here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate becomes weak over time or Broad meaning also includes cases that are extinguished and no longer reversible).
  • Particles 20 that are not bonded to the substrate is moved to the area of the adhesive polymer substrate 10 is not coated with the particle 20 by the rubbing force, etc., by the particle 20 in the uncoated portion
  • the concave portion 12 is formed and the adhesive polymer substrate 10 and the particle 20 are bonded while the concave portion 12 surrounds the particles 20.
  • a single layer particle coating film 22 is formed on the adhesive polymer substrate 10 at a high density.
  • the concave portion 12 may have a shape corresponding to the shape of the particle 20 to surround a portion of the particle 20.
  • the recesses 12 may also have a rounded shape so that the recesses 12 may be in close contact with a part of the particles 20.
  • the depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
  • the ratio (sedimentation rate) L1 / D of the depth L1 of the recess 12 to the average particle diameter D of the particles 20 may be 0.02 to 0.7.
  • the ratio (L1 / D) is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio (L1 / D) exceeds 0.7, the particles 20 may be coated at a monolayer level. It can be difficult.
  • the ratio (L1 / D) is preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
  • the particle 20 and the adhesive polymer substrate 10 may be more coupled.
  • the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding so that the new particles 20 may be attached to an empty space on the surface of the adhesive polymer substrate 10. do.
  • the coating layer 22 may be coated at a single layer level so as to have a high density.
  • the centers of the particles 20 may be arranged to form a hexagonal shape.
  • the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods.
  • the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% particles 20 that is, the particles 20 having a larger particle size within 10%
  • the coating to a monolayer level when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% particles 20 (that is, the particles 20 having a larger particle size within 10%) of the particles 20 is 1.9 or less. It can be seen that the coating to a monolayer level.
  • the coating film 22 is formed by applying pressure in a state in which the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent. Accordingly, when the coating film 22 is formed, self-assembly of the particles 20 in the solvent is not required, so it is not necessary to precisely control the temperature, humidity, and the like, and is not greatly influenced by the surface characteristics of the particles 20. . That is, even when the particle 20 is a chargeable material as well as a non-chargeable (ie, charge-neutral) material, the coating may be uniformly performed at a high density. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present exemplary embodiment, the coating layer 22 having a single density may be formed by uniformly distributing the particles on the adhesive polymer substrate 10 by a simple method.
  • the coating film 22 may be used in a state of being bonded to the adhesive polymer substrate 10, or may be transferred to another substrate and the like. In this case, when the other substrate to which the coating film 22 is transferred has higher adhesion or adhesiveness than the adhesive polymer substrate 10, the coating film 22 may be uniformly transferred as a whole.
  • the concave portion 12 is formed in the adhesive polymer substrate 10 by elastic deformation, when the coating film 22 is removed thereafter, as shown in FIG. 55, the concave of the adhesive polymer substrate 10 is formed. The part 12 disappears and is returned to the smooth surface 10a. However, when the coating film 22 is removed after a long time after the coating film 22 is formed, as shown in FIG. 56, traces of the shape of the recesses 12 are formed on the surface of the adhesive polymer substrate 10. It may remain.
  • the particle alignment substrate thus obtained is useful as a cell culture substrate.
  • the particle partially exposed substrate can be usefully used as a cell culture substrate.
  • Particle-exposed substrate is a preparation step of preparing an adhesive polymer substrate, a coating step of coating a plurality of particles on the adhesive polymer substrate, the substrate on the adhesive polymer substrate and the plurality of particles And the exposing step of partially exposing the plurality of particles by removing the adhesive polymer substrate.
  • the preparation step of preparing the adhesive polymer substrate, the coating step of coating a plurality of particles on the adhesive polymer substrate is the same as the coating method using the above-described particle alignment is omitted.
  • FIGS. 57 to 62 are cross-sectional views illustrating a method of manufacturing a partially exposed particle substrate according to an embodiment of the present invention. Similarly, the descriptions of FIGS. 57 to 59 are dedicated to the contents of FIGS. 52 to 54 described above and will not be described.
  • a substrate is formed on the adhesive polymer substrate and the coating film composed of a plurality of particles.
  • Forming the substrate may preferably include placing a substrate composition on the adhesive polymer substrate and the plurality of particles, and curing the substrate composition to form a substrate.
  • the material of the substrate is not limited. It may be an organic substrate such as a polymer, may be an inorganic substrate such as silicate, may be silica glass, or may be a substrate made of other composite materials.
  • the substrate may be made of a multilayer. As an example, the method of contact
  • the substrate composition may be applied onto the adhesive polymer substrate 10 and the plurality of particles 20.
  • a method of placing the adhesive polymer substrate 10 on the substrate composition such that the plurality of particles 20 are positioned is also possible.
  • the thickness of the substrate 30 may be 2 mm or more. If the thickness is less than 2mm, it may be difficult for the substrate 30 to stably fix the plurality of particles 20.
  • the organic substrate such as a polymer
  • various polymers capable of stably fixing and supporting the plurality of particles 20 may be used.
  • the polymer substrate can be cured under specific conditions, including cured resin.
  • the polymer substrate may be cured by ultraviolet (UV) or the like including an ultraviolet curable resin.
  • UV ultraviolet
  • an ultraviolet curable resin it can be easily hardened by irradiating light, such as an ultraviolet-ray.
  • the ultraviolet curable resin may include various materials to receive the ultraviolet rays and cause crosslinking and curing.
  • the ultraviolet curable resin may include oligomers (base resins), monomers (reactive diluents), photopolymerization initiators, and various additives. can do.
  • the oligomer is an important component that influences the physical properties of the resin, and forms a polymer bond by a polymerization reaction to cause curing.
  • it may be made of an acrylate such as polyester, epoxy, urethane, polyether, polyacrylic, and the like.
  • the monomer can serve as a diluent of the oligomer and can participate in the reaction.
  • a crosslinking agent may be further included for crosslinking.
  • the photopolymerization initiator absorbs ultraviolet rays to generate radicals or cations to initiate polymerization, and may include one or more materials.
  • the additive is additionally added depending on the use, and there may be a photosensitizer, a colorant, a thickener, a polymerization inhibitor, and the like depending on the use.
  • the inorganic substrate examples include, but are not limited to, glass film coating agents, and various glass film coating agents available on the market.
  • the particles used are photocatalyst particles such as titanium oxide
  • the organic material when used as the substrate, the organic material may be decomposed by the photocatalytic reaction. This may cause problems in the service life, such as damage to the durability of the substrate and falling particles from the substrate. Therefore, when using a particle partial exposure type base material for photocatalyst use, it is good to use a base material as an inorganic material.
  • the substrate composition is cured and the adhesive polymer substrate (reference numeral 10 in FIG. 61) is removed to partially expose the plurality of particles, thereby producing a particle partially exposed substrate.
  • the ratio L2 / D of the height L2 of the exposed portion to the average particle diameter D of the plurality of particles 20 may be 0.02 to 0.50.
  • the ratio (L2 / D) is less than 0.02, the bonding force between the particles 20 and the adhesive polymer substrate 10 is not sufficient, so that the coating film 22 may be formed on the adhesive polymer substrate 10 by the plurality of particles 20. This may not be formed stably, and the exposure of the particles may be insufficient.
  • the ratio L2 / D exceeds 0.50, the particles 20 may not be stably fixed by the substrate 30.
  • the particle partially exposed substrate according to this embodiment may be arranged and exposed at a monolayer level.
  • Particles that are not exposed from the substrate by being prepared by the method described above may be 10% or less of the total particles on a number basis. In particular, it may be 5% or less and may be rarely present.
  • the particles may be present in close proximity to acceptable theoretical densities. For example, when the average particle diameter of the particles is referred to as D, and the average distance between the exposed particles (distance between particle centers) is P, it may be exposed while satisfying D ⁇ P ⁇ 1.5D.
  • the particles can be precisely aligned by the particle coating method described above, and in particular can be exposed in alignment in the form of hexagonal.
  • the substrate may be divided into an upper region in which particles are located and a lower region in which the particles are not located, based on the thickness direction. This area is distinguished by the presence or absence of particles as the particles are arranged at a monolayer level, and is not distinguished by different kinds of substrates.
  • the lower region where the particles are not located may be thicker than the upper region where the particles are located, preferably 2 to 50 times thicker.
  • the ratio of the average value of the thickness of the coating layer consisting of the plurality of particles to the average particle diameter of the top 10% particles of the plurality of particles is formed to be 1.9 or less to be partially exposed have.
  • the substrate may be formed of a single material, or may be formed of multiple layers.
  • the multilayer it may be configured to include a coating layer in contact with the particles and a support substrate in contact with the coating layer. This structure can be obtained by coating a substrate composition on an adhesive substrate and a coating film composed of a plurality of particles, attaching a supporting substrate thereon, and then curing.
  • the multilayer it may include a coating layer in contact with the particles, a pressure-sensitive adhesive layer applied on the coating layer and a release film that can be attached to the adhesive layer and released. It may be prepared in the form of a functional adhesive sheet and may be prepared in a form that can be attached to the skin complex while removing the release film.
  • the particles 20 for various functions can be partially exposed to the substrate 30 fairly uniformly, and thus, the cell culture function can be more efficiently implemented.
  • the present invention also includes a method for culturing cells using the cell culture substrate described above.
  • the cell culture method is not limited and known methods can be used. Specific examples will be described later in the Examples.
  • the cell culture substrate according to the present invention having the above characteristics has a microstructure that satisfies some aspects to be considered important for effectively providing a three-dimensional cell culture environment.
  • This microstructure selectively provides the following effects.
  • the present invention overcomes the inhibition of dedifferentiation of chondrocyte culture and the promotion of differentiation of stem cells into chondrocytes through the special structural design of the substrate, and shows that the growth and differentiation of cells can be controlled. Showed results.
  • Figure 1 is a schematic diagram showing the characteristics of the microstructured substrate for cell culture described in the present invention shows a repetitive height step for the omnidirectional structure made by the structure arranged in a honeycomb structure.
  • the structure is attached to the cell membrane due to the continuous gentle slope as shown in 1b, it prevents the formation of the internal linear skeletal structure, which suppresses the formation of the skeletal structure of the cell, thereby maintaining a stable attachment state and specificity of cell aggregation. It explains the principle of creating an enemy phenomenon.
  • 22 and 23 respectively refer to the top and bottom surfaces formed by the structure.
  • FIG. 3 is a table summarizing the measured surface roughness according to the silica particle size of each substrate and the atomic force microscpoy (AFM) image (left) of a single layer thin film made of silica particles having various diameters (60 to 700 nm). Right).
  • AFM atomic force microscpoy
  • FIG. 5 is a photograph of a substrate coated with silica particles having a diameter of 750 nm, which was actually manufactured through Preparation Example 1 and used in an experiment.
  • Figure 6 is a table (right) summarizes the cell adsorption rate analyzed by the phase contrast microscope image (left) and the image measured after incubating rabbit chondrocytes for each prepared substrate for 4 hours.
  • Red color represents the actin and blue color represents the nucleus.
  • Figure 9 is a microscopic image measured after culturing rabbit chondrocytes in TCPS and cell culture substrate of the present invention for 3 days.
  • 10 is a confocal laser scanning microscope image measured after culturing rabbit chondrocytes for each substrate for 1 day.
  • AFM atomic force microscpoy
  • FIG. 12 is a graph illustrating the evaluation of metabolic rate compared to the initial measured by culturing rabbit chondrocytes for each substrate for 7 days.
  • FIG. 13 is a graph illustrating evaluation of metabolic rate compared to TCPS substrates measured by culturing rabbit chondrocytes for each substrate for 7 days.
  • 14 is a graph measuring the number of cells after culturing rabbit chondrocytes for each substrate for 7 days.
  • FIG. 15 is a graph showing the mRNA expression levels of collagen I and II of cells of each substrate in each stage of culture and passage of rabbit chondrocytes.
  • Figure 16 mRNA expression amount of collagen I and II proceeded by adding a substrate coated with an amine group on a glass substrate and 700 nm silica substrate in order to evaluate the effect on the surface chemical properties of rabbit chondrocytes in the Passage step 3 This is a graph that summarizes.
  • FIG. 17 shows the distribution of cells in each substrate by adding an amine-coated substrate to a glass substrate and a 700 nm silica substrate in order to evaluate the influence on the chemical properties of the surface on the microstructured substrate during the culture of rabbit chondrocytes in the Passage 3 step.
  • FIG. 18 is an electrophoretic image of passaged rabbit chondrocytes of Passage 0 on a glass substrate and a 300 nm silica substrate for 5 weeks, once a week, for measuring changes in the expression level of collagen II mRNA.
  • Collagen II a chondrocyte marker
  • GAPDH a calibration marker
  • ECM 19 is cultured in the TCPS and the microstructured substrate in the fourth passage step of passage and cultured in the TCPS three times in TCPS, and then cultured for 1 week in pellet form through centrifugation to observe ECM formation One image.
  • ECM was treated with red using safranin O, a dye.
  • 20 is a graph showing the results of the mass change of the cells according to the number of units according to the passage and culture substrate of rabbit chondrocytes on the 2nd and 7th day of culture.
  • Figure 21 is a graph evaluating the number of cells adsorbed for 1 hour in the culture of rabbit cartilage cells on TCPS and surface-modified glass, silica substrate.
  • the substrate name the amine treated substrate is indicated by A, and the binding guide peptide, RGD, is indicated by R.
  • TCPS 22 is a phase contrast microscopy image of rabbit chondrocytes incubated on a silica substrate of 700 nm and 3,000 nm diameter with TCPS.
  • FIG. 23 is a phase contrast microscopy image of rat muscle-derived stem cells cultured on a TCPS substrate and a microstructured substrate for 14 days.
  • FIG. 24 is an AFM image of a substrate coated with a single layer of silica particles having a particle size of 1500 nm on a PDMS substrate.
  • the bottom photo is a photo taken after monolayer coating of silica 750 nm particle diameter after coating PDMS of 10% curing agent ratio on a Petriduche of 150 mm diameter.
  • FIG. 25 is an electron microscope image measured after coating silica particles having various particle diameters on a PDMS substrate having a 10% curing agent ratio.
  • FIG. 26 is an electron microscope image measured after coating (a) 800 nm and (b) polystyrene particles having a particle size of 2010 nm on a PDMS substrate having a 10% curing agent ratio.
  • Figure 27 is a single layer coating in the form of hexagonal dense particles in the adhesive polymer such as (a) PDMS substrate of 10% curing agent ratio, (b) sealing tape, (c) LLDPE wrap, (d) protective film, (e) PVC.
  • the adhesive polymer such as (a) PDMS substrate of 10% curing agent ratio, (b) sealing tape, (c) LLDPE wrap, (d) protective film, (e) PVC.
  • FIG. 28 is a rabbit chondrocyte similar to that using silica particles by monocoating particles of 500 and 1000 nm diameter spherical polystyrene on a PDMS substrate having a 10% curing agent ratio in order to confirm the influence of the material of the coated particles. Is a phase contrast microscopy image confirming that agglomerates.
  • FIG. 29 shows TCPS cells obtained by culturing human chondrocytes for 1 week in passage 3 with TCPS and glass substrates by coating silica particles with various particle diameters and polystyrene particles with 800 nm particle diameter on PDMS substrates with 10% elapsed agent ratio, respectively. It is a graph evaluating the amount of mRNA expression by real-time PCR, such as cells obtained by culturing weekly from passage 0 to 2 in. The mRNA expression levels of collagen types 1 and 2 were summarized based on the values in the TCPS of passage 3 stage.
  • FIG. 30 is a fluorescence staining microscope image of 40 x magnification measured after culturing human chondrocytes for each substrate for 3 days. Red color represents the actin and blue color represents the nucleus.
  • FIG. 31 is a fluorescence staining microscope image of 400 ⁇ magnification measured after culturing human chondrocytes for each substrate for 5 days. Red color represents the actin.
  • FIG. 32 is an AFM image and line profile of human chondrocytes cultured for 2 days on a substrate coated with 1500 nm particle size silica particles on PDMS at 10% curing agent ratio. The central part of the cell was observed lower than the surrounding area.
  • Figure 33 is a glass substrate coated with 750 nm particle size silica by glass and LB method to determine the settlement of cells, silica particles having a particle size of 750 nm on PDMS substrates having different curing agent ratio, and then human cartilage on each substrate for 3 days AFM images measured by culturing cells and the center height of the cells are summarized.
  • FIG. 34 is a schematic diagram for explaining cartilage differentiation characteristics obtained when culturing human MSC cells on a microstructured substrate.
  • the microstructure is characterized by a weakening of the interaction between the cells and the substrate, and enhanced interaction with neighboring cells.
  • FIG. 35 is a phase contrast microscope image of 100 ⁇ magnification showing a phenomenon in which cells aggregate similarly to chondrocytes when cultured with human MSC cells on a microstructured substrate for 7 days.
  • FIG. 36 is a 200x magnification phase contrast microscopy image showing that human MSC cells are cultured on a microstructured substrate for 7 days and stained with alician blue, which is a chondrocyte-specific staining material, to show a blue color.
  • 37 is a RT-PCR result of evaluating mRNA expression amount to confirm the gene expression state change by microstructure substrate culture of human MSC cells and to verify the differentiation state.
  • FIG. 38 is a graph of numerically arranging the expression levels of mRNAs related to intercellular interactions by imaging the RT-PCR results of FIG. 37.
  • FIG. 39 is a graph of numerically arranging the expression levels of cartilage specific protein-related mRNAs by imaging the RT-PCR results of FIG. 36.
  • FIG. 40 is a graph of numerically arranging the expression levels of adipocyte-specific protein-related mRNAs by imaging the RT-PCR results of FIG. 36.
  • FIG. 41 is a phase contrast microscope image of 200x magnification showing a phenomenon in which cells aggregate similarly to chondrocytes when cultured with human osteoblasts on a microstructured substrate for 7 days.
  • FIG. 42 is a graph and a summary image of RT-PCR results for evaluating osteoblast-related mRNA expression levels in order to verify the differentiation state by microstructured substrate culture of human osteoblasts.
  • FIG. 43 is a photographic image showing that bone osteoblast specific enzyme Alkaline phosphatase is stained with a staining material to show blue color when human osteoblasts are cultured on a microstructured substrate for 7 days.
  • FIG. 44 is a graph illustrating RT-expression of mRNAs related to adhesion protein (Integrin) and interaction protein (E-cadherin) in order to evaluate changes in adhesion and intercellular interaction by microstructured substrate culture of human osteoblasts. PCR results images and graphs.
  • Integrin adhesion protein
  • E-cadherin interaction protein
  • 45 is an electron microscope image of a substrate in which monochromatic silica 750 nm particles prepared as an example of preparing a microstructured substrate are coated on a PDMS film, and then monolayer transitioned to a polymer substrate through a UV cured polymer.
  • 46 is an electron microscope image of a substrate in which 300 nm particles of silica prepared as an example of preparing a microstructured substrate are monolayer coated on a PDMS film, and then a single layer of particles are transferred to an inorganic glass substrate through a glass film coating agent.
  • FIG. 47 is an AFM measurement image and line profile of a substrate in which 300 nm particles of silica prepared as an example of preparing a microstructured substrate are monolayer coated on a PDMS film, and then the particles are monolayer transferred to an inorganic glass substrate through a glass film coating agent.
  • FIG. 48 is an AFM measurement image and line profile of an intaglio UV cured polymer substrate manufactured by using an embossed glass substrate as in FIG. 47 as an example of a mold for fabricating a microstructured substrate.
  • FIG. 49 is an electron microscope image of an intaglio-type UV cured polymer substrate manufactured using an embossed glass substrate as in FIG. 47 as an example of a mold for fabricating a microstructured substrate.
  • FIG. 50 shows an example of a mold for fabricating a microstructured substrate, in which a polystyrene particle having a 500 nm particle diameter is coated on a PDMS substrate having a 4% curing agent ratio, and the substrate transferred to a glass substrate with a glass film coating agent is removed. Electron microscopy images, AFM images and line profiles of deep indented glass substrates were fabricated by using
  • FIG. 51 is an electron microscope image of a polymer substrate on which a particle structure is formed in a hexagonal dense shape manufactured through a mold glass substrate shown in FIG. 50.
  • 52 to 54 are cross-sectional views illustrating a coating method using particle alignment according to an embodiment of the present invention.
  • 55 and 56 are cross-sectional views showing various examples of the adhesive polymer substrate after removing the coating film formed by the coating method using the particle alignment according to an embodiment of the present invention.
  • 57 to 62 are cross-sectional views illustrating a method of manufacturing a partially exposed particle substrate according to an embodiment of the present invention.
  • Silica micro thin films were prepared by the Langmuir-Bljet (LB) method.
  • the Langmuir-Bloodjet method induces the formation of a uniform monolayer of the material present on the surface under conditions of external pressure on the surface of the water. Fix it.
  • silica particles are prepared.
  • TEOS solution is added while ammonia water, which is a catalyst for activating tetraethylorthosilicate (TEOS), which is a monomer forming silica particles, is diluted with ethanol and water and stirred by a stirrer.
  • TEOS tetraethylorthosilicate
  • the ethoxy groups of TEOS are activated by ammonia and water to undergo a self-assembly reaction, thereby forming silica particles.
  • the particle size can be controlled by adjusting the relative concentration, rate and reaction conditions of TEOS and ammonia water.
  • silica particles may be prepared by various known methods, and are not limited thereto.
  • the silica particles formed above are immersed by centrifugation with a centrifuge, and then the supernatant is discarded and dried at 110 ° C. for about 12 hours.
  • a step for modifying the surface of the silica particles to be dispersed in the organic solvent is performed.
  • the organic solvent it is particularly suitable to use chloroform.
  • EDC / NHS materials which are mainly used for chemical catalysis in the synthesized silica particle solution, are added to ultrasonic materials and amine groups called aminobenzothiol (ABT).
  • ABT aminobenzothiol
  • a silica particle having ABT immobilized on the surface of the silica particle is prepared, and thus a solution uniformly dispersed in the organic solvent, that is, silicon particles whose surface is modified with short organic molecules having a thiol group are uniformly dispersed in the organic solvent.
  • the prepared solution is prepared.
  • the ABT-fixed silica particle dispersion solution is washed with ethanol and chloroform by centrifugation to prepare a silica microparticle-dispersion solution having a constant size used for the Langmuir-Blodge process.
  • the use of such a process is preferred because the reaction process is relatively simple and as described above, silica of various particle sizes can be synthesized by controlling the concentration of TEOS and aqueous ammonia and the reaction conditions.
  • the silica particle dispersion solution may be used to prepare an organic functional group surface-modified silica particle membrane based on the Langmuir-Blochet method.
  • the silica particle dispersion solution is sprayed on the water surface.
  • the silica particle dispersion solution is a state in which silica particles whose surface is modified with organic molecules having a thiol group are evenly dispersed in chloroform.
  • the silica particles are gathered in a thin film form by placing a barrier on the surface of the water and moving the barrier in a direction in which the silica particles are gathered together to gradually reduce the floating area of the silica particles.
  • the structure of the silica film is controlled by the surface pressure of the arrangement state and the film formation state of the silica particles.
  • the pressure applied to the barrier is called a transition pressure, and the pressure is maintained in a range of 10 mN / m to 60 mN / m to form silica particles in a uniform monolayer to prepare a cell culture substrate.
  • the prepared silica fine substrate was measured by atomic force microscopy to measure the surface structure by silica particle diameter and quantitatively evaluate the surface roughness (FIG. 3).
  • the surface roughness evaluation result of the silica fine substrate according to the present invention satisfies Rq ⁇ 0.13D, in particular Rq ⁇ 0.12D.
  • the prepared silica fine substrate was heat treated at 550 ° C. for 3 hours to improve mechanical durability. In addition, it was treated for 1 hour 30 minutes on a UV / ozone cleaner to improve the surface hydrophilicity. Since the fabricated microstructured substrate has a very uniform structure, it can be seen that an interference color appears due to a uniform interference phenomenon on a substrate having a width of 7 x 8 cm as shown in FIG. 5.
  • Chondrocytes isolated from rabbit cartilage at 4 weeks of age were individualized by collagen degrading enzymes, and then subcultured twice on a general TCPS (tissue-cultured polystyrene) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 constant temperature and incubated with 5% carbon dioxide.
  • TCPS tissue-cultured polystyrene
  • TCPS Cell passaged two times on a TCPS substrate, and the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass ( glass) and a cell culture substrate equipped with a thin film of silica particles of 60, 300, 700 nm diameter prepared from Preparation Example 1.
  • the silica fine substrate having a large diameter at the initial adsorption degree showed excellent cell adsorption capacity (FIG. 6), and the cell adsorption capacity was controlled according to the silica particle diameter.
  • the cells of day 1 and day 3 were observed by fluorescence staining microscope. On day 1 it was confirmed that the actin skeleton of the cells in the silica fine substrate aggregated at the cell ends and did not grow linearly (FIG. 7). In addition, on the third day, the presence of three-dimensional micro pellets, in which cells aggregated and grown on a silica fine substrate, was confirmed, and the characteristic was observed to increase as the diameter of the silica particles increased (FIG. 8). The three-dimensional micro pellets have a flower-like shape in contrast with the TCPS substrate (see FIG. 9).
  • FIG. 10 showing the measured image, the cells were spread out on a flat glass substrate, and fine podias were formed, but on a silica substrate, a thick podia, such as a gum with a thick and strong pull, was felt. Only cells were formed and cells were observed to grow narrowly.
  • the atomic force microscope (AFM) image of FIG. 11 observed that chondrocytes cultured on the silica substrate formed a cell membrane along the surface of the silica structure with a very thin thickness (30 to 200 nm). The warpage along the silica structure of the cell membrane suppresses the formation of cytoskeletal structure in the cell membrane, thereby assisting the aggregation of the cells and suppressing dedifferentiation.
  • AFM atomic force microscope
  • the large diameter silica substrate showed 70% of the number of cells compared to TCPS, which showed that the cells did not grow in some areas as the cells aggregated. (Fig. 14).
  • cartilage cells were continuously cultured on glass substrates and 300 nm diameter silica micro substrates for 5 weeks, and then cultured on silica micro substrates as shown in FIG. 18. Chondrocytes were found to maintain high expression of collagen II. In addition, as shown in FIG. 19, when pellets were formed and cultured through centrifugation, the secretion of extracellular matrix (ECM), which determines the characteristics of chondrocytes, was activated when cultured in a microstructure. It was confirmed that the cell culture on the microstructured substrate can be passaged several times without dedifferentiating chondrocytes.
  • ECM extracellular matrix
  • the redifferentiation characteristics of chondrocytes through microstructures are due to dedifferentiation in microstructured substrates as shown in FIG. Increased cell mass was seen to decrease. This mass reduction effect can be referred to as evidence of the re-differentiation effect since it is known that the size of the cells increases upon dedifferentiation of chondrocytes.
  • phase contrast microscopy which is important for real-time state analysis of cells in cell culture, yielded clear images such as TCPS at the 700 nm diameter level as shown in FIG.
  • TCPS clear images
  • the use of particles with a diameter of 3,000 nm or more makes it difficult to observe cells due to scattering effects and large height differences.
  • An adhesive polymer substrate made of Polydimethylsiloxane (PDMS) was prepared, including 10% by weight of a curing agent based on Silgard 184 (Dow Corning, USA).
  • Formed. 24 shows that AFM images and line profile data measured after coating about 1500 nm (1480 nm) of silica particles on PDMS and about 750 nm (740 nm) silica particles can be uniformly coated on a 150 mm Petri dish phase. Show a picture.
  • FIGS. 25 electron micrographs of the coating film formed by varying the average particle diameter of the silica particles at 160 nm, 330 nm, 740 nm, 1480 nm, 3020 nm, and 5590 nm are shown in FIGS. 25 (a), (b), (c), (d), ( e) and (f) are shown, respectively.
  • polystyrene particles 800 and 2010 nm particles are coated and shown in FIGS. 26A and 26B. 25 and 26, it can be seen that the centers are arranged in a hexagonal arrangement so that the silica particle diameters have a high density (hexagonal density). That is, according to the present invention it can be seen that the particles can be evenly coated with a single layer of high density.
  • polymer materials having a smooth surface other than PDMS and a smooth surface structure at a particle diameter level having elasticity and resilience can be used.
  • silicone-based polymers such as sealing tape and polymers added with plasticizers such as LLDPE and PVC wrap can align the particles in a single layer hexagonal density form.
  • Polymer particles coated with such particles can be used on their own or as a prototype in a transfer and injection process including other materials.
  • Chondrocytes isolated from human cartilage were individualized by collagen degrading enzyme, and then subcultured twice on a common tissue-cultured polystyrene (TCPS) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 constant temperature and incubated with 5% carbon dioxide.
  • TCPS tissue-cultured polystyrene
  • TCPS Cell passaged two times on a TCPS substrate, and the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass ( glass) and cultured on a cell culture substrate equipped with 160, 330, 750, 1500, 3010 nm diameter silica particles and 800 nm diameter polystyrene particle thin films prepared from Preparation Example 2.
  • TCPS SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)
  • glass glass
  • a cell culture substrate equipped with 160, 330, 750, 1500, 3010 nm diameter silica particles and 800 nm diameter polystyrene particle thin films prepared from Preparation Example 2.
  • collagen I could not be analyzed due to experimental problems, but the expression value of collagen II, an important cartilage marker, was 5 times higher than that of TCPS. .
  • the cells in each substrate cultured for 7 days were actin-skeletal stained and observed through a fluorescence microscope.
  • FIG. 30 cells were aggregated at a microstructured substrate of 160 to 750 nm at a low magnification of 40 ⁇ , but evenly spread like glass on a particle substrate of 1500 nm or more.
  • the linear skeletal structure was not well developed in the particle substrate having a particle size of 150 to 750 nm, but the skeletal structure was further developed in the particle substrate having a particle size of 1500 and 3000 nm. I could confirm it.
  • the substrate coated with particles having a large particle size of more than 1500 nm on PDMS did not suppress cytoskeletal structure formation due to the microstructure, and did not achieve cell aggregation, which is considered to have a significant effect on cell differentiation. .
  • the AFM image was measured and analyzed through a line profile as shown in FIG. 32. As a result, it was confirmed that the cells cultured on the substrate having a large particle diameter subsided toward the substrate. In addition, even when using the same silica particles of 750 nm as shown in Figure 33 it was observed that the hardness of the PDMS decreases significantly as the hardness of the PDMS decreases as the curing agent ratio of PDMS decreases.
  • the PDMS which is an elastic body
  • the PDMS which is an elastic body
  • the PDMS is settled toward the substrate while the particles are coated by the tension of the cells, thereby decreasing the relative height of neighboring particles, thereby reducing the inhibitory effect on the formation of the skeletal structure.
  • a height of 500 nm similar to glass was observed, and the cytoskeletal structure was also suppressed.
  • the coating of particles on a certain hardness of the elastomer can be used for analyzing or evaluating the tension of cells. It is characteristic that the part using hard particles as an intermediate medium because it is difficult to adhere to cells on the general soft elastomer surface.
  • TCPS tissue-cultured polystyrene
  • control group TCPS SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)
  • glass substrate 60, 150, 300, 700 nm diameter prepared from Preparation Example 2 Cultured on a cell culture substrate equipped with a thin film of silica particles.
  • chondrocytes are known to differentiate into cartilage through the formation of aggregates of some cells. From this point of view, the clinically effective chondrocytes of differentiation into chondrocytes can be obtained, but the technical goal is that It was expected to be feasible.
  • MG-63 Human osteoblasts (MG-63, cellline) were passaged on a common tissue-cultured polystyrene (TCPS) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 ° C. and 5% carbon dioxide.
  • TCPS tissue-cultured polystyrene
  • control group TCPS SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)
  • glass substrate 60, 120, 300, 700 nm diameter prepared from Preparation Example 1 Cultured on a cell culture substrate equipped with a thin film of silica particles.
  • RT-PCR was used to analyze the mRNA expression level of integrin, an adhesion protein, and E-Cadherin, a protein related to cell interaction.
  • integrin an adhesion protein
  • E-Cadherin a protein related to cell interaction.
  • the integrin value decreased as the particle size of the microstructure increased, and the interaction between cells was enhanced.
  • this is an analysis result using the cells cultured for 7 days, which does not mean that the initial cell adsorption on the microstructured substrate of large particle size is low, but the data explaining the difference obtained as the cells aggregated in the culture process. Has meaning.
  • PDMS Polydimethylsiloxane
  • FIG. 45 is an electron micrograph of a sample in which silica particles of about 750 nm (740 nm) are coated on PDMS at a 5% curing agent ratio, and then the particles are transferred onto a polymer substrate through a UV cured polymer.
  • 46 is an electron micrograph of a sample of about 300 nm of silica particles coated on PDMS at a 5% curing agent ratio and then transferring the particles onto a glass substrate using a glass film coating agent (silicate solution).
  • 47 confirms the formation of a structure about 70 nm high through image measurement and line profile via AFM. It is made of inorganic material and shows very high strength, and can be easily used as a mold of a polymer molding agent through an organic solvent or heat.
  • FIG. 48 and 49 are AFM images, line profile results, and electron microscope images of samples of a secondary mold made of UV-curable polymer in an intaglio form using a microstructured glass substrate manufactured by the method of FIG. 47. It can be seen that the intaglio mold is made in a very uniform form, and can be used as a mold to produce a molded body made of polystyrene and other materials.
  • polystyrene particles of 500 nm were coated on PDMS at a 4% curing agent ratio and then transferred to a glass substrate through a glass film coating agent.
  • the glass substrate on which the polystyrene particles were transferred was immersed in chloroform, which is an organic solvent, to dissolve the polystyrene particles, and the electron microscope was measured to prepare a negative microstructured substrate having a constant depth as shown in FIG. 49.
  • chloroform which is an organic solvent
  • the spherical particle-aligned microstructured substrate made of the polymer was produced as shown in FIG. 50.
  • the above-mentioned methods can be used to easily manufacture polymer substrates having hexagonal dense structure in which particles are aligned.
  • the above methods can be easily implemented on a large area of 150 mm or more, as shown in FIG. 24, and can be manufactured in sizes up to several meters.
  • the microstructured substrate for cell culture can be produced simply from several materials without complicated process.
  • Such particle coating and injection-type microstructured substrates are considered to be an excellent cell culture-related technology that reduces the concern about side effects and high cost of the experimental methods using drugs.

Abstract

The cell culture substrate of the present invention has a microstructure satisfying several important factors that should be considered to effectively provide three-dimensional cell culture environments. In the microstructure, cells are cultured and aggregated in the form of a three-dimensional micropellet having a flower-like shape, dedifferentiation is suppressed and redifferentiation is promoted during cell culture, the development of a cytoskeleton structure is suppressed, and the fluidity and mobilization of cells are increased.

Description

세포배양 기판Cell culture substrate
본 발명은 세포 배양 특성이 우수한 미세구조를 갖는 세포배양 기판에 관한 것이다.The present invention relates to a cell culture substrate having a microstructure excellent in cell culture properties.
의료기술 및 생명공학 기술이 급속히 발전되면서 세포수준에서 생명활동을 관찰하고 특성을 부여하는 기술인 세포공학에 대한 연구가 활발히 이루어지고 있다. 최근의 세포공학관련 기술은 기초적인 배지조성 조절 및 약물처리를 통한 연구 단계에서 세포가 흡착하고 성장하는 지지체에 특수한 기능을 부여하는 단계로 변화되고 있다. 지지체에 대한 연구 방향은 기존의 세포의 흡착 및 증식을 돕도록 이온성 물질 및 생체 유래 물질을 플라스틱이나 무기물에 코팅하는 방법에서 미세 가공기술을 통해 지지체 표면에 미세구조를 형성시키고 이를 통해 세포의 특성을 조절하는 방법으로 빠르게 발전되고 있다.With the rapid development of medical technology and biotechnology, research on cell engineering, a technology for observing and characterizing bioactivity at the cellular level, is being actively conducted. Recently, the technology related to cell engineering has been changed to give a special function to the support on which cells are adsorbed and grown in the research stage through basic media composition control and drug treatment. The research direction of the support is to form microstructures on the surface of the support through micro-processing technology in the method of coating ionic materials and bio-derived materials on plastics or inorganic materials to help the adsorption and proliferation of existing cells. It is rapidly evolving as a way to control the
세포의 생존을 위해서는 세포막을 통한 물질의 수송 및 세포막에 부유상태로 존재하는 막 단백질을 통한 신호전달이 필요하며, 지지체 표면의 미세구조는 이러한 세포막을 원하는 형태로 변형시켜 세포의 흡착 및 증식, 분화 특성을 조절하는 방법으로 이용이 가능하다. 이미 미세구조에 의해 세포의 흡착 및 증식을 조절하는 연구들이 2000년 중반 이후로 급속히 보고되고 있으며, 이러한 특성 조절이 기존의 약물과 병행하여 적용됨으로써 기존의 세포공학적인 한계점들을 해결할 수 있을 것으로 예견되어진다.In order to survive the cell, transport of material through the cell membrane and signaling through membrane proteins suspended in the cell membrane are required, and the microstructure of the surface of the support transforms the cell membrane into a desired shape, thereby adsorbing, proliferating and differentiating the cell. It can be used as a way to adjust the characteristics. Researches on the control of cell adsorption and proliferation by microstructure have been reported rapidly since the mid-2000s, and it is anticipated that these characteristics can be applied in parallel with existing drugs to solve the existing cellular engineering limitations. Lose.
세포 배양을 위한 미세구조 지지체의 제조방법은 3가지 방법이 널리 이용되며 다음과 같은 특징을 지닌다. Three methods of preparing a microstructured support for cell culture are widely used and have the following characteristics.
1) Photo-lithography method 1) Photo-lithography method
: 기존 반도체 제조공정을 이용하여 원하는 형태로 최소 10 ~ 100 nm 수준의 선폭을 지니는 기판을 제작한다. 보통 수 m 면적의 소형기판의 제작만이 가능하며, 높은 제조비용으로 인하여 세포 특성연구 분야에 제한적으로 사용된다.  : Using the existing semiconductor manufacturing process, to manufacture a substrate having a line width of at least 10 ~ 100 nm in the desired form. Normally, only a few m of small substrates can be manufactured, and due to the high manufacturing cost, they are limited to the field of cell characterization.
2) Particle-coating method 2) Particle-coating method
: 수십 ~ 수백 nm의 구형 파티클을 기판위에 코팅하여 파티클에 의한 불규칙적인 구조를 가지는 기판을 제작한다. 스핀코팅 방법 등을 통해 ~ 15 cm 직경의 대형 기판 제작이 가능하고, 제조비용이 저렴하여 가장 상업적인 응용이 가능하다. 하지만 불규칙적인 구조를 지니며, 기판의 균일도 및 재현성이 떨어지는 문제가 있다. : A spherical particle of several tens to hundreds of nm is coated on a substrate to prepare a substrate having an irregular structure by particles. It is possible to manufacture large substrates with a diameter of 15 cm through spin coating, etc., and the most commercial applications are possible due to the low manufacturing cost. However, having an irregular structure, there is a problem inferior to the uniformity and reproducibility of the substrate.
3) Etching method 3) Etching method
: 금속 표면을 전해질용액 상에서 전기를 흘려주어 산화된 금속 표면에 규칙적인 pore를 형성한다. 전압이나 전해질의 조성을 조절하여 다양한 크기의 pore를 제작할 수 있으나, pore의 직경이 증가할수록 세포가 흡착될 수 있는 면적이 급격히 감소되어 지지체로 사용이 어려워진다. 직경 조절 이외의 원하는 형태로의 구조형성은 불가능 하며, 제조비용은 저렴하다. : The surface of the metal is flowed on the electrolyte solution to form regular pores on the oxidized metal surface. The pore of various sizes can be manufactured by adjusting the voltage or the composition of the electrolyte, but as the diameter of the pore increases, the area where the cells can be adsorbed is rapidly reduced, making it difficult to use as a support. It is impossible to form the structure into a desired shape other than diameter control, and manufacturing cost is low.
<참조특허문헌><Reference Patent Documents>
한국특허공개 2011-0094753Korean Patent Publication 2011-0094753
종래의 단층배양환경의 세포 배양 기판은 세포배양 중 세포가 빠르게 고유 특성을 상실하는 탈분화 현상 및 줄기세포를 원하는 형태로 분화시키기 어렵다는 한계를 가지고 있다. 이는 생체내 환경과 상이한 배양 환경에서 세포를 배양하기 때문에 나타나는 문제점들로 판단되어 진다. 세포 부착면이 매끈한 평면을 가지는 특징으로 인해 수십 nm 수준의 복잡한 구조 및 3차원적 환경을 가지고 있는 생체 내 세포들과 달리 매끈한 평면 기판상에서 세포들의 골격 구조가 발달되고 이로 인해 세포의 유동성 및 이동성 저하를 비롯한 세포간 상호작용이 감소하는 결과가 나타난다. The conventional cell culture substrate of a monolayer culture environment has a limitation in that it is difficult to differentiate the stem cells into a desired form and dedifferentiation phenomenon in which cells rapidly lose their intrinsic properties during cell culture. This is considered to be a problem due to culturing cells in a culture environment different from the in vivo environment. Due to the smooth surface of the cell attachment surface, unlike in vivo cells with complex structure and three-dimensional environment of several tens of nm, the skeletal structure of the cells is developed on the smooth flat substrate, which reduces cell fluidity and mobility. This results in a decrease in intercellular interactions.
본 발명은 상기의 문제점을 개선할 수 있는, 세포 배양시 세포 고유특성을 유지하거나 또는 원하는 방향으로 세포의 분화를 촉진하는 특징을 가지도록 단층배양 환경에서 세포간 상호작용을 강화시키는 미세구조의 세포 배양 기판을 제공하는 것을 목적으로 한다.The present invention provides a microstructured cell that enhances intercellular interactions in a monolayer culture environment, which can improve the above problems, and has characteristics that maintain cell intrinsic properties in cell culture or promote differentiation of cells in a desired direction. It is an object to provide a culture substrate.
세포의 성장 및 분화에 있어서 세포는 수십 nm 이하의 단백질 및 세포막 구조를 통해서 주변 환경을 인식하고 그에 맞추어 자신의 상태를 결정하게 된다. 세포 배양시 탈분화를 억제하고 재분화를 촉진하기 위해서, 세포들이 서로 접촉할 수 있는 3차원적 환경을 제공하는 것이 중요하다.In the growth and differentiation of cells, the cell recognizes its environment through its protein and cell membrane structure of several tens of nm or less and determines its state accordingly. In order to inhibit dedifferentiation and promote redifferentiation in cell culture, it is important to provide a three-dimensional environment in which cells can contact each other.
3차원적 환경을 제공하기 위한 방법으로서, 기판 표면에 미세입자를 도포함으로써 미세구조를 도입하는 것을 고려하였다. 이에 대해 연구하던 중 몇 가지 인자들이 세포 배양에 있어 중요하게 작용할 수 있음을 발견하였다(본 명세서에서의 미세란 용어는 나노 크기부터 마이크로 크기 범위내 인 것을 의미한다).As a method for providing a three-dimensional environment, it has been considered to introduce the microstructure by applying the microparticles to the surface of the substrate. While studying this, it was found that several factors could play an important role in cell culture (the term micron in this specification means within the nano to micro size range).
본 발명에서는 도면 1과 2에서 보여주는 육방의 벌집구조로 높낮이 단차를 가지는 구조체가 배열됨에 따라서 나타나는 전방향에 대한 반복적인 높낮이 단차형성과 부드러운 곡면 및 사면구조로 인해 세포막이 구조체 사이로 부착될 수 있는 형태가 바람직하다. 기존의 photo lithography를 이용한 패턴된 식각방법 및 전기산화방식을 통해 제작된 틀을 이용한 방식은 경사도가 큰 사면 및 경계면이 제작되어 세포가 구조체 사이로 부착되기 어려우며, 도 2의 상단그림과 같이 구조체 상단부에만 부착이 집중되어 선형의 골격구조가 형성되게 된다. 하지만, 구형 입자를 이용하여 제작되는 구조체들은 낮은 경사각의 연속적인 곡면 또는 사면구조를 가지게 되면서 상단부의 면적은 적으면서도, 도 2의 하단과 같이 단위면적 대비 넓은 면적의 부착이 이루어 지게되어 선형 골격구조(stress fiber)가 발달하지 않게 된다. 이러한 선형 골격 구조의 저해는 부착된 세포가 기판상에서 이동하면서 주변 세포와 뭉쳐지게되는 특성을 가져오게 된다. 개별적인 세포들이 기판 전 면적에서 이러한 이동을 하면서 수많은 작은 면적의 미소 세포 펠렛(pellet)들을 만들게 된다. 이러한 미소 세포 펠렛들은 이웃한 세포들간의 상호작용을 강화 시키면서도, 펠렛 외각에 위치한 세포들을 통해 증식은 지속되는 매우 특수한 특성을 지닌다. 미세구조를 통해 수많은 미세 세포 펠렛을 형성되게 함으로써, 생체내 환경과 유사하게 세포의 상호작용이 강화되어 기존 평탄한 구조의 기판 또는 본 발명에서 제안하는 것과는 다른 구조를 지니는 미세구조의 기판에서는 얻을 수 없었던 연골세포의 재분화 및 줄기세포를 연골세포로 분화 시키는 결과를 얻을 수 있었다.In the present invention, the cell membranes can be attached between the structures due to the repetitive height step formation and smooth curved and sloped structures in all directions as the structures having the height step are arranged in the hexagonal honeycomb structure shown in FIGS. 1 and 2. Is preferred. The patterned etching method using the conventional photo lithography method and the method using the frame produced by the electrooxidation method are difficult to attach cells between the structures due to the production of the slope and the boundary surface having a large inclination, and only the upper part of the structure as shown in the upper figure of FIG. Adhesion is concentrated to form a linear skeletal structure. However, the structures manufactured by using spherical particles have a continuous curved or sloped structure having a low inclination angle, while having a small area at the upper end, but having a larger area compared to the unit area as shown in the lower part of FIG. (stress fiber) will not develop. Inhibition of this linear skeletal structure results in the adherence of attached cells with the surrounding cells as they move on the substrate. Individual cells make this movement across the entire substrate, creating numerous small area microcellular pellets. These microcellular pellets have a very special feature that enhances the interaction between neighboring cells, while proliferating through the cells located outside the pellets. By forming a large number of fine cell pellets through the microstructure, the interaction of the cells is enhanced similar to the in vivo environment, which could not be obtained from the conventional flat structure substrate or the microstructured substrate having a structure different from that proposed in the present invention. The differentiation of chondrocytes and the differentiation of stem cells into chondrocytes were obtained.
본 발명에서, 상기 3차원적 미소 펠렛 이란 대체로 수십 ㎛ ~ 수 mm의 크기로 세포들이 3차원적으로 뭉쳐서 배양되는 형태를 의미한다. 이러한 3차원적 미소 펠렛이 자라면서 인접 미소 펠렛과 접하게 되고 함께 응집되는 과정을 거치면서 세포가 배양되게 된다.In the present invention, the three-dimensional micro-pellet means a form in which cells are three-dimensionally aggregated and cultured in a size of several tens of micrometers to several mm. As these three-dimensional micro pellets grow, they come into contact with adjacent micro pellets and undergo agglomeration together, thereby culturing the cells.
상기 3차원적 미소 펠렛은 초반에 꽃 유사 형상을 나타낼 수 있다. 꽃 유사 형상이란 중앙에 세포들이 응집되어 있는 코어 영역을 주변 세포들이 삐죽한 형태로 둘러싼 형상을 의미한다. 이러한 형태가 나타나는 이유는 본 발명의 미세구조 특성상 내부 골격 구조의 발달이 억제되고, 세포의 유동성이 증가되어 세포가 뭉쳐지는 특성이 나타나기 때문이다.The three-dimensional micro pellets may initially exhibit a flower-like shape. The flower-like shape refers to a shape in which surrounding cells surround the core area where cells are aggregated in the center. The reason for this appearance is that the microstructure of the present invention suppresses the development of the internal skeletal structure, and increases the fluidity of the cells, resulting in the aggregation of the cells.
본 발명의 세포배양기판의 표면 구조에서 연골세포가 배양되는 경우, 세포 배양 속도는 평탄한 기판에 비하여 떨어지는 면이 있다. 이는 연골세포가 안정적인 내부 골격구조를 이루지 못하여, 세포간 응집체가 이루어진 후 증식이 시작되기 때문인 것으로 예상된다. 그러나 탈분화된 연골세포가 평탄한 2차원 배양기판인 TCPS 기판과 달리 연골세포로 재분화되며, 이를 통해 더 많은 차례의 계대배양을 더 진행할 수 있다. 이러한 특징으로 배양시간이나 계대배양 횟수를 늘림으로써 최종적으로 더욱 많은 유효 세포수를 얻을 수 있다. When chondrocytes are cultured in the surface structure of the cell culture substrate of the present invention, the cell culture rate is lower than that of the flat substrate. It is expected that the chondrocytes do not form a stable internal skeletal structure and proliferate after the intercellular aggregates are formed. However, unlike the TCPS substrate, which is a flat two-dimensional culture substrate, the dedifferentiated chondrocytes are re-differentiated into chondrocytes, thereby allowing more passages of passage. With this feature, more effective cell numbers can be finally obtained by increasing the incubation time or the number of passages.
일례로, 탈분화가 진행중인 연골세포를 배양하는 경우 콜라겐 type 2의 mRNA 발현값(연골세포 마커임)이 TCPS 기판과는 비교할 수 없을 정도로 우수한 것을 확인할 수 있다. 이는 3차원적 구조의 세포 배양시 분화 특성이 우수한 다른 세포의 경우에도 마찬가지로 적용된다. 일례로 중간엽 줄기세포 (mesenchymal stem cell, MSC), 근육 유래 줄기세포 등을 들 수 있다.For example, when culturing chondrocytes undergoing dedifferentiation, collagen type 2 mRNA expression value (which is a chondrocyte marker) can be confirmed to be superior to that of TCPS substrate. The same applies to other cells having excellent differentiation characteristics in cell culture of three-dimensional structure. Examples include mesenchymal stem cells (MSCs), muscle stem cells, and the like.
본 발명의 세포 배양기판의 미세구조는 연골세포 배양 테스트시 콜라겐 type 2의 mRNA 발현값이 초기 계대 단계 세포 (passage 0 ~ 대비 30% 이상을 제공할 수 있다. 미세입자의 입경에 따라서는 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 70% 이상, 많기로는 100% 이상의 제공도 가능하다. In the microstructure of the cell culture substrate of the present invention, the mRNA expression value of collagen type 2 in the chondrocyte culture test may provide more than 30% of the initial passage cell (passage 0 to 30. Collagen type depending on the particle size of the microparticles). 2 mRNA expression value of 70% or more than the initial culture, in many cases can be provided more than 100%.
본 발명은 세포간 상호작용을 효과적으로 강화시키는 세포 응집을 유도하기에 적합한 미세구조의 세포배양기판의 구조를 제안하는데 목적이 있다. 다양한 제조예 및 실시예를 통해 대면적상 제작된 기판에서 효과적으로 연골세포 및 줄기세포등의 다양한 분화특성 조절을 관찰 하였으며, 그로인해 얻어진 결과가 기존 방법들에 비하여 우수한 결과를 나타냈다. 특히, 모든 결과들이 일반적인 세포배양 환경 (배지, 온도, pH등)에서 이루어졌으며, 약물 및 특별한 장비가 필요하지 않은 일반적 페트리 디쉬를 이용한 단층 배양환경 상에서 적용 가능한 기술이다.It is an object of the present invention to propose a structure of a microstructured cell culture substrate suitable for inducing cell aggregation to effectively enhance intercellular interaction. Through various preparation examples and examples, the control of various differentiation characteristics such as chondrocytes and stem cells was effectively observed on the large-area substrate, and the result obtained showed superior results compared to the conventional methods. In particular, all results were made in a general cell culture environment (medium, temperature, pH, etc.), and is a technique applicable to a monolayer culture environment using a general Petri dish, which does not require drugs and special equipment.
미세구조 기판은 유리재질인 실리카 성분을 포함하여 폴리스티렌 재질일 수 있으며, 다른 세포상 배양이 가능한 다양한 재료로 제작이 가능하다. 면적이 50 ~ 10,000㎠ 인 대면적일 수 있다. 또한, 필요에 의해서 미세구조가 형성된 세포 배양기판은 별도로 유기 분자, 생체 유래 물질, 또는 폴리머로 표면처리될 수 있다. 이 경우에도 세포의 응집이 유도되는 3차원적 배양이 이루어질 수 있다. 구체적으로, 아민 화합물, 하이드록시 화합물, 카르복실 화합물, 티올 화합물, 콜라겐, 피브로넥틴, 펩타이드, 또는 Poly-L-Lysine 등으로 표면 처리가 가능하다. 또한, 미세 박막상에 세포 배양시 표면 친수성을 증가시키기 위해 UV/Ozone 및 플라즈마를 통한 산화 처리도 가능하며, 추가적으로 생체 고분자 및 전하성 고분자등을 이용한 다양한 표면처리도 가능하다. 다양한 표면 처리는 기판 표면과 세포와의 상호작용에 영향을 주어서 다양한 세포의 성장 및 분화 방향을 제어할 수 있다. 예를 들어, 기판과 강한 결합을 유도하는 물질을 코팅하거나 특정한 분화 유도 물질을 코팅하여 일반적인 평탄한 기판에서는 나타날 수 없는 방향으로 세포의 성장 및 분화를 유도할 수 있을 것으로 기대된다.The microstructured substrate may be made of polystyrene, including a silica component, which is a glass material, and may be made of various materials capable of different cell cultures. It may have a large area of 50 to 10,000 cm 2. In addition, the cell culture substrate having a microstructure formed as necessary may be separately surface treated with organic molecules, biologically derived materials, or polymers. In this case, three-dimensional culture may be performed in which aggregation of cells is induced. Specifically, surface treatment is possible with an amine compound, hydroxy compound, carboxyl compound, thiol compound, collagen, fibronectin, peptide, or Poly-L-Lysine. In addition, oxidation treatment through UV / Ozone and plasma is possible to increase surface hydrophilicity when culturing cells on a fine thin film. In addition, various surface treatments using biopolymers and charge polymers are also possible. Various surface treatments can affect the interaction of the substrate surface with the cells to control the direction of growth and differentiation of the various cells. For example, it is expected that by coating a material that induces strong bonding with the substrate or by coating a specific differentiation inducing material, it is possible to induce cell growth and differentiation in a direction that cannot be found in a general flat substrate.
본 발명의 실시예에 따른 세포 배양기판은, 양각의 구조체 중 80% 이상이 규칙적으로 배치되어 존재하는 표면 구조를 갖는 세포 배양기판으로서, 상기 양각의 구조체의 높이를 b라 하고, 구조체의 밑면의 길이를 2a라고 할 때(단, 상기 양각의 구조체가 바닥면에서 멀어질 때 횡단면의 면적이 증가하는 구간이 있는 형상인 경우, 상기 밑면은 횡단면의 면적이 최대인 위치를 의미하고, 상기 높이는 횡단면 면적이 최대인 위치와 구조체 최상부와의 거리를 의미), 0.25a < b < 1.5a를 만족하는 세포 배양기판인 것이 좋다. 양각의 구조체는 규칙적일수록 세포 배양의 균일성, 재현성 등이 우수하여 바람직하다. 실질적으로 양각 구조체 전체가 규칙적으로 배열되는 것이 좋으며, 바람직하기로는 전체 양각 구조체들 중 80% 이상이 규칙적으로 배치되는 것이 좋다.A cell culture substrate according to an embodiment of the present invention is a cell culture substrate having a surface structure in which at least 80% of the relief structures are regularly arranged and present, wherein the height of the relief structure is b, and the bottom surface of the structure When the length is 2a (However, when the embossed structure is away from the bottom surface when the area of the cross section is increased in shape, the bottom surface means the position where the area of the cross section is the maximum, the height is the cross section) Means a cell culture substrate satisfying 0.25a < b < 1.5a. The more regular the relief, the better the uniformity, reproducibility, etc. of cell culture, and the more preferable. Substantially the entire relief structure is preferably arranged regularly, preferably at least 80% of the entire relief structure is preferably arranged regularly.
b의 값이 상기 범위 미만인 경우에는 미세 나노구조의 효과를 얻기가 어려울 수 있으며, b의 값이 상기 범위를 초과하는 경우 양각 구조체의 경사도가 커서 세포가 구조체 사이로 부착되기 어려우며, 구조체 상단부에만 부착이 집중되어 선형의 골격구조가 형성될 수 있다. 보다 바람직하게는, 0.5a < b < 1.3a, 특히 0.8a < b < 1.2a를 만족하는 것이 좋다. When the value of b is less than the above range, it may be difficult to obtain the effect of the micro-nanostructure, and when the value of b exceeds the above range, the inclination of the relief structure is large, making it difficult to attach cells between the structures, It can be concentrated to form a linear framework. More preferably, 0.5a <b <1.3a, in particular 0.8a <b <1.2a, is satisfied.
상기 양각 구조체는 다양한 모양으로 제작될 수 있으며, 측단면의 형상이, 구형, 반구형, 타원형, 반타원형, 사다리꼴, 계단형, 삼각형 중 어느 하나일 수 있다. 상기 규칙적인 양각 구조체는 정렬된 구형입자로 이루어질 수 있다. 또한, 상기 규칙적인 양각 구조체는 세포 배양기판의 기재와 일체형으로 몰드로 제작될 수 있다.The embossed structure may be manufactured in various shapes, and the shape of the side cross section may be any one of a spherical shape, a hemispherical shape, an oval shape, a semi-elliptic shape, a trapezoid shape, a step shape, and a triangle. The regular relief structure may consist of aligned spherical particles. In addition, the regular relief structure may be manufactured in a mold integrally with the substrate of the cell culture substrate.
세포 배양기판의 표면에서 상기 양각의 구조체가 차지하는 면적이 전체 면적의 40% 이상, 특히 49% 이상을 차지하는 것이 좋다. 그 미만의 경우에는 평면 면적이 증가하여 세포 골격이 발달할 수 있다. 더욱 좋기로는 세포 배양기판의 표면에서 상기 양각의 구조체가 차지하는 면적이 전체 면적의 70% 이상, 특히 80% 이상을 차지하는 것이 좋다.The area occupied by the relief structure on the surface of the cell culture substrate is preferably at least 40%, particularly at least 49% of the total area. If it is less than that, the planar area can be increased to develop the cytoskeleton. More preferably, the area occupied by the relief structure on the surface of the cell culture substrate is preferably 70% or more, particularly 80% or more of the total area.
한편, 세포 배양기판의 표면 구조는, 200 nm ~ 2 um 이내의 간격으로 170 nm ~ 1 um의 반복적인 높낮이 단차로 인해 선형의 세포골격구조 형성이 억제되도록 하는 것이 좋다. On the other hand, the surface structure of the cell culture substrate, it is good that the formation of a linear cytoskeletal structure due to the repetitive height step of 170 nm ~ 1 um at intervals within 200 nm ~ 2 um.
특히, 2 um × 2 um의 단위면적으로 세포 배양기판을 가상으로 영역 분할할 때, 평탄면을 이루는 단위면적이 단위면적 개수 기준으로 10% 미만, 보다 좋기로는 5% 미만, 더욱 좋기로는 존재하지 않는 것이 좋다. 이로부터 세포 골격구조의 형성이 억제될 수 있으며, 탈분화 효과 등 세포 배양 특성이 우수해질 수 있다.In particular, when virtually dividing the cell culture substrate into a unit area of 2 μm × 2 μm, the unit area constituting the flat surface is less than 10%, more preferably less than 5%, more preferably, based on the number of unit areas. It doesn't exist. From this, formation of the cytoskeletal structure can be suppressed, and cell culture characteristics such as dedifferentiation effect can be excellent.
또한, 2 um × 0.1 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 단위면적 개수 기준으로 20% 미만, 좋기로는 10% 미만, 보다 좋기로는 5% 미만, 더욱 좋기로는 존재하지 않는 것이 좋다. 이로부터 세포 골격구조의 형성이 억제될 수 있으며, 탈분화 효과 등 세포 배양 특성이 우수해질 수 있다.In addition, when dividing the cell culture substrate into a unit area of 2 um x 0.1 um, the unit area constituting the flat surface is less than 20%, preferably less than 10%, more preferably less than 5%, based on the number of unit areas, More preferably, it doesn't exist. From this, formation of the cytoskeletal structure can be suppressed, and cell culture characteristics such as dedifferentiation effect can be excellent.
한편, 상기 양각 구조체의 존재로 인해 얻어지는 세포 배양기판 표면 특성이 다음을 만족하는 세포 배양기판인 것이 좋다.On the other hand, the cell culture substrate surface characteristics obtained due to the presence of the relief structure is preferably a cell culture substrate that satisfies the following.
Rq ≤0.26bRq ≤0.26b
(여기서, Rq는 표면 거칠기(Surface Roughness)이며, b는 높이를 나타낸다.) 상기 양각 구조체의 높이 b는 50nm ~ 10의 범위일 수 있으며, 특히 양각 구조체의 높이 b는 150nm ~ 3㎛의 범위일 수 있다. 표면 거칠기(Surface Roughness)는 제한되지 않으나 25nm ~ 1000nm일 수 있다. 상기의 범위내에서 세포 골격구조의 형성이 억제될 수 있으며, 탈분화 효과 등 세포 배양 특성이 우수해질 수 있다.Where Rq is Surface Roughness and b represents height. The height b of the relief structure may range from 50 nm to 10, in particular the height b of the relief structure ranges from 150 nm to 3 μm. Can be. Surface roughness is not limited but may be 25 nm to 1000 nm. Formation of the cytoskeletal structure can be suppressed within the above range, and cell culture characteristics such as dedifferentiation effect can be excellent.
또한, 상기 양각 구조체들은 서로 상하로 중첩되지 않거나 서로 상하로 중첩된 양각 구조체가 2% 미만으로 존재하는 것이 좋다.In addition, the relief structures may be present in less than 2% of the relief structures do not overlap each other up or down.
기존의 TCPS 기판과 대비할 때 본 발명의 실시예에 따른 세포 배양기판은 다음과 같은 차이점을 가질 수 있다. 즉, 다수의 3차원적 미소 펠렛(pellet)이 형성되면서 세포가 배양되는 특성을 가질 수 있다. 상기 3차원적 미소 펠렛은 초기에 꽃 유사 형상을 가지며, 초기 세포 증식 속도는 늦고, 재분화 또는 분화율이 높은 특성의 미세구조를 갖고, 탈분화가 억제되거나 특정 세포로 분화되도록 하는 특성의 미세구조를 갖고, 연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 (passage 0 ~ 대비 30% 이상, 특히 70% 이상을 나타내는 특성의 미세구조를 갖고, 세포 골격 구조의 형성이 억제되는 미세 구조를 가질 수 있다. 또한, 첨가물 없이도 줄기세포 배양시 분화과정에서 콜라겐 type 2의 발현이 증가되는 미세구조를 가질 수 있다. 또한, 줄기세포의 분화 특성이 향상 또는 조절되는 특성의 미세구조를 가지며, 분화과정의 세포의 분화능을 향상시키는 특성의 미세구조를 가질 수 있다. As compared with the conventional TCPS substrate, the cell culture substrate according to the embodiment of the present invention may have the following differences. That is, a plurality of three-dimensional micro pellets (pellets) are formed can have the characteristics that the cells are cultured. The three-dimensional micro pellets initially have a flower-like shape, the initial cell proliferation rate is slow, has a microstructure of the characteristics of high re-differentiation or high differentiation rate, and the microstructure of the characteristic to suppress dedifferentiation or to differentiate into specific cells In the case of culturing chondrocytes, the mRNA expression value of collagen type 2 has a microstructure of the characteristic that shows the initial culture (30% or more, especially 70% or more, compared to the passage 0 ~ pass), and the formation of the cytoskeletal structure is suppressed. In addition, even without an additive, it may have a microstructure in which the expression of collagen type 2 is increased during the differentiation process in the culture of stem cells, and also has a microstructure in which the differentiation characteristics of stem cells are improved or controlled. In addition, it may have a microstructure of a characteristic of improving the differentiation capacity of the cells of the differentiation process.
본 발명의 세포 배양기판의 다양한 일례를 이하에서 구체적으로 설명한다.Various examples of the cell culture substrate of the present invention will be described in detail below.
먼저, 미세입자를 이용한 세포 배양기판을 설명한다.First, a cell culture substrate using microparticles will be described.
3차원적 환경을 제공하기 위한 방법의 하나로서, 기판 표면에 도포된 미세입자의 입경과 표면 거칠기의 상관관계가 중요함을 발견하였다. 미세입자의 입경 대비 표면 거칠기가 특정 범위를 넘어서는 경우에는 미세입자의 불규칙한 배열로 인해 세포들에게 고른 표면환경을 제공하기 어려워 우수한 재현성 확보가 어려운 점 등 세포 배양 특성이 떨어지는 것으로 나타났다. 이에 비해 미세입자의 입경 대비 표면 거칠기가 특정값보다 낮은 경우 재현성 등 세포 배양 특성이 우수한 것으로 나타났다. As one of the methods for providing a three-dimensional environment, it has been found that the correlation between the particle diameter of the microparticles applied to the substrate surface and the surface roughness is important. When the surface roughness to the particle size of the fine particles exceeds a certain range, it is difficult to provide an even surface environment to the cells due to the irregular arrangement of the microparticles, which makes it difficult to obtain excellent reproducibility. In comparison, when the surface roughness of the microparticles was lower than a specific value, cell culture characteristics such as reproducibility were excellent.
미세입자의 입경과 표면 거칠기의 상관관계는 다음과 같은 것이 좋다. 즉, 기재상에 미세입자가 배열되어 형성된 박막이 구비된 세포 배양기판으로서, 구형의 미세입자 배열에 의해 얻어지는 표면 특성이 다음을 만족하는 세포 배양기판인 것이 좋다.Correlation between the particle diameter of the fine particles and the surface roughness is as follows. That is, it is preferable that the cell culture substrate having the thin film formed by arranging the fine particles on the substrate is a cell culture substrate satisfying the following surface characteristics obtained by the spherical fine particle array.
Rq ≤0.13DRq ≤0.13D
여기서, Rq는 표면 거칠기(Surface Roughness)이며, D는 미세입자의 평균입경을 나타낸다. 상기 범위를 벗어나는 경우 불규칙한 배열이 늘어나고 배양과정에서 세포 간 노출환경이 변화되어 재현성 있는 결과 도출이 어렵게 된다. 재현성에 문제가 있는 경우에는 상용화에 큰 걸림돌이 될 수 있기 때문에 중요한 요소가 된다.Here, Rq is Surface Roughness, and D is the average particle diameter of the fine particles. If it is out of the above range, the irregular arrangement increases and the exposure environment between cells is changed during the culturing process, which makes it difficult to derive reproducible results. If there is a problem in the reproducibility is an important factor because it can be a big obstacle to commercialization.
보다 바람직하기로는 다음의 식을 만족하는 것이 좋다.More preferably, the following formula is satisfied.
Rq ≤0.12D Rq ≤0.12D
특히, 탈분화 억제, 재분화 유도, 및/또는 세포 골격 구조 발달의 억제, 3차원 미소 펠렛 형성 유도 등 세포 배양 특성을 더욱 우수하게 가져가기 위해서는 다음의 조건을 만족하는 것이 좋다. 상기 미세입자의 평균입경은 250nm ~ 10㎛의 범위, 더 좋기로는 300nm ~ 3㎛ 범위인 것이 좋다. 상기 범위 미만에서는 도 15에서와 같이 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소한다. 상기 범위를 초과하는 경우 산란에 의한 위상차 현미경의 관찰이 어려워져서 배양시 세포상태의 실시간 관찰을 할 수 없다. 또한, 세포의 직경(5 ~ 30 ㎛)과 유사한 수준의 구조 직경으로 인해 구조위에 세포가 자라는 형태가 아닌 세포가 구조 사이에 갇힐 가능성이 높아진다. In particular, in order to obtain more excellent cell culture characteristics such as inhibition of dedifferentiation, induction of re-differentiation, and / or inhibition of cytoskeletal structure development, and induction of three-dimensional micropellet formation, it is preferable to satisfy the following conditions. The average particle diameter of the fine particles is preferably in the range of 250 nm to 10 μm, more preferably in the range of 300 nm to 3 μm. Below the range, as shown in FIG. 15, the effect of inhibiting the development of skeletal structure of the cell is reduced, thereby reducing the effect of redifferentiation into chondrocytes. If the above range is exceeded, observation of a phase contrast microscope due to scattering becomes difficult, and real-time observation of the cell state during culture cannot be performed. In addition, structure diameters similar to the diameter of the cells (5 to 30 μm) increase the likelihood that cells will be trapped between structures, rather than the cells growing on the structures.
표면 거칠기(Surface Roughness)는 25nm ~ 1000nm범위가 좋으며, 더욱 바람직하기로는 표면 거칠기가 30nm ~ 300nm 범위가 좋다. 상기 범위 미만에서는 전술한 바와 같이, 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소하며, 상기 범위를 초과하는 경우 배양시 세포상태의 실시간 관찰이 어렵고, 세포가 구조 사이에 갇힐 가능성이 높아진다. The surface roughness is preferably in the range of 25 nm to 1000 nm, and more preferably in the range of 30 nm to 300 nm. Below the range, as described above, the effect of inhibiting the development of the skeletal structure of the cell is reduced and the effect of re-differentiation into chondrocytes is reduced. If the range is exceeded, it is difficult to observe the cell state in culture in real time. You are more likely to get stuck in.
표면 단차는 170nm ~ 10 ㎛가 좋으며, 특히 200nm ~ 1.5 ㎛ 범위가 좋다. 상기 범위 미만에서는 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소하며, 상기 범위를 초과하는 경우 배양시 세포상태의 실시간 관찰이 어렵고, 구조위에 세포가 자라는 형태가 아닌 세포가 구조 사이에 갇힐 가능성이 높아진다. The surface level is preferably 170 nm to 10 μm, particularly in the range of 200 nm to 1.5 μm. Below the above range, the effect of inhibiting the development of the skeletal structure of the cell is reduced, and the effect of re-differentiation into chondrocytes is reduced. If the above range is exceeded, it is difficult to observe the cell state in culture in real time, and the cell is not in the form of the cell growing on the structure. Is more likely to be trapped between structures.
미세입자의 재질은 제한되지 않는다. 무기물, 유기물, 또는 금속이거나 이들의 복합체일 수 있다. 바람직하기로는 실리카 입자가 좋다. 실리카 입자에는 표면 코팅되거나 표면처리되어 개질된 것도 포함된다. The material of the fine particles is not limited. It may be inorganic, organic, or metal or a complex thereof. Preferably, silica particles are preferable. Silica particles include those that have been surface coated or surface treated and modified.
또 다른 인자로서, 미세입자 1개가 6개의 미세입자로 둘러싸여 있는 형상, 특히 헥사고날 형태로 배열되는 것이 세포 골격 구조의 발달을 저하시킬 수 있는 것을 발견하였다. 헥사고날 형태에서는 세포 골격 구조의 형성을 촉진하는 유효한 면적의 일직선 구조가 발달되어 있지 않기 때문에 세포 배양에 좋은 구조로 확인되었다.As another factor, it has been found that the arrangement of a single microparticle in a shape surrounded by six microparticles, in particular, a hexagonal form, may reduce the development of the cytoskeletal structure. The hexagonal morphology has been confirmed to be a good structure for cell culture since no effective area straight structure is developed to promote the formation of the cytoskeletal structure.
또 다른 인자로서, 미세입자의 배열에 있어서, 주로 5~6개의 홀(hole)이 미세입자 주변에 존재하는 구조가 좋을 수 있다. 세포의 포디아(podia)가 상기 홀에 앤코링(anchoring)될 수 있어 세포의 초기 흡착 특성을 우수하게 할 수 있다. 또한, 표면 구조가 더욱 3차원적이므로 세포 골격 구조 형성을 억제시킬 수 있고 3차원 미소 펠렛 형성을 촉진할 수 있다.As another factor, in the arrangement of the microparticles, a structure in which mainly 5 to 6 holes exist around the microparticles may be good. Podia of cells can be anchored into the holes to improve the initial adsorption characteristics of the cells. In addition, since the surface structure is more three-dimensional, it is possible to suppress the formation of the cytoskeletal structure and to promote three-dimensional micropellet formation.
또 다른 인자로서, 배열된 미세입자의 전체 개수 대비 50% 이상은 기재와 접촉되어 있는, 더 나아가 미세입자 박막이 실질적으로 단층인 것이 미세입자의 규칙적인 배열 및 재현성을 높이기 위해 유리하다. 또는, 상기 미세입자가 규칙적으로 배열되어 기재와 접촉될 수 있는 이론적인 최대 부착 개수 대비 50% 이상, 특히 80% 이상은 기재와 접촉되어 있는 것이 좋다. 이론적인 최대 부착 개수는 벌집구조의 배열형태에서 나올 수 있다. 이론적인 최대 부착 개수에 근접할수록 미세입자가 결여된 빈공간이 발생하는 것을 줄일 수 있다.As another factor, it is advantageous to increase the regular arrangement and reproducibility of the microparticles in which at least 50% of the total number of microparticles arranged is in contact with the substrate, and further, the microparticle thin film is substantially monolayer. Alternatively, at least 50%, in particular at least 80%, of the theoretical maximum number of attachments that the microparticles are regularly arranged to contact the substrate may be in contact with the substrate. The theoretical maximum number of attachments can come from the arrangement of honeycomb structures. The closer to the theoretical maximum number of attachments, the less can be created the voids lacking microparticles.
본 발명에서, 상기 3차원적 미소 펠렛(pellet)이란 대체로 수백 ㎛ ~ 수 mm의 크기로 세포들이 3차원적으로 뭉쳐서 배양되는 형태를 의미한다. 이러한 3차원적 미소 펠렛이 자라면서 인접 미소 펠렛과 접하게 되고 함께 응집되어 세포가 배양되게 된다.In the present invention, the three-dimensional micro-pellets (pellets) generally refers to a form in which cells are three-dimensionally aggregated and cultured in the size of several hundred μm to several mm. As these three-dimensional micro pellets grow, they come into contact with adjacent micro pellets and aggregate together to allow the cells to be cultured.
상기 3차원적 미소 펠렛은 초반에 꽃 유사 형상을 나타낼 수 있다. 꽃 유사 형상이란 중앙에 세포들이 응집되어 있는 코어 영역을 주변 세포들이 삐죽한 형태로 둘러싼 형상을 의미한다. 이러한 형태가 나타나는 이유는 본 발명의 미세구조 특성상 내부 골격 구조의 발달이 억제되고, 세포의 유동성이 증가되어 세포가 뭉쳐지는 특성이 나타나기 때문이다.The three-dimensional micro pellets may initially exhibit a flower-like shape. The flower-like shape refers to a shape in which surrounding cells surround the core area where cells are aggregated in the center. The reason for this appearance is that the microstructure of the present invention suppresses the development of the internal skeletal structure, and increases the fluidity of the cells, resulting in the aggregation of the cells.
본 발명의 세포배양기판의 표면 구조에서 배양되는 경우, 세포 배양 속도는 평탄한 기판에 비하여 떨어지는 면이 있다. 이는 세포가 안정적인 내부 골격구조를 이루지 못하여, 세포간 응집체가 이루어진 후 증식이 시작되기 때문인 것으로 예상된다. 그러나 탈분화된 세포가 평탄한 2차원 배양기판인 TCPS 기판과 달리 연골세포로 재분화되며, 이를 통해 더 많은 차례의 계대배양을 더 진행할 수 있다. 이러한 특징으로 배양시간이나 계대배양 횟수를 늘림으로써 최종적으로 더욱 많은 유효 세포수를 얻을 수 있다. When cultured in the surface structure of the cell culture substrate of the present invention, the cell culture rate is lower than that of the flat substrate. This is expected because the cells do not form a stable internal skeletal structure, so that proliferation begins after intercellular aggregates are formed. However, unlike the TCPS substrate, which is a flat two-dimensional culture substrate, the dedifferentiated cells are re-differentiated into chondrocytes, thereby allowing more passages of passage. With this feature, more effective cell numbers can be finally obtained by increasing the incubation time or the number of passages.
일례로, 연골세포를 배양하는 경우 콜라겐 type 2의 mRNA 발현값(연골세포 마커임)이 TCPS 기판과는 비교할 수 없을 정도로 우수한 것을 확인할 수 있다. 이는 3차원적 구조의 세포 배양시 분화 특성이 우수한 다른 세포의 경우에도 마찬가지로 적용된다. 일례로 중간엽 줄기세포, 근육 유래 줄기세포 등을 들 수 있다.For example, when culturing chondrocytes, collagen type 2 mRNA expression value (which is a chondrocyte marker) can be confirmed to be superior to that of TCPS substrate. The same applies to other cells having excellent differentiation characteristics in cell culture of three-dimensional structure. Examples include mesenchymal stem cells and muscle-derived stem cells.
본 발명의 세포 배양기판의 미세구조는 연골세포 배양 테스트시 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 30% 이상을 제공할 수 있다. 미세입자의 입경에 따라서는 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 70% 이상, 많기로는 100% 이상의 제공도 가능하다. The microstructure of the cell culture substrate of the present invention may provide more than 30% of the mRNA expression value of collagen type 2 during the chondrocyte culture test. Depending on the particle size of the microparticles, the collagen type 2 mRNA expression value can be provided more than 70%, more preferably 100% or more than the initial culture.
본 발명의 미세구조의 세포배양기판의 제조방법으로서, 제조 방법이 제한되지 않으나 랭뮤어-블러젯 기법을 통해 제조하는 것이 좋다. 기존의 스핀코터 방식은 상기 미세구조를 제공하기 어렵다. 랭뮤어-블러젯(Langmuir-Blodgett, LB) 기법은 면적이 50 ~ 200㎠ 범위인 대면적의 배양기판을 쉽고 간편하게 제공할 수 있다. 그 이상의 대면적도 가능하리라 예상된다. 본 발명은 일례로서, 구형의 실리카 파티클을 표면개질하여 실리카 파티클 랭뮤어-블러젯 박막을 기판에 제조하는 방법을 제공한다. 실리카 파티클은 Stober 방법에 기반하여 최소 10 nm에서 최대 3 ㎛의 직경을 가지는 구형의 파티클로 합성되며, 제조 조건에 따라서 다양한 직경을 가진 균일한 파티클을 대량으로 만들 수 있다. 제조된 실리카 파티클은 화학적인 표면처리를 통해 표면 극성 조절 및 기능기의 도입이 가능하며, 열처리 및 자외선(UV) 조사, 강한 산화 조건 등을 통해 수차례의 표면 특성을 원상복구 시킬 수 있다. 열적 안정성이 높아 1500 ℃ 이하의 열처리를 통해 제조된 기판의 물리적 안정성을 높일 수 있으며, 내화학성 및 기계적 강도가 높아서 금속제 몰드 제작도 용이하다. 실리카 파티클의 LB막은 수용액상에 잠길 수 있는 (녹지 않는) 모든 재질 및 형태의 기판상에 코팅이 가능하며, 여러 층의 코팅도 가능하다. 실리카 LB 코팅을 하기 전 기판상에 추후 제거가 가능한 패턴을 미리 형성시키거나 코팅후에 패턴된 폴리디메팅실록산 (polydimethylsiloxane, PDMS) 몰드를 통해 영역별 실리카 파티클의 제거도 가능하다.As a method for producing a microstructured cell culture substrate of the present invention, the production method is not limited, but is preferably prepared by Langmuir-Bljet technique. Conventional spin coater methods are difficult to provide the microstructure. The Langmuir-Blodgett (LB) technique can easily and conveniently provide a large-area culture substrate with an area ranging from 50 to 200 cm 2. Larger areas are expected to be possible. As an example, the present invention provides a method for producing a silica particle Langmuir-Blujet thin film on a substrate by surface modification of spherical silica particles. Silica particles are synthesized into spherical particles having a diameter of at least 10 nm and up to 3 μm based on the Stober method, and can produce a large amount of uniform particles having various diameters depending on the production conditions. The prepared silica particles can control surface polarity and introduce functional groups through chemical surface treatment, and can restore surface characteristics several times through heat treatment, ultraviolet (UV) irradiation, and strong oxidation conditions. The thermal stability is high, it is possible to increase the physical stability of the substrate produced by the heat treatment below 1500 ℃, it is easy to manufacture a metal mold due to the high chemical resistance and mechanical strength. LB films of silica particles can be coated on substrates of any material and type (not soluble) that can be immersed in aqueous solutions, and multiple layers can be coated. It is also possible to form a pattern that can be later removed on the substrate prior to the silica LB coating or to remove silica particles by region through a patterned polydimethylsiloxane (PDMS) mold.
한편, 상기 미세입자가 배열되어 미세구조가 형성된 세포 배양기판은 유기 분자, 생체 유래 물질, 또는 폴리머로 표면처리할 수 있다. 이 경우에도 3차원적 배양이 이루어질 수 있다. 구체적으로, 아민 화합물, 하이드록시 화합물, 카르복실 화합물, 티올 화합물, 콜라겐, 피브로넥틴, 펩타이드, 또는 Poly-L-Lysine 등으로 표면 처리할 수 있다. 또한, 실리카 미세 박막상에 세포 배양시 표면 친수성을 증가시키기 위해 UV/Ozone 처리를 통한 산화 처리도 가능하며, 추가적으로 실란 (silane)계열의 표면처리도 가능하다. 실란 계열의 표면 처리를 비롯하여 다양한 표면 처리는 기판 표면과 세포와의 상호작용에 영향을 주어서 다양한 세포의 성장 및 분화 방향을 제어할 수 있다. 예를 들어, 기판과 강한 결합을 유도하는 물질을 코팅하거나 특정한 분화 유도 물질을 코팅하여 일반적인 평탄한 기판에서는 나타날 수 없는 방향으로 세포의 성장 및 분화를 유도할 수 있을 것으로 기대된다.Meanwhile, the cell culture substrate in which the microparticles are arranged to form a microstructure may be surface treated with organic molecules, biologically derived materials, or polymers. In this case, three-dimensional culture can be achieved. Specifically, it may be surface treated with an amine compound, a hydroxy compound, a carboxyl compound, a thiol compound, collagen, fibronectin, a peptide, or a Poly-L-Lysine. In addition, in order to increase the surface hydrophilicity of the cell culture on the silica fine thin film, it is also possible to oxidize through UV / ozone treatment, and additionally silane-based surface treatment. Various surface treatments, including silane-based surface treatments, can affect the interaction of the substrate surface with the cells, controlling the direction of growth and differentiation of the various cells. For example, it is expected that by coating a material that induces strong bonding with the substrate or by coating a specific differentiation inducing material, it is possible to induce cell growth and differentiation in a direction that cannot be found in a general flat substrate.
이하, 또 다른 실시예로서, 입자 정렬을 이용한 코팅 방법을 이용한 세포 배양기판에 대해 상세하게 설명한다. 아래에 설명하는 입자 정렬을 이용한 코팅방법 및 그 기판은 세포 배양기판으로 유용하게 사용될 수 있다.Hereinafter, as another embodiment, a cell culture substrate using a coating method using particle alignment will be described in detail. The coating method using the particle alignment described below and its substrate can be usefully used as a cell culture substrate.
도 52 내지 도 54는 본 발명의 실시예에 따른 입자 정렬을 이용한 코팅 방법을 설명하는 단면도들이다. 52 to 54 are cross-sectional views illustrating a coating method using particle alignment according to an embodiment of the present invention.
먼저, 도 52에 도시한 바와 같이, 준비 단계(ST10)에서는 매끈한 면(smooth surface)(10a)을 가지는 밀착성 고분자 기판(10)을 준비한다. 즉, 밀착성 고분자 기판(10)의 표면이 특정한 패턴이나 굴곡이 형성되지 않은 상태를 가질 수 있으며, 이 위에서 코팅막(도 54의 참조부호 22)을 형성하는 입자(도 53의 참조부호 20)의 이동을 제한하지 않는 수준의 표면 거칠기 및 구조를 가질 수 있다.First, as shown in FIG. 52, in the preparation step ST10, the adhesive polymer substrate 10 having the smooth surface 10a is prepared. That is, the surface of the adhesive polymer substrate 10 may have a state in which a specific pattern or curvature is not formed, and movement of particles (reference numeral 20 in FIG. 53) forming a coating film (reference numeral 22 in FIG. 54) thereon. It can have a level of surface roughness and structure that does not limit.
본 실시예에서 밀착성 고분자 기판(10)은 밀착성이 존재하는 다양한 밀착성 고분자 물질을 포함한다. 밀착성 고분자는 일반적으로 통용되는 점착성을 갖지 않으므로 점착제와는 구별된다. 적어도 밀착성 고분자는 '스카치® 매직™ 테이프'의 (ASTM D 3330 평가) 점착제가 갖는 점착력 약 0.6 kg/inch 보다 낮은 값의 밀착력을 갖는다. 또한, 밀착성 고분자는 별도의 지지체 없이도 상온에서 고체상태(기판 또는 필름 등)의 형상을 유지할 수 있다. 밀착성 고분자 물질로는 폴리디메틸실록산(polydimethylsiloxane, PDMS) 등의 실리콘 기반 고분자 물질, 폴리에틸렌(polyethylene, PE), 폴리비닐클로라이드(polyvinylchloride, PVC) 등을 포함하는 랩, 밀착 또는 밀봉을 목적으로 하는 고분자 물질을 포함하는 보호 필름 등을 사용할 수 있다. 특히, 밀착성 고분자로는 경도조절이 용이하며 다양한 형태로 제조가 용이한 PDMS를 사용할 수 있다. 상기 고분자 기판(10)은 베이스 기재에 밀착성 고분자를 코팅하여 제조되거나 시트 또는 필름 형태의 밀착성 고분자가 부착되어 제조될 수 있다. In this embodiment, the adhesive polymer substrate 10 includes various adhesive polymer materials in which adhesion exists. Adhesive polymers are generally distinguished from adhesives because they do not have commonly used adhesive properties. At least the adhesive polymer has an adhesion of less than about 0.6 kg / inch of the adhesive of the Scotch® Magic ™ Tape (ASTM D 3330 evaluation). In addition, the adhesive polymer may maintain the shape of a solid state (substrate or film) at room temperature without a separate support. The adhesive polymer material may be a silicone-based polymer material such as polydimethylsiloxane (PDMS), a polymer material for wrap, adhesion or sealing, including polyethylene (PE), polyvinyl chloride (PVC), etc. A protective film containing these can be used. In particular, as the adhesive polymer, it is easy to control the hardness and PDMS can be easily used in various forms. The polymer substrate 10 may be manufactured by coating an adhesive polymer on a base substrate or by attaching an adhesive polymer in a sheet or film form.
여기서, 밀착성 고분자 물질이라 함은 일반적으로 고체 상태의 실리콘을 포함하거나, 가소제 첨가 또는 표면 처리를 통해 밀착 특성이 부여된 유기 고분자 물질을 지칭하는 것이다. 이때, 밀착성 고분자 물질은 일반적으로 선형 분자 구조에 의하여 형태의 변형이 용이하며 낮은 표면 장력을 가지는 것을 특징으로 한다. 이러한 밀착성 고분자 물질의 우수한 밀착성은 미세 영역에서의 표면 변형이 용이한 부드러운 (유연성) 표면 재질과 낮은 표면 장력 등에 기인한다. 밀착성 폴리머 물질의 낮은 표면 장력은 부착하고자 하는 입자(20)에 넓게 활착하려는 특성을 가져오며 (용액의 젖음 현상과 유사), 유연성을 지닌 표면은 부착하고자 하는 입자(20)와 빈틈 없는 접촉이 이루어지도록 한다. 이를 통해 상보적인 결합력 없이 가역적으로 고체 표면에 탈부착이 용이한 밀착성 폴리머의 특성을 지니게 된다. 대표적인 밀착성 폴리머 물질인 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 20 ~ 23 dynes/cm 정도로, 가장 낮은 표면 장력 물질로 알려진 Teflon (18 dynes/cm)에 근접한다. 그리고 PDMS와 같은 실리콘 기반 고분자 물질의 표면 장력은 대부분의 유기 폴리머(35 ~ 50 dynes/cm), 천연재료인 면 (73 dynes/cm), 금속(일례로, 은(Ag)은 890 dynes/cm, 알루미늄(Al)은 500 dynes/cm), 무기 산화물(일례로, 유리는 1000 dynes/cm, 철 산화물은 1357 dynes/cm)보다 낮은 값을 보인다. 또한 PE, PVC 등을 포함하는 랩과 같은 경우에도 밀착성 향상을 위해 다량의 가소제가 첨가되어 낮은 표면 장력을 지니게 된다.Here, the term "adhesive polymer material" generally refers to an organic polymer material including silicon in a solid state or endowed with adhesive properties through plasticizer addition or surface treatment. At this time, the adhesive polymer material is generally characterized by having a low surface tension and easy deformation of the form by the linear molecular structure. The excellent adhesion of such an adhesive polymer material is due to the soft (flexible) surface material and low surface tension, etc., which are easy to deform the surface in the fine region. The low surface tension of the adhesive polymer material is such that it has a property of broadly adhering to the particles 20 to be attached (similar to the solution wetting phenomenon), and the flexible surface is in seamless contact with the particles 20 to be attached. To lose. Through this, it has the characteristics of the adhesive polymer which is easily detachable to the solid surface without the complementary bonding force. The surface tension of silicon-based polymer materials, such as PDMS, a representative adhesive polymer material, is about 20-23 dynes / cm, close to Teflon (18 dynes / cm), the lowest known surface tension material. The surface tension of silicon-based polymers such as PDMS is mostly organic polymer (35-50 dynes / cm), natural material (73 dynes / cm), and metal (eg silver (Ag) is 890 dynes / cm). , Aluminum (Al) is lower than 500 dynes / cm), inorganic oxide (for example, 1000 dynes / cm for glass, 1357 dynes / cm for iron oxide). In addition, in the case of a wrap including PE, PVC, etc., a large amount of plasticizer is added to improve adhesion, and thus has a low surface tension.
이어서, 도 53 및 도 54에 도시한 바와 같이, 코팅 단계(ST12)에서는 복수의 입자(20)를 정렬하여 밀착성 고분자 기판(10) 위에 코팅막(22)을 형성한다. 이를 좀더 상세하게 설명한다. 53 and 54, in the coating step ST12, the plurality of particles 20 are aligned to form a coating film 22 on the adhesive polymer substrate 10. This is explained in more detail.
도 53에 도시한 바와 같이, 밀착성 고분자 기판(10) 위에 건조된 복수의 입자(20)를 올린다. 본 실시예와 달리 용액 상에 분산되어 있는 입자는 밀착성 고분자 표면과 직접적인 접촉이 이루어지기 어려워서 코팅이 잘 이루어 지지 않는다. 따라서, 사용하는 입자의 질량보다 적은 미량의 용액이나 휘발성 용매를 이용한 경우에만 코팅 작업 중 입자가 건조되어 코팅 작업이 가능할 수 있다. As shown in FIG. 53, the several particle 20 dried on the adhesive polymer substrate 10 is mounted. Unlike the present embodiment, the particles dispersed in the solution are difficult to make direct contact with the adhesive polymer surface, so that the coating is not well made. Therefore, only a small amount of a solution or a volatile solvent less than the mass of the particles to be used may dry the particles during the coating operation to allow the coating operation.
본 실시예에서 복수의 입자(20)는 코팅막(도 54의 참조부호 22, 이하 동일)을 형성하기 위한 다양한 물질을 포함할 수 있다. 즉, 복수의 입자(20)는 고분자, 무기물, 금속, 자성체, 반도체, 생체 물질 등을 포함할 수 있다. 또한, 다른 성질을 갖는 입자들을 혼합하여 코팅막을 형성할 수도 있다. 전술한 미세입자를 사용할 수 있다.In the present embodiment, the plurality of particles 20 may include various materials for forming a coating film (reference numeral 22 of FIG. 54, hereinafter the same). That is, the plurality of particles 20 may include a polymer, an inorganic material, a metal, a magnetic material, a semiconductor, a biological material, and the like. In addition, the coating film may be formed by mixing particles having different properties. The aforementioned fine particles can be used.
고분자로는, 예를 들어, 폴리스티렌 (PS), 폴리메틸메타크릴레이트 (PMMA), 폴리아크릴레이트, 폴리바이닐클로라이드 (PVC), 폴리알파스티렌, 폴리벤질메타크릴레이트, 폴리페닐메타클릴레이트, 폴리다이페닐메타크릴레이트, 폴리사이클로헥실메타클릴레이트, 스틸렌-아크릴로니트릴 공중합체, 스틸렌-메틸메타크릴레이트 공중합체 등을 사용할 수 있다.As the polymer, for example, polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylate, polyvinyl chloride (PVC), polyalphastyrene, polybenzyl methacrylate, polyphenyl methacrylate, Polydiphenyl methacrylate, polycyclohexyl methacrylate, styrene-acrylonitrile copolymer, styrene-methyl methacrylate copolymer and the like can be used.
무기물로는, 예를 들어, 실리콘 산화물(일례로, SiO2),인산은(일례로, Ag3PO4),티타늄 산화물(일례로, TiO2),철 산화물 (일례로, Fe2O3),아연 산화물, 세륨 산화물, 주석 산화물, 탈륨 산화물, 바륨 산화물, 알루미늄 산화물, 이트륨 산화물, 지르코늄 산화물, 구리산화물, 니켈 산화물 등을 사용할 수 있다. As the inorganic substance, for example, silicon oxide (for example, SiO 2 ), silver phosphate (for example, Ag 3 PO 4 ), titanium oxide (for example, TiO 2 ), iron oxide (for example, Fe 2 O 3 ), Zinc oxide, cerium oxide, tin oxide, thallium oxide, barium oxide, aluminum oxide, yttrium oxide, zirconium oxide, copper oxide, nickel oxide and the like can be used.
금속으로는, 예를 들어, 금, 은, 동, 철, 백금, 알루미늄, 백금, 아연, 세륨, 탈륨, 바륨, 이트륨, 지르코늄, 주석, 티타늄, 또는 이들의 합금 등을 사용할 수 있다.As the metal, for example, gold, silver, copper, iron, platinum, aluminum, platinum, zinc, cerium, thallium, barium, yttrium, zirconium, tin, titanium, or an alloy thereof may be used.
반도체로는, 예를 들어, 실리콘, 게르마늄, 또는 화합물 반도체(일례로, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb 등)을 사용할 수 있다. As the semiconductor, for example, silicon, germanium, or a compound semiconductor (for example, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InP, InAs, InSb, etc.) may be used.
생체 물질로는, 예를 들어, 단백질, 펩티드, 리보핵산(RNA), 데옥시리보핵산(DNA), 다당류, 올리고당, 지질, 세포 및 이들의 복합체 물질들의 입자 또는 표면에 코팅된 입자, 내부에 포함한 입자 등을 사용할 수 있다. 일례로, protein A라는 항체 결합 단백질이 코팅된 폴리머 입자를 사용할 수 있다.Biomaterials include, for example, particles coated on, or particles of, proteins, peptides, ribonucleic acid (RNA), deoxyribonucleic acid (DNA), polysaccharides, oligosaccharides, lipids, cells, and complex materials thereof. Included particles and the like can be used. For example, a polymer particle coated with an antibody binding protein called protein A may be used.
입자(20)는 대칭 형상, 비대칭 형상, 무정형, 다공성의 형상을 가질 수 있다. 일례로, 입자(20)는 구형, 타원형, 반구형, 큐브형, 사면체, 오면체, 육면체, 팔면체, 기둥형, 뿔형 등을 가질 수 있다. 이때, 입자(20)는 구형 또는 타원형을 가지는 것이 바람직하다. Particles 20 may have a symmetrical shape, asymmetrical shape, amorphous, porous shape. For example, the particles 20 may have a spherical shape, an ellipse shape, a hemispherical shape, a cube shape, a tetrahedron, a pentagonal surface, a hexahedron, an octahedron, a columnar shape, a horn shape, and the like. At this time, the particles 20 preferably have a spherical or elliptical shape.
이러한 입자(20)는 평균 입경이 10 nm 내지 50 ㎛일 수 있다. 평균 입경이 10 nm 미만일 경우에는 밀착성 고분자 기판(10)에 의하여 전체적으로 감싸지는 형태가 될 수 있어 입자(20)를 단층 수준으로 코팅하는 것이 어려워질 수 있다. 또한, 10nm 미만인 경우에는 건조 상태에서도 입자들이 서로 응집하여 문지르는 힘만으로는 입자가 개별적으로 이동하는 것이 어려울 수 있다. 평균 입경이 50 ㎛을 초과하는 경우에는 입자의 부착이 약하게 나타날 수 있다. 이때, 평균 입경이 50 nm 내지 10 ㎛인 것이 좀더 바람직할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 평균 입경은 입자의 구성 물질, 밀착성 고분자 기판(10)의 물질 등에 의하여 달라질 수 있다. 이때, 입자(20)가 구형일 경우에는 입자(20)의 지름이 입경으로 사용할 수 있다. 입자(20)가 구형이 아닐 경우에는 다양한 계측법이 사용될 수 있는데, 일례로, 장축과 단축의 평균값을 입경으로 사용할 수 있다.These particles 20 may have an average particle diameter of 10 nm to 50 μm. If the average particle diameter is less than 10 nm it may be a form that is entirely wrapped by the adhesive polymer substrate 10 may be difficult to coat the particle 20 to a single layer level. In addition, when it is less than 10nm it may be difficult for the particles to move individually by the force that the particles aggregate and rub together even in a dry state. If the average particle diameter exceeds 50 mu m, the adhesion of particles may appear weak. In this case, the average particle diameter may be more preferably 50 nm to 10 ㎛. However, the present invention is not limited thereto, and the average particle diameter may vary depending on the material of the particles or the material of the adhesive polymer substrate 10. At this time, when the particle 20 is spherical, the diameter of the particle 20 can be used as the particle diameter. When the particle 20 is not spherical, various measuring methods may be used. For example, average values of the long axis and the short axis may be used as the particle diameter.
이어서, 도 54에 도시한 바와 같이, 복수의 입자(20) 위에서 압력을 가하여 코팅막(22)을 형성한다. 압력을 가하는 방법으로는 라텍스, 스폰지, 손, 고무판, 플라스틱 판, 부드러운 표면을 가지는 재료 등을 이용하여 문지르는(rubbing) 방법을 사용할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며 다양한 방법에 의하여 입자(20)에 압력을 가할 수 있다.Subsequently, as illustrated in FIG. 54, a pressure is applied on the plurality of particles 20 to form a coating film 22. As a method of applying pressure, a method of rubbing using latex, a sponge, a hand, a rubber plate, a plastic plate, a material having a smooth surface, or the like may be used. However, the present invention is not limited thereto, and pressure may be applied to the particles 20 by various methods.
본 실시예에서는 밀착성 고분자 기판(10)의 평면(10a) 위에 입자들(20)을 올린 후에 압력을 가하면 압력이 가해진 부분의 입자들(20)이 밀착성 고분자 기판(10)의 변형을 통해 밀착된다. 이에 의하여 해당 부분에 입자들(20)에 각기 대응하는 오목부(12)가 형성된다. 따라서, 오목부(12)가 입자(20)를 감싼 상태에서 밀착성 고분자 기판(10)에 입자(20)들이 정렬되게 된다. 오목부(12)는 입자와 기판간 상호작용에 의해 형성되는 것으로 가역적이다. 즉 소멸될 수도 있으며, 위치가 이동될 수 있다. 일례로, 문지르는 과정에서 입자가 이동하게 되면 기판의 탄성 복원력에 의해 오목부(12)가 사라지거나 입자의 이동에 따라 오목부(12)도 위치가 변경될 수 있다. 이러한 가역적 작용에 의해 입자가 고르게 정렬될 수 있다(여기서의 "가역적"은 코팅 시 밀착성 고분자 기판 표면의 유연성 및 탄성 복원력에 의해 발생되는 특성이므로, 밀착성 고분자 기판의 복원력이 시간이 지남에 따라 약해지거나 소멸되어 더 이상 가역적이지 않은 경우도 포함되는 넓은 의미이다). 기판과의 결합이 이루어지지 않은 입자들(20)은 문지르는 힘 등에 의하여 입자(20)가 코팅되지 않은 밀착성 고분자 기판(10)의 영역으로 이동하게 되고, 코팅되지 않은 부분에 입자(20)에 의하여 오목부(12)가 형성되고 이 오목부(12)가 입자(20)를 감싼 상태에서 밀착성 고분자 기판(10)과 입자(20)의 결합이 이루어진다. 이러한 과정을 거쳐 밀착성 고분자 기판(10)에 높은 밀도로 단층 수준의 입자 코팅막(22)이 형성된다. In the present embodiment, when the particles 20 are raised on the plane 10a of the adhesive polymer substrate 10 and then pressure is applied, the particles 20 in the pressurized portion are in close contact with each other by deformation of the adhesive polymer substrate 10. . As a result, recesses 12 corresponding to the particles 20 are formed in corresponding portions. Therefore, the particles 20 are aligned with the adhesive polymer substrate 10 while the recesses 12 surround the particles 20. The recess 12 is reversible as formed by the interaction between the particles and the substrate. That is, it may be extinguished and the position may be moved. For example, when the particles move in the rubbing process, the recess 12 may disappear due to the elastic restoring force of the substrate, or the position of the recess 12 may also be changed according to the movement of the particles. Due to this reversible action, the particles can be evenly aligned ("reversible" here is a property generated by the flexibility and elastic restoring force of the surface of the adhesive polymer substrate during coating, so that the restoring force of the adhesive polymer substrate becomes weak over time or Broad meaning also includes cases that are extinguished and no longer reversible). Particles 20 that are not bonded to the substrate is moved to the area of the adhesive polymer substrate 10 is not coated with the particle 20 by the rubbing force, etc., by the particle 20 in the uncoated portion The concave portion 12 is formed and the adhesive polymer substrate 10 and the particle 20 are bonded while the concave portion 12 surrounds the particles 20. Through this process, a single layer particle coating film 22 is formed on the adhesive polymer substrate 10 at a high density.
오목부(12)는 입자(20)의 일부를 감싸도록 입자(20)의 형상에 대응하는 형상을 가질 수 있다. 예를 들어, 입자(20)가 구형인 경우에는 오목부(12)도 라운드한 형상을 가져 오목부(12)가 입자(20)의 일부에 밀착될 수 있다. 그리고 오목부(12)의 깊이(L1)는 밀착성 고분자 기판(10)의 경도, 입자(20)의 형태, 경도, 환경 요인(일례로, 온도) 등에 의하여 달라질 수 있다. 즉, 밀착성 고분자 기판(10)의 경도가 커질수록 오목부(12)의 깊이(L1)가 작아지고, 온도가 증가할 수록 오목부(12)의 깊이(L1)가 커질 수 있다.The concave portion 12 may have a shape corresponding to the shape of the particle 20 to surround a portion of the particle 20. For example, when the particles 20 are spherical, the recesses 12 may also have a rounded shape so that the recesses 12 may be in close contact with a part of the particles 20. The depth L1 of the recess 12 may vary depending on the hardness of the adhesive polymer substrate 10, the shape of the particles 20, the hardness, and environmental factors (eg, temperature). That is, as the hardness of the adhesive polymer substrate 10 increases, the depth L1 of the concave portion 12 may decrease, and as the temperature increases, the depth L1 of the concave portion 12 may increase.
이때, 입자(20)의 평균 입경(D)에 대한 오목부(12)의 깊이(L1)의 비율(침하율)(L1/D)이 0.02~0.7일 수 있다. 상기 비율(L1/D)이 0.02 미만일 경우에는 입자(20)와 밀착성 고분자 기판(10)과의 결합력이 충분하지 않을 수 있고, 0.7을 초과할 경우에는 입자들(20)이 단층 수준으로 코팅되기 어려울 수 있다. 결합력 및 코팅 특성 등을 좀더 고려하면, 상기 비율(L1/D)은 0.05~0.6, 좀더 상세하게는, 0.08~0.4인 것이 바람직하다. In this case, the ratio (sedimentation rate) L1 / D of the depth L1 of the recess 12 to the average particle diameter D of the particles 20 may be 0.02 to 0.7. When the ratio (L1 / D) is less than 0.02, the binding force between the particles 20 and the adhesive polymer substrate 10 may not be sufficient, and when the ratio (L1 / D) exceeds 0.7, the particles 20 may be coated at a monolayer level. It can be difficult. In consideration of the bonding force and coating properties, etc., the ratio (L1 / D) is preferably 0.05 to 0.6, more specifically, 0.08 to 0.4.
본 실시예에서는 탄성 변형에 의하여 생긴 오목부(12)에 의하여 각 입자(20)의 일부를 감싸게 되면, 입자(20)와 밀착성 고분자 기판(10)이 좀더 잘 결합할 수 있도록 한다. 그리고, 밀착성 고분자 기판(10)에 결합된 입자(20)들도 주변의 코팅되지 않은 부분으로 이동이 가능하여 새로운 입자(20)가 밀착성 고분자 기판(10)의 표면의 빈 공간에 부착이 가능하도록 한다. 이러한 재배열 특성에 따라 코팅막(22)이 높은 밀도를 가지도록 단층 수준으로 코팅될 수 있다. 일례로, 입자(20)의 중심들이 육각형의 형상을 이루도록 배치될 수 있다. 한편, 입자(20)가 비구형일 경우(예를 들어, Ag3PO4)에는 다양한 방법에 의하여 단층 수준인지 여부를 판별할 수 있다. 일례로, 입자들(20) 중 상위 10% 입자들(20)(즉, 입경이 10% 이내로 큰 입자들(20))의 평균 입경에 대한 코팅막(22) 두께의 평균값의 비율이 1.9 이하일 경우를 단층 수준으로 코팅된 것을 볼 수 있다.In this embodiment, when a part of each particle 20 is wrapped by the concave portion 12 generated by the elastic deformation, the particle 20 and the adhesive polymer substrate 10 may be more coupled. In addition, the particles 20 bonded to the adhesive polymer substrate 10 may also move to an uncoated portion of the surrounding so that the new particles 20 may be attached to an empty space on the surface of the adhesive polymer substrate 10. do. According to such rearrangement characteristics, the coating layer 22 may be coated at a single layer level so as to have a high density. For example, the centers of the particles 20 may be arranged to form a hexagonal shape. On the other hand, when the particle 20 is non-spherical (for example, Ag 3 PO 4 ) it can be determined whether the level is a monolayer by a variety of methods. For example, when the ratio of the average value of the thickness of the coating film 22 to the average particle diameter of the top 10% particles 20 (that is, the particles 20 having a larger particle size within 10%) of the particles 20 is 1.9 or less. It can be seen that the coating to a monolayer level.
본 실시예에서는 용매를 사용하지 않고 건조 상태의 입자들(20)이 밀착성 고분자 기판(10) 위에 직접 접촉하도록 한 상태에서 압력을 가하여 코팅막(22)을 형성한다. 이에 따라 코팅막(22) 형성 시, 용매 내에서의 입자들(20)의 자기 조립이 요구되지 않으므로 온도, 습도 등을 정밀하게 조절하지 않아도 되며 입자들(20)의 표면 특성에 큰 영향을 받지 않는다. 즉, 입자(20)가 전하성 물질인 경우뿐만 아니라, 비전하성(즉, 전하적으로 중성에 가까운) 물질인 경우에도 높은 밀도로 균일하게 코팅이 이루어질 수 있다. 또한, 친수성 입자뿐만 아니라, 소수성 입자도 균일하게 코팅이 가능하다. 이와 같이 본 실시예에 따르면 단순한 방법에 의하여 밀착성 고분자 기판(10) 위에 입자들을 고르게 분포시켜 높은 밀도를 가지는 단층 수준의 코팅막(22)을 형성할 수 있다.In this embodiment, the coating film 22 is formed by applying pressure in a state in which the dry particles 20 are in direct contact with the adhesive polymer substrate 10 without using a solvent. Accordingly, when the coating film 22 is formed, self-assembly of the particles 20 in the solvent is not required, so it is not necessary to precisely control the temperature, humidity, and the like, and is not greatly influenced by the surface characteristics of the particles 20. . That is, even when the particle 20 is a chargeable material as well as a non-chargeable (ie, charge-neutral) material, the coating may be uniformly performed at a high density. In addition, not only hydrophilic particles but also hydrophobic particles can be uniformly coated. As described above, according to the present exemplary embodiment, the coating layer 22 having a single density may be formed by uniformly distributing the particles on the adhesive polymer substrate 10 by a simple method.
이러한 코팅막(22)은 밀착성 고분자 기판(10)에 결합한 상태로 사용될 수도 있고, 다른 기판 등에 전사되어 사용될 수도 있다. 이때, 코팅막(22)이 전사되는 다른 기판이 밀착성 고분자 기판(10)보다 높은 밀착성 또는 접착성을 가지면 코팅막(22)이 전체적으로 균일하게 잘 전사될 수 있다.The coating film 22 may be used in a state of being bonded to the adhesive polymer substrate 10, or may be transferred to another substrate and the like. In this case, when the other substrate to which the coating film 22 is transferred has higher adhesion or adhesiveness than the adhesive polymer substrate 10, the coating film 22 may be uniformly transferred as a whole.
본 실시예에서 탄성 변형에 의하여 밀착성 고분자 기판(10)에 오목부(12)가 형성되므로 그 이후에 코팅막(22)이 제거되면, 도 55에 도시한 바와 같이, 밀착성 고분자 기판(10)의 오목부(12)가 없어지고 매끈한면(10a)으로 복귀된다. 그러나 코팅막(22)이 형성된 다음 오랜 시간이 지난 후에 코팅막(22)이 제거된 경우에는, 도 56에 도시한 바와 같이, 오목부(12)의 형태의 흔적이 밀착성 고분자 기판(10)의 표면에 남아있을 수도 있다.In this embodiment, since the concave portion 12 is formed in the adhesive polymer substrate 10 by elastic deformation, when the coating film 22 is removed thereafter, as shown in FIG. 55, the concave of the adhesive polymer substrate 10 is formed. The part 12 disappears and is returned to the smooth surface 10a. However, when the coating film 22 is removed after a long time after the coating film 22 is formed, as shown in FIG. 56, traces of the shape of the recesses 12 are formed on the surface of the adhesive polymer substrate 10. It may remain.
이와 같이 얻어진 입자 정렬 기판은 세포 배양기판으로 유용하다.The particle alignment substrate thus obtained is useful as a cell culture substrate.
이하, 또 다른 실시예로서, 첨부한 도면을 참조하여 입자 부분 노출형 기재의 제조방법 및 이에 의하여 제조된 입자 부분 노출형 기재를 상세하게 설명한다. 이 입자 부분 노출형 기재는 세포 배양기판으로 유용하게 사용될 수 있다.Hereinafter, with reference to the accompanying drawings, a method for producing a particle partially exposed substrate and a particle partially exposed substrate prepared thereby will be described in detail. The particle partially exposed substrate can be usefully used as a cell culture substrate.
본 발명의 일실시예에 따른 입자 부분 노출형 기재는 밀착성 고분자 기판을 준비하는 준비 단계, 상기 밀착성 고분자 기판 위에 복수의 입자를 코팅하는 코팅 단계, 상기 밀착성 고분자 기판 및 상기 복수의 입자 위에 기재를 형성하는 단계, 및 상기 밀착성 고분자 기판을 제거하여 상기 복수의 입자를 부분적으로 노출하는 노출 단계를 포함하여 이루어진다. 여기서, 밀착성 고분자 기판을 준비하는 준비 단계, 상기 밀착성 고분자 기판 위에 복수의 입자를 코팅하는 코팅 단계는 전술한 입자 정렬을 이용한 코팅방법과 동일하므로 설명을 생략한다. Particle-exposed substrate according to an embodiment of the present invention is a preparation step of preparing an adhesive polymer substrate, a coating step of coating a plurality of particles on the adhesive polymer substrate, the substrate on the adhesive polymer substrate and the plurality of particles And the exposing step of partially exposing the plurality of particles by removing the adhesive polymer substrate. Here, the preparation step of preparing the adhesive polymer substrate, the coating step of coating a plurality of particles on the adhesive polymer substrate is the same as the coating method using the above-described particle alignment is omitted.
도 57 내지 도 62는 본 발명의 일실시예에 따른 입자 부분 노출형 기재의 제조방법을 설명하는 단면도들이다. 마찬가지로, 도 57 내지 도 59에 대한 설명도 전술한 도 52 내지 도 54의 내용을 전용하며 설명을 생략한다.57 to 62 are cross-sectional views illustrating a method of manufacturing a partially exposed particle substrate according to an embodiment of the present invention. Similarly, the descriptions of FIGS. 57 to 59 are dedicated to the contents of FIGS. 52 to 54 described above and will not be described.
밀착성 고분자 기판(10) 위에 입자들을 고르게 분포시켜 높은 밀도를 가지는 단층 수준의 코팅막(22)을 형성한 후, 밀착성 고분자 기판 및 복수의 입자로 구성된 코팅막 위에 기재를 형성한다. 기재를 형성하는 단계는 바람직하게는, 상기 밀착성 고분자 기판 및 상기 복수의 입자 위에 기재 조성물을 위치시키는 단계, 및 상기 기재 조성물을 경화시켜 기재를 형성하는 경화 단계를 포함할 수 있다. 일례로, 도 60 및 도 61에 도시한 바를 들 수 있다. 기재의 재료는 제한되지 않는다. 폴리머 등의 유기 기재일 수 있으며, 실리케이트 등의 무기 기재일 수 있으며, 실리카 유리일 수 있으며, 기타 복합재료로 된 기재일 수 있다. 또한, 기재가 다층으로 이루어질 수 있다. 일례로, 유기 또는 무기 코팅 재료로 입자 위에 도포 후 강도가 충분한 기판과 밀착시키는 방법을 들 수 있다. After the particles are evenly distributed on the adhesive polymer substrate 10 to form a coating layer 22 having a high density, a substrate is formed on the adhesive polymer substrate and the coating film composed of a plurality of particles. Forming the substrate may preferably include placing a substrate composition on the adhesive polymer substrate and the plurality of particles, and curing the substrate composition to form a substrate. As an example, what is shown in FIG. 60 and FIG. 61 is mentioned. The material of the substrate is not limited. It may be an organic substrate such as a polymer, may be an inorganic substrate such as silicate, may be silica glass, or may be a substrate made of other composite materials. In addition, the substrate may be made of a multilayer. As an example, the method of contact | adhering with the board | substrate with sufficient strength after apply | coating on a particle | grain with an organic or inorganic coating material is mentioned.
밀착성 고분자 기판(10) 및 복수의 입자(20)로 구성된 코팅막(22) 위에 기재(30) 형성을 위한 조성물을 위치시키는 방법으로는 다양한 방법이 사용될 수 있다. 일례로, 기재 조성물을 밀착성 고분자 기판(10) 및 복수의 입자(20) 위에 도포할 수 있다. 또는, 도 60 및 도 61에 도시한 바와 같이, 기재 조성물 위에 복수의 입자(20)가 위치하도록 밀착성 고분자 기판(10)을 얹는 방법도 가능하다.Various methods may be used as a method of placing the composition for forming the substrate 30 on the coating film 22 composed of the adhesive polymer substrate 10 and the plurality of particles 20. In one example, the substrate composition may be applied onto the adhesive polymer substrate 10 and the plurality of particles 20. Alternatively, as illustrated in FIGS. 60 and 61, a method of placing the adhesive polymer substrate 10 on the substrate composition such that the plurality of particles 20 are positioned is also possible.
기재(30)의 두께는 2mm 이상일 수 있다. 두께가 2mm 미만이면 기재(30)가 복수의 입자(20)를 안정적으로 고정하기 어려울 수 있다. The thickness of the substrate 30 may be 2 mm or more. If the thickness is less than 2mm, it may be difficult for the substrate 30 to stably fix the plurality of particles 20.
폴리머 등의 유기 기재는 복수의 입자(20)를 안정적으로 고정 및 지지할 수 있는 다양한 폴리머를 사용할 수 있다. 그리고 폴리머 기재는 경화 수지를 포함하여 특정 조건에서 경화될 수 있다. 일례로, 본 실시예에서는 폴리머 기재가 자외선 경화 수지를 포함하여 자외선(UV) 등에 의하여 경화될 수 있다. 자외선 경화 수지를 이용하면 자외선 등의 광을 조사하는 것에 의하여 쉽게 경화될 수 있다. As the organic substrate such as a polymer, various polymers capable of stably fixing and supporting the plurality of particles 20 may be used. And the polymer substrate can be cured under specific conditions, including cured resin. For example, in the present embodiment, the polymer substrate may be cured by ultraviolet (UV) or the like including an ultraviolet curable resin. When using an ultraviolet curable resin, it can be easily hardened by irradiating light, such as an ultraviolet-ray.
자외선 경화 수지는 자외선을 받아 가교, 경화 작용을 일으킬 수 있도록 다양한 물질을 포함할 수 있는데, 일례로, 자외선 경화 수지는 올리고머(베이스 수지), 모노머(반응성 희석제), 광중합 개시제, 각종 첨가제 등을 포함할 수 있다. The ultraviolet curable resin may include various materials to receive the ultraviolet rays and cause crosslinking and curing. For example, the ultraviolet curable resin may include oligomers (base resins), monomers (reactive diluents), photopolymerization initiators, and various additives. can do.
올리고머는 수지의 물성을 좌우하는 중요한 성분으로, 중합 반응에 의해 고분자 결합을 형성하여 경화가 이루어지게 한다. 골격 분자의 구조에 따라 폴리에스테르계, 에폭시계, 우레탄계, 폴리에테르계, 폴리아크릴계 등의 아크릴레이트 등으로 이루어질 수 있다. 모노머는 올리고머의 희석제로서의 역할을 할 수 있으며, 반응에 참여할 수 있다. 가교를 위해서 가교제를 더 포함할 수 있다. 광중합 개시제는 자외선을 흡수하여 라디칼 혹은 양이온을 생성시켜 중합을 개시시키는 역할을 하며 단독 혹은 둘 이상의 물질이 포함될 수 있다. 첨가제는 용도에 따라 추가적으로 첨가되는 것으로, 용도에 따라 광증감제, 착색제, 증점제, 중합 금지제 등이 있다. The oligomer is an important component that influences the physical properties of the resin, and forms a polymer bond by a polymerization reaction to cause curing. Depending on the structure of the skeleton molecule, it may be made of an acrylate such as polyester, epoxy, urethane, polyether, polyacrylic, and the like. The monomer can serve as a diluent of the oligomer and can participate in the reaction. A crosslinking agent may be further included for crosslinking. The photopolymerization initiator absorbs ultraviolet rays to generate radicals or cations to initiate polymerization, and may include one or more materials. The additive is additionally added depending on the use, and there may be a photosensitizer, a colorant, a thickener, a polymerization inhibitor, and the like depending on the use.
무기 기재로는 제한되지 않으나 유리막 코팅제 등을 들 수 있으며, 시중에 유통되고 있는 다양한 유리막 코팅제를 이용할 수 있다. 사용되는 입자가 티탄산화물 등 광촉매 입자인 경우에 유기 재료를 기재로 사용하게 되면 광촉매 반응에 의해 유기 재료가 분해될 수 있다. 이로 인해 기재의 내구성에 손상을 입고 입자가 기재로부터 떨어지는 등 수명에 문제가 발생할 수 있다. 따라서, 입자 부분 노출형 기재를 광촉매 용도로 사용하는 경우에는 기재를 무기 재료로 사용하는 것이 좋다. Examples of the inorganic substrate include, but are not limited to, glass film coating agents, and various glass film coating agents available on the market. When the particles used are photocatalyst particles such as titanium oxide, when the organic material is used as the substrate, the organic material may be decomposed by the photocatalytic reaction. This may cause problems in the service life, such as damage to the durability of the substrate and falling particles from the substrate. Therefore, when using a particle partial exposure type base material for photocatalyst use, it is good to use a base material as an inorganic material.
이어서, 도 62에 도시한 바와 같이, 기재 조성물을 경화하고 밀착성 고분자 기판(도 61의 참조부호 10)을 제거하여 복수의 입자를 부분적으로 노출시켜, 입자 부분 노출형 기재를 제조한다. Subsequently, as shown in FIG. 62, the substrate composition is cured and the adhesive polymer substrate (reference numeral 10 in FIG. 61) is removed to partially expose the plurality of particles, thereby producing a particle partially exposed substrate.
복수의 입자(20)에서 밀착성 고분자 기판(10)에 감싸졌던 부분이 기재(30) 상에서 노출될 수 있다. 이에 따라 복수의 입자(20)의 평균 입경(D)에 대한 노출된 부분의 높이(L2)의 비율(L2/D)이 0.02~0.50일 수 있다. 상기 비율(L2/D)이 0.02 미만일 경우에는 입자(20)와 밀착성 고분자 기판(10)과의 결합력이 충분하지 않아 밀착성 고분자 기판(10) 상에 복수의 입자(20)에 의한 코팅막(22)이 안정적으로 형성되지 않을 수 있으며, 입자의 노출이 불충분할 수 있다. 상기 비율(L2/D)이 0.50을 초과할 경우에는 입자들(20)이 기재(30)에 의하여 안정적으로 고정되지 않을 수 있다. A portion of the plurality of particles 20 that is wrapped in the adhesive polymer substrate 10 may be exposed on the substrate 30. Accordingly, the ratio L2 / D of the height L2 of the exposed portion to the average particle diameter D of the plurality of particles 20 may be 0.02 to 0.50. When the ratio (L2 / D) is less than 0.02, the bonding force between the particles 20 and the adhesive polymer substrate 10 is not sufficient, so that the coating film 22 may be formed on the adhesive polymer substrate 10 by the plurality of particles 20. This may not be formed stably, and the exposure of the particles may be insufficient. When the ratio L2 / D exceeds 0.50, the particles 20 may not be stably fixed by the substrate 30.
본 실시예에 따른 입자 부분 노출형 기재는 단층 수준으로 배열되고 노출될 수 있다. 전술한 방법에 의해 제조됨으로써 기재로부터 노출되지 않는 입자는 개수 기준으로 전체 입자에서 10% 이하일 수 있다. 특히, 5% 이하일 수 있으며, 거의 존재하지 않을 수도 있다. 또한, 입자가 허용될 수 있는 이론 밀도치에 근접하게 존재하여 노출될 수 있다. 일례로, 입자의 평균입경을 D라 하고, 노출된 입자 사이의 평균간격(입자 중심부 간의 거리)을 P라 할 때, D ≤ P ≤ 1.5D 를 만족하면서 노출될 수 있다. 또한, 입자는 전술한 입자 코팅 방법에 의해 정밀하게 정렬될 수 있으며, 특히 헥사고날 형태로 정렬되어 노출될 수 있다. 상기 기재는 두께 방향을 기준으로, 입자가 위치하는 상부 영역과 위치하지 않는 하부 영역으로 구분될 수 있다. 이 영역은 입자가 단층 수준으로 배열됨에 따라 입자의 존재 유무에 의해 구분되는 것이며, 기재의 종류를 달리하는 것으로 구분되는 것은 아니다. 입자가 위치하지 않는 하부 영역이 입자가 위치하는 상부 영역보다 두꺼울 수 있으며, 바람직하기로는 2~50배 두꺼울 수 있다.The particle partially exposed substrate according to this embodiment may be arranged and exposed at a monolayer level. Particles that are not exposed from the substrate by being prepared by the method described above may be 10% or less of the total particles on a number basis. In particular, it may be 5% or less and may be rarely present. In addition, the particles may be present in close proximity to acceptable theoretical densities. For example, when the average particle diameter of the particles is referred to as D, and the average distance between the exposed particles (distance between particle centers) is P, it may be exposed while satisfying D ≦ P ≦ 1.5D. In addition, the particles can be precisely aligned by the particle coating method described above, and in particular can be exposed in alignment in the form of hexagonal. The substrate may be divided into an upper region in which particles are located and a lower region in which the particles are not located, based on the thickness direction. This area is distinguished by the presence or absence of particles as the particles are arranged at a monolayer level, and is not distinguished by different kinds of substrates. The lower region where the particles are not located may be thicker than the upper region where the particles are located, preferably 2 to 50 times thicker.
또한, 상기 복수의 입자가 비구형일 경우에는, 상기 복수의 입자 중 입경이 상위 10% 입자의 평균 입경에 대한 상기 복수의 입자로 이루어진 코팅층 두께의 평균값의 비율이 1.9 이하로 형성되어 부분 노출될 수 있다. In addition, when the plurality of particles are non-spherical, the ratio of the average value of the thickness of the coating layer consisting of the plurality of particles to the average particle diameter of the top 10% particles of the plurality of particles is formed to be 1.9 or less to be partially exposed have.
또한, 기재는 단일 재료로 형성될 수 있으며, 다층으로 이루어질 수도 있다. 다층의 일례로서, 입자와 접하는 코팅층과 코팅층과 접하는 지지 기판을 포함하여 구성될 수 있다. 이 구조는 밀착성 기판 및 복수의 입자로 구성된 코팅막 위에 기재 조성물을 코팅하고 그 위에 지지 기판을 부착한 후 경화시키는 방법으로 얻어질 수 있다. 또 다른 다층의 일례로서, 입자와 접하는 코팅층, 상기 코팅층 상에 도포된 점착층 및 점착층에 부착되고 이형될 수 있는 이형필름을 포함하여 이루어질 수 있다. 기능성 부착 시트의 형태로 제조될 수 있으며 이형필름을 제거하면서 피부착물에 부착할 수 있는 형태로 제조될 수 있다.In addition, the substrate may be formed of a single material, or may be formed of multiple layers. As an example of the multilayer, it may be configured to include a coating layer in contact with the particles and a support substrate in contact with the coating layer. This structure can be obtained by coating a substrate composition on an adhesive substrate and a coating film composed of a plurality of particles, attaching a supporting substrate thereon, and then curing. As another example of the multilayer, it may include a coating layer in contact with the particles, a pressure-sensitive adhesive layer applied on the coating layer and a release film that can be attached to the adhesive layer and released. It may be prepared in the form of a functional adhesive sheet and may be prepared in a form that can be attached to the skin complex while removing the release film.
이와 같이 본 실시예에 따르면 다양한 기능을 위한 입자(20)를 기재(30)로부터 상당히 균일하게 부분 노출할 수 있게 되어 세포 배양 기능을 좀더 효율적으로 구현할 수 있다. As such, according to the present embodiment, the particles 20 for various functions can be partially exposed to the substrate 30 fairly uniformly, and thus, the cell culture function can be more efficiently implemented.
본 발명은 또한, 전술한 세포 배양기판을 이용하여 세포를 배양하는 방법을 포함한다. 세포 배양 방법은 제한되지 않으며 공지의 방법을 이용할 수 있다. 구체적 일례는 실시예에서 후술한다.The present invention also includes a method for culturing cells using the cell culture substrate described above. The cell culture method is not limited and known methods can be used. Specific examples will be described later in the Examples.
상기의 특징을 갖는 본 발명에 따른 세포배양 기판은, 3차원적 세포 배양 환경을 효과적으로 제공하기 위해 중요하게 고려되어야 할 몇 가지 관점을 만족시키는 미세구조를 갖는다. 이러한 미세구조는 다음의 효과를 선택적으로 제공한다. 첫째, 꽃 유사 형상의 3차원 미소 펠렛 형태로 세포 배양 및 응집이 일어난다. 둘째, 세포 배양시 분화된 세포의 경우 탈분화를 억제하고 재분화 및 분화를 촉진하며, 줄기세포의 경우 특정한 형태의 세포로 분화 특성을 유도 및 촉진 시킨다. 셋째, 세포 골격 구조의 발달을 억제한다. 넷째, 세포의 유동성 및 이동성을 증가시킨다.The cell culture substrate according to the present invention having the above characteristics has a microstructure that satisfies some aspects to be considered important for effectively providing a three-dimensional cell culture environment. This microstructure selectively provides the following effects. First, cell culture and aggregation takes place in the form of a flower-like three-dimensional micro pellet. Second, in the case of cells differentiated in cell culture, it inhibits dedifferentiation and promotes differentiation and differentiation, and in the case of stem cells, it induces and promotes differentiation characteristics into specific types of cells. Third, it inhibits the development of the cytoskeletal structure. Fourth, increase the fluidity and mobility of the cell.
본 발명은 특히 실제 임상치료에서 문제가 되는 연골세포 배양의 탈분화 억제 및 줄기세포의 연골세포로의 분화촉진을 기판의 특수 구조설계를 통하여 극복하고, 세포의 성장 및 분화가 조절 가능함을 보여준 가치 있는 결과를 보여주었다.In particular, the present invention overcomes the inhibition of dedifferentiation of chondrocyte culture and the promotion of differentiation of stem cells into chondrocytes through the special structural design of the substrate, and shows that the growth and differentiation of cells can be controlled. Showed results.
도 1은 본 발명에서 설명하는 세포배양용 미세구조 기판의 특징을 보여주는 모식도로 벌집구조로 배치된 구조체가 만드는 전방향에 대한 반복적인 높이 단차를 보여준다. 구조체가 1b와 같이 연속적인 완만한 경사면으로 인해 세포막의 부착은 이루어 지지만 내부 선형의 골격구조를 만들지는 못하게 하여 세포의 골격구조 형성이 억제되고, 이로인해 안정적인 부착상태를 유지하며 세포응집등의 특이적 현상을 만들어 내는 원리를 설명해 주고 있다. 22와 23은 각각 구조체로 인해 형성되는 상층부와 바닥면을 지칭한다.Figure 1 is a schematic diagram showing the characteristics of the microstructured substrate for cell culture described in the present invention shows a repetitive height step for the omnidirectional structure made by the structure arranged in a honeycomb structure. Although the structure is attached to the cell membrane due to the continuous gentle slope as shown in 1b, it prevents the formation of the internal linear skeletal structure, which suppresses the formation of the skeletal structure of the cell, thereby maintaining a stable attachment state and specificity of cell aggregation. It explains the principle of creating an enemy phenomenon. 22 and 23 respectively refer to the top and bottom surfaces formed by the structure.
도 3은 유리기판과 다양한 직경(60 ~ 700 nm)의 실리카 파티클로 제작된 단층 박막의 atomic force microscpoy (AFM) 이미지(왼쪽)와 기판 별 실리카 파티클 크기에 따른 측정된 표면 거칠기를 정리한 표(오른쪽)이다.FIG. 3 is a table summarizing the measured surface roughness according to the silica particle size of each substrate and the atomic force microscpoy (AFM) image (left) of a single layer thin film made of silica particles having various diameters (60 to 700 nm). Right).
도 4는 나노구조에 의해서 입자표면을 따라 부착되는 세포막의 부착 단백질 그룹인 focal adhesion이 형성되더라도, 주변 입자에 의한 반복적인 높낮이 단차로 인해 선형의 주요 세포 골격구조 인 stress fiber가 형성되기 어려운 구조적 이유를 설명하기 위한 모식도 이다. a나 b의 위치에 형성된 focal adhesion 단백질들은 세포 골격 구조 형성에 참여가 가능하지만 상당한 면적을 차지하는 c, d의 위치에 부착된 focal adhesion 단백질들은 구조적인 거리로 인해서 세포 골격 구조 형성에 참여가 어려워진다. 4 is a structural reason that stress fiber, which is a linear main cell skeleton structure, is difficult to form due to the repetitive height step by surrounding particles, even though the adhesion protein group of the cell membrane attached along the particle surface is formed by the nanostructure. It is a schematic diagram to explain. Focal adhesion proteins formed at positions a and b can participate in the formation of cytoskeletal structures, but focal adhesion proteins attached at positions c and d, which occupy a significant area, are difficult to participate in cytoskeletal structures due to their structural distance. .
도 5는 제작예 1을 통해 실제 제작되어 실험에 사용된 750 nm 직경의 실리카 파티클이 코팅된 기판 사진이다.FIG. 5 is a photograph of a substrate coated with silica particles having a diameter of 750 nm, which was actually manufactured through Preparation Example 1 and used in an experiment.
도 6은 각 제작된 기판별로 토끼연골세포를 4시간 동안 배양한 후 측정된 위상차현미경 이미지(왼쪽)와 이미지를 분석한 세포 흡착률을 정리한 표(오른쪽)이다.Figure 6 is a table (right) summarizes the cell adsorption rate analyzed by the phase contrast microscope image (left) and the image measured after incubating rabbit chondrocytes for each prepared substrate for 4 hours.
도 7은 각 기판별로 토끼연골세포를 1일간 배양 후 측정된 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin), 푸른색은 핵을 나타낸다.7 is a fluorescence staining microscopic image measured after culturing rabbit chondrocytes for each substrate for 1 day. Red color represents the actin and blue color represents the nucleus.
도 8은 각 기판별로 토끼연골세포를 3일간 배양 후 측정된 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin), 푸른색은 핵을 나타낸다.8 is a fluorescence staining microscopic image measured after culturing rabbit chondrocytes for each substrate for 3 days. Red color represents the actin and blue color represents the nucleus.
도 9는 TCPS와 본 발명의 세포배양 기판에서 토끼연골세포를 3일간 배양 후 측정된 현미경 이미지이다.Figure 9 is a microscopic image measured after culturing rabbit chondrocytes in TCPS and cell culture substrate of the present invention for 3 days.
도 10은 각 기판별로 토끼연골세포를 1일간 배양 후 측정된 공초점 레이저 주사 현미경 이미지이다.10 is a confocal laser scanning microscope image measured after culturing rabbit chondrocytes for each substrate for 1 day.
도 11은 각 기판별로 토끼연골세포를 1일간 배양 후 측정된 atomic force microscpoy (AFM) 이미지이다.11 is an atomic force microscpoy (AFM) image measured after incubating rabbit chondrocytes for each substrate for 1 day.
도 12는 각 기판별로 토끼연골세포를 7일동안 배양 하며 측정된 초기 대비 대사도 평가 그래프이다.FIG. 12 is a graph illustrating the evaluation of metabolic rate compared to the initial measured by culturing rabbit chondrocytes for each substrate for 7 days.
도 13은 각 기판별로 토끼연골세포를 7일동안 배양 하며 측정된 TCPS 기판 대비 대사도 평가 그래프이다.FIG. 13 is a graph illustrating evaluation of metabolic rate compared to TCPS substrates measured by culturing rabbit chondrocytes for each substrate for 7 days.
도 14는 각 기판별로 토끼연골세포를 7일동안 배양후 세포수를 측정한 그래프이다. 14 is a graph measuring the number of cells after culturing rabbit chondrocytes for each substrate for 7 days.
도 15는 토끼연골세포의 배양 단계 별 및 passage 3단계에서 각 기판별 세포의 collagen I 과 II의 mRNA 발현양을 정리한 그래프이다. FIG. 15 is a graph showing the mRNA expression levels of collagen I and II of cells of each substrate in each stage of culture and passage of rabbit chondrocytes.
도 16은 Passage 3 단계에서 토끼연골세포의 배양시 표면의 화학 특성에 대한 영향을 평가하기 위해 glass기판과 700 nm 실리카 기판에 아민기를 코팅한 기판을 추가하여 진행한 collagen I 과 II의 mRNA 발현양을 정리한 그래프이다.Figure 16 mRNA expression amount of collagen I and II proceeded by adding a substrate coated with an amine group on a glass substrate and 700 nm silica substrate in order to evaluate the effect on the surface chemical properties of rabbit chondrocytes in the Passage step 3 This is a graph that summarizes.
도 17은 Passage 3 단계에서 토끼연골세포의 배양시 미세구조 기판상 표면의 화학 특성에 대한 영향을 평가하기 위해 glass기판과 700 nm 실리카 기판에 아민기를 코팅한 기판을 추가하여 각 기판에서 세포의 분포 형태를 측정한 위상차현미경 이미지이다.FIG. 17 shows the distribution of cells in each substrate by adding an amine-coated substrate to a glass substrate and a 700 nm silica substrate in order to evaluate the influence on the chemical properties of the surface on the microstructured substrate during the culture of rabbit chondrocytes in the Passage 3 step. A phase contrast microscope image of the shape measured.
도 18은 Passage 0인 토끼연골세포를 glass기판과 300 nm 실리카 기판상에 1주일마다 1차례 씩 5주간 계대배양하며 collagen II mRNA 발현양의 변화를 측정한 전기영동 이미지이다. 연골세포 마커인 Collagen II 는 위쪽, 보정용 마커인 GAPDH는 아래쪽이다. FIG. 18 is an electrophoretic image of passaged rabbit chondrocytes of Passage 0 on a glass substrate and a 300 nm silica substrate for 5 weeks, once a week, for measuring changes in the expression level of collagen II mRNA. Collagen II, a chondrocyte marker, is up, GAPDH, a calibration marker, is down.
도 19는 3차례 TCPS에서 계대배양하여 탈분화된 토끼연골세포를 4번째 계대배양 단계에서 TCPS와 미세구조체 기판에서 배양한 후, 원심분리를 통해 펠렛 (pellet) 형태로 1주일간 배양하여 ECM 형성을 관찰한 이미지이다. ECM은 염색물질인 safranin O를 이용하여 붉게 처리하였다.19 is cultured in the TCPS and the microstructured substrate in the fourth passage step of passage and cultured in the TCPS three times in TCPS, and then cultured for 1 week in pellet form through centrifugation to observe ECM formation One image. ECM was treated with red using safranin O, a dye.
도 20은 토끼연골세포의 계대배양 과정 및 배양 기판에 따른 단위 갯수별 세포의 질량 변화를 배양 2일과 7일차에 확인한 결과 그래프이다. 20 is a graph showing the results of the mass change of the cells according to the number of units according to the passage and culture substrate of rabbit chondrocytes on the 2nd and 7th day of culture.
도 21은 TCPS와 표면개질된 유리, 실리카 기판상 토끼연골세포 배양시 1시간동안 흡착되는 세포수를 평가한 그래프이다. 기판 이름에 아민처리기판은 A, 결합유도 펩티드인 RGD는 R로 표기하였다. Figure 21 is a graph evaluating the number of cells adsorbed for 1 hour in the culture of rabbit cartilage cells on TCPS and surface-modified glass, silica substrate. In the substrate name, the amine treated substrate is indicated by A, and the binding guide peptide, RGD, is indicated by R.
도 22는 TCPS와 700 nm, 3,000 nm 직경의 실리카 기판에서 배양 중인 토끼연골세포의 위상차 현미경 이미지 이다.22 is a phase contrast microscopy image of rabbit chondrocytes incubated on a silica substrate of 700 nm and 3,000 nm diameter with TCPS.
도 23은 쥐 근육유래 줄기세포를 TCPS기판과 미세구조체 기판에서 14일간 배양 후 측정한 위상차 현미경 이미지이다.FIG. 23 is a phase contrast microscopy image of rat muscle-derived stem cells cultured on a TCPS substrate and a microstructured substrate for 14 days.
도 24는 PDMS 기판위에 1500 nm 입경의 실리카입자를 단층 코팅한 기판의 AFM 이미지이다. 하단 사진은 150 mm 직경의 페트리뒤쉬에 10% 경화제 비율의 PDMS를 코팅 후, 실리카 750 nm 입경 입자를 단층 코팅 후 촬영한 사진이다.24 is an AFM image of a substrate coated with a single layer of silica particles having a particle size of 1500 nm on a PDMS substrate. The bottom photo is a photo taken after monolayer coating of silica 750 nm particle diameter after coating PDMS of 10% curing agent ratio on a Petriduche of 150 mm diameter.
도 25는 10% 경화제 비율의 PDMS 기판위에 다양한 입경의 실리카 입자를 코팅 후, 측정한 전자현미경 이미지이다.FIG. 25 is an electron microscope image measured after coating silica particles having various particle diameters on a PDMS substrate having a 10% curing agent ratio.
도 26은 10% 경화제 비율의 PDMS 기판위에 (a) 800 nm, (b) 2010 nm 입경의 폴리스트렌 입자를 코팅 후, 측정한 전자현미경 이미지이다.FIG. 26 is an electron microscope image measured after coating (a) 800 nm and (b) polystyrene particles having a particle size of 2010 nm on a PDMS substrate having a 10% curing agent ratio.
도 27은 (a) 10% 경화제 비율의 PDMS 기판, (b) sealing tape, (c) LLDPE 랩, (d) 보호필름, (e) PVC와 같이 밀착성 고분자에 입자가 육방밀집 형태로 단층코팅이 이루어지며, 이러한 점이 (f) 단단한 표면의 PMMA와 (g) 일정한 형태를 가지지 않는 접착성 물질이 코팅된 접착 테이프와 같이 물성이 상이한 필름에서는 이루어지지 않는 독특한 특성이라는 점을 설명하기 위해 각 필름의 전자현미경 이미지와 함께 정리한 사진이다. Figure 27 is a single layer coating in the form of hexagonal dense particles in the adhesive polymer such as (a) PDMS substrate of 10% curing agent ratio, (b) sealing tape, (c) LLDPE wrap, (d) protective film, (e) PVC. To demonstrate that this is a unique feature that is not achieved in films with different physical properties, such as (f) PMMA on hard surfaces and (g) adhesive tapes coated with non-uniform adhesive materials. This is a picture with an electron microscope image.
도 28은 코팅되는 입자의 재질에 의한 영향을 확인하기 위하여 10% 경화제 비율의 PDMS 기판에 500 및 1000 nm 직경의 구형 폴리스티렌 재질의 입자를 단층코팅하여 세포가 실리카 입자를 이용한것과 유사하게 토끼연골세포가 응집되는 것을 확인한 위상차 현미경 이미지이다.FIG. 28 is a rabbit chondrocyte similar to that using silica particles by monocoating particles of 500 and 1000 nm diameter spherical polystyrene on a PDMS substrate having a 10% curing agent ratio in order to confirm the influence of the material of the coated particles. Is a phase contrast microscopy image confirming that agglomerates.
도 29는 10% 경과제 비율의 PDMS 기판에 다양한 입경의 실리카 입자와 800 nm 입경의 폴리스티렌 입자를 각각 코팅하여 TCPS 및 glass 기판과 함께 passage 3 단계에서 휴먼연골세포를 1주일간 배양하여 얻은 세포들을 TCPS에서 passage 0 ~ 2까지 1주일 씩 배양하여 얻은 세포들과 같이 mRNA 발현양을 real-time PCR로 평가한 그래프이다. 콜라겐 타입 1 및 2의 mRNA 발현양을 passage 3 단계의 TCPS에서의 값을 기준으로 정리하였다.FIG. 29 shows TCPS cells obtained by culturing human chondrocytes for 1 week in passage 3 with TCPS and glass substrates by coating silica particles with various particle diameters and polystyrene particles with 800 nm particle diameter on PDMS substrates with 10% elapsed agent ratio, respectively. It is a graph evaluating the amount of mRNA expression by real-time PCR, such as cells obtained by culturing weekly from passage 0 to 2 in. The mRNA expression levels of collagen types 1 and 2 were summarized based on the values in the TCPS of passage 3 stage.
도 30은 각 기판별로 휴먼연골세포를 3일간 배양 후 측정된 40 x 배율의 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin), 푸른색은 핵을 나타낸다.30 is a fluorescence staining microscope image of 40 x magnification measured after culturing human chondrocytes for each substrate for 3 days. Red color represents the actin and blue color represents the nucleus.
도 31은 각 기판별로 휴먼연골세포를 5일간 배양 후 측정된 400 x 배율의 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin)를 나타낸다.FIG. 31 is a fluorescence staining microscope image of 400 × magnification measured after culturing human chondrocytes for each substrate for 5 days. Red color represents the actin.
도 32는 10 % 경화제 비율의 PDMS상 1500 nm 입경의 실리카 입자를 코팅한 기판에서 2일간 배양된 휴먼연골세포의 AFM 이미지 및 라인 프로파일이다. 세포의 중심부분이 주변 영역보다 낮게 관찰되었다.32 is an AFM image and line profile of human chondrocytes cultured for 2 days on a substrate coated with 1500 nm particle size silica particles on PDMS at 10% curing agent ratio. The central part of the cell was observed lower than the surrounding area.
도 33은 세포의 침하현상을 규명하기 위하여 glass 및 LB 방법으로 750 nm 입경 실리카를 코팅한 glass 기판, 경화제 비율이 다른 PDMS 기판에 750 nm 입경의 실리카 입자를 코팅 후, 각 기판에 3일간 휴먼연골세포를 배양하여 측정한 AFM 이미지 및 세포의 중심부 높이를 정리한 그래프이다.Figure 33 is a glass substrate coated with 750 nm particle size silica by glass and LB method to determine the settlement of cells, silica particles having a particle size of 750 nm on PDMS substrates having different curing agent ratio, and then human cartilage on each substrate for 3 days AFM images measured by culturing cells and the center height of the cells are summarized.
도 34는 휴먼 MSC 세포를 미세구조 기판에 배양시 이루어지는 연골분화 특성을 설명하기 위한 모식도이다. 미세구조로 인해 세포와 기판과의 상호작용이 약화되고, 이웃한 세포와의 상호작용이 강화되는 것을 특징적으로 설명하고 있다.FIG. 34 is a schematic diagram for explaining cartilage differentiation characteristics obtained when culturing human MSC cells on a microstructured substrate. FIG. The microstructure is characterized by a weakening of the interaction between the cells and the substrate, and enhanced interaction with neighboring cells.
도 35는 휴먼 MSC 세포를 미세구조 기판에서 7일간 배양시 세포들이 연골세포들과 유사하게 응집되는 현상을 보여주는 100x 배율의 위상차현미경 이미지이다.FIG. 35 is a phase contrast microscope image of 100 × magnification showing a phenomenon in which cells aggregate similarly to chondrocytes when cultured with human MSC cells on a microstructured substrate for 7 days.
도 36은 휴먼 MSC 세포를 미세구조 기판에서 7일간 배양시 연골세포특이 염색물질인 alician blue에 의해 염색되어 푸른색을 나타내는 것을 보여주는 200x 배율의 위상차 현미경 이미지이다.FIG. 36 is a 200x magnification phase contrast microscopy image showing that human MSC cells are cultured on a microstructured substrate for 7 days and stained with alician blue, which is a chondrocyte-specific staining material, to show a blue color.
도 37은 휴먼 MSC 세포의 미세구조 기판 배양에 의한 유전자 발현 상태 변화를 확인하고 분화상태를 검증하기 위해 mRNA 발현량을 평가한 RT-PCR 결과이다.37 is a RT-PCR result of evaluating mRNA expression amount to confirm the gene expression state change by microstructure substrate culture of human MSC cells and to verify the differentiation state.
도 38은 도 37의 RT-PCR 결과를 이미지 작업을 통해 세포간 상호작용 관련 mRNA의 발현양을 수치적으로 정리한 그래프이다.FIG. 38 is a graph of numerically arranging the expression levels of mRNAs related to intercellular interactions by imaging the RT-PCR results of FIG. 37.
도 39는 도 36의 RT-PCR 결과를 이미지 작업을 통해 연골 특이 단백질 관련 mRNA의 발현양을 수치적으로 정리한 그래프이다.FIG. 39 is a graph of numerically arranging the expression levels of cartilage specific protein-related mRNAs by imaging the RT-PCR results of FIG. 36.
도 40은 도 36의 RT-PCR 결과를 이미지 작업을 통해 지방 세포 특이 단백질 관련 mRNA의 발현양을 수치적으로 정리한 그래프이다.FIG. 40 is a graph of numerically arranging the expression levels of adipocyte-specific protein-related mRNAs by imaging the RT-PCR results of FIG. 36.
도 41은 휴먼 골아세포를 미세구조 기판에서 7일간 배양시 세포들이 연골세포들과 유사하게 응집되는 현상을 보여주는 200x 배율의 위상차현미경 이미지이다.FIG. 41 is a phase contrast microscope image of 200x magnification showing a phenomenon in which cells aggregate similarly to chondrocytes when cultured with human osteoblasts on a microstructured substrate for 7 days.
도 42는 휴먼 골아세포의 미세구조 기판 배양에 의한 분화상태 변화를 검증하기 위해 골세포 관련 mRNA 발현량을 평가한 RT-PCR 결과 이미지 및 이를 정리한 그래프이다.FIG. 42 is a graph and a summary image of RT-PCR results for evaluating osteoblast-related mRNA expression levels in order to verify the differentiation state by microstructured substrate culture of human osteoblasts.
도 43은 휴먼 골아세포를 미세구조 기판에서 7일간 배양시 골세포 특이 효소인 Alkaline phosphatase 가 염색물질에 의해 염색되어 푸른색을 나타내는 것을 보여주는 사진 이미지이다.FIG. 43 is a photographic image showing that bone osteoblast specific enzyme Alkaline phosphatase is stained with a staining material to show blue color when human osteoblasts are cultured on a microstructured substrate for 7 days.
도 44는 휴먼 골아세포의 미세구조 기판 배양에 의한 부착성 및 세포간 상호작용 정도의 변화를 평가하기 위해 부착단백질 (Integrin) 및 상호작용 단백질 (E-cadherin) 관련 mRNA 발현량을 평가한 RT-PCR 결과 이미지 및 이를 정리한 그래프이다.FIG. 44 is a graph illustrating RT-expression of mRNAs related to adhesion protein (Integrin) and interaction protein (E-cadherin) in order to evaluate changes in adhesion and intercellular interaction by microstructured substrate culture of human osteoblasts. PCR results images and graphs.
도 45는 미세구조 기판을 제조하는 예시로 제작한 실리카 750 nm 입자를 PDMS 필름에 단층 코팅 후, UV 경화 고분자를 통해 고분자 기판에 입자를 단층 전이한 기판의 전자현미경 이미지 이다.45 is an electron microscope image of a substrate in which monochromatic silica 750 nm particles prepared as an example of preparing a microstructured substrate are coated on a PDMS film, and then monolayer transitioned to a polymer substrate through a UV cured polymer.
도 46은 미세구조 기판을 제조하는 예시로 제작한 실리카 300 nm 입자를 PDMS 필름에 단층 코팅 후, 유리막 코팅제를 통해 무기재질인 유리 기판으로 입자를 단층 전이한 기판의 전자현미경 이미지 이다.46 is an electron microscope image of a substrate in which 300 nm particles of silica prepared as an example of preparing a microstructured substrate are monolayer coated on a PDMS film, and then a single layer of particles are transferred to an inorganic glass substrate through a glass film coating agent.
도 47은 미세구조 기판을 제조하는 예시로 제작한 실리카 300 nm 입자를 PDMS 필름에 단층 코팅 후, 유리막 코팅제를 통해 무기재질인 유리 기판으로 입자를 단층 전이한 기판의 AFM 측정 이미지 및 라인 프로파일이다.FIG. 47 is an AFM measurement image and line profile of a substrate in which 300 nm particles of silica prepared as an example of preparing a microstructured substrate are monolayer coated on a PDMS film, and then the particles are monolayer transferred to an inorganic glass substrate through a glass film coating agent.
도 48은 미세구조 기판을 제작하기 위한 mold의 예시로 도 47과 같은 양각 형태의 유리 기판을 원형틀로 이용하여 제작한 음각 형태의 UV 경화 고분자 기판의 AFM 측정 이미지 및 라인 프로파일이다.FIG. 48 is an AFM measurement image and line profile of an intaglio UV cured polymer substrate manufactured by using an embossed glass substrate as in FIG. 47 as an example of a mold for fabricating a microstructured substrate.
도 49는 미세구조 기판을 제작하기 위한 mold의 예시로 도 47과 같은 양각 형태의 유리 기판을 원형틀로 이용하여 제작한 음각 형태의 UV 경화 고분자 기판의 전자현미경 이미지이다.FIG. 49 is an electron microscope image of an intaglio-type UV cured polymer substrate manufactured using an embossed glass substrate as in FIG. 47 as an example of a mold for fabricating a microstructured substrate.
도 50은 미세구조 기판을 제작하기 위한 mold의 예시로 500 nm 입경의 폴리스티렌 입자를 4 % 경화제 비율의 PDMS 기판에 단층 코팅 하여 유리막 코팅제로 유리기판에 전이한 기판을, 유기용제로 폴리스티렌 입자를 제거하여 제작한 깊은 음각형태의 유리기판의 전자현미경 이미지 및 AFM 측정 이미지와 라인 프로파일이다.50 shows an example of a mold for fabricating a microstructured substrate, in which a polystyrene particle having a 500 nm particle diameter is coated on a PDMS substrate having a 4% curing agent ratio, and the substrate transferred to a glass substrate with a glass film coating agent is removed. Electron microscopy images, AFM images and line profiles of deep indented glass substrates were fabricated by using
도 51은 도 50에서 보여준 mold 유리 기판을 통해 제작한 육방밀집형태로 입자 구조체가 형성된 고분자 기판의 전자현미경 이미지이다.FIG. 51 is an electron microscope image of a polymer substrate on which a particle structure is formed in a hexagonal dense shape manufactured through a mold glass substrate shown in FIG. 50.
도 52 내지 도 54는 본 발명의 실시예에 따른 입자 정렬을 이용한 코팅 방법을 설명하는 단면도들이다. 52 to 54 are cross-sectional views illustrating a coating method using particle alignment according to an embodiment of the present invention.
도 55 및 도 56은 본 발명의 실시예에 따른 입자 정렬을 이용한 코팅 방법에 의하여 형성된 코팅막을 제거한 후의 밀착성 고분자 기판의 다양한 예를 도시한 단면도이다.55 and 56 are cross-sectional views showing various examples of the adhesive polymer substrate after removing the coating film formed by the coating method using the particle alignment according to an embodiment of the present invention.
도 57 내지 도 62는 본 발명의 실시예에 따른 입자 부분 노출형 기재의 제조방법을 설명하는 단면도들이다. 57 to 62 are cross-sectional views illustrating a method of manufacturing a partially exposed particle substrate according to an embodiment of the present invention.
대면적으로 제작이 가능한 미세구조 기판상에서 연골세포 및 줄기세포 등을 포함한 다양한 세포에서 세포의 배양 및 특성 조절이 가능함을 확인하였다.On the microstructured substrate that can be manufactured in a large area, it was confirmed that the culture and characterization of cells can be controlled in various cells including chondrocytes and stem cells.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 하나, 하기한 실시예는 본 발명을 예증하기 위한 것일 뿐, 본 발명을 제한하는 것은 아님을 이해하여만 할 것이다.Hereinafter, the present invention will be described in more detail with reference to examples, but the following examples are merely to illustrate the present invention, but it should be understood that the present invention is not limited thereto.
# 제조예1: 실리카 미세 박막을 구비한 세포 배양기판의 제조Preparation Example 1 Preparation of Cell Culture Substrate with Silica Thin Film
랭뮤어-블러젯(LB) 방법을 통해 실리카 미세 박막을 제조하였다. Silica micro thin films were prepared by the Langmuir-Bljet (LB) method.
랭뮤어-블러젯 방법은 수면 상에 외압을 주는 조건에서 수면 상에 존재하는 물질이 균일한 단층이 형성되도록 유도하는 방법으로서, 다음의 랭뮤어-블러젯 방법을 기초로 하여 실리카 입자를 기판위에 고정한다. The Langmuir-Bloodjet method induces the formation of a uniform monolayer of the material present on the surface under conditions of external pressure on the surface of the water. Fix it.
먼저, 실리카 입자를 제조한다. 실리카 입자의 구조를 이루게 되는 단량체인 테트라에틸오르토실리케이트(tetraethylorthosilicate: TEOS)를 활성화하기 위한 촉매인 암모니아수를 에탄올과 물에 희석하고 교반기에 의하여 교반하면서 TEOS 용액을 첨가한다. 2시간 동안 교반을 하면 TEOS의 에톡시기들이 암모니아와 물에 의하여 활성화되면서 자기 조립 반응을 하게 되며, 이로써 실리카 입자가 형성된다. 사용되는 TEOS, 암모니아수등의 상대농도, 비율 및 반응조건을 조절하여 입자의 크기를 조절할 수 있다. 예컨대, 300nm 크기의 실리카 입자를 합성하기 위해서는, 실온에서 에탄올 40㎖에 암모니아수 8.3㎖, 증류수 1.7㎖를 섞은 용액을 플라스크 안에서 교반하면서 TEOS 1㎖를 첨가한 후 2시간 동안 반응시켜 제조한다. 이와 유사한 방식으로 700nm 크기의 실리카 입자 및 마이크로 크기의 입자를 제조할 수 있다. 이외에도 공지의 다양한 방법으로 실리카 입자를 제조할 수 있으며 제한되지 않는다.First, silica particles are prepared. TEOS solution is added while ammonia water, which is a catalyst for activating tetraethylorthosilicate (TEOS), which is a monomer forming silica particles, is diluted with ethanol and water and stirred by a stirrer. After stirring for 2 hours, the ethoxy groups of TEOS are activated by ammonia and water to undergo a self-assembly reaction, thereby forming silica particles. The particle size can be controlled by adjusting the relative concentration, rate and reaction conditions of TEOS and ammonia water. For example, in order to synthesize 300 nm-sized silica particles, a solution containing 8.3 ml of ammonia and 1.7 ml of distilled water at room temperature was added to the flask while stirring, and then stirred for 2 hours. In a similar manner it is possible to produce 700 nm size silica particles and micro size particles. In addition, silica particles may be prepared by various known methods, and are not limited thereto.
다음으로, 위에서 형성된 실리카 입자를 원심분리기에 의하여 원심분리하여 침지시킨 후, 상층액을 버리고 오븐에서 110℃로 약 12시간 정도 건조한다.Next, the silica particles formed above are immersed by centrifugation with a centrifuge, and then the supernatant is discarded and dried at 110 ° C. for about 12 hours.
다음으로, 유기용매에서 분산될 수 있도록 실리카 입자들의 표면을 개질하기 위한 단계를 수행한다. 유기용매로는 클로로포름을 사용하는 것이 특히 적합하다.Next, a step for modifying the surface of the silica particles to be dispersed in the organic solvent is performed. As the organic solvent, it is particularly suitable to use chloroform.
실리카 입자의 표면 개질로서, 합성된 실리카 입자 용액에 화학적인 촉매 작용을 위하여 주로 사용되는 EDC/NHS 물질을 아미노벤조싸이올(aminobenzothiol: ABT)이라는 아민기와 싸이올 그룹을 가지고 있는 물질과 초음파를 가하면서 반응시킴으로써 실리카 입자 표면에 ABT가 고정화된 실리카 입자가 제조되고 이에 따라 유기용매에 균일하게 분산된 용액, 즉, 싸이올기를 가진 짧은 유기분자로 표면이 개질된 실리콘입자들이 유기용매 상에 고르게 분산된 용액이 준비된다.As surface modification of silica particles, EDC / NHS materials, which are mainly used for chemical catalysis in the synthesized silica particle solution, are added to ultrasonic materials and amine groups called aminobenzothiol (ABT). By reacting with each other, a silica particle having ABT immobilized on the surface of the silica particle is prepared, and thus a solution uniformly dispersed in the organic solvent, that is, silicon particles whose surface is modified with short organic molecules having a thiol group are uniformly dispersed in the organic solvent. The prepared solution is prepared.
다음으로, ABT가 고정된 실리카 입자 분산용액을 원심분리 과정에 의하여 에탄올과 클로로포름으로 세척함으로써 랭뮤어-블러젯 공정용으로 사용되는 일정한 크기를 가지는 실리카 미세입자-분산 용액이 제조된다. 이와 같은 프로세스를 사용하는 것은 반응 공정이 비교적 간단할 뿐만 아니라 상기한 바와 같이, TEOS 및 암모니아수의 농도와 반응조건들을 조절함에 의하여 다양한 입자 크기의 실리카를 합성할 수 있어 바람직하다.Next, the ABT-fixed silica particle dispersion solution is washed with ethanol and chloroform by centrifugation to prepare a silica microparticle-dispersion solution having a constant size used for the Langmuir-Blodge process. The use of such a process is preferred because the reaction process is relatively simple and as described above, silica of various particle sizes can be synthesized by controlling the concentration of TEOS and aqueous ammonia and the reaction conditions.
이로써, 상기 실리카 입자 분산용액을 사용하여 랭뮤어-블러젯 방법을 기초로 유기 기능기 표면 개질된 실리카 입자 단일막을 준비할 수 있다. As a result, the silica particle dispersion solution may be used to prepare an organic functional group surface-modified silica particle membrane based on the Langmuir-Blujet method.
먼저, 상기 실리카 입자 분산용액을 수면위에 살포한다. 여기서 상기 실리카 입자 분산용액은 싸이올기를 가진 유기분자로 표면이 개질된 실리카 입자들이 클로로포름에 고르게 분산된 상태이다.First, the silica particle dispersion solution is sprayed on the water surface. Here, the silica particle dispersion solution is a state in which silica particles whose surface is modified with organic molecules having a thiol group are evenly dispersed in chloroform.
이때, 상기 수면의 표면에 배리어(barrier)를 두고 상기 배리어를 실리카 입자들이 서로 모여지는 방향으로 움직여 실리카 입자가 떠 있는 면적을 서서히 감소시킴으로 인하여 실리카 입자들이 박막형태로 모여진다. 이 때 실리카 입자들의 배열상태와 막 형성상태를 표면압으로 실리카 막의 구조를 조절한다. 배리어에 가해지는 압력을 전이압력이라 칭하는데, 이 압력을 10 mN/m ~ 60 mN/m 범위로 유지하여 실리카 입자를 균일한 단층으로 형성하여 세포 배양기판을 제조한다. In this case, the silica particles are gathered in a thin film form by placing a barrier on the surface of the water and moving the barrier in a direction in which the silica particles are gathered together to gradually reduce the floating area of the silica particles. At this time, the structure of the silica film is controlled by the surface pressure of the arrangement state and the film formation state of the silica particles. The pressure applied to the barrier is called a transition pressure, and the pressure is maintained in a range of 10 mN / m to 60 mN / m to form silica particles in a uniform monolayer to prepare a cell culture substrate.
제조된 실리카 미세 기판은 원자력 현미경 (atomic force microscopy)를 이용하여 실리카 파티클 직경별로 표면구조를 측정하고 표면 거칠기를 정량적으로 평가하였다(도 3). 도 3에 도시된 바와 같이 본 발명에 따른 실리카 미세 기판은 표면 거칠기 평가 결과가 Rq ≤0.13D, 특히 Rq ≤0.12D 를 만족하였다. The prepared silica fine substrate was measured by atomic force microscopy to measure the surface structure by silica particle diameter and quantitatively evaluate the surface roughness (FIG. 3). As shown in FIG. 3, the surface roughness evaluation result of the silica fine substrate according to the present invention satisfies Rq ≦ 0.13D, in particular Rq ≦ 0.12D.
제조된 실리카 미세 기판은 550도에서 3시간동안 열처리를 하여 기계적 내구성을 향상시켰다. 또한, 표면 친수성 향상을 위하여 UV/Ozone 클리너 상에서 1시간 30분 동안 처리하였다. 제작한 미세구조 기판은 매우 균일한 구조를 지니기 때문에 도 5와 같이 7 x 8 cm 너비의 기판에 균일한 간섭현상으로 인한 간섭색이 나타나는 것을 확인할 수 있었다.The prepared silica fine substrate was heat treated at 550 ° C. for 3 hours to improve mechanical durability. In addition, it was treated for 1 hour 30 minutes on a UV / ozone cleaner to improve the surface hydrophilicity. Since the fabricated microstructured substrate has a very uniform structure, it can be seen that an interference color appears due to a uniform interference phenomenon on a substrate having a width of 7 x 8 cm as shown in FIG. 5.
#실시예1: 실리카 미세 박막상에서의 토끼 연골세포의 배양Example 1 Culture of Rabbit Chondrocytes on Silica Fine Thin Film
생후 4주경의 토끼연골에서 분리한 연골세포를 콜라겐 분해효소를 통해 개별화 시킨 후, 일반적인 TCPS (tissue-cultured polystyrene) 기판상에서 2차례에 걸쳐 계대배양 하였다. 모든 세포배양은 10% 소혈청과 1 % 페니실린/스트렙토마이신을 첨가한 high glucose 배지를 넣고 37 항온 유지와 5% 이산화탄소가 공급되는 배양기에서 진행하였다.Chondrocytes isolated from rabbit cartilage at 4 weeks of age were individualized by collagen degrading enzymes, and then subcultured twice on a general TCPS (tissue-cultured polystyrene) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 constant temperature and incubated with 5% carbon dioxide.
그 후 TCPS 기판에서 2번의 계대배양을 진행한 세포를 가지고 3 번째 계대배양하였으며, 대조군인 TCPS(SPL Life science사, 20100 모델(세포배양 표면 처리된 100 mm 직경의 멸균 디쉬임)), 유리(glass)기판과 제조예1로부터 제조된 60, 300, 700 nm 직경의 실리카 파티클 박막이 구비된 세포 배양기판상에 배양하였다. Subsequently, a third passage was carried out with cells passaged two times on a TCPS substrate, and the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass ( glass) and a cell culture substrate equipped with a thin film of silica particles of 60, 300, 700 nm diameter prepared from Preparation Example 1.
배양과정에서 초기 흡착정도에서 큰 직경의 실리카 미세 기판이 우수한 세포 흡착능을 보이는 것을 확인하였고(도 6), 실리카 파티클 직경에 따라서 세포 흡착능이 조절됨을 확인 하였다. In the culturing process, it was confirmed that the silica fine substrate having a large diameter at the initial adsorption degree showed excellent cell adsorption capacity (FIG. 6), and the cell adsorption capacity was controlled according to the silica particle diameter.
세포의 내부 골격 구조상 차이를 관찰하기 위하여 형광염색 현미경을 통해 1일과 3일의 세포를 관찰하였다. 1일에는 실리카 미세 기판에서 세포들의 actin골격이 세포 말단에 뭉치며 선형으로 성장하지 않는 것을 확인하였다(도 7). 또한 3일에는 실리카 미세 기판에서 세포들이 뭉쳐서 자라는, 3차원 미소 펠렛의 존재를 확인하였으며, 그러한 특성이 실리카 파티클의 직경이 커질수록 증가함을 관찰하였다(도 8). 3차원 미소 펠렛은 TCPS 기판과 대비하여 보면 확연히 꽃 유사 형상을 띈다(도 9 참고).In order to observe the difference in the internal skeletal structure of the cells, the cells of day 1 and day 3 were observed by fluorescence staining microscope. On day 1 it was confirmed that the actin skeleton of the cells in the silica fine substrate aggregated at the cell ends and did not grow linearly (FIG. 7). In addition, on the third day, the presence of three-dimensional micro pellets, in which cells aggregated and grown on a silica fine substrate, was confirmed, and the characteristic was observed to increase as the diameter of the silica particles increased (FIG. 8). The three-dimensional micro pellets have a flower-like shape in contrast with the TCPS substrate (see FIG. 9).
세포의 미세 구조를 확인하기 위하여 공초점 레이저 주사 현미경을 이용하여 고정된 세포를 관찰하였다. 측정된 이미지를 나타낸 도 10에서 평탄한 유리기판상에서 세포들이 넓게 퍼져 자라며 미세한 포디아(podia)들이 형성된 것을 볼 수 있으나, 실리카 기판에서는 굵고 강하게 당겨지는 느낌의 껌과 같은 형태의 두꺼운 포디아(podia)들만이 형성된 채 세포들이 좁게 퍼져 자라는 것을 관찰 하였다. 도 11의 원자력 현미경 (AFM) 이미지를 관찰하면 실리카 기판상 배양된 연골세포가 매우 얇은 두께(30 ~ 200 nm)로 실리카 구조 표면을 따라서 세포막을 형성하는 것을 관찰하였다. 이러한 세포막의 실리카 구조를 따른 휘어짐은 세포막내의 세포골격구조 형성을 억제하여 세포들의 응집을 돕고 탈분화를 억제하는 효과를 나타낸다.In order to confirm the microstructure of the cells, fixed cells were observed using a confocal laser scanning microscope. In FIG. 10 showing the measured image, the cells were spread out on a flat glass substrate, and fine podias were formed, but on a silica substrate, a thick podia, such as a gum with a thick and strong pull, was felt. Only cells were formed and cells were observed to grow narrowly. The atomic force microscope (AFM) image of FIG. 11 observed that chondrocytes cultured on the silica substrate formed a cell membrane along the surface of the silica structure with a very thin thickness (30 to 200 nm). The warpage along the silica structure of the cell membrane suppresses the formation of cytoskeletal structure in the cell membrane, thereby assisting the aggregation of the cells and suppressing dedifferentiation.
연골세포의 배양 중 대사도 및 증식 상태를 평가하기 위해 날짜별 MTT 분석을 진행하였으며, 2일 차 대비 TCPS과 다른 기판들이 유사한 양상을 보여주고 있어 정상적인 대사 및 증식이 이루어짐을 확인할 수 있다(도 12). 날짜별 TCPS 대비 대사도 평가 결과에서는 실리카 기판에서 30 ~ 50 % 수준의 대사도 평가가 나타났으며, 이는 상대적인 세포의 증식 속도가 더딘 것이 주요원인으로 해석된다(도 13).To evaluate the metabolism and proliferation status of chondrocytes in culture, MTT analysis was conducted by date, and TCPS and other substrates showed similar patterns compared to day 2, indicating that normal metabolism and proliferation were performed (FIG. 12). . The metabolic degree evaluation of the TCPS compared to the date by 30 to 50% of the metabolic rate evaluation was found on the silica substrate, which is interpreted as the main cause of the slow growth rate of the relative cells (Fig. 13).
세포 배양 7일 후의 세포의 단위면적당 수를 평가한 결과, 큰 직경의 실리카 기판에서 TCPS 대비 70 % 수준의 세포수를 나타내었으며, 이는 세포가 뭉쳐자라는 과정에서 일부 영역에 세포가 자라지 않은 부분이 존재하였기 때문이다(도 14).As a result of evaluating the number of cells per unit area after 7 days of cell culture, the large diameter silica substrate showed 70% of the number of cells compared to TCPS, which showed that the cells did not grow in some areas as the cells aggregated. (Fig. 14).
연골세포의 분화특성을 나타내는 collagen I 과 II의 mRNA 분석을 각 계대배양 단계별 세포들과 7일동안 TCPS, 유리, 실리카 미세 기판상에서 배양한 세포들에서 진행하였다. 결과를 정리한 도 15에서 계대배양중 감소하는 collagen II가 실리카 미세 기판상에서 배양됨에 따라 다시 회복되는 것을 관찰할 수 있었으며, 탈분화 진행의 마커인 collagen I은 실리카 미세 기판에서 감소하는 것으로 나타났다. 이를 통해 실리카 미세 기판이 탈분화된 연골세포를 재분화가 되도록 유도하는 것을 확인하였으며, 큰 직경의 실리카 기판이 더욱 효과적임을 확인하였다.MRNA analysis of collagen I and II showing the differentiation characteristics of chondrocytes was performed on cells in each passage and cells cultured on TCPS, glass and silica micro substrates for 7 days. In summary, it can be observed that collagen II, which is decreased during subculture, is recovered as it is cultured on silica fine substrates, and collagen I, a marker of progression of dedifferentiation, decreases on silica fine substrates. Through this, it was confirmed that the silica fine substrate induced redifferentiated chondrocytes to be re-differentiated, and that the large diameter silica substrate was more effective.
또한 이러한 재분화 유도 특성이 실리카 표면의 화학적 특성에서 나타나는 것이 아님을 확인하기 위하여 유리 기판과 700 nm 실리카 미세 기판상에 aminopropyltriethoxysilane (APTES)처리를 통해 표면상 아민 작용기를 도입하는 기판에서 연골세포의 재분화 특성을 mRNA 분석을 통해 평가하였다. 결과적으로 도 16에서와 같이 아민기가 도입된 기판에서도 표면처리되지 않은 기판과 같이 collagen II가 증가됨을 확인하였다. 또한 도 17을 통해 아민기가 도입된 미세구조 기판에서도 아민기가 도입되지 않은 미세기판 구조와 유사한 세포 응집이 이루어 지는 것을 관찰 할 수 있었다. 이를 통해 다양한 재질 및 특성의 표면에서도 미세구조에 의해 연골세포의 재분화가 유도될 수 있음을 확인하였다.In addition, in order to confirm that these re-differentiation induction characteristics do not appear in the chemical properties of the silica surface, the re-differentiation characteristics of chondrocytes in glass substrates and substrates that introduce surface amine functional groups through aminopropyltriethoxysilane (APTES) treatment on 700 nm silica micro substrates Was evaluated by mRNA analysis. As a result, it was confirmed that collagen II was increased in the substrate into which the amine group was introduced as in the surface-treated substrate as in FIG. 16. In addition, it was observed that the cell aggregation similar to the microstructure of the substrate without the amine group was introduced in the microstructured substrate into which the amine group was introduced through FIG. 17. Through this, it was confirmed that the regeneration of chondrocytes can be induced by the microstructure on the surface of various materials and properties.
그리고 이러한 재분화 특성이 여러차례의 계대배양에서도 효과가 있는지 확인하기 위하여 5주간의 유리기판과 300 nm 직경의 실리카 미세 기판상에서 연골세포를 지속적으로 계대배양한 결과 도 18과 같이 실리카 미세 기판상에 배양한 연골세포가 collagen II의 발현이 높게 지속됨을 확인 할 수 있었다. 또한, 도 19에서 나타나듯이 원심분리를 통해 pellet을 형성하여 배양할 경우 미세구조체에서 배양을 거친 경우 연골세포의 특성을 결정하는 세포외기질(ECM)의 분비가 활발해짐을 관찰 할 수 있었다. 미세구조 기판상에서 세포 배양시 연골세포를 탈분화시키지 않고 여러 차례 계대배양 할 수 있음을 확인하였다.In order to determine whether such regeneration characteristics were effective in multiple passages, cartilage cells were continuously cultured on glass substrates and 300 nm diameter silica micro substrates for 5 weeks, and then cultured on silica micro substrates as shown in FIG. 18. Chondrocytes were found to maintain high expression of collagen II. In addition, as shown in FIG. 19, when pellets were formed and cultured through centrifugation, the secretion of extracellular matrix (ECM), which determines the characteristics of chondrocytes, was activated when cultured in a microstructure. It was confirmed that the cell culture on the microstructured substrate can be passaged several times without dedifferentiating chondrocytes.
미세구조를 통한 연골세포의 재분화 특성은 각 조건의 배양 단계에서의 배양 2일차와 7일차의 일정 세포당 (10의 6승)질량을 측정해 보았을 때도 도 20과 같이 미세구조 기판에서 탈분화로 인해 증가되는 세포질량이 감소되는 것을 볼 수 있었다. 연골세포의 탈분화시 세포의 크기가 증가하는 것을로 알려져 있기 때문에 이러한 질량 감소 효과는 재분화 효과의 증거로서 참조가 가능하다. The redifferentiation characteristics of chondrocytes through microstructures are due to dedifferentiation in microstructured substrates as shown in FIG. Increased cell mass was seen to decrease. This mass reduction effect can be referred to as evidence of the re-differentiation effect since it is known that the size of the cells increases upon dedifferentiation of chondrocytes.
그리고 연골세포의 세포흡착능이 아민표면 처리 및 RGD 펩타이드 처리 등을 통해 더욱 개선될 수 있음을 1시간 배양 후 면적당 흡착 세포수를 평가하여 정리한 도 21에서 확인하였으며, 아민 처리된 700 nm 직경의 실리카 미세 기판의 경우 TCPS 기판 대비 4배 이상의 높은 흡착효율을 나타내었다.In addition, it was confirmed in FIG. 21 that the adsorption capacity of chondrocytes could be further improved through amine surface treatment and RGD peptide treatment, after culturing for 1 hour, by evaluating the number of adsorbed cells per area. In the case of the fine substrate, the adsorption efficiency was 4 times higher than that of the TCPS substrate.
세포배양에 있어서 세포의 실시간적인 상태 분석에 있어서 중요한 위상차 현미경을 통한 관찰은 도 22에서와 같이 700 nm 직경 수준에서는 TCPS와 같이 선명한 이미지를 얻을 수 있었다. 하지만 3,000 nm 이상의 직경의 입자를 사용하면 산란 효과 및 큰 높이 단차 등으로 인해 세포의 관찰이 어려워지는 것으로 나타났다.Observation through phase contrast microscopy, which is important for real-time state analysis of cells in cell culture, yielded clear images such as TCPS at the 700 nm diameter level as shown in FIG. However, the use of particles with a diameter of 3,000 nm or more makes it difficult to observe cells due to scattering effects and large height differences.
한편, 미세구조 기판에서 근육유래 줄기세포를 14일 동안 배양시 TCPS 기판과 달리 신경세포와 같은 외형적인 형태로 세포가 변화됨을 도 23을 통해서 확인하였다. 이를 통해 연골세포가 아닌 다른 다양한 세포에 있어서도 미세구조가 세포상태 변화에 영향을 줌을 예상할 수 있었다. On the other hand, when the muscle-derived stem cells in the microstructured substrate for 14 days, unlike the TCPS substrate, it was confirmed through FIG. Through this, it could be expected that the microstructure affects the cell state changes in various cells other than chondrocytes.
# 제조예2: 밀착성 고분자 상 입자 코팅을 통한 미세구조 기판 제작# Preparation Example 2: Fabrication of Microstructured Substrate by Cohesive Polymer Phase Particle Coating
실가드(Sylgard) 184 (미국, 다우코닝)제품 기준 10 % 중량부의 경화제를 포함하여 형성된 Polydimethylsiloxane (PDMS)로 이루어진 밀착성 고분자 기판을 준비하였다. An adhesive polymer substrate made of Polydimethylsiloxane (PDMS) was prepared, including 10% by weight of a curing agent based on Silgard 184 (Dow Corning, USA).
밀착성 고분자 기판 위에 입자를 올려 놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 실리카 및 폴리스티렌 (PS)입자와 밀착성 고분자 기판을 결합하여 실리카코팅막을 형성하였다. 도 24는 약 1500 nm (1480 nm)의 실리카 입자를 PDMS에 코팅 후 측정한 AFM 이미지 및 라인프로파일 자료와 약 750 nm (740 nm) 실리카 입자를 150 mm의 페트리 디쉬상 전면이 고르게 코팅할 수 있다는 사진을 보여준다. Put the particles on the adhesive polymer substrate and rub them while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate. Formed. 24 shows that AFM images and line profile data measured after coating about 1500 nm (1480 nm) of silica particles on PDMS and about 750 nm (740 nm) silica particles can be uniformly coated on a 150 mm Petri dish phase. Show a picture.
이때, 실리카입자의 평균 입경을 160nm, 330nm, 740nm, 1480nm, 3020nm, 5590 nm으로 달리하여 형성된 코팅막의 전자 현미경 사진을 도 25의 (a), (b), (c), (d), (e), (f)에 각기 나타내었다. 폴리스티렌 입자의 경우 800, 2010 nm 입자를 코팅하여 도 26의 (a), (b) 에 나타내었다. 도 25와 도 26을 참조하면, 실리카입경들이 높은 밀도를 가지도록 중심들이 육각형의 배열을 이루도록 배치된 것을 알 수 있다(육방밀집). 즉, 본 발명에 따르면 입자들이 높은 밀도의 단층으로 고르게 코팅될 수 있음을 알 수 있다.In this case, electron micrographs of the coating film formed by varying the average particle diameter of the silica particles at 160 nm, 330 nm, 740 nm, 1480 nm, 3020 nm, and 5590 nm are shown in FIGS. 25 (a), (b), (c), (d), ( e) and (f) are shown, respectively. In the case of polystyrene particles, 800 and 2010 nm particles are coated and shown in FIGS. 26A and 26B. 25 and 26, it can be seen that the centers are arranged in a hexagonal arrangement so that the silica particle diameters have a high density (hexagonal density). That is, according to the present invention it can be seen that the particles can be evenly coated with a single layer of high density.
밀착성 고분자로는 PDMS 이외의 부드러운 표면과 탄성 및 복원력을 가진 입자 직경 수준에서 매끈한 표면구조를 지니는 고분자 물질들이 사용 가능하다는 것을 도 27을 통해 확인할 수 있다. Sealing tape 과 같은 실리콘 기반의 고분자 및 LLDPE, PVC 랩과 같은 가소제가 첨가된 고분자 들이 입자들을 단층수준의 육방밀집형태로 정렬 시킬 수 있음을 볼 수 있다.As the adhesive polymer, it can be seen from FIG. 27 that polymer materials having a smooth surface other than PDMS and a smooth surface structure at a particle diameter level having elasticity and resilience can be used. It can be seen that silicone-based polymers such as sealing tape and polymers added with plasticizers such as LLDPE and PVC wrap can align the particles in a single layer hexagonal density form.
이러한 입자가 코팅된 고분자 물질들은 자체적으로 이용되거나 다른 재질을 포함하는 전사 및 사출공정에서 원형틀로서 이용이 가능하다.Polymer particles coated with such particles can be used on their own or as a prototype in a transfer and injection process including other materials.
# 실시예2: PDMS 필름상 입자 코팅을 통해 제작된 폴리스티렌 미세 박막상에서의 토끼 연골세포의 배양Example 2 Culture of Rabbit Chondrocytes on Polystyrene Fine Thin Films Prepared by Particle Coating on PDMS Films
제조예 2를 통해 제작된 500, 1000 nm 입경의 폴리스티렌 입자가 코팅된 PDMS 기판에서 실시예 1의 조건으로 토끼 연골 세포를 배야하여 위상차 현미경을 관찰하였다. 도 28에서 나타나듯이 실리카 재질이 아닌 폴리스티렌 재질의 입자에서도 실시예 1과 유사한 세포응집현상이 관찰되었다. 이를 통해 세포의 응집효과의 주요요소는 표면의 화학적, 기계적 특성이 아닌 구조적 특성임을 확인할 수 있다. 일반적인 세포 배양기판 재질로 사용되는 폴리스티렌 재질에서도 나타나는 이러한 특성은 미세구조 기판용 mold 제작등을 통해 저렴하고 대량생산이 가능한 세포의 분화 상태를 조절하는 미세구조 기판의 제작이 가능함을 알려준다. In the PDMS substrate coated with polystyrene particles of 500 and 1000 nm particle size prepared in Preparation Example 2, rabbit chondrocytes were incubated under the conditions of Example 1, and the phase contrast microscope was observed. As shown in FIG. 28, cell aggregation similar to that of Example 1 was observed in particles of polystyrene instead of silica. Through this, the main factor of the aggregation effect of the cell can be confirmed that the structural characteristics, not the chemical and mechanical properties of the surface. These characteristics, which are also shown in polystyrene materials used as general cell culture substrate materials, indicate that it is possible to manufacture microstructured substrates that control the differentiation state of cells that are inexpensive and mass-produced through the production of molds for microstructured substrates.
# 실시예3: PDMS 필름상 입자 코팅을 통해 제작된 미세 박막상에서의 휴먼 연골세포의 배양Example 3 Culture of Human Chondrocytes on Fine Thin Films Prepared by PDMS Film Particle Coating
휴먼연골에서 분리한 연골세포를 콜라겐 분해효소를 통해 개별화 시킨 후, 일반적인 TCPS (tissue-cultured polystyrene) 기판상에서 2차례에 걸쳐 계대배양 하였다. 모든 세포배양은 10% 소혈청과 1 % 페니실린/스트렙토마이신을 첨가한 high glucose 배지를 넣고 37 항온 유지와 5% 이산화탄소가 공급되는 배양기에서 진행하였다.Chondrocytes isolated from human cartilage were individualized by collagen degrading enzyme, and then subcultured twice on a common tissue-cultured polystyrene (TCPS) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 constant temperature and incubated with 5% carbon dioxide.
그 후 TCPS 기판에서 2번의 계대배양을 진행한 세포를 가지고 3 번째 계대배양하였으며, 대조군인 TCPS(SPL Life science사, 20100 모델(세포배양 표면 처리된 100 mm 직경의 멸균 디쉬임)), 유리(glass)기판과 제조예2로부터 제조된 160, 330, 750, 1500, 3010 nm 직경의 실리카 파티클 및 800 nm 직경의 폴리스티렌 파티클 박막이 구비된 세포 배양기판상에 배양하였다. Subsequently, a third passage was carried out with cells passaged two times on a TCPS substrate, and the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass ( glass) and cultured on a cell culture substrate equipped with 160, 330, 750, 1500, 3010 nm diameter silica particles and 800 nm diameter polystyrene particle thin films prepared from Preparation Example 2.
연골세포의 분화특성을 나타내는 collagen I 과 II의 mRNA 분석을 각 계대배양 단계별 세포들과 7일동안 TCPS, 유리, 실리카 및 폴리스티렌 미세 기판상에서 배양한 세포들에서 진행하였다. 결과를 정리한 도 29에서 실시예 1과 유사하게 계대배양중 감소하는 collagen II가 실리카 및 폴리스티렌 미세 기판상에서 배양됨에 따라 다시 회복되는 것을 관찰할 수 있었으며, 탈분화 진행의 마커인 collagen I은 실리카 미세 기판에서 감소하는 것으로 나타났다. 이를 통해 실리카 미세 기판이 탈분화된 연골세포를 재분화가 되도록 유도하는 것을 확인하였으나, 실리카 기준 입자가 1500, 3010 nm 직경일 경우 재분화 효과가 크게 떨어지는 것으로 나타났다. 실리카 750 nm보다 약간 큰 직경을 가지는 폴리스티렌 800 nm 입자를 이용한 경우는 실험과정의 문제로 collagen I은 분석하지 못하였으나, 중요 연골 마커인 collagen II의 바현값이 TCPS 대비 5배 이상의 높은 값을 보여주었다.MRNA analysis of collagen I and II showing the differentiation characteristics of chondrocytes was performed on cells in each passage stage and cells cultured on TCPS, glass, silica and polystyrene micro substrates for 7 days. In summary, similar to Example 1 in FIG. 29, it was observed that collagen II, which decreases during subculture, was recovered as cultured on silica and polystyrene micro substrates. Was found to decrease. Through this, it was confirmed that the silica fine substrate induced redifferentiation of the dedifferentiated chondrocytes. However, when the silica reference particles were 1500 and 3010 nm in diameter, the redifferentiation effect was significantly decreased. In the case of using polystyrene 800 nm particles with a diameter slightly larger than 750 nm of silica, collagen I could not be analyzed due to experimental problems, but the expression value of collagen II, an important cartilage marker, was 5 times higher than that of TCPS. .
실리카 입경이 750 nm 까지는 연골 재분화 특성이 증가하다가 이후 감소하는 것을 분석하기 위하여 7일간 배양된 각 기판에서의 세포들을 골격구조 염색(actin)하여 형광현미경을 통해 관찰하였다. 도 30에서는 40 x 배율의 저배율로 세포들이 160 ~ 750 nm 의 미세구조 기판에서는 응집을 보이나, 1500 nm 이상의 입자 기판에서는 glass와 같이 고르게 퍼져있는 형태를 나타내었다. 또한 도 31에서와 같이 400 x 배율의 고배율의 이미지에서는 150 ~ 750 nm 입경의 입자 기판에서는 선형의 골격구조가 잘 발달되지 못하였으나, 1500 및 3000 nm 입경의 입자기판에서는 다시 골격구조가 발달된 것을 확인할 수 있었다. 이를 통해 PDMS상에 1500 nm 이상의 큰 입경의 입자가 코팅된 기판에서는 미세구조에 의한 세포골격 구조 형성 억제 효과가 나타나지 못하며, 세포 분화에 큰 영향을 주는 것으로 판단되는 세포 응집도 이루어지지 않는다는 것을 확인할 수 있었다.In order to analyze that the cartilage regeneration characteristics increased and decreased after the silica particle diameter up to 750 nm, the cells in each substrate cultured for 7 days were actin-skeletal stained and observed through a fluorescence microscope. In FIG. 30, cells were aggregated at a microstructured substrate of 160 to 750 nm at a low magnification of 40 ×, but evenly spread like glass on a particle substrate of 1500 nm or more. In addition, as shown in FIG. 31, in the high magnification image of 400 × magnification, the linear skeletal structure was not well developed in the particle substrate having a particle size of 150 to 750 nm, but the skeletal structure was further developed in the particle substrate having a particle size of 1500 and 3000 nm. I could confirm it. Through this, it was confirmed that the substrate coated with particles having a large particle size of more than 1500 nm on PDMS did not suppress cytoskeletal structure formation due to the microstructure, and did not achieve cell aggregation, which is considered to have a significant effect on cell differentiation. .
이러한 큰 입경에서의 세포 골격구조의 재발달의 원인을 파악하기 위하여 도 32와 같이 AFM 이미지를 측정하고 라인프로파일을 통해 분석하였다. 관찰결과 큰 입경의 기판에서 배양된 세포는 중심 부분이 기판쪽으로 침하되어 있는 것을 확인할 수 있었다. 또한 도 33과 같이 750 nm의 동일한 실리카 입자를 이용하더라도 PDMS의 경화제 비율이 감소함에 따라 PDMS의 경도가 감소하여 세포 중심부가 크게 침하되는 것을 관찰 할 수 있었다. 이는 세포의 장력에 의해 탄성체인 PDMS가 입자를 코팅한 채로 기판 쪽으로 침하되는 현상으로 이로 인해 이웃한 입자들의 상대 높이가 감소하게 되어 골격구조 형성 억제 효과가 감소하게 된 것이다. 단단한 재질의 유리기판에 코팅된 LB 조건의 기판에서는 glass와 유사한 500 nm의 높이가 관찰되었으며, 세포 골격구조도 억제되어 있었다. 이러한 결과를 통해 미세구조의 높이 단차가 세포의 골격구조 형성 억제의 주요 요인이고, 이를 통해 분화상태에 영향을 주는 세포 응집이 이루어지게 되는 것을 확인할 수 있었다. 또한 일정한 경도의 탄성체에 입자를 코팅하여 세포의 장력을 분석하거나 평가하는 용도로 사용이 가능할 것이라는 예상을 하게 되었다. 이는 일반적인 부드러운 탄성체 표면에는 세포 부착이 어렵기 때문에 경질의 입자를 중간 매개체로 이용하는 부분이 특징적이라고 할 수 있다. In order to determine the cause of the re-development of the cytoskeletal structure at such a large particle size, the AFM image was measured and analyzed through a line profile as shown in FIG. 32. As a result, it was confirmed that the cells cultured on the substrate having a large particle diameter subsided toward the substrate. In addition, even when using the same silica particles of 750 nm as shown in Figure 33 it was observed that the hardness of the PDMS decreases significantly as the hardness of the PDMS decreases as the curing agent ratio of PDMS decreases. This is because the PDMS, which is an elastic body, is settled toward the substrate while the particles are coated by the tension of the cells, thereby decreasing the relative height of neighboring particles, thereby reducing the inhibitory effect on the formation of the skeletal structure. In the LB substrate coated on the rigid glass substrate, a height of 500 nm similar to glass was observed, and the cytoskeletal structure was also suppressed. These results confirmed that the height step of the microstructure is a major factor in the suppression of the skeletal structure formation of the cell, through which the cell aggregation affecting the differentiation state is achieved. In addition, it was expected that the coating of particles on a certain hardness of the elastomer can be used for analyzing or evaluating the tension of cells. It is characteristic that the part using hard particles as an intermediate medium because it is difficult to adhere to cells on the general soft elastomer surface.
# 실시예4: PDMS 필름상 입자 코팅을 통해 제작된 미세 박막상에서의 휴먼 mesenchymal stem cell (MSC)의 배양   Example 4 Incubation of Human Mesenchymal Stem Cells (MSCs) on Fine Thin Films Prepared by Particle Coating on PDMS Films
휴먼 MSC를 passge 6 단계까지 일반적인 TCPS (tissue-cultured polystyrene) 기판상에서 계대배양 하였다. 모든 세포배양은 10% 소혈청과 1 % 페니실린/스트렙토마이신을 첨가한 low glucose 배지를 넣고 37 ℃ 항온 유지와 5% 이산화탄소가 공급되는 배양기에서 진행하였다.Human MSCs were passaged on conventional tissue-cultured polystyrene (TCPS) substrates up to passge stage 6. All cells were cultured in a low glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 ° C incubation and 5% carbon dioxide.
그 후 대조군인 TCPS(SPL Life science사, 20100 모델(세포배양 표면 처리된 100 mm 직경의 멸균 디쉬임)), 유리(glass)기판과 제조예2로부터 제조된 60, 150, 300, 700 nm 직경의 실리카 파티클 박막이 구비된 세포 배양기판상에 배양하였다.Subsequently, the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass substrate and 60, 150, 300, 700 nm diameter prepared from Preparation Example 2 Cultured on a cell culture substrate equipped with a thin film of silica particles.
이번 실험은 도 34에서와 같이 미세구조에 의해 발생되는 세포와 기판간의 상호작용 약화와 그로인한 세포간 상호작용의 강화 부분을 MSC라는 대표적인 줄기세포를 이용하여 검증하고자 하였다. 발생학 관점에서 연골세포는 일부 세포들의 응집체를 형성하는 과정을 통해 연골로 분화되는 것으로 알려져 있으며, 이러한 관점에서 연골세포로의 분화라는 임상학적으로 효용성이 높은 연골세포를 얻을 수 있으나 기술적으로 어렵다고 알려진 목표가 수행 가능할 것으로 기대하였다. In this experiment, as shown in FIG. 34, the weakening of the interaction between the cells and the substrate generated by the microstructure and the enhancement of the intercellular interactions were examined using a representative stem cell called MSC. In terms of embryology, chondrocytes are known to differentiate into cartilage through the formation of aggregates of some cells. From this point of view, the clinically effective chondrocytes of differentiation into chondrocytes can be obtained, but the technical goal is that It was expected to be feasible.
MSC 의 미세구조 기판에서의 배양 특성을 확인하기 위해 배양 7일차에 위상차 현미경을 통해 관찰하였다. 도 35와 같이 실시예 1과 유사하게 미세구조 기판에서 세포가 응집되어 있는 것을 확인할 수 있었다. MSC 세포의 분화 특성을 평가하기 위하여 연골세포 특이 염색인 alcian-blue 염색을 수행한 결과 도 36과 같이 미세구조 기판에서 높은 파란색의 염색상태를 확인할 수 있었으며, 실시예 1과 같이 큰 입경에서 높은 효과를 보였다. 보다 명확한 MSC의 분화상태 확인을 위하여 mRNA 발현양을 RT-PCR을 통해 분석하였다. 도 37과 같이 8개의 mRNA가 평가되었다. 이를 세포 상호작용 관련 유전자 (도 38), 연골 세포 특이 마커 유전자 (도 39), 지방 세포 특이 마커 유전자 (도 40)를 정량적으로 분석하였다. 이를 통해 미세구조 기판에서 세포간 상호작용은 강화되고 지방세포가 아닌 연골세포로 특이적으로 분화되는 것을 확인할 수 있었다. 이번 실험에서 MSC를 연골세포로 분화시키기 위한 분화 특이 배지인 (Dexamethazone, high glucose DMEM, proline, pyruvate, ascorbate-2-phosphate, glutamax, ITS + premix, TGF-b)의 첨가물등은 일체 이용되지 않았으며, MSC의 일반적인 배양 배지만이 이용되었다. 이는 도 34와 같이 미세구조에 의한 MSC 응집이 분화유도 약물을 이용하지 않고도 선택적으로 연골로 세포 분화를 유도할 정도로 매우 효과적이고 우수한 방법이라는 것을 보여준다.In order to confirm the culture characteristics of the microstructured substrate of the MSC was observed through a phase contrast microscope on the 7th day of culture. As in FIG. 35, cells were aggregated in the microstructured substrate similarly to Example 1. As a result of performing alcian-blue staining, which is a chondrocyte-specific staining, to evaluate the differentiation characteristics of MSC cells, as shown in FIG. 36, a high blue staining state was confirmed on the microstructured substrate. Showed. In order to confirm the differentiation status of MSC more clearly, mRNA expression amount was analyzed by RT-PCR. Eight mRNAs were evaluated as shown in FIG. 37. This was quantitatively analyzed for cell interaction related genes (FIG. 38), chondrocyte specific marker genes (FIG. 39), adipocyte specific marker genes (FIG. 40). Through this, it was confirmed that the interaction between cells in the microstructured substrate was enhanced and specifically differentiated into chondrocytes, not adipocytes. In this experiment, additives of differentiation-specific medium (Dexamethazone, high glucose DMEM, proline, pyruvate, ascorbate-2-phosphate, glutamax, ITS + premix, TGF-b) for differentiating MSC into chondrocytes were not used at all. Only the general culture medium of MSC was used. This shows that MSC aggregation by microstructure is a very effective and excellent method to selectively induce cell differentiation into cartilage without using differentiation-inducing drugs as shown in FIG. 34.
# 실시예5: 실리카 미세 박막상 휴먼 골아 세포의 배양Example 5 Culture of Human Osteoblasts on Silica Fine Thin Film
휴먼 골아세포 (MG-63, cellline)를 일반적인 TCPS (tissue-cultured polystyrene) 기판상에서 계대배양 하였다. 모든 세포배양은 10% 소혈청과 1 % 페니실린/스트렙토마이신을 첨가한 high glucose 배지를 넣고 37 ℃ 항온 유지와 5% 이산화탄소가 공급되는 배양기에서 진행하였다.Human osteoblasts (MG-63, cellline) were passaged on a common tissue-cultured polystyrene (TCPS) substrate. All cell cultures were performed in a high glucose medium containing 10% bovine serum and 1% penicillin / streptomycin and maintained at 37 ° C. and 5% carbon dioxide.
그 후 대조군인 TCPS(SPL Life science사, 20100 모델(세포배양 표면 처리된 100 mm 직경의 멸균 디쉬임)), 유리(glass)기판과 제조예1로부터 제조된 60, 120, 300, 700 nm 직경의 실리카 파티클 박막이 구비된 세포 배양기판상에 배양하였다.Subsequently, the control group TCPS (SPL Life Science, 20100 model (100 mm diameter sterilized dish with cell culture surface)), glass substrate and 60, 120, 300, 700 nm diameter prepared from Preparation Example 1 Cultured on a cell culture substrate equipped with a thin film of silica particles.
골아세포의 미세구조 기판에서의 배양 특성을 확인하기 위해 배양 7일차에 위상차 현미경을 통해 관찰하였다. 도 41과 같이 실시예 1과 유사하게 미세구조 기판에서 세포가 응집되어 있는 것을 확인할 수 있었다. 골아세포의 분화상태 확인을 위하여 mRNA 발현양을 RT-PCR을 통해 분석하였다. 도 42와 같이 4개의 골분화 관련 mRNA가 평가되었다. 골아 세포의 분화 촉진 여부를 이미지 적으로 평가하기 위하여 골세포 분화 관련 효소인 ALP 염색을 수행한 결과 도 43과 같이 미세구조 기판에서 높은 파란색의 염색상태를 확인할 수 있었으며, 실시예 1과 같이 큰 입경에서 높은 효과를 보였다.In order to confirm the culture characteristics of the microstructured substrate of osteoblasts, the microscopic observation was performed on the 7th day of culture. As in FIG. 41, cells were aggregated in the microstructured substrate similarly to Example 1. In order to confirm the differentiation status of osteoblasts, mRNA expression levels were analyzed by RT-PCR. Four bone differentiation-related mRNAs were evaluated as shown in FIG. As a result of performing ALP staining, an enzyme related to osteoblast differentiation, to evaluate whether the osteoblast differentiation was promoted in an image, as shown in FIG. Showed a high effect.
골아세포의 골분화 특성 향상 원인을 파악하기 위하여 RT-PCR을 이용하여 부착성 단백질인 integrin과 세포 상호작용관련 단백질인 E-Cadherin의 mRNA 발현양을 분석하였다. 도 44와 같이 미세구조의 입경이 증가할 수록 integrin의 값은 감소하였으며, 세포간 상호작용은 강화되는 것으로 나타났다. 다만, 이는 7일동안 배양한 세포를 이용한 분석결과이므로, 큰 입경의 미세구조 기판에서 초기 세포의 흡착이 낮다는 것을 의미하는 것은 아니며, 세포가 배양과정에서 응집됨에 따라서 얻어진 차이를 설명하는 자료로서 의미를 가진다. RT-PCR was used to analyze the mRNA expression level of integrin, an adhesion protein, and E-Cadherin, a protein related to cell interaction. As shown in FIG. 44, the integrin value decreased as the particle size of the microstructure increased, and the interaction between cells was enhanced. However, this is an analysis result using the cells cultured for 7 days, which does not mean that the initial cell adsorption on the microstructured substrate of large particle size is low, but the data explaining the difference obtained as the cells aggregated in the culture process. Has meaning.
# 제조예3: 세포배양용 미세구조 기판 제작을 위한 몰드 기판 예시Preparation Example 3 Example of Mold Substrate for Fabrication of Microstructure Substrates for Cell Culture
실가드(Sylgard) 184 (미국, 다우코닝)제품 기준 3 ~ 20 % 중량부의 경화제를 포함하여 형성된 Polydimethylsiloxane (PDMS)로 이루어진 밀착성 고분자 기판을 준비하였다. An adhesive polymer substrate made of Polydimethylsiloxane (PDMS) formed of 3 to 20% by weight of a curing agent based on Silgard 184 (Dow Corning, USA) was prepared.
밀착성 고분자 기판 위에 입자를 올려 놓은 후 라텍스 필름으로 감싼 스폰지를 이용하여 손으로 압력을 가하면서 문질러서 밀착성 고분자 기판의 표면에 오목부를 형성하면서 실리카 및 폴리스티렌 (PS)입자와 밀착성 고분자 기판을 결합하여 실리카코팅막을 형성하였다. Put the particles on the adhesive polymer substrate and rub them while applying pressure by hand using a sponge wrapped with a latex film to form recesses on the surface of the adhesive polymer substrate. Formed.
도 45는 약 750 nm (740 nm)의 실리카 입자를 5 % 경화제 비율의 PDMS에 코팅 후 UV 경화 고분자를 통해 고분자 기판에 입자를 전사한 샘플의 전자현미경 사진이다. 도 46은 약 300 nm의 실리카 입자를 5 % 경화제 비율의 PDMS에 코팅 후 유리막 코팅제 (실리케이트 용액)를 이용하여 유리 기판에 입자를 전사한 샘플의 전자현미경 사진이다. 도 47은 AFM을 통한 이미지 측정 및 라인 프로파일을 통해 약 70 nm 높이의 구조체가 형성된 것을 확인해 준다. 무기재질로 이루어져서 매우 높은 강도를 보이며, 유기용제 또는 열을 통해 고분자 성형제의 몰드로 쉽게 이용이 가능하다. 도 48, 도 49는 도 47 에서 이용한 방법으로 제작된 미세구조의 유리 기판을 이용하여 음각형태로 UV 경화 고분자로 2차 몰드를 제작한 샘플의 AFM 이미지 및 라인프로파일 결과와 전자현미경 이미지이다. 매우 일정한 형태로 음각의 몰드가 제작된 것을 볼 수 있으며, 이를 mold로 이용하여 폴리스티렌 및 다른 재료들로 이루어진 성형체를 제작할 수 있다.FIG. 45 is an electron micrograph of a sample in which silica particles of about 750 nm (740 nm) are coated on PDMS at a 5% curing agent ratio, and then the particles are transferred onto a polymer substrate through a UV cured polymer. 46 is an electron micrograph of a sample of about 300 nm of silica particles coated on PDMS at a 5% curing agent ratio and then transferring the particles onto a glass substrate using a glass film coating agent (silicate solution). 47 confirms the formation of a structure about 70 nm high through image measurement and line profile via AFM. It is made of inorganic material and shows very high strength, and can be easily used as a mold of a polymer molding agent through an organic solvent or heat. 48 and 49 are AFM images, line profile results, and electron microscope images of samples of a secondary mold made of UV-curable polymer in an intaglio form using a microstructured glass substrate manufactured by the method of FIG. 47. It can be seen that the intaglio mold is made in a very uniform form, and can be used as a mold to produce a molded body made of polystyrene and other materials.
무기재질의 몰드를 제작하는 방법을 보여주기 위하여 500 nm의 폴리스티렌 입자를 4 % 경화제 비율의 PDMS에 코팅 후 유리막 코팅제를 통해 유리기판에 전이하였다. 폴리스티렌 입자가 전이된 유리기판을 유기용제인 클로로포름에 담가서 폴리스티렌 입자를 용해한 후 전자현미경을 측정하여 도 49와 같은 일정한 깊이의 음각 미세 구조 기판을 제작하였다. 도 49의 AFM 이미지를 확인하면 입자의 입경인 500 nm의 절반이 넘는 270 nm 의 음각구조가 형성된 것을 확인 할 수 있다. 음각 구조 기판에 UV 경화 고분자를 경화시킨 후 분리한 결과 도 50과 같이 고분자로 이루어진 구형입자 정렬 미세구조 기판이 제작됨을 확인하였다. 이러한 방법을 통해 구형입자의 절반이 넘는 깊이를 가지는 몰드도 제작이 가능함을 알 수 있다. 위에서 언급한 방법들을 이용하여 입자가 정렬되어 형성되는 육방밀집 구조의 고분자 기판등을 간단히 제작할 수 있다는 것을 알 수 있다. 도 24와 같이 150 mm 이상의 대면적 상에서도 위에 방법들이 쉽게 구현이 가능하며, 최대 수 m 크기로도 제작이 가능하다. 그리고 복잡한 공정없이 몇개의 재료들로 간단히 세포배양용 미세구조 기판을 제작할 수 있다. 이러한 입자 코팅 및 사출형 미세구조 기판은 약물을 이용한 실험방법들의 부작용 우려나 고비용의 부담을 줄여주는 우수한 세포배양 관련 기술로 판단된다. In order to show a method of manufacturing an inorganic mold, polystyrene particles of 500 nm were coated on PDMS at a 4% curing agent ratio and then transferred to a glass substrate through a glass film coating agent. The glass substrate on which the polystyrene particles were transferred was immersed in chloroform, which is an organic solvent, to dissolve the polystyrene particles, and the electron microscope was measured to prepare a negative microstructured substrate having a constant depth as shown in FIG. 49. Checking the AFM image of FIG. 49, it can be seen that a 270 nm engraved structure of more than half of the particle size of 500 nm is formed. As a result of curing and curing the UV-cured polymer on the intaglio-structured substrate, it was confirmed that the spherical particle-aligned microstructured substrate made of the polymer was produced as shown in FIG. 50. Through this method it can be seen that even a mold having a depth of more than half of the spherical particles can be produced. It can be seen that the above-mentioned methods can be used to easily manufacture polymer substrates having hexagonal dense structure in which particles are aligned. The above methods can be easily implemented on a large area of 150 mm or more, as shown in FIG. 24, and can be manufactured in sizes up to several meters. The microstructured substrate for cell culture can be produced simply from several materials without complicated process. Such particle coating and injection-type microstructured substrates are considered to be an excellent cell culture-related technology that reduces the concern about side effects and high cost of the experimental methods using drugs.

Claims (49)

  1. 육각형 벌집 형태로 양각의 구조체가 배열된 표면 구조를 갖는 세포 배양기판.A cell culture substrate having a surface structure in which relief structures are arranged in a hexagonal honeycomb form.
  2. 양각의 구조체 중 80% 이상이 규칙적으로 배치되어 존재하는 표면 구조를 갖는 세포 배양기판으로서, A cell culture substrate having a surface structure in which at least 80% of the relief structures are regularly arranged and present.
    상기 양각의 구조체의 높이를 b라 하고, 구조체의 밑면의 길이를 2a라고 할 때(단, 상기 양각의 구조체가 바닥면에서 멀어질 때 횡단면의 면적이 증가하는 구간이 있는 형상인 경우, 상기 밑면은 횡단면의 면적이 최대인 위치를 의미하고, 상기 높이는 횡단면 면적이 최대인 위치와 구조체 최상부와의 거리를 의미), 0.25a < b < 1.5a를 만족하는 세포 배양기판.When the height of the relief structure is b and the length of the bottom surface of the structure is 2a (however, in the case where the shape of the cross section increases when the relief structure moves away from the bottom surface, the bottom surface is Means the position of the largest cross-sectional area, the height means the distance between the largest cross-sectional area and the top of the structure), 0.25a <b <1.5a.
  3. 제2항에 있어서,The method of claim 2,
    0.5a < b < 1.3a를 만족하는 세포 배양기판.A cell culture substrate satisfying 0.5a <b <1.3a.
  4. 제2항에 있어서,The method of claim 2,
    0.8a < b < 1.2a를 만족하는 세포 배양기판.A cell culture substrate satisfying 0.8a <b <1.2a.
  5. 제2항에 있어서,The method of claim 2,
    상기 양각 구조체는 측단면의 형상이, 구형, 반구형, 타원형, 반타원형, 사다리꼴, 계단형, 삼각형 중 어느 하나인 세포 배양기판.The embossed structure has a side cross-sectional shape, any one of a sphere, hemispherical, oval, semi-elliptic, trapezoidal, stepped, triangle.
  6. 제2항에 있어서,The method of claim 2,
    세포 배양기판의 표면에서 상기 양각의 구조체가 차지하는 면적이 전체 면적의 40% 이상을 차지하는 세포 배양기판.A cell culture substrate in which the area occupied by the relief structure occupies over 40% of the total area on the surface of the cell culture substrate.
  7. 제2항에 있어서,The method of claim 2,
    세포 배양기판의 표면에서 상기 양각의 구조체가 차지하는 면적이 전체 면적의 70% 이상을 차지하는 세포 배양기판.And a cell culture substrate occupying 70% or more of the total area of the relief structure on the surface of the cell culture substrate.
  8. 제2항에 있어서,The method of claim 2,
    세포 배양기판의 표면에서 상기 양각의 구조체가 차지하는 면적이 전체 면적의 80% 이상을 차지하는 세포 배양기판.A cell culture substrate in which the area of the relief structure occupies 80% or more of the total area on the surface of the cell culture substrate.
  9. 제2항에 있어서,The method of claim 2,
    상기 규칙적인 양각 구조체는 정렬된 구형입자로 이루어진 세포 배양기판.The regular relief structure is a cell culture substrate consisting of aligned spherical particles.
  10. 제2항에 있어서,The method of claim 2,
    상기 규칙적인 양각 구조체는 세포 배양기판의 기재와 일체형으로 몰드로 제작된 세포 배양기판.The regular relief structure is a cell culture substrate made of a mold integrally with the substrate of the cell culture substrate.
  11. 제2항에 있어서,The method of claim 2,
    200 nm ~ 2 um 이내의 간격으로 170 nm ~ 1 um의 반복적인 높낮이 단차로 인해 선형의 세포골격구조 형성이 억제되는 것을 특징으로 하는 세포 배양기판.Cell culture substrate, characterized in that the formation of linear cytoskeletal structure is suppressed due to the repetitive height step of 170 nm ~ 1 um at intervals within 200 nm ~ 2 um.
  12. 제2항에 있어서,The method of claim 2,
    2 um × 2 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 10% 미만인 세포 배양기판.A cell culture substrate having a unit area of less than 10% when the cell culture substrate is divided into a unit area of 2 μm × 2 μm.
  13. 제2항에 있어서,The method of claim 2,
    2 um × 2 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 5% 미만인 세포 배양기판.A cell culture substrate having a unit area of less than 5% when the cell culture substrate is divided into a unit area of 2 μm × 2 μm.
  14. 제2항에 있어서,The method of claim 2,
    2 um × 0.1 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 20% 미만인 세포 배양기판.A cell culture substrate having a unit surface area of less than 20% when the cell culture substrate is divided into unit areas of 2 um x 0.1 um.
  15. 제2항에 있어서,The method of claim 2,
    2 um × 0.1 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 10% 미만인 세포 배양기판.A cell culture substrate having a unit area of less than 10% when the cell culture substrate is divided into unit areas of 2 um x 0.1 um.
  16. 제2항에 있어서,The method of claim 2,
    2 um × 0.1 um의 단위면적으로 세포 배양기판을 분할할 때, 평탄면을 이루는 단위면적이 5% 미만인 세포 배양기판.A cell culture substrate having a unit area of less than 5% when the cell culture substrate is divided into unit areas of 2 um x 0.1 um.
  17. 제2항에 있어서,The method of claim 2,
    상기 양각 구조체의 존재로 인해 얻어지는 세포 배양기판 표면 특성이 다음을 만족하는 세포 배양기판.A cell culture substrate obtained by the presence of the relief structure cell culture substrate surface characteristics satisfy the following.
    Rq ≤0.26bRq ≤0.26b
    (여기서, Rq는 표면 거칠기(Surface Roughness)이며, b는 높이를 나타낸다.) (Where Rq is Surface Roughness and b is height).
  18. 제2항에 있어서, The method of claim 2,
    상기 양각 구조체의 높이 b는 50nm ~ 10㎛의 범위인 세포 배양기판.The height b of the relief structure is a cell culture substrate in the range of 50nm ~ 10㎛.
  19. 제2항에 있어서, The method of claim 2,
    상기 양각 구조체의 높이 b는 150nm ~ 3㎛의 범위인 세포 배양기판.The height b of the relief structure is a cell culture substrate in the range of 150nm ~ 3㎛.
  20. 제17항에 있어서, The method of claim 17,
    표면 거칠기(Surface Roughness)는 25nm ~ 1000nm인 세포 배양기판.Surface Roughness is a cell culture substrate of 25nm ~ 1000nm.
  21. 제2항에 있어서, The method of claim 2,
    면적이 50 ~ 10,000㎠ 인 대면적 세포 배양기판.Large-area cell culture substrate with an area of 50 to 10,000 cm2.
  22. 제2항에 있어서,The method of claim 2,
    서로 상하로 중첩된 양각 구조체가 2% 미만이거나 존재하지 않는 세포 배양기판.Cell culture substrates having less than 2% or no embossed structures overlapping one another.
  23. 제2항에 있어서,The method of claim 2,
    TCPS 기판과 대비할 때, 다수의 3차원적 미소 펠렛(pellet)이 형성되면서 세포가 배양되는 특성을 갖는 세포 배양기판.A cell culture substrate having a property of culturing cells while forming a plurality of three-dimensional micro pellets as compared with a TCPS substrate.
  24. 제23항에 있어서,The method of claim 23,
    상기 3차원적 미소 펠렛은 초기에 꽃 유사 형상을 갖는 세포 배양기판.The three-dimensional micro pellets initially have a cell culture substrate having a flower-like shape.
  25. 제2항에 있어서,The method of claim 2,
    TCPS 기판과 대비할 때, 초기 세포 배양 속도는 늦고, 재분화율은 높은 특성의 미세구조를 갖는 세포 배양기판.Compared with the TCPS substrate, a cell culture substrate having a microstructure with a low initial cell culture rate and high regeneration rate.
  26. 제2항에 있어서,The method of claim 2,
    TCPS 기판과 대비할 때, 탈분화가 억제되는 특성의 미세구조를 갖는 세포 배양기판.A cell culture substrate having a microstructure having a property of inhibiting dedifferentiation as compared to a TCPS substrate.
  27. 제 2항에 있어서,TCPS 기판과 대비할 때, 줄기세포의 분화 특성이 향상 또는 조절되는 특성의 미세구조를 갖는 세포 배양기판.The cell culture substrate of claim 2, wherein the cell culture substrate has a microstructure in which the differentiation characteristics of stem cells are improved or controlled as compared with a TCPS substrate.
  28. 제 2항에 있어서, The method of claim 2,
    TCPS 기판과 대비할 때, 분화과정의 세포의 분화능을 향상시키는 특성의 미세구조를 갖는 세포 배양 기판.A cell culture substrate having a microstructure of a characteristic that improves the differentiation capacity of the cells of the differentiation process as compared to the TCPS substrate.
  29. 제2항에 있어서,The method of claim 2,
    연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 30% 이상을 나타내는 특성의 미세구조를 갖는 세포 배양기판.When culturing chondrocytes, a cell culture substrate having a microstructure of the characteristic that the mRNA expression value of collagen type 2 is 30% or more than the initial culture.
  30. 제2항에 있어서,The method of claim 2,
    연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 (passage 0 ~1) 대비 70% 이상을 나타내는 특성의 미세구조를 갖는 세포 배양기판.When culturing chondrocytes, a cell culture substrate having a microstructure of the characteristic that the mRNA expression value of collagen type 2 is 70% or more compared to the initial culture (passage 0 ~ 1).
  31. 제2항에 있어서,The method of claim 2,
    TCPS 기판과 대비할 때, 세포 골격 구조의 형성이 억제되는 미세 구조를 갖는 세포 배양기판.A cell culture substrate having a microstructure in which formation of a cytoskeletal structure is suppressed in contrast to a TCPS substrate.
  32. 제2항에 있어서,The method of claim 2,
    TCPS 기판과 대비할 때, 첨가물 없이도 줄기세포 배양시 분화과정에서 콜라겐 type 2의 발현이 증가되는 미세구조를 갖는 세포 배양기판.In contrast to the TCPS substrate, the cell culture substrate having a microstructure that increases the expression of collagen type 2 during differentiation during stem cell culture without additives.
  33. 밀착성 고분자 기판을 준비하는 준비 단계; 및A preparation step of preparing an adhesive polymer substrate; And
    상기 밀착성 고분자 기판 위에 복수의 입자를 압력을 가하여 코팅하는 코팅 단계;를 포함하고,And a coating step of coating a plurality of particles by applying pressure on the adhesive polymer substrate.
    상기 코팅 단계는 상기 밀착성 고분자 기판에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되면서 코팅되는 입자 정렬을 이용한 세포 배양기판 제조방법. The coating step is a cell culture substrate manufacturing method using a particle alignment is coated while forming a plurality of recesses respectively corresponding to the plurality of particles on the adhesive polymer substrate.
  34. 제33항에 있어서, The method of claim 33, wherein
    상기 코팅 단계에서는 상기 복수의 입자를 문질러서 상기 압력을 가하는 입자 정렬을 이용한 세포 배양기판 제조방법. The coating step in the cell culture substrate manufacturing method using a particle alignment to apply the pressure by rubbing the plurality of particles.
  35. 제33항에 있어서, The method of claim 33, wherein
    상기 오목부는 가역적인 입자 정렬을 이용한 세포 배양기판 제조방법. The concave portion cell culture substrate manufacturing method using reversible particle alignment.
  36. 밀착성 고분자 기판;Adhesive polymer substrates;
    상기 기판에 형성된 가역적 오목부; 및A reversible recess formed in the substrate; And
    상기 오목부에 위치하여 정렬된 복수의 입자로 이루어진 입자 코팅 세포 배양기판.Particle coated cell culture substrate consisting of a plurality of particles arranged in the concave portion.
  37. 밀착성 고분자 기판을 준비하는 준비 단계;A preparation step of preparing an adhesive polymer substrate;
    상기 밀착성 고분자 기판 위에 복수의 입자를 코팅하는 코팅 단계;A coating step of coating a plurality of particles on the adhesive polymer substrate;
    상기 밀착성 고분자 기판 및 상기 복수의 입자 위에 기재를 형성하는 단계; 및Forming a substrate on the adhesive polymer substrate and the plurality of particles; And
    상기 밀착성 고분자 기판을 제거하여 상기 복수의 입자를 부분적으로 노출하는 노출 단계;An exposure step of partially exposing the plurality of particles by removing the adhesive polymer substrate;
    를 포함하는 입자 부분 노출형 세포 배양기판의 제조방법.Particle partially exposed cell culture substrate manufacturing method comprising a.
  38. 제37항에 있어서, The method of claim 37,
    상기 기재를 형성하는 단계는,Forming the substrate,
    상기 밀착성 고분자 기판 및 상기 복수의 입자 위에 기재 조성물을 위치시키는 단계; 및Positioning a substrate composition on the adhesive polymer substrate and the plurality of particles; And
    상기 기재 조성물을 경화시켜 기재를 형성하는 경화 단계;를 포함하는 입자 부분 노출형 세포 배양기판의 제조방법.Curing step of curing the substrate composition to form a substrate; Particle manufacturing method of the partially exposed cell culture substrate comprising a.
  39. 제37항에 있어서, The method of claim 37,
    상기 코팅 단계는 상기 밀착성 고분자 기판에 상기 복수의 입자에 각기 대응하는 복수의 오목부가 형성되면서 코팅하는 입자 부분 노출형 세포 배양기판의 제조방법.The coating step is a method for producing a particle-part exposed cell culture substrate to be coated while forming a plurality of recesses respectively corresponding to the plurality of particles on the adhesive polymer substrate.
  40. 제37항에 있어서, The method of claim 37,
    상기 오목부는 가역적인 입자 부분 노출형 세포 배양기판의 제조방법.The recess is a method for producing a reversible particle partially exposed cell culture substrate.
  41. 기재; 및materials; And
    상기 기재에 일부분이 함입되어 부분적으로 노출되는 복수의 입자;A plurality of particles partially embedded in the substrate and partially exposed;
    을 포함하는 입자 부분 노출형 세포 배양기판.Particle partially exposed cell culture substrate comprising a.
  42. 제41항에 있어서,The method of claim 41, wherein
    기재로부터 노출되지 않는 입자는 개수 기준으로 전체 입자에서 10% 이하인 입자 부분 노출형 세포 배양기판.Particle-exposed cell culture substrate, the particle not exposed from the substrate is 10% or less of the total particles based on the number.
  43. 제41항에 있어서,The method of claim 41, wherein
    입자의 평균입경을 D라 하고, 노출된 입자 사이의 평균간격(입자 중심부 간의 거리)을 P라 할 때, D ≤ P ≤ 1.5D 를 만족하는 입자 부분 노출형 세포 배양기판.A particle partially exposed cell culture substrate that satisfies D ≦ P ≦ 1.5D when an average particle diameter of the particles is D and an average interval (distance between particle centers) between the exposed particles is P.
  44. 제41항에 있어서, The method of claim 41, wherein
    상기 기재는 두께 방향을 기준으로, 입자가 위치하는 상부 영역과 위치하지 않는 하부 영역으로 구분되는 입자 부분 노출형 세포 배양기판.The substrate is a partial-part exposed cell culture substrate divided into an upper region where the particles are located and a lower region not located, based on the thickness direction.
  45. 제1항 내지 제32항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 32,
    상기 양각 구조체는 유기 분자, 금속, 무기물, 생체 유래 물질, 또는 폴리머로 표면처리된 세포 배양기판.The relief structure is a cell culture substrate surface-treated with organic molecules, metals, inorganic materials, biologically derived materials, or polymers.
  46. 제45항에 있어서,The method of claim 45,
    아민 화합물, 하이드록시 화합물, 카르복실 화합물, 티올 화합물, 콜라겐, 피브로넥틴, 펩타이드, Poly-L-Lysine, 또는 Ti로 표면처리한 세포 배양기판.A cell culture substrate surface-treated with an amine compound, hydroxy compound, carboxyl compound, thiol compound, collagen, fibronectin, peptide, Poly-L-Lysine, or Ti.
  47. 제1항에 있어서,The method of claim 1,
    배양 대상 세포는 연골세포, 중간엽 줄기세포, 또는 근육 유래 줄기세포, 골아세포인 세포 배양기판.The cell to be cultured is a cell culture substrate which is chondrocytes, mesenchymal stem cells, or muscle-derived stem cells or osteoblasts.
  48. 제1항의 세포 배양기판을 이용하여 세포를 배양하는 방법.A method of culturing cells using the cell culture substrate of claim 1.
  49. 제33항의 세포 배양기판 제조방법으로부터 제조된 세포 배양기판을 이용하여 세포를 배양하는 방법.A method of culturing cells using a cell culture substrate prepared from the cell culture substrate manufacturing method of claim 33.
PCT/KR2014/003401 2013-04-19 2014-04-18 Cell culture substrate WO2014171782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130043771A KR102234887B1 (en) 2013-04-19 2013-04-19 Substrate For Cell Culture
KR10-2013-0043771 2013-04-19

Publications (1)

Publication Number Publication Date
WO2014171782A1 true WO2014171782A1 (en) 2014-10-23

Family

ID=51731632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003401 WO2014171782A1 (en) 2013-04-19 2014-04-18 Cell culture substrate

Country Status (2)

Country Link
KR (1) KR102234887B1 (en)
WO (1) WO2014171782A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11518971B2 (en) 2018-11-27 2022-12-06 Research Triangle Institute Method and apparatus for spatial control of cellular growth
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108350422B (en) 2015-11-30 2022-05-10 新加坡科技研究局 Cell culture substrate and preparation method thereof
CN109810895B (en) * 2019-02-27 2021-12-03 西北工业大学 Open type three-dimensional cell culture chip based on contour microcolumn and preparation technology thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016116A (en) * 1996-05-31 2000-03-25 시게후치 마사토시 Antifouling member and antifouling coating composition
KR20070043665A (en) * 2005-10-20 2007-04-25 한국과학기술연구원 Semiconductor nanoparticle-contained film and particle, and use thereof
US20090317835A1 (en) * 2006-07-13 2009-12-24 Commissariat A L'energie Atomique Device for sampling cells by contact
KR20100023370A (en) * 2008-08-21 2010-03-04 연세대학교 산학협력단 Micropatterning process for neural networks using three-dimensional structures
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097121A1 (en) * 2006-02-21 2007-08-30 Scivax Corporation Spheroid, spheroids and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000016116A (en) * 1996-05-31 2000-03-25 시게후치 마사토시 Antifouling member and antifouling coating composition
KR20070043665A (en) * 2005-10-20 2007-04-25 한국과학기술연구원 Semiconductor nanoparticle-contained film and particle, and use thereof
US20090317835A1 (en) * 2006-07-13 2009-12-24 Commissariat A L'energie Atomique Device for sampling cells by contact
KR20100023370A (en) * 2008-08-21 2010-03-04 연세대학교 산학협력단 Micropatterning process for neural networks using three-dimensional structures
KR20120017917A (en) * 2010-08-20 2012-02-29 서강대학교산학협력단 Porous thin film having holes and producing method of the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11518971B2 (en) 2018-11-27 2022-12-06 Research Triangle Institute Method and apparatus for spatial control of cellular growth
US11970682B2 (en) 2022-05-03 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange

Also Published As

Publication number Publication date
KR20140125662A (en) 2014-10-29
KR102234887B1 (en) 2021-04-01

Similar Documents

Publication Publication Date Title
WO2014171782A1 (en) Cell culture substrate
Tang et al. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces
Ruiz et al. Micro-stamped surfaces for the patterned growth of neural stem cells
Moeller et al. A microwell array system for stem cell culture
US9476024B2 (en) Thermoresponsive substrate with microgels, method for its preparation and culture method for biological cells
Tsutsui et al. Efficient dielectrophoretic patterning of embryonic stem cells in energy landscapes defined by hydrogel geometries
US9440004B2 (en) Method for preparing biological tissue
Yap et al. Assembly of polystyrene microspheres and its application in cell micropatterning
WO2008042640A1 (en) The use of topographic cues to modulate stem cell behaviors
Sun et al. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available inorganic microarray
Milos et al. Polymer nanopillars induce increased paxillin adhesion assembly and promote axon growth in primary cortical neurons
CN112840016A (en) Cell culture substrate, method for producing cell culture substrate, and method for producing spheroid
Xue et al. Graded protein/PEG nanopattern arrays: well-defined gradient biomaterials to induce basic cellular behaviors
Yukawa et al. Embryonic body formation using the tapered soft stencil for cluster culture device
US20140141503A1 (en) Cell culture substrate having uniform surface coating
KR20190102159A (en) Substrate For Cell Culture
JP5743592B2 (en) Method for producing cell culture substrate
KR102264385B1 (en) Coating method using particle alignment
US8759100B2 (en) Method of cell culture
Luo et al. Differentiating stem cells on patterned substrates for neural network formation
Hyun et al. Patterning cells in highly deformable microstructures: Effect of plastic deformation of substrate on cellular phenotype and gene expression
KR102264386B1 (en) Coating method using particle alignment and particle coated substrate manufactured by the same
US20150118729A1 (en) Cell programing via geometric cues
WO2022230734A1 (en) Cell culture substrate and method for producing same, method for inducing differentiation of pluripotent stem cell, and cell culture kit
久野豪士 Studies on Nanostructure Formation via Self-assembly and Applications to Antireflective Coatings and Cell Culture Substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785534

Country of ref document: EP

Kind code of ref document: A1