WO2014171699A1 - Method for performing idle mode operation with particular communication system in network including multiple communication systems interworking with each other, and apparatus for same - Google Patents

Method for performing idle mode operation with particular communication system in network including multiple communication systems interworking with each other, and apparatus for same Download PDF

Info

Publication number
WO2014171699A1
WO2014171699A1 PCT/KR2014/003239 KR2014003239W WO2014171699A1 WO 2014171699 A1 WO2014171699 A1 WO 2014171699A1 KR 2014003239 W KR2014003239 W KR 2014003239W WO 2014171699 A1 WO2014171699 A1 WO 2014171699A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
terminal
base station
message
indicator
Prior art date
Application number
PCT/KR2014/003239
Other languages
French (fr)
Korean (ko)
Inventor
이은종
고현수
최혜영
한진백
조희정
정재훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2014171699A1 publication Critical patent/WO2014171699A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for performing a specific I communication system and an idle mode operation and a device therefor in a network interworking with a plurality of communication systems.
  • RAAT radio access technologies
  • Capabi Hty a Multi-RAT terminal having a capability of accessing a communication system
  • RAAT radio access technologies
  • Capabi Hty a Multi-RAT terminal having a capability of accessing a communication system
  • a connection ion is set to a specific RAT based on a terminal request and data transmission and reception are performed.
  • the multi-RAT terminal cannot simultaneously access multiple RATs. That is, even if the current UE has a Multi-RAT capabi Hty, data transmission and reception are not possible at the same time through different RATs. .
  • the conventional multi-AT technology does not require interworking between the WLAN and the cellular network, overall system efficiency is low.
  • the UE can simultaneously access the multiple RATs, simultaneous access to the multiple RATs is possible by supporting only the flow mobility / IP-flow mapping at the network level without control at the radio level. For this reason, the prior art did not require any control connection between the AP and the Byr network, and has been progressed based on the request of the terminal.
  • the technical problem to be achieved in the present invention is to provide a method for a terminal to perform an idle mode operation with a specific communication system in a network interworking a plurality of communication systems.
  • Another object of the present invention is to provide a terminal performing an idle mode operation with a specific communication system in a network in which a plurality of communication systems interoperate.
  • a method in which a terminal performs an idle mode operation with a specific communication system in a network interworking with a plurality of communication systems is connected to a Radio Resource Control (RC) with a first communication system Transmitting a scanning result of a base station of the second communication system to an interworking entity of the first communication system in a state of delegistration with the second communication system;
  • a first indicator instructing the terminal to perform an association process with a base station of the second communication system from an interworking entity and a second indicator instructing the terminal to operate in a power saving mode with the second communication system claim, including the step of transmitting the first message; wherein the second communication on the basis of the first indication of the first message, Performing an association process with a base station of the system, and entering the power saving mode from the disconnected mode with the C2 communication system based on the second indicator of the first message.
  • pre-association with the interworking entity of the first communication system and the terminal performs an association process with the base station of the second communication system and enters the power saving mode. Whether the procedure supports
  • the method may further include negotiating.
  • the first message is identifier information for the second communication system base station to perform an association process with the terminal, the terminal performs an association process with a base station of the second communication system and the power saving mode.
  • the apparatus may further include at least one of information on a deadline time of a pre-association process and information on a listening interval with a base station of the second communication system.
  • the base station of the second communication system may be a preferred base station of the terminal in the second communication system.
  • the method may further include starting a time limit timer of a pre-association process when the terminal receives the first message.
  • the method may further include transmitting, by the terminal, a third indicator for notifying the base station of the second communication system to enter the power saving mode.
  • the interworking entity of the first communication system may be one of an eNode B, a Mobility Management Entity ()), and an InterWorking Management Entity (I ⁇ E).
  • the first message including the second indicator may be transmitted from an interworking entity of the first communication system.
  • the information on the listening interval may indicate that the power saving mode is switched to the power saving mode immediately after completing the association, and the terminal may receive a paging message from the first communication system.
  • the method may further include a second message including an indicator indicating that the procedure for entering the power saving mode and association with a base station of the second communication system is completed as an interworking entity of the first communication system. Transmitting; And receiving a voice response message for the second message from the interworking entity of the first communication system.
  • the method may further include notifying that a periodic broadcast signal of the second communication system is to be received from an interworking entity of the first communication system when there is downlink data to be transmitted through the second communication system. 2 receiving a fourth indicator indicating that there is downlink data to be transmitted through the communication system
  • the method may further include operating in an awake state with the base station.
  • the first communication system may be a cellular communication system and the second communication system may be a wireless LAN communication system.
  • a terminal performing an idle mode operation with a specific communication system in a network interworking with a plurality of communication systems is connected with a first RRC (Radio Resource Control) with a first communication system. And transmits a scanning result for the base station of the second communication system to an interworking entity of the first communication system in a degistration mode with the second communication system, and interworks with the first communication system.
  • RRC Radio Resource Control
  • a first indicator instructing the terminal to perform an association process with a base station of the second communication system from a working entity and a second indicator instructing the terminal to operate in a power saving mode with the second communication system A transmitter configured to transmit a first message comprising: and a phase based on the first indicator of the first message; And a processor configured to perform an association process with a base station of a second communication system and to enter the power saving mode from the disconnected mode with the second communication system based on the second indicator of the first message.
  • the processor may pre-associate an interworking entity of the first communication system with the terminal to perform an association process with a base station of the second communication system and enter the power saving mode. You can control to negotiate whether or not a procedure is supported.
  • the terminal may further include a receiver configured to receive the first message from an Internet 3 ⁇ 4 entity of the first communication system when there is no downlink data to be transmitted to the second communication system.
  • the transmitter is configured to send a second message to the interworking entity of the first communication system including an indicator indicating that the procedure for entering the power saving mode and the association with the base station of the second communication system has been completed;
  • the receiver answers the second message. And receive a message from the interworking entity of the first communication system.
  • the receiver informs the reception of the periodic broadcast signal of the second communication system from the interworking entity of the first communication system when there is downlink data to be transmitted through the second communication system or the first communication signal.
  • Receiving a fourth indicator indicating that there is downlink data to be transmitted through a second communication system and the processor receives a periodic broadcast signal of the second communication system based on the fourth indicator to communicate with a base station of the second communication system;
  • the controller may switch to an awake state or receive the fourth indicator to operate in an awake state with a base station of the second communication system.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100;
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • 3A shows a general structure of a general E-UTRAN and a general EPC It is a block diagram.
  • FIG. 3B is a block diagram illustrating a user-plane protocol stack for an E—UMTS network.
  • 3C is a block diagram illustrating a control plane protocol stack for an E—UMTS network.
  • FIG. 4 is an exemplary diagram for explaining IP flow based WiFi mobility.
  • FIG. 5 is a diagram illustrating a network structure for explaining an interworking structure between a first communication system (ie, a cellular communication system) and a second communication system (wireless LAN communication system).
  • a first communication system ie, a cellular communication system
  • a second communication system wireless LAN communication system
  • FIG. 6 is a diagram illustrating a network structure of WiFi-Cellular interworking according to the present invention.
  • FIG. 7 is an exemplary diagram for describing a scenario of WiFi—cellular convergence network.
  • FIG. 8 is a diagram illustrating Reassociat ion Procedures in an IEEE 802.11 WLAN system.
  • FIG. 9 is a diagram illustrating a attach and Mult i -RAT capability negotiation process of the Muhi -RAT terminal 0 i.
  • FIG. 10 is an example for explaining a process of allowing an interworking entity to perform a WiFi connection (or association) of a Mult i-RAT terminal in advance (WiFi pre association procedure) and a new power saving mode of WiFi. Drawing.
  • FIG. 11 is a diagram illustrating an example of a new WiFi pre—association procedure proposed by the present invention.
  • the present invention may be practiced without these specific details.
  • the mobile communication system is a 3GPP LTE, LTE-A system, except for the specific matters of 3GPP LTE, LTE ⁇
  • a terminal collectively refers to a mobile or fixed user terminal device such as a UE Jser Equipment (MS), a Mobile Station (MS), an Advanced Mobile Station (AMS), etc. It is assumed that an arbitrary node of a network terminal that communicates with a terminal, such as an eNode B, a base station, and an access point (AP), is collectively assumed.
  • MS UE Jser Equipment
  • MS Mobile Station
  • AMS Advanced Mobile Station
  • AP access point
  • a user equipment may receive information from downlink (downlink) from a base station, and the terminal may also transmit information through uplink (UpHnk).
  • Information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time .division multiple access
  • SC-FDMA single carrier frequency division multiple
  • CDMA may be implemented by a radio technology such as UTRAOJniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented in a wireless technology such as Global System for Mobile Communication (GSM) / Gener a 1 Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communication
  • GPRS Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTR Evolved UTRA.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • WiMAX WiMAX
  • E-UTR Evolved UTRA.
  • the 3rd Generation Partnership Project (3GPP) LTEdong term evohi on (E-UMTS) using E JTRA and part of the 3GPP employ 0FDMA in downlink and SC—FDMA in uplink.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram illustrating the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • wireless communication system 100 Simplify wireless communication system 100. Although one base station 105 and one terminal (including 110KD2D terminal) are shown for illustration, the wireless communication system 100 may include one or more base stations and / or one or more terminals.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185. And a receiver 190, a symbol demodulator 195, and a receive data processor 197. And, the terminal 110 transmits (Tx) data processor 165, symbol modulator 175, transmitter 175, transmit and receive antenna 135, processor 155, memory 160, receiver 140, symbol Demodulator 155 and receive data processor 150.
  • the transmit and receive antennas 130 and 135 are shown as one at the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas.
  • the base station 105 and the terminal 110 according to the present invention support the MIMXMu TM tiple Input Multiple Output (System) system.
  • the base station 105 according to the present invention may support both the SU-MIM0 (Single User-MIMO) MU-MIM0 (Mul t User-MIMO) scheme.
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates symbols. ("Data symbols").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and upconverts) these analog signals. Also, a downlink signal suitable for transmission over a wireless channel is generated, and then, the transmit antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency equal answer estimate for the downlink from the processor 155, performs data demodulation on the received data symbols, and performs the data (which are estimates of the transmitted data symbols). Obtain symbol estimates and provide data symbol estimates to receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • symbol demodulator 145 and receive data processor 150 are complementary to the processing by symbol modulator 120 and transmit data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • Transmitter 175 receives and streams of symbols
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the receiving antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide the received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data sent from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordination, management, etc.) operation at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected with memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, the application, and the genera files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers' microprocessors, microcomputers, or the like. Meanwhile, the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICsUppHcation specific integrated circuits DSICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field progr mmable gate arrays and the like
  • firmware or software when implementing embodiments of the present invention using firmware or software, firmware or software may be configured to include a module, procedure, or function that performs the functions or operations of the present invention.
  • Firmware or software configured to perform the above may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processor 155 and 180.
  • the layers of the air interface protocol between a terminal and a base station in a wireless communication system are well known OSKopen system in a communication system.
  • the 10 can be classified into a first layer (L1), a second layer (L2), and a third layer (L3) based on the lower three layers of the interconnection model.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process signals and data except for a function of receiving or transmitting a signal and a storage function of the terminal 110 and the base station 105, respectively.
  • the processor 155 and 180 will not be specifically described below.
  • a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • FIG. 2 is a diagram illustrating a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS).
  • E—UMTS may be called as LTE system.
  • the system may be widely deployed to provide various communication services, such as voice ALV packet data, and is generally configured to function based on various techniques to be described and described in detail with reference to the following figures.
  • the E-UMTS network includes an Evolved UMTS terrestrial radio access network (E-UTRAN), an Evolved Packet Core (EPC), and one or more terminals 10.
  • E-UTRAN includes one or more base stations 20.
  • ⁇ E / SAE gateway 30 provides the terminal 10 with endpoint and mobility management functions of the session.
  • the base station 20 and the E / SAE gateway may be connected via an S1 interface.
  • Terminal 10 is a device carried by a user and may also be referred to as a mobile station (MS), user ' terminal (UT), subscriber station (SS) or wireless device.
  • MS mobile station
  • UT user ' terminal
  • SS subscriber station
  • Base station 20 is generally a fixed station that communicates with terminal 10.
  • a base station may be called an access point (AP).
  • AP access point
  • a base station includes a transmitter and a processor, among other components, and is configured to operate in accordance with the various techniques described herein. .
  • a plurality of terminals 10 may be located in one cell.
  • One base station 20 is generally arranged per cell.
  • An interface for transmitting user traffic or control traffic may be used between the base stations 20.
  • downlink 1 indicates communication from the base station 20 to the terminal 10
  • uplink indicates communication from the terminal to the base station.
  • ⁇ E / SAE gateway 30 is a cipher of distribution of paging messages, security control, idle mobility control, SAR bearer control and non-access stratum (NAS) signaling to base stations 20 ing) and integrity (integrity protection).
  • the SAE gateway 30 provides various functions including termination of U ⁇ plan packets for paging reasons, switching of the Q-plan to support terminal mobility.
  • the ⁇ E / SAE gateway 30 may be referred to herein simply as a “gateway”. However, it can be understood that such a structure may include both a VE gateway and a SAE gateway.
  • a plurality of nodes may be connected between the base station 20 and the gateway 30 via the S1 interface.
  • the base stations 20 may be connected to each other via a ⁇ 2 interface, and neighboring base stations may have a meshed network structure with a ⁇ 2 interface.
  • 3A is a block diagram showing a general structure of a general E—UTRAN and a general EPC.
  • the base station is selected for the gateway 30, routing to the gateway when Radio Resource Control (RRC) active, scheduling and transmission of paging messages, scheduling and transmission of broadcast channel (BCCH) information downlink
  • RRC Radio Resource Control
  • BCCH broadcast channel
  • the gateway 30 is responsible for paging initiation, LTE_IDLE state management, user plane calculation, SAE bearer management, and non-access stratum (NAS) signaling. It can perform the functions of integrity protect ion.
  • 3B and 3C are block diagrams illustrating a user-plane protocol and control plane protocol stack for an E—UMTS network.
  • the protocol layers are divided into a first layer (L1), a second layer (L2), and a third layer (L3) based on three lower layers of the open system interconnect (0SI) standard model. Can be divided.
  • the first layer (or physical layer (PHY)) provides the information transmission service to the upper layer using a physical channel.
  • the physical layer is connected to a MAC layer located at a higher level through a transport channel, and data between the MAC layer and the physical layer is transmitted through a transport channel.
  • Data is transmitted over the physical channel 21 between different physical layers, i.e., between the physical layers of the transmitting side and the receiving side (for example, between the physical layers of the terminal 10 and the base station 20).
  • the MAC layer of Layer 2 provides a service to the RLC layer, which is a higher layer, through the logical channel.
  • the MAC layer of Layer 2 (L2) supports reliable data transmission.
  • the RLC layer shown in FIGS. 3B and 3C is shown that if the MAC RLC functions are implemented and performed in the MAC layer, the RLC layer itself is not needed.
  • the PDCP layer of Layer 2 employs Internet Protocol (IP) packets, such as IPv4 or IPv6, which can be efficiently transmitted over a wireless interface with relatively small bandwidth, thereby providing unnecessary control information to the transmitted data. Header compression is performed to reduce.
  • IP Internet Protocol
  • the RRC layer located at the lowest part of the third layer (L3) is defined only in the control plane and configures, reconstructs, and carries radio channels (RBs) of logical channels, transport channels, and physical channels. Control in the release relationship.
  • the radio bearers refer to a service provided to the second layer (L2) for data transmission between the terminal (terminal) and the E-UTRAN.
  • the RLC and MAC layers (terminated at base station 20 on the network side) are scheduled, ARC Autoinatic Repeat reQuest),
  • the PDCP layer (terminated at base station 102 on the network side) may perform user plane functions such as header compression, integrity protection, and ciphering.
  • the RLC and MAC layers perform the same functions as the control plane.
  • the RRC layer may perform functions such as broadcast, paging, RRC connection management, radio bearer (RB) control, mobility functions, and terminal measurement reporting and control.
  • RB radio bearer
  • the NAS control protocol terminated at the ⁇ E gateway 30 on the network side may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging start in LTEJDLE, and security control for signaling between the gateways and the terminal 10.
  • SAE bearer management authentication, LTE_IDLE mobility handling, paging start in LTEJDLE, and security control for signaling between the gateways and the terminal 10.
  • the NAS control protocol may use three different states: first if there is no RRC entity, LTE_DETACHED state, second if there is no RRC connection but the minimum terminal information is stored. LTE ⁇ IDLE state. Third, RRC connection is established, LTE_ACTIVE state.
  • the RRC state may be divided into two different states, such as RRCJDLE and RRC—CONNECTED.
  • the terminal 10 may receive a broadcast of paging information and system information while the terminal 10 specifies a discontinuous reception (DRX) configured by the NAS, and the terminal 10 Is assigned an identifier (ID) for uniquely identifying the terminal in the tracking area.
  • DRX discontinuous reception
  • ID an identifier
  • the RRC_IDLE state there is no RRC context stored in the base station 20.
  • the UE 10 specifies a paging DRX cycle.
  • the terminal 10 monitors a paging signal in a specific paging case of every terminal specific paging DRX cycle.
  • the terminal 10 has an E—UTRAN R C connection and context in the E ⁇ UTRAN to transmit and / or receive data from / to a network (base station) that is enabled. In addition, the terminal 10 receives the channel quality information and the feedback information.
  • the E-UTRAN knows the cell to which the terminal 10 belongs.
  • the network can transmit and / or receive data to / from the terminal 10, the network can control the mobility (handover) of the terminal 10, and the network performs cell measurements for neighboring cells. can do.
  • FIG. 4 is an exemplary diagram for explaining IP flow based WiFi mobility.
  • IFOM IP Flow Mobility: 3GPP (Rel-10) standard describes 3G / WiFi Seamless Off load, WLAN offloading technology of DSMIPv6 based IP Flow unit, DSMIPv6 (Dual Stack Mobile IPv6) terminal and network It provides a solution that supports IPv4 and IPv6 simultaneously.
  • DSMIPv6 Device Stack Mobile IPv6
  • the client-based device detects its movement and informs the agent.
  • MIP technology is an agent that manages mobility of mobile node, and there exists Flow Binding Table and Binding Cache table.
  • IF0M uses only DSMIFV6 because of technical problem that IP flow unit is difficult to manage.
  • MAPC0N Multi Access PDN Connectivity: Simultaneous multiple PDN connectivity to different APNs, and can be used as a protocol independent technology, PMIFV6, GTP, DSMIPv6. All data flows that were being transmitted through one PDN are moved. '
  • FIG. 5 is a diagram illustrating a network structure for explaining an interworking structure between a first communication system (ie, a seller communication system) and a second communication system (wireless LAN communication system).
  • a first communication system ie, a seller communication system
  • a second communication system wireless LAN communication system
  • an LTE system which is one of the cellular communication systems corresponding to the first communication system
  • a WiFi system which is one of the WLAN communication systems corresponding to the second communication system
  • a backbone network (eg, P ⁇
  • a backhaul control connection between the AP and the eNB through an Evolved Packet Core (EPC), or there may be a wireless control connection between the AP and the eNB.
  • EPC Evolved Packet Core
  • a first communication system (or first communication) using a first wireless communication scheme through interworking between a plurality of communication networks Network) and a second communication system (black or second communication network) using a second wireless communication method can be simultaneously supported.
  • the first communication network or the first communication system is referred to as a primary network or a primary system, respectively
  • the second communication network or the second communication system is referred to as a secondary network or a secondary system, respectively.
  • the UE may be configured to simultaneously support LTE (or LTE ⁇ A) and WiFi (local area communication systems such as WLAN / 802.11).
  • LTE Long Term Evolution
  • WiFi local area communication systems such as WLAN / 802.11.
  • Such a terminal (UE) may be referred to herein as a multi-system capability UE.
  • the primary system has wider coverage and may be a network for transmitting control information.
  • An example of a primary system may be a WiMAX or LTE (LTE-A) system.
  • the secondary system is a network having a small coverage and may be a system for data transmission.
  • the secondary network may be, for example, a WLAN system such as WLAN or WiFi.
  • the entity that manages interworking assumes that the cell is an entity in the network and assumes that interworking functions are implemented in the following three entities.
  • Mobility Management Entity (MME)-Reuse existing entity
  • Interworking function is interworking that can occur between eNB—UE or eNB-AP.
  • the entity managing interworking stores / manages AP information.
  • the eNB / ⁇ E / IWME stores / manages information of APs under its coverage.
  • An AP that is an access point of a secondary system (eg, WiFi) and a base station (eNB) that is an access point of a primary system (eg, a cellular communication system such as an LTE system or a WiMAX system) are connected to each other wirelessly. Assume that a connection is established on the phase.
  • an AP having a radio interface with an eNB is also called an eAP.
  • the eAP should support not only 802.11 MAC / PHY, but also LTE protocol stack or WiMAX protocol stack for communication with the eNB, and act as a terminal with the eNB and can communicate with the eNB.
  • FIG. 6 is a diagram illustrating a network structure of WiFi-Cel hilar interworking according to the present invention.
  • the technology of the present invention allows a dual mode or multi-RAT terminal to use a WiFi-ceiluIar convergence network more efficiently in an environment where a terminal capable of simultaneously transmitting and receiving WiFi and cellular networks exists.
  • the network can manage the AP's information in the following four ways.
  • the eNB means controlling the AP similarly to a general UE using a wireless control connection with the AP.
  • eNB means controlling the AP using a radio control connection with the AP.
  • 098 means controlling the AP using a control connection between E and an AP (ie, a secondary system).
  • I ⁇ E means to control the AP by using a control connection between the AP (that is, secondary system).
  • FIG. 7 is an exemplary diagram for explaining a scenario of a WiFi-Cel lular converged network.
  • the scenario 1 of FIG. 7 is a cell-only access scenario of a terminal, and for the automatic WiFi switching / simultaneous transmission in a state in which the terminal is connected only to a cell network, a definition of a prior technology is necessary.
  • AP information management for interworking is performed at the network level (cellular-WiFi), and WiFi discovery and WiFi network access are performed at the device level (cellular-device-WiFi).
  • 2 -1 to 2— 3 respectively indicate the WiFi automatic switching of the user plane (U-Plane), the WiFi automatic switching of the flow, the WiFi automatic switching of the bearer, and the WiFi automatic switching of data.
  • bandwidth segregation is automatic switching for each flow (service / IP flow), such as 2 -2, and different flows are transmitted through different RATs.
  • flow-by-flow automatic switching can be one or more service / IP flow (s). That is, the conversion may be a flow unit (2 -2-1) or a data radio (or EPS) bearer switching (2 -2-2).
  • Bandwidth aggregation enables transmission through different RATs in data units even with the same flow as in 2 ⁇ 3.
  • the cellular link control is possible based on WiFi as in the scenario.
  • Control of paging or radio link failure (RLF) associated with a cell link can be received through a WiFi link.
  • RLF radio link failure
  • connection procedure Connect ion Procedures of IEEE 802.11 WLAN
  • IEEE 802.11 WLAN connection procedure
  • the scanning step is divided into passive scanning and active scanning, and the terminal (for example, the STA) searches for the neighbor AP in the scanning step to store information and receives the beacon frame of the neighbor AP. And transmit and receive probes and probe response frames.
  • the next step is a join step.
  • the AP performs authentication unconditionally, and the shared key authentication procedure performs authentication by checking the shared secret key. Send and receive an authentication frame.
  • the UE is assigned an Association IDUdentif ier) through an Association Response frame, and transmits and receives an Association Request and Response frame.
  • FIG. 8 is a diagram illustrating Reassociat ion Procedures in an IEEE 802.11 WLAN system.
  • Reassociat ion occurs when a terminal (STA) moves to another AP coverage.
  • the terminal transmits the information about the MAC address of the current AP to the New AP through the reassociation request frame.
  • IAP Inter ⁇ AP Protocol
  • the new AP requests the IAPP to relay the information of the old AP, and the old AP deletes the AKKAssociation Id) of the terminal.
  • IAPP (Inter-AP Protocol) 802.1 ⁇ is a protocol for exchanging context between APs through a DS in a WLAN system.
  • the AP caches the exchanged PMK information and uses an identifier (keylD) of a key used by the terminal in the old AP.
  • keylD identifier
  • the AP skips the authentication process using the cached PMK and performs key exchange.
  • Disassociation is a notification, not a request.
  • the AP needs to disassociate the STAs to enable the AP to be removed from the network for service or for other reasons.
  • the STAs attempt to disassociate.
  • the disassociation frame is transmitted, which contains a reason code.
  • Beacon frame The transmission may be delayed if the channel is busy at the time to be transmitted periodically but only in the AP.
  • the frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence information, and the frame body includes Time stamp, beacon interval, capability information, ⁇ SSID, Supported rates, DS parameter Set, TIM ⁇ IEs.
  • TIM is Traffic Indication MAP, Doze It is used as an indication (indicat ion as AID) to wake up the terminal in mode.
  • Probe request frame used in active scanning.
  • the frame body contains ⁇ SSID, Supported Rates ⁇ IEs.
  • Probe response frame A probe response is sent to the probe.
  • Frame control includes Duration, DA, SA, BSSID, fragment number, Sequence, and frame body includes Time stamp, beacon interval, capability information, ⁇ SSID, supported rate, DS parameter Set ⁇ IEs.
  • Authentication frame used in authentication request and response, and is divided into Authentication transaction Sequence because the format is the same.
  • Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, and Frame body contains Authentication Algorithm Number, Status code, challenge text IE.
  • Authentication Algorithm Number Open System, Shared Key, Fast BSS Transition
  • Association request frame includes a listen interval that specifies how long to stay in power saving mode when requesting association.
  • Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, and frame body contains Capability information, Listen Interval, ⁇ SSID, Supported Rates ⁇ IEs.
  • Association response frame transmitted in response to an association request and assigned an AID value.
  • Frame control includes Duration, DA, SA, BSSID, fragment number, Sequence, and frame body contains Capability information, Status Code, Association ID, Supported rates IE.
  • Reassociat ion request frame includes a listen interval that specifies the length of time to stay in the power saving mode in the reassociation request.
  • Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, Frame body is Capability Information, Listen Interval, Current AP address, ⁇ SSID, Supported Rates ⁇ IES.
  • Reassociation response frame Association response ⁇
  • Frame control contains Duration DA, SA, BSSID, fragment number, Sequence, and frame body includes Capability information, Status Code, Association ID, and Supported rates IE.
  • the Fr me control includes Duration, DA, SA, SSID IE, fragment number, Sequence, and frame body contains Reason Code.
  • Doze mode Farway of the terminal; In order to save power, this mode stops the transceiver for a certain time when it does not transmit or there is no data to be transmitted to it.
  • the traffic indication control information eg, Traffic Indication MAP IE message
  • the UE wakes up and transmits its AID in the duration region of the PS-Poll message.
  • the AP delivers buffering data to the terminal. If more than one buffered frame is set, the data bit may be set to 1 to inform the UE that there are more frames.
  • the description of the IEEE 802.11 WLAN described above may be applied in the context of the present invention.
  • the conventional inter RAT technology is designed based on a request of a terminal, does not require interworking between the WLAN and the cell network, and a specific network server manages the WLAN information. Enable inter RAT handover.
  • the terminal can be connected to multiple RATs simultaneously.
  • the prior art does not require any control connection between the AP and the cellular network, and enables connection to the multiple RAT based on the request of the UE.
  • Such a prior art does not accurately grasp the situation of the network, there is a limit to increase the overall network efficiency by selecting the terminal-oriented RAT.
  • the network may help the terminal select an optimal RAT or AP, and for this purpose, the network may request information of a secondary system such as WiFi from the terminal.
  • a terminal that simultaneously accesses two different RATs is called a Mu i-RAT terminal.
  • FIG. 9 is a diagram illustrating an attach and multi-RAT capability negotiation process of a Multi—RAT terminal.
  • a Multi—RAT UE performs an attach process with an eNB, a UE E, and an IWE of a cellular network (attach request, attach accept, etc.). After completing the attach process, the Multi-RAT terminal may generate a UL / DL data tunnel (EPS bearers-default EPS bearers).
  • EPS bearers UL / DL data tunnel
  • the Multi-RT RAT terminal may then perform a MULTI-RAT capability negotiation process with the cellular network (eg, IWE). That is, IWE is sent to the terminal Multi- RAT MULTI ⁇ RAT capability request request message, In response, the Multi-RAT Multi RAT mobile station sends a capability response message including the preferred AP list. After that, the IWE transmits a Multi-RAT capability complete message to the UE.
  • IWE MULTI-RAT capability negotiation process with the cellular network (eg, IWE). That is, IWE is sent to the terminal Multi- RAT MULTI ⁇ RAT capability request request message, In response, the Multi-RAT Multi RAT mobile station sends a capability response message including the preferred AP list. After that, the IWE transmits a Multi-RAT capability complete message to the UE.
  • the preferred AP list may be transmitted in advance in the initial connection with the IWE (eg, WiFi capability negotiation during or after connect ion (re) estabnshment) as one of the WiFi-related capabilities of the UE.
  • IWE eg, WiFi capability negotiation during or after connect ion (re) estabnshment
  • the Multi-RAT terminal may scan the APs and transmit information on the detected AP list (or Preferred AP list among the detected AP list) to the IWE.
  • the information on the Preferred AP may be AP ID such as SSHKService Set IDentif ier / Basic Service Set IDentif ier (BSSID) for AP that Multi-RAT terminal frequently accesses or stays for a long time. It may be an SSID / BSSID of a public AP or an SSID / BSSID of a private AP.
  • the IWE may determine the WiFi network access based on the preferred AP list received from the MLII RAT terminal. As such, FIG. 9 illustrates a WiFi capability negotiation process and a decision of accessing a Preferred AP based WiFi network.
  • the Multi-RAT terminal has completed the connection to the WiFi in advance, it is proposed to instruct to switch to the WiFi power saving mode while instructing the pre-association in order to minimize the terminal battery consumption.
  • the pre association it is preferably performed when a preferred AP (Preferred AP) of the Multi-RAT terminal is detected.
  • the WiFi pre-associat ion of the Multi-RAT terminal is indicated, and at this time, a new WiFi idle for minimizing the power of the Multi-RAT terminal.
  • a mod procedure Hereinafter, the newly proposed WiFi pre-associat ion and the new power saving mode of WiFi will be described.
  • 10 is a process for allowing an interworking entity (eg, eNB, ⁇ E, new entity in cellular network) to perform Wi-Fi connection of a UE in advance (WiFi pre association procedure) and new power saving of Wi-Fi. It is an exemplary diagram for explaining the mode. '
  • the Multi-RAT terminal is connected with the cell network.
  • the beacon signal which is a signal that is periodically broadcasted, may be received from at least one AP.
  • the Mult i-RAT terminal may perform WiFi scanning to detect an AP and transmit a WiFi scanning result to a cellular network (eg, IWE).
  • a cellular network eg, IWE.
  • the Overr network for example, IWE
  • the preferred AP to the multi-RAT terminal A WiFi pre-attach request message indicating a WiFi pre-attach to the network can be transmitted.
  • the WiFi pre-attach request message is provided.
  • Multi In order to minimize the power of the RAT terminal, the WiFi pre-attach may be instructed, and upon completion of the pre-attach, the Multi-RAT terminal may instruct to enter the WiFi power saving mode. In the present invention, such a process is referred to as WiFi pre-associat ion of the Multi-RAT terminal.
  • the IWE of the cellular network instructs to enter the WiFi power saving mode of the Multi-RAT terminal, and when the terminal enters the WiFi power saving mode by such an instruction, a listening interval (listening interval) is different from the conventional method.
  • a listening interval listening interval
  • the Multi-RAT terminal may transmit a WiFi pre—attach complete message indicating the completion of the WiFi pre-attach to the IWE. Then, the IWE may recognize that the Multi-RAT terminal is WiFi attached but has entered the WiFi power saving mode. In response to the WiFi pre-attach complete message, the IWE may send an AC message (eg, a WiFi pre-attach complete ACK message) to the Multi-RAT terminal.
  • an AC message eg, a WiFi pre-attach complete ACK message
  • FIG. 11 the case of instructing the switch to the WiFi power saving mode while instructing the pre-associat ion will be described in more detail.
  • 24 11 is a diagram illustrating an example of a new WiFi pre-association procedure proposed by the present invention.
  • a Mul — RAT terminal may perform a MULTI-RAT capability negotiation process with a cellar network (eg, IWE).
  • a cellar network eg, IWE
  • the capability of pre-association can be set during the process by which the multi-RAT UE neut iat ionizes the IWE and its MultiRAT related capability. . That is, when the Multi-RAT terminal sends a MULT I -RAT capability negotiation request message to the IWE, the IWE sends a Multi-RAT capability negotiation response message to the Multi-RAT terminal in response.
  • a pre-association proposed in the technique of the present invention it is preferable to exchange in advance between the Multi-RAT terminal and the IWE whether the procedure can be performed.
  • a pre-association related procedure may be performed.
  • WiFi Pre-Association support (1 bit) should be defined, for example, if a 1-bit value of 0 indicates that pre-association cannot be performed, and if 1 indicates that pre-association can be performed. It is.
  • the Multi-RAT terminal and the IWE may transmit information including a preferred AP in a MultiRAT Capability Negotiation related message.
  • the multi-RAT terminal may inform that the pre-association is supported by transmitting by setting the WiFi pre-associat ion support (1 bit) to 1 in the multi-RAT capability negotiation request message.
  • the RAT terminal may receive a beacon signal, which is a signal that is periodically broadcasted from at least one AP, and perform WiFi scanning to perform a WiFi scanning result with a cellular network (eg, IWE).
  • a beacon signal which is a signal that is periodically broadcasted from at least one AP
  • WiFi scanning to perform a WiFi scanning result with a cellular network (eg, IWE).
  • the cellular network for example, IWE
  • a pre-attach request message can be sent.
  • the attach request message may include the following parameters.
  • Pre01 associat ion deadline timer may be set to a time value thereafter in consideration of the time required for the Multi-RAT terminal to complete the switching between the AP and the associat ion and power saving mode.
  • the Multi-RAT terminal Upon receiving the WiFi pre-attach request message, the Multi-RAT terminal performs pre-associat ion to the AP for the corresponding BSSID / SSID. And, when receiving the WiFi pre-attach request message, the Multi-RAT terminal is a pre-associat ion deadline timerline ⁇ ] 2] - ⁇ 3 ⁇ 4 ⁇ .
  • the Multi-RAT terminal receiving the WiFi pre-attach request message is an Association.
  • the listening interval of the Association request message may be set during the association process with the AP with reference to the corresponding WiFi listening interval value. If the WiFi listening interval is set to "0" or a reserved value pre-appointed with the IWE, there is no listening interval to WiFi by sending the Association request message and receiving the Association response message from the AP (i.e., the cellular Receive paging via network) You can switch to WiFi power saving mode.
  • PS mode is transferred to the PS mode to the AP through a WiFi PS mode switching method such as transmitting a null data frame set to '1'. You can immediately announce the transition.
  • WiFi PS mode indication is 1, by specifying the WiFi listening interval, the Multi-RAT terminal can more efficiently use the power saving mode to WiFi.
  • the WiFi pre-attach request message is used, transmission of the BSSID / SSID for the association AP is implicitly (implicit ly) power with the corresponding AP. saving mode indication and WiFi listening interval 0 ] "0" or a message indicating that the cell is set to a reserved value for receiving paging through the network.
  • the mult i ⁇ RAT terminal completes the association when the message is received. Afterwards, it can mean switching to WiFi power saving mode without listening interval. That is, when the WiFi pre-attach request message is defined, only the BSSID / SSID for the pre-associat ion AP may be transmitted, or the WiFi listening interval may be explicitly transmitted as necessary.
  • the Multi-RAT terminal transmits a WiFi (pre) attach response message or a WiFi (pre) attach complete message to the IWE when both the previously defined AP and pre-association are successfully performed. Must be sent before is expired, and if the pre-association deadline timer expires, the pre-association is considered a failure.
  • the WiFi (pre) attach response message black or WiFi (pre) attach complete message may include the following parameters.
  • indicator indicating whether the PS mode has entered (or transitioned) if the PS mode entry through the pre-association is defined as a new WiFi PS mode that does not receive a beacon message every listening interval, May not be transmitted, and in this case, the indication of whether the device enters or transitions to the PS mode may mean entering a new WiFi PS mode.
  • the Multi-RAT terminal is a value set in actual WiFi, the value is "0" or
  • the IWE may know that the UE enters a new WiFi PS mode.
  • the IWE may know that the terminal enters the existing WiFi PS mode.
  • the ilti-RAT terminal does not monitor the periodic broadcast signal (eg, beacon signal) of the AP that has completed the association until the instructions of the salary network are instructed. And, the mi ti-RAT terminal may receive the paging through the cellular network whether data can be transmitted from the associated AP.
  • the periodic broadcast signal eg, beacon signal
  • the IWE Upon receiving the above WiFi (pre) attach response message or WiFi (pre) attach complete message from the Multi-RAT terminal, the IWE recognizes that the Multi-RAT terminal is attached to WiFi but enters a new WiFi PS mode. can do. The IWE may transmit a WiFi pre—attach complete ACK message to the Multi-RAT terminal. While the multi-RAT terminal is operating in the new WiFi PS mode, when the IWE receives data from the cellular network, the IWE may decide to transmit the data through the WiFi. The IWE may instruct the multi-RAT terminal to receive a WiFi beacon signal or transmit a message or indicator indicating that AID data has arrived.
  • the multi-channel RAT terminal may receive a beacon signal from the AP, switch to the Awake state with the AP, or operate in the awake state with the AP.
  • the multi-RAT terminal can inform the IWE that it is a WiFi awake state.
  • the Multi-RAT terminal does not monitor the beacon of the AP which has completed the association until the cell tells the network to receive an instruction to receive the WiFi beacon signal from the cell network.
  • the power saving effect of the Ui-RAT terminal is significantly improved.
  • the secondary system idle mode operation of the terminal is performed.
  • the proposed new WiFi is proposed.
  • Embodiments described above are those in which the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some components and / or features to constitute an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for any other configuration or feature of another embodiment ⁇ an embodiment is constructed by combining claims that are not expressly cited in the claims. It is obvious that the present invention may be incorporated into a new claim by a post-application correction.

Abstract

A method for performing an idle mode operation with a particular communication system by a terminal in a network including multiple communication systems interworking with each other according to the present invention comprises the steps of: transmitting, to an interworking entity of a first communication system, a result of scanning a base station of a second communication system in a state where the terminal is radio resource control (RRC)-connected with the first communication system and is in a deregistration mode with the second communication system; transmitting a first message from the interworking entity of the first communication system to the terminal, the first message including a first indicator instructing the terminal to perform an association process with the base station of the second communication system and a second indicator instructing the terminal to operate in a power saving mode with the second communication system; performing the association process with the base station of the second communication system on the basis of the first indicator of the first message; and entering the power saving mode from the deregistration mode with the second communication system on the basis of the second indicator of the first message.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
복수의 통신시스템이 연동하는 네트워크에서 특정 통신 시스템과 유휴 모드 동작을 수행하는 방법 및 이를 위한 장치  Method for performing idle mode operation with a specific communication system in a network interworking with a plurality of communication systems and apparatus therefor
【기술분야】  Technical Field
[001] 본 발명은 무선통신에 관한 것으로, 보다 상세하게는 복수의 통신시스템이 연동하는 네트워크에서 특정 통신 시스템과 유휴 모드 동작을 수행하는 방법 및 이를 위한 장치에 관한 것이다. The present invention relates to wireless communication, and more particularly, to a method for performing a specific I communication system and an idle mode operation and a device therefor in a network interworking with a plurality of communication systems.
【배경기술】  Background Art
[002] 무선통신 시스템에서 두 개 이상의 무선접속기술 (radio access technology, RAT) 혹은 통신 시스템에 액세스할 수 있는 능력 (capabi Hty)를 가진 Multi-RAT 단말이 존재할 수 있다. 특정 RAT에 access하기 위해서는 단말 요청 기반으로 특정 RAT으로의 connect ion을 설정하고 data 송수신을 수행한다. 그러나 Multi-RAT 단말이 두 개 이상의 RAT에 액세스 할 수 있는 capability는 있더라도 동시에 multiple RAT에 access할 수는 없었다. 즉, 현재 단말은 Multi— RAT capabi Hty가 있다 하더라도, 서로 다른 RAT을 통해 동시에 데이터 송수신이 가능하지 않다. . [002] In a wireless communication system, there may be two or more radio access technologies (RAAT) or a Multi-RAT terminal having a capability of accessing a communication system (capabi Hty). In order to access a specific RAT, a connection ion is set to a specific RAT based on a terminal request and data transmission and reception are performed. However, even though a multi-RAT terminal has a capability of accessing two or more RATs, the multi-RAT terminal cannot simultaneously access multiple RATs. That is, even if the current UE has a Multi-RAT capabi Hty, data transmission and reception are not possible at the same time through different RATs. .
[003] 이러한 종래의 multi— AT 기술은 무선랜과 셀를러 망 간의 인터워킹을 필요로 하지 않기 때문에, 전반적으로 시스템 효율이 낮은 문제점이 있다. 뿐만 아니라, 단말이 Multiple RAT에 동시 접속이 가능하더라도 무선 레벨에서의 제어 없이 네트워크 레벨에서의 flow mobility/ IP-flow mapping만을 지원함으로써 Multiple RAT에 동시 접속을 가능하도록 하였다. 이러한 이유로 종래 기술은 AP와 샐를러 망 사이에 어떤 제어 커넥션을 요구하지 않았고, 단말의 요청을 기반으로 진행되어 왔다. Since the conventional multi-AT technology does not require interworking between the WLAN and the cellular network, overall system efficiency is low. In addition, even if the UE can simultaneously access the multiple RATs, simultaneous access to the multiple RATs is possible by supporting only the flow mobility / IP-flow mapping at the network level without control at the radio level. For this reason, the prior art did not require any control connection between the AP and the saller network, and has been progressed based on the request of the terminal.
[004] 그러나, 이러한 종래 기술은 네트워크의 정확한 상황을 파악하지 못하고, 단말 위주의 RAT 선택을 함으로써 네트워크 전체 효율성을 높이기에는 한계가 있었다. 특히, 단말이 복수의 통신 시스템에 액세스가 가능해 짐에 따라, 단말이 특정 통신 시스템에서 다른 통신 시스템으로 효율적으로 데이터 전환을 수행하기 위한 방법들이 필요하게 되었지만, 아직까지 이러한 연구가 진행된 바가 없었다. 【발명의 상세한 설명】 However, such a conventional technology does not grasp the exact situation of the network, there is a limit to increase the overall network efficiency by selecting the terminal-oriented RAT. In particular, as a terminal becomes accessible to a plurality of communication systems, methods for efficiently converting data from one communication system to another communication system have been needed. However, such research has not been conducted. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
[005] 본 발명에서 이루고자 하는 기술적 과제는 복수의 통신시스템이 연동하는 네트워크에서 단말이 특정 통신 시스템과 유휴 모드 동작을 수행하는 방법을 제공하는 데 있다.  The technical problem to be achieved in the present invention is to provide a method for a terminal to perform an idle mode operation with a specific communication system in a network interworking a plurality of communication systems.
[006] 본 발명에서 이루고자 하는 다른 기술적 과제는 복수의 통신시스템이 연동하는 네트워크에서 특정 통신 시스템과 유휴 모드 동작을 수행하는 단말을 제공하는 데 있다.  Another object of the present invention is to provide a terminal performing an idle mode operation with a specific communication system in a network in which a plurality of communication systems interoperate.
[007] 본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로. 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.  Technical problems to be achieved in the present invention to the above technical problem. Other technical problems which are not limited and not mentioned will be clearly understood by those skilled in the art from the following description.
【기술적 해결방법】  Technical Solution
[008] 상기의 기술적 과제를 달성하기 위한, 복수의 통신시스템이 연동하는 네트워크에서 단말이 특정 통신 시스템과 유휴 모드 동작을 수행하는 방법은, 제 1 통신 시스템과는 R C((Radio Resource Control) 연결된 상태이며 제 2 통신 시스템과는 비연결 (deregistration) 상태에서, 상기 2 통신 시스템의 기지국에 대한 스캐닝 결과를 제 1 통신 시스템의 인터워킹 엔터티 (interworking entity)로 전송하는 단계; 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 단말에게 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하도록 지시하는 제 1 지시자 및 상기 단말이 상기 제 2 통신 시스템과는 파워 절약 모드로 동작하도록 지시하는 제 2 지시자를 포함하는 제 ,1 메시지를 전송하는 단계 ; 상기 제 1 메시지의 상기 제 1 지시자에 기초하여 상기 제 2 통신 시스템의 기지국과 연관 과정을 수행하는 단계 ; 및 상기 제 1 메시지의 상기 제 2 지시자에 기초하여 상기 게 2 통신 시스템과의 상기 비연결 모드에서 상기 파워 절약 모드로 진입하는 단계를 포함할 수 있다. In order to achieve the above technical problem, a method in which a terminal performs an idle mode operation with a specific communication system in a network interworking with a plurality of communication systems, is connected to a Radio Resource Control (RC) with a first communication system Transmitting a scanning result of a base station of the second communication system to an interworking entity of the first communication system in a state of delegistration with the second communication system; A first indicator instructing the terminal to perform an association process with a base station of the second communication system from an interworking entity and a second indicator instructing the terminal to operate in a power saving mode with the second communication system claim, including the step of transmitting the first message; wherein the second communication on the basis of the first indication of the first message, Performing an association process with a base station of the system, and entering the power saving mode from the disconnected mode with the C2 communication system based on the second indicator of the first message.
[009] 상기 방법은, 상기 제 1 통신 시스템의 인터워킹 엔터티와 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리 연관 (preᅳ association.) 프로시저를 지원하는지 여부에 대해 협상하는 단계를 더 포함할 수 있다. 상기 제 1 메시지는 상기 단말과 연관 (association) 과정을 수행할 상기 제 2 통신 시스템 기지국에 대한 식별자 정보, 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리 연관 (preᅳ association) 과정의 기한 타이머 (deadline time)에 대한 정보, 상기 제 2 통신 시스템의 기지국과의 리스닝 구간 (listening interval)에 대한 정보 중 적어도 하나를 더 포함할 수 있다. 상기 제 2 통신 시스템의 기지국은 상기 단말이 제 2 통신 시스템에서의 선호하는 기지국일 수 있다. In the method, pre-association with the interworking entity of the first communication system and the terminal performs an association process with the base station of the second communication system and enters the power saving mode. Whether the procedure supports The method may further include negotiating. The first message is identifier information for the second communication system base station to perform an association process with the terminal, the terminal performs an association process with a base station of the second communication system and the power saving mode. The apparatus may further include at least one of information on a deadline time of a pre-association process and information on a listening interval with a base station of the second communication system. The base station of the second communication system may be a preferred base station of the terminal in the second communication system.
[010] 상기 방법은, 상기 단말이 상기 제 1 메시지를 수신하면 미리 연관 (pre一 association) 과정의 기한 타이머를 시작시키는 단계를 더 포함할 수 있다. 상기 방법은, 상기 단말이 상기 제 2 통신 시스템의 기지국에 상기 파워 절약 모드로 진입할 것을 알리는 제 3 지시자를 전송하는 단계를 더 포함할 수 있다. 상기 제 1 통신 시스템의 인터워킹 엔터티 (intenvorking entity)는 eNode B, 匪( (Mobility Management Entity)) 및 I觀 E (InterWorking Management Entity) 중 어느 하나일 수 있다. 상기 2 통신 시스템으로 전송할 하향링크 데이터가 없는 경우에, 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 제 2 지시자를 포함하는 상기 제 1 메시지가 전송될 수 있다. The method may further include starting a time limit timer of a pre-association process when the terminal receives the first message. The method may further include transmitting, by the terminal, a third indicator for notifying the base station of the second communication system to enter the power saving mode. The interworking entity of the first communication system may be one of an eNode B, a Mobility Management Entity ()), and an InterWorking Management Entity (I 觀 E). When there is no downlink data to be transmitted to the second communication system, the first message including the second indicator may be transmitted from an interworking entity of the first communication system.
[011] 상기 리스닝 구간에 대한 정보는 상기 연관을 완료한 후에 바로 리스닝 구간없이 상기 파워 절약 모드로 전환됨을 지시할 수 있고, 상기 단말은 상기 제 1 통신 시스템으로부터 페이징 메시지를 수신할 수 있다. The information on the listening interval may indicate that the power saving mode is switched to the power saving mode immediately after completing the association, and the terminal may receive a paging message from the first communication system.
[012] 상기 방법은, 상기 제 1 통신 시스템의 인터워킹 엔터티로 상기 제 2 통신 시스템의 기지국과의 연관 및 파워 절약 모드로 진입하는 프로시저를 완료하였음을 지시하는 지시자를 포함하는 제 2 메시지를 전송하는 단계 ; 및 상기 제 2 메시지에 대한 웅답 메시지를 상기 게 1 통신 시스템의 인터워킹 엔터티로부터 수신하는 단계를 더 포함할 수 있다.  [0012] The method may further include a second message including an indicator indicating that the procedure for entering the power saving mode and association with a base station of the second communication system is completed as an interworking entity of the first communication system. Transmitting; And receiving a voice response message for the second message from the interworking entity of the first communication system.
[013] 상기 방법은, 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있는 경우에 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 제 2 통신 시스템의 주기적 방송 신호를 수신할 것을 알리거나 혹은 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있음을 알리는 제 4 지시자를 수신하는  The method may further include notifying that a periodic broadcast signal of the second communication system is to be received from an interworking entity of the first communication system when there is downlink data to be transmitted through the second communication system. 2 receiving a fourth indicator indicating that there is downlink data to be transmitted through the communication system
3 단계; 및 상기 제 4 지시자에 기초하여 상기 제 2 통신 시스템의 주기적 방송 신호를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 전환하거나 상기 제 4 지시자를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 동작하는 단계를 더 포함할 수 있다. 상기 제 1 통신 시스템은 셀롤러 통신 시스템이며 상기 제 2 통신 시스템은 무선랜 통신 시스템일 수 있다. 3 step; And receiving a periodic broadcast signal of the second communication system based on the fourth indicator to switch to an awake state with the base station of the second communication system or receiving the fourth indicator of the second communication system. The method may further include operating in an awake state with the base station. The first communication system may be a cellular communication system and the second communication system may be a wireless LAN communication system.
[014] 상기의 다른 기술적 과제를 달성하기 위한, 복수의 통신시스템이 연동하는 네트워크에서 특정 통신 시스템과 유휴 모드 동작을 수행하는 단말은, 제 1 통신 시스템과는 RRC((Radio Resource Control) 연결된 상태이며 제 2 통신 시스템과는 비연결 (deregistration) 모드인 상태에서 상기 2 통신 시스템의 기지국에 대한 스캐닝 결과를 제 1 통신 시스템의 인터워킹 엔터티 (interworking entity)로 전송하고, 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 단말에게 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하도록 지시하는 제 1 지시자 및 상기 단말이 상기 제 2 통신 시스템과는 파워 절약 모드로 동작하도록 지시하는 제 2 지시자를 포함하는 제 1 메시지를 전송하도록 구성된 송신기; 및 상기 제 1 메시지의 상기 제 1 지시자에 기초하여 상기 제 2 통신 시스템의 기지국과 연관 과정을 수행하고 상기 제 1 메시지의 상기 제 2 지시자에 기초하여 상기 제 2 통신 시스템과의 상기 비연결 모드에서 상기 파워 절약 모드로 진입하도록 제어하는 프로세서를 포함할 수 있다.  In order to achieve the above technical problem, a terminal performing an idle mode operation with a specific communication system in a network interworking with a plurality of communication systems is connected with a first RRC (Radio Resource Control) with a first communication system. And transmits a scanning result for the base station of the second communication system to an interworking entity of the first communication system in a degistration mode with the second communication system, and interworks with the first communication system. A first indicator instructing the terminal to perform an association process with a base station of the second communication system from a working entity and a second indicator instructing the terminal to operate in a power saving mode with the second communication system A transmitter configured to transmit a first message comprising: and a phase based on the first indicator of the first message; And a processor configured to perform an association process with a base station of a second communication system and to enter the power saving mode from the disconnected mode with the second communication system based on the second indicator of the first message. have.
[015] 상기 프로세서는, 상기 제 1 통신 시스템의 인터워킹 엔터티와 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리 연관 (pre— association) 프로시저를 지원하는지 여부에 대해 협상하도록 제어할 수 있다ᅳ [015] The processor may pre-associate an interworking entity of the first communication system with the terminal to perform an association process with a base station of the second communication system and enter the power saving mode. You can control to negotiate whether or not a procedure is supported.
[016] 상기 단말은, 상기 2 통신 시스템으로 전송할 하향링크 데이터가 없는 경우에 상기 제 1 통신 시스템의 인터워 ¾ 엔터티로부터 상기 제 1 메시지를 수신하도록 구성된 수신기를 더 포함할 수 있다. 상기 송신기는 상기 제 1 통신 시스템의 인터워킹 엔터티로 상기 제 2 통신 시스템의 기지국과의 연관 및 파워 절약 모드로 진입하는 프로시저를 완료하였음을 지시하는 지시자를 포함하는 제 2 메시지를 전송하도록 구성되며, 상기 수신기는 상기 제 2 메시지에 대한 웅답 메시지를 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 수신하도록 구성될 수 있다. The terminal may further include a receiver configured to receive the first message from an Internet ¾ entity of the first communication system when there is no downlink data to be transmitted to the second communication system. The transmitter is configured to send a second message to the interworking entity of the first communication system including an indicator indicating that the procedure for entering the power saving mode and the association with the base station of the second communication system has been completed; The receiver answers the second message. And receive a message from the interworking entity of the first communication system.
[017] 상기 수신기는, 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있는 경우에 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 제 2 통신 시스템의 주기적 방송 신호를 수신할 것을 알리거나 혹은 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있음을 알리는 제 4 지시자를 수신하고, 상기 프로세서는 상기 제 4 지시자에 기초하여 상기 제 2 통신 시스템의 주기적 방송 신호를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 전환하거나 상기 제 4 지시자를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 상태로 동작하도록 제어할 수 있다.  [017] The receiver informs the reception of the periodic broadcast signal of the second communication system from the interworking entity of the first communication system when there is downlink data to be transmitted through the second communication system or the first communication signal. Receiving a fourth indicator indicating that there is downlink data to be transmitted through a second communication system, and the processor receives a periodic broadcast signal of the second communication system based on the fourth indicator to communicate with a base station of the second communication system; The controller may switch to an awake state or receive the fourth indicator to operate in an awake state with a base station of the second communication system.
【유리한 효과】  Advantageous Effects
[018] 광대역 무선 통신 시스템에서 셀롤러 네트워크의 제어를 통해 mult iᅳ RAT 단말이 secondary system(e.g. , WLAN/WiFi)을 효율적으로 사용하도록 하기 위해서 단말의 Secondary System 유휴 모드 동작을 최소화하도록 할 것을 제안하였다. 특히 본 발명의 기술은 셀롤러 네트워크의 지시에 의해 미리 WiFi에 연결된 mult i -RAT 단말의 경우, 제안된 새로운 WiFi 유휴 모드 프로시저에 따라 최소한의 전력을 사용할 수 있게 되었다.  In order to efficiently use a secondary system (eg, WLAN / WiFi) by a mult i ᅳ RAT terminal in a broadband wireless communication system, it is proposed to minimize the operation of the secondary system idle mode of the terminal. It was. In particular, according to the technique of the present invention, in the case of a mult i-RAT terminal connected to WiFi in advance by the instruction of the cellular network, it is possible to use the minimum power according to the proposed new WiFi idle mode procedure.
[019] 본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. Effects obtained in the present invention is not limited to the above-mentioned effects, and other effects not mentioned above are clearly understood by those skilled in the art from the following description. Could be.
【도면의 간단한 설명】  [Brief Description of Drawings]
[020] .본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다. The accompanying drawings, which are included as a part of the detailed description to help understand the present invention, provide an embodiment of the present invention and together with the description, describe the technical idea of the present invention.
[021] 도 1은 무선통신 시스템 (100)에서의 기지국 (105) 및 단말 (110)의 구성을 도시한 블록도이다ᅳ 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100;
[022] 도 2는 E-UMTS( Evolved Universal Mobile Telecommunications System)의 네트워크 구조를 예시한 도면이다.  2 is a diagram illustrating a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS).
[023] 도 3a는 일반적인 E-UTRAN 및 일반적인 EPC의 일반적 구조를 도시한 블록도이다. 3A shows a general structure of a general E-UTRAN and a general EPC It is a block diagram.
[024] 도 3b는 E— UMTS 네트워크를 위한 사용자 -평면 프로토콜 스택을 나타낸 블록도이다.  [024] FIG. 3B is a block diagram illustrating a user-plane protocol stack for an E—UMTS network.
[025] 도 3c는 E— UMTS 네트워크를 위한 제어 평면 프로토콜 스택을 나타낸 블록도이다.  3C is a block diagram illustrating a control plane protocol stack for an E—UMTS network.
[026] 도 4는 IP 플로우 기반 WiFi mobility를 설명하기 위한 예시적인 도면이다.  4 is an exemplary diagram for explaining IP flow based WiFi mobility.
[027] 도 5는 제 1 통신 시스템 (즉, 셀롤러 통신 시스템)와 제 2 통신 시스템 (무선랜 통신 시스템)의 연동 구조를 설명하기 위한 네트워크 구조를 예시한 도면이다.  FIG. 5 is a diagram illustrating a network structure for explaining an interworking structure between a first communication system (ie, a cellular communication system) and a second communication system (wireless LAN communication system).
[028] 도 6은 본 발명에 따른 WiFi-Cellular 인터워킹의 네트워크 구조를 예시적으로 나타낸 도면이다.  6 is a diagram illustrating a network structure of WiFi-Cellular interworking according to the present invention.
[029] 도 7은 WiFi— Cellular 융합 망의 시나리오를 설명하기 위한 예시적 도면이다.  FIG. 7 is an exemplary diagram for describing a scenario of WiFi—cellular convergence network. FIG.
[030] 도 8은 IEEE 802.11 WLAN 시스템에서의 Reassociat ion Procedures 을 예시한 도면이다. 8 is a diagram illustrating Reassociat ion Procedures in an IEEE 802.11 WLAN system.
[031] 도 9는 Muhi -RAT 단말의 attach 및 Mult i -RAT capability 협상 과정을 예시한 도면0 i다. 9 is a diagram illustrating a attach and Mult i -RAT capability negotiation process of the Muhi -RAT terminal 0 i.
[032] 도 10은 인터워킹 엔티티 (interworking entity가 Mult i -RAT 단말의 WiFi 접속 (혹은 연관)을 미리 수행해 두도록 하는 과정 (WiFi pre association procedure)과 WiFi의 새로운 Power Saving mode를 설명하기 위한 예시적 도면이다.  FIG. 10 is an example for explaining a process of allowing an interworking entity to perform a WiFi connection (or association) of a Mult i-RAT terminal in advance (WiFi pre association procedure) and a new power saving mode of WiFi. Drawing.
[033] 도 11은 본 발명에서 제안하는 새로운 WiFi pre— association 프로시저의 일 예를 나타낸 도면이다. 11 is a diagram illustrating an example of a new WiFi pre—association procedure proposed by the present invention.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
[034] 이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, those skilled in the art
6 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTEᅳ A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. · 6 It is understood that the present invention may be practiced without these specific details. For example, the following detailed description will be described in detail assuming that the mobile communication system is a 3GPP LTE, LTE-A system, except for the specific matters of 3GPP LTE, LTE ᅳ A other arbitrary mobile communication system Applicable ·
[035] 몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다. In some cases, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
[036] 아울러, 이하의 설명에 있어서 단말은 UE Jser Equipment), MS(Mobile Station), AMS (Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다ᅳ 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용 가능하다. In addition, in the following description, it is assumed that a terminal collectively refers to a mobile or fixed user terminal device such as a UE Jser Equipment (MS), a Mobile Station (MS), an Advanced Mobile Station (AMS), etc. It is assumed that an arbitrary node of a network terminal that communicates with a terminal, such as an eNode B, a base station, and an access point (AP), is collectively assumed. Although described herein based on the IEEE 802.16 system, the contents of the present invention can be applied to various other communication systems.
[037] 이동 통신 시스템에서 단말 (User Equipment)은 기지국으로부터 하향링크 (Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 - 상향링크 (UpHnk)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다. In a mobile communication system, a user equipment (UE) may receive information from downlink (downlink) from a base station, and the terminal may also transmit information through uplink (UpHnk). Information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
[038] 이하의 기술은 CDMA(code division multiple access) , FDMA( frequency division multiple access) , TDMA(time . division multiple access) , 0FDMA( orthogonal frequency division multiple access) , SC-FDMA( single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRAOJniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communi cat i ons)/GPRS(Gener a 1 Packet Radio Service) /EDGE (Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E—UTR Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS J versal Mobile Telecommunications System)의 일부이다 . 3GPP(3rd Generation Partnership Project) LTEdong term evohi on)는 E JTRA를 사용하는 E-UMTS( Evolved UMTS)와 일부로서 하향링크에서 0FDMA를 채용하고 상향링크에서 SC— FDMA를 채용한다. LTE- A( Advanced)는 3GPP LTE의 진화된 버전이다. [038] The following techniques are code division multiple access (CDMA), frequency division multiple access (FDMA), time .division multiple access (TDMA), orthogonal frequency division multiple access (0FDMA), and single carrier frequency division multiple (SC-FDMA). It can be used in various wireless access systems such as access). CDMA may be implemented by a radio technology such as UTRAOJniversal Terrestrial Radio Access) or CDMA2000. TDMA may be implemented in a wireless technology such as Global System for Mobile Communication (GSM) / Gener a 1 Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTR Evolved UTRA. UTRA UMTS J versal Mobile It is part of Telecommunications System. The 3rd Generation Partnership Project (3GPP) LTEdong term evohi on (E-UMTS) using E JTRA and part of the 3GPP employ 0FDMA in downlink and SC—FDMA in uplink. LTE-A (Advanced) is an evolution of 3GPP LTE.
[039] 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다. In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be modified in other forms without departing from the technical spirit of the present invention. .
[040] 도 1은 무선통신 시스템 (100)에서의 기지국 (105) 및 단말 (110)의 구성을 도시한 블록도이다ᅳ 1 is a block diagram illustrating the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
[041] 무선 통신 시스템 (100)을 간략화하여 . 나타내기 위해 하나의 기지국 (105)과 하나의 단말 (110KD2D 단말을 포함)을 도시하였지만, 무선 통신 시스템 (100)은 하나 이상의 기지국 및 /또는 하나 이상의 단말을 포함할 수 있다. [041] Simplify wireless communication system 100. Although one base station 105 and one terminal (including 110KD2D terminal) are shown for illustration, the wireless communication system 100 may include one or more base stations and / or one or more terminals.
[042] 도 1을 참조하면, 기지국 (105)은 송신 (Tx) 데이터 프로세서 (115), 심볼 변조기 (120), 송신기 (125), 송수신 안테나 (130), 프로세서 (180), 메모리 (185), 수신기 (190), 심볼 복조기 (195), 수신 데이터 프로세서 (197)를 포함할 수 있다. 그리고, 단말 (110)은 송신 (Tx) 데이터 프로세서 (165), 심볼 변조기 (175), 송신기 (175), 송수신 안테나 (135), 프로세서 (155), 메모리 (160), 수신기 (140), 심볼 복조기 (155), 수신 데이터 프로세서 (150)를 포함할 수 있다. 송수신 안테나 (130, 135)가 각각 기지국 (105) 및 단말 (110)에서 하나로 도시되어 있지만, 기지국 (105) 및 단말 (110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국 (105) 및 단말 (110)은 MIMXMuᅵ tiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국 (105)은 SU-MIM0(Single User-MIMO) MU— MIM0(Mul t i User— MIMO) 방식 모두를 지원할 수 있다. Referring to FIG. 1, the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185. And a receiver 190, a symbol demodulator 195, and a receive data processor 197. And, the terminal 110 transmits (Tx) data processor 165, symbol modulator 175, transmitter 175, transmit and receive antenna 135, processor 155, memory 160, receiver 140, symbol Demodulator 155 and receive data processor 150. Although the transmit and receive antennas 130 and 135 are shown as one at the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support the MIMXMu ™ tiple Input Multiple Output (System) system. In addition, the base station 105 according to the present invention may support both the SU-MIM0 (Single User-MIMO) MU-MIM0 (Mul t User-MIMO) scheme.
[043] 하향링크 상에서, 송신 데이터 프로세서 (115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여 (또는 심볼 매핑하여), 변조 심볼들 ("데이터 심볼들 ")을 제공한다. 심볼 변조기 (120)는 이 데이터 심볼들과 파일럿 심볼들올 수신 및 처리하여, 심볼들의 스트림을 제공한다. On the downlink, the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates symbols. ("Data symbols"). The symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
[044] 심볼 변조기 (120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 [044] The symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter.
8 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화 (FDM), 직교 주파수 분할 다중화 (OFDM), 시분할 다중화 (TDM), 또는 코드 분할 다중화 (CDM) 심볼일 수 있다. 8 Send to 125. In this case, each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero. In each symbol period, pilot symbols may be sent continuously. The pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
[045] 송신기 (125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여 (예를 들어 , 증폭, 필터링, 및 주파수 업 컨버팅 (upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나 (130)는 발생된 하향링크 신호를 단말로 전송한다. Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and upconverts) these analog signals. Also, a downlink signal suitable for transmission over a wireless channel is generated, and then, the transmit antenna 130 transmits the generated downlink signal to the terminal.
[046] 단말 (110)의 구성에서, 수신 안테나 (135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기 (140)로 제공한다. 수신기 (140)는 수신된 신호를 조정하고 (예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅 (downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기 (145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서 (155)로 제공한다. In the configuration of the terminal 110, the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140. Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples. The symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
[047] 또한, 심볼 복조기 (145)는 프로세서 (155)로부터 하향링크에 대한 주파수 웅답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신 (Rx) 데이터 프로세서 (150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조 (즉, 심볼 디- 매핑 (demapping))하고, 디인터리빙 (deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.  [047] The symbol demodulator 145 also receives a frequency equal answer estimate for the downlink from the processor 155, performs data demodulation on the received data symbols, and performs the data (which are estimates of the transmitted data symbols). Obtain symbol estimates and provide data symbol estimates to receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
[048] 심볼 복조기 (145) 및 수신 데이터 프로세서 (150)에 의한 처리는 각각 기지국 (105)에서의 심볼 변조기 (120) 및 송신 데이터 프로세서 (115)에 의한 처리에 대해 상보적이다. The processing by symbol demodulator 145 and receive data processor 150 are complementary to the processing by symbol modulator 120 and transmit data processor 115 at base station 105, respectively.
[049] 단말 (110)은 상향링크 상에서, 송신 데이터 프로세서 (165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기 (170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기 (175)로 제공할 수 있다. 송신기 (175)는 심볼들의 스트림을 수신 및  The terminal 110 is on the uplink, the transmit data processor 165 processes the traffic data to provide data symbols. The symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175. Transmitter 175 receives and streams of symbols
9 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나 (135)는 발생된 상향링크 신호를 기지국 (105)으로 전송한다. 9 Processing to generate an uplink signal. The transmit antenna 135 transmits the generated uplink signal to the base station 105.
[050] 기지국 (105)에서, 단말 (110)로부터 상향링크 신호가 수신 안테나 (130)를 통해 수신되고, 수신기 (190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기 (195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서 (197)는 데이터 심볼 추정치를 처리하여, 단말 (110)로부터 전송된 트래픽 데이터를 복구한다. In the base station 105, an uplink signal is received from the terminal 110 through the receiving antenna 130, and the receiver 190 processes the received uplink signal to obtain samples. The symbol demodulator 195 then processes these samples to provide the received pilot symbols and data symbol estimates for the uplink. The received data processor 197 processes the data symbol estimates to recover the traffic data sent from the terminal 110.
[051] 단말 (110) 및 기지국 (105) 각각의 프로세서 (155, 180)는 각각 단말 (110) 및 기지국 (105)에서의 동작을 지시 (예를 들어, 제어,. 조정ᅳ 관리 등)한다. 각각의 프로세서들 (155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛 (160, 185)들과 연결될 수 있다. 메모리 (160, 185)는 프로세서 (180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일 (genera! files)들을 저장한다.  Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordination, management, etc.) operation at the terminal 110 and the base station 105, respectively. . Respective processors 155 and 180 may be connected with memory units 160 and 185 that store program codes and data. The memory 160, 185 is coupled to the processor 180 to store the operating system, the application, and the genera files.
[052] 프로세서 (155, 180)는 컨트를러 (control ler), 마이크로 컨트를러 (microcontrol ler) ' 마이크로 프로세서 (microprocessor ) , 마이크로 컴퓨터 (microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서 (155, 180)는 하드웨어 (hardware) 또는 펌웨어 (fir賺 are), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICsUppHcation specific integrated circuits) 또는 DSPs(digital signal processors) , DSPDsCdigital signal processing devices) , PLDs( programmable logic devices) , FPGAs (field progr mmable gate arrays) 등이 프로세서 (155, 180)에 구비될 수 있다. The processors 155 and 180 may also be referred to as controllers, microcontrollers' microprocessors, microcomputers, or the like. Meanwhile, the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. When implementing an embodiment of the present invention using hardware, ASICsUppHcation specific integrated circuits (DSICs), digital signal processors (DSPs), DSPDs (digital signal processing devices), programmable logic devices (PLDs), FPGAs (field) progr mmable gate arrays and the like may be provided in the processors 155 and 180.
[053] 한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모들, 절차 또는 함수 둥을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서 (155, 180) 내에 구비되거나 메모리 (160, 185)에 저장되어 프로세서 (155, 180)에 의해 구동될 수 있다. On the other hand, when implementing embodiments of the present invention using firmware or software, firmware or software may be configured to include a module, procedure, or function that performs the functions or operations of the present invention. Firmware or software configured to perform the above may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processor 155 and 180.
[054] 단말과 기지국이 무선 통신 시스템 (네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSKopen system [054] The layers of the air interface protocol between a terminal and a base station in a wireless communication system (network) are well known OSKopen system in a communication system.
10 interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어 (L1), 제 2 레이어 (L2), 및 제 3 레이어 (L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다. 10 can be classified into a first layer (L1), a second layer (L2), and a third layer (L3) based on the lower three layers of the interconnection model. The physical layer belongs to the first layer and provides an information transmission service through a physical channel. A Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network. The terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
[055] 본 명세서에서 단말의 프로세서 (155)와 기지국의 프로세서 (180)는 각각 단말 (110) 및 기지국 (105)이 신호를 수신하거나 송신하는 기능 및 저장 기능을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서 (155, 180)를 언급하지 않는다. 특별히 프로세서 (155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다. In the present specification, the processor 155 of the terminal and the processor 180 of the base station process signals and data except for a function of receiving or transmitting a signal and a storage function of the terminal 110 and the base station 105, respectively. For the convenience of description, the processor 155 and 180 will not be specifically described below. Although not specifically mentioned by the processors 155 and 180, it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
[056] 도 2는 E-UMTS( Evolved Universal Mobile Telecommunications System)의 네트워크 구조를 예시한 도면이다. E— UMTS는 LTE 시스템과 같이 호칭될 수도 있다. 시스템은 음성 ALV패킷 데이터와 같은 다양한 통신 서비스를 제공하기 위하여 광범위하게 배치될 수 있고, 일반적으로 이하의 도면들과 관련하여 상세하게 설명하고 개시할 다양한 기술들에 기반하여 기능하도록 구성된다. FIG. 2 is a diagram illustrating a network structure of an Evolved Universal Mobile Telecommunications System (E-UMTS). E—UMTS may be called as LTE system. The system may be widely deployed to provide various communication services, such as voice ALV packet data, and is generally configured to function based on various techniques to be described and described in detail with reference to the following figures.
[057] 도 2를 참조하면, E-UMTS 네트워크는 E-UTRAN( Evolved UMTS terrestrial radio access network) , EPC( Evolved Packet Core) 및 하나 이상의 단말 (10)을 포함한다. E-UTRAN는 하나 이상의 기지국들 (20)을 포함한다. EPC와 관련하여, 讓 E/SAE 게이트웨이 (30)는 단말 (10)에 대해 세션의 종단점 및 이동성 관리 기능을 제공한다. 기지국 (20) 및 丽 E/SAE 게이트웨이는 S1 인터페이스를 통해 접속될 수 있다. 2, the E-UMTS network includes an Evolved UMTS terrestrial radio access network (E-UTRAN), an Evolved Packet Core (EPC), and one or more terminals 10. The E-UTRAN includes one or more base stations 20. In connection with the EPC, 讓 E / SAE gateway 30 provides the terminal 10 with endpoint and mobility management functions of the session. The base station 20 and the E / SAE gateway may be connected via an S1 interface.
[058] 단말 (10)은 사용자가 지니고 다니는 장치이고 mobile station(MS), user ' terminal (UT), 가입자국 (Subscriber Station, SS) 또는 무선 장치로서 또한 호칭될수 있다. Terminal 10 is a device carried by a user and may also be referred to as a mobile station (MS), user ' terminal (UT), subscriber station (SS) or wireless device.
[059] 기지국 (20)은 일반적으로 단말 (10)과 함께 통신하는 고정국 (fixed station)이다. base station으로 호칭되는 것 외에, 기지국은 액세스 포인트 (Access Point, AP)로 호칭될 수도 있다. 기지국은 단말로 사용자  Base station 20 is generally a fixed station that communicates with terminal 10. In addition to being called a base station, a base station may be called an access point (AP). Base station user to terminal
11 평면 (user plane) 및 제어 평면 (control plane)의 종단점들 (end points)을 제공한다. 일반적으로, 기지국은 다른 구성요소들 중에서 송신기 및 프로세서를 포함하고 본 명세서에서 기술하고 있는 다양한 기술들에 따라 동작하도록 구성된다. . 11 Provide end points of the user plane and the control plane. In general, a base station includes a transmitter and a processor, among other components, and is configured to operate in accordance with the various techniques described herein. .
[060] 복수의 단말 (10)이 한 셀 내에 위치할 수 있다. 한 기지국 (20)은 일반적으로 셀 별로 배치된다. 사용자 트래픽 또는 제어 트래픽을 전송하기 위한 인터페이스가 기지국들 (20) 간에 사용될 수 있다. 본 명세서에서 "하향링크 (downlink)1'는 기지국 (20)으로부터 단말 (10)로의 통신을 가리키고, "상향링크 (uplink)' '는 단말로부터 기지국으로의 통신을 가리킨다. A plurality of terminals 10 may be located in one cell. One base station 20 is generally arranged per cell. An interface for transmitting user traffic or control traffic may be used between the base stations 20. In this specification, "downlink 1 " indicates communication from the base station 20 to the terminal 10, and "uplink" indicates communication from the terminal to the base station.
[061] 廳 E/SAE 게이트웨이 (30)는 기지국들 (20)로 페이징 메시지들의 분포 (distribution), 보안 제어, 유휴 상태 이동성 제어, SAR 베어러 제어 및 NAS(Non-Access Stratum) 시그널링의 암호 (cipher ing) 및 보전 (integrity protection)을 포함하는 다양한 기능들을 제공한다. SAE 게이트웨이 (30)은 페이징 이유들을 위한 Uᅳ플랜 패킷들의 종료 (termination), 단말 이동성을 지원하기 위한 ϋ-플랜의 스위칭을 포함하는 여러가지의 기능들을 제공한다. 설명의 편의를 위해, 薩 E/SAE 게이트웨이 (30)은 본 명세서에서 간단히 "게이트웨이"라고 칭해질 수 있다. 그러나, 이러한 구조는 醒 Ε 게이트웨이 및 SAE 게이트웨이 모두를 포함할 수 있다고 이해될 수 있다. 廳 E / SAE gateway 30 is a cipher of distribution of paging messages, security control, idle mobility control, SAR bearer control and non-access stratum (NAS) signaling to base stations 20 ing) and integrity (integrity protection). The SAE gateway 30 provides various functions including termination of U ^ plan packets for paging reasons, switching of the Q-plan to support terminal mobility. For convenience of description, the 薩 E / SAE gateway 30 may be referred to herein simply as a “gateway”. However, it can be understood that such a structure may include both a VE gateway and a SAE gateway.
[062] 복수의 노드들이 S1 인터페이스를 통해 기지국 (20) 및 게이트웨이 (30) 간에 연결될 수 있다. 기지국 (20)은 Χ2 인터페이스를 통해 서로 연결될 수 있고, 이웃 기지국들은 Χ2 인터페이스를 가진 메쉬된 (meshed) 네트워크 구조를 가질 수 있다. [062] A plurality of nodes may be connected between the base station 20 and the gateway 30 via the S1 interface. The base stations 20 may be connected to each other via a χ2 interface, and neighboring base stations may have a meshed network structure with a χ2 interface.
[063] 도 3a는 일반적인 E— UTRAN 및 일반적인 EPC의 일반적 구조를 도시한 블록도이다. 도 2a를 참조하면, 기지국은 게이트웨이 (30)를 위한 선택, 무선자원제어 (RRC) 활성시의 게이트웨이를 향한 라우팅, 페이징 메시지들의 스케줄링 및 전송, 방송채널 (BCCH)정보의 스케즐링 및 전송 하향링크 및 상향링크에서 단말들 (10)에 자원을 동적 할당, 기지국 측정 (measurements)의 구성 및 준비 (provisioning), 무선 베이러 제어, 무선허가제어 (RAC), LTE_ACTIVE 상태에서 연결 이동성 관리의 기능들을 수행할 수 있다.  3A is a block diagram showing a general structure of a general E—UTRAN and a general EPC. Referring to Figure 2a, the base station is selected for the gateway 30, routing to the gateway when Radio Resource Control (RRC) active, scheduling and transmission of paging messages, scheduling and transmission of broadcast channel (BCCH) information downlink And dynamic allocation of resources to the terminals 10 in uplink, configuration and provisioning of base station measurements, radio bearer control, radio permission control (RAC), and connection mobility management functions in the LTE_ACTIVE state. can do.
12 [064] EPC에서, 상술한 바와 같이, 게이트웨이 (30)는 페이징 시작 (origination), LTE_IDLE 상태 관리, 사용자 평면의 계산, SAE 베어러 관리, 및 비—접속층 (non- access stratum, NAS) 시그널링의 보전 보호 (integrity protect ion)의 기능들을 수행할 수 있다. 12 In the EPC, as described above, the gateway 30 is responsible for paging initiation, LTE_IDLE state management, user plane calculation, SAE bearer management, and non-access stratum (NAS) signaling. It can perform the functions of integrity protect ion.
[065] 도 3b 및 도 3c는 E— UMTS 네트워크를 위한 사용자 -평면 프로토콜 및 제어 평면 프로토콜 스택을 나타낸 블록도이다. 도 3b 및 도 3c를 참조하면, 프로토콜 레이어들은 오픈 시스템 상호접속 (0SI) 표준 모델의 3개 하위 계층에 기초하여 제 1 계층 (L1), 제 2 계층 (L2) 및 제 3 계층 (L3)으로 나누어질 수 있다. 3B and 3C are block diagrams illustrating a user-plane protocol and control plane protocol stack for an E—UMTS network. 3B and 3C, the protocol layers are divided into a first layer (L1), a second layer (L2), and a third layer (L3) based on three lower layers of the open system interconnect (0SI) standard model. Can be divided.
[066] 제 1 계층 (L1) (또는 물리 계층 (PHY))은 물리 채널을 이용하여 상위 계층으로 정보 전송 서비스를 제공한다. 물리 계층은 전송 채널을 통해 상위 레벨에 위치한 MAC 계층과 연결되고, MAC 계층 및 물리 계층 간의 데이터는 전송 채널을 통해 전송된다. 서로 다른 물리 계층들 간에 즉 송신 측 및 수신 측 (예를 들어, 단말 (10) 및 기지국 (20)의 물리 계층들 간에)의 물리 계층들 간에 데이터는 물리 채널 (21)을 통해 전송된다. The first layer (L1) (or physical layer (PHY)) provides the information transmission service to the upper layer using a physical channel. The physical layer is connected to a MAC layer located at a higher level through a transport channel, and data between the MAC layer and the physical layer is transmitted through a transport channel. Data is transmitted over the physical channel 21 between different physical layers, i.e., between the physical layers of the transmitting side and the receiving side (for example, between the physical layers of the terminal 10 and the base station 20).
[067] 계층 2(L2)의 MAC 계층은 논리채널을 통해 더 높은 계층인 RLC 계층에 서비스를 제공한다. 계층 2(L2)의 MAC 계층은 신뢰성있는 데이터 전송을 지원한다. 도 3b 및 3c에 도시된 RLC 계층은 MAC RLC 기능들이 구현되고 MAC 계층에서 수행되면, RLC 계층 그 자체는 필요하지 않는 것으로 도시되었다. 도 3b를 참조하면, 계층 2의 PDCP 계층은 상대적으로 작은 대역폭을 갖는무선 인터페이스 상에 효율적으로 전송될 수 있는 IPv4 또는 IPv6와 같은 인터넷 프로토콜 (IP) 패킷을 채용함으로써 전송되는 데이터에 불필요한 제어 정보를 줄이기 위하여 헤더 압축을 수행한다. The MAC layer of Layer 2 (L2) provides a service to the RLC layer, which is a higher layer, through the logical channel. The MAC layer of Layer 2 (L2) supports reliable data transmission. The RLC layer shown in FIGS. 3B and 3C is shown that if the MAC RLC functions are implemented and performed in the MAC layer, the RLC layer itself is not needed. Referring to FIG. 3B, the PDCP layer of Layer 2 employs Internet Protocol (IP) packets, such as IPv4 or IPv6, which can be efficiently transmitted over a wireless interface with relatively small bandwidth, thereby providing unnecessary control information to the transmitted data. Header compression is performed to reduce.
[068] 도 3c를 참조하면, 제 3 계층 (L3)의 가장 낮은 부분에 위치한 RRC 계층은 제어 평면에서만 정의되고 논리 채널들, 전송 채널들, 물리 채널들을 구성, 재구성, 무선베어러들 (RBs)의 해제 관계에서 제어한다. 여기서, 무선베어러들은 단말 (terminal) 및 E-UTRAN 간의 데이터 전송을 위한 제 2 계층 (L2)에 제공된 서비스를 의미한다. Referring to FIG. 3C, the RRC layer located at the lowest part of the third layer (L3) is defined only in the control plane and configures, reconstructs, and carries radio channels (RBs) of logical channels, transport channels, and physical channels. Control in the release relationship. Here, the radio bearers refer to a service provided to the second layer (L2) for data transmission between the terminal (terminal) and the E-UTRAN.
[069] 도 3b를 참조하면, RLC 및 MAC 계층들 (네트워크 측 상에서 기지국 (20)에서 종료된)은 스케줄링, ARC Autoinatic Repeat reQuest),  Referring to FIG. 3B, the RLC and MAC layers (terminated at base station 20 on the network side) are scheduled, ARC Autoinatic Repeat reQuest),
13 HARQ( Hybrid Automatic Repeat reQuest)와 같은 기능들을 수행한다. PDCP 계층 (네트워크 측 상에서 기지국 (102)에서 종료된)은 해더압축, 인티그레티 보호 (intergrity protection), 및 계산 (cipher ing)과 같은 사용자 평면 기능을 수행할 수 있다. 13 Performs functions such as Hybrid Automatic Repeat reQuest (HARQ). The PDCP layer (terminated at base station 102 on the network side) may perform user plane functions such as header compression, integrity protection, and ciphering.
[070] 도 3c를 참조하면, RLC 및 MAC 계층들 (네트워크 측 상에서 기지국 (20)에서 종료된)은 제어 평면과 같은 동일한 기능들을 수행한다. 예시한 바와 같이, RRC 계층 (네트워크 측 상에서 기지국 (20)에서 종료된)은 방송, 페이징, RRC 연결 관리, 무선 베이러 (RB) 제어, 이동성 기능 및 단말 측정 보고와 제어와 같은 기능들을 수행할 수 있다. 네트워크 측 상에서 画 E 게이트웨이 (30)에서 종료되는 NAS 제어 프로토콜은 SAE 베어러 관리, 인증, LTE_IDLE 이동성 핸들링, LTEJDLE에서 페이징 시작 및 게이트웨이들 및 단말 (10) 간의 시그널링을 위한 보안 제어와 같은 기능을 수행할 수 있다. Referring to FIG. 3C, the RLC and MAC layers (terminated at base station 20 on the network side) perform the same functions as the control plane. As illustrated, the RRC layer (terminated at base station 20 on the network side) may perform functions such as broadcast, paging, RRC connection management, radio bearer (RB) control, mobility functions, and terminal measurement reporting and control. Can be. The NAS control protocol terminated at the 画 E gateway 30 on the network side may perform functions such as SAE bearer management, authentication, LTE_IDLE mobility handling, paging start in LTEJDLE, and security control for signaling between the gateways and the terminal 10. Can be.
[071] NAS 제어 프로토콜은 3개의 서로 다른 상태 (state)를 사용할 수 있다: 첫 번째로 RRC 엔티티 (entity)가 없다면, LTE_DETACHED 상태, 두 번째로 RRC 연결이 없 만 최소의 단말 정보를 저장하고 있다면 LTE一 IDLE 상태, 세 번째로 RRC 연결이 설정되면 LTE_ACTIVE 상태이다.  [071] The NAS control protocol may use three different states: first if there is no RRC entity, LTE_DETACHED state, second if there is no RRC connection but the minimum terminal information is stored. LTE 一 IDLE state. Third, RRC connection is established, LTE_ACTIVE state.
[072] 또한, RRC 상태는 RRCJDLE 및 RRC— CONNECTED와 같은 두 개의 서로 다른 상태로 구분될 수 있다. RRC— IDLE 상태에서, 단말 (10)은 페이징 정보 및 시스템의 정보의 방송을 수신할 수 있는 한편 단말 (10)은 NAS에 의해 구성된 불연속 수신 (Discontinuous Reception, DRX)를 명기하고, 단말 (10)은 트래킹 (tracking) 지역에서 단말을 고유하게 식별하기 위한 식별자 (identification, ID)를 할당받는다. 또한, RRC_IDLE 상태에서, 기지국 (20)에 저장된 RRC 콘텍스트 (context)는 없다.  In addition, the RRC state may be divided into two different states, such as RRCJDLE and RRC—CONNECTED. In the RRC—IDLE state, the terminal 10 may receive a broadcast of paging information and system information while the terminal 10 specifies a discontinuous reception (DRX) configured by the NAS, and the terminal 10 Is assigned an identifier (ID) for uniquely identifying the terminal in the tracking area. In addition, in the RRC_IDLE state, there is no RRC context stored in the base station 20.
[073] RRCᅳ IDLE 상태에서 단말 (10)은 페이징 DRX 주기 (cycle)를 명기한다. 특히, 단말 (10)은 매 단말 특정 페이징 DRX 주기의 특정 페이징 경우에서 페이징 신호를 모니터링한다.  In the RRC_IDLE state, the UE 10 specifies a paging DRX cycle. In particular, the terminal 10 monitors a paging signal in a specific paging case of every terminal specific paging DRX cycle.
[074] RRC_C0NNECTED 상태에서, 단말 (10)은 Eᅳ UTRAN에서 E— UTRAN R C 연결 및 콘텍스트를 구비하여, 가능하게 되는 네트워크 (기지국)으로 /으로부터 데이터를 전송 및 /또는 수신한다. 또한, 단말 (10)은 채널 품질 정보 및 피드백 정보를  In the RRC_C0NNECTED state, the terminal 10 has an E—UTRAN R C connection and context in the E ᅳ UTRAN to transmit and / or receive data from / to a network (base station) that is enabled. In addition, the terminal 10 receives the channel quality information and the feedback information.
14 기지국 (20)으로 보고할 수 있다. 14 Report to base station 20.
[075] RRC— CONNECTED상태에서 , E-UTRAN은 단말 (10)이 속한 셀을 안다. 따라서 , 네트워크는 데이터를 단말 (10)로 /으로부터 전송 및 /또는 수신할 수 있으며, 네트워크는 단말 (10)의 이동성 (핸드오버)을 제어할 수 있으며, 네트워크는 이웃 셀에 대한 셀 측정을 수행할 수 있다. RRC—In the CONNECTED state, the E-UTRAN knows the cell to which the terminal 10 belongs. Thus, the network can transmit and / or receive data to / from the terminal 10, the network can control the mobility (handover) of the terminal 10, and the network performs cell measurements for neighboring cells. can do.
[076] 도 4는 IP 플로우 기반 WiFi mobility를 설명하기 위한 예시적인 도면이다.  4 is an exemplary diagram for explaining IP flow based WiFi mobility.
[077] IFOM (IP Flow Mobility): 3GPP (Rel-10) 표준에서는 3G/WiFi Seamless Off load를 기술하고 있는데, DSMIPv6 기반 IP Flow 단위의 WLAN offloading 기술, DSMIPv6 (Dual Stack Mobile IPv6) 단말과 네트워크에서 IPv4와 IPv6를 동시 지원하는 솔루션을 제공하고 있다. 이동통신망의 다양화로 IPv6 채택이 확대되고 이동성 지원이 핵심기술로 부각되면서 기존의 IPv4망까지도 이동성 지원이 필요하여 DSMIPv6을 채택하고 있다ᅳ 또한, 단말이 자신의 이동을 탐지하여 agent에게 알리는 client -based MIP 기술을 제공한다. HA는 mobile node의 이동성을 관리하는 agent로서 Flow Binding Table과 Binding Cache table이 존재한다. PMIPv6를 사용할 경우, IP flow 단위의 관리가 어렵다는 기술적 문제의 이유로 IF0M은 DSMIFV6만을 사용한다.  IFOM (IP Flow Mobility): 3GPP (Rel-10) standard describes 3G / WiFi Seamless Off load, WLAN offloading technology of DSMIPv6 based IP Flow unit, DSMIPv6 (Dual Stack Mobile IPv6) terminal and network It provides a solution that supports IPv4 and IPv6 simultaneously. As the adoption of IPv6 has expanded due to the diversification of mobile communication networks, and mobility support has emerged as a core technology, even existing IPv4 networks require DSMIPv6 because mobility support is required. In addition, the client-based device detects its movement and informs the agent. Provide MIP technology. HA is an agent that manages mobility of mobile node, and there exists Flow Binding Table and Binding Cache table. In case of using PMIPv6, IF0M uses only DSMIFV6 because of technical problem that IP flow unit is difficult to manage.
[078] MAPC0N (Multi Access PDN Connectivity): 서로 다른 APN들에게 동시의 multiple PDN connect ivity를 가지며, Protocol independent 기술로서 PMIFV6, GTP, DSMIPv6 모두 사용 가능하다. 하나의 PDN을 통해 전송 중이던 데이터 플로우들들 전체가 이동된다. ' MAPC0N (Multi Access PDN Connectivity): Simultaneous multiple PDN connectivity to different APNs, and can be used as a protocol independent technology, PMIFV6, GTP, DSMIPv6. All data flows that were being transmitted through one PDN are moved. '
[079] 복수의 통신 시스템이 연동 혹은 인터워킹하는 네트워크 구조를 설명한다.  [079] A network structure in which a plurality of communication systems interwork or interwork is described.
[080] 도 5는 제 1 통신 시스템 (즉, 샐를러 통신 시스템)와 제 2 통신 시스템 (무선랜 통신 시스템)의 연동 구조를 설명하기 위한 네트워크 구조를 예시한 도면아다.  FIG. 5 is a diagram illustrating a network structure for explaining an interworking structure between a first communication system (ie, a seller communication system) and a second communication system (wireless LAN communication system).
[081] 본 발명에서는 제 1 통신 시스템에 해당하는 샐를러 통신 시스템의 하나인 LTE 시스템, 제 2 통신 시스템에 해당하는 무선랜 통신 시스템의 하나인 WiFi 시스템을 예로 들어 설명한다.  In the present invention, an LTE system, which is one of the cellular communication systems corresponding to the first communication system, and a WiFi system, which is one of the WLAN communication systems corresponding to the second communication system, will be described as an example.
[082] 도 5에 도시한 네트워크 구 ^에서 , 백본 (Backbone) 망 (예를 들어, Pᅳ  In the network structure ^ shown in FIG. 5, a backbone network (eg, P ᅳ
15 또는 EPC(Evolved Packet Core))를 통해 AP와 eNB사이에 백홀 제어 커넥션 (backhaul control connect ion)이 있거나, AP와 eNB 사이에 무선 제어 커넥션 (wireless control connection) 이 있을 수 있다. 피크 쓰루풋 (peak throughput) 및 데이터 트래픽 오프 -로딩 (data traffic of f-loading)을 위해, UE는 복수의 통신 네트워크 간의 연동을 통하여 제 1 무선통신 방식을 사용하는 제 1 통신 시스템 (혹은 제 1 통신 네트워크)과 제 2 무선통신 방식을 사용하는 제 2 통신 시스템 (흑은 제 2 통신 네트워크)을 모두 동시에 지원할 수 있다. 여기서 제 1 통신 네트워크 또는 제 1 통신 시스템을 각각 프라이머리 네트워크 (Primary network) 또는 프라이머리 시스템 (Primary system)이라고 칭하고, 제 2 통신 네트워크 또는 제 2 통신 시스템을 각각 세컨더리 네트워크 (Secondary network) 또는 세컨더리 시스템 (Secondary system)이라고 칭할 수 있다. 예를 들어, UE는 LTE (혹은 LTEᅳ A)와 WiFi (WLAN/802.11과 같은 근거리 통신 시스템)을 동시에 지원하도록 구성될 수 있다. 이러한 단말 (UE)를 본 명세서에서 멀티 시스템 지원 UE(Multi-system capability UE) 등으로 칭할 수 있다. 15 Alternatively, there may be a backhaul control connection between the AP and the eNB through an Evolved Packet Core (EPC), or there may be a wireless control connection between the AP and the eNB. For peak throughput and data traffic of f-loading, a first communication system (or first communication) using a first wireless communication scheme through interworking between a plurality of communication networks Network) and a second communication system (black or second communication network) using a second wireless communication method can be simultaneously supported. Herein, the first communication network or the first communication system is referred to as a primary network or a primary system, respectively, and the second communication network or the second communication system is referred to as a secondary network or a secondary system, respectively. (Secondary system) can be called. For example, the UE may be configured to simultaneously support LTE (or LTE ᅳ A) and WiFi (local area communication systems such as WLAN / 802.11). Such a terminal (UE) may be referred to herein as a multi-system capability UE.
[083] 도. 5에 도시한 네트워크 구조에서, 프라이머리 시스템은 넓은 커버리지 (wider coverage)를 가지며, 제어 정보 전송을 위한 망일 수 있다. 프라이머리 시스템의 예로서 WiMAX또는 LTE (LTE-A)시스템이 있을 수 있다. 한편 세컨더리 시스템은 작은 커버리지는 가지는 망이며, 데이터 전송을 위한 시스템일 수 있다. 세컨더리 네트워크는 예를 들어, WLAN 또는 WiFi 같은 무선랜 시스템일 수 있다ᅳ [083] Fig. In the network structure shown in FIG. 5, the primary system has wider coverage and may be a network for transmitting control information. An example of a primary system may be a WiMAX or LTE (LTE-A) system. Meanwhile, the secondary system is a network having a small coverage and may be a system for data transmission. The secondary network may be, for example, a WLAN system such as WLAN or WiFi.
[084] 본 발명에서는 다음의 사항을 가정하여 설명한다.  In the present invention, the following matters are assumed.
[085] 인터워킹을 관장하는 entity는 셀를러 망 내에 있는 entity로 가정하고, 아래 세가지 entity 안에 인터워킹 기능이 구현됨을 가정한다.  The entity that manages interworking assumes that the cell is an entity in the network and assumes that interworking functions are implemented in the following three entities.
[086] e-NB -reuse existing entity [086] e-NB -reuse existing entity
[087] MME (Mobility Management Entity) -기존 entity의 재사용 (reuse existing entity) Mobility Management Entity (MME)-Reuse existing entity
[088] I麵 E (Intervorking Management Entity) - 새로운 entity를 정의 (define new entity)  [088] Ivor E (Intervorking Management Entity)-define new entity
[089] 인터워킹 기능은 eNB— UE 또는 eNB-AP 사이에 발생할 수 있는 인터워킹  [089] Interworking function is interworking that can occur between eNB—UE or eNB-AP.
16 관련 프로시저에 관련되어 있으며, 인터워킹을 관장하는 entity는 AP 정보를 저장 /관리한다. eNB/醒 E/IWME는 자신의 coverage 아래 있는 AP 들의 정보를 저장 /관리한다. 16 Related to the related procedure, the entity managing interworking stores / manages AP information. The eNB / 醒 E / IWME stores / manages information of APs under its coverage.
[090] 세컨더리 시스템 (예를 들어, WiFi)의 액세스 포인트인 AP와 프라이머리 시스템 (예를 들어, LTE 시스템 또는 WiMAX 시스템과 같은 셀롤러 통신 시스템)의 액세스 포인트인 기지국 (eNB)는 서로 무선 링크 상으로 커넥션 (connect ion)이 설정되어 있음을 가정한다. 본 발명에서는 eNB와의 무선 인터페이스가 있는 AP를 eAP라고도 칭하도록 한다. 즉, eAP는 802.11 MAC/PHY뿐만 아니라, eNB와의 통신을 위한 LTE 프로토콜 스택 혹은 WiMAX 프로토콜 스택도 지원하여야 하고, eNB와는 단말과같은 역할을 하며 eNB와 통신을 할수 있음을 의미한다.  [090] An AP that is an access point of a secondary system (eg, WiFi) and a base station (eNB) that is an access point of a primary system (eg, a cellular communication system such as an LTE system or a WiMAX system) are connected to each other wirelessly. Assume that a connection is established on the phase. In the present invention, an AP having a radio interface with an eNB is also called an eAP. In other words, the eAP should support not only 802.11 MAC / PHY, but also LTE protocol stack or WiMAX protocol stack for communication with the eNB, and act as a terminal with the eNB and can communicate with the eNB.
[091] 도 6은 본 발명에 따른 WiFi-Cel hilar 인터워킹의 네트워크 구조를 예시적으로 나타낸 도면이다.  6 is a diagram illustrating a network structure of WiFi-Cel hilar interworking according to the present invention.
[092] 본 발명의 기술은 WiFi와 Cellular망을 동시 송수신할 수 있는 단말이 존재하는 환경에서, 듀얼모드 (dual mode) 혹은 multi-RAT 단말이 좀 더 효율적으로 WiFi-ceiluIar 융합 망을 사용하도록 하기 위해 샐를러 망은 다음 4가지 방법에 따라 AP의 정보를 관리할 수 있다. The technology of the present invention allows a dual mode or multi-RAT terminal to use a WiFi-ceiluIar convergence network more efficiently in an environment where a terminal capable of simultaneously transmitting and receiving WiFi and cellular networks exists. The network can manage the AP's information in the following four ways.
[093] 방법 1. eNB와 AP사이의 air interface사용 [093] Method 1. Use of air interface between eNB and AP
[094] eNB는 AP와의 무선 제어 연결 (wireless control connection)을 이용하여 AP를 일반 UE와 비슷하게 control 함을 의미한다.  The eNB means controlling the AP similarly to a general UE using a wireless control connection with the AP.
[095] 방법 2. eNB와 AP사이의 backhaul interface 사용 Method 2. Using the backhaul interface between the eNB and the AP
[096] eNB는 AP와의 무선 제어 연결을 이용하여 AP를 control 함을 의미한다ᅳ  [096] eNB means controlling the AP using a radio control connection with the AP.
[097] 방법 3. MME와 AP사이의 제어 인터페이스 (control interface) 사용 Method 3. Using a control interface between the MME and the AP
[098] 匪 E와 AP (즉, secondary system) 사이의 제어 연결을 이용하여 AP를 control 함을 의미한다. 098 means controlling the AP using a control connection between E and an AP (ie, a secondary system).
[099] 방법 4. I觀 E와 AP사이의 control interface 사용 [099] Method 4. Using the Control Interface between I \ E and AP
[0100] I麵 E와 AP (즉, secondary system) 사이의 제어 연결을 이용하여 AP를 제어함을 의미한다.  I 麵 E means to control the AP by using a control connection between the AP (that is, secondary system).
[0101] 도 7은 WiFi-Cel lular 융합 망의 시나리오를 설명하기 위한 예시적 도면이다.  7 is an exemplary diagram for explaining a scenario of a WiFi-Cel lular converged network.
17 [0102] 도 7의 ① 시나리오는 단말의 셀를러 only 접속 시나리오인데, 단말이 샐를러 망에만 접속한 상태에서 WiFi 자동전환 /동시전송을 위해, 사전기술의 정의가 필요하다. 인터워킹을 위한 AP 정보 관리는 network level (cellular- WiFi)에서 이루어지고, WiFi discovery 및 WiFi 망 접속은 device level (cellular - device - WiFi)에서 이루어 진다. ② -1 내지 ②— 3은, 각각 셀롤러ᅳ WiFi 간의 사용자 평면 (U-Plane)의 WiFi 자동 전환, flow의 WiFi 자동전환, bearer의 WiFi 자동전환, data의 WiFi 자동전환을 나타낸다ᅳ ②— 1에 따라서, 샐를러 -WiFi Uᅳ plane 자동전환 되면 모든 data는 WiFi로만 전송된다. ②— 2, ②ᅳ 3 시나리오에 따라서, 셀를러 -WiFi U-plane이 동시전송 되도록 전환되면, bandwidth segregation or aggregation 기법을 사용하여 WiFi와 샐를러 네트워크로 데이터의 동시전송이 가능하다. 여기서, Bandwidth segregation은 ② -2 와 같이 flow (service/IP flow)별 자동 전환으로, 서로 다른 flow는 서로 다른 RAT을 통해 전송된다. ②— 2에서, flow별 자동전환은 하나 또는 하나 이상의 service/IP flow(s) 일 수 있다. 즉, flow 단위로 전환 (② -2-1) 또는 Data radio(or EPS) bearer 별 전환 (② -2-2)일 수 있다. Bandwidth aggregation은 ②ᅳ 3과 같이 동일한 flow라 하더라도 data 단위로 서로 다른 RAT을 통해 전송될 수 있게 한다. 17 The scenario ① of FIG. 7 is a cell-only access scenario of a terminal, and for the automatic WiFi switching / simultaneous transmission in a state in which the terminal is connected only to a cell network, a definition of a prior technology is necessary. AP information management for interworking is performed at the network level (cellular-WiFi), and WiFi discovery and WiFi network access are performed at the device level (cellular-device-WiFi). ② -1 to ②— 3 respectively indicate the WiFi automatic switching of the user plane (U-Plane), the WiFi automatic switching of the flow, the WiFi automatic switching of the bearer, and the WiFi automatic switching of data. As a result, when the mobile is automatically switched to the WiFi-WiFi U ᅳ plane, all data is transmitted only to WiFi. ②— 2, ② ᅳ 3 According to the scenario, when the cell-Wireless U-plane is switched to be transmitted at the same time, data can be simultaneously transmitted to the WiFi and the seller-network using the bandwidth segregation or aggregation technique. Here, bandwidth segregation is automatic switching for each flow (service / IP flow), such as ② -2, and different flows are transmitted through different RATs. In 2), flow-by-flow automatic switching can be one or more service / IP flow (s). That is, the conversion may be a flow unit (② -2-1) or a data radio (or EPS) bearer switching (② -2-2). Bandwidth aggregation enables transmission through different RATs in data units even with the same flow as in ② ᅳ 3.
[0103] ② 시나리오에서와 같이 WiFi 자동전환이 수행된 이후에는 ③ 시나리오와 같이 WiFi 기반으로 셀를러 링크 제어가 가능하다. 셀를러 링크 관련한 페이징 또는 무선 링크 실패 (radio link failure, RLF)에 대한 제어를 WiFi link 통해 수신 가능하다. ② After WiFi automatic switching is performed as in the scenario ③, the cellular link control is possible based on WiFi as in the scenario. Control of paging or radio link failure (RLF) associated with a cell link can be received through a WiFi link.
[0104] 이하에서 IEEE 802.11 WLAN 시스템에서의 연결 프로시저 (Connect ion Procedures of IEEE 802.11 WLAN)에 대한 내용을 살펴본다.  Hereinafter, a description will be given of the connection procedure (Connect ion Procedures of IEEE 802.11 WLAN) in the IEEE 802.11 WLAN system.
[0105] 연결 프로시저에서 , 스캐닝 (Scanning) 단계는 Passive scanning과 active scanning으로 나눠지고, 단말 (예를 들어, STA)은 스캐닝 단계에서 주변 AP 탐색하여 정보를 저장하고, 주변 AP의 beacon frame 수신 및 probe, probe response frame을 송수신한다. 다음은 조인 (Join) 단계로서, 단말은 탐색된 주변 In the connection procedure, the scanning step is divided into passive scanning and active scanning, and the terminal (for example, the STA) searches for the neighbor AP in the scanning step to store information and receives the beacon frame of the neighbor AP. And transmit and receive probes and probe response frames. The next step is a join step.
AP 들 증에서 AP를 선택하고 동기를 맞추며 (synchronization), AP에 대한 정보를 수집한다. 그리고, 선택된 AP의 beacon frame을 수신한다. 다음으로, 인증 (Authentication) 단계로서, 단말을 인증한다. Open system 인증 절차는 Select APs from the AP list, synchronize them, and collect information about them. Then, a beacon frame of the selected AP is received. Next, as an authentication step, the terminal is authenticated. Open system authentication process
18 단말의 인증요청에 AP는 무조건 인증을 수행하고, Shared Key 인증 절자는 공유 비밀 키를 확인함으로써 인증을 수행한다. 인증 프레임 (Authentication frame)을 송수신한다. 다음으로, Association 단계에서, 단말은 Association Response frame을 통해 Association IDUdentif ier)를 할당 받고, Association Request and Response frame을 송수신한다. 18 In the authentication request of the terminal, the AP performs authentication unconditionally, and the shared key authentication procedure performs authentication by checking the shared secret key. Send and receive an authentication frame. Next, in the Association step, the UE is assigned an Association IDUdentif ier) through an Association Response frame, and transmits and receives an Association Request and Response frame.
[0106] 도 8은 IEEE 802.11 WLAN 시스템에서의 Reassociat ion Procedures 을 예시한 도면이다.  8 is a diagram illustrating Reassociat ion Procedures in an IEEE 802.11 WLAN system.
[0107] Reassociat ion은 단말 (STA)이 다른 AP coverage로 이동하는 경우 발생한다. 단말이 Reassociation Request frame을 통해 현재 AP의 MAC address에 대한 정보를 New AP에 전송해 준다. 이후, New AP와 Old AP 간에 IAPP (Inter一 AP Protocol) 메시지들을 교환한다. New AP는 IAPP에게 old AP의 정보를 중계하도록 요청하고, old AP는 단말의 AKKAssociation Id)를 삭제한다. IAPP (Inter-AP Protocol) 802.1Π은 WLAN system에서 DS를 통해 AP 사이에 context를 교환하는 프로토콜로서, 이는 AP가 교환된 PMK 정보를 캐시하고 단말이 old AP에서 사용한 키의 식별자 (keylD)를 사용하여 reassociation request하면 AP는 캐시된 PMK를 사용하여 인증과정을 생략하고 키 교환을 수행한다.  Reassociat ion occurs when a terminal (STA) moves to another AP coverage. The terminal transmits the information about the MAC address of the current AP to the New AP through the reassociation request frame. Thereafter, IAP (Inter 一 AP Protocol) messages are exchanged between the New AP and the Old AP. The new AP requests the IAPP to relay the information of the old AP, and the old AP deletes the AKKAssociation Id) of the terminal. IAPP (Inter-AP Protocol) 802.1Π is a protocol for exchanging context between APs through a DS in a WLAN system. The AP caches the exchanged PMK information and uses an identifier (keylD) of a key used by the terminal in the old AP. When reassociation request is made, the AP skips the authentication process using the cached PMK and performs key exchange.
[0108] Disassociation Procedures of IEEE 802.11 WLAN에 대해 간략히 설명한다. Disassociation은 통지 (notification)이지 요청이 아니다. AP는 서비스를 위해 또는 다른 이유로 네트워크로부터 제거될 AP를 인에이블 (enable)하기 위하여 STA들을 disassociate 할 필요가 있다. STA들이 네트워크를 떠날 때 STA들은 disassociate를 시도한다. Disassociation frame을 송신하는데, 여기에 Reason code 가 포함되어 전송된다. [0108] The Disassociation Procedures of IEEE 802.11 WLAN will be briefly described. Disassociation is a notification, not a request. The AP needs to disassociate the STAs to enable the AP to be removed from the network for service or for other reasons. When the STAs leave the network, the STAs attempt to disassociate. The disassociation frame is transmitted, which contains a reason code.
[0109] IEEE 802.11 WLAN 시스템에서의 Scanning/join related frames 에 대해 설명한다ᅳ [0109] Scanning / join related frames in an IEEE 802.11 WLAN system will be described.
[0110] 비콘 프레임 (Beacon frame): AP에서만 주기적으로 전송되지만 전송될 시간에 채널이 busy하다면 송신이 지연될 수 있디-. Frame control은 Duration, DA, SA, BSSID, Fragment number , Sequence 정보를 포함하며, Frame body는 Time stamp, beacon interval , capability information, {SSID, Supported rates, DS parameter Set, TIM} IEs들을 포함한다. TIM은 Traffic Indication MAP, Doze mode에 있는 단말을 깨우기 위한 indication (AID로 indicat ion)으로 사용된다. Beacon frame (Beacon frame): The transmission may be delayed if the channel is busy at the time to be transmitted periodically but only in the AP. The frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence information, and the frame body includes Time stamp, beacon interval, capability information, {SSID, Supported rates, DS parameter Set, TIM} IEs. TIM is Traffic Indication MAP, Doze It is used as an indication (indicat ion as AID) to wake up the terminal in mode.
[0111] 프로브 요청 프레임 (Probe request frame): Active scanning에서 사용된다. Frame contrc)l은 Duration = 0x0000, DA= broadcast , SA, BSSID = any AP, Fragment number , Sequence를 포함하고 있다. Frame body는 {SSID, Supported Rates} IEs를 포함한다.  [0111] Probe request frame: used in active scanning. Frame contrc) l includes Duration = 0x0000, DA = broadcast, SA, BSSID = any AP, Fragment number, Sequence. The frame body contains {SSID, Supported Rates} IEs.
[0112] 프로브 응답 프레임 (Probe response frame): Probe에 대한 웅답으로 전송된다. Frame control은 Duration, DA, SA, BSSID, fragment number , Sequence를 포함하며, Frame body는 Time stamp, beacon interval, capability information, {SSID, supported rate, DS parameter Set } IEs를 포함한다.  [0112] Probe response frame: A probe response is sent to the probe. Frame control includes Duration, DA, SA, BSSID, fragment number, Sequence, and frame body includes Time stamp, beacon interval, capability information, {SSID, supported rate, DS parameter Set} IEs.
[0113] IEEE 802.11 WLAN 시스템에서의 Association related frames에 대해 설명한다. [0113] Association related frames in an IEEE 802.11 WLAN system will be described.
[0114] 인증 프레임 (Authentication frame): 인증 요청과 응답 시 사용되며 형식은 동일하기 때문에 Authentication transaction Sequence로 구분된다. Frame control은 Duration, DA, SA, BSSID, Fragment number , Sequence을 포함하며, Frame body은 Authentication Algorithm Number , Status code, challenge text IE을 포함한다 . Authentication Algorithm Number : Open System, Shared Key, Fast BSS Transition  [0114] Authentication frame (Authentication frame): used in authentication request and response, and is divided into Authentication transaction Sequence because the format is the same. Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, and Frame body contains Authentication Algorithm Number, Status code, challenge text IE. Authentication Algorithm Number : Open System, Shared Key, Fast BSS Transition
[0115] Association request frame: .결합 요청 시 power saving mode에 머무를 기간을 명시하는 listen interval을 포함한다. Frame control은 Duration, DA, SA, BSSID, Fragment number , Sequence를 포함하고, Frame body은 Capability information, Listen Interval , {SSID, Supported Rates} IEs들을 포함한다.  Association request frame: includes a listen interval that specifies how long to stay in power saving mode when requesting association. Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, and frame body contains Capability information, Listen Interval, {SSID, Supported Rates} IEs.
[0116] Association response frame: Association request에 대한 응답으로 전송되고 AID값 할당된다. Frame control은 Duration, DA, SA, BSSID, fragment number , Sequence를 포함하고, Frame body은 Capability information, Status Code, Association ID, Supported rates IE를 포함한다. Association response frame: transmitted in response to an association request and assigned an AID value. Frame control includes Duration, DA, SA, BSSID, fragment number, Sequence, and frame body contains Capability information, Status Code, Association ID, Supported rates IE.
[0117] Re/Disassociation related frames in IEEE 802.11 WLAN에 대해 설명한다.  [0117] Re / Disassociation related frames in IEEE 802.11 WLAN will be described.
[0118] Reassociat ion request frame: 재결합 요청 시 power saving mode에 머무를 기간을 명시하는 listen interval을 포함한다. Frame control은 Duration, DA, SA, BSSID, Fragment number , Sequence를 포함하고, Frame body는 Capability information, Listen Interval , Current AP address , {SSID, Supported Rates} IES를 포함한다. Reassociat ion request frame: includes a listen interval that specifies the length of time to stay in the power saving mode in the reassociation request. Frame control includes Duration, DA, SA, BSSID, Fragment number, Sequence, Frame body is Capability Information, Listen Interval, Current AP address, {SSID, Supported Rates} IES.
[0119] Reassociation response frame: Association response frame과 동일한 프레임이 사용되고 new AP에서 사용할 AID값 할당된다. Frame control은 Duration DA, SA, BSSID, fragment number , Sequence를 ΐ함하며■, Frame body는 Capability information, Status Code, Association ID, Supported rates IE를 포함한다 . Di sassoc i at i on/Deaut hent i cat i on frame에서 Fr me control은 Duration, DA, SA, SSID IE, fragment number , Sequence를 포함하고, Frame body는 Reason Code를 포함한다. [0119] Reassociation response frame: Association response ■ The same frame as the frame is used and an AID value to be used in the new AP is allocated. Frame control contains Duration DA, SA, BSSID, fragment number, Sequence, and frame body includes Capability information, Status Code, Association ID, and Supported rates IE. In Di sassoc i at i on / Deaut hent i cat i on frame, the Fr me control includes Duration, DA, SA, SSID IE, fragment number, Sequence, and frame body contains Reason Code.
[0120] IEEE 802.11 시스템에서의 Power saving mode를 설명한다. [0120] The power saving mode in the IEEE 802.11 system will be described.
[0121] 도즈 모드 (Doze mode): 단말의 파웨; power)를 절약하기 위해 자신이 송신하지 않거나 자신에게 전달될 data가 없는 경우, 트랜시버의 작동을 일정시간 동안 중지시키는 모드이다.  Doze mode: Farway of the terminal; In order to save power, this mode stops the transceiver for a certain time when it does not transmit or there is no data to be transmitted to it.
[0122] 어웨이크 모드 (Awake mode)에서 Doze mode로의 천이 방법은 초기 'association request frame의 Listen interval을 명시함으로써 Doze 상태로 천이한다. 또는, 필요에 따라서 PM=1로 설정된 null data frame을 전송하고,. 이에 대한 ACK을 수신한 후에 Doze 모드로 진입할 수 있다. doze mode에서, 트래픽 지시 제어 정보 (예를 들어, Traffic Indication MAP IE 메시지)를 확인하고, Beacon frame이 전송되는 시점 부근에서 잠시 깨어나 beacon frame을 확인한다. [0122] The transition method from the awake mode to the Doze mode transitions to the Doze state by specifying a Listen interval of an initial 'association request frame. Or, if necessary, transmit a null data frame set to PM = 1. After receiving the ACK for this, it may enter the doze mode. In the doze mode, the traffic indication control information (eg, Traffic Indication MAP IE message) is checked, and the signal wakes up around the time when the beacon frame is transmitted to confirm the beacon frame.
[0123] Doze mode에서 Awake mode로의 천이 방법은 TIM에 자신의 AID에 해당하는 비트가 1로 설정되어 있는 경우, 단말은 깨어나서 PS-Poll 메시지의 duration 영역에 자신의 AID를 넣어 전송한다. PS-Poll frame을 수신한 AP는 버퍼링 중인 데이터를 단말에게 전달한다. 만약 버퍼링된 frame이 하나 이상이라면, more data bit을 1로 설정하여 프레임이 더 있음을 단말에게 알릴 수 있다. In the transition method from the Doze mode to the Awake mode, when the bit corresponding to its AID is set to 1 in the TIM, the UE wakes up and transmits its AID in the duration region of the PS-Poll message. Receiving the PS-Poll frame, the AP delivers buffering data to the terminal. If more than one buffered frame is set, the data bit may be set to 1 to inform the UE that there are more frames.
[0124] 상기에서 설명한 IEEE 802.11 WLAN에 대한 설명은 본 발명의 내용에서 적용될 수 있다. 종래의 inter RAT 기술은 단말의 요청 기반으로 설계되어, 무선랜과 셀를러 망 사이의 인터워 ¾(interworking)을 필요로 하지 않고, 특정 네트웍 서버가 무선랜 정보를 관리하며, 단말의 요청에 의해 inter RAT handover를 가능하도록 한다. 뿐만 아니라, 단말이 Multiple RAT에 동시 접속이 [0124] The description of the IEEE 802.11 WLAN described above may be applied in the context of the present invention. The conventional inter RAT technology is designed based on a request of a terminal, does not require interworking between the WLAN and the cell network, and a specific network server manages the WLAN information. Enable inter RAT handover. In addition, the terminal can be connected to multiple RATs simultaneously.
21 가능하더라도 무선 레벨 (Radio level)에서의 제어 네트워크 레벨에서의 flow mobility/IP-flow snapping만을 지원함으로써 Multiple RAT에 동시 접속을 가능하도톡 하였다. 이러한 이유로 종래 기술은 AP와 셀를러 망 사이에 어떤 제어 커넥션 (control connect ion)은 요구하지 않았고, 단말의 요청을 기반으로 Multiple RAT으로의 접속을 가능하도록 했다. 이와 같은 종래 기술은 네트워크의 상황을 정확하게 파악하지 못하고, 단말 위주의 RAT 선택을 함으로써 네트워크 전체 효율성을 높이기에는 한계가 있었다. 21 Even if possible, it supports simultaneous access to multiple RATs by supporting only flow mobility / IP-flow snapping at the control network level at the radio level. For this reason, the prior art does not require any control connection between the AP and the cellular network, and enables connection to the multiple RAT based on the request of the UE. Such a prior art does not accurately grasp the situation of the network, there is a limit to increase the overall network efficiency by selecting the terminal-oriented RAT.
[0125] Mult i -RAT 사용을 통해 단말의 QoS 향상뿐만 아니라, 전반적인 네트워크의 효율을 높이기 위해서는 단말 요청기반 보다는 네트워크 기반의 tightly-coupled MultiRAT management 기술을 제공할 필요가 있다. 이는 네트워크 레벨에서는 서로 다른 RAT 사이의 다이렉트 제어 커넥션 (direct control connection)을 설정해 줌으로써 좀 더 효율적이고, 빠른 inter-RAT interworking이 수행됨이 요구되며, 해당 interworking 주체에 의해 단말의 data를 가장 최적의 RAT으로 전송할 수 있도록 해야 한다. Multi RAT 단말이 두 개의 서로 다른 RAT에 동시 접속하기 전에, 네트워크에서 단말이 최적의 RAT 또는 AP를 선택하도록 도울 수 있고, 이를 위해 네트워크는 단말에게 WiFi와 같은 secondary system의 정보를 요구할 수 있다. 본 발명에서는 두 개의 서로 다른 RAT에 동시에 접속하는 단말을 Mu i-RAT 단말이라 칭하도록 한다. In order to improve the overall network efficiency as well as improve the QoS of the terminal through the use of Mult i-RAT, it is necessary to provide a network-based tightly-coupled MultiRAT management technology rather than the terminal request base. This requires more efficient and faster inter-RAT interworking by setting up direct control connection between different RATs at the network level. You should be able to transfer it. Before the Multi RAT terminal accesses two different RATs simultaneously, the network may help the terminal select an optimal RAT or AP, and for this purpose, the network may request information of a secondary system such as WiFi from the terminal. In the present invention, a terminal that simultaneously accesses two different RATs is called a Mu i-RAT terminal.
[0126] 도 9는 Multi— RAT 단말의 attach 및 Multi-RAT capability 협상 과정올 예시한 도면이다. 9 is a diagram illustrating an attach and multi-RAT capability negotiation process of a Multi—RAT terminal.
[0127] 도 9를 참조하면, Multi— RAT 단말 (Multi— RAT UE)은 셀롤러 네트워크의 기지국 (eNB), 應 E 및 IWE와 attach 과정을 수행한다 (attach request , attach accept 등). Multi-RAT 단말은 attach 과정을 완료한 후에 UL/DL 데이터 터널 (EPS bearers-default EPS bearers)를 생성할 수 있다.  Referring to FIG. 9, a Multi—RAT UE (Multi—RAT UE) performs an attach process with an eNB, a UE E, and an IWE of a cellular network (attach request, attach accept, etc.). After completing the attach process, the Multi-RAT terminal may generate a UL / DL data tunnel (EPS bearers-default EPS bearers).
[0128] 이후 Multiᅳ RAT 단말은 셀롤러 네트워크 (예를 들어, IWE)와 MULTI-RAT capability 협상 과정을 수행할 수 있다. 즉, IWE는 Multi— RAT 단말에게 MULTI¬ RAT capability request 요청 메시지를 보내면, 이에 대한 응답으로 Multi-RAT 단말은 선호하는 AP 리스트를 포함하는 Multi RAT capability response 메시지를 보낸다. 이후 IWE는 단말에게 Multi-RAT capability complete 메시지를 전송하여 [0128] The Multi-RT RAT terminal may then perform a MULTI-RAT capability negotiation process with the cellular network (eg, IWE). That is, IWE is sent to the terminal Multi- RAT MULTI ¬ RAT capability request request message, In response, the Multi-RAT Multi RAT mobile station sends a capability response message including the preferred AP list. After that, the IWE transmits a Multi-RAT capability complete message to the UE.
22 M lti- AT capability 협상 과정을 완료시킨다. 선호하는 AP (preferred AP) 리스트는 단말의 WiFi 관련 capability 중의 하나로서 IWE와의 접속 초기 단계 (e.g., WiFi capability negotiation during or after connect ion (re)estabnshment)에서 미리 전송될 수 있다. 22 Complete the MT capability negotiation process. The preferred AP list may be transmitted in advance in the initial connection with the IWE (eg, WiFi capability negotiation during or after connect ion (re) estabnshment) as one of the WiFi-related capabilities of the UE.
[0129] Multi-RAT 단말은 AP들을 스캐닝하고, 스캐닝 결과 검출된 AP 리스트 (혹은 검출된 AP 리스트 중 Preferred AP 리스트)에 대한 정보를 IWE로 전송할 수 있다. Preferred AP에 대한 정보는 Multi-RAT 단말이 자주 접속하거나 자주 오랫동안 머무르는 AP에 대한 SSHKService Set IDentif ier)/BSSID(Basic Service Set IDentif ier)와 같은 AP ID일 수 있으며, 회사, 카페, 집 등과 같은 장소에 설치된 public AP의 SSID/BSSID 또는 Private AP의 SSID/BSSID일 수 있다. IWE는 MLII RAT 단말로부터 수신한 preferred AP 리스트에 기초하여 WiFi 망 접속을 결정할 수 있다. 이와 같이, 도 9에서는 WiFi capability negotiation 과정 및 Preferred AP 기반 WiFi 망 접속 결정에 대한 도시하고 있다. [0129] The Multi-RAT terminal may scan the APs and transmit information on the detected AP list (or Preferred AP list among the detected AP list) to the IWE. The information on the Preferred AP may be AP ID such as SSHKService Set IDentif ier / Basic Service Set IDentif ier (BSSID) for AP that Multi-RAT terminal frequently accesses or stays for a long time. It may be an SSID / BSSID of a public AP or an SSID / BSSID of a private AP. The IWE may determine the WiFi network access based on the preferred AP list received from the MLII RAT terminal. As such, FIG. 9 illustrates a WiFi capability negotiation process and a decision of accessing a Preferred AP based WiFi network.
[0130] 이와 같이, Multi-RAT 단말이 미리 WiFi에의 연결을 완료 했지만, 이로 인한 단말 배터리 소모를 최소화하기 위해 pre-association을 지시하면서, WiFi power saving mode로의 전환을 함께 지시할 것을 제안한다. 상기 pre association의 경우 Multi-RAT 단말의 선호하는 AP(preferred AP)가 검출된 경우에 수행됨이 바람직하다. As described above, although the Multi-RAT terminal has completed the connection to the WiFi in advance, it is proposed to instruct to switch to the WiFi power saving mode while instructing the pre-association in order to minimize the terminal battery consumption. In the case of the pre association, it is preferably performed when a preferred AP (Preferred AP) of the Multi-RAT terminal is detected.
[0131] 본 발명에서는 네트워크가 셀롤러 -WiFi 융합기술을 지원 (support) 하는 경우, Multi-RAT 단말의 WiFi pre-associat ion을 지시하고, 이때 Multi-RAT 단말의 전력을 최소화하기 위한새로운 WiFi 유휴 모드 프로시저를 제안할 것이다. 이하에서 새롭게 제안하는 WiFi pre-associat ion 및 WiFi의 새로운 Power Saving mode에 대해 설명한다. [0131] In the present invention, when the network supports the cellular-WiFi convergence technology, the WiFi pre-associat ion of the Multi-RAT terminal is indicated, and at this time, a new WiFi idle for minimizing the power of the Multi-RAT terminal. We will suggest a mod procedure. Hereinafter, the newly proposed WiFi pre-associat ion and the new power saving mode of WiFi will be described.
[0132] 도 10은 인터워킹 엔티티 (interworking entity)(e.g. , eNB, 應 E, new entity in cellular network)가 단말의 WiFi 접속을 미리 수행해 두도록 하는 과정 (WiFi pre association procedure)과 WiFi의 새로운 Power Saving mode를 설명하기 위한 예시적 도면이다. ' 10 is a process for allowing an interworking entity (eg, eNB, 應 E, new entity in cellular network) to perform Wi-Fi connection of a UE in advance (WiFi pre association procedure) and new power saving of Wi-Fi. It is an exemplary diagram for explaining the mode. '
[0133] 도 10에 도시한 바와 같이, Multi-RAT 단말이 셀를러 네트워크와As shown in FIG. 10, the Multi-RAT terminal is connected with the cell network.
RRC_Connected 상태 및 WiFi 네트워크와 WiFi-Deregistrat ion 상태 (즉, WiFi RRC_Connected status and WiFi network and WiFi-Deregistrat ion status (ie WiFi
23 네트워크와는 등록해제되어 비 연결 모드로 동작하는 상태)인 경우에, 적어도 하나의 AP로부터 주기적으로 방송하는 신호인 비콘 신호를 수신할 수 있다. Mult i -RAT 단말은 AP를 검출하기 위한 WiFi scanning을 수행하여 샐롤러 네트워크 (예를 들어, IWE)로 WiFi scanning result를 전송할 수 있다. 그러면, 샐를러 네트워크 (예를 들어, IWE)가 Multi-RAT 단말의 WiFi 접속을 미리 수행하도록 결정한 경우 (예를 들어, 선호하는 AP 검출로 인해 결정하게 됨), Multi-RAT 단말에게 선호하는 AP로의 WiFi pre-attach를 지시하는 WiFi pre- attach 요청 메시지를 전송할 수 있다. 23 In the case of being deregistered from the network and operating in the disconnected mode, the beacon signal, which is a signal that is periodically broadcasted, may be received from at least one AP. The Mult i-RAT terminal may perform WiFi scanning to detect an AP and transmit a WiFi scanning result to a cellular network (eg, IWE). Then, when the saller network (for example, IWE) decides to perform Wi-Fi connection of the multi-RAT terminal in advance (for example, it is determined by the detection of a preferred AP), the preferred AP to the multi-RAT terminal A WiFi pre-attach request message indicating a WiFi pre-attach to the network can be transmitted.
[0134] 또한, 셀를러 네트워크는 Multi-RAT 단말에게 WiFi로 전송될 하향링크 테이터가 없음을 알고 있기 때문에, Multi-RAT 단말에게 WiFi로 전송될 하향링크 데이터가 없는 경우 WiFi pre-attach 요청 메시지에서 Multi— RAT 단말의 전력올 최소화하기 위해 WiFi pre-attach를 지시하면서 preᅳ attach 완료되자마자 Multi- RAT 단말이 WiFi power saving mode로 진입할 것을 지시할 수 있다. 본 발명에서는 이와 같은 과정을 Multi-RAT 단말의 WiFi pre-associat ion이라고 칭한다. In addition, since the cellarer network knows that there is no downlink data to be transmitted to WiFi to the Multi-RAT terminal, when there is no downlink data to be transmitted to WiFi to the Multi-RAT terminal, the WiFi pre-attach request message is provided. Multi—In order to minimize the power of the RAT terminal, the WiFi pre-attach may be instructed, and upon completion of the pre-attach, the Multi-RAT terminal may instruct to enter the WiFi power saving mode. In the present invention, such a process is referred to as WiFi pre-associat ion of the Multi-RAT terminal.
[0135] 또한, 샐롤러 네트워크의 IWE가 Multi-RAT 단말의 WiFi power saving mode 진입을 지시하며 , 이와 같은 지시에 의해 단말이 WiFi power saving mode로 진입하는 경우, 기존과 다르게 리스닝 .구간 (listening interval)이 없는 power saving mode를 수행하도록 하는 프로시저를 제안한다. Multi— RAT 단말은 해당 AP에게 WiFi power saving mode로 진입하겠다는 것을 알리는 지시자 (PM=1)을 전송해 줄 수 있다.  In addition, the IWE of the cellular network instructs to enter the WiFi power saving mode of the Multi-RAT terminal, and when the terminal enters the WiFi power saving mode by such an instruction, a listening interval (listening interval) is different from the conventional method. We propose a procedure to perform power saving mode without). Multi— The RAT terminal may transmit an indicator (PM = 1) indicating that the AP intends to enter a WiFi power saving mode.
[0136] Multi-RAT 단말이 WiFi power saving mode로 진입한 후 IWE로 WiFi pre- attach 완료를 알리는 WiFi pre— attach complete 메시지를 전송할 수 있다. 그러면, IWE는 Multi-RAT 단말이 WiFi attach 되었지만 WiFi power saving mode로 들어갔음을 인지할 수 있다. WiFi preᅳ attach complete 메시지에 대한 응답으로, IWE는 Multi-RAT 단말에게 AC 메시지 (예를 들어, WiFi pre-attach complete ACK 메시지)를 보낼 수 있다.  [0136] After entering the WiFi power saving mode, the Multi-RAT terminal may transmit a WiFi pre—attach complete message indicating the completion of the WiFi pre-attach to the IWE. Then, the IWE may recognize that the Multi-RAT terminal is WiFi attached but has entered the WiFi power saving mode. In response to the WiFi pre-attach complete message, the IWE may send an AC message (eg, a WiFi pre-attach complete ACK message) to the Multi-RAT terminal.
[0137] 다음 도 11을 참조하여 pre-associat ion을 지시하면서, WiFi power saving mode로의 전환을 함께 지시하는 경우에 대해 더 구체적으로 살펴본다.  Next, referring to FIG. 11, the case of instructing the switch to the WiFi power saving mode while instructing the pre-associat ion will be described in more detail. FIG.
24 [0138] 도 11은 본 발명에서 제안하는 새로운 WiFi pre-association 프로시저의 일 예를 나타낸 도면이다. 24 11 is a diagram illustrating an example of a new WiFi pre-association procedure proposed by the present invention.
[0139] 도 11을 참조하면, Mul — RAT 단말은 셀를러 네트워크 (예를 들어, IWE)와 MULTI-RAT capability 협상 과정을 수행할 수 있다. pre-associat ion을 위한 Mult i -RAT UE capability negot iat ion에서, pre—association에 대한 capability 여부는 Multi-RAT 단말이 UE가 IWE와 자신의 MultiRAT 관련 capability를 negot iat ion하는 과정 중에 서로 설정 가능하다. 즉, Multi-RAT 단말은 IWE에게 MULT I -RAT capability 협상 요청 메시지를 보내면, 이에 대한 응답으로 IWE는 Multi-RAT 단말에게 Multi-RAT capability 협상 웅답 메시지를 보낸다. 만약 본 발명의 기술에서 제안하는 preᅳ association이 정의되는 경우, 해당 프로시저에 대한 수행가능 여부를 Multi-RAT 단말과 IWE 사이에 미리 교환하는 것이 바람직하다. Multi-RAT 단말 및 셀를러 네트워크가 모두 송수신되고, 둘 다 pre- association을 지원 (support) 하는 경우 pre-association 관련 프로시저가 수행될 수 있다.  Referring to FIG. 11, a Mul — RAT terminal may perform a MULTI-RAT capability negotiation process with a cellar network (eg, IWE). In the Mult i -RAT UE capability neat iat ion for pre-associat ion, the capability of pre-association can be set during the process by which the multi-RAT UE neut iat ionizes the IWE and its MultiRAT related capability. . That is, when the Multi-RAT terminal sends a MULT I -RAT capability negotiation request message to the IWE, the IWE sends a Multi-RAT capability negotiation response message to the Multi-RAT terminal in response. If a pre-association proposed in the technique of the present invention is defined, it is preferable to exchange in advance between the Multi-RAT terminal and the IWE whether the procedure can be performed. When both the Multi-RAT terminal and the Cellular network are transmitted and received, and both support pre-association, a pre-association related procedure may be performed.
[0140] Multi AT Capability Negotiation 관련 메시지에 다음과 같은 파라미터가 정의되어야 한다. [0140] The following parameters should be defined in a message related to Multi AT Capability Negotiation.
[0141] WiFi Pre-Association support (1 bit)가 정의되어야 하고, 이때 예를 들어, 1 비트 값이 0이면 pre-association 수행할 수 없음을 지시하고, 1이면 pre— association 수행할 수 있음을 지시하는 것이다. 또한, MultiRAT Capability Negoti tion 관련 메시지에 Multi-RAT 단말 및 IWE는 선호하는 AP(preferred AP)에 대한 정보를 포함하여 전송할 수 있다. Multi-RAT 단말은 Multi-RAT capability 협상 요청 메시지에서 WiFi pre-associat ion support (1 bit)를 1로 설정하여 전송함으로써 pre-association 를 지원함을 알릴 수 있다.  [0141] WiFi Pre-Association support (1 bit) should be defined, for example, if a 1-bit value of 0 indicates that pre-association cannot be performed, and if 1 indicates that pre-association can be performed. It is. In addition, the Multi-RAT terminal and the IWE may transmit information including a preferred AP in a MultiRAT Capability Negotiation related message. The multi-RAT terminal may inform that the pre-association is supported by transmitting by setting the WiFi pre-associat ion support (1 bit) to 1 in the multi-RAT capability negotiation request message.
[0142] 이후, Mult i— RAT 단말이 적어도 하나의 AP로부터 주기적으로 방송되는 신호인 비콘 신호를 수신할 수 있고, WiFi scanning을 수행하여 샐롤러 네트워크 (예를 들어, IWE)로 WiFi scanning result를 전송할 수 있다. 그러면, 셀롤러 네트워크 (예를 들어, IWE)가 단말의 WiFi 접속을 미리 수행 ((WiFi로 pre- attach))하도록 결정한 경우, Multi-RAT 단말에게 선호하는 AP로의 WiFi preᅳ attach를 지시하는 WiFi pre-attach 요청 메시지를 전송할 수 있다. fiFi pre-Subsequently, Mult i— The RAT terminal may receive a beacon signal, which is a signal that is periodically broadcasted from at least one AP, and perform WiFi scanning to perform a WiFi scanning result with a cellular network (eg, IWE). Can transmit Then, when the cellular network (for example, IWE) decides to perform the WiFi connection of the terminal in advance ((pre-attach to WiFi)), the WiFi indicating the WiFi pre-attach to the preferred AP to the multi-RAT terminal A pre-attach request message can be sent. fiFi pre-
25 attach요청 메시지는 아래와 같은 파라미터를 포함할 수 있다. 25 The attach request message may include the following parameters.
[0143] 1) Pre association AP에 대한 BSSID/SSID 1) BSSID / SSID for Pre association AP
[0144] 2) WiFi Power Saving mode로 들어갈 것을 indication하는 indicator  2) indicator indicating to enter the WiFi Power Saving mode
[0145] 3) WiFi Listening interval 구간에 대한 정보 3) Information on the WiFi Listening interval section
[0146] 4) Pre一 associat ion deadline timer 4) Pre 一 associat ion deadline timer
[0147] Pre一 associat ion deadline timer는 Multi-RAT 단말이 AP와 associat ion 및 power saving mode 전환을 완료할 수 있는 층분한 시간을 고려하여 그 이후의 시간 값으로 설정될 수 있다. WiFi pre— attach 요청 메시지를 수신하면, Multi- RAT 단말은 해당 BSSID/SSID에 대한 AP에의 pre— associat ion을 수행한다. 그리고, WiFi pre-attach 요청 메시지를 수신하면 Multi-RAT 단말은 Pre-associat ion deadline timer醫 Λ]2]-Λ ¾υ .  Pre01 associat ion deadline timer may be set to a time value thereafter in consideration of the time required for the Multi-RAT terminal to complete the switching between the AP and the associat ion and power saving mode. Upon receiving the WiFi pre-attach request message, the Multi-RAT terminal performs pre-associat ion to the AP for the corresponding BSSID / SSID. And, when receiving the WiFi pre-attach request message, the Multi-RAT terminal is a pre-associat ion deadline timerline Λ] 2] -Λ ¾υ.
[0148] WiFi pre-attach 요청 메시지를 수신한 Multi-RAT 단말은 Association[0148] The Multi-RAT terminal receiving the WiFi pre-attach request message is an Association.
REQ/RSP 메시지를 통해 IWE로부터 전송된 AP와의 연결을 설정한다. It establishes the connection with the AP transmitted from the IWE through the REQ / RSP message.
[0149] 만약 Multi-RAT 단말이 WiFi Listening interval이 설정된 WiFi pre- attach 요청 메시지를 수신한 경우, 해당 WiFi listening interval 값을 참조하여 AP와의 association 과정 중에 Association 요청 메시지의 listening interval을 설정할 수 있으며, 만약 WiFi listening interval을 "0" 또는 IWE와 미리 약속된 예약된 값 (reserved value)를 수신한 경우, Association 요청 메시지 전송 및 AP로부터 Association 응답 메시지 수신을 통해 WiFi로의 listening interval °1 없는 (즉, 셀롤러 망을 통해 paging 수신) WiFi power saving mode로 전환할 수 있다. [0149] If the Multi-RAT terminal receives a WiFi pre-attach request message with a WiFi Listening interval set, the listening interval of the Association request message may be set during the association process with the AP with reference to the corresponding WiFi listening interval value. If the WiFi listening interval is set to "0" or a reserved value pre-appointed with the IWE, there is no listening interval to WiFi by sending the Association request message and receiving the Association response message from the AP (i.e., the cellular Receive paging via network) You can switch to WiFi power saving mode.
[0150] 만약 WiFi power saving (PS) mode indication이 1로 설정된 메시지를 수신한 경우, PS mode= '1' 로 설정된 null data frame을 전송하는 것과 같은 WiFi PS mode 전환 방법을 통해 AP에게 PS mode로의 전환을 바로 알릴 수 있다. WiFi PS mode indication이 1인 경우, WiFi listening interval을 함께 명시함으로써 Multi-RAT 단말이 WiFi로의 power saving mode를 더욱 효율적으로 사용할 수 있다.  [0150] If a WiFi power saving (PS) mode indication is received with a message set to 1, PS mode is transferred to the PS mode to the AP through a WiFi PS mode switching method such as transmitting a null data frame set to '1'. You can immediately announce the transition. When the WiFi PS mode indication is 1, by specifying the WiFi listening interval, the Multi-RAT terminal can more efficiently use the power saving mode to WiFi.
[0151] 만약, WiFi pre-attach request 메시지를 사용하는 경우, association AP에 대한 BSSID/SSID의 전송이 암시적으로 ( implicit ly) 해당 AP와의 power saving mode 진입올 알리는 indication 및 WiFi listening interval0] "0" 또는 셀를러 망을 통해 paging을 수신하는 reserved value으로 설정됨을 의미하는 메시지로 mult iᅳ RAT 단말은 해당 메시지를 수신한 경우, association을 완료한 후어) 바로 listening interval이 없는 WiFi power saving mode로 전환함을 의미할 수 있다. 즉, WiFi pre-attach request 메시지가 정의된 경우, pre— associat ion AP에 대한 BSSID/SSID만을 전송할 수 있거나 또는, 필요에 따라 WiFi listening interval을 명시적으로 전송할 수 있다. [0151] If the WiFi pre-attach request message is used, transmission of the BSSID / SSID for the association AP is implicitly (implicit ly) power with the corresponding AP. saving mode indication and WiFi listening interval 0 ] "0" or a message indicating that the cell is set to a reserved value for receiving paging through the network. The mult i ᅳ RAT terminal completes the association when the message is received. Afterwards, it can mean switching to WiFi power saving mode without listening interval. That is, when the WiFi pre-attach request message is defined, only the BSSID / SSID for the pre-associat ion AP may be transmitted, or the WiFi listening interval may be explicitly transmitted as necessary.
[0152] 이와 같이, Multi-RAT 단말이 WiFi pre-attach request 메시지를 통해 power saving mode 진입을 알리는 지시자를 수신하면, power saving mode로 들어가고, power saving mode로 들어감을 해당 AP로 전달해 즐 수 있다 (PM=1) .  As described above, when the Multi-RAT terminal receives the indicator indicating the power saving mode entry through the WiFi pre-attach request message, the multi-RAT terminal enters the power saving mode and enters the power saving mode to the AP. PM = 1).
[0153] Multi-RAT 단말은 앞서 정의한 AP와 pre-association올 모두 성공적으로 수행한 경우, WiFi (pre) attach response 메시지 흑은 WiFi (pre)attach complete 메시지를 IWE에게 전송한다ᅳ 이는 Pre association deadline timer가 만료되기 이전에 전송되어야 하고, Pre-association deadline timer가 만료된 경우, pre-association은 실패로 간주된다.  [0153] The Multi-RAT terminal transmits a WiFi (pre) attach response message or a WiFi (pre) attach complete message to the IWE when both the previously defined AP and pre-association are successfully performed. Must be sent before is expired, and if the pre-association deadline timer expires, the pre-association is considered a failure.
[0154] WiFi (pre) attach response 메시지 흑은 WiFi (pre)attach complete 메시지는 다음과 같은 파라미터를 포함할 수 있다.  [0154] The WiFi (pre) attach response message black or WiFi (pre) attach complete message may include the following parameters.
[0155] 1) (Pre) association AP의 BSSID/SSID등과 같은 AP의 ID  1) (Pre) ID of AP such as BSSID / SSID of association AP
[0156] 2) 상태 결과 (Status result): (pre) Association이 성공했는지 실패했는지 여부를 알리는 정보  2) Status result: Information indicating whether (pre) Association succeeded or failed.
[0157] 3) 만약, (pre)ᅳ associat ion이 실패한 경우, 그 실패 원인을 포함  3) If (pre) ᅳ associat ion fails, the cause of the failure is included.
[0158] 4) PS mode로 진입 (혹은 천이)했는지 여부를 알리는 지시자: 만약 pre- association을' 통한 PS mode 진입이 listening interval마다 비콘 메시지를 수신하지 않는 새로운 WiFi PS mode라고 정의되는 경우, listening interval은 전송되지 않을 수도 있고, 이 경우 PS mode로 진입 혹은 천이했는지 여부에 대한 지시는 새로운 WiFi PS mode로의 진입을 의미할 수 있다.  4) indicator indicating whether the PS mode has entered (or transitioned): if the PS mode entry through the pre-association is defined as a new WiFi PS mode that does not receive a beacon message every listening interval, May not be transmitted, and in this case, the indication of whether the device enters or transitions to the PS mode may mean entering a new WiFi PS mode.
[0159] 5) WiFi Listening interval  5) WiFi Listening interval
[0160] WiFi Listening interval 값이 전송된다면,  [0160] If a WiFi Listening interval value is transmitted,
[0161] 1. Multi-RAT 단말은 실제 WiFi에서 설정한 값, 해당 값이 "0" 또는  1. The Multi-RAT terminal is a value set in actual WiFi, the value is "0" or
27 I WE와 약속된 reserved value로 설정된 경우, IWE는 단말이 새로운 WiFi PS mode에 진입함을 알 수 있다. 27 When set to a reserved value promised with I WE, the IWE may know that the UE enters a new WiFi PS mode.
[0162] 2. 만약 해당 값이 "으' 또는 IWE와 약속된 reserved vaiue로 설정되지 않은 경우, IWE는 단말이 기존의 WiFi PS mode에 진입함을 알 수 있다. 2. If the corresponding value is not set to "u" or a reserved vaiue promised with IWE, the IWE may know that the terminal enters the existing WiFi PS mode.
[0163] 6) AP와 설정된 Association Id (AID), IP address 6) Association Id (AID), IP address configured with the AP
[0164] 새로운 WiFi PS mode 동작 시에, i ilti-RAT 단말은 association을 완료한 AP의 주기적 방송 신호 (예를 들어, 비콘 신호)를 샐롤러 망의 지시가 있을 때까지 모니터링하지 않는다. 그리고, mi ti-RAT 단말은 관련 AP로부터 전송될 수 있는 데이터 여부 (paging)를 셀롤러 망을 통해 수신할 수 있다.  In the new WiFi PS mode operation, the ilti-RAT terminal does not monitor the periodic broadcast signal (eg, beacon signal) of the AP that has completed the association until the instructions of the salary network are instructed. And, the mi ti-RAT terminal may receive the paging through the cellular network whether data can be transmitted from the associated AP.
[0165] Multi-RAT 단말로부터 상기와 같은 WiFi (pre) attach response 메시지 혹은 WiFi (pre)attach complete 메시지를 수신하면, IWE는 Multi-RAT 단말이 WiFi로 attach되었지만 새로운 WiFi PS 모드로 진입함을 인식할 수 있다. IWE는 Multi-RAT 단말로 WiFi pre— attach 완료 ACK 메시지를 전송할 수 있다. multi -RAT 단말이 새로운 WiFi PS 모드로 동작하는 중에, IWE가 샐롤러 네트워크로부터 데이터가 도착한 경우, IWE는 WiFi를 통해 데이터 전송 할 것을 결정할 수 있다. 그리고, IWE는 multi-RAT 단말에게 WiFi 비콘 신호를 수신할 것을 지시하거나 또는 AID 데이터가 도착하였음을 알리는 메시지 혹은 지시자를 전송할 수 있다. 이에 따라, 상기 지시자에 기초하여 multiᅳ RAT 단말은 AP로부터 비콘 신호를 수신하여 AP와 Awake 상태로 전환하거나 혹은 상기 AP와 어웨이크 (awake) 상태로 동작할 수 있다. multi-RAT단말은 WiFi awake상태임을 IWE로 알려줄 수 있다. [0165] Upon receiving the above WiFi (pre) attach response message or WiFi (pre) attach complete message from the Multi-RAT terminal, the IWE recognizes that the Multi-RAT terminal is attached to WiFi but enters a new WiFi PS mode. can do. The IWE may transmit a WiFi pre—attach complete ACK message to the Multi-RAT terminal. While the multi-RAT terminal is operating in the new WiFi PS mode, when the IWE receives data from the cellular network, the IWE may decide to transmit the data through the WiFi. The IWE may instruct the multi-RAT terminal to receive a WiFi beacon signal or transmit a message or indicator indicating that AID data has arrived. Accordingly, based on the indicator, the multi-channel RAT terminal may receive a beacon signal from the AP, switch to the Awake state with the AP, or operate in the awake state with the AP. The multi-RAT terminal can inform the IWE that it is a WiFi awake state.
[0166] 이와 같이, 새로운 WiFi PS 모드에서는 Multi-RAT 단말은 association을 완료한 AP의 비콘을 셀를러 망의 지시가 있을 때까지 모니터링하지 않고, 셀를러 네트워크로부터 WiFi 비콘 신호를 수신하라는 지시를 받아 WiFi awake 상태로 들어가기 때문에 , 隠 Ui— RAT단말의 power saving효과가 상당히 향상되게 된다. As described above, in the new WiFi PS mode, the Multi-RAT terminal does not monitor the beacon of the AP which has completed the association until the cell tells the network to receive an instruction to receive the WiFi beacon signal from the cell network. By entering the WiFi awake state, the power saving effect of the Ui-RAT terminal is significantly improved.
[0167] 이상에서 살펴본 바와 같이, 광대역 무선 통신 시스템에서 셀롤러 네트워크의 제어를 통해 multi-RAT 단말이 secondary system(e.g. , WLAN/WiFO을 효율적으로 사용하도록 하기 위해서, 단말의 Secondary System 유휴 모드 동작을 최소화하도록 할 것을 제안하였다. 특히 본 발명의 기술은 셀롤러 네트워크의 지시에 의해 미리 WiFi에 연결된 Multi-RAT 단말의 경우, 제안된 새로운 WiFi As described above, in order to enable a multi-RAT terminal to efficiently use a secondary system (eg, WLAN / WiFO) by controlling a cellular network in a broadband wireless communication system, the secondary system idle mode operation of the terminal is performed. In particular, in the case of a multi-RAT terminal connected to WiFi in advance by the indication of the cellular network, the proposed new WiFi is proposed.
28 유휴 모드 프로시저에 따라 최소한의 전력을 사용할 수 있게 되었다. 28 Minimal power usage is achieved by following the idle mode procedure.
[0168] 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다ᅳ 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다 .  Embodiments described above are those in which the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some components and / or features to constitute an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in another embodiment or may be substituted for any other configuration or feature of another embodiment ᅳ an embodiment is constructed by combining claims that are not expressly cited in the claims. It is obvious that the present invention may be incorporated into a new claim by a post-application correction.
[0169] 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본.발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit and essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims . All changes within the equivalent scope of the invention are included in the scope of the invention.
29 29

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
복수의 통신시스템이 연동하는 네트워크에서 단말이 특정 통신 시스템과 유휴 모드 동작을 수행하는 방법에 있어서,  In a method in which a terminal performs an idle mode operation with a specific communication system in a network in which a plurality of communication systems work together,
제 1 통신 시스템과는 RRC( (Radio Resource Control) 연결된 상태이며 제 2 통신 시스템과는 비연결 (deregistration) 모드인 상태에서, 상기 2 통신 시스템의 기지국에 대한 스캐닝 결과를 제 1 통신 시스템의 인터워킹 엔터티 (interworking entity)로 전송하는 단계;  Interworking of the first communication system with the scanning result of the base station of the second communication system in a state of being connected to the RRC (Radio Resource Control) with the first communication system and in a disconnection mode with the second communication system Transmitting to an interworking entity;
상기 제 1 통신 시스템의 인터워 ¾ 엔터티로부터 상기 단말에게 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하도록 지시하는 제 1 지시자 및 상기 단말이 상기 제 2 통신 시스템과는 파워 절약 모드로 동작하도록 지시하는 제 2 지시자를 포함하는 제 1 메시지를 전송하는 단계;  A first indicator for instructing the terminal to perform an association process with a base station of the second communication system from an Internet ¾ entity of the first communication system and the terminal in a power saving mode with the second communication system; Sending a first message comprising a second indicator instructing to operate;
상기 제 1 메시지의 상기 제 1 지시자에 기초하여 상기 제 2 통신 시스템의 기지국과 연관 과정을 수행하는 단계; 및  Performing an association process with a base station of the second communication system based on the first indicator of the first message; And
상기 제 1 메시지의 상기 제 2 지시자에 기초하여 상기 제 2 통신 시스템과의 상기 비연결 모드에서 상기 파워 절약 모드로 진입하는 단계를 포함하는, 단말의 유휴 모드 동작 방법 .  Entering the power saving mode from the disconnected mode with the second communication system based on the second indicator of the first message.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 제 1 통신 시스템의 인터워킹 엔터티와 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리 연관 (pre-association) 프로시저를 지원하는지 여부에 대해 협상하는 단계를 더 포함하는, 단말의 유휴 모드 동작 방법 .  Whether the interworking entity of the first communication system and the terminal support a pre-association procedure for performing an association process with a base station of the second communication system and entering the power saving mode; The method further comprises the step of negotiating.
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 제 1 메시지는 상기 단말과 연관 (association) 과정을 수행할 상기 제 2 통신 시스템 기지국에 대한 식별자 정보, 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리. 연관 (pre— association) 과정의 기한 타이머 (deadline time)에 The first message is identifier information for the second communication system base station to perform an association process with the terminal, the terminal performs an association process with a base station of the second communication system and the power saving mode. To advance into . The deadline time of the pre-association process
30 대한 정보, 상기 제 2 통신 시스템의 기지국과의 리스닝 구간 (listening interval)에 대한 정보 중 적어도 하나를 더 포함하는, 단말의 유휴 모드 동작 방법 . 30 And at least one of information on information about a listening interval with a base station of the second communication system.
【청구항 4】  [Claim 4]
'제 1항에 있어서,  'As defined in claim 1,
상기 제 2 통신 시스템의 기지국은 상기 단말이 제 2 통신 시스템에서의 선호하는 기지국인, 단말의 유휴 모드 동작 방법 .  And the base station of the second communication system is the preferred base station in the second communication system.
【청구항 5】  [Claim 5]
제 3항에 있어서,  The method of claim 3, wherein
■ 상기 단말은 상기 제 1 메시지를 수신하면 미리 연관 (pre— association) 과정의 기한 타이머를 시작시키는 단계를 더 포함하는, 단말의 유휴 모드 동작 방법.  The terminal further includes starting a time limit timer of a pre-association process in advance when the terminal receives the first message.
【청구항 6】  [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 단말이 상기 제 2 통신 시스템의 기지국에 상기 파워 절약 모드로 진입할 것을 알리는 제 3 지시자를 전송하는 단계를 더 포함하는, 단말의 유휴 모드 동작 방법 .  And transmitting, by the terminal, a third indicator to inform the base station of the second communication system to enter the power saving mode.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 제 1 통신 시스템의 인터워킹 엔터티 (inter working entity)는 eNode An interworking entity of the first communication system is an eNode
B, 匪 E( (Mobility Management Entity)) 및 IWME ( Inter orking Management Entity) 중 어느 하나인, 단말의 유휴 모드 동작 방법.. B, 匪 E (Mobility Management Entity) and IWME (Inter orking Management Entity) any one of, the idle mode operation method of the terminal.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 2 통신 시스템으로 전송할 하향링크 데이터가 없는 경우에, 상기 제 If there is no downlink data to transmit to the second communication system,
1 통신 시스템의 인터워킹 엔터티로부터 상기 제 2지시자를 포함하는 제 1 메_시지가 전송되는, 단말의 유휴 모드 동작 방법. 1. A method of operating an idle mode of a terminal in which a first message including the second indicator is transmitted from an interworking entity of a communication system.
【청구항 9】  [Claim 9]
제 3항에 있어서, 상기 리스닝 구간에 대한 정보는 상기 연관을 완료한 후에 바로 리스닝 구간없이 상기 파워 절약 모드로 전환됨을 지시하는, 단말의 유휴 모드 동작 방법. The method of claim 3, wherein The information about the listening interval indicates that the switching to the power saving mode without a listening period immediately after the association is completed, the idle mode operation method of the terminal.
【청구항 10]  [Claim 10]
제 9항에 있어서,  The method of claim 9,
상기 단말은 상기 제 1 통신 시스템으로부터 페이징 메시지를 수신하는 단계를 더 포함하는, 단말의 유휴 모드 동작 방법.  The terminal further comprises the step of receiving a paging message from the first communication system, the idle mode operation method of the terminal.
【청구항 111  [Claim 111]
제 1항에 있어서,  The method of claim 1,
상기 제 1 통신 시스템의 인터워킹 엔터티로 상기 제 2 통신 시스템의 기지국과의 연관 및 및 파워 절약 모드로 진입하는 프로시저를 완료하였음을 지시하는 지시자를 포함하는 제 2 메시지를 전송하는 단계; 및  Sending a second message to the interworking entity of the first communication system, the indicator including an indicator indicating that the procedure for entering a power saving mode and association with a base station of the second communication system has been completed; And
상기 제 2 메시지에 대한 웅답 메시지를 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 수신하는 단계를 더 포함하는, 단말의 유휴 모드 동작 방법 ·  Receiving an answer message for the second message from the interworking entity of the first communication system;
【청구항 12]  [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있는 경우에 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 제 2 통신 시스템의 주기적 방송 신호를 수신할 것을 알리거나 혹은 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있음을 알리는 제 4 지시자를 수신하는 단계; 및  In case there is downlink data to be transmitted through the second communication system, it is notified that the periodic broadcast signal of the second communication system is to be received from the interworking entity of the first communication system or is transmitted downward through the second communication system. Receiving a fourth indicator indicating that there is link data; And
상기 제 4 지시자에 기초하여 상기 제 2 통신 시스템의 주기적 방송 신호를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 전환하거나 상기 제 4 지시자에 기초하여 상기 게 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 동작하는 단계를 더 포함하는, 단말의 유휴 모드 동작 Receiving a periodic broadcast signal of the second communication system based on the fourth indicator to switch to an awake state with a base station of the second communication system or a base station of the second communication system based on the fourth indicator And operating in an awake state, the idle mode operation of the terminal
O H · O H ·
【청구항 13】  [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 제 1 통신 시스템은 샐롤러 통신 시스템이며 상기 제 2 통신 시스템은 무선랜 통신 시스템인, 단말의 유휴 모드 동작 방법. The first communication system is a cellular communication system and the second communication The system is a wireless LAN communication system, UE idle mode operation method.
【청구항 14】  [Claim 14]
복수의 통신시스템이 연동하는 네트워크에서 특정 통신 시스템과 유휴 모드 동작을 수행하는 단말에 있어서,  In a terminal performing an idle mode operation with a specific communication system in a network interworking with a plurality of communication systems,
제 1 통신 시스템과는 RRC((Radio Resource Control) 연결된 상태이며 제 2 통신 시스템과는 비연결 (deregistration) 모드인 상태에서 상기 2 통신 시스템의 기지국에 대한 스캐닝 결과를 제 1 통신 시스템의 인터워킹 엔터티 (interworking entity)로 전송하고, 상기 제 1 통신 시스템의 인터워킹 엔터티로부터 상기 단말에게 상기 제 2 통신 시스템의 기지국과 연관 (assopiation) 과정을 수행하도록 지시하는 제 1 지시자 및 상기 단말이 상기 제 2 통신 시스템과는 파워 절약 모드로 동작하도록 지시하는 제 2 지시자를 포함하는 제 1 메시지를 전송하도록 구성된 송신기; 및  An interworking entity of a first communication system that scans a result of a base station of the second communication system in a radio resource control (RRC) connection state with a first communication system and in a connection mode with a second communication system. the first indicator and the terminal, the first indicator for instructing the terminal to perform an association process with the base station of the second communication system from an interworking entity of the first communication system. A transmitter configured to transmit a first message with a system, the first message comprising a second indicator instructing to operate in a power saving mode; and
상기 제 1 메시지의 상기 제 1 지시자에 기초하여 상기 제 2 통신 시스템의 기지국과 연관 과정을 수행하고 상기 제 1 메시지의 상기 게 2 지시자에 기초하여 상기 제 2 통신 시스템과의 상기 비연결 모드에서 상기 파워 절약모드로 진입하도록 제어하는 프로세서를 포함하는, 단말.  Perform an association process with a base station of the second communication system based on the first indicator of the first message and in the disconnected mode with the second communication system based on the second indicator of the first message; And a processor for controlling to enter a power saving mode.
【청구항 15】  [Claim 15]
제 14항에 있어서,  The method of claim 14,
상기 프로세서는, 상기 제 1 통신 시스템의 인터워킹 엔터티와 상기 단말이 상기 제 2 통신 시스템의 기지국과 연관 (association) 과정을 수행하고 상기 파워 절약 모드로 진입하는 미리 연관 (preᅳ association) 프로시저를 지원하는지 여부에 대해 협상하도록 제어하는, 단말.  The processor may include a pre-association procedure in which the interworking entity of the first communication system and the terminal perform an association process with a base station of the second communication system and enter the power saving mode. A terminal that controls to negotiate whether to support.
【청구항 16】  [Claim 16]
제 14항에 있어서,  The method of claim 14,
상기 2 통신 시스템으로 전송할 하향링크 데이터가 없는 경우에 상기 제 1 통신 시스템의 인터워 ¾ 엔터티로부터 상기 제 2 지시자를 포함하는 제 1 메시지를 수신하도록 구성된 수신기를 더 포함하는, 단말.  And a receiver configured to receive a first message comprising the second indicator from an internet ¾ entity of the first communication system when there is no downlink data to send to the second communication system.
【청구항 17]  [Claim 17]
제 14항에 있어서,  The method of claim 14,
33 상기 송신기는 상기 게 1 통신 시스템의1 인터워 킹 멘터 티로 상기 제 2 통신 시스템의 기지국과의 연관 및 및 파워 절약 모드로 진입하는 프로시 저를 완료하였음을 지시하는 지시자를 포함하는 제 2 메시지를 전송하도록 구성되며, 상기 수신기는 상기 제 2 메시지에 대한 응답 메시지를 상기 제 1 통신 시스템의 인터워 킹 엔터티로부터 수신하도록 구성되는, 단말 . 33 The transmitter a second message including an indicator that the it indicates the procedure have completed the low gain entry to the association and, and a power saving mode of the base station and the first inter Wars King elementary tee and the second communication system of the first communication system And the receiver is configured to receive a response message to the second message from an interworking entity of the first communication system.
【청구항 18]  [Claim 18]
제 17항에 있어서,  The method of claim 17,
상기 수신기는, 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있는 경우에 상기 제 1 통신 시스템의 인터 워 킹 엔터티로부터 상기 게 2 통신 시스템와 주기적 방송 신호를 수신할 것을 알리거나 흑은 상기 제 2 통신 시스템을 통해 전송할 하향링크 데이터가 있음을 알리는 제 4 지시자를 수신하고 상기 프로세서는 상기 제 4 지시자에 기초하여 상기 제 2 통신 시스템의 주기 적 방송 신호를 수신하여 상기 제 2 통신 시스템의 기지국과 어 웨 이크 (awake) 상태로 전환하거나 상기 제 4 지시자를 수신하여 상기 제 2 통신 시스템의 기지국과 어웨이크 (awake) 상태로 동작하도록 제어하는, 단말 . The receiver notifies or receives the periodic broadcast signal from the interworking entity of the first communication system when there is downlink data to be transmitted through the second communication system or the second communication. Receiving a fourth indicator indicating that there is downlink data to be transmitted through the system, and the processor receives a periodic broadcast signal of the second communication system based on the fourth indicator and the base station of the second communication system Transitioning to an awake state or receiving the fourth indicator and controlling to operate in an awake state with a base station of the second communication system.
34 34
PCT/KR2014/003239 2013-04-15 2014-04-15 Method for performing idle mode operation with particular communication system in network including multiple communication systems interworking with each other, and apparatus for same WO2014171699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361811816P 2013-04-15 2013-04-15
US61/811,816 2013-04-15

Publications (1)

Publication Number Publication Date
WO2014171699A1 true WO2014171699A1 (en) 2014-10-23

Family

ID=51731577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003239 WO2014171699A1 (en) 2013-04-15 2014-04-15 Method for performing idle mode operation with particular communication system in network including multiple communication systems interworking with each other, and apparatus for same

Country Status (1)

Country Link
WO (1) WO2014171699A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094422A (en) * 2001-05-15 2003-12-11 콸콤 인코포레이티드 A communication device for providing an efficient dormant mode for a group communication network
KR20100068455A (en) * 2008-04-30 2010-06-23 후아웨이 테크놀러지 컴퍼니 리미티드 Method, communication system and mobility management entity for handling resource
KR20110112267A (en) * 2004-09-10 2011-10-12 인터디지탈 테크날러지 코포레이션 Wireless communication methods and components for facilitating multiple network type compatibility
KR20110131219A (en) * 2009-03-06 2011-12-06 후아웨이 테크놀러지 컴퍼니 리미티드 System and method of power management for a device with multiple network interfaces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030094422A (en) * 2001-05-15 2003-12-11 콸콤 인코포레이티드 A communication device for providing an efficient dormant mode for a group communication network
KR20110112267A (en) * 2004-09-10 2011-10-12 인터디지탈 테크날러지 코포레이션 Wireless communication methods and components for facilitating multiple network type compatibility
KR20100068455A (en) * 2008-04-30 2010-06-23 후아웨이 테크놀러지 컴퍼니 리미티드 Method, communication system and mobility management entity for handling resource
KR20110131219A (en) * 2009-03-06 2011-12-06 후아웨이 테크놀러지 컴퍼니 리미티드 System and method of power management for a device with multiple network interfaces

Similar Documents

Publication Publication Date Title
KR102214074B1 (en) Method for managing link failure of user equipment simultaneously connected to multiple rats and device for performing same
US9992802B2 (en) Method for performing connecting operation with multiple communication systems in network including multiple communication systems interworking with each other, and apparatus for same
US10021629B2 (en) Method for transiting status of network node upon request of user equipment in multi-radio access technology environment, and apparatus therefor
US10595355B2 (en) Method and apparatus for establishing a connection in a wireless communication system
JP6433084B2 (en) Method and apparatus for searching for a base station in a plurality of communication systems
US9832743B2 (en) Method for controlling uplink transmissions of a user equipment (UE) in a multi-radio access technology (RAT) environment and apparatus therefor
CN106664607B (en) Method and apparatus for performing interworking between 3GPP and WLAN for dual connectivity in wireless communication system
US9686786B2 (en) Method for updating base station information in converged network supporting multiple communication systems, and device therefor
US9344995B2 (en) Method for transceiving paging message in wireless communication system and apparatus for same
KR20160009530A (en) Method for performing channel switch in network converging plurality of communication systems and apparatus for same
US9210660B2 (en) Method and device for transceiving data in a radio access system supporting multi-radio access technology
US20150139056A1 (en) Method and device for controlling and configuring state of function module of user equipment
WO2013086316A1 (en) Method and apparatus for cross link establishment
KR20160097197A (en) Method for performing, by terminal, random access procedure over network in which multiple communication systems interwork, and apparatus therefor
US20140334465A1 (en) Method and apparatus for paging based on location information of a user equipment in a convergence network of a plurality of communication systems
US20140106793A1 (en) Method and apparatus for efficiently performing paging in a wireless access system that supports a multi-radio access technology
WO2013191461A1 (en) Location update method for terminal supporting multiple radio access technologies
US11057832B2 (en) Method and apparatus for transmitting and receiving a wake-up signal in a wireless communication system
US20170303155A1 (en) Method and apparatus for providing measurement results in a wireless communication system
WO2014171699A1 (en) Method for performing idle mode operation with particular communication system in network including multiple communication systems interworking with each other, and apparatus for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785229

Country of ref document: EP

Kind code of ref document: A1