WO2014171562A1 - Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom - Google Patents

Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom Download PDF

Info

Publication number
WO2014171562A1
WO2014171562A1 PCT/KR2013/003161 KR2013003161W WO2014171562A1 WO 2014171562 A1 WO2014171562 A1 WO 2014171562A1 KR 2013003161 W KR2013003161 W KR 2013003161W WO 2014171562 A1 WO2014171562 A1 WO 2014171562A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral wool
composition
fiber
fibers
wool fibre
Prior art date
Application number
PCT/KR2013/003161
Other languages
French (fr)
Korean (ko)
Inventor
우봉기
이병원
이남수
허균용
정원식
주석재
강성호
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51731492&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014171562(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to JP2016507871A priority Critical patent/JP6433981B2/en
Priority to PCT/KR2013/003161 priority patent/WO2014171562A1/en
Publication of WO2014171562A1 publication Critical patent/WO2014171562A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • C03C2213/02Biodegradable glass fibres

Definitions

  • the present invention relates to a composition for producing mineral wool fibers excellent in solubility in body fluids and mineral wool fibers prepared therefrom, and more specifically, SiO 2 29-42 wt%, Al 2 O 3 17-23 wt%, FeO 3.6 ⁇ 7.2 wt%, Fe 2 O 3 0.1-4.8 wt%, CaO 18-28 wt%, MgO 7-13 wt%, Na 2 O + K 2 O 1-5 wt%
  • the present invention relates to a composition for preparing a mineral wool fiber and a mineral wool fiber produced therefrom, which can be particularly suitably used as an inorganic fiber thermal insulator as well as having excellent solubility in water) and exhibiting high heat resistance and water resistance, low thermal conductivity, and the like.
  • Mineral wool also called 'rock wool'
  • general mineral wool commonly referred to as stone wool or rock wool
  • ceiling wool mineral wool called bale wool.
  • General mineral wool is produced by processing in various forms such as mat, board, pipe cover, etc. by using an organic binder such as phenolic resin. Used as the main material.
  • Typical characteristics that mineral wool should have include high heat resistance, water resistance, and low thermal conductivity.
  • heat resistance it indicates how much mineral wool maintains its role as a heat insulator under high temperature conditions such as fire.
  • water resistance since the mineral wool fiber has an open-cell shape, external moisture such as rain or snow may penetrate into the mineral wool, or condensation may occur inside the mineral wool due to temperature difference, thereby reducing the thermal conductivity. Therefore, it shows the characteristic of how effectively this moisture is blocked.
  • thermal conductivity the most basic property of a heat insulating material indicates how well the heat is blocked when in contact with the heat insulating material. All three are common requirements for inorganic fiber insulation.
  • Mineral wool is melted by applying high temperature heat to silicate ore and dropping it onto the surface of the spinner, which is centrifugal rotation. It is usually prepared in a fibrous manner.
  • the heat resistance is very excellent compared to other organic insulating materials, and has an advantage of showing excellent safety in an emergency situation such as a fire.
  • the fibrous dust scatters and enters the body through the respiratory tract, which may affect the human body. Therefore, many studies have been conducted on how to efficiently discharge the mineral wool fibers into the body. That is, by designing a specific composition, when the fiber is in contact with human body fluids within the lungs, it can be easily decomposed and dissolved in the body fluids, thereby minimizing the possibility of harmful mineral fibers.
  • This biodegradability is related to how efficiently the inorganic fiber invades the human body through the respiratory tract, so that it can be decomposed and released into the body.
  • the mechanism proceeds differently depending on the pH.
  • Inorganic fibers entering the lungs through the respiratory tract are basically exposed to neutral (pH 7.4) bodily fluids. When contacted with these neutral bodily fluids, the reaction rate is slow, but the dissolution of network formers including SiO 2 The reaction continues and the adsorption of water on the surface of the inorganic fiber becomes easier due to the formation of OH-group on the surface of the fiber.
  • the body fluid inside the macrophage which plays a role in the treatment of external foreign matter inside the alveoli, is weakly acidic (pH 4.5), in which case ion exchange occurs predominantly to make the alkaline earth ions rich in aqueous solution.
  • pH 4.5 weakly acidic
  • fiber weight reduction in this process tends to be controlled by diffusion of ions.
  • in vitro testing that simulates this process is preferably used.
  • the flow-through method is used to reproduce the situation in which the fluid is continuously supplied.
  • the water resistance may also be lowered, and may be vulnerable to the moisture encountered in the general environment, so it is essential to find a composition having both adequate water resistance and biodegradability for the body fluids.
  • high heat resistance and heat insulation which are basic properties of mineral wool fibers, are essential elements.
  • the present invention is to solve the problems of the prior art as described above, not only has excellent solubility in body fluids, but also exhibits high heat resistance and water resistance, low thermal conductivity, and the like, and thus can be particularly suitably used as an inorganic fiber insulation material. It is a technical problem to provide a composition for preparing mineral wool fibers and mineral wool fibers prepared therefrom even when it is necessary to contain Al 2 O 3 essentially.
  • the present invention to achieve the above technical problem, SiO 2 29 ⁇ 42 wt%, Al 2 O 3 17 ⁇ 23 wt%, FeO 3.6 ⁇ 7.2 wt%, Fe 2 O 3 0.1 ⁇ 4.8 wt%, CaO 18 ⁇ 28 wt It provides a composition for producing mineral wool fibers, comprising%, MgO 7 ⁇ 13 wt% and Na 2 O + K 2 O 1 ⁇ 5 wt%.
  • the Redox value [FeO wt% / (FeO wt% + Fe 2 O 3 wt%)] of iron in the composition for producing mineral wool fibers is 0.6 or more.
  • a biodegradable mineral wool fiber for body fluid characterized in that it is prepared from the composition for producing mineral wool fibers of the present invention.
  • an insulation product comprising the mineral wool fibers of the present invention.
  • a raw material configuration phase for a predetermined amount or more of Al 2 O 3 should be essentially free of Even suitable mineral wool fibers can be produced using conventional fiberizers.
  • SiO 2 serves to form a basic skeleton of the glass as a network former oxide.
  • SiO 2 is included 29 to 42 wt% (wt%), more preferably 30 to 38 wt%. If the content of SiO 2 in the composition is less than 29 wt%, the physical properties of the mineral wool fibers prepared from the composition are lowered. If the SiO 2 content is more than 42 wt%, the viscosity of the composition is increased, resulting in a coarse fiber and a large fiber diameter.
  • Al 2 O 3 is an intermediate oxide, the content of which affects the biodegradability of the composition. Depending on the coordination number of Al 3+ , some may replace the role of SiO 2 or may act as a modifier oxide, which may vary depending on the content of other modified oxides.
  • the composition for producing mineral wool fibers of the present invention contains Al 2 O 3 17-23 wt%, more preferably 17-21 wt%. If the Al 2 O 3 content in the composition is less than 17wt% or more than 23wt%, biodegradability may be lowered.
  • the main raw material as Al 2 O 3 content is by using the about 30% for about anorthosite (Anorthite) is more than 35% of the injected raw material mixed-composition in Al 2 O 3 content of the above Can be implemented at the level.
  • iron FeO and Fe 2 O 3
  • the composition for producing mineral wool fibers of the present invention contains FeO of 3.6 to 7.2 wt%, Fe 2 O 3 0.1 to 4.8 wt%, more preferably 4.5 to 7.2 wt% FeO, 0.1 to 4.2 Fe 2 O 3 wt% is included. If the content of FeO and Fe 2 O 3 in the composition is less than the above-mentioned level, there is a problem that the fiber shrinkage is increased or the thermal stability is lowered at high temperatures, and if it exceeds this, it causes an overload of the fiber manufacturing equipment to reduce durability. Occurs.
  • the Redox value [FeO wt% / (FeO wt% + Fe 2 O 3 wt%)] of iron in the composition represents the ratio of FeO content to the total iron content. Therefore, the higher the Redox value, the higher the FeO content, which means that the ratio of Fe 2+ in the total iron in the fiber is higher than Fe 3+ .
  • FeO is oxidized to Fe 2 O 3 (that is, Fe 2+ is oxidized to Fe 3+ ), resulting in crystallization behavior of the fiber surface and the inside.
  • the nanoscale thin periclase (MgO crystal) crystal phase is generated, thereby increasing the physical and chemical durability to improve the heat resistance of the fiber.
  • the Redox value of iron in the composition is particularly preferable in terms of further improving the heat resistance of the fiber.
  • this thermal stability is essential for mineral wool products that can be exposed to high temperatures instantaneously, such as in a fire situation.
  • the Redox value of iron in the composition is at least 0.6 (eg, at least 0.6 and less than 1).
  • High levels of iron Redox can be obtained by melting the raw materials using an electric furnace using a graphite electrode.
  • the continuous oxidation of graphite leads to the formation of a reducing atmosphere in the furnace, which can raise the redox of iron.
  • the existing mineral wool is mainly melted in Cupola (Cupola), which uses a fossil fuel cokes (Cokes) as a fuel has a disadvantage of generating a lot of greenhouse gases such as CO 2 when melting.
  • Cupola Cupola
  • Cokes fossil fuel cokes
  • it is easy to control the temperature in the furnace has a variety of advantages such as to improve the homogeneity of the melt to stabilize the fiber quality.
  • CaO and MgO which are alkaline earth metal oxides, may act as a flux as modifier oxides and increase chemical durability.
  • the composition for producing mineral wool fibers of the present invention contains 18 to 28 wt% of CaO, 7 to 13 wt% of MgO, more preferably 20 to 25 wt% of CaO and 8 to 13 wt% of MgO. If the content of CaO and MgO in the composition is less than the above-mentioned level, there is a problem in that the melting temperature is increased to increase the heat consumption required for melting. This leads to deterioration of fiber quality, such as an increase in shot content.
  • mineral wool fibers for preparing the compositions of the present invention includes the 1 ⁇ 5 wt% to the total amount of Na 2 O + K 2 O, and more preferably contains 1.5 to 4.0 wt% the Na 2 O + K 2 O.
  • the content of each of Na 2 O and K 2 O may be freely selected within a range satisfying the above range of total amounts. That is, the content of each of Na 2 O and K 2 O is in the range of 0 to 5 wt%, with the total amount being 1 to 5 wt%.
  • composition for preparing mineral wool fibers according to the present invention may include components such as TiO 2 , SO 3 , and P 2 O 5 as impurities depending on the raw materials used, but the amount thereof may be 1 wt% or less in the total composition. If so, it does not affect the thermal properties or physical properties of the fiber.
  • the method for producing the composition for producing mineral wool fibers according to the present invention can be prepared by a method for producing a composition for a conventional mineral wool fiber.
  • it may be prepared by the same method as the electric melting method, but is not limited thereto.
  • the raw material may be melted by using an electric furnace of an electric resistance method using a graphite electrode.
  • the viscosity range required for the fiber production composition is preferably 20 to 100 poise.
  • the viscosity of the melt is a function of temperature and the corresponding composition, and the viscosity of the melt having the same composition will depend on the temperature. When the temperature of the melt is high during the fiberization, the viscosity is lowered. On the contrary, when the fiberization temperature is low, the viscosity is increased to affect the fiberization.
  • the length of the fiber produced is short and thin as well as a lot of fine unfiberized particles (shots) to produce a low fiberization yield, even if the viscosity is too high diameter of the fiber The problem arises that this large fiber is formed and the coarse unfiberized shots are increased.
  • a biodegradable mineral wool fiber for body fluid characterized in that it is prepared from the composition for producing mineral wool fibers of the present invention as described above.
  • the mineral wool fiber of the present invention preferably has a dissolution rate constant of 1) at least 300 ng / cm 2 ⁇ hr, more preferably at least 350 ng / cm 2 ⁇ hr, for artificial body fluids having a pH of 4.5; 1,000 ° C / 1 hour retention) is 5% or less, more preferably 4% or less, 3) the water loss test (100 ° C / 5 hour retention) is 1% or less, more preferably 0.7% or less, and 4 ) Satisfies one or more of the conditions that the thermal conductivity is 0.037 W / mK or less, more preferably 0.036 W / mK or less, more preferably two or more, even more preferably three or more, most preferably these Satisfies all conditions
  • an insulation product comprising the mineral wool fibers of the present invention as described above.
  • the specific form of the insulation product for example, plate, board, blanket, pipe cover, or any other form is possible.
  • the heat insulating material product of the present invention can be strengthened between the fibers by spraying the organic binder between the fibers and then cured.
  • the dissolution rate constant (K dis ) value, the Redox value, the heating contraction rate, the loss rate and the thermal conductivity during the water resistance test for the artificial body fluid were measured as follows. It was calculated and shown in Table 3 (Example) and Table 4 (Comparative Example).
  • the solubility in artificial body fluid was obtained by the following method.
  • the biodegradability of the ceramic fiber in the body was evaluated based on the solubility of the fiber in the artificial body fluid, and after comparing the residence time based on the solubility, the dissolution rate constant (K dis ) was calculated using the following equation.
  • d 0 is the initial average fiber diameter ( ⁇ m)
  • is the initial density of the fiber (g / cm 3 )
  • M 0 is the mass of the initial fiber (mg)
  • M is the mass of the remaining dissolved fiber (mg)
  • t represents the experiment time (hr).
  • the fiber to be measured was placed between thin layers between 0.2 ⁇ m polycarbonate membrane filters fixed with a plastic filter support, and the dissolution rate was measured by filtering artificial fluid between the filters.
  • the temperature of the artificial fluid was continuously adjusted to 37 ° C. and the flow rate was 135 mL / day, and the pH was maintained at 4.5 ⁇ 0.1 using hydrochloric acid (HCl, 35.0 to 37.0%).
  • the artificial fluids filtered at specific intervals (1, 4, 7, 11, 14, and 21 days) were subjected to inductively coupled plasma analysis (ICP, After dissolving the ions using an Inductively Coupled Plasma Spectrometer, the dissolution rate constant (K dis ) was obtained using the above equation.
  • the content (g) of the composition contained in 1 L of the artificial body fluid used to measure the dissolution rate of the fiber was as follows.
  • the pad was manufactured with the prepared mineral wool and measured by the Hot Furnace Method. After preparing a pad of a predetermined size, it was cut to a size of 50 * 50mm, and the width and length of the cut pad were measured using a vernier caliper. The elevator furnace was then set to 1,000 ° C, and when the elevator furnace reached the set temperature, the pads were placed in the elevator furnace and held for 1 hour. After 1 hour, the pads were removed and the width and length were measured. The bow rate was calculated from the following equation.
  • the prepared mineral wool fibers were molded into a plate to prepare a sample (300 ⁇ 300 ⁇ 20 mm). About this sample, the thermal conductivity which finally converges by the heat flow meter method was measured by making the temperature difference of an average temperature of 20 degreeC, an upper plate, and a lower plate into 28 degreeC.
  • the mineral wool prepared according to the present invention exhibits excellent biodegradability with a K dis value of 300 ng / cm 2 h or more, and at the same time, excellent heat resistance (that is, low shrinkage) and excellent water resistance (ie , Low loss rate) and satisfactory level of thermal conductivity.
  • Comparative Examples 1 and 2 showed poor heat resistance (ie, high heat shrinkage), and Comparative Example 3 showed a high thermal conductivity due to an increase in the shot content with a large diameter inside the fiber due to the increased viscosity, and Comparative Example 4 There was a problem in heat resistance and water resistance, and the viscosity was so low that when the molten metal hit the spinner, it could not be fibrized and splashed, so the content of fine shot increased and the thermal conductivity was increased.
  • Example 6 showed low biodegradability.
  • Comparative Example 7 exhibited problems such as decrease in thermal conductivity, heat resistance, and decrease in water resistance due to a decrease in viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

The present invention relates to a composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and to mineral wool fibre produced therefrom, and more specifically relates to: a composition for producing mineral wool fibre which comprises 29-42 wt% of SiO2 , 17-23 wt% of Al2O3, 3.6-7.2 wt% of FeO, 0.1-4.8 wt% of Fe2O3, 18-28 wt% of CaO, 7-13 wt% of MgO and 1-5 wt% of Na2O+K2O, and which not only is outstandingly soluble in body fluids (human body fluids) but also exhibits, inter alia, a high level of heat resistance and water resistance and low thermal conductivity, and is particularly well suited for use as an inorganic fibre thermal insulation material; and the mineral wool fibre produced from the composition.

Description

체액에 대한 용해성이 우수한 미네랄울 섬유 제조용 조성물 및 그로부터 제조된 미네랄울 섬유Composition for producing mineral wool fibers with excellent solubility in body fluids and mineral wool fibers prepared therefrom
본 발명은 체액에 대한 용해성이 우수한 미네랄울 섬유 제조용 조성물 및 그로부터 제조된 미네랄울 섬유에 관한 것으로, 보다 상세하게는, SiO2 29~42 wt%, Al2O3 17~23 wt%, FeO 3.6~7.2 wt%, Fe2O3 0.1~4.8 wt%, CaO 18~28 wt%, MgO 7~13 wt%, Na2O+K2O 1~5 wt%를 포함하며, 체액(사람의 체액)에 대한 용해성이 우수할 뿐만 아니라 높은 내열성과 내수성, 낮은 열전도율 등을 나타내어 무기섬유 단열재로서 특히 적합하게 사용될 수 있는 미네랄울 섬유 제조용 조성물 및 그로부터 제조된 미네랄울 섬유에 관한 것이다.The present invention relates to a composition for producing mineral wool fibers excellent in solubility in body fluids and mineral wool fibers prepared therefrom, and more specifically, SiO 2 29-42 wt%, Al 2 O 3 17-23 wt%, FeO 3.6 ˜7.2 wt%, Fe 2 O 3 0.1-4.8 wt%, CaO 18-28 wt%, MgO 7-13 wt%, Na 2 O + K 2 O 1-5 wt% The present invention relates to a composition for preparing a mineral wool fiber and a mineral wool fiber produced therefrom, which can be particularly suitably used as an inorganic fiber thermal insulator as well as having excellent solubility in water) and exhibiting high heat resistance and water resistance, low thermal conductivity, and the like.
미네랄울(‘암면’이라고도 함)은 용도에 따라 크게, 통상 Stone wool 혹은 Rock wool이라고 칭하는 일반적인 미네랄울과 Bale wool이라고 칭하는 천장판용 미네랄울의 두 가지로 나뉘어진다. 일반 미네랄울은 페놀수지와 같은 유기 바인더를 사용하여 매트(Mat), 보드(Board), 파이프 커버(Pipe Cover) 등의 다양한 형태로 가공되어 생산되며, 천장판용 미네랄울은 습식 성형을 통해 천장판의 주 재료로 사용된다. Mineral wool (also called 'rock wool') is largely divided into two types depending on the purpose: general mineral wool, commonly referred to as stone wool or rock wool, and ceiling wool mineral wool, called bale wool. General mineral wool is produced by processing in various forms such as mat, board, pipe cover, etc. by using an organic binder such as phenolic resin. Used as the main material.
미네랄울이 가져야 하는 통상적인 특징으로는 높은 내열성과 내수성, 낮은 열전도율 등이 있다. 내열성의 경우, 화재와 같은 고온의 상황에서 미네랄울이 단열재로서의 역할을 얼마나 유지하는지를 나타낸다. 내수성의 경우, 미네랄울 섬유가 Open-cell 형태를 갖기 때문에, 비, 눈 등의 외부 수분이 미네랄울 내부로 침투하거나, 혹은 온도차로 인해 미네랄울 내부에 결로 현상이 발생하여 열전도율을 떨어뜨릴 수 있기 때문에, 이러한 수분을 얼마나 효과적으로 차단하는지의 특성을 나타낸다. 그리고 열전도율의 경우, 단열재가 가지는 가장 기본적인 성질로서 단열재에 접했을 때 얼마나 열을 잘 차단하는지를 나타낸다. 이 세가지 사항들은 무기섬유 단열재의 공통적인 요구 물성이다. Typical characteristics that mineral wool should have include high heat resistance, water resistance, and low thermal conductivity. In the case of heat resistance, it indicates how much mineral wool maintains its role as a heat insulator under high temperature conditions such as fire. In the case of water resistance, since the mineral wool fiber has an open-cell shape, external moisture such as rain or snow may penetrate into the mineral wool, or condensation may occur inside the mineral wool due to temperature difference, thereby reducing the thermal conductivity. Therefore, it shows the characteristic of how effectively this moisture is blocked. And, in the case of thermal conductivity, the most basic property of a heat insulating material indicates how well the heat is blocked when in contact with the heat insulating material. All three are common requirements for inorganic fiber insulation.
미네랄울은 규산염계 광석에 고온의 열을 가하여 용융시킨 후, 이를 원심회전하는 디스크 형태의 스피너 표면에 떨어뜨려 그 원심력을 이용하여 섬유를 인장시키고, 동시에 후면에서 고압의 에어를 분사하여 섬유를 세섬유화시키는 방식으로 통상 제조된다. Mineral wool is melted by applying high temperature heat to silicate ore and dropping it onto the surface of the spinner, which is centrifugal rotation. It is usually prepared in a fibrous manner.
상기 방식으로 생산된 미네랄울의 경우 타 유기단열재에 비해 내열성이 아주 우수하여, 화재와 같은 비상 상황에서 뛰어난 안전성을 보인다는 장점이 있다. 하지만 섬유상의 먼지가 비산하여 호흡기를 통해 체내로 유입될 경우 인체에 영향을 미칠 수도 있다는 의견이 있어 체내에 들어간 미네랄울 섬유를 어떻게 하면 효율적으로 배출시킬지에 대한 많은 연구가 진행되어 왔다. 즉, 특정 조성의 설계를 통해 폐 내부에서 섬유가 사람의 체액에 접했을 때, 쉽게 분해되어 체액에 용해될 수 있도록 하면 미네랄울 섬유의 유해 가능성을 최소화할 수 있다. In the case of the mineral wool produced in the above manner, the heat resistance is very excellent compared to other organic insulating materials, and has an advantage of showing excellent safety in an emergency situation such as a fire. However, there is an opinion that the fibrous dust scatters and enters the body through the respiratory tract, which may affect the human body. Therefore, many studies have been conducted on how to efficiently discharge the mineral wool fibers into the body. That is, by designing a specific composition, when the fiber is in contact with human body fluids within the lungs, it can be easily decomposed and dissolved in the body fluids, thereby minimizing the possibility of harmful mineral fibers.
이러한 생분해성은 호흡기 등을 통해 무기섬유가 인체 내부로 침입했을 때, 이를 얼마나 효율적으로 분해하여 체외로 배출시킬 수 있는 상태로 만드는지에 관계된다. 그 메커니즘은 pH에 따라 상이하게 진행된다. 호흡기를 통해 폐에 유입된 무기섬유는 기본적으로 중성(pH 7.4)의 체액에 노출되는데, 이러한 중성의 체액에 접촉하는 경우 반응 속도는 느리지만, SiO2를 비롯한 망목형성제(Network Former)의 용해 반응이 계속 진행되며, 섬유 표면에 OH-group의 형성으로 무기섬유의 표면에 물의 흡착이 더욱 용이해지게 된다. 한편, 폐포 내부에서 외부의 이물질을 처리하는 역할을 하는 대식세포 내부의 체액은 약산성(pH 4.5)으로 이 경우에는 이온교환이 선발생하여 수용액상에 알칼리토이온이 풍부한 상태로 만들게 되며, 폐포와 같이 유속이 빠른 상태에서는 지속적으로 pH가 유지되기 때문에, 이 과정에서의 섬유 중량 감소는 이온의 확산(Diffusion)에 의해 지배되는 경향이 있다. 생분해성을 평가하기 위해서는 이러한 과정을 모식한 in vitro test가 이용되는 것이 바람직하며, 여기서는 지속적으로 체액이 공급되는 상황을 최대한 유사하게 재현하기 위해 Flow-through Method를 사용한다.This biodegradability is related to how efficiently the inorganic fiber invades the human body through the respiratory tract, so that it can be decomposed and released into the body. The mechanism proceeds differently depending on the pH. Inorganic fibers entering the lungs through the respiratory tract are basically exposed to neutral (pH 7.4) bodily fluids. When contacted with these neutral bodily fluids, the reaction rate is slow, but the dissolution of network formers including SiO 2 The reaction continues and the adsorption of water on the surface of the inorganic fiber becomes easier due to the formation of OH-group on the surface of the fiber. On the other hand, the body fluid inside the macrophage, which plays a role in the treatment of external foreign matter inside the alveoli, is weakly acidic (pH 4.5), in which case ion exchange occurs predominantly to make the alkaline earth ions rich in aqueous solution. As the pH is continuously maintained at a high flow rate, fiber weight reduction in this process tends to be controlled by diffusion of ions. To assess biodegradation, in vitro testing that simulates this process is preferably used. Here, the flow-through method is used to reproduce the situation in which the fluid is continuously supplied.
하지만 이러한 체액에 대한 생분해성을 가지게 되면, 내수성 또한 저하될 수 있어, 일반적인 환경에서 접하게 되는 수분에도 취약해질 가능성이 있기 때문에 적절한 내수성과 체액에 대한 생분해성을 동시에 가지는 조성을 찾는 것이 핵심이다. 또한 미네랄울 섬유로서 가져야 하는 기본적인 물성인 높은 내열성 및 단열성은 필수적으로 가져야 할 요소이다. However, if the biodegradability of the body fluids, the water resistance may also be lowered, and may be vulnerable to the moisture encountered in the general environment, so it is essential to find a composition having both adequate water resistance and biodegradability for the body fluids. In addition, high heat resistance and heat insulation, which are basic properties of mineral wool fibers, are essential elements.
이러한 생분해성을 보유한 무기섬유에 관해서는 많은 연구가 진행되어 왔다. 한국공개특허 제2011-00097010호에는 SiO2 함량을 상대적으로 높이고 Al2O3의 함량을 낮춰 무기섬유의 생분해성을 향상시킨 조성물이 개시되어 있는데, 여기서는 특히 중간산화물로 작용하는 Al2O3의 함량을 줄여 수식산화물의 비율을 상대적으로 증가시키는 방식으로 생분해성을 높였다. 하지만 이러한 방식은, 원료 구성상 일정량 이상의 Al2O3를 필수적으로 함유해야 하는 미네랄울의 경우에는 현실적으로 적용이 힘들다는 문제가 있다.Much research has been conducted on inorganic biodegradable fibers. Korea Patent Application Publication No. 2011-00097010 discloses a composition in which there is a relative increase in the SiO 2 content to lower the content of Al 2 O 3 improves the biodegradability of the inorganic fibers is disclosed, in which the Al 2 O 3, which in particular acts as an intermediate oxide The biodegradability was increased by reducing the content to increase the proportion of modified oxides relatively. However, this method has a problem in that it is difficult to apply in the case of mineral wool that must contain a certain amount or more of Al 2 O 3 in the raw material composition.
본 발명은 상기한 종래 기술들의 문제점을 해결하고자 한 것으로서, 체액에 대한 용해성이 우수할 뿐만 아니라 높은 내열성과 내수성, 낮은 열전도율 등을 나타내어 무기섬유 단열재로서 특히 적합하게 사용될 수 있으며, 원료 구성상 일정량 이상의 Al2O3를 필수적으로 함유해야 하는 경우에도 적합한 미네랄울 섬유 제조용 조성물 및 그로부터 제조된 미네랄울 섬유를 제공하는 것을 기술적 과제로 한다.The present invention is to solve the problems of the prior art as described above, not only has excellent solubility in body fluids, but also exhibits high heat resistance and water resistance, low thermal conductivity, and the like, and thus can be particularly suitably used as an inorganic fiber insulation material. It is a technical problem to provide a composition for preparing mineral wool fibers and mineral wool fibers prepared therefrom even when it is necessary to contain Al 2 O 3 essentially.
상기 기술적 과제를 달성하고자 본 발명은, SiO2 29~42 wt%, Al2O3 17~23 wt%, FeO 3.6~7.2 wt%, Fe2O3 0.1~4.8 wt%, CaO 18~28 wt%, MgO 7~13 wt% 및 Na2O+K2O 1~5 wt%를 포함하는, 미네랄울 섬유 제조용 조성물을 제공한다.The present invention to achieve the above technical problem, SiO 2 29 ~ 42 wt%, Al 2 O 3 17 ~ 23 wt%, FeO 3.6 ~ 7.2 wt%, Fe 2 O 3 0.1 ~ 4.8 wt%, CaO 18 ~ 28 wt It provides a composition for producing mineral wool fibers, comprising%, MgO 7 ~ 13 wt% and Na 2 O + K 2 O 1 ~ 5 wt%.
본 발명의 바람직한 일 구체예에 따르면, 상기 미네랄울 섬유 제조용 조성물 내의 철분의 Redox 값[FeO wt%/(FeO wt%+ Fe2O3 wt%)]이 0.6 이상이다.According to a preferred embodiment of the present invention, the Redox value [FeO wt% / (FeO wt% + Fe 2 O 3 wt%)] of iron in the composition for producing mineral wool fibers is 0.6 or more.
본 발명의 다른 측면에 따르면, 본 발명의 미네랄울 섬유 제조용 조성물로부터 제조되는 것을 특징으로 하는, 체액에 대하여 생분해성인 미네랄울 섬유가 제공된다.According to another aspect of the present invention, there is provided a biodegradable mineral wool fiber for body fluid, characterized in that it is prepared from the composition for producing mineral wool fibers of the present invention.
본 발명의 또 다른 측면에 따르면, 본 발명의 미네랄울 섬유를 포함하는 것을 특징으로 하는 단열재 제품이 제공된다.According to another aspect of the invention, there is provided an insulation product comprising the mineral wool fibers of the present invention.
본 발명에 따르면, 체액에 대한 용해성이 우수할 뿐만 아니라 높은 내열성과 내수성, 낮은 열전도율 등을 나타내어 무기섬유 단열재로서 특히 적합하게 사용될 수 있으며, 원료 구성상 일정량 이상의 Al2O3를 필수적으로 함유해야 하는 경우에도 적합한 미네랄울 섬유를 기존의 섬유화 장치(Fiberizer)를 사용하여 생산할 수 있다.In accordance with the present invention, as to the solubility in body fluids excellent as indicated a high heat resistance and water resistance, low thermal conductivity, etc. may be particularly be suitably used as an inorganic fiber heat insulating material, a raw material configuration phase for a predetermined amount or more of Al 2 O 3 should be essentially free of Even suitable mineral wool fibers can be produced using conventional fiberizers.
이하, 본 발명에 대하여 상세하게 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에 있어서, SiO2는 망목형성 산화물(Network Former oxide)로 유리의 기본적인 골격을 형성하는 역할을 한다. 본 발명의 미네랄울 섬유 제조용 조성물에는 SiO2가 29~42 wt%(중량%) 포함되며, 보다 바람직하게는 30 내지 38wt% 포함된다. 조성물 내의 SiO2 함량이 29 wt% 미만이면 조성물로부터 제조된 미네랄울 섬유의 물성이 저하되고, 42 wt%를 초과하면 조성물 점도가 높아져 섬유가 거칠어지고 섬유경이 커지는 문제가 있다. In the present invention, SiO 2 serves to form a basic skeleton of the glass as a network former oxide. In the composition for preparing mineral wool fibers of the present invention, SiO 2 is included 29 to 42 wt% (wt%), more preferably 30 to 38 wt%. If the content of SiO 2 in the composition is less than 29 wt%, the physical properties of the mineral wool fibers prepared from the composition are lowered. If the SiO 2 content is more than 42 wt%, the viscosity of the composition is increased, resulting in a coarse fiber and a large fiber diameter.
본 발명에 있어서, Al2O3는 중간 산화물(Intermediate oxide)로서 그 함량은 조성물의 생분해성에 영향을 미친다. Al3+의 배위수에 따라 일부가 SiO2의 역할을 대체할 수도 있고, 수식 산화물(Modifier oxide)의 역할을 하기도 하는데, 이는 그 외의 수식 산화물의 함량에 따라 달라질 수 있다. 본 발명의 미네랄울 섬유 제조용 조성물에는 Al2O3가 17~23 wt% 포함되며, 보다 바람직하게는 17 내지 21wt% 포함된다. 조성물 내의 Al2O3 함량이 17wt% 미만이거나 23wt%를 초과하면 생분해성이 저하될 수 있다.In the present invention, Al 2 O 3 is an intermediate oxide, the content of which affects the biodegradability of the composition. Depending on the coordination number of Al 3+ , some may replace the role of SiO 2 or may act as a modifier oxide, which may vary depending on the content of other modified oxides. The composition for producing mineral wool fibers of the present invention contains Al 2 O 3 17-23 wt%, more preferably 17-21 wt%. If the Al 2 O 3 content in the composition is less than 17wt% or more than 23wt%, biodegradability may be lowered.
본 발명의 일 구체예에 따르면, 주원료로서 Al2O3 함량이 약 30%가량 되는 회장암(Anorthite)을 전체 투입된 원료 배합의 35% 이상으로 사용하여 조성물 내 Al2O3 함량을 상기와 같은 수준으로 구현할 수 있다. According to one embodiment of the invention, the main raw material as Al 2 O 3 content is by using the about 30% for about anorthosite (Anorthite) is more than 35% of the injected raw material mixed-composition in Al 2 O 3 content of the above Can be implemented at the level.
본 발명에 있어서, 철분(FeO 및 Fe2O3)는 미네랄울 섬유의 내열성을 향상시키기 위해 사용된다. 본 발명의 미네랄울 섬유 제조용 조성물에는 FeO가 3.6~7.2 wt%, Fe2O3가 0.1~4.8 wt% 포함되며, 보다 바람직하게는 FeO가 4.5 내지 7.2 wt%, Fe2O3가 0.1 내지 4.2 wt% 포함된다. 조성물 내의 FeO 및 Fe2O3 각각의 함량이 상기한 수준에 못 미치면 고온에서 섬유 수축률이 상승하거나 열적 안정성이 떨어지는 문제점이 있고, 이를 초과하면 섬유 제조 설비에 과부하를 주게 되어 내구성을 떨어뜨리는 문제가 발생한다.In the present invention, iron (FeO and Fe 2 O 3 ) is used to improve the heat resistance of mineral wool fibers. The composition for producing mineral wool fibers of the present invention contains FeO of 3.6 to 7.2 wt%, Fe 2 O 3 0.1 to 4.8 wt%, more preferably 4.5 to 7.2 wt% FeO, 0.1 to 4.2 Fe 2 O 3 wt% is included. If the content of FeO and Fe 2 O 3 in the composition is less than the above-mentioned level, there is a problem that the fiber shrinkage is increased or the thermal stability is lowered at high temperatures, and if it exceeds this, it causes an overload of the fiber manufacturing equipment to reduce durability. Occurs.
조성물 내 철분의 Redox 값[FeO wt%/(FeO wt%+ Fe2O3 wt%)]은 총 철분 함량 중 FeO 함량의 비율을 나타낸다. 따라서 Redox 값이 높아지면 FeO의 함량이 상대적으로 높아지게 되고, 이는 섬유 내 전체 철분 중 Fe2+의 비율이 Fe3+ 대비 높아짐을 의미한다. 대기 중에서 제섬된 섬유가 고온에 노출될 경우에 FeO가 Fe2O3로 산화(즉, Fe2+가 Fe3+로 산화)되면서 섬유 표면과 내부의 결정화 거동이 일어나게 되는데, 이 과정에서 섬유 표면에 nanoscale의 얇은 Periclase(MgO 결정) 결정상이 발생하고, 이에 따라 물리/화학적 내구성이 상승하여 섬유의 내열성을 향상시키게 된다. 이 같은 현상은 특히 철분 함량이 높은 미네랄울 조성물에서 더욱 뚜렷하게 나타난다(P.M. Sørensen et al., Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses, Journal of Non-Crystalline Solids 351, (2005), pp. 1246-1253). The Redox value [FeO wt% / (FeO wt% + Fe 2 O 3 wt%)] of iron in the composition represents the ratio of FeO content to the total iron content. Therefore, the higher the Redox value, the higher the FeO content, which means that the ratio of Fe 2+ in the total iron in the fiber is higher than Fe 3+ . When the fiber fibers in the air are exposed to high temperatures, FeO is oxidized to Fe 2 O 3 (that is, Fe 2+ is oxidized to Fe 3+ ), resulting in crystallization behavior of the fiber surface and the inside. The nanoscale thin periclase (MgO crystal) crystal phase is generated, thereby increasing the physical and chemical durability to improve the heat resistance of the fiber. This is especially true in mineral wool compositions with high iron content (PM Sørensen et al., Effect of the redox state and concentration of iron on the crystallization behavior of iron-rich aluminosilicate glasses, Journal of Non-Crystalline Solids 351 , (2005), pp. 1246-1253).
따라서 조성물 내 철분의 Redox 값을 적절히 높은 수준으로 하면 섬유의 내열성을 더욱 향상시킨다는 측면에서 특히 바람직하다. 특히 화재상황과 같이 순간적으로 고온에 노출될 수 있는 미네랄울 제품에는 이 같은 열적안정성이 필수적이다. 본 발명의 바람직한 일 구체예에 있어서, 조성물 내의 철분의 Redox 값은 0.6 이상(예컨대, 0.6 이상 1 미만)이다. Therefore, a moderately high level of the Redox value of iron in the composition is particularly preferable in terms of further improving the heat resistance of the fiber. In particular, this thermal stability is essential for mineral wool products that can be exposed to high temperatures instantaneously, such as in a fire situation. In one preferred embodiment of the invention, the Redox value of iron in the composition is at least 0.6 (eg, at least 0.6 and less than 1).
높은 수준의 철분 Redox 값은 흑연전극봉(Graphite Electrode)를 사용하는 전기저항방식의 전기로를 사용하여 원료를 용융시킴으로써 얻어질 수 있다. 이 방식의 경우 흑연의 지속적인 산화로 인해 로내 환원분위기를 형성하게 되며, 그 결과 철분의 Redox를 상승시킬 수 있다. High levels of iron Redox can be obtained by melting the raw materials using an electric furnace using a graphite electrode. In this case, the continuous oxidation of graphite leads to the formation of a reducing atmosphere in the furnace, which can raise the redox of iron.
또한, 기존의 미네랄울은 주로 큐폴라(Cupola)로에서 용융되었는데, 이는 화석연료인 코크스(Cokes)를 연료로 사용하는 방식으로서 용융시 CO2와 같은 온실가스를 많이 발생시키는 단점이 있다. 반면 전기저항 방식의 전기로를 사용하여 용융시킬 경우 이와 같은 온실가스 배출을 대폭 줄일 수 있으며, 로내 온도 제어가 용이하고, 용융물의 균질도를 향상시켜 섬유 품질을 안정화시킬 수 있는 등 다양한 장점을 가진다.In addition, the existing mineral wool is mainly melted in Cupola (Cupola), which uses a fossil fuel cokes (Cokes) as a fuel has a disadvantage of generating a lot of greenhouse gases such as CO 2 when melting. On the other hand, when melting using an electric resistance type electric furnace can greatly reduce such greenhouse gas emissions, it is easy to control the temperature in the furnace, has a variety of advantages such as to improve the homogeneity of the melt to stabilize the fiber quality.
본 발명에 있어서, 알칼리토금속 산화물인 CaO 및 MgO는 수식 산화물(Modifier oxide)로서 융제역할을 하기도 하며, 화학적 내구성 또한 상승시킨다. 본 발명의 미네랄울 섬유 제조용 조성물에는 CaO가 18~28 wt%, MgO가 7~13 wt% 포함되며, 보다 바람직하게는 CaO가 20 내지 25 wt%, MgO가 8 내지 13 wt% 포함된다. 조성물 내의 CaO 및 MgO 각각의 함량이 상기한 수준에 못 미치면 용융온도가 상승하여 용융에 필요한 열량 소모가 커지는 문제점이 있고, 이를 초과하면 결정화 온도와 섬유화 온도의 차이가 감소하여 섬유화시 결정 발생 가능성이 증가하며, 이는 곧 shot 함량 증가 등 섬유품질의 악화를 야기시킨다.In the present invention, CaO and MgO, which are alkaline earth metal oxides, may act as a flux as modifier oxides and increase chemical durability. The composition for producing mineral wool fibers of the present invention contains 18 to 28 wt% of CaO, 7 to 13 wt% of MgO, more preferably 20 to 25 wt% of CaO and 8 to 13 wt% of MgO. If the content of CaO and MgO in the composition is less than the above-mentioned level, there is a problem in that the melting temperature is increased to increase the heat consumption required for melting. This leads to deterioration of fiber quality, such as an increase in shot content.
본 발명에 있어서, 알칼리금속 산화물인 Na2O 및 K2O는 또 다른 수식 산화물로서 유리의 비가교 산소를 생성시켜 용융시 용융을 원활하게 이루어지도록 하고, 섬유의 생분해성을 향상시키는 역할을 한다. 본 발명의 미네랄울 섬유 제조용 조성물에는 Na2O+K2O의 합계량으로 1~5 wt%가 포함되며, 보다 바람직하게는 Na2O+K2O가 1.5 내지 4.0 wt% 포함된다. Na2O 및 K2O 각각의 함량은 상기한 합계량의 범위를 만족시키는 범위 내에서 자유롭게 선택될 수 있다. 즉, Na2O 및 K2O 각각의 함량은 0~5 wt% 범위 내이되, 단 그 합계량은 1~5 wt%이다.In the present invention, the alkali metal oxides Na 2 O and K 2 O as another modified oxide to generate the non-crosslinked oxygen of the glass to facilitate the melting during melting, and serves to improve the biodegradability of the fiber. . Of mineral wool fibers for preparing the compositions of the present invention includes the 1 ~ 5 wt% to the total amount of Na 2 O + K 2 O, and more preferably contains 1.5 to 4.0 wt% the Na 2 O + K 2 O. The content of each of Na 2 O and K 2 O may be freely selected within a range satisfying the above range of total amounts. That is, the content of each of Na 2 O and K 2 O is in the range of 0 to 5 wt%, with the total amount being 1 to 5 wt%.
조성물 내의 Na2O+K2O 합계량이 1 wt% 미만이면 용융이 어려워져 용융에너지가 많이 소모될 뿐만 아니라 용융 점도가 높아져서 섬유 유연성이 떨어지고 미섬유화 입자의 발생 가능성이 높아지게 되고, 5 wt%를 초과하면 내수성을 악화시키며, 고온안정성 또한 저하될 수 있다.When the total amount of Na 2 O + K 2 O in the composition is less than 1 wt%, melting becomes difficult and not only consumes a lot of melt energy, but also increases the melt viscosity, thereby decreasing fiber flexibility and increasing the possibility of generation of unfibrillated particles. If exceeded, the water resistance deteriorates, and the high temperature stability may also be lowered.
한편 본 발명에 따른 미네랄울 섬유 제조용 조성물에는, 사용되는 원료에 따라 TiO2, SO3, P2O5와 같은 성분들이 불순물로서 포함될 수 있으나, 그 양을 전체 조성물 중에 1 wt% 이하의 수준으로 유지하면, 그로 인해 섬유의 열적 특성이나 물성에 영향을 미치지 않는다.Meanwhile, the composition for preparing mineral wool fibers according to the present invention may include components such as TiO 2 , SO 3 , and P 2 O 5 as impurities depending on the raw materials used, but the amount thereof may be 1 wt% or less in the total composition. If so, it does not affect the thermal properties or physical properties of the fiber.
본 발명에 따른 미네랄울 섬유 제조용 조성물을 제조하는 방법에는 특별한 제한이 없으며, 상기한 성분들을 상기 함량범위로 사용하여 통상의 미네랄울 섬유용 조성물을 제조하는 방법에 의해 제조가능하다. 예컨대 전기 용융공법과 같은 방법으로 제조될 수 있으나, 이에 한정되는 것은 아니다. 바람직하게는 흑연전극봉(Graphite Electrode)를 사용하는 전기저항방식의 전기로를 사용하여 원료를 용융할 수 있다.There is no particular limitation on the method for producing the composition for producing mineral wool fibers according to the present invention, and by using the above components in the content range can be prepared by a method for producing a composition for a conventional mineral wool fiber. For example, it may be prepared by the same method as the electric melting method, but is not limited thereto. Preferably, the raw material may be melted by using an electric furnace of an electric resistance method using a graphite electrode.
본 발명의 미네랄울 섬유 제조용 조성물을 섬유화하는 방법에는 특별한 제한이 없으며, 종래의 섬유화 방법, 예컨대 블로잉법 또는 스피닝법을 적용할 수 있다. 이러한 섬유화 방법을 적용하는데 있어 섬유 제조용 조성물에 요구되는 점도범위는 20∼100 포아즈 (poise)가 바람직하다. 용융물의 점도는 온도와 해당 조성의 함수로서, 동일 조성을 가지는 용융물의 점도는 온도에 의존하게 된다. 섬유화시 용융액의 온도가 높을 경우 점도가 낮아지고 반대로 섬유화 온도가 낮을 경우에는 점도가 높아지게 되어 섬유화에 영향을 준다. 만일, 섬유화 온도에서 섬유조성물의 점도가 너무 낮을 경우 생성된 섬유의 길이가 짧고 가늘 뿐만 아니라 미세한 미섬유화 입자(shot)가 많이 생성되어 섬유화 수율이 낮아지고, 또한 점도가 너무 높을 경우에도 섬유의 직경이 큰 섬유가 형성되고 굵은 미섬유화 입자(shot)가 증가하는 문제가 발생한다.There is no particular limitation on the method of fiberizing the composition for producing the mineral wool fiber of the present invention, and a conventional fiberizing method such as a blowing method or a spinning method may be applied. In applying this fiberization method, the viscosity range required for the fiber production composition is preferably 20 to 100 poise. The viscosity of the melt is a function of temperature and the corresponding composition, and the viscosity of the melt having the same composition will depend on the temperature. When the temperature of the melt is high during the fiberization, the viscosity is lowered. On the contrary, when the fiberization temperature is low, the viscosity is increased to affect the fiberization. If the viscosity of the fiber composition is too low at the fiberization temperature, the length of the fiber produced is short and thin as well as a lot of fine unfiberized particles (shots) to produce a low fiberization yield, even if the viscosity is too high diameter of the fiber The problem arises that this large fiber is formed and the coarse unfiberized shots are increased.
따라서, 본 발명의 다른 측면에 따르면, 상기 설명한 바와 같은 본 발명의 미네랄울 섬유 제조용 조성물로부터 제조되는 것을 특징으로 하는, 체액에 대하여 생분해성인 미네랄울 섬유가 제공된다. Therefore, according to another aspect of the present invention, there is provided a biodegradable mineral wool fiber for body fluid, characterized in that it is prepared from the composition for producing mineral wool fibers of the present invention as described above.
본 발명의 미네랄울 섬유는 바람직하게는, 1) pH 4.5의 인공체액에 대한 용해속도상수가 300 ng/㎠ㆍhr 이상, 보다 바람직하게는 350 ng/㎠ㆍhr 이상, 2) 가열 선수축율(1,000 ℃/1시간 유지)이 5% 이하, 보다 바람직하게는 4% 이하, 3) 내수성 테스트(100℃ / 5시간 유지)시 감량율이 1% 이하, 보다 바람직하게는 0.7% 이하, 및 4) 열전도율이 0.037 W/mK 이하, 보다 바람직하게는 0.036 W/mK 이하라는 조건들 중 하나 이상을 만족시키며, 보다 바람직하게는 둘 이상을, 보다 더 바람직하게는 셋 이상을, 가장 바람직하게는 이들 조건을 모두 만족시킨다.The mineral wool fiber of the present invention preferably has a dissolution rate constant of 1) at least 300 ng / cm 2 · hr, more preferably at least 350 ng / cm 2 · hr, for artificial body fluids having a pH of 4.5; 1,000 ° C / 1 hour retention) is 5% or less, more preferably 4% or less, 3) the water loss test (100 ° C / 5 hour retention) is 1% or less, more preferably 0.7% or less, and 4 ) Satisfies one or more of the conditions that the thermal conductivity is 0.037 W / mK or less, more preferably 0.036 W / mK or less, more preferably two or more, even more preferably three or more, most preferably these Satisfies all conditions
본 발명의 또 다른 측면에 따르면, 상기 설명한 바와 같은 본 발명의 미네랄울 섬유를 포함하는 것을 특징으로 하는 단열재 제품이 제공된다. 단열재 제품의 구체적인 형태에는 특별한 제한이 없으며, 예컨대 판상, 보드, 블랭킷, 파이프 커버, 또는 그 외의 다른 형태가 모두 가능하다.According to another aspect of the present invention, there is provided an insulation product comprising the mineral wool fibers of the present invention as described above. There is no particular limitation on the specific form of the insulation product, for example, plate, board, blanket, pipe cover, or any other form is possible.
본 발명의 바람직한 구체예에 따르면, 본 발명의 단열재 제품은 섬유 간에 유기바인더를 분사한 뒤 경화시켜 섬유간 결합력을 강화시킬 수 있다.According to a preferred embodiment of the present invention, the heat insulating material product of the present invention can be strengthened between the fibers by spraying the organic binder between the fibers and then cured.
이하 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the scope of the present invention is not limited by these.
[실시예]EXAMPLE
실시예 1~6 및 비교예 1~7Examples 1-6 and Comparative Examples 1-7
삼상 흑연 전극봉을 이용한 전기 통전 방식의 용융공법으로 하기 표 1(실시예) 및 표 2(비교예)에 나타낸 성분 및 함량을 갖는 미네랄울 섬유 제조용 조성물을 제조한 다음, 기존의 미네랄울 제조용 스피닝 공정(용융물을 원심회전하는 디스크 형태의 스피너 표면에 떨어뜨려 섬유를 인장시키고, 동시에 후면에서 고압의 에어를 분사하여 섬유를 세섬유화시키는 방식)으로 미네랄울 섬유를 제조하였다. 각 성분의 함량 분석은 고주파 유도 결합 플라스마(ICP, inductively coupled plasma) 방법으로 측정하였다.By using an electric current melting method using a three-phase graphite electrode bar to prepare a composition for producing mineral wool fibers having the components and contents shown in Table 1 (Example) and Table 2 (Comparative Example), then spinning process for manufacturing a conventional mineral wool Mineral wool fibers were prepared by dropping the melt on the surface of a spinner in the form of a centrifugal rotation to tension the fibers, and at the same time, jetting high-pressure air from the rear to refine the fibers. The content analysis of each component was measured by high frequency inductively coupled plasma (ICP) method.
표 1
Figure PCTKR2013003161-appb-T000001
Table 1
Figure PCTKR2013003161-appb-T000001
표 2
Figure PCTKR2013003161-appb-T000002
TABLE 2
Figure PCTKR2013003161-appb-T000002
상기 실시예 및 비교예에서 제조된 미네랄울 섬유들에 대하여 인공체액에 대한 용해속도상수(Kdis) 값, Redox 값, 가열 선수축율, 내수성 테스트시 감량율 및 열전도율을 하기와 같은 방법으로 측정 내지 계산하여, 하기 표 3(실시예) 및 표 4(비교예)에 나타내었다.For the mineral wool fibers prepared in Examples and Comparative Examples, the dissolution rate constant (K dis ) value, the Redox value, the heating contraction rate, the loss rate and the thermal conductivity during the water resistance test for the artificial body fluid were measured as follows. It was calculated and shown in Table 3 (Example) and Table 4 (Comparative Example).
인공체액 용해속도상수(Kdis)Artificial body fluid dissolution rate constant (Kdis)
제조된 섬유의 생체용해성을 평가하기 위해 아래와 같은 방법으로 인공체액에 대한 용해도를 구하였다. 세라믹 섬유의 체내 생분해성은 인공체액에 대한 섬유의 용해도를 기준으로 평가하는데, 상기 용해도를 기준으로 한 체내 잔류시간을 비교한 후 다음 하기 식을 이용하여 용해속도상수(Kdis)를 계산하였다.In order to evaluate the biosolubility of the prepared fiber, the solubility in artificial body fluid was obtained by the following method. The biodegradability of the ceramic fiber in the body was evaluated based on the solubility of the fiber in the artificial body fluid, and after comparing the residence time based on the solubility, the dissolution rate constant (K dis ) was calculated using the following equation.
Figure PCTKR2013003161-appb-I000001
Figure PCTKR2013003161-appb-I000001
상기 식에서, d0는 초기 평균섬유입경(㎛), ρ는 섬유의 초기밀도(g/cm3), M0는 초기 섬유의 질량(mg), M은 용해되고 남은 섬유의 질량(mg), 그리고 t는 실험시간(hr)을 나타낸다. Where d 0 is the initial average fiber diameter (μm), ρ is the initial density of the fiber (g / cm 3 ), M 0 is the mass of the initial fiber (mg), M is the mass of the remaining dissolved fiber (mg), And t represents the experiment time (hr).
측정 대상 섬유를 플라스틱 필터 지지대로 고정된 0.2 ㎛ 폴리카보네이트 멤브레인 필터(polycarbonate membrane filter) 사이의 얇은 층 사이에 놓고 이 필터 사이로 인공체액을 여과시켜 용해속도를 측정하였다. 실험이 진행되는 동안 계속하여 인공체액의 온도를 37 ℃, 유량을 135 mL/일로 조절하고, 염산(HCl, 35.0~37.0%)을 이용하여 pH를 4.5±0.1로 유지시켰다.The fiber to be measured was placed between thin layers between 0.2 μm polycarbonate membrane filters fixed with a plastic filter support, and the dissolution rate was measured by filtering artificial fluid between the filters. During the experiment, the temperature of the artificial fluid was continuously adjusted to 37 ° C. and the flow rate was 135 mL / day, and the pH was maintained at 4.5 ± 0.1 using hydrochloric acid (HCl, 35.0 to 37.0%).
장시간 동안 일어나는 섬유의 용해도를 정확히 측정하기 위하여 섬유를 21일간 침출(leaching)시키면서, 특정 간격(1, 4, 7, 11, 14, 21일)으로 여과된 인공체액을 유도 결합 플라즈마 분석법(ICP, Inductively Coupled Plasma Spectrometer)을 이용해서 용해된 이온들을 분석한 후 이 결과를 이용해서 상기 수학식으로 용해속도 상수(Kdis)를 구하였다.In order to accurately measure the solubility of fibers occurring over a long period of time, the artificial fluids filtered at specific intervals (1, 4, 7, 11, 14, and 21 days) were subjected to inductively coupled plasma analysis (ICP, After dissolving the ions using an Inductively Coupled Plasma Spectrometer, the dissolution rate constant (K dis ) was obtained using the above equation.
섬유의 용해속도를 측정하기 위해 사용한 인공체액 1 L에 들어 있는 조성성분의 함량(g)은 다음과 같았다.The content (g) of the composition contained in 1 L of the artificial body fluid used to measure the dissolution rate of the fiber was as follows.
Figure PCTKR2013003161-appb-I000002
Figure PCTKR2013003161-appb-I000002
Redox 값Redox value
500ml 비이커에 약 300ml 의 물을 넣고 끓인 뒤, CO2를 축출한 후 냉각시켰다. 여기에 황산(1:1) 10ml와 붕산포화용액 10ml를 가하여 시험용 용액으로 사용하였다. 미네랄울 용융물을 응고시켜 입도 약50㎛ 이하로 잘게 분쇄한 분말 시료 0.2~0.5g을 밀폐 가능한 플라스틱 비이커에 취하여 위의 시험용 용액(10ml)으로 적시고, 황산(1:1)과 불산을 같은 양(10ml)으로 혼합한 용액을 가한 다음 교반시켰다. 분말 시료가 완전히 분해된 후, 포화붕산수를 과잉으로 가한 용액을 분석용 시료로 하였다. 이 분석용 시료에 Reinhard Zimmermann solution 10ml를 가하고, 1/50-N KMnO4 solution으로 적정하였다. 담홍색이 30초간 없어지지 않는 점을 종말점(end point)으로 하였다. Blank 시험도 병행 실시한 후, 다음의 식으로부터 Redox값을 계산하였다. 이 때, FeO와 Fe2O3의 총합인 전체 철분의 함량은 ICP 분석을 통하여 구한 값을 적용하였다.About 300 ml of water was added to a 500 ml beaker and boiled, and CO 2 was extracted and cooled. 10 ml of sulfuric acid (1: 1) and 10 ml of saturated boric acid solution were added thereto and used as a test solution. Coagulate the mineral wool melt, and crush 0.2 ~ 0.5g of powder sample finely pulverized to the particle size of less than about 50㎛ in a sealed plastic beaker and wet it with the above test solution (10ml), and the same amount of sulfuric acid (1: 1) and hydrofluoric acid ( 10 ml) was added and then stirred. After the powder sample was completely decomposed, a solution in which saturated boric acid water was excessively added was used as a sample for analysis. 10 ml of Reinhard Zimmermann solution was added to this analytical sample, and titrated with 1 / 50-N KMnO 4 solution. The end point was a point where pink did not disappear for 30 seconds. Blank tests were also performed in parallel, and Redox values were calculated from the following equation. At this time, the total iron content, which is the sum of FeO and Fe 2 O 3 , was applied to a value obtained through ICP analysis.
Figure PCTKR2013003161-appb-I000003
Figure PCTKR2013003161-appb-I000003
가열 선수축율Heating head
제조된 미네랄울로 패드(pad)를 제작하여 Hot Furnace Method 방식으로 측정하였다. 일정 규격의 패드를 제조한 뒤, 50*50mm 크기로 절단하고, 절단된 패드의 가로와 세로길이를 버니어캘리퍼스를 이용하여 측정하였다. 그 다음 elevator furnace를 1,000℃로 설정하고, elevator furnace가 설정된 온도에 도달하면 패드를 elevator furnace에 넣고 1시간 유지시켰다. 1시간 뒤에 패드를 빼내어 가로와 세로를 측정한 뒤, 다음의 식으로부터 선수축율을 계산하였다.The pad was manufactured with the prepared mineral wool and measured by the Hot Furnace Method. After preparing a pad of a predetermined size, it was cut to a size of 50 * 50mm, and the width and length of the cut pad were measured using a vernier caliper. The elevator furnace was then set to 1,000 ° C, and when the elevator furnace reached the set temperature, the pads were placed in the elevator furnace and held for 1 hour. After 1 hour, the pads were removed and the width and length were measured. The bow rate was calculated from the following equation.
Figure PCTKR2013003161-appb-I000004
Figure PCTKR2013003161-appb-I000004
감량율(내수성 테스트)Reduction rate (water resistance test)
DGG(Deutchen Glastechnischen Gesellschaftev) 무게감량 방법을 사용하였다. 10g 정도의 미네랄울을 100ml 증류수에서 가열하여 5시간동안 100℃로 유지한 후, 급속 냉각시켜 필터링하였다. 그 후 필터 채로 150℃에서 건조시킨 뒤 초기 중량대비 감량된 중량을 측정하여 백분율로 나타내었다. DGG (Deutchen Glastechnischen Gesellschaftev) weight loss method was used. About 10 g of mineral wool was heated in 100 ml of distilled water and maintained at 100 ° C. for 5 hours, followed by rapid cooling and filtering. After drying at 150 ℃ with a filter after the weight is measured by weight compared to the initial weight was expressed as a percentage.
Figure PCTKR2013003161-appb-I000005
Figure PCTKR2013003161-appb-I000005
열전도율Thermal conductivity
제조된 미네랄울 섬유를 판상으로 성형하여 샘플(300x300x20mm)을 제작하였다. 이 샘플에 대해, 평균 온도 20℃, 상판과 하판의 온도차이를 28℃로 하여 평판열류계(Heat Flow Meter) 방식으로 최종 수렴하는 열전도율을 측정하였다. The prepared mineral wool fibers were molded into a plate to prepare a sample (300 × 300 × 20 mm). About this sample, the thermal conductivity which finally converges by the heat flow meter method was measured by making the temperature difference of an average temperature of 20 degreeC, an upper plate, and a lower plate into 28 degreeC.
표 3
Figure PCTKR2013003161-appb-T000003
TABLE 3
Figure PCTKR2013003161-appb-T000003
표 4
Figure PCTKR2013003161-appb-T000004
Table 4
Figure PCTKR2013003161-appb-T000004
상기 실험결과에서 확인할 수 있는 바와 같이, 본 발명에 따라 제조된 미네랄울의 경우 Kdis값 300 ng/cm2h 이상의 우수한 생분해성을 나타내는 동시에 우수한 내열성(즉, 낮은 선수축율) 및 우수한 내수성(즉, 낮은 감량율)을 나타내었으며, 열전도율에 있어서도 만족스러운 수준이었다. As can be seen from the above experimental results, the mineral wool prepared according to the present invention exhibits excellent biodegradability with a K dis value of 300 ng / cm 2 h or more, and at the same time, excellent heat resistance (that is, low shrinkage) and excellent water resistance (ie , Low loss rate) and satisfactory level of thermal conductivity.
반면, 비교예 1 및 2는 열악한 내열성(즉, 높은 열수축율)을 보였고, 비교예 3은 상승된 점도로 인해 섬유 내부에 직경이 큰 shot 함량이 증가하여 높은 열전도율을 보였으며, 비교예 4는 내열성과 내수성에 문제가 있었고 점도가 너무 낮아 용탕이 스피너에 부딪칠 때 섬유화되지 못하고 튀어서 미세 shot의 함량이 증가하여 열전도율이 높아졌으며, 비교예 5 역시 섬유화시 점도 증가로 인하여 열전도율이 높아졌고, 비교예 6은 낮은 생분해성을 나타내었으며. 비교예 7은 점도의 저하로 인한 열전도율 하강, 내열성, 내수성 감소 등의 문제를 나타내었다.On the other hand, Comparative Examples 1 and 2 showed poor heat resistance (ie, high heat shrinkage), and Comparative Example 3 showed a high thermal conductivity due to an increase in the shot content with a large diameter inside the fiber due to the increased viscosity, and Comparative Example 4 There was a problem in heat resistance and water resistance, and the viscosity was so low that when the molten metal hit the spinner, it could not be fibrized and splashed, so the content of fine shot increased and the thermal conductivity was increased. Example 6 showed low biodegradability. Comparative Example 7 exhibited problems such as decrease in thermal conductivity, heat resistance, and decrease in water resistance due to a decrease in viscosity.

Claims (9)

  1. SiO2 29~42 wt%, Al2O3 17~23 wt%, FeO 3.6~7.2 wt%, Fe2O3 0.1~4.8 wt%, CaO 18~28 wt%, MgO 7~13 wt% 및 Na2O+K2O 1~5 wt%를 포함하는, 미네랄울 섬유 제조용 조성물.SiO 2 29-42 wt%, Al 2 O 3 17-23 wt%, FeO 3.6-7.2 wt%, Fe 2 O 3 0.1-4.8 wt%, CaO 18-28 wt%, MgO 7-13 wt% and Na 2 O + K 2 O 1 to 5 wt%, the composition for preparing mineral wool fibers.
  2. 제1항에 있어서, 조성물 내의 철분의 Redox 값이 0.6 이상인 것을 특징으로 하는 미네랄울 섬유 제조용 조성물.The composition of claim 1, wherein the Redox value of iron in the composition is 0.6 or more.
  3. 제 1항에 있어서, 흑연전극봉을 사용하는 전기저항방식의 전기로를 사용하여 원료를 용융시킴으로써 제조된 것임을 특징으로 하는 미네랄울 섬유 제조용 조성물.The composition of claim 1, wherein the raw material is manufactured by melting the raw material using an electric resistance type electric furnace using a graphite electrode.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 미네랄울 섬유 제조용 조성물로부터 제조되는 것을 특징으로 하는, 체액에 대하여 생분해성인 미네랄울 섬유. A biodegradable mineral wool fiber for body fluids, which is prepared from the composition for producing mineral wool fibers according to any one of claims 1 to 3.
  5. 제4항에 있어서, 다음 1) 내지 4) 중 하나 이상의 물성을 만족시키는 것을 특징으로 하는 미네랄울 섬유:The mineral wool fiber of claim 4, wherein the mineral wool fiber satisfies at least one of the following properties:
    1) pH 4.5의 인공체액에 대한 용해속도상수: 300 ng/㎠ㆍhr 이상1) Dissolution rate constant for artificial fluid at pH 4.5: 300 ng / ㎠ · hr or more
    2) 가열 선수축율(1,000 ℃/1시간 유지): 5% 이하2) Heating preshrinkage rate (1,000 ℃ / 1 hour maintenance): 5% or less
    3) 내수성 테스트(100℃/5시간 유지)시 감량율: 1% 이하3) Loss rate during water resistance test (100 ℃ / 5 hours maintenance): 1% or less
    4) 열전도율: 0.037 W/mK 이하.4) Thermal conductivity: 0.037 W / mK or less.
  6. 제5항에 있어서, 상기 1) 내지 4)의 물성 모두를 만족시키는 것을 특징으로 하는 미네랄울 섬유.[6] The mineral wool fiber according to claim 5, wherein all of the physical properties of 1) to 4) are satisfied.
  7. 제4항에 따른 미네랄울 섬유를 포함하는 것을 특징으로 하는 단열재 제품.Insulation product comprising the mineral wool fibers according to claim 4.
  8. 제7항에 있어서, 상기 섬유 간에 유기바인더를 분사한 뒤 경화시켜 섬유간 결합력을 강화시킨 것을 특징으로 하는 단열재 제품.8. The thermal insulation product according to claim 7, wherein the organic binder is sprayed and cured between the fibers to harden the bond between the fibers.
  9. 제7항에 있어서, 판상, 보드, 블랭킷 또는 파이프 커버 형태인 것을 특징으로 하는 단열재 제품.8. Insulation product according to claim 7, characterized in that it is in the form of a plate, board, blanket or pipe cover.
PCT/KR2013/003161 2013-04-15 2013-04-15 Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom WO2014171562A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016507871A JP6433981B2 (en) 2013-04-15 2013-04-15 Composition for producing mineral wool fiber excellent in solubility in body fluid and mineral wool fiber produced thereby
PCT/KR2013/003161 WO2014171562A1 (en) 2013-04-15 2013-04-15 Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/003161 WO2014171562A1 (en) 2013-04-15 2013-04-15 Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom

Publications (1)

Publication Number Publication Date
WO2014171562A1 true WO2014171562A1 (en) 2014-10-23

Family

ID=51731492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003161 WO2014171562A1 (en) 2013-04-15 2013-04-15 Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom

Country Status (2)

Country Link
JP (1) JP6433981B2 (en)
WO (1) WO2014171562A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063280A (en) * 2015-10-08 2018-06-11 쌩-고벵 이조베르 Mineral fiber
WO2018154076A1 (en) * 2017-02-24 2018-08-30 Knauf Insulation Sprl Mineral wool
CN114174235A (en) * 2019-07-25 2022-03-11 霓佳斯株式会社 Inorganic fiber, inorganic fiber product, method for producing inorganic fiber product, composition for producing inorganic fiber, and method for producing inorganic fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030002A1 (en) * 1996-02-16 1997-08-21 Partek Paroc Oy Ab Mineral fibre
US5935886A (en) * 1994-11-08 1999-08-10 Rockwool International A/S Man-made vitreous fibres
US20080277818A1 (en) * 2006-05-19 2008-11-13 Kibol Viktor F Composition and Method for Producing Continuous Basalt Fibre
US20110172077A1 (en) * 2009-11-18 2011-07-14 Albert Lewis High temperature glass fiber insulation
KR20120052288A (en) * 2009-07-13 2012-05-23 락울 인터내셔날 에이/에스 Mineral fibres and their use
KR20120116235A (en) * 2011-04-12 2012-10-22 주식회사 케이씨씨 Mineral wool fiber composition having improved bio-solubility, and mineral wool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202645A (en) * 1996-01-22 1997-08-05 Nichias Corp Rock wool
US6067821A (en) * 1996-10-07 2000-05-30 Owens Corning Fiberglas Technology, Inc. Process for making mineral wool fibers from lumps of uncalcined raw bauxite
EP1037861B1 (en) * 1997-12-02 2007-11-28 Rockwool International A/S Briquettes for mineral fibre production and their use
WO2012176799A1 (en) * 2011-06-21 2012-12-27 ニチアス株式会社 Rock wool, method for producing same and inorganic fiber felt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935886A (en) * 1994-11-08 1999-08-10 Rockwool International A/S Man-made vitreous fibres
WO1997030002A1 (en) * 1996-02-16 1997-08-21 Partek Paroc Oy Ab Mineral fibre
US20080277818A1 (en) * 2006-05-19 2008-11-13 Kibol Viktor F Composition and Method for Producing Continuous Basalt Fibre
KR20120052288A (en) * 2009-07-13 2012-05-23 락울 인터내셔날 에이/에스 Mineral fibres and their use
US20110172077A1 (en) * 2009-11-18 2011-07-14 Albert Lewis High temperature glass fiber insulation
KR20120116235A (en) * 2011-04-12 2012-10-22 주식회사 케이씨씨 Mineral wool fiber composition having improved bio-solubility, and mineral wool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063280A (en) * 2015-10-08 2018-06-11 쌩-고벵 이조베르 Mineral fiber
JP2018531204A (en) * 2015-10-08 2018-10-25 サン−ゴバン イゾベール Mineral fiber
KR102654081B1 (en) * 2015-10-08 2024-04-04 쌩-고벵 이조베르 mineral fiber
WO2018154076A1 (en) * 2017-02-24 2018-08-30 Knauf Insulation Sprl Mineral wool
CN110520388A (en) * 2017-02-24 2019-11-29 可耐福保温有限公司 Mineral wool
US11192819B2 (en) 2017-02-24 2021-12-07 Knauf Insulation Sprl Mineral wool
US11685687B2 (en) 2017-02-24 2023-06-27 Knauf Insulation Sprl Mineral wool
CN114174235A (en) * 2019-07-25 2022-03-11 霓佳斯株式会社 Inorganic fiber, inorganic fiber product, method for producing inorganic fiber product, composition for producing inorganic fiber, and method for producing inorganic fiber
CN114174235B (en) * 2019-07-25 2023-08-29 霓佳斯株式会社 Inorganic fiber, inorganic fiber product, method for producing inorganic fiber product, composition for producing inorganic fiber, and method for producing inorganic fiber

Also Published As

Publication number Publication date
JP2016515995A (en) 2016-06-02
JP6433981B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US7704902B2 (en) Glass fibre compositions
KR100937621B1 (en) High temperature resistant vitreous inorganic fiber
EP3087042B1 (en) Non-biopersistent inorganic glass fiber with improved shrinkage and strength
CN104203851B (en) Melt composition for the production of man-made vitreous fibres
EP0502159A1 (en) Glass fiber compositions.
CZ20023138A3 (en) Thermally stable mineral wool
AU711940B2 (en) Biosoluble, high temperature mineral wools
WO2011065698A2 (en) Ceramic fiber composition which is soluble in salt
US9919954B2 (en) Inorganic fiber
GB2427191A (en) Glass fibres
KR101348274B1 (en) Composition for preparing mineral wool fiber having high solubility in body fluid and mineral wool fiber prepared therefrom
WO2014171562A1 (en) Composition for producing mineral wool fibre which is outstandingly soluble in body fluids, and mineral wool fibre produced therefrom
KR20130067421A (en) Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom
KR20130112433A (en) A composition for preparing glass wool and a biosoluble glass wool prepared therefrom
EP3575272B1 (en) Inorganic fiber with improved shrinkage and strength
EP3169637B1 (en) Inorganic fiber with improved shrinkage and strength
WO2012141467A2 (en) Biosoluble mineral-wool fiber composition, and mineral-wool fiber
EP2794982A1 (en) High temperature resistant inorganic fiber
WO2014163348A1 (en) Composition for preparing ceramic fiber and salt-soluble ceramic fiber prepared therefrom for high-temperature insulation material
CN113582536A (en) Preparation method and preparation system of soluble mineral fiber blanket
KR101732407B1 (en) Composition for preparing low dust mineral wool fiber and mineral wool fiber prepared therefrom
WO2014171561A1 (en) Glass fibre producing composition and biosoluble glass fibre produced therefrom
KR20200090064A (en) Composition for mineral wool and mineral wool manufactured thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882109

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882109

Country of ref document: EP

Kind code of ref document: A1